1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include "cache.h" 14 #include <linux/ceph/decode.h> 15 #include <linux/ceph/messenger.h> 16 17 /* 18 * Capability management 19 * 20 * The Ceph metadata servers control client access to inode metadata 21 * and file data by issuing capabilities, granting clients permission 22 * to read and/or write both inode field and file data to OSDs 23 * (storage nodes). Each capability consists of a set of bits 24 * indicating which operations are allowed. 25 * 26 * If the client holds a *_SHARED cap, the client has a coherent value 27 * that can be safely read from the cached inode. 28 * 29 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 30 * client is allowed to change inode attributes (e.g., file size, 31 * mtime), note its dirty state in the ceph_cap, and asynchronously 32 * flush that metadata change to the MDS. 33 * 34 * In the event of a conflicting operation (perhaps by another 35 * client), the MDS will revoke the conflicting client capabilities. 36 * 37 * In order for a client to cache an inode, it must hold a capability 38 * with at least one MDS server. When inodes are released, release 39 * notifications are batched and periodically sent en masse to the MDS 40 * cluster to release server state. 41 */ 42 43 44 /* 45 * Generate readable cap strings for debugging output. 46 */ 47 #define MAX_CAP_STR 20 48 static char cap_str[MAX_CAP_STR][40]; 49 static DEFINE_SPINLOCK(cap_str_lock); 50 static int last_cap_str; 51 52 static char *gcap_string(char *s, int c) 53 { 54 if (c & CEPH_CAP_GSHARED) 55 *s++ = 's'; 56 if (c & CEPH_CAP_GEXCL) 57 *s++ = 'x'; 58 if (c & CEPH_CAP_GCACHE) 59 *s++ = 'c'; 60 if (c & CEPH_CAP_GRD) 61 *s++ = 'r'; 62 if (c & CEPH_CAP_GWR) 63 *s++ = 'w'; 64 if (c & CEPH_CAP_GBUFFER) 65 *s++ = 'b'; 66 if (c & CEPH_CAP_GLAZYIO) 67 *s++ = 'l'; 68 return s; 69 } 70 71 const char *ceph_cap_string(int caps) 72 { 73 int i; 74 char *s; 75 int c; 76 77 spin_lock(&cap_str_lock); 78 i = last_cap_str++; 79 if (last_cap_str == MAX_CAP_STR) 80 last_cap_str = 0; 81 spin_unlock(&cap_str_lock); 82 83 s = cap_str[i]; 84 85 if (caps & CEPH_CAP_PIN) 86 *s++ = 'p'; 87 88 c = (caps >> CEPH_CAP_SAUTH) & 3; 89 if (c) { 90 *s++ = 'A'; 91 s = gcap_string(s, c); 92 } 93 94 c = (caps >> CEPH_CAP_SLINK) & 3; 95 if (c) { 96 *s++ = 'L'; 97 s = gcap_string(s, c); 98 } 99 100 c = (caps >> CEPH_CAP_SXATTR) & 3; 101 if (c) { 102 *s++ = 'X'; 103 s = gcap_string(s, c); 104 } 105 106 c = caps >> CEPH_CAP_SFILE; 107 if (c) { 108 *s++ = 'F'; 109 s = gcap_string(s, c); 110 } 111 112 if (s == cap_str[i]) 113 *s++ = '-'; 114 *s = 0; 115 return cap_str[i]; 116 } 117 118 void ceph_caps_init(struct ceph_mds_client *mdsc) 119 { 120 INIT_LIST_HEAD(&mdsc->caps_list); 121 spin_lock_init(&mdsc->caps_list_lock); 122 } 123 124 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 125 { 126 struct ceph_cap *cap; 127 128 spin_lock(&mdsc->caps_list_lock); 129 while (!list_empty(&mdsc->caps_list)) { 130 cap = list_first_entry(&mdsc->caps_list, 131 struct ceph_cap, caps_item); 132 list_del(&cap->caps_item); 133 kmem_cache_free(ceph_cap_cachep, cap); 134 } 135 mdsc->caps_total_count = 0; 136 mdsc->caps_avail_count = 0; 137 mdsc->caps_use_count = 0; 138 mdsc->caps_reserve_count = 0; 139 mdsc->caps_min_count = 0; 140 spin_unlock(&mdsc->caps_list_lock); 141 } 142 143 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 144 { 145 spin_lock(&mdsc->caps_list_lock); 146 mdsc->caps_min_count += delta; 147 BUG_ON(mdsc->caps_min_count < 0); 148 spin_unlock(&mdsc->caps_list_lock); 149 } 150 151 void ceph_reserve_caps(struct ceph_mds_client *mdsc, 152 struct ceph_cap_reservation *ctx, int need) 153 { 154 int i; 155 struct ceph_cap *cap; 156 int have; 157 int alloc = 0; 158 LIST_HEAD(newcaps); 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) 178 break; 179 list_add(&cap->caps_item, &newcaps); 180 alloc++; 181 } 182 /* we didn't manage to reserve as much as we needed */ 183 if (have + alloc != need) 184 pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 185 ctx, need, have + alloc); 186 187 spin_lock(&mdsc->caps_list_lock); 188 mdsc->caps_total_count += alloc; 189 mdsc->caps_reserve_count += alloc; 190 list_splice(&newcaps, &mdsc->caps_list); 191 192 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 193 mdsc->caps_reserve_count + 194 mdsc->caps_avail_count); 195 spin_unlock(&mdsc->caps_list_lock); 196 197 ctx->count = need; 198 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 199 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 200 mdsc->caps_reserve_count, mdsc->caps_avail_count); 201 } 202 203 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 204 struct ceph_cap_reservation *ctx) 205 { 206 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 207 if (ctx->count) { 208 spin_lock(&mdsc->caps_list_lock); 209 BUG_ON(mdsc->caps_reserve_count < ctx->count); 210 mdsc->caps_reserve_count -= ctx->count; 211 mdsc->caps_avail_count += ctx->count; 212 ctx->count = 0; 213 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 214 mdsc->caps_total_count, mdsc->caps_use_count, 215 mdsc->caps_reserve_count, mdsc->caps_avail_count); 216 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 217 mdsc->caps_reserve_count + 218 mdsc->caps_avail_count); 219 spin_unlock(&mdsc->caps_list_lock); 220 } 221 return 0; 222 } 223 224 struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc, 225 struct ceph_cap_reservation *ctx) 226 { 227 struct ceph_cap *cap = NULL; 228 229 /* temporary, until we do something about cap import/export */ 230 if (!ctx) { 231 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 232 if (cap) { 233 spin_lock(&mdsc->caps_list_lock); 234 mdsc->caps_use_count++; 235 mdsc->caps_total_count++; 236 spin_unlock(&mdsc->caps_list_lock); 237 } 238 return cap; 239 } 240 241 spin_lock(&mdsc->caps_list_lock); 242 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 243 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 244 mdsc->caps_reserve_count, mdsc->caps_avail_count); 245 BUG_ON(!ctx->count); 246 BUG_ON(ctx->count > mdsc->caps_reserve_count); 247 BUG_ON(list_empty(&mdsc->caps_list)); 248 249 ctx->count--; 250 mdsc->caps_reserve_count--; 251 mdsc->caps_use_count++; 252 253 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 254 list_del(&cap->caps_item); 255 256 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 257 mdsc->caps_reserve_count + mdsc->caps_avail_count); 258 spin_unlock(&mdsc->caps_list_lock); 259 return cap; 260 } 261 262 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 263 { 264 spin_lock(&mdsc->caps_list_lock); 265 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 266 cap, mdsc->caps_total_count, mdsc->caps_use_count, 267 mdsc->caps_reserve_count, mdsc->caps_avail_count); 268 mdsc->caps_use_count--; 269 /* 270 * Keep some preallocated caps around (ceph_min_count), to 271 * avoid lots of free/alloc churn. 272 */ 273 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 274 mdsc->caps_min_count) { 275 mdsc->caps_total_count--; 276 kmem_cache_free(ceph_cap_cachep, cap); 277 } else { 278 mdsc->caps_avail_count++; 279 list_add(&cap->caps_item, &mdsc->caps_list); 280 } 281 282 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 283 mdsc->caps_reserve_count + mdsc->caps_avail_count); 284 spin_unlock(&mdsc->caps_list_lock); 285 } 286 287 void ceph_reservation_status(struct ceph_fs_client *fsc, 288 int *total, int *avail, int *used, int *reserved, 289 int *min) 290 { 291 struct ceph_mds_client *mdsc = fsc->mdsc; 292 293 if (total) 294 *total = mdsc->caps_total_count; 295 if (avail) 296 *avail = mdsc->caps_avail_count; 297 if (used) 298 *used = mdsc->caps_use_count; 299 if (reserved) 300 *reserved = mdsc->caps_reserve_count; 301 if (min) 302 *min = mdsc->caps_min_count; 303 } 304 305 /* 306 * Find ceph_cap for given mds, if any. 307 * 308 * Called with i_ceph_lock held. 309 */ 310 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 311 { 312 struct ceph_cap *cap; 313 struct rb_node *n = ci->i_caps.rb_node; 314 315 while (n) { 316 cap = rb_entry(n, struct ceph_cap, ci_node); 317 if (mds < cap->mds) 318 n = n->rb_left; 319 else if (mds > cap->mds) 320 n = n->rb_right; 321 else 322 return cap; 323 } 324 return NULL; 325 } 326 327 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 328 { 329 struct ceph_cap *cap; 330 331 spin_lock(&ci->i_ceph_lock); 332 cap = __get_cap_for_mds(ci, mds); 333 spin_unlock(&ci->i_ceph_lock); 334 return cap; 335 } 336 337 /* 338 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 339 */ 340 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 341 { 342 struct ceph_cap *cap; 343 int mds = -1; 344 struct rb_node *p; 345 346 /* prefer mds with WR|BUFFER|EXCL caps */ 347 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 348 cap = rb_entry(p, struct ceph_cap, ci_node); 349 mds = cap->mds; 350 if (cap->issued & (CEPH_CAP_FILE_WR | 351 CEPH_CAP_FILE_BUFFER | 352 CEPH_CAP_FILE_EXCL)) 353 break; 354 } 355 return mds; 356 } 357 358 int ceph_get_cap_mds(struct inode *inode) 359 { 360 struct ceph_inode_info *ci = ceph_inode(inode); 361 int mds; 362 spin_lock(&ci->i_ceph_lock); 363 mds = __ceph_get_cap_mds(ceph_inode(inode)); 364 spin_unlock(&ci->i_ceph_lock); 365 return mds; 366 } 367 368 /* 369 * Called under i_ceph_lock. 370 */ 371 static void __insert_cap_node(struct ceph_inode_info *ci, 372 struct ceph_cap *new) 373 { 374 struct rb_node **p = &ci->i_caps.rb_node; 375 struct rb_node *parent = NULL; 376 struct ceph_cap *cap = NULL; 377 378 while (*p) { 379 parent = *p; 380 cap = rb_entry(parent, struct ceph_cap, ci_node); 381 if (new->mds < cap->mds) 382 p = &(*p)->rb_left; 383 else if (new->mds > cap->mds) 384 p = &(*p)->rb_right; 385 else 386 BUG(); 387 } 388 389 rb_link_node(&new->ci_node, parent, p); 390 rb_insert_color(&new->ci_node, &ci->i_caps); 391 } 392 393 /* 394 * (re)set cap hold timeouts, which control the delayed release 395 * of unused caps back to the MDS. Should be called on cap use. 396 */ 397 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 398 struct ceph_inode_info *ci) 399 { 400 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 401 402 ci->i_hold_caps_min = round_jiffies(jiffies + 403 ma->caps_wanted_delay_min * HZ); 404 ci->i_hold_caps_max = round_jiffies(jiffies + 405 ma->caps_wanted_delay_max * HZ); 406 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 407 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 408 } 409 410 /* 411 * (Re)queue cap at the end of the delayed cap release list. 412 * 413 * If I_FLUSH is set, leave the inode at the front of the list. 414 * 415 * Caller holds i_ceph_lock 416 * -> we take mdsc->cap_delay_lock 417 */ 418 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 419 struct ceph_inode_info *ci) 420 { 421 __cap_set_timeouts(mdsc, ci); 422 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 423 ci->i_ceph_flags, ci->i_hold_caps_max); 424 if (!mdsc->stopping) { 425 spin_lock(&mdsc->cap_delay_lock); 426 if (!list_empty(&ci->i_cap_delay_list)) { 427 if (ci->i_ceph_flags & CEPH_I_FLUSH) 428 goto no_change; 429 list_del_init(&ci->i_cap_delay_list); 430 } 431 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 432 no_change: 433 spin_unlock(&mdsc->cap_delay_lock); 434 } 435 } 436 437 /* 438 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 439 * indicating we should send a cap message to flush dirty metadata 440 * asap, and move to the front of the delayed cap list. 441 */ 442 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 443 struct ceph_inode_info *ci) 444 { 445 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 446 spin_lock(&mdsc->cap_delay_lock); 447 ci->i_ceph_flags |= CEPH_I_FLUSH; 448 if (!list_empty(&ci->i_cap_delay_list)) 449 list_del_init(&ci->i_cap_delay_list); 450 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 451 spin_unlock(&mdsc->cap_delay_lock); 452 } 453 454 /* 455 * Cancel delayed work on cap. 456 * 457 * Caller must hold i_ceph_lock. 458 */ 459 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 460 struct ceph_inode_info *ci) 461 { 462 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 463 if (list_empty(&ci->i_cap_delay_list)) 464 return; 465 spin_lock(&mdsc->cap_delay_lock); 466 list_del_init(&ci->i_cap_delay_list); 467 spin_unlock(&mdsc->cap_delay_lock); 468 } 469 470 /* 471 * Common issue checks for add_cap, handle_cap_grant. 472 */ 473 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 474 unsigned issued) 475 { 476 unsigned had = __ceph_caps_issued(ci, NULL); 477 478 /* 479 * Each time we receive FILE_CACHE anew, we increment 480 * i_rdcache_gen. 481 */ 482 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 483 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) { 484 ci->i_rdcache_gen++; 485 } 486 487 /* 488 * if we are newly issued FILE_SHARED, mark dir not complete; we 489 * don't know what happened to this directory while we didn't 490 * have the cap. 491 */ 492 if ((issued & CEPH_CAP_FILE_SHARED) && 493 (had & CEPH_CAP_FILE_SHARED) == 0) { 494 ci->i_shared_gen++; 495 if (S_ISDIR(ci->vfs_inode.i_mode)) { 496 dout(" marking %p NOT complete\n", &ci->vfs_inode); 497 __ceph_dir_clear_complete(ci); 498 } 499 } 500 } 501 502 /* 503 * Add a capability under the given MDS session. 504 * 505 * Caller should hold session snap_rwsem (read) and s_mutex. 506 * 507 * @fmode is the open file mode, if we are opening a file, otherwise 508 * it is < 0. (This is so we can atomically add the cap and add an 509 * open file reference to it.) 510 */ 511 void ceph_add_cap(struct inode *inode, 512 struct ceph_mds_session *session, u64 cap_id, 513 int fmode, unsigned issued, unsigned wanted, 514 unsigned seq, unsigned mseq, u64 realmino, int flags, 515 struct ceph_cap **new_cap) 516 { 517 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 518 struct ceph_inode_info *ci = ceph_inode(inode); 519 struct ceph_cap *cap; 520 int mds = session->s_mds; 521 int actual_wanted; 522 523 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 524 session->s_mds, cap_id, ceph_cap_string(issued), seq); 525 526 /* 527 * If we are opening the file, include file mode wanted bits 528 * in wanted. 