1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include <linux/ceph/decode.h> 14 #include <linux/ceph/messenger.h> 15 16 /* 17 * Capability management 18 * 19 * The Ceph metadata servers control client access to inode metadata 20 * and file data by issuing capabilities, granting clients permission 21 * to read and/or write both inode field and file data to OSDs 22 * (storage nodes). Each capability consists of a set of bits 23 * indicating which operations are allowed. 24 * 25 * If the client holds a *_SHARED cap, the client has a coherent value 26 * that can be safely read from the cached inode. 27 * 28 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 29 * client is allowed to change inode attributes (e.g., file size, 30 * mtime), note its dirty state in the ceph_cap, and asynchronously 31 * flush that metadata change to the MDS. 32 * 33 * In the event of a conflicting operation (perhaps by another 34 * client), the MDS will revoke the conflicting client capabilities. 35 * 36 * In order for a client to cache an inode, it must hold a capability 37 * with at least one MDS server. When inodes are released, release 38 * notifications are batched and periodically sent en masse to the MDS 39 * cluster to release server state. 40 */ 41 42 43 /* 44 * Generate readable cap strings for debugging output. 45 */ 46 #define MAX_CAP_STR 20 47 static char cap_str[MAX_CAP_STR][40]; 48 static DEFINE_SPINLOCK(cap_str_lock); 49 static int last_cap_str; 50 51 static char *gcap_string(char *s, int c) 52 { 53 if (c & CEPH_CAP_GSHARED) 54 *s++ = 's'; 55 if (c & CEPH_CAP_GEXCL) 56 *s++ = 'x'; 57 if (c & CEPH_CAP_GCACHE) 58 *s++ = 'c'; 59 if (c & CEPH_CAP_GRD) 60 *s++ = 'r'; 61 if (c & CEPH_CAP_GWR) 62 *s++ = 'w'; 63 if (c & CEPH_CAP_GBUFFER) 64 *s++ = 'b'; 65 if (c & CEPH_CAP_GLAZYIO) 66 *s++ = 'l'; 67 return s; 68 } 69 70 const char *ceph_cap_string(int caps) 71 { 72 int i; 73 char *s; 74 int c; 75 76 spin_lock(&cap_str_lock); 77 i = last_cap_str++; 78 if (last_cap_str == MAX_CAP_STR) 79 last_cap_str = 0; 80 spin_unlock(&cap_str_lock); 81 82 s = cap_str[i]; 83 84 if (caps & CEPH_CAP_PIN) 85 *s++ = 'p'; 86 87 c = (caps >> CEPH_CAP_SAUTH) & 3; 88 if (c) { 89 *s++ = 'A'; 90 s = gcap_string(s, c); 91 } 92 93 c = (caps >> CEPH_CAP_SLINK) & 3; 94 if (c) { 95 *s++ = 'L'; 96 s = gcap_string(s, c); 97 } 98 99 c = (caps >> CEPH_CAP_SXATTR) & 3; 100 if (c) { 101 *s++ = 'X'; 102 s = gcap_string(s, c); 103 } 104 105 c = caps >> CEPH_CAP_SFILE; 106 if (c) { 107 *s++ = 'F'; 108 s = gcap_string(s, c); 109 } 110 111 if (s == cap_str[i]) 112 *s++ = '-'; 113 *s = 0; 114 return cap_str[i]; 115 } 116 117 void ceph_caps_init(struct ceph_mds_client *mdsc) 118 { 119 INIT_LIST_HEAD(&mdsc->caps_list); 120 spin_lock_init(&mdsc->caps_list_lock); 121 } 122 123 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 124 { 125 struct ceph_cap *cap; 126 127 spin_lock(&mdsc->caps_list_lock); 128 while (!list_empty(&mdsc->caps_list)) { 129 cap = list_first_entry(&mdsc->caps_list, 130 struct ceph_cap, caps_item); 131 list_del(&cap->caps_item); 132 kmem_cache_free(ceph_cap_cachep, cap); 133 } 134 mdsc->caps_total_count = 0; 135 mdsc->caps_avail_count = 0; 136 mdsc->caps_use_count = 0; 137 mdsc->caps_reserve_count = 0; 138 mdsc->caps_min_count = 0; 139 spin_unlock(&mdsc->caps_list_lock); 140 } 141 142 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 143 { 144 spin_lock(&mdsc->caps_list_lock); 145 mdsc->caps_min_count += delta; 146 BUG_ON(mdsc->caps_min_count < 0); 147 spin_unlock(&mdsc->caps_list_lock); 148 } 149 150 int ceph_reserve_caps(struct ceph_mds_client *mdsc, 151 struct ceph_cap_reservation *ctx, int need) 152 { 153 int i; 154 struct ceph_cap *cap; 155 int have; 156 int alloc = 0; 157 LIST_HEAD(newcaps); 158 int ret = 0; 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) { 178 ret = -ENOMEM; 179 goto out_alloc_count; 180 } 181 list_add(&cap->caps_item, &newcaps); 182 alloc++; 183 } 184 BUG_ON(have + alloc != need); 185 186 spin_lock(&mdsc->caps_list_lock); 187 mdsc->caps_total_count += alloc; 188 mdsc->caps_reserve_count += alloc; 189 list_splice(&newcaps, &mdsc->caps_list); 