529 */ 530 if (fmode >= 0) 531 wanted |= ceph_caps_for_mode(fmode); 532 533 cap = __get_cap_for_mds(ci, mds); 534 if (!cap) { 535 cap = *new_cap; 536 *new_cap = NULL; 537 538 cap->issued = 0; 539 cap->implemented = 0; 540 cap->mds = mds; 541 cap->mds_wanted = 0; 542 cap->mseq = 0; 543 544 cap->ci = ci; 545 __insert_cap_node(ci, cap); 546 547 /* add to session cap list */ 548 cap->session = session; 549 spin_lock(&session->s_cap_lock); 550 list_add_tail(&cap->session_caps, &session->s_caps); 551 session->s_nr_caps++; 552 spin_unlock(&session->s_cap_lock); 553 } else { 554 /* 555 * auth mds of the inode changed. we received the cap export 556 * message, but still haven't received the cap import message. 557 * handle_cap_export() updated the new auth MDS' cap. 558 * 559 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing 560 * a message that was send before the cap import message. So 561 * don't remove caps. 562 */ 563 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 564 WARN_ON(cap != ci->i_auth_cap); 565 WARN_ON(cap->cap_id != cap_id); 566 seq = cap->seq; 567 mseq = cap->mseq; 568 issued |= cap->issued; 569 flags |= CEPH_CAP_FLAG_AUTH; 570 } 571 } 572 573 if (!ci->i_snap_realm) { 574 /* 575 * add this inode to the appropriate snap realm 576 */ 577 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 578 realmino); 579 if (realm) { 580 spin_lock(&realm->inodes_with_caps_lock); 581 ci->i_snap_realm = realm; 582 list_add(&ci->i_snap_realm_item, 583 &realm->inodes_with_caps); 584 spin_unlock(&realm->inodes_with_caps_lock); 585 } else { 586 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 587 realmino); 588 WARN_ON(!realm); 589 } 590 } 591 592 __check_cap_issue(ci, cap, issued); 593 594 /* 595 * If we are issued caps we don't want, or the mds' wanted 596 * value appears to be off, queue a check so we'll release 597 * later and/or update the mds wanted value. 598 */ 599 actual_wanted = __ceph_caps_wanted(ci); 600 if ((wanted & ~actual_wanted) || 601 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 602 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 603 ceph_cap_string(issued), ceph_cap_string(wanted), 604 ceph_cap_string(actual_wanted)); 605 __cap_delay_requeue(mdsc, ci); 606 } 607 608 if (flags & CEPH_CAP_FLAG_AUTH) { 609 if (ci->i_auth_cap == NULL || 610 ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) { 611 ci->i_auth_cap = cap; 612 cap->mds_wanted = wanted; 613 } 614 } else { 615 WARN_ON(ci->i_auth_cap == cap); 616 } 617 618 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 619 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 620 ceph_cap_string(issued|cap->issued), seq, mds); 621 cap->cap_id = cap_id; 622 cap->issued = issued; 623 cap->implemented |= issued; 624 if (ceph_seq_cmp(mseq, cap->mseq) > 0) 625 cap->mds_wanted = wanted; 626 else 627 cap->mds_wanted |= wanted; 628 cap->seq = seq; 629 cap->issue_seq = seq; 630 cap->mseq = mseq; 631 cap->cap_gen = session->s_cap_gen; 632 633 if (fmode >= 0) 634 __ceph_get_fmode(ci, fmode); 635 } 636 637 /* 638 * Return true if cap has not timed out and belongs to the current 639 * generation of the MDS session (i.e. has not gone 'stale' due to 640 * us losing touch with the mds). 641 */ 642 static int __cap_is_valid(struct ceph_cap *cap) 643 { 644 unsigned long ttl; 645 u32 gen; 646 647 spin_lock(&cap->session->s_gen_ttl_lock); 648 gen = cap->session->s_cap_gen; 649 ttl = cap->session->s_cap_ttl; 650 spin_unlock(&cap->session->s_gen_ttl_lock); 651 652 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 653 dout("__cap_is_valid %p cap %p issued %s " 654 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 655 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 656 return 0; 657 } 658 659 return 1; 660 } 661 662 /* 663 * Return set of valid cap bits issued to us. Note that caps time 664 * out, and may be invalidated in bulk if the client session times out 665 * and session->s_cap_gen is bumped. 666 */ 667 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 668 { 669 int have = ci->i_snap_caps; 670 struct ceph_cap *cap; 671 struct rb_node *p; 672 673 if (implemented) 674 *implemented = 0; 675 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 676 cap = rb_entry(p, struct ceph_cap, ci_node); 677 if (!__cap_is_valid(cap)) 678 continue; 679 dout("__ceph_caps_issued %p cap %p issued %s\n", 680 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 681 have |= cap->issued; 682 if (implemented) 683 *implemented |= cap->implemented; 684 } 685 /* 686 * exclude caps issued by non-auth MDS, but are been revoking 687 * by the auth MDS. The non-auth MDS should be revoking/exporting 688 * these caps, but the message is delayed. 689 */ 690 if (ci->i_auth_cap) { 691 cap = ci->i_auth_cap; 692 have &= ~cap->implemented | cap->issued; 693 } 694 return have; 695 } 696 697 /* 698 * Get cap bits issued by caps other than @ocap 699 */ 700 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 701 { 702 int have = ci->i_snap_caps; 703 struct ceph_cap *cap; 704 struct rb_node *p; 705 706 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 707 cap = rb_entry(p, struct ceph_cap, ci_node); 708 if (cap == ocap) 709 continue; 710 if (!__cap_is_valid(cap)) 711 continue; 712 have |= cap->issued; 713 } 714 return have; 715 } 716 717 /* 718 * Move a cap to the end of the LRU (oldest caps at list head, newest 719 * at list tail). 720 */ 721 static void __touch_cap(struct ceph_cap *cap) 722 { 723 struct ceph_mds_session *s = cap->session; 724 725 spin_lock(&s->s_cap_lock); 726 if (s->s_cap_iterator == NULL) { 727 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 728 s->s_mds); 729 list_move_tail(&cap->session_caps, &s->s_caps); 730 } else { 731 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 732 &cap->ci->vfs_inode, cap, s->s_mds); 733 } 734 spin_unlock(&s->s_cap_lock); 735 } 736 737 /* 738 * Check if we hold the given mask. If so, move the cap(s) to the 739 * front of their respective LRUs. (This is the preferred way for 740 * callers to check for caps they want.) 741 */ 742 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 743 { 744 struct ceph_cap *cap; 745 struct rb_node *p; 746 int have = ci->i_snap_caps; 747 748 if ((have & mask) == mask) { 749 dout("__ceph_caps_issued_mask %p snap issued %s" 750 " (mask %s)\n", &ci->vfs_inode, 751 ceph_cap_string(have), 752 ceph_cap_string(mask)); 753 return 1; 754 } 755 756 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 757 cap = rb_entry(p, struct ceph_cap, ci_node); 758 if (!__cap_is_valid(cap)) 759 continue; 760 if ((cap->issued & mask) == mask) { 761 dout("__ceph_caps_issued_mask %p cap %p issued %s" 762 " (mask %s)\n", &ci->vfs_inode, cap, 763 ceph_cap_string(cap->issued), 764 ceph_cap_string(mask)); 765 if (touch) 766 __touch_cap(cap); 767 return 1; 768 } 769 770 /* does a combination of caps satisfy mask? */ 771 have |= cap->issued; 772 if ((have & mask) == mask) { 773 dout("__ceph_caps_issued_mask %p combo issued %s" 774 " (mask %s)\n", &ci->vfs_inode, 775 ceph_cap_string(cap->issued), 776 ceph_cap_string(mask)); 777 if (touch) { 778 struct rb_node *q; 779 780 /* touch this + preceding caps */ 781 __touch_cap(cap); 782 for (q = rb_first(&ci->i_caps); q != p; 783 q = rb_next(q)) { 784 cap = rb_entry(q, struct ceph_cap, 785 ci_node); 786 if (!__cap_is_valid(cap)) 787 continue; 788 __touch_cap(cap); 789 } 790 } 791 return 1; 792 } 793 } 794 795 return 0; 796 } 797 798 /* 799 * Return true if mask caps are currently being revoked by an MDS. 800 */ 801 int __ceph_caps_revoking_other(struct ceph_inode_info *ci, 802 struct ceph_cap *ocap, int mask) 803 { 804 struct ceph_cap *cap; 805 struct rb_node *p; 806 807 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 808 cap = rb_entry(p, struct ceph_cap, ci_node); 809 if (cap != ocap && 810 (cap->implemented & ~cap->issued & mask)) 811 return 1; 812 } 813 return 0; 814 } 815 816 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 817 { 818 struct inode *inode = &ci->vfs_inode; 819 int ret; 820 821 spin_lock(&ci->i_ceph_lock); 822 ret = __ceph_caps_revoking_other(ci, NULL, mask); 823 spin_unlock(&ci->i_ceph_lock); 824 dout("ceph_caps_revoking %p %s = %d\n", inode, 825 ceph_cap_string(mask), ret); 826 return ret; 827 } 828 829 int __ceph_caps_used(struct ceph_inode_info *ci) 830 { 831 int used = 0; 832 if (ci->i_pin_ref) 833 used |= CEPH_CAP_PIN; 834 if (ci->i_rd_ref) 835 used |= CEPH_CAP_FILE_RD; 836 if (ci->i_rdcache_ref || 837 (!S_ISDIR(ci->vfs_inode.i_mode) && /* ignore readdir cache */ 838 ci->vfs_inode.i_data.nrpages)) 839 used |= CEPH_CAP_FILE_CACHE; 840 if (ci->i_wr_ref) 841 used |= CEPH_CAP_FILE_WR; 842 if (ci->i_wb_ref || ci->i_wrbuffer_ref) 843 used |= CEPH_CAP_FILE_BUFFER; 844 return used; 845 } 846 847 /* 848 * wanted, by virtue of open file modes 849 */ 850 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 851 { 852 int want = 0; 853 int mode; 854 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 855 if (ci->i_nr_by_mode[mode]) 856 want |= ceph_caps_for_mode(mode); 857 return want; 858 } 859 860 /* 861 * Return caps we have registered with the MDS(s) as 'wanted'. 862 */ 863 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 864 { 865 struct ceph_cap *cap; 866 struct rb_node *p; 867 int mds_wanted = 0; 868 869 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 870 cap = rb_entry(p, struct ceph_cap, ci_node); 871 if (!__cap_is_valid(cap)) 872 continue; 873 if (cap == ci->i_auth_cap) 874 mds_wanted |= cap->mds_wanted; 875 else 876 mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR); 877 } 878 return mds_wanted; 879 } 880 881 /* 882 * called under i_ceph_lock 883 */ 884 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 885 { 886 return !RB_EMPTY_ROOT(&ci->i_caps); 887 } 888 889 int ceph_is_any_caps(struct inode *inode) 890 { 891 struct ceph_inode_info *ci = ceph_inode(inode); 892 int ret; 893 894 spin_lock(&ci->i_ceph_lock); 895 ret = __ceph_is_any_caps(ci); 896 spin_unlock(&ci->i_ceph_lock); 897 898 return ret; 899 } 900 901 static void drop_inode_snap_realm(struct ceph_inode_info *ci) 902 { 903 struct ceph_snap_realm *realm = ci->i_snap_realm; 904 spin_lock(&realm->inodes_with_caps_lock); 905 list_del_init(&ci->i_snap_realm_item); 906 ci->i_snap_realm_counter++; 907 ci->i_snap_realm = NULL; 908 spin_unlock(&realm->inodes_with_caps_lock); 909 ceph_put_snap_realm(ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc, 910 realm); 911 } 912 913 /* 914 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 915 * 916 * caller should hold i_ceph_lock. 917 * caller will not hold session s_mutex if called from destroy_inode. 918 */ 919 void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release) 920 { 921 struct ceph_mds_session *session = cap->session; 922 struct ceph_inode_info *ci = cap->ci; 923 struct ceph_mds_client *mdsc = 924 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 925 int removed = 0; 926 927 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 928 929 /* remove from session list */ 930 spin_lock(&session->s_cap_lock); 931 if (session->s_cap_iterator == cap) { 932 /* not yet, we are iterating over this very cap */ 933 dout("__ceph_remove_cap delaying %p removal from session %p\n", 934 cap, cap->session); 935 } else { 936 list_del_init(&cap->session_caps); 937 session->s_nr_caps--; 938 cap->session = NULL; 939 removed = 1; 940 } 941 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 942 cap->ci = NULL; 943 944 /* 945 * s_cap_reconnect is protected by s_cap_lock. no one changes 946 * s_cap_gen while session is in the reconnect state. 947 */ 948 if (queue_release && 949 (!session->s_cap_reconnect || cap->cap_gen == session->s_cap_gen)) { 950 cap->queue_release = 1; 951 if (removed) { 952 list_add_tail(&cap->session_caps, 953 &session->s_cap_releases); 954 session->s_num_cap_releases++; 955 removed = 0; 956 } 957 } else { 958 cap->queue_release = 0; 959 } 960 cap->cap_ino = ci->i_vino.ino; 961 962 spin_unlock(&session->s_cap_lock); 963 964 /* remove from inode list */ 965 rb_erase(&cap->ci_node, &ci->i_caps); 966 if (ci->i_auth_cap == cap) 967 ci->i_auth_cap = NULL; 968 969 if (removed) 970 ceph_put_cap(mdsc, cap); 971 972 /* when reconnect denied, we remove session caps forcibly, 973 * i_wr_ref can be non-zero. If there are ongoing write, 974 * keep i_snap_realm. 975 */ 976 if (!__ceph_is_any_caps(ci) && ci->i_wr_ref == 0 && ci->i_snap_realm) 977 drop_inode_snap_realm(ci); 978 979 if (!__ceph_is_any_real_caps(ci)) 980 __cap_delay_cancel(mdsc, ci); 981 } 982 983 /* 984 * Build and send a cap message to the given MDS. 985 * 986 * Caller should be holding s_mutex. 987 */ 988 static int send_cap_msg(struct ceph_mds_session *session, 989 u64 ino, u64 cid, int op, 990 int caps, int wanted, int dirty, 991 u32 seq, u64 flush_tid, u64 oldest_flush_tid, 992 u32 issue_seq, u32 mseq, u64 size, u64 max_size, 993 struct timespec *mtime, struct timespec *atime, 994 u64 time_warp_seq, 995 kuid_t uid, kgid_t gid, umode_t mode, 996 u64 xattr_version, 997 struct ceph_buffer *xattrs_buf, 998 u64 follows, bool inline_data) 999 { 1000 struct ceph_mds_caps *fc; 1001 struct ceph_msg *msg; 1002 void *p; 1003 size_t extra_len; 1004 1005 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 1006 " seq %u/%u tid %llu/%llu mseq %u follows %lld size %llu/%llu" 1007 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 1008 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 1009 ceph_cap_string(dirty), 1010 seq, issue_seq, flush_tid, oldest_flush_tid, 1011 mseq, follows, size, max_size, 1012 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 1013 1014 /* flock buffer size + inline version + inline data size + 1015 * osd_epoch_barrier + oldest_flush_tid */ 1016 extra_len = 4 + 8 + 4 + 4 + 8; 1017 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc) + extra_len, 1018 GFP_NOFS, false); 1019 if (!msg) 1020 return -ENOMEM; 1021 1022 msg->hdr.version = cpu_to_le16(6); 1023 msg->hdr.tid = cpu_to_le64(flush_tid); 1024 1025 fc = msg->front.iov_base; 1026 memset(fc, 0, sizeof(*fc)); 1027 1028 fc->cap_id = cpu_to_le64(cid); 1029 fc->op = cpu_to_le32(op); 1030 fc->seq = cpu_to_le32(seq); 1031 fc->issue_seq = cpu_to_le32(issue_seq); 1032 fc->migrate_seq = cpu_to_le32(mseq); 1033 fc->caps = cpu_to_le32(caps); 1034 fc->wanted = cpu_to_le32(wanted); 1035 fc->dirty = cpu_to_le32(dirty); 1036 fc->ino = cpu_to_le64(ino); 1037 fc->snap_follows = cpu_to_le64(follows); 1038 1039 fc->size = cpu_to_le64(size); 1040 fc->max_size = cpu_to_le64(max_size); 1041 if (mtime) 1042 ceph_encode_timespec(&fc->mtime, mtime); 1043 if (atime) 1044 ceph_encode_timespec(&fc->atime, atime); 1045 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 1046 1047 fc->uid = cpu_to_le32(from_kuid(&init_user_ns, uid)); 1048 fc->gid = cpu_to_le32(from_kgid(&init_user_ns, gid)); 1049 fc->mode = cpu_to_le32(mode); 1050 1051 p = fc + 1; 1052 /* flock buffer size */ 1053 ceph_encode_32(&p, 0); 1054 /* inline version */ 1055 ceph_encode_64(&p, inline_data ? 0 : CEPH_INLINE_NONE); 1056 /* inline data size */ 1057 ceph_encode_32(&p, 0); 1058 /* osd_epoch_barrier */ 1059 ceph_encode_32(&p, 0); 1060 /* oldest_flush_tid */ 1061 ceph_encode_64(&p, oldest_flush_tid); 1062 1063 fc->xattr_version = cpu_to_le64(xattr_version); 1064 if (xattrs_buf) { 1065 msg->middle = ceph_buffer_get(xattrs_buf); 1066 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1067 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 1068 } 1069 1070 ceph_con_send(&session->s_con, msg); 1071 return 0; 1072 } 1073 1074 /* 1075 * Queue cap releases when an inode is dropped from our cache. Since 1076 * inode is about to be destroyed, there is no need for i_ceph_lock. 1077 */ 1078 void ceph_queue_caps_release(struct inode *inode) 1079 { 1080 struct ceph_inode_info *ci = ceph_inode(inode); 1081 struct rb_node *p; 1082 1083 p = rb_first(&ci->i_caps); 1084 while (p) { 1085 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1086 p = rb_next(p); 1087 __ceph_remove_cap(cap, true); 1088 } 1089 } 1090 1091 /* 1092 * Send a cap msg on the given inode. Update our caps state, then 1093 * drop i_ceph_lock and send the message. 1094 * 1095 * Make note of max_size reported/requested from mds, revoked caps 1096 * that have now been implemented. 1097 * 1098 * Make half-hearted attempt ot to invalidate page cache if we are 1099 * dropping RDCACHE. Note that this will leave behind locked pages 1100 * that we'll then need to deal with elsewhere. 1101 * 1102 * Return non-zero if delayed release, or we experienced an error 1103 * such that the caller should requeue + retry later. 1104 * 1105 * called with i_ceph_lock, then drops it. 1106 * caller should hold snap_rwsem (read), s_mutex. 1107 */ 1108 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1109 int op, int used, int want, int retain, int flushing, 1110 u64 flush_tid, u64 oldest_flush_tid) 1111 __releases(cap->ci->i_ceph_lock) 1112 { 1113 struct ceph_inode_info *ci = cap->ci; 1114 struct inode *inode = &ci->vfs_inode; 1115 u64 cap_id = cap->cap_id; 1116 int held, revoking, dropping, keep; 1117 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1118 u64 size, max_size; 1119 struct timespec mtime, atime; 1120 int wake = 0; 1121 umode_t mode; 1122 kuid_t uid; 1123 kgid_t gid; 1124 struct ceph_mds_session *session; 1125 u64 xattr_version = 0; 1126 struct ceph_buffer *xattr_blob = NULL; 1127 int delayed = 0; 1128 int ret; 1129 bool inline_data; 1130 1131 held = cap->issued | cap->implemented; 1132 revoking = cap->implemented & ~cap->issued; 1133 retain &= ~revoking; 1134 dropping = cap->issued & ~retain; 1135 1136 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1137 inode, cap, cap->session, 1138 ceph_cap_string(held), ceph_cap_string(held & retain), 1139 ceph_cap_string(revoking)); 1140 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1141 1142 session = cap->session; 1143 1144 /* don't release wanted unless we've waited a bit. */ 1145 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1146 time_before(jiffies, ci->i_hold_caps_min)) { 1147 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1148 ceph_cap_string(cap->issued), 1149 ceph_cap_string(cap->issued & retain), 1150 ceph_cap_string(cap->mds_wanted), 1151 ceph_cap_string(want)); 1152 want |= cap->mds_wanted; 1153 retain |= cap->issued; 1154 delayed = 1; 1155 } 1156 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1157 1158 cap->issued &= retain; /* drop bits we don't want */ 1159 if (cap->implemented & ~cap->issued) { 1160 /* 1161 * Wake up any waiters on wanted -> needed transition. 1162 * This is due to the weird transition from buffered 1163 * to sync IO... we need to flush dirty pages _before_ 1164 * allowing sync writes to avoid reordering. 1165 */ 1166 wake = 1; 1167 } 1168 cap->implemented &= cap->issued | used; 1169 cap->mds_wanted = want; 1170 1171 follows = flushing ? ci->i_head_snapc->seq : 0; 1172 1173 keep = cap->implemented; 1174 seq = cap->seq; 1175 issue_seq = cap->issue_seq; 1176 mseq = cap->mseq; 1177 size = inode->i_size; 1178 ci->i_reported_size = size; 1179 max_size = ci->i_wanted_max_size; 1180 ci->i_requested_max_size = max_size; 1181 mtime = inode->i_mtime; 1182 atime = inode->i_atime; 1183 time_warp_seq = ci->i_time_warp_seq; 1184 uid = inode->i_uid; 1185 gid = inode->i_gid; 1186 mode = inode->i_mode; 1187 1188 if (flushing & CEPH_CAP_XATTR_EXCL) { 1189 __ceph_build_xattrs_blob(ci); 1190 xattr_blob = ci->i_xattrs.blob; 1191 xattr_version = ci->i_xattrs.version; 1192 } 1193 1194 inline_data = ci->i_inline_version != CEPH_INLINE_NONE; 1195 1196 spin_unlock(&ci->i_ceph_lock); 1197 1198 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1199 op, keep, want, flushing, seq, 1200 flush_tid, oldest_flush_tid, issue_seq, mseq, 1201 size, max_size, &mtime, &atime, time_warp_seq, 1202 uid, gid, mode, xattr_version, xattr_blob, 1203 follows, inline_data); 1204 if (ret < 0) { 1205 dout("error sending cap msg, must requeue %p\n", inode); 1206 delayed = 1; 1207 } 1208 1209 if (wake) 1210 wake_up_all(&ci->i_cap_wq); 1211 1212 return delayed; 1213 } 1214 1215 /* 1216 * When a snapshot is taken, clients accumulate dirty metadata on 1217 * inodes with capabilities in ceph_cap_snaps to describe the file 1218 * state at the time the snapshot was taken. This must be flushed 1219 * asynchronously back to the MDS once sync writes complete and dirty 1220 * data is written out. 1221 * 1222 * Unless @kick is true, skip cap_snaps that were already sent to 1223 * the MDS (i.e., during this session). 1224 * 1225 * Called under i_ceph_lock. Takes s_mutex as needed. 1226 */ 1227 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1228 struct ceph_mds_session **psession, 1229 int kick) 1230 __releases(ci->i_ceph_lock) 1231 __acquires(ci->i_ceph_lock) 1232 { 1233 struct inode *inode = &ci->vfs_inode; 1234 int mds; 1235 struct ceph_cap_snap *capsnap; 1236 u32 mseq; 1237 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1238 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1239 session->s_mutex */ 1240 u64 next_follows = 0; /* keep track of how far we've gotten through the 1241 i_cap_snaps list, and skip these entries next time 1242 around to avoid an infinite loop */ 1243 1244 if (psession) 1245 session = *psession; 1246 1247 dout("__flush_snaps %p\n", inode); 1248 retry: 1249 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1250 /* avoid an infiniute loop after retry */ 1251 if (capsnap->follows < next_follows) 1252 continue; 1253 /* 1254 * we need to wait for sync writes to complete and for dirty 1255 * pages to be written out. 1256 */ 1257 if (capsnap->dirty_pages || capsnap->writing) 1258 break; 1259 1260 /* should be removed by ceph_try_drop_cap_snap() */ 1261 BUG_ON(!capsnap->need_flush); 1262 1263 /* pick mds, take s_mutex */ 1264 if (ci->i_auth_cap == NULL) { 1265 dout("no auth cap (migrating?), doing nothing\n"); 1266 goto out; 1267 } 1268 1269 /* only flush each capsnap once */ 1270 if (!kick && !list_empty(&capsnap->flushing_item)) { 1271 dout("already flushed %p, skipping\n", capsnap); 1272 continue; 1273 } 1274 1275 mds = ci->i_auth_cap->session->s_mds; 1276 mseq = ci->i_auth_cap->mseq; 1277 1278 if (session && session->s_mds != mds) { 1279 dout("oops, wrong session %p mutex\n", session); 1280 if (kick) 1281 goto out; 1282 1283 mutex_unlock(&session->s_mutex); 1284 ceph_put_mds_session(session); 1285 session = NULL; 1286 } 1287 if (!session) { 1288 spin_unlock(&ci->i_ceph_lock); 1289 mutex_lock(&mdsc->mutex); 1290 session = __ceph_lookup_mds_session(mdsc, mds); 1291 mutex_unlock(&mdsc->mutex); 1292 if (session) { 1293 dout("inverting session/ino locks on %p\n", 1294 session); 1295 mutex_lock(&session->s_mutex); 1296 } 1297 /* 1298 * if session == NULL, we raced against a cap 1299 * deletion or migration. retry, and we'll 1300 * get a better @mds value next time. 1301 */ 1302 spin_lock(&ci->i_ceph_lock); 1303 goto retry; 1304 } 1305 1306 spin_lock(&mdsc->cap_dirty_lock); 1307 capsnap->flush_tid = ++mdsc->last_cap_flush_tid; 1308 spin_unlock(&mdsc->cap_dirty_lock); 1309 1310 atomic_inc(&capsnap->nref); 1311 if (list_empty(&capsnap->flushing_item)) 1312 list_add_tail(&capsnap->flushing_item, 1313 &session->s_cap_snaps_flushing); 1314 spin_unlock(&ci->i_ceph_lock); 1315 1316 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1317 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1318 send_cap_msg(session, ceph_vino(inode).ino, 0, 1319 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1320 capsnap->dirty, 0, capsnap->flush_tid, 0, 1321 0, mseq, capsnap->size, 0, 1322 &capsnap->mtime, &capsnap->atime, 1323 capsnap->time_warp_seq, 1324 capsnap->uid, capsnap->gid, capsnap->mode, 1325 capsnap->xattr_version, capsnap->xattr_blob, 1326 capsnap->follows, capsnap->inline_data); 1327 1328 next_follows = capsnap->follows + 1; 1329 ceph_put_cap_snap(capsnap); 1330 1331 spin_lock(&ci->i_ceph_lock); 1332 goto retry; 1333 } 1334 1335 /* we flushed them all; remove this inode from the queue */ 1336 spin_lock(&mdsc->snap_flush_lock); 1337 list_del_init(&ci->i_snap_flush_item); 1338 spin_unlock(&mdsc->snap_flush_lock); 1339 1340 out: 1341 if (psession) 1342 *psession = session; 1343 else if (session) { 1344 mutex_unlock(&session->s_mutex); 1345 ceph_put_mds_session(session); 1346 } 1347 } 1348 1349 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1350 { 1351 spin_lock(&ci->i_ceph_lock); 1352 __ceph_flush_snaps(ci, NULL, 0); 1353 spin_unlock(&ci->i_ceph_lock); 1354 } 1355 1356 /* 1357 * Mark caps dirty. If inode is newly dirty, return the dirty flags. 1358 * Caller is then responsible for calling __mark_inode_dirty with the 1359 * returned flags value. 1360 */ 1361 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask, 1362 struct ceph_cap_flush **pcf) 1363 { 1364 struct ceph_mds_client *mdsc = 1365 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1366 struct inode *inode = &ci->vfs_inode; 1367 int was = ci->i_dirty_caps; 1368 int dirty = 0; 1369 1370 if (!ci->i_auth_cap) { 1371 pr_warn("__mark_dirty_caps %p %llx mask %s, " 1372 "but no auth cap (session was closed?)\n", 1373 inode, ceph_ino(inode), ceph_cap_string(mask)); 1374 return 0; 1375 } 1376 1377 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1378 ceph_cap_string(mask), ceph_cap_string(was), 1379 ceph_cap_string(was | mask)); 1380 ci->i_dirty_caps |= mask; 1381 if (was == 0) { 1382 WARN_ON_ONCE(ci->i_prealloc_cap_flush); 1383 swap(ci->i_prealloc_cap_flush, *pcf); 1384 1385 if (!ci->i_head_snapc) { 1386 WARN_ON_ONCE(!rwsem_is_locked(&mdsc->snap_rwsem)); 1387 ci->i_head_snapc = ceph_get_snap_context( 1388 ci->i_snap_realm->cached_context); 1389 } 1390 dout(" inode %p now dirty snapc %p auth cap %p\n", 1391 &ci->vfs_inode, ci->i_head_snapc, ci->i_auth_cap); 1392 BUG_ON(!list_empty(&ci->i_dirty_item)); 1393 spin_lock(&mdsc->cap_dirty_lock); 1394 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1395 spin_unlock(&mdsc->cap_dirty_lock); 1396 if (ci->i_flushing_caps == 0) { 1397 ihold(inode); 1398 dirty |= I_DIRTY_SYNC; 1399 } 1400 } else { 1401 WARN_ON_ONCE(!ci->i_prealloc_cap_flush); 1402 } 1403 BUG_ON(list_empty(&ci->i_dirty_item)); 1404 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1405 (mask & CEPH_CAP_FILE_BUFFER)) 1406 dirty |= I_DIRTY_DATASYNC; 1407 __cap_delay_requeue(mdsc, ci); 1408 return dirty; 1409 } 1410 1411 static void __add_cap_flushing_to_inode(struct ceph_inode_info *ci, 1412 struct ceph_cap_flush *cf) 1413 { 1414 struct rb_node **p = &ci->i_cap_flush_tree.rb_node; 1415 struct rb_node *parent = NULL; 1416 struct ceph_cap_flush *other = NULL; 1417 1418 while (*p) { 1419 parent = *p; 1420 other = rb_entry(parent, struct ceph_cap_flush, i_node); 1421 1422 if (cf->tid < other->tid) 1423 p = &(*p)->rb_left; 1424 else if (cf->tid > other->tid) 1425 p = &(*p)->rb_right; 1426 else 1427 BUG(); 1428 } 1429 1430 rb_link_node(&cf->i_node, parent, p); 1431 rb_insert_color(&cf->i_node, &ci->i_cap_flush_tree); 1432 } 1433 1434 static void __add_cap_flushing_to_mdsc(struct ceph_mds_client *mdsc, 1435 struct ceph_cap_flush *cf) 1436 { 1437 struct rb_node **p = &mdsc->cap_flush_tree.rb_node; 1438 struct rb_node *parent = NULL; 1439 struct ceph_cap_flush *other = NULL; 1440 1441 while (*p) { 1442 parent = *p; 1443 other = rb_entry(parent, struct ceph_cap_flush, g_node); 1444 1445 if (cf->tid < other->tid) 1446 p = &(*p)->rb_left; 1447 else if (cf->tid > other->tid) 1448 p = &(*p)->rb_right; 1449 else 1450 BUG(); 1451 } 1452 1453 rb_link_node(&cf->g_node, parent, p); 1454 rb_insert_color(&cf->g_node, &mdsc->cap_flush_tree); 1455 } 1456 1457 struct ceph_cap_flush *ceph_alloc_cap_flush(void) 1458 { 1459 return kmem_cache_alloc(ceph_cap_flush_cachep, GFP_KERNEL); 1460 } 1461 1462 void ceph_free_cap_flush(struct ceph_cap_flush *cf) 1463 { 1464 if (cf) 1465 kmem_cache_free(ceph_cap_flush_cachep, cf); 1466 } 1467 1468 static u64 __get_oldest_flush_tid(struct ceph_mds_client *mdsc) 1469 { 1470 struct rb_node *n = rb_first(&mdsc->cap_flush_tree); 1471 if (n) { 1472 struct ceph_cap_flush *cf = 1473 rb_entry(n, struct ceph_cap_flush, g_node); 1474 return cf->tid; 1475 } 1476 return 0; 1477 } 1478 1479 /* 1480 * Add dirty inode to the flushing list. Assigned a seq number so we 1481 * can wait for caps to flush without starving. 