190 191 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 192 mdsc->caps_reserve_count + 193 mdsc->caps_avail_count); 194 spin_unlock(&mdsc->caps_list_lock); 195 196 ctx->count = need; 197 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 198 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 199 mdsc->caps_reserve_count, mdsc->caps_avail_count); 200 return 0; 201 202 out_alloc_count: 203 /* we didn't manage to reserve as much as we needed */ 204 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 205 ctx, need, have); 206 return ret; 207 } 208 209 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 210 struct ceph_cap_reservation *ctx) 211 { 212 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 213 if (ctx->count) { 214 spin_lock(&mdsc->caps_list_lock); 215 BUG_ON(mdsc->caps_reserve_count < ctx->count); 216 mdsc->caps_reserve_count -= ctx->count; 217 mdsc->caps_avail_count += ctx->count; 218 ctx->count = 0; 219 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 220 mdsc->caps_total_count, mdsc->caps_use_count, 221 mdsc->caps_reserve_count, mdsc->caps_avail_count); 222 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 223 mdsc->caps_reserve_count + 224 mdsc->caps_avail_count); 225 spin_unlock(&mdsc->caps_list_lock); 226 } 227 return 0; 228 } 229 230 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc, 231 struct ceph_cap_reservation *ctx) 232 { 233 struct ceph_cap *cap = NULL; 234 235 /* temporary, until we do something about cap import/export */ 236 if (!ctx) { 237 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 238 if (cap) { 239 mdsc->caps_use_count++; 240 mdsc->caps_total_count++; 241 } 242 return cap; 243 } 244 245 spin_lock(&mdsc->caps_list_lock); 246 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 247 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 248 mdsc->caps_reserve_count, mdsc->caps_avail_count); 249 BUG_ON(!ctx->count); 250 BUG_ON(ctx->count > mdsc->caps_reserve_count); 251 BUG_ON(list_empty(&mdsc->caps_list)); 252 253 ctx->count--; 254 mdsc->caps_reserve_count--; 255 mdsc->caps_use_count++; 256 257 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 258 list_del(&cap->caps_item); 259 260 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 261 mdsc->caps_reserve_count + mdsc->caps_avail_count); 262 spin_unlock(&mdsc->caps_list_lock); 263 return cap; 264 } 265 266 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 267 { 268 spin_lock(&mdsc->caps_list_lock); 269 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 270 cap, mdsc->caps_total_count, mdsc->caps_use_count, 271 mdsc->caps_reserve_count, mdsc->caps_avail_count); 272 mdsc->caps_use_count--; 273 /* 274 * Keep some preallocated caps around (ceph_min_count), to 275 * avoid lots of free/alloc churn. 276 */ 277 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 278 mdsc->caps_min_count) { 279 mdsc->caps_total_count--; 280 kmem_cache_free(ceph_cap_cachep, cap); 281 } else { 282 mdsc->caps_avail_count++; 283 list_add(&cap->caps_item, &mdsc->caps_list); 284 } 285 286 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 287 mdsc->caps_reserve_count + mdsc->caps_avail_count); 288 spin_unlock(&mdsc->caps_list_lock); 289 } 290 291 void ceph_reservation_status(struct ceph_fs_client *fsc, 292 int *total, int *avail, int *used, int *reserved, 293 int *min) 294 { 295 struct ceph_mds_client *mdsc = fsc->mdsc; 296 297 if (total) 298 *total = mdsc->caps_total_count; 299 if (avail) 300 *avail = mdsc->caps_avail_count; 301 if (used) 302 *used = mdsc->caps_use_count; 303 if (reserved) 304 *reserved = mdsc->caps_reserve_count; 305 if (min) 306 *min = mdsc->caps_min_count; 307 } 308 309 /* 310 * Find ceph_cap for given mds, if any. 311 * 312 * Called with i_lock held. 313 */ 314 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 315 { 316 struct ceph_cap *cap; 317 struct rb_node *n = ci->i_caps.rb_node; 318 319 while (n) { 320 cap = rb_entry(n, struct ceph_cap, ci_node); 321 if (mds < cap->mds) 322 n = n->rb_left; 323 else if (mds > cap->mds) 324 n = n->rb_right; 325 else 326 return cap; 327 } 328 return NULL; 