1482 * 1483 * Called under i_ceph_lock. 1484 */ 1485 static int __mark_caps_flushing(struct inode *inode, 1486 struct ceph_mds_session *session, 1487 u64 *flush_tid, u64 *oldest_flush_tid) 1488 { 1489 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1490 struct ceph_inode_info *ci = ceph_inode(inode); 1491 struct ceph_cap_flush *cf = NULL; 1492 int flushing; 1493 1494 BUG_ON(ci->i_dirty_caps == 0); 1495 BUG_ON(list_empty(&ci->i_dirty_item)); 1496 BUG_ON(!ci->i_prealloc_cap_flush); 1497 1498 flushing = ci->i_dirty_caps; 1499 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1500 ceph_cap_string(flushing), 1501 ceph_cap_string(ci->i_flushing_caps), 1502 ceph_cap_string(ci->i_flushing_caps | flushing)); 1503 ci->i_flushing_caps |= flushing; 1504 ci->i_dirty_caps = 0; 1505 dout(" inode %p now !dirty\n", inode); 1506 1507 swap(cf, ci->i_prealloc_cap_flush); 1508 cf->caps = flushing; 1509 1510 spin_lock(&mdsc->cap_dirty_lock); 1511 list_del_init(&ci->i_dirty_item); 1512 1513 cf->tid = ++mdsc->last_cap_flush_tid; 1514 __add_cap_flushing_to_mdsc(mdsc, cf); 1515 *oldest_flush_tid = __get_oldest_flush_tid(mdsc); 1516 1517 if (list_empty(&ci->i_flushing_item)) { 1518 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1519 mdsc->num_cap_flushing++; 1520 dout(" inode %p now flushing tid %llu\n", inode, cf->tid); 1521 } else { 1522 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1523 dout(" inode %p now flushing (more) tid %llu\n", 1524 inode, cf->tid); 1525 } 1526 spin_unlock(&mdsc->cap_dirty_lock); 1527 1528 __add_cap_flushing_to_inode(ci, cf); 1529 1530 *flush_tid = cf->tid; 1531 return flushing; 1532 } 1533 1534 /* 1535 * try to invalidate mapping pages without blocking. 1536 */ 1537 static int try_nonblocking_invalidate(struct inode *inode) 1538 { 1539 struct ceph_inode_info *ci = ceph_inode(inode); 1540 u32 invalidating_gen = ci->i_rdcache_gen; 1541 1542 spin_unlock(&ci->i_ceph_lock); 1543 invalidate_mapping_pages(&inode->i_data, 0, -1); 1544 spin_lock(&ci->i_ceph_lock); 1545 1546 if (inode->i_data.nrpages == 0 && 1547 invalidating_gen == ci->i_rdcache_gen) { 1548 /* success. */ 1549 dout("try_nonblocking_invalidate %p success\n", inode); 1550 /* save any racing async invalidate some trouble */ 1551 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; 1552 return 0; 1553 } 1554 dout("try_nonblocking_invalidate %p failed\n", inode); 1555 return -1; 1556 } 1557 1558 /* 1559 * Swiss army knife function to examine currently used and wanted 1560 * versus held caps. Release, flush, ack revoked caps to mds as 1561 * appropriate. 1562 * 1563 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1564 * cap release further. 1565 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1566 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1567 * further delay. 1568 */ 1569 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1570 struct ceph_mds_session *session) 1571 { 1572 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1573 struct ceph_mds_client *mdsc = fsc->mdsc; 1574 struct inode *inode = &ci->vfs_inode; 1575 struct ceph_cap *cap; 1576 u64 flush_tid, oldest_flush_tid; 1577 int file_wanted, used, cap_used; 1578 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1579 int issued, implemented, want, retain, revoking, flushing = 0; 1580 int mds = -1; /* keep track of how far we've gone through i_caps list 1581 to avoid an infinite loop on retry */ 1582 struct rb_node *p; 1583 int tried_invalidate = 0; 1584 int delayed = 0, sent = 0, force_requeue = 0, num; 1585 int queue_invalidate = 0; 1586 int is_delayed = flags & CHECK_CAPS_NODELAY; 1587 1588 /* if we are unmounting, flush any unused caps immediately. */ 1589 if (mdsc->stopping) 1590 is_delayed = 1; 1591 1592 spin_lock(&ci->i_ceph_lock); 1593 1594 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1595 flags |= CHECK_CAPS_FLUSH; 1596 1597 /* flush snaps first time around only */ 1598 if (!list_empty(&ci->i_cap_snaps)) 1599 __ceph_flush_snaps(ci, &session, 0); 1600 goto retry_locked; 1601 retry: 1602 spin_lock(&ci->i_ceph_lock); 1603 retry_locked: 1604 file_wanted = __ceph_caps_file_wanted(ci); 1605 used = __ceph_caps_used(ci); 1606 issued = __ceph_caps_issued(ci, &implemented); 1607 revoking = implemented & ~issued; 1608 1609 want = file_wanted; 1610 retain = file_wanted | used | CEPH_CAP_PIN; 1611 if (!mdsc->stopping && inode->i_nlink > 0) { 1612 if (file_wanted) { 1613 retain |= CEPH_CAP_ANY; /* be greedy */ 1614 } else if (S_ISDIR(inode->i_mode) && 1615 (issued & CEPH_CAP_FILE_SHARED) && 1616 __ceph_dir_is_complete(ci)) { 1617 /* 1618 * If a directory is complete, we want to keep 1619 * the exclusive cap. So that MDS does not end up 1620 * revoking the shared cap on every create/unlink 1621 * operation. 1622 */ 1623 want = CEPH_CAP_ANY_SHARED | CEPH_CAP_FILE_EXCL; 1624 retain |= want; 1625 } else { 1626 1627 retain |= CEPH_CAP_ANY_SHARED; 1628 /* 1629 * keep RD only if we didn't have the file open RW, 1630 * because then the mds would revoke it anyway to 1631 * journal max_size=0. 1632 */ 1633 if (ci->i_max_size == 0) 1634 retain |= CEPH_CAP_ANY_RD; 1635 } 1636 } 1637 1638 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1639 " issued %s revoking %s retain %s %s%s%s\n", inode, 1640 ceph_cap_string(file_wanted), 1641 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1642 ceph_cap_string(ci->i_flushing_caps), 1643 ceph_cap_string(issued), ceph_cap_string(revoking), 1644 ceph_cap_string(retain), 1645 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1646 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1647 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1648 1649 /* 1650 * If we no longer need to hold onto old our caps, and we may 1651 * have cached pages, but don't want them, then try to invalidate. 1652 * If we fail, it's because pages are locked.... try again later. 1653 */ 1654 if ((!is_delayed || mdsc->stopping) && 1655 !S_ISDIR(inode->i_mode) && /* ignore readdir cache */ 1656 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1657 inode->i_data.nrpages && /* have cached pages */ 1658 (file_wanted == 0 || /* no open files */ 1659 (revoking & (CEPH_CAP_FILE_CACHE| 1660 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1661 !tried_invalidate) { 1662 dout("check_caps trying to invalidate on %p\n", inode); 1663 if (try_nonblocking_invalidate(inode) < 0) { 1664 if (revoking & (CEPH_CAP_FILE_CACHE| 1665 CEPH_CAP_FILE_LAZYIO)) { 1666 dout("check_caps queuing invalidate\n"); 1667 queue_invalidate = 1; 1668 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1669 } else { 1670 dout("check_caps failed to invalidate pages\n"); 1671 /* we failed to invalidate pages. check these 1672 caps again later. */ 1673 force_requeue = 1; 1674 __cap_set_timeouts(mdsc, ci); 1675 } 1676 } 1677 tried_invalidate = 1; 1678 goto retry_locked; 1679 } 1680 1681 num = 0; 1682 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1683 cap = rb_entry(p, struct ceph_cap, ci_node); 1684 num++; 1685 1686 /* avoid looping forever */ 1687 if (mds >= cap->mds || 1688 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1689 continue; 1690 1691 /* NOTE: no side-effects allowed, until we take s_mutex */ 1692 1693 cap_used = used; 1694 if (ci->i_auth_cap && cap != ci->i_auth_cap) 1695 cap_used &= ~ci->i_auth_cap->issued; 1696 1697 revoking = cap->implemented & ~cap->issued; 1698 dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n", 1699 cap->mds, cap, ceph_cap_string(cap->issued), 1700 ceph_cap_string(cap_used), 1701 ceph_cap_string(cap->implemented), 1702 ceph_cap_string(revoking)); 1703 1704 if (cap == ci->i_auth_cap && 1705 (cap->issued & CEPH_CAP_FILE_WR)) { 1706 /* request larger max_size from MDS? */ 1707 if (ci->i_wanted_max_size > ci->i_max_size && 1708 ci->i_wanted_max_size > ci->i_requested_max_size) { 1709 dout("requesting new max_size\n"); 1710 goto ack; 1711 } 1712 1713 /* approaching file_max? */ 1714 if ((inode->i_size << 1) >= ci->i_max_size && 1715 (ci->i_reported_size << 1) < ci->i_max_size) { 1716 dout("i_size approaching max_size\n"); 1717 goto ack; 1718 } 1719 } 1720 /* flush anything dirty? */ 1721 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1722 ci->i_dirty_caps) { 1723 dout("flushing dirty caps\n"); 1724 goto ack; 1725 } 1726 1727 /* completed revocation? going down and there are no caps? */ 1728 if (revoking && (revoking & cap_used) == 0) { 1729 dout("completed revocation of %s\n", 1730 ceph_cap_string(cap->implemented & ~cap->issued)); 1731 goto ack; 1732 } 1733 1734 /* want more caps from mds? */ 1735 if (want & ~(cap->mds_wanted | cap->issued)) 1736 goto ack; 1737 1738 /* things we might delay */ 1739 if ((cap->issued & ~retain) == 0 && 1740 cap->mds_wanted == want) 1741 continue; /* nope, all good */ 1742 1743 if (is_delayed) 1744 goto ack; 1745 1746 /* delay? */ 1747 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1748 time_before(jiffies, ci->i_hold_caps_max)) { 1749 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1750 ceph_cap_string(cap->issued), 1751 ceph_cap_string(cap->issued & retain), 1752 ceph_cap_string(cap->mds_wanted), 1753 ceph_cap_string(want)); 1754 delayed++; 1755 continue; 1756 } 1757 1758 ack: 1759 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1760 dout(" skipping %p I_NOFLUSH set\n", inode); 1761 continue; 1762 } 1763 1764 if (session && session != cap->session) { 1765 dout("oops, wrong session %p mutex\n", session); 1766 mutex_unlock(&session->s_mutex); 1767 session = NULL; 1768 } 1769 if (!session) { 1770 session = cap->session; 1771 if (mutex_trylock(&session->s_mutex) == 0) { 1772 dout("inverting session/ino locks on %p\n", 1773 session); 1774 spin_unlock(&ci->i_ceph_lock); 1775 if (took_snap_rwsem) { 1776 up_read(&mdsc->snap_rwsem); 1777 took_snap_rwsem = 0; 1778 } 1779 mutex_lock(&session->s_mutex); 1780 goto retry; 1781 } 1782 } 1783 /* take snap_rwsem after session mutex */ 1784 if (!took_snap_rwsem) { 1785 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1786 dout("inverting snap/in locks on %p\n", 1787 inode); 1788 spin_unlock(&ci->i_ceph_lock); 1789 down_read(&mdsc->snap_rwsem); 1790 took_snap_rwsem = 1; 1791 goto retry; 1792 } 1793 took_snap_rwsem = 1; 1794 } 1795 1796 if (cap == ci->i_auth_cap && ci->i_dirty_caps) { 1797 flushing = __mark_caps_flushing(inode, session, 1798 &flush_tid, 1799 &oldest_flush_tid); 1800 } else { 1801 flushing = 0; 1802 flush_tid = 0; 1803 spin_lock(&mdsc->cap_dirty_lock); 1804 oldest_flush_tid = __get_oldest_flush_tid(mdsc); 1805 spin_unlock(&mdsc->cap_dirty_lock); 1806 } 1807 1808 mds = cap->mds; /* remember mds, so we don't repeat */ 1809 sent++; 1810 1811 /* __send_cap drops i_ceph_lock */ 1812 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, cap_used, 1813 want, retain, flushing, 1814 flush_tid, oldest_flush_tid); 1815 goto retry; /* retake i_ceph_lock and restart our cap scan. */ 1816 } 1817 1818 /* 1819 * Reschedule delayed caps release if we delayed anything, 1820 * otherwise cancel. 1821 */ 1822 if (delayed && is_delayed) 1823 force_requeue = 1; /* __send_cap delayed release; requeue */ 1824 if (!delayed && !is_delayed) 1825 __cap_delay_cancel(mdsc, ci); 1826 else if (!is_delayed || force_requeue) 1827 __cap_delay_requeue(mdsc, ci); 1828 1829 spin_unlock(&ci->i_ceph_lock); 1830 1831 if (queue_invalidate) 1832 ceph_queue_invalidate(inode); 1833 1834 if (session) 1835 mutex_unlock(&session->s_mutex); 1836 if (took_snap_rwsem) 1837 up_read(&mdsc->snap_rwsem); 1838 } 1839 1840 /* 1841 * Try to flush dirty caps back to the auth mds. 1842 */ 1843 static int try_flush_caps(struct inode *inode, u64 *ptid) 1844 { 1845 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1846 struct ceph_inode_info *ci = ceph_inode(inode); 1847 struct ceph_mds_session *session = NULL; 1848 int flushing = 0; 1849 u64 flush_tid = 0, oldest_flush_tid = 0; 1850 1851 retry: 1852 spin_lock(&ci->i_ceph_lock); 1853 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1854 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1855 goto out; 1856 } 1857 if (ci->i_dirty_caps && ci->i_auth_cap) { 1858 struct ceph_cap *cap = ci->i_auth_cap; 1859 int used = __ceph_caps_used(ci); 1860 int want = __ceph_caps_wanted(ci); 1861 int delayed; 1862 1863 if (!session || session != cap->session) { 1864 spin_unlock(&ci->i_ceph_lock); 1865 if (session) 1866 mutex_unlock(&session->s_mutex); 1867 session = cap->session; 1868 mutex_lock(&session->s_mutex); 1869 goto retry; 1870 } 1871 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1872 goto out; 1873 1874 flushing = __mark_caps_flushing(inode, session, &flush_tid, 1875 &oldest_flush_tid); 1876 1877 /* __send_cap drops i_ceph_lock */ 1878 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1879 (cap->issued | cap->implemented), 1880 flushing, flush_tid, oldest_flush_tid); 1881 1882 if (delayed) { 1883 spin_lock(&ci->i_ceph_lock); 1884 __cap_delay_requeue(mdsc, ci); 1885 spin_unlock(&ci->i_ceph_lock); 1886 } 1887 } else { 1888 struct rb_node *n = rb_last(&ci->i_cap_flush_tree); 1889 if (n) { 1890 struct ceph_cap_flush *cf = 1891 rb_entry(n, struct ceph_cap_flush, i_node); 1892 flush_tid = cf->tid; 1893 } 1894 flushing = ci->i_flushing_caps; 1895 spin_unlock(&ci->i_ceph_lock); 1896 } 1897 out: 1898 if (session) 1899 mutex_unlock(&session->s_mutex); 1900 1901 *ptid = flush_tid; 1902 return flushing; 1903 } 1904 1905 /* 1906 * Return true if we've flushed caps through the given flush_tid. 1907 */ 1908 static int caps_are_flushed(struct inode *inode, u64 flush_tid) 1909 { 1910 struct ceph_inode_info *ci = ceph_inode(inode); 1911 struct ceph_cap_flush *cf; 1912 struct rb_node *n; 1913 int ret = 1; 1914 1915 spin_lock(&ci->i_ceph_lock); 1916 n = rb_first(&ci->i_cap_flush_tree); 1917 if (n) { 1918 cf = rb_entry(n, struct ceph_cap_flush, i_node); 1919 if (cf->tid <= flush_tid) 1920 ret = 0; 1921 } 1922 spin_unlock(&ci->i_ceph_lock); 1923 return ret; 1924 } 1925 1926 /* 1927 * Wait on any unsafe replies for the given inode. First wait on the 1928 * newest request, and make that the upper bound. Then, if there are 1929 * more requests, keep waiting on the oldest as long as it is still older 1930 * than the original request. 1931 */ 1932 static void sync_write_wait(struct inode *inode) 1933 { 1934 struct ceph_inode_info *ci = ceph_inode(inode); 1935 struct list_head *head = &ci->i_unsafe_writes; 1936 struct ceph_osd_request *req; 1937 u64 last_tid; 1938 1939 if (!S_ISREG(inode->i_mode)) 1940 return; 1941 1942 spin_lock(&ci->i_unsafe_lock); 1943 if (list_empty(head)) 1944 goto out; 1945 1946 /* set upper bound as _last_ entry in chain */ 1947 req = list_last_entry(head, struct ceph_osd_request, 1948 r_unsafe_item); 1949 last_tid = req->r_tid; 1950 1951 do { 1952 ceph_osdc_get_request(req); 1953 spin_unlock(&ci->i_unsafe_lock); 1954 dout("sync_write_wait on tid %llu (until %llu)\n", 1955 req->r_tid, last_tid); 1956 wait_for_completion(&req->r_safe_completion); 1957 spin_lock(&ci->i_unsafe_lock); 1958 ceph_osdc_put_request(req); 1959 1960 /* 1961 * from here on look at first entry in chain, since we 1962 * only want to wait for anything older than last_tid 1963 */ 1964 if (list_empty(head)) 1965 break; 1966 req = list_first_entry(head, struct ceph_osd_request, 1967 r_unsafe_item); 1968 } while (req->r_tid < last_tid); 1969 out: 1970 spin_unlock(&ci->i_unsafe_lock); 1971 } 1972 1973 /* 1974 * wait for any uncommitted directory operations to commit. 1975 */ 1976 static int unsafe_dirop_wait(struct inode *inode) 1977 { 1978 struct ceph_inode_info *ci = ceph_inode(inode); 1979 struct list_head *head = &ci->i_unsafe_dirops; 1980 struct ceph_mds_request *req; 1981 u64 last_tid; 1982 int ret = 0; 1983 1984 if (!S_ISDIR(inode->i_mode)) 1985 return 0; 1986 1987 spin_lock(&ci->i_unsafe_lock); 1988 if (list_empty(head)) 1989 goto out; 1990 1991 req = list_last_entry(head, struct ceph_mds_request, 1992 r_unsafe_dir_item); 1993 last_tid = req->r_tid; 1994 1995 do { 1996 ceph_mdsc_get_request(req); 1997 spin_unlock(&ci->i_unsafe_lock); 1998 1999 dout("unsafe_dirop_wait %p wait on tid %llu (until %llu)\n", 2000 inode, req->r_tid, last_tid); 2001 ret = !wait_for_completion_timeout(&req->r_safe_completion, 2002 ceph_timeout_jiffies(req->r_timeout)); 2003 if (ret) 2004 ret = -EIO; /* timed out */ 2005 2006 ceph_mdsc_put_request(req); 2007 2008 spin_lock(&ci->i_unsafe_lock); 2009 if (ret || list_empty(head)) 2010 break; 2011 req = list_first_entry(head, struct ceph_mds_request, 2012 r_unsafe_dir_item); 2013 } while (req->r_tid < last_tid); 2014 out: 2015 spin_unlock(&ci->i_unsafe_lock); 2016 return ret; 2017 } 2018 2019 int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync) 2020 { 2021 struct inode *inode = file->f_mapping->host; 2022 struct ceph_inode_info *ci = ceph_inode(inode); 2023 u64 flush_tid; 2024 int ret; 2025 int dirty; 2026 2027 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 2028 sync_write_wait(inode); 2029 2030 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 2031 if (ret < 0) 2032 goto out; 2033 2034 if (datasync) 2035 goto out; 2036 2037 mutex_lock(&inode->i_mutex); 2038 2039 dirty = try_flush_caps(inode, &flush_tid); 2040 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 2041 2042 ret = unsafe_dirop_wait(inode); 2043 2044 /* 2045 * only wait on non-file metadata writeback (the mds 2046 * can recover size and mtime, so we don't need to 2047 * wait for that) 2048 */ 2049 if (!ret && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 2050 ret = wait_event_interruptible(ci->i_cap_wq, 2051 caps_are_flushed(inode, flush_tid)); 2052 } 2053 mutex_unlock(&inode->i_mutex); 2054 out: 2055 dout("fsync %p%s result=%d\n", inode, datasync ? " datasync" : "", ret); 2056 return ret; 2057 } 2058 2059 /* 2060 * Flush any dirty caps back to the mds. If we aren't asked to wait, 2061 * queue inode for flush but don't do so immediately, because we can 2062 * get by with fewer MDS messages if we wait for data writeback to 2063 * complete first. 2064 */ 2065 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 2066 { 2067 struct ceph_inode_info *ci = ceph_inode(inode); 2068 u64 flush_tid; 2069 int err = 0; 2070 int dirty; 2071 int wait = wbc->sync_mode == WB_SYNC_ALL; 2072 2073 dout("write_inode %p wait=%d\n", inode, wait); 2074 if (wait) { 2075 dirty = try_flush_caps(inode, &flush_tid); 2076 if (dirty) 2077 err = wait_event_interruptible(ci->i_cap_wq, 2078 caps_are_flushed(inode, flush_tid)); 2079 } else { 2080 struct ceph_mds_client *mdsc = 2081 ceph_sb_to_client(inode->i_sb)->mdsc; 2082 2083 spin_lock(&ci->i_ceph_lock); 2084 if (__ceph_caps_dirty(ci)) 2085 __cap_delay_requeue_front(mdsc, ci); 2086 spin_unlock(&ci->i_ceph_lock); 2087 } 2088 return err; 2089 } 2090 2091 /* 2092 * After a recovering MDS goes active, we need to resend any caps 2093 * we were flushing. 2094 * 2095 * Caller holds session->s_mutex. 2096 */ 2097 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 2098 struct ceph_mds_session *session) 2099 { 2100 struct ceph_cap_snap *capsnap; 2101 2102 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 2103 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 2104 flushing_item) { 2105 struct ceph_inode_info *ci = capsnap->ci; 2106 struct inode *inode = &ci->vfs_inode; 2107 struct ceph_cap *cap; 2108 2109 spin_lock(&ci->i_ceph_lock); 2110 cap = ci->i_auth_cap; 2111 if (cap && cap->session == session) { 2112 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 2113 cap, capsnap); 2114 __ceph_flush_snaps(ci, &session, 1); 2115 } else { 2116 pr_err("%p auth cap %p not mds%d ???\n", inode, 2117 cap, session->s_mds); 2118 } 2119 spin_unlock(&ci->i_ceph_lock); 2120 } 2121 } 2122 2123 static int __kick_flushing_caps(struct ceph_mds_client *mdsc, 2124 struct ceph_mds_session *session, 2125 struct ceph_inode_info *ci) 2126 { 2127 struct inode *inode = &ci->vfs_inode; 2128 struct ceph_cap *cap; 2129 struct ceph_cap_flush *cf; 2130 struct rb_node *n; 2131 int delayed = 0; 2132 u64 first_tid = 0; 2133 u64 oldest_flush_tid; 2134 2135 spin_lock(&mdsc->cap_dirty_lock); 2136 oldest_flush_tid = __get_oldest_flush_tid(mdsc); 2137 spin_unlock(&mdsc->cap_dirty_lock); 2138 2139 while (true) { 2140 spin_lock(&ci->i_ceph_lock); 2141 cap = ci->i_auth_cap; 2142 if (!(cap && cap->session == session)) { 2143 pr_err("%p auth cap %p not mds%d ???\n", inode, 2144 cap, session->s_mds); 2145 spin_unlock(&ci->i_ceph_lock); 2146 break; 2147 } 2148 2149 for (n = rb_first(&ci->i_cap_flush_tree); n; n = rb_next(n)) { 2150 cf = rb_entry(n, struct ceph_cap_flush, i_node); 2151 if (cf->tid >= first_tid) 2152 break; 2153 } 2154 if (!n) { 2155 spin_unlock(&ci->i_ceph_lock); 2156 break; 2157 } 2158 2159 cf = rb_entry(n, struct ceph_cap_flush, i_node); 2160 2161 first_tid = cf->tid + 1; 2162 2163 dout("kick_flushing_caps %p cap %p tid %llu %s\n", inode, 2164 cap, cf->tid, ceph_cap_string(cf->caps)); 2165 delayed |= __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 2166 __ceph_caps_used(ci), 2167 __ceph_caps_wanted(ci), 2168 cap->issued | cap->implemented, 2169 cf->caps, cf->tid, oldest_flush_tid); 2170 } 2171 return delayed; 2172 } 2173 2174 void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc, 2175 struct ceph_mds_session *session) 2176 { 2177 struct ceph_inode_info *ci; 2178 struct ceph_cap *cap; 2179 2180 dout("early_kick_flushing_caps mds%d\n", session->s_mds); 2181 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 2182 spin_lock(&ci->i_ceph_lock); 2183 cap = ci->i_auth_cap; 2184 if (!(cap && cap->session == session)) { 2185 pr_err("%p auth cap %p not mds%d ???\n", 2186 &ci->vfs_inode, cap, session->s_mds); 2187 spin_unlock(&ci->i_ceph_lock); 2188 continue; 2189 } 2190 2191 2192 /* 2193 * if flushing caps were revoked, we re-send the cap flush 2194 * in client reconnect stage. This guarantees MDS * processes 2195 * the cap flush message before issuing the flushing caps to 2196 * other client. 2197 */ 2198 if ((cap->issued & ci->i_flushing_caps) != 2199 ci->i_flushing_caps) { 2200 spin_unlock(&ci->i_ceph_lock); 2201 if (!__kick_flushing_caps(mdsc, session, ci)) 2202 continue; 2203 spin_lock(&ci->i_ceph_lock); 2204 } 2205 2206 spin_unlock(&ci->i_ceph_lock); 2207 } 2208 } 2209 2210 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 2211 struct ceph_mds_session *session) 2212 { 2213 struct ceph_inode_info *ci; 2214 2215 kick_flushing_capsnaps(mdsc, session); 2216 2217 dout("kick_flushing_caps mds%d\n", session->s_mds); 2218 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 2219 int delayed = __kick_flushing_caps(mdsc, session, ci); 2220 if (delayed) { 2221 spin_lock(&ci->i_ceph_lock); 2222 __cap_delay_requeue(mdsc, ci); 2223 spin_unlock(&ci->i_ceph_lock); 2224 } 2225 } 2226 } 2227 2228 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc, 2229 struct ceph_mds_session *session, 2230 struct inode *inode) 2231 { 2232 struct ceph_inode_info *ci = ceph_inode(inode); 2233 struct ceph_cap *cap; 2234 2235 spin_lock(&ci->i_ceph_lock); 2236 cap = ci->i_auth_cap; 2237 dout("kick_flushing_inode_caps %p flushing %s\n", inode, 2238 ceph_cap_string(ci->i_flushing_caps)); 2239 2240 __ceph_flush_snaps(ci, &session, 1); 2241 2242 if (ci->i_flushing_caps) { 2243 int delayed; 2244 2245 spin_lock(&mdsc->cap_dirty_lock); 2246 list_move_tail(&ci->i_flushing_item, 2247 &cap->session->s_cap_flushing); 2248 spin_unlock(&mdsc->cap_dirty_lock); 2249 2250 spin_unlock(&ci->i_ceph_lock); 2251 2252 delayed = __kick_flushing_caps(mdsc, session, ci); 2253 if (delayed) { 2254 spin_lock(&ci->i_ceph_lock); 2255 __cap_delay_requeue(mdsc, ci); 2256 spin_unlock(&ci->i_ceph_lock); 2257 } 2258 } else { 2259 spin_unlock(&ci->i_ceph_lock); 2260 } 2261 } 2262 2263 2264 /* 2265 * Take references to capabilities we hold, so that we don't release 2266 * them to the MDS prematurely. 2267 * 2268 * Protected by i_ceph_lock. 2269 */ 2270 static void __take_cap_refs(struct ceph_inode_info *ci, int got, 2271 bool snap_rwsem_locked) 2272 { 2273 if (got & CEPH_CAP_PIN) 2274 ci->i_pin_ref++; 2275 if (got & CEPH_CAP_FILE_RD) 2276 ci->i_rd_ref++; 2277 if (got & CEPH_CAP_FILE_CACHE) 2278 ci->i_rdcache_ref++; 2279 if (got & CEPH_CAP_FILE_WR) { 2280 if (ci->i_wr_ref == 0 && !ci->i_head_snapc) { 2281 BUG_ON(!snap_rwsem_locked); 2282 ci->i_head_snapc = ceph_get_snap_context( 2283 ci->i_snap_realm->cached_context); 2284 } 2285 ci->i_wr_ref++; 2286 } 2287 if (got & CEPH_CAP_FILE_BUFFER) { 2288 if (ci->i_wb_ref == 0) 2289 ihold(&ci->vfs_inode); 2290 ci->i_wb_ref++; 2291 dout("__take_cap_refs %p wb %d -> %d (?)\n", 2292 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref); 2293 } 2294 } 2295 2296 /* 2297 * Try to grab cap references. Specify those refs we @want, and the 2298 * minimal set we @need. Also include the larger offset we are writing 2299 * to (when applicable), and check against max_size here as well. 2300 * Note that caller is responsible for ensuring max_size increases are 2301 * requested from the MDS. 2302 */ 2303 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 2304 loff_t endoff, bool nonblock, int *got, int *err) 2305 { 2306 struct inode *inode = &ci->vfs_inode; 2307 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 2308 int ret = 0; 2309 int have, implemented; 2310 int file_wanted; 2311 bool snap_rwsem_locked = false; 2312 2313 dout("get_cap_refs %p need %s want %s\n", inode, 2314 ceph_cap_string(need), ceph_cap_string(want)); 2315 2316 again: 2317 spin_lock(&ci->i_ceph_lock); 2318 2319 /* make sure file is actually open */ 2320 file_wanted = __ceph_caps_file_wanted(ci); 2321 if ((file_wanted & need) == 0) { 2322 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 2323 ceph_cap_string(need), ceph_cap_string(file_wanted)); 2324 *err = -EBADF; 2325 ret = 1; 2326 goto out_unlock; 2327 } 2328 2329 /* finish pending truncate */ 2330 while (ci->i_truncate_pending) { 2331 spin_unlock(&ci->i_ceph_lock); 2332 if (snap_rwsem_locked) { 2333 up_read(&mdsc->snap_rwsem); 2334 snap_rwsem_locked = false; 2335 } 2336 __ceph_do_pending_vmtruncate(inode); 2337 spin_lock(&ci->i_ceph_lock); 2338 } 2339 2340 have = __ceph_caps_issued(ci, &implemented); 2341 2342 if (have & need & CEPH_CAP_FILE_WR) { 2343 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2344 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2345 inode, endoff, ci->i_max_size); 2346 if (endoff > ci->i_requested_max_size) { 2347 *err = -EAGAIN; 2348 ret = 1; 2349 } 2350 goto out_unlock; 2351 } 2352 /* 2353 * If a sync write is in progress, we must wait, so that we 2354 * can get a final snapshot value for size+mtime. 2355 */ 2356 if (__ceph_have_pending_cap_snap(ci)) { 2357 dout("get_cap_refs %p cap_snap_pending\n", inode); 2358 goto out_unlock; 2359 } 2360 } 2361 2362 if ((have & need) == need) { 2363 /* 2364 * Look at (implemented & ~have & not) so that we keep waiting 2365 * on transition from wanted -> needed caps. This is needed 2366 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2367 * going before a prior buffered writeback happens. 