329 } 330 331 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 332 { 333 struct ceph_cap *cap; 334 335 spin_lock(&ci->vfs_inode.i_lock); 336 cap = __get_cap_for_mds(ci, mds); 337 spin_unlock(&ci->vfs_inode.i_lock); 338 return cap; 339 } 340 341 /* 342 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 343 */ 344 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 345 { 346 struct ceph_cap *cap; 347 int mds = -1; 348 struct rb_node *p; 349 350 /* prefer mds with WR|BUFFER|EXCL caps */ 351 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 352 cap = rb_entry(p, struct ceph_cap, ci_node); 353 mds = cap->mds; 354 if (cap->issued & (CEPH_CAP_FILE_WR | 355 CEPH_CAP_FILE_BUFFER | 356 CEPH_CAP_FILE_EXCL)) 357 break; 358 } 359 return mds; 360 } 361 362 int ceph_get_cap_mds(struct inode *inode) 363 { 364 int mds; 365 spin_lock(&inode->i_lock); 366 mds = __ceph_get_cap_mds(ceph_inode(inode)); 367 spin_unlock(&inode->i_lock); 368 return mds; 369 } 370 371 /* 372 * Called under i_lock. 373 */ 374 static void __insert_cap_node(struct ceph_inode_info *ci, 375 struct ceph_cap *new) 376 { 377 struct rb_node **p = &ci->i_caps.rb_node; 378 struct rb_node *parent = NULL; 379 struct ceph_cap *cap = NULL; 380 381 while (*p) { 382 parent = *p; 383 cap = rb_entry(parent, struct ceph_cap, ci_node); 384 if (new->mds < cap->mds) 385 p = &(*p)->rb_left; 386 else if (new->mds > cap->mds) 387 p = &(*p)->rb_right; 388 else 389 BUG(); 390 } 391 392 rb_link_node(&new->ci_node, parent, p); 393 rb_insert_color(&new->ci_node, &ci->i_caps); 394 } 395 396 /* 397 * (re)set cap hold timeouts, which control the delayed release 398 * of unused caps back to the MDS. Should be called on cap use. 399 */ 400 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 401 struct ceph_inode_info *ci) 402 { 403 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 404 405 ci->i_hold_caps_min = round_jiffies(jiffies + 406 ma->caps_wanted_delay_min * HZ); 407 ci->i_hold_caps_max = round_jiffies(jiffies + 408 ma->caps_wanted_delay_max * HZ); 409 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 410 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 411 } 412 413 /* 414 * (Re)queue cap at the end of the delayed cap release list. 415 * 416 * If I_FLUSH is set, leave the inode at the front of the list. 417 * 418 * Caller holds i_lock 419 * -> we take mdsc->cap_delay_lock 420 */ 421 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 422 struct ceph_inode_info *ci) 423 { 424 __cap_set_timeouts(mdsc, ci); 425 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 426 ci->i_ceph_flags, ci->i_hold_caps_max); 427 if (!mdsc->stopping) { 428 spin_lock(&mdsc->cap_delay_lock); 429 if (!list_empty(&ci->i_cap_delay_list)) { 430 if (ci->i_ceph_flags & CEPH_I_FLUSH) 431 goto no_change; 432 list_del_init(&ci->i_cap_delay_list); 433 } 434 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 435 no_change: 436 spin_unlock(&mdsc->cap_delay_lock); 437 } 438 } 439 440 /* 441 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 442 * indicating we should send a cap message to flush dirty metadata 443 * asap, and move to the front of the delayed cap list. 444 */ 445 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 446 struct ceph_inode_info *ci) 447 { 448 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 449 spin_lock(&mdsc->cap_delay_lock); 450 ci->i_ceph_flags |= CEPH_I_FLUSH; 451 if (!list_empty(&ci->i_cap_delay_list)) 452 list_del_init(&ci->i_cap_delay_list); 453 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 454 spin_unlock(&mdsc->cap_delay_lock); 455 } 456 457 /* 458 * Cancel delayed work on cap. 459 * 460 * Caller must hold i_lock. 461 */ 462 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 463 struct ceph_inode_info *ci) 464 { 465 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 466 if (list_empty(&ci->i_cap_delay_list)) 467 return; 468 spin_lock(&mdsc->cap_delay_lock); 469 list_del_init(&ci->i_cap_delay_list); 470 spin_unlock(&mdsc->cap_delay_lock); 471 } 472 473 /* 474 * Common issue checks for add_cap, handle_cap_grant. 