2368 */ 2369 int not = want & ~(have & need); 2370 int revoking = implemented & ~have; 2371 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2372 inode, ceph_cap_string(have), ceph_cap_string(not), 2373 ceph_cap_string(revoking)); 2374 if ((revoking & not) == 0) { 2375 if (!snap_rwsem_locked && 2376 !ci->i_head_snapc && 2377 (need & CEPH_CAP_FILE_WR)) { 2378 if (!down_read_trylock(&mdsc->snap_rwsem)) { 2379 /* 2380 * we can not call down_read() when 2381 * task isn't in TASK_RUNNING state 2382 */ 2383 if (nonblock) { 2384 *err = -EAGAIN; 2385 ret = 1; 2386 goto out_unlock; 2387 } 2388 2389 spin_unlock(&ci->i_ceph_lock); 2390 down_read(&mdsc->snap_rwsem); 2391 snap_rwsem_locked = true; 2392 goto again; 2393 } 2394 snap_rwsem_locked = true; 2395 } 2396 *got = need | (have & want); 2397 __take_cap_refs(ci, *got, true); 2398 ret = 1; 2399 } 2400 } else { 2401 int session_readonly = false; 2402 if ((need & CEPH_CAP_FILE_WR) && ci->i_auth_cap) { 2403 struct ceph_mds_session *s = ci->i_auth_cap->session; 2404 spin_lock(&s->s_cap_lock); 2405 session_readonly = s->s_readonly; 2406 spin_unlock(&s->s_cap_lock); 2407 } 2408 if (session_readonly) { 2409 dout("get_cap_refs %p needed %s but mds%d readonly\n", 2410 inode, ceph_cap_string(need), ci->i_auth_cap->mds); 2411 *err = -EROFS; 2412 ret = 1; 2413 goto out_unlock; 2414 } 2415 2416 dout("get_cap_refs %p have %s needed %s\n", inode, 2417 ceph_cap_string(have), ceph_cap_string(need)); 2418 } 2419 out_unlock: 2420 spin_unlock(&ci->i_ceph_lock); 2421 if (snap_rwsem_locked) 2422 up_read(&mdsc->snap_rwsem); 2423 2424 dout("get_cap_refs %p ret %d got %s\n", inode, 2425 ret, ceph_cap_string(*got)); 2426 return ret; 2427 } 2428 2429 /* 2430 * Check the offset we are writing up to against our current 2431 * max_size. If necessary, tell the MDS we want to write to 2432 * a larger offset. 2433 */ 2434 static void check_max_size(struct inode *inode, loff_t endoff) 2435 { 2436 struct ceph_inode_info *ci = ceph_inode(inode); 2437 int check = 0; 2438 2439 /* do we need to explicitly request a larger max_size? */ 2440 spin_lock(&ci->i_ceph_lock); 2441 if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) { 2442 dout("write %p at large endoff %llu, req max_size\n", 2443 inode, endoff); 2444 ci->i_wanted_max_size = endoff; 2445 } 2446 /* duplicate ceph_check_caps()'s logic */ 2447 if (ci->i_auth_cap && 2448 (ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) && 2449 ci->i_wanted_max_size > ci->i_max_size && 2450 ci->i_wanted_max_size > ci->i_requested_max_size) 2451 check = 1; 2452 spin_unlock(&ci->i_ceph_lock); 2453 if (check) 2454 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2455 } 2456 2457 /* 2458 * Wait for caps, and take cap references. If we can't get a WR cap 2459 * due to a small max_size, make sure we check_max_size (and possibly 2460 * ask the mds) so we don't get hung up indefinitely. 2461 */ 2462 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, 2463 loff_t endoff, int *got, struct page **pinned_page) 2464 { 2465 int _got, ret, err = 0; 2466 2467 ret = ceph_pool_perm_check(ci, need); 2468 if (ret < 0) 2469 return ret; 2470 2471 while (true) { 2472 if (endoff > 0) 2473 check_max_size(&ci->vfs_inode, endoff); 2474 2475 err = 0; 2476 _got = 0; 2477 ret = try_get_cap_refs(ci, need, want, endoff, 2478 false, &_got, &err); 2479 if (ret) { 2480 if (err == -EAGAIN) 2481 continue; 2482 if (err < 0) 2483 return err; 2484 } else { 2485 ret = wait_event_interruptible(ci->i_cap_wq, 2486 try_get_cap_refs(ci, need, want, endoff, 2487 true, &_got, &err)); 2488 if (err == -EAGAIN) 2489 continue; 2490 if (err < 0) 2491 ret = err; 2492 if (ret < 0) 2493 return ret; 2494 } 2495 2496 if (ci->i_inline_version != CEPH_INLINE_NONE && 2497 (_got & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 2498 i_size_read(&ci->vfs_inode) > 0) { 2499 struct page *page = 2500 find_get_page(ci->vfs_inode.i_mapping, 0); 2501 if (page) { 2502 if (PageUptodate(page)) { 2503 *pinned_page = page; 2504 break; 2505 } 2506 page_cache_release(page); 2507 } 2508 /* 2509 * drop cap refs first because getattr while 2510 * holding * caps refs can cause deadlock. 2511 */ 2512 ceph_put_cap_refs(ci, _got); 2513 _got = 0; 2514 2515 /* 2516 * getattr request will bring inline data into 2517 * page cache 2518 */ 2519 ret = __ceph_do_getattr(&ci->vfs_inode, NULL, 2520 CEPH_STAT_CAP_INLINE_DATA, 2521 true); 2522 if (ret < 0) 2523 return ret; 2524 continue; 2525 } 2526 break; 2527 } 2528 2529 *got = _got; 2530 return 0; 2531 } 2532 2533 /* 2534 * Take cap refs. Caller must already know we hold at least one ref 2535 * on the caps in question or we don't know this is safe. 2536 */ 2537 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2538 { 2539 spin_lock(&ci->i_ceph_lock); 2540 __take_cap_refs(ci, caps, false); 2541 spin_unlock(&ci->i_ceph_lock); 2542 } 2543 2544 2545 /* 2546 * drop cap_snap that is not associated with any snapshot. 2547 * we don't need to send FLUSHSNAP message for it. 2548 */ 2549 static int ceph_try_drop_cap_snap(struct ceph_cap_snap *capsnap) 2550 { 2551 if (!capsnap->need_flush && 2552 !capsnap->writing && !capsnap->dirty_pages) { 2553 2554 dout("dropping cap_snap %p follows %llu\n", 2555 capsnap, capsnap->follows); 2556 ceph_put_snap_context(capsnap->context); 2557 list_del(&capsnap->ci_item); 2558 list_del(&capsnap->flushing_item); 2559 ceph_put_cap_snap(capsnap); 2560 return 1; 2561 } 2562 return 0; 2563 } 2564 2565 /* 2566 * Release cap refs. 2567 * 2568 * If we released the last ref on any given cap, call ceph_check_caps 2569 * to release (or schedule a release). 2570 * 2571 * If we are releasing a WR cap (from a sync write), finalize any affected 2572 * cap_snap, and wake up any waiters. 2573 */ 2574 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2575 { 2576 struct inode *inode = &ci->vfs_inode; 2577 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2578 2579 spin_lock(&ci->i_ceph_lock); 2580 if (had & CEPH_CAP_PIN) 2581 --ci->i_pin_ref; 2582 if (had & CEPH_CAP_FILE_RD) 2583 if (--ci->i_rd_ref == 0) 2584 last++; 2585 if (had & CEPH_CAP_FILE_CACHE) 2586 if (--ci->i_rdcache_ref == 0) 2587 last++; 2588 if (had & CEPH_CAP_FILE_BUFFER) { 2589 if (--ci->i_wb_ref == 0) { 2590 last++; 2591 put++; 2592 } 2593 dout("put_cap_refs %p wb %d -> %d (?)\n", 2594 inode, ci->i_wb_ref+1, ci->i_wb_ref); 2595 } 2596 if (had & CEPH_CAP_FILE_WR) 2597 if (--ci->i_wr_ref == 0) { 2598 last++; 2599 if (__ceph_have_pending_cap_snap(ci)) { 2600 struct ceph_cap_snap *capsnap = 2601 list_last_entry(&ci->i_cap_snaps, 2602 struct ceph_cap_snap, 2603 ci_item); 2604 capsnap->writing = 0; 2605 if (ceph_try_drop_cap_snap(capsnap)) 2606 put++; 2607 else if (__ceph_finish_cap_snap(ci, capsnap)) 2608 flushsnaps = 1; 2609 wake = 1; 2610 } 2611 if (ci->i_wrbuffer_ref_head == 0 && 2612 ci->i_dirty_caps == 0 && 2613 ci->i_flushing_caps == 0) { 2614 BUG_ON(!ci->i_head_snapc); 2615 ceph_put_snap_context(ci->i_head_snapc); 2616 ci->i_head_snapc = NULL; 2617 } 2618 /* see comment in __ceph_remove_cap() */ 2619 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) 2620 drop_inode_snap_realm(ci); 2621 } 2622 spin_unlock(&ci->i_ceph_lock); 2623 2624 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2625 last ? " last" : "", put ? " put" : ""); 2626 2627 if (last && !flushsnaps) 2628 ceph_check_caps(ci, 0, NULL); 2629 else if (flushsnaps) 2630 ceph_flush_snaps(ci); 2631 if (wake) 2632 wake_up_all(&ci->i_cap_wq); 2633 while (put-- > 0) 2634 iput(inode); 2635 } 2636 2637 /* 2638 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2639 * context. Adjust per-snap dirty page accounting as appropriate. 2640 * Once all dirty data for a cap_snap is flushed, flush snapped file 2641 * metadata back to the MDS. If we dropped the last ref, call 2642 * ceph_check_caps. 2643 */ 2644 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2645 struct ceph_snap_context *snapc) 2646 { 2647 struct inode *inode = &ci->vfs_inode; 2648 int last = 0; 2649 int complete_capsnap = 0; 2650 int drop_capsnap = 0; 2651 int found = 0; 2652 struct ceph_cap_snap *capsnap = NULL; 2653 2654 spin_lock(&ci->i_ceph_lock); 2655 ci->i_wrbuffer_ref -= nr; 2656 last = !ci->i_wrbuffer_ref; 2657 2658 if (ci->i_head_snapc == snapc) { 2659 ci->i_wrbuffer_ref_head -= nr; 2660 if (ci->i_wrbuffer_ref_head == 0 && 2661 ci->i_wr_ref == 0 && 2662 ci->i_dirty_caps == 0 && 2663 ci->i_flushing_caps == 0) { 2664 BUG_ON(!ci->i_head_snapc); 2665 ceph_put_snap_context(ci->i_head_snapc); 2666 ci->i_head_snapc = NULL; 2667 } 2668 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2669 inode, 2670 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2671 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2672 last ? " LAST" : ""); 2673 } else { 2674 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2675 if (capsnap->context == snapc) { 2676 found = 1; 2677 break; 2678 } 2679 } 2680 BUG_ON(!found); 2681 capsnap->dirty_pages -= nr; 2682 if (capsnap->dirty_pages == 0) { 2683 complete_capsnap = 1; 2684 drop_capsnap = ceph_try_drop_cap_snap(capsnap); 2685 } 2686 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2687 " snap %lld %d/%d -> %d/%d %s%s\n", 2688 inode, capsnap, capsnap->context->seq, 2689 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2690 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2691 last ? " (wrbuffer last)" : "", 2692 complete_capsnap ? " (complete capsnap)" : ""); 2693 } 2694 2695 spin_unlock(&ci->i_ceph_lock); 2696 2697 if (last) { 2698 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2699 iput(inode); 2700 } else if (complete_capsnap) { 2701 ceph_flush_snaps(ci); 2702 wake_up_all(&ci->i_cap_wq); 2703 } 2704 if (drop_capsnap) 2705 iput(inode); 2706 } 2707 2708 /* 2709 * Invalidate unlinked inode's aliases, so we can drop the inode ASAP. 2710 */ 2711 static void invalidate_aliases(struct inode *inode) 2712 { 2713 struct dentry *dn, *prev = NULL; 2714 2715 dout("invalidate_aliases inode %p\n", inode); 2716 d_prune_aliases(inode); 2717 /* 2718 * For non-directory inode, d_find_alias() only returns 2719 * hashed dentry. After calling d_invalidate(), the 2720 * dentry becomes unhashed. 2721 * 2722 * For directory inode, d_find_alias() can return 2723 * unhashed dentry. But directory inode should have 2724 * one alias at most. 2725 */ 2726 while ((dn = d_find_alias(inode))) { 2727 if (dn == prev) { 2728 dput(dn); 2729 break; 2730 } 2731 d_invalidate(dn); 2732 if (prev) 2733 dput(prev); 2734 prev = dn; 2735 } 2736 if (prev) 2737 dput(prev); 2738 } 2739 2740 /* 2741 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2742 * actually be a revocation if it specifies a smaller cap set.) 2743 * 2744 * caller holds s_mutex and i_ceph_lock, we drop both. 2745 */ 2746 static void handle_cap_grant(struct ceph_mds_client *mdsc, 2747 struct inode *inode, struct ceph_mds_caps *grant, 2748 u64 inline_version, 2749 void *inline_data, int inline_len, 2750 struct ceph_buffer *xattr_buf, 2751 struct ceph_mds_session *session, 2752 struct ceph_cap *cap, int issued) 2753 __releases(ci->i_ceph_lock) 2754 __releases(mdsc->snap_rwsem) 2755 { 2756 struct ceph_inode_info *ci = ceph_inode(inode); 2757 int mds = session->s_mds; 2758 int seq = le32_to_cpu(grant->seq); 2759 int newcaps = le32_to_cpu(grant->caps); 2760 int used, wanted, dirty; 2761 u64 size = le64_to_cpu(grant->size); 2762 u64 max_size = le64_to_cpu(grant->max_size); 2763 struct timespec mtime, atime, ctime; 2764 int check_caps = 0; 2765 bool wake = false; 2766 bool writeback = false; 2767 bool queue_trunc = false; 2768 bool queue_invalidate = false; 2769 bool queue_revalidate = false; 2770 bool deleted_inode = false; 2771 bool fill_inline = false; 2772 2773 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2774 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2775 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2776 inode->i_size); 2777 2778 2779 /* 2780 * auth mds of the inode changed. we received the cap export message, 2781 * but still haven't received the cap import message. handle_cap_export 2782 * updated the new auth MDS' cap. 2783 * 2784 * "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message 2785 * that was sent before the cap import message. So don't remove caps. 2786 */ 2787 if (ceph_seq_cmp(seq, cap->seq) <= 0) { 2788 WARN_ON(cap != ci->i_auth_cap); 2789 WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id)); 2790 seq = cap->seq; 2791 newcaps |= cap->issued; 2792 } 2793 2794 /* 2795 * If CACHE is being revoked, and we have no dirty buffers, 2796 * try to invalidate (once). (If there are dirty buffers, we 2797 * will invalidate _after_ writeback.) 2798 */ 2799 if (!S_ISDIR(inode->i_mode) && /* don't invalidate readdir cache */ 2800 ((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2801 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2802 !ci->i_wrbuffer_ref) { 2803 if (try_nonblocking_invalidate(inode)) { 2804 /* there were locked pages.. invalidate later 2805 in a separate thread. */ 2806 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2807 queue_invalidate = true; 2808 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2809 } 2810 } 2811 2812 ceph_fscache_invalidate(inode); 2813 } 2814 2815 /* side effects now are allowed */ 2816 cap->cap_gen = session->s_cap_gen; 2817 cap->seq = seq; 2818 2819 __check_cap_issue(ci, cap, newcaps); 2820 2821 if ((newcaps & CEPH_CAP_AUTH_SHARED) && 2822 (issued & CEPH_CAP_AUTH_EXCL) == 0) { 2823 inode->i_mode = le32_to_cpu(grant->mode); 2824 inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid)); 2825 inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid)); 2826 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2827 from_kuid(&init_user_ns, inode->i_uid), 2828 from_kgid(&init_user_ns, inode->i_gid)); 2829 } 2830 2831 if ((newcaps & CEPH_CAP_AUTH_SHARED) && 2832 (issued & CEPH_CAP_LINK_EXCL) == 0) { 2833 set_nlink(inode, le32_to_cpu(grant->nlink)); 2834 if (inode->i_nlink == 0 && 2835 (newcaps & (CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL))) 2836 deleted_inode = true; 2837 } 2838 2839 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2840 int len = le32_to_cpu(grant->xattr_len); 2841 u64 version = le64_to_cpu(grant->xattr_version); 2842 2843 if (version > ci->i_xattrs.version) { 2844 dout(" got new xattrs v%llu on %p len %d\n", 2845 version, inode, len); 2846 if (ci->i_xattrs.blob) 2847 ceph_buffer_put(ci->i_xattrs.blob); 2848 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2849 ci->i_xattrs.version = version; 2850 ceph_forget_all_cached_acls(inode); 2851 } 2852 } 2853 2854 /* Do we need to revalidate our fscache cookie. Don't bother on the 2855 * first cache cap as we already validate at cookie creation time. */ 2856 if ((issued & CEPH_CAP_FILE_CACHE) && ci->i_rdcache_gen > 1) 2857 queue_revalidate = true; 2858 2859 if (newcaps & CEPH_CAP_ANY_RD) { 2860 /* ctime/mtime/atime? */ 2861 ceph_decode_timespec(&mtime, &grant->mtime); 2862 ceph_decode_timespec(&atime, &grant->atime); 2863 ceph_decode_timespec(&ctime, &grant->ctime); 2864 ceph_fill_file_time(inode, issued, 2865 le32_to_cpu(grant->time_warp_seq), 2866 &ctime, &mtime, &atime); 2867 } 2868 2869 if (newcaps & (CEPH_CAP_ANY_FILE_RD | CEPH_CAP_ANY_FILE_WR)) { 2870 /* file layout may have changed */ 2871 ci->i_layout = grant->layout; 2872 /* size/truncate_seq? */ 2873 queue_trunc = ceph_fill_file_size(inode, issued, 2874 le32_to_cpu(grant->truncate_seq), 2875 le64_to_cpu(grant->truncate_size), 2876 size); 2877 /* max size increase? */ 2878 if (ci->i_auth_cap == cap && max_size != ci->i_max_size) { 2879 dout("max_size %lld -> %llu\n", 2880 ci->i_max_size, max_size); 2881 ci->i_max_size = max_size; 2882 if (max_size >= ci->i_wanted_max_size) { 2883 ci->i_wanted_max_size = 0; /* reset */ 2884 ci->i_requested_max_size = 0; 2885 } 2886 wake = true; 2887 } 2888 } 2889 2890 /* check cap bits */ 2891 wanted = __ceph_caps_wanted(ci); 2892 used = __ceph_caps_used(ci); 2893 dirty = __ceph_caps_dirty(ci); 2894 dout(" my wanted = %s, used = %s, dirty %s\n", 2895 ceph_cap_string(wanted), 2896 ceph_cap_string(used), 2897 ceph_cap_string(dirty)); 2898 if (wanted != le32_to_cpu(grant->wanted)) { 2899 dout("mds wanted %s -> %s\n", 2900 ceph_cap_string(le32_to_cpu(grant->wanted)), 2901 ceph_cap_string(wanted)); 2902 /* imported cap may not have correct mds_wanted */ 2903 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) 2904 check_caps = 1; 2905 } 2906 2907 /* revocation, grant, or no-op? */ 2908 if (cap->issued & ~newcaps) { 2909 int revoking = cap->issued & ~newcaps; 2910 2911 dout("revocation: %s -> %s (revoking %s)\n", 2912 ceph_cap_string(cap->issued), 2913 ceph_cap_string(newcaps), 2914 ceph_cap_string(revoking)); 2915 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2916 writeback = true; /* initiate writeback; will delay ack */ 2917 else if (revoking == CEPH_CAP_FILE_CACHE && 2918 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2919 queue_invalidate) 2920 ; /* do nothing yet, invalidation will be queued */ 2921 else if (cap == ci->i_auth_cap) 2922 check_caps = 1; /* check auth cap only */ 2923 else 2924 check_caps = 2; /* check all caps */ 2925 cap->issued = newcaps; 2926 cap->implemented |= newcaps; 2927 } else if (cap->issued == newcaps) { 2928 dout("caps unchanged: %s -> %s\n", 2929 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2930 } else { 2931 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2932 ceph_cap_string(newcaps)); 2933 /* non-auth MDS is revoking the newly grant caps ? */ 2934 if (cap == ci->i_auth_cap && 2935 __ceph_caps_revoking_other(ci, cap, newcaps)) 2936 check_caps = 2; 2937 2938 cap->issued = newcaps; 2939 cap->implemented |= newcaps; /* add bits only, to 2940 * avoid stepping on a 2941 * pending revocation */ 2942 wake = true; 2943 } 2944 BUG_ON(cap->issued & ~cap->implemented); 2945 2946 if (inline_version > 0 && inline_version >= ci->i_inline_version) { 2947 ci->i_inline_version = inline_version; 2948 if (ci->i_inline_version != CEPH_INLINE_NONE && 2949 (newcaps & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO))) 2950 fill_inline = true; 2951 } 2952 2953 spin_unlock(&ci->i_ceph_lock); 2954 2955 if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) { 2956 kick_flushing_inode_caps(mdsc, session, inode); 2957 up_read(&mdsc->snap_rwsem); 2958 if (newcaps & ~issued) 2959 wake = true; 2960 } 2961 2962 if (fill_inline) 2963 ceph_fill_inline_data(inode, NULL, inline_data, inline_len); 2964 2965 if (queue_trunc) { 2966 ceph_queue_vmtruncate(inode); 2967 ceph_queue_revalidate(inode); 2968 } else if (queue_revalidate) 2969 ceph_queue_revalidate(inode); 2970 2971 if (writeback) 2972 /* 2973 * queue inode for writeback: we can't actually call 2974 * filemap_write_and_wait, etc. from message handler 2975 * context. 2976 */ 2977 ceph_queue_writeback(inode); 2978 if (queue_invalidate) 2979 ceph_queue_invalidate(inode); 2980 if (deleted_inode) 2981 invalidate_aliases(inode); 2982 if (wake) 2983 wake_up_all(&ci->i_cap_wq); 2984 2985 if (check_caps == 1) 2986 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2987 session); 2988 else if (check_caps == 2) 2989 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2990 else 2991 mutex_unlock(&session->s_mutex); 2992 } 2993 2994 /* 2995 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2996 * MDS has been safely committed. 2997 */ 2998 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2999 struct ceph_mds_caps *m, 3000 struct ceph_mds_session *session, 3001 struct ceph_cap *cap) 3002 __releases(ci->i_ceph_lock) 3003 { 3004 struct ceph_inode_info *ci = ceph_inode(inode); 3005 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 3006 struct ceph_cap_flush *cf; 3007 struct rb_node *n; 3008 LIST_HEAD(to_remove); 3009 unsigned seq = le32_to_cpu(m->seq); 3010 int dirty = le32_to_cpu(m->dirty); 3011 int cleaned = 0; 3012 int drop = 0; 3013 3014 n = rb_first(&ci->i_cap_flush_tree); 3015 while (n) { 3016 cf = rb_entry(n, struct ceph_cap_flush, i_node); 3017 n = rb_next(&cf->i_node); 3018 if (cf->tid == flush_tid) 3019 cleaned = cf->caps; 3020 if (cf->tid <= flush_tid) { 3021 rb_erase(&cf->i_node, &ci->i_cap_flush_tree); 3022 list_add_tail(&cf->list, &to_remove); 3023 } else { 3024 cleaned &= ~cf->caps; 3025 if (!cleaned) 3026 break; 3027 } 3028 } 3029 3030 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 3031 " flushing %s -> %s\n", 3032 inode, session->s_mds, seq, ceph_cap_string(dirty), 3033 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 3034 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 3035 3036 if (list_empty(&to_remove) && !cleaned) 3037 goto out; 3038 3039 ci->i_flushing_caps &= ~cleaned; 3040 3041 spin_lock(&mdsc->cap_dirty_lock); 3042 3043 if (!list_empty(&to_remove)) { 3044 list_for_each_entry(cf, &to_remove, list) 3045 rb_erase(&cf->g_node, &mdsc->cap_flush_tree); 3046 3047 n = rb_first(&mdsc->cap_flush_tree); 3048 cf = n ? rb_entry(n, struct ceph_cap_flush, g_node) : NULL; 3049 if (!cf || cf->tid > flush_tid) 3050 wake_up_all(&mdsc->cap_flushing_wq); 3051 } 3052 3053 if (ci->i_flushing_caps == 0) { 3054 list_del_init(&ci->i_flushing_item); 3055 if (!list_empty(&session->s_cap_flushing)) 3056 dout(" mds%d still flushing cap on %p\n", 3057 session->s_mds, 3058 &list_entry(session->s_cap_flushing.next, 3059 struct ceph_inode_info, 3060 i_flushing_item)->vfs_inode); 3061 mdsc->num_cap_flushing--; 3062 dout(" inode %p now !flushing\n", inode); 3063 3064 if (ci->i_dirty_caps == 0) { 3065 dout(" inode %p now clean\n", inode); 3066 BUG_ON(!list_empty(&ci->i_dirty_item)); 3067 drop = 1; 3068 if (ci->i_wr_ref == 0 && 3069 ci->i_wrbuffer_ref_head == 0) { 3070 BUG_ON(!ci->i_head_snapc); 3071 ceph_put_snap_context(ci->i_head_snapc); 3072 ci->i_head_snapc = NULL; 3073 } 3074 } else { 3075 BUG_ON(list_empty(&ci->i_dirty_item)); 3076 } 3077 } 3078 spin_unlock(&mdsc->cap_dirty_lock); 3079 wake_up_all(&ci->i_cap_wq); 3080 3081 out: 3082 spin_unlock(&ci->i_ceph_lock); 3083 3084 while (!list_empty(&to_remove)) { 3085 cf = list_first_entry(&to_remove, 3086 struct ceph_cap_flush, list); 3087 list_del(&cf->list); 3088 ceph_free_cap_flush(cf); 3089 } 3090 if (drop) 3091 iput(inode); 3092 } 3093 3094 /* 3095 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 3096 * throw away our cap_snap. 3097 * 3098 * Caller hold s_mutex. 3099 */ 3100 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 3101 struct ceph_mds_caps *m, 3102 struct ceph_mds_session *session) 3103 { 3104 struct ceph_inode_info *ci = ceph_inode(inode); 3105 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 3106 u64 follows = le64_to_cpu(m->snap_follows); 3107 struct ceph_cap_snap *capsnap; 3108 int drop = 0; 3109 3110 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 3111 inode, ci, session->s_mds, follows); 3112 3113 spin_lock(&ci->i_ceph_lock); 3114 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 3115 if (capsnap->follows == follows) { 3116 if (capsnap->flush_tid != flush_tid) { 3117 dout(" cap_snap %p follows %lld tid %lld !=" 3118 " %lld\n", capsnap, follows, 3119 flush_tid, capsnap->flush_tid); 3120 break; 3121 } 3122 WARN_ON(capsnap->dirty_pages || capsnap->writing); 3123 dout(" removing %p cap_snap %p follows %lld\n", 3124 inode, capsnap, follows); 3125 ceph_put_snap_context(capsnap->context); 3126 list_del(&capsnap->ci_item); 3127 list_del(&capsnap->flushing_item); 3128 ceph_put_cap_snap(capsnap); 3129 wake_up_all(&mdsc->cap_flushing_wq); 3130 drop = 1; 3131 break; 3132 } else { 3133 dout(" skipping cap_snap %p follows %lld\n", 3134 capsnap, capsnap->follows); 3135 } 3136 } 3137 spin_unlock(&ci->i_ceph_lock); 3138 if (drop) 3139 iput(inode); 3140 } 3141 3142 /* 3143 * Handle TRUNC from MDS, indicating file truncation. 3144 * 3145 * caller hold s_mutex. 3146 */ 3147 static void handle_cap_trunc(struct inode *inode, 3148 struct ceph_mds_caps *trunc, 3149 struct ceph_mds_session *session) 3150 __releases(ci->i_ceph_lock) 3151 { 3152 struct ceph_inode_info *ci = ceph_inode(inode); 3153 int mds = session->s_mds; 3154 int seq = le32_to_cpu(trunc->seq); 3155 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 3156 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 3157 u64 size = le64_to_cpu(trunc->size); 3158 int implemented = 0; 3159 int dirty = __ceph_caps_dirty(ci); 3160 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 3161 int queue_trunc = 0; 3162 3163 issued |= implemented | dirty; 3164 3165 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 3166 inode, mds, seq, truncate_size, truncate_seq); 3167 queue_trunc = ceph_fill_file_size(inode, issued, 3168 truncate_seq, truncate_size, size); 3169 spin_unlock(&ci->i_ceph_lock); 3170 3171 if (queue_trunc) { 3172 ceph_queue_vmtruncate(inode); 3173 ceph_fscache_invalidate(inode); 3174 } 3175 } 3176 3177 /* 3178 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 3179 * different one. If we are the most recent migration we've seen (as 3180 * indicated by mseq), make note of the migrating cap bits for the 3181 * duration (until we see the corresponding IMPORT). 3182 * 3183 * caller holds s_mutex 3184 */ 3185 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 3186 struct ceph_mds_cap_peer *ph, 3187 struct ceph_mds_session *session) 3188 { 3189 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 3190 struct ceph_mds_session *tsession = NULL; 3191 struct ceph_cap *cap, *tcap, *new_cap = NULL; 3192 struct ceph_inode_info *ci = ceph_inode(inode); 3193 u64 t_cap_id; 3194 unsigned mseq = le32_to_cpu(ex->migrate_seq); 3195 unsigned t_seq, t_mseq; 3196 int target, issued; 3197 int mds = session->s_mds; 3198 3199 if (ph) { 3200 t_cap_id = le64_to_cpu(ph->cap_id); 3201 t_seq = le32_to_cpu(ph->seq); 3202 t_mseq = le32_to_cpu(ph->mseq); 3203 target = le32_to_cpu(ph->mds); 3204 } else { 3205 t_cap_id = t_seq = t_mseq = 0; 3206 target = -1; 3207 } 3208 3209 dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n", 3210 inode, ci, mds, mseq, target); 3211 retry: 3212 spin_lock(&ci->i_ceph_lock); 3213 cap = __get_cap_for_mds(ci, mds); 3214 if (!cap || cap->cap_id != le64_to_cpu(ex->cap_id)) 3215 goto out_unlock; 3216 3217 if (target < 0) { 3218 __ceph_remove_cap(cap, false); 3219 goto out_unlock; 3220 } 3221 3222 /* 3223 * now we know we haven't received the cap import message yet 3224 * because the exported cap still exist. 3225 */ 3226 3227 issued = cap->issued; 3228 WARN_ON(issued != cap->implemented); 3229 3230 tcap = __get_cap_for_mds(ci, target); 3231 if (tcap) { 3232 /* already have caps from the target */ 3233 if (tcap->cap_id != t_cap_id || 3234 ceph_seq_cmp(tcap->seq, t_seq) < 0) { 3235 dout(" updating import cap %p mds%d\n", tcap, target); 3236 tcap->cap_id = t_cap_id; 3237 tcap->seq = t_seq - 1; 3238 tcap->issue_seq = t_seq - 1; 3239 tcap->mseq = t_mseq; 3240 tcap->issued |= issued; 3241 tcap->implemented |= issued; 3242 if (cap == ci->i_auth_cap) 3243 ci->i_auth_cap = tcap; 3244 if (ci->i_flushing_caps && ci->i_auth_cap == tcap) { 3245 spin_lock(&mdsc->cap_dirty_lock); 3246 list_move_tail(&ci->i_flushing_item, 3247 &tcap->session->s_cap_flushing); 3248 spin_unlock(&mdsc->cap_dirty_lock); 3249 } 3250 } 3251 __ceph_remove_cap(cap, false); 3252 goto out_unlock; 3253 } else if (tsession) { 3254 /* add placeholder for the export tagert */ 3255 int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0; 3256 ceph_add_cap(inode, tsession, t_cap_id, -1, issued, 0, 3257 t_seq - 1, t_mseq, (u64)-1, flag, &new_cap); 3258 3259 __ceph_remove_cap(cap, false); 3260 goto out_unlock; 3261 } 3262 3263 spin_unlock(&ci->i_ceph_lock); 3264 mutex_unlock(&session->s_mutex); 3265 3266 /* open target session */ 3267 tsession = ceph_mdsc_open_export_target_session(mdsc, target); 3268 if (!IS_ERR(tsession)) { 3269 if (mds > target) { 3270 mutex_lock(&session->s_mutex); 3271 mutex_lock_nested(&tsession->s_mutex, 3272 SINGLE_DEPTH_NESTING); 3273 } else { 3274 mutex_lock(&tsession->s_mutex); 3275 mutex_lock_nested(&session->s_mutex, 3276 SINGLE_DEPTH_NESTING); 3277 } 3278 new_cap = ceph_get_cap(mdsc, NULL); 3279 } else { 3280 WARN_ON(1); 3281 tsession = NULL; 3282 target = -1; 3283 } 3284 goto retry; 3285 3286 out_unlock: 3287 spin_unlock(&ci->i_ceph_lock); 3288 mutex_unlock(&session->s_mutex); 3289 if (tsession) { 3290 mutex_unlock(&tsession->s_mutex); 3291 ceph_put_mds_session(tsession); 3292 } 3293 if (new_cap) 3294 ceph_put_cap(mdsc, new_cap); 3295 } 3296 3297 /* 3298 * Handle cap IMPORT. 