475 */ 476 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 477 unsigned issued) 478 { 479 unsigned had = __ceph_caps_issued(ci, NULL); 480 481 /* 482 * Each time we receive FILE_CACHE anew, we increment 483 * i_rdcache_gen. 484 */ 485 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 486 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) 487 ci->i_rdcache_gen++; 488 489 /* 490 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we 491 * don't know what happened to this directory while we didn't 492 * have the cap. 493 */ 494 if ((issued & CEPH_CAP_FILE_SHARED) && 495 (had & CEPH_CAP_FILE_SHARED) == 0) { 496 ci->i_shared_gen++; 497 if (S_ISDIR(ci->vfs_inode.i_mode)) { 498 dout(" marking %p NOT complete\n", &ci->vfs_inode); 499 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 500 } 501 } 502 } 503 504 /* 505 * Add a capability under the given MDS session. 506 * 507 * Caller should hold session snap_rwsem (read) and s_mutex. 508 * 509 * @fmode is the open file mode, if we are opening a file, otherwise 510 * it is < 0. (This is so we can atomically add the cap and add an 511 * open file reference to it.) 512 */ 513 int ceph_add_cap(struct inode *inode, 514 struct ceph_mds_session *session, u64 cap_id, 515 int fmode, unsigned issued, unsigned wanted, 516 unsigned seq, unsigned mseq, u64 realmino, int flags, 517 struct ceph_cap_reservation *caps_reservation) 518 { 519 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 520 struct ceph_inode_info *ci = ceph_inode(inode); 521 struct ceph_cap *new_cap = NULL; 522 struct ceph_cap *cap; 523 int mds = session->s_mds; 524 int actual_wanted; 525 526 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 527 session->s_mds, cap_id, ceph_cap_string(issued), seq); 528 529 /* 530 * If we are opening the file, include file mode wanted bits 531 * in wanted. 532 */ 533 if (fmode >= 0) 534 wanted |= ceph_caps_for_mode(fmode); 535 536 retry: 537 spin_lock(&inode->i_lock); 538 cap = __get_cap_for_mds(ci, mds); 539 if (!cap) { 540 if (new_cap) { 541 cap = new_cap; 542 new_cap = NULL; 543 } else { 544 spin_unlock(&inode->i_lock); 545 new_cap = get_cap(mdsc, caps_reservation); 546 if (new_cap == NULL) 547 return -ENOMEM; 548 goto retry; 549 } 550 551 cap->issued = 0; 552 cap->implemented = 0; 553 cap->mds = mds; 554 cap->mds_wanted = 0; 555 556 cap->ci = ci; 557 __insert_cap_node(ci, cap); 558 559 /* clear out old exporting info? (i.e. on cap import) */ 560 if (ci->i_cap_exporting_mds == mds) { 561 ci->i_cap_exporting_issued = 0; 562 ci->i_cap_exporting_mseq = 0; 563 ci->i_cap_exporting_mds = -1; 564 } 565 566 /* add to session cap list */ 567 cap->session = session; 568 spin_lock(&session->s_cap_lock); 569 list_add_tail(&cap->session_caps, &session->s_caps); 570 session->s_nr_caps++; 571 spin_unlock(&session->s_cap_lock); 572 } else if (new_cap) 573 ceph_put_cap(mdsc, new_cap); 574 575 if (!ci->i_snap_realm) { 576 /* 577 * add this inode to the appropriate snap realm 578 */ 579 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 580 realmino); 581 if (realm) { 582 ceph_get_snap_realm(mdsc, realm); 583 spin_lock(&realm->inodes_with_caps_lock); 584 ci->i_snap_realm = realm; 585 list_add(&ci->i_snap_realm_item, 586 &realm->inodes_with_caps); 587 spin_unlock(&realm->inodes_with_caps_lock); 588 } else { 589 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 590 realmino); 591 WARN_ON(!realm); 592 } 593 } 594 595 __check_cap_issue(ci, cap, issued); 596 597 /* 598 * If we are issued caps we don't want, or the mds' wanted 599 * value appears to be off, queue a check so we'll release 600 * later and/or update the mds wanted value. 601 */ 602 actual_wanted = __ceph_caps_wanted(ci); 603 if ((wanted & ~actual_wanted) || 604 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 605 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 606 ceph_cap_string(issued), ceph_cap_string(wanted), 607 ceph_cap_string(actual_wanted)); 608 __cap_delay_requeue(mdsc, ci); 609 } 610 611 if (flags & CEPH_CAP_FLAG_AUTH) 612 ci->i_auth_cap = cap; 613 else if (ci->i_auth_cap == cap) 614 ci->i_auth_cap = NULL; 615 616 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 617 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 618 ceph_cap_string(issued|cap->issued), seq, mds); 619 cap->cap_id = cap_id; 620 cap->issued = issued; 621 cap->implemented |= issued; 622 cap->mds_wanted |= wanted; 623 cap->seq = seq; 624 cap->issue_seq = seq; 625 cap->mseq = mseq; 626 cap->cap_gen = session->s_cap_gen; 627 628 if (fmode >= 0) 629 __ceph_get_fmode(ci, fmode); 630 spin_unlock(&inode->i_lock); 631 wake_up_all(&ci->i_cap_wq); 632 return 0; 633 } 634 635 /* 636 * Return true if cap has not timed out and belongs to the current 637 * generation of the MDS session (i.e. has not gone 'stale' due to 638 * us losing touch with the mds). 639 */ 640 static int __cap_is_valid(struct ceph_cap *cap) 641 { 642 unsigned long ttl; 643 u32 gen; 644 645 spin_lock(&cap->session->s_cap_lock); 646 gen = cap->session->s_cap_gen; 647 ttl = cap->session->s_cap_ttl; 648 spin_unlock(&cap->session->s_cap_lock); 649 650 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 651 dout("__cap_is_valid %p cap %p issued %s " 652 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 653 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 654 return 0; 655 } 656 657 return 1; 658 } 659 660 /* 661 * Return set of valid cap bits issued to us. Note that caps time 662 * out, and may be invalidated in bulk if the client session times out 663 * and session->s_cap_gen is bumped. 664 */ 665 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 666 { 667 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 668 struct ceph_cap *cap; 669 struct rb_node *p; 670 671 if (implemented) 672 *implemented = 0; 673 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 674 cap = rb_entry(p, struct ceph_cap, ci_node); 675 if (!__cap_is_valid(cap)) 676 continue; 677 dout("__ceph_caps_issued %p cap %p issued %s\n", 678 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 679 have |= cap->issued; 680 if (implemented) 681 *implemented |= cap->implemented; 682 } 683 return have; 684 } 685 686 /* 687 * Get cap bits issued by caps other than @ocap 688 */ 689 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 690 { 691 int have = ci->i_snap_caps; 692 struct ceph_cap *cap; 693 struct rb_node *p; 694 695 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 696 cap = rb_entry(p, struct ceph_cap, ci_node); 697 if (cap == ocap) 698 continue; 699 if (!__cap_is_valid(cap)) 700 continue; 701 have |= cap->issued; 702 } 703 return have; 704 } 705 706 /* 707 * Move a cap to the end of the LRU (oldest caps at list head, newest 708 * at list tail). 709 */ 710 static void __touch_cap(struct ceph_cap *cap) 711 { 712 struct ceph_mds_session *s = cap->session; 713 714 spin_lock(&s->s_cap_lock); 715 if (s->s_cap_iterator == NULL) { 716 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 717 s->s_mds); 718 list_move_tail(&cap->session_caps, &s->s_caps); 719 } else { 720 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 721 &cap->ci->vfs_inode, cap, s->s_mds); 722 } 723 spin_unlock(&s->s_cap_lock); 724 } 725 726 /* 727 * Check if we hold the given mask. If so, move the cap(s) to the 728 * front of their respective LRUs. (This is the preferred way for 729 * callers to check for caps they want.) 730 */ 731 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 732 { 733 struct ceph_cap *cap; 734 struct rb_node *p; 735 int have = ci->i_snap_caps; 736 737 if ((have & mask) == mask) { 738 dout("__ceph_caps_issued_mask %p snap issued %s" 739 " (mask %s)\n", &ci->vfs_inode, 740 ceph_cap_string(have), 741 ceph_cap_string(mask)); 742 return 1; 743 } 744 745 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 746 cap = rb_entry(p, struct ceph_cap, ci_node); 747 if (!__cap_is_valid(cap)) 748 continue; 749 if ((cap->issued & mask) == mask) { 750 dout("__ceph_caps_issued_mask %p cap %p issued %s" 751 " (mask %s)\n", &ci->vfs_inode, cap, 752 ceph_cap_string(cap->issued), 753 ceph_cap_string(mask)); 754 if (touch) 755 __touch_cap(cap); 756 return 1; 757 } 758 759 /* does a combination of caps satisfy mask? */ 760 have |= cap->issued; 761 if ((have & mask) == mask) { 762 dout("__ceph_caps_issued_mask %p combo issued %s" 763 " (mask %s)\n", &ci->vfs_inode, 764 ceph_cap_string(cap->issued), 765 ceph_cap_string(mask)); 766 if (touch) { 767 struct rb_node *q; 768 769 /* touch this + preceding caps */ 770 __touch_cap(cap); 771 for (q = rb_first(&ci->i_caps); q != p; 772 q = rb_next(q)) { 773 cap = rb_entry(q, struct ceph_cap, 774 ci_node); 775 if (!__cap_is_valid(cap)) 776 continue; 777 __touch_cap(cap); 778 } 779 } 780 return 1; 781 } 782 } 783 784 return 0; 785 } 786 787 /* 788 * Return true if mask caps are currently being revoked by an MDS. 789 */ 790 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 791 { 792 struct inode *inode = &ci->vfs_inode; 793 struct ceph_cap *cap; 794 struct rb_node *p; 795 int ret = 0; 796 797 spin_lock(&inode->i_lock); 798 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 799 cap = rb_entry(p, struct ceph_cap, ci_node); 800 if (__cap_is_valid(cap) && 801 (cap->implemented & ~cap->issued & mask)) { 802 ret = 1; 803 break; 804 } 805 } 806 spin_unlock(&inode->i_lock); 807 dout("ceph_caps_revoking %p %s = %d\n", inode, 808 ceph_cap_string(mask), ret); 809 return ret; 810 } 811 812 int __ceph_caps_used(struct ceph_inode_info *ci) 813 { 814 int used = 0; 815 if (ci->i_pin_ref) 816 used |= CEPH_CAP_PIN; 817 if (ci->i_rd_ref) 818 used |= CEPH_CAP_FILE_RD; 819 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages) 820 used |= CEPH_CAP_FILE_CACHE; 821 if (ci->i_wr_ref) 822 used |= CEPH_CAP_FILE_WR; 823 if (ci->i_wb_ref || ci->i_wrbuffer_ref) 824 used |= CEPH_CAP_FILE_BUFFER; 825 return used; 826 } 827 828 /* 829 * wanted, by virtue of open file modes 830 */ 831 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 832 { 833 int want = 0; 834 int mode; 835 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 836 if (ci->i_nr_by_mode[mode]) 837 want |= ceph_caps_for_mode(mode); 838 return want; 839 } 840 841 /* 842 * Return caps we have registered with the MDS(s) as 'wanted'. 843 */ 844 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 845 { 846 struct ceph_cap *cap; 847 struct rb_node *p; 848 int mds_wanted = 0; 849 850 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 851 cap = rb_entry(p, struct ceph_cap, ci_node); 852 if (!__cap_is_valid(cap)) 853 continue; 854 mds_wanted |= cap->mds_wanted; 855 } 856 return mds_wanted; 857 } 858 859 /* 860 * called under i_lock 861 */ 862 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 863 { 864 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 865 } 866 867 /* 868 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 869 * 870 * caller should hold i_lock. 871 * caller will not hold session s_mutex if called from destroy_inode. 872 */ 873 void __ceph_remove_cap(struct ceph_cap *cap) 874 { 875 struct ceph_mds_session *session = cap->session; 876 struct ceph_inode_info *ci = cap->ci; 877 struct ceph_mds_client *mdsc = 878 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 879 int removed = 0; 880 881 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 882 883 /* remove from session list */ 884 spin_lock(&session->s_cap_lock); 885 if (session->s_cap_iterator == cap) { 886 /* not yet, we are iterating over this very cap */ 887 dout("__ceph_remove_cap delaying %p removal from session %p\n", 888 cap, cap->session); 889 } else { 890 list_del_init(&cap->session_caps); 891 session->s_nr_caps--; 892 cap->session = NULL; 893 removed = 1; 894 } 895 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 896 cap->ci = NULL; 897 spin_unlock(&session->s_cap_lock); 898 899 /* remove from inode list */ 900 rb_erase(&cap->ci_node, &ci->i_caps); 901 if (ci->i_auth_cap == cap) 902 ci->i_auth_cap = NULL; 903 904 if (removed) 905 ceph_put_cap(mdsc, cap); 906 907 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 908 struct ceph_snap_realm *realm = ci->i_snap_realm; 909 spin_lock(&realm->inodes_with_caps_lock); 910 list_del_init(&ci->i_snap_realm_item); 911 ci->i_snap_realm_counter++; 912 ci->i_snap_realm = NULL; 913 spin_unlock(&realm->inodes_with_caps_lock); 914 ceph_put_snap_realm(mdsc, realm); 915 } 916 if (!__ceph_is_any_real_caps(ci)) 917 __cap_delay_cancel(mdsc, ci); 918 } 919 920 /* 921 * Build and send a cap message to the given MDS. 922 * 923 * Caller should be holding s_mutex. 924 */ 925 static int send_cap_msg(struct ceph_mds_session *session, 926 u64 ino, u64 cid, int op, 927 int caps, int wanted, int dirty, 928 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 929 u64 size, u64 max_size, 930 struct timespec *mtime, struct timespec *atime, 931 u64 time_warp_seq, 932 uid_t uid, gid_t gid, mode_t mode, 933 u64 xattr_version, 934 struct ceph_buffer *xattrs_buf, 935 u64 follows) 936 { 937 struct ceph_mds_caps *fc; 938 struct ceph_msg *msg; 939 940 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 941 " seq %u/%u mseq %u follows %lld size %llu/%llu" 942 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 943 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 944 ceph_cap_string(dirty), 945 seq, issue_seq, mseq, follows, size, max_size, 946 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 947 948 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS); 949 if (!msg) 950 return -ENOMEM; 951 952 msg->hdr.tid = cpu_to_le64(flush_tid); 953 954 fc = msg->front.iov_base; 955 memset(fc, 0, sizeof(*fc)); 956 957 fc->cap_id = cpu_to_le64(cid); 958 fc->op = cpu_to_le32(op); 959 fc->seq = cpu_to_le32(seq); 960 fc->issue_seq = cpu_to_le32(issue_seq); 961 fc->migrate_seq = cpu_to_le32(mseq); 962 fc->caps = cpu_to_le32(caps); 963 fc->wanted = cpu_to_le32(wanted); 964 fc->dirty = cpu_to_le32(dirty); 965 fc->ino = cpu_to_le64(ino); 966 fc->snap_follows = cpu_to_le64(follows); 967 968 fc->size = cpu_to_le64(size); 969 fc->max_size = cpu_to_le64(max_size); 970 if (mtime) 971 ceph_encode_timespec(&fc->mtime, mtime); 972 if (atime) 973 ceph_encode_timespec(&fc->atime, atime); 974 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 975 976 fc->uid = cpu_to_le32(uid); 977 fc->gid = cpu_to_le32(gid); 978 fc->mode = cpu_to_le32(mode); 979 980 fc->xattr_version = cpu_to_le64(xattr_version); 981 if (xattrs_buf) { 982 msg->middle = ceph_buffer_get(xattrs_buf); 983 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 984 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 985 } 986 987 ceph_con_send(&session->s_con, msg); 988 return 0; 989 } 990 991 static void __queue_cap_release(struct ceph_mds_session *session, 992 u64 ino, u64 cap_id, u32 migrate_seq, 993 u32 issue_seq) 994 { 995 struct ceph_msg *msg; 996 struct ceph_mds_cap_release *head; 997 struct ceph_mds_cap_item *item; 998 999 spin_lock(&session->s_cap_lock); 1000 BUG_ON(!session->s_num_cap_releases); 1001 msg = list_first_entry(&session->s_cap_releases, 1002 struct ceph_msg, list_head); 1003 1004 dout(" adding %llx release to mds%d msg %p (%d left)\n", 1005 ino, session->s_mds, msg, session->s_num_cap_releases); 1006 1007 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1008 head = msg->front.iov_base; 1009 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1); 1010 item = msg->front.iov_base + msg->front.iov_len; 1011 item->ino = cpu_to_le64(ino); 1012 item->cap_id = cpu_to_le64(cap_id); 1013 item->migrate_seq = cpu_to_le32(migrate_seq); 1014 item->seq = cpu_to_le32(issue_seq); 1015 1016 session->s_num_cap_releases--; 1017 1018 msg->front.iov_len += sizeof(*item); 1019 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1020 dout(" release msg %p full\n", msg); 1021 list_move_tail(&msg->list_head, &session->s_cap_releases_done); 1022 } else { 1023 dout(" release msg %p at %d/%d (%d)\n", msg, 1024 (int)le32_to_cpu(head->num), 1025 (int)CEPH_CAPS_PER_RELEASE, 1026 (int)msg->front.iov_len); 1027 } 1028 spin_unlock(&session->s_cap_lock); 1029 } 1030 1031 /* 1032 * Queue cap releases when an inode is dropped from our cache. Since 1033 * inode is about to be destroyed, there is no need for i_lock. 1034 */ 1035 void ceph_queue_caps_release(struct inode *inode) 1036 { 1037 struct ceph_inode_info *ci = ceph_inode(inode); 1038 struct rb_node *p; 1039 1040 p = rb_first(&ci->i_caps); 1041 while (p) { 1042 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1043 struct ceph_mds_session *session = cap->session; 1044 1045 __queue_cap_release(session, ceph_ino(inode), cap->cap_id, 1046 cap->mseq, cap->issue_seq); 1047 p = rb_next(p); 1048 __ceph_remove_cap(cap); 1049 } 1050 } 1051 1052 /* 1053 * Send a cap msg on the given inode. Update our caps state, then 1054 * drop i_lock and send the message. 1055 * 1056 * Make note of max_size reported/requested from mds, revoked caps 1057 * that have now been implemented. 1058 * 1059 * Make half-hearted attempt ot to invalidate page cache if we are 1060 * dropping RDCACHE. Note that this will leave behind locked pages 1061 * that we'll then need to deal with elsewhere. 1062 * 1063 * Return non-zero if delayed release, or we experienced an error 1064 * such that the caller should requeue + retry later. 1065 * 1066 * called with i_lock, then drops it. 1067 * caller should hold snap_rwsem (read), s_mutex. 1068 */ 1069 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1070 int op, int used, int want, int retain, int flushing, 1071 unsigned *pflush_tid) 1072 __releases(cap->ci->vfs_inode->i_lock) 1073 { 1074 struct ceph_inode_info *ci = cap->ci; 1075 struct inode *inode = &ci->vfs_inode; 1076 u64 cap_id = cap->cap_id; 1077 int held, revoking, dropping, keep; 1078 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1079 u64 size, max_size; 1080 struct timespec mtime, atime; 1081 int wake = 0; 1082 mode_t mode; 1083 uid_t uid; 1084 gid_t gid; 1085 struct ceph_mds_session *session; 1086 u64 xattr_version = 0; 1087 struct ceph_buffer *xattr_blob = NULL; 1088 int delayed = 0; 1089 u64 flush_tid = 0; 1090 int i; 1091 int ret; 1092 1093 held = cap->issued | cap->implemented; 1094 revoking = cap->implemented & ~cap->issued; 1095 retain &= ~revoking; 1096 dropping = cap->issued & ~retain; 1097 1098 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1099 inode, cap, cap->session, 1100 ceph_cap_string(held), ceph_cap_string(held & retain), 1101 ceph_cap_string(revoking)); 1102 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1103 1104 session = cap->session; 1105 1106 /* don't release wanted unless we've waited a bit. */ 1107 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1108 time_before(jiffies, ci->i_hold_caps_min)) { 1109 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1110 ceph_cap_string(cap->issued), 1111 ceph_cap_string(cap->issued & retain), 1112 ceph_cap_string(cap->mds_wanted), 1113 ceph_cap_string(want)); 1114 want |= cap->mds_wanted; 1115 retain |= cap->issued; 1116 delayed = 1; 1117 } 1118 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1119 1120 cap->issued &= retain; /* drop bits we don't want */ 1121 if (cap->implemented & ~cap->issued) { 1122 /* 1123 * Wake up any waiters on wanted -> needed transition. 1124 * This is due to the weird transition from buffered 1125 * to sync IO... we need to flush dirty pages _before_ 1126 * allowing sync writes to avoid reordering. 1127 */ 1128 wake = 1; 1129 } 1130 cap->implemented &= cap->issued | used; 1131 cap->mds_wanted = want; 1132 1133 if (flushing) { 1134 /* 1135 * assign a tid for flush operations so we can avoid 1136 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1137 * clean type races. track latest tid for every bit 1138 * so we can handle flush AxFw, flush Fw, and have the 1139 * first ack clean Ax. 1140 */ 1141 flush_tid = ++ci->i_cap_flush_last_tid; 1142 if (pflush_tid) 1143 *pflush_tid = flush_tid; 1144 dout(" cap_flush_tid %d\n", (int)flush_tid); 1145 for (i = 0; i < CEPH_CAP_BITS; i++) 1146 if (flushing & (1 << i)) 1147 ci->i_cap_flush_tid[i] = flush_tid; 1148 1149 follows = ci->i_head_snapc->seq; 1150 } else { 1151 follows = 0; 1152 } 1153 1154 keep = cap->implemented; 1155 seq = cap->seq; 1156 issue_seq = cap->issue_seq; 1157 mseq = cap->mseq; 1158 size = inode->i_size; 1159 ci->i_reported_size = size; 1160 max_size = ci->i_wanted_max_size; 1161 ci->i_requested_max_size = max_size; 1162 mtime = inode->i_mtime; 1163 atime = inode->i_atime; 1164 time_warp_seq = ci->i_time_warp_seq; 1165 uid = inode->i_uid; 1166 gid = inode->i_gid; 1167 mode = inode->i_mode; 1168 1169 if (flushing & CEPH_CAP_XATTR_EXCL