3299 * 3300 * caller holds s_mutex. acquires i_ceph_lock 3301 */ 3302 static void handle_cap_import(struct ceph_mds_client *mdsc, 3303 struct inode *inode, struct ceph_mds_caps *im, 3304 struct ceph_mds_cap_peer *ph, 3305 struct ceph_mds_session *session, 3306 struct ceph_cap **target_cap, int *old_issued) 3307 __acquires(ci->i_ceph_lock) 3308 { 3309 struct ceph_inode_info *ci = ceph_inode(inode); 3310 struct ceph_cap *cap, *ocap, *new_cap = NULL; 3311 int mds = session->s_mds; 3312 int issued; 3313 unsigned caps = le32_to_cpu(im->caps); 3314 unsigned wanted = le32_to_cpu(im->wanted); 3315 unsigned seq = le32_to_cpu(im->seq); 3316 unsigned mseq = le32_to_cpu(im->migrate_seq); 3317 u64 realmino = le64_to_cpu(im->realm); 3318 u64 cap_id = le64_to_cpu(im->cap_id); 3319 u64 p_cap_id; 3320 int peer; 3321 3322 if (ph) { 3323 p_cap_id = le64_to_cpu(ph->cap_id); 3324 peer = le32_to_cpu(ph->mds); 3325 } else { 3326 p_cap_id = 0; 3327 peer = -1; 3328 } 3329 3330 dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n", 3331 inode, ci, mds, mseq, peer); 3332 3333 retry: 3334 spin_lock(&ci->i_ceph_lock); 3335 cap = __get_cap_for_mds(ci, mds); 3336 if (!cap) { 3337 if (!new_cap) { 3338 spin_unlock(&ci->i_ceph_lock); 3339 new_cap = ceph_get_cap(mdsc, NULL); 3340 goto retry; 3341 } 3342 cap = new_cap; 3343 } else { 3344 if (new_cap) { 3345 ceph_put_cap(mdsc, new_cap); 3346 new_cap = NULL; 3347 } 3348 } 3349 3350 __ceph_caps_issued(ci, &issued); 3351 issued |= __ceph_caps_dirty(ci); 3352 3353 ceph_add_cap(inode, session, cap_id, -1, caps, wanted, seq, mseq, 3354 realmino, CEPH_CAP_FLAG_AUTH, &new_cap); 3355 3356 ocap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL; 3357 if (ocap && ocap->cap_id == p_cap_id) { 3358 dout(" remove export cap %p mds%d flags %d\n", 3359 ocap, peer, ph->flags); 3360 if ((ph->flags & CEPH_CAP_FLAG_AUTH) && 3361 (ocap->seq != le32_to_cpu(ph->seq) || 3362 ocap->mseq != le32_to_cpu(ph->mseq))) { 3363 pr_err("handle_cap_import: mismatched seq/mseq: " 3364 "ino (%llx.%llx) mds%d seq %d mseq %d " 3365 "importer mds%d has peer seq %d mseq %d\n", 3366 ceph_vinop(inode), peer, ocap->seq, 3367 ocap->mseq, mds, le32_to_cpu(ph->seq), 3368 le32_to_cpu(ph->mseq)); 3369 } 3370 __ceph_remove_cap(ocap, (ph->flags & CEPH_CAP_FLAG_RELEASE)); 3371 } 3372 3373 /* make sure we re-request max_size, if necessary */ 3374 ci->i_wanted_max_size = 0; 3375 ci->i_requested_max_size = 0; 3376 3377 *old_issued = issued; 3378 *target_cap = cap; 3379 } 3380 3381 /* 3382 * Handle a caps message from the MDS. 3383 * 3384 * Identify the appropriate session, inode, and call the right handler 3385 * based on the cap op. 3386 */ 3387 void ceph_handle_caps(struct ceph_mds_session *session, 3388 struct ceph_msg *msg) 3389 { 3390 struct ceph_mds_client *mdsc = session->s_mdsc; 3391 struct super_block *sb = mdsc->fsc->sb; 3392 struct inode *inode; 3393 struct ceph_inode_info *ci; 3394 struct ceph_cap *cap; 3395 struct ceph_mds_caps *h; 3396 struct ceph_mds_cap_peer *peer = NULL; 3397 struct ceph_snap_realm *realm; 3398 int mds = session->s_mds; 3399 int op, issued; 3400 u32 seq, mseq; 3401 struct ceph_vino vino; 3402 u64 cap_id; 3403 u64 size, max_size; 3404 u64 tid; 3405 u64 inline_version = 0; 3406 void *inline_data = NULL; 3407 u32 inline_len = 0; 3408 void *snaptrace; 3409 size_t snaptrace_len; 3410 void *p, *end; 3411 3412 dout("handle_caps from mds%d\n", mds); 3413 3414 /* decode */ 3415 end = msg->front.iov_base + msg->front.iov_len; 3416 tid = le64_to_cpu(msg->hdr.tid); 3417 if (msg->front.iov_len < sizeof(*h)) 3418 goto bad; 3419 h = msg->front.iov_base; 3420 op = le32_to_cpu(h->op); 3421 vino.ino = le64_to_cpu(h->ino); 3422 vino.snap = CEPH_NOSNAP; 3423 cap_id = le64_to_cpu(h->cap_id); 3424 seq = le32_to_cpu(h->seq); 3425 mseq = le32_to_cpu(h->migrate_seq); 3426 size = le64_to_cpu(h->size); 3427 max_size = le64_to_cpu(h->max_size); 3428 3429 snaptrace = h + 1; 3430 snaptrace_len = le32_to_cpu(h->snap_trace_len); 3431 p = snaptrace + snaptrace_len; 3432 3433 if (le16_to_cpu(msg->hdr.version) >= 2) { 3434 u32 flock_len; 3435 ceph_decode_32_safe(&p, end, flock_len, bad); 3436 if (p + flock_len > end) 3437 goto bad; 3438 p += flock_len; 3439 } 3440 3441 if (le16_to_cpu(msg->hdr.version) >= 3) { 3442 if (op == CEPH_CAP_OP_IMPORT) { 3443 if (p + sizeof(*peer) > end) 3444 goto bad; 3445 peer = p; 3446 p += sizeof(*peer); 3447 } else if (op == CEPH_CAP_OP_EXPORT) { 3448 /* recorded in unused fields */ 3449 peer = (void *)&h->size; 3450 } 3451 } 3452 3453 if (le16_to_cpu(msg->hdr.version) >= 4) { 3454 ceph_decode_64_safe(&p, end, inline_version, bad); 3455 ceph_decode_32_safe(&p, end, inline_len, bad); 3456 if (p + inline_len > end) 3457 goto bad; 3458 inline_data = p; 3459 p += inline_len; 3460 } 3461 3462 /* lookup ino */ 3463 inode = ceph_find_inode(sb, vino); 3464 ci = ceph_inode(inode); 3465 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 3466 vino.snap, inode); 3467 3468 mutex_lock(&session->s_mutex); 3469 session->s_seq++; 3470 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 3471 (unsigned)seq); 3472 3473 if (!inode) { 3474 dout(" i don't have ino %llx\n", vino.ino); 3475 3476 if (op == CEPH_CAP_OP_IMPORT) { 3477 cap = ceph_get_cap(mdsc, NULL); 3478 cap->cap_ino = vino.ino; 3479 cap->queue_release = 1; 3480 cap->cap_id = cap_id; 3481 cap->mseq = mseq; 3482 cap->seq = seq; 3483 spin_lock(&session->s_cap_lock); 3484 list_add_tail(&cap->session_caps, 3485 &session->s_cap_releases); 3486 session->s_num_cap_releases++; 3487 spin_unlock(&session->s_cap_lock); 3488 } 3489 goto flush_cap_releases; 3490 } 3491 3492 /* these will work even if we don't have a cap yet */ 3493 switch (op) { 3494 case CEPH_CAP_OP_FLUSHSNAP_ACK: 3495 handle_cap_flushsnap_ack(inode, tid, h, session); 3496 goto done; 3497 3498 case CEPH_CAP_OP_EXPORT: 3499 handle_cap_export(inode, h, peer, session); 3500 goto done_unlocked; 3501 3502 case CEPH_CAP_OP_IMPORT: 3503 realm = NULL; 3504 if (snaptrace_len) { 3505 down_write(&mdsc->snap_rwsem); 3506 ceph_update_snap_trace(mdsc, snaptrace, 3507 snaptrace + snaptrace_len, 3508 false, &realm); 3509 downgrade_write(&mdsc->snap_rwsem); 3510 } else { 3511 down_read(&mdsc->snap_rwsem); 3512 } 3513 handle_cap_import(mdsc, inode, h, peer, session, 3514 &cap, &issued); 3515 handle_cap_grant(mdsc, inode, h, 3516 inline_version, inline_data, inline_len, 3517 msg->middle, session, cap, issued); 3518 if (realm) 3519 ceph_put_snap_realm(mdsc, realm); 3520 goto done_unlocked; 3521 } 3522 3523 /* the rest require a cap */ 3524 spin_lock(&ci->i_ceph_lock); 3525 cap = __get_cap_for_mds(ceph_inode(inode), mds); 3526 if (!cap) { 3527 dout(" no cap on %p ino %llx.%llx from mds%d\n", 3528 inode, ceph_ino(inode), ceph_snap(inode), mds); 3529 spin_unlock(&ci->i_ceph_lock); 3530 goto flush_cap_releases; 3531 } 3532 3533 /* note that each of these drops i_ceph_lock for us */ 3534 switch (op) { 3535 case CEPH_CAP_OP_REVOKE: 3536 case CEPH_CAP_OP_GRANT: 3537 __ceph_caps_issued(ci, &issued); 3538 issued |= __ceph_caps_dirty(ci); 3539 handle_cap_grant(mdsc, inode, h, 3540 inline_version, inline_data, inline_len, 3541 msg->middle, session, cap, issued); 3542 goto done_unlocked; 3543 3544 case CEPH_CAP_OP_FLUSH_ACK: 3545 handle_cap_flush_ack(inode, tid, h, session, cap); 3546 break; 3547 3548 case CEPH_CAP_OP_TRUNC: 3549 handle_cap_trunc(inode, h, session); 3550 break; 3551 3552 default: 3553 spin_unlock(&ci->i_ceph_lock); 3554 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 3555 ceph_cap_op_name(op)); 3556 } 3557 3558 goto done; 3559 3560 flush_cap_releases: 3561 /* 3562 * send any cap release message to try to move things 3563 * along for the mds (who clearly thinks we still have this 3564 * cap). 3565 */ 3566 ceph_send_cap_releases(mdsc, session); 3567 3568 done: 3569 mutex_unlock(&session->s_mutex); 3570 done_unlocked: 3571 iput(inode); 3572 return; 3573 3574 bad: 3575 pr_err("ceph_handle_caps: corrupt message\n"); 3576 ceph_msg_dump(msg); 3577 return; 3578 } 3579 3580 /* 3581 * Delayed work handler to process end of delayed cap release LRU list. 3582 */ 3583 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 3584 { 3585 struct ceph_inode_info *ci; 3586 int flags = CHECK_CAPS_NODELAY; 3587 3588 dout("check_delayed_caps\n"); 3589 while (1) { 3590 spin_lock(&mdsc->cap_delay_lock); 3591 if (list_empty(&mdsc->cap_delay_list)) 3592 break; 3593 ci = list_first_entry(&mdsc->cap_delay_list, 3594 struct ceph_inode_info, 3595 i_cap_delay_list); 3596 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 3597 time_before(jiffies, ci->i_hold_caps_max)) 3598 break; 3599 list_del_init(&ci->i_cap_delay_list); 3600 spin_unlock(&mdsc->cap_delay_lock); 3601 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 3602 ceph_check_caps(ci, flags, NULL); 3603 } 3604 spin_unlock(&mdsc->cap_delay_lock); 3605 } 3606 3607 /* 3608 * Flush all dirty caps to the mds 3609 */ 3610 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 3611 { 3612 struct ceph_inode_info *ci; 3613 struct inode *inode; 3614 3615 dout("flush_dirty_caps\n"); 3616 spin_lock(&mdsc->cap_dirty_lock); 3617 while (!list_empty(&mdsc->cap_dirty)) { 3618 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info, 3619 i_dirty_item); 3620 inode = &ci->vfs_inode; 3621 ihold(inode); 3622 dout("flush_dirty_caps %p\n", inode); 3623 spin_unlock(&mdsc->cap_dirty_lock); 3624 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, NULL); 3625 iput(inode); 3626 spin_lock(&mdsc->cap_dirty_lock); 3627 } 3628 spin_unlock(&mdsc->cap_dirty_lock); 3629 dout("flush_dirty_caps done\n"); 3630 } 3631 3632 /* 3633 * Drop open file reference. If we were the last open file, 3634 * we may need to release capabilities to the MDS (or schedule 3635 * their delayed release). 3636 */ 3637 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 3638 { 3639 struct inode *inode = &ci->vfs_inode; 3640 int last = 0; 3641 3642 spin_lock(&ci->i_ceph_lock); 3643 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 3644 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 3645 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 3646 if (--ci->i_nr_by_mode[fmode] == 0) 3647 last++; 3648 spin_unlock(&ci->i_ceph_lock); 3649 3650 if (last && ci->i_vino.snap == CEPH_NOSNAP) 3651 ceph_check_caps(ci, 0, NULL); 3652 } 3653 3654 /* 3655 * Helpers for embedding cap and dentry lease releases into mds 3656 * requests. 3657 * 3658 * @force is used by dentry_release (below) to force inclusion of a 3659 * record for the directory inode, even when there aren't any caps to 3660 * drop. 3661 */ 3662 int ceph_encode_inode_release(void **p, struct inode *inode, 3663 int mds, int drop, int unless, int force) 3664 { 3665 struct ceph_inode_info *ci = ceph_inode(inode); 3666 struct ceph_cap *cap; 3667 struct ceph_mds_request_release *rel = *p; 3668 int used, dirty; 3669 int ret = 0; 3670 3671 spin_lock(&ci->i_ceph_lock); 3672 used = __ceph_caps_used(ci); 3673 dirty = __ceph_caps_dirty(ci); 3674 3675 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 3676 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 3677 ceph_cap_string(unless)); 3678 3679 /* only drop unused, clean caps */ 3680 drop &= ~(used | dirty); 3681 3682 cap = __get_cap_for_mds(ci, mds); 3683 if (cap && __cap_is_valid(cap)) { 3684 if (force || 3685 ((cap->issued & drop) && 3686 (cap->issued & unless) == 0)) { 3687 if ((cap->issued & drop) && 3688 (cap->issued & unless) == 0) { 3689 int wanted = __ceph_caps_wanted(ci); 3690 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0) 3691 wanted |= cap->mds_wanted; 3692 dout("encode_inode_release %p cap %p " 3693 "%s -> %s, wanted %s -> %s\n", inode, cap, 3694 ceph_cap_string(cap->issued), 3695 ceph_cap_string(cap->issued & ~drop), 3696 ceph_cap_string(cap->mds_wanted), 3697 ceph_cap_string(wanted)); 3698 3699 cap->issued &= ~drop; 3700 cap->implemented &= ~drop; 3701 cap->mds_wanted = wanted; 3702 } else { 3703 dout("encode_inode_release %p cap %p %s" 3704 " (force)\n", inode, cap, 3705 ceph_cap_string(cap->issued)); 3706 } 3707 3708 rel->ino = cpu_to_le64(ceph_ino(inode)); 3709 rel->cap_id = cpu_to_le64(cap->cap_id); 3710 rel->seq = cpu_to_le32(cap->seq); 3711 rel->issue_seq = cpu_to_le32(cap->issue_seq); 3712 rel->mseq = cpu_to_le32(cap->mseq); 3713 rel->caps = cpu_to_le32(cap->implemented); 3714 rel->wanted = cpu_to_le32(cap->mds_wanted); 3715 rel->dname_len = 0; 3716 rel->dname_seq = 0; 3717 *p += sizeof(*rel); 3718 ret = 1; 3719 } else { 3720 dout("encode_inode_release %p cap %p %s\n", 3721 inode, cap, ceph_cap_string(cap->issued)); 3722 } 3723 } 3724 spin_unlock(&ci->i_ceph_lock); 3725 return ret; 3726 } 3727 3728 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3729 int mds, int drop, int unless) 3730 { 3731 struct inode *dir = d_inode(dentry->d_parent); 3732 struct ceph_mds_request_release *rel = *p; 3733 struct ceph_dentry_info *di = ceph_dentry(dentry); 3734 int force = 0; 3735 int ret; 3736 3737 /* 3738 * force an record for the directory caps if we have a dentry lease. 3739 * this is racy (can't take i_ceph_lock and d_lock together), but it 3740 * doesn't have to be perfect; the mds will revoke anything we don't 3741 * release. 3742 */ 3743 spin_lock(&dentry->d_lock); 3744 if (di->lease_session && di->lease_session->s_mds == mds) 3745 force = 1; 3746 spin_unlock(&dentry->d_lock); 3747 3748 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3749 3750 spin_lock(&dentry->d_lock); 3751 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3752 dout("encode_dentry_release %p mds%d seq %d\n", 3753 dentry, mds, (int)di->lease_seq); 3754 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3755 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3756 *p += dentry->d_name.len; 3757 rel->dname_seq = cpu_to_le32(di->lease_seq); 3758 __ceph_mdsc_drop_dentry_lease(dentry); 3759 } 3760 spin_unlock(&dentry->d_lock); 3761 return ret; 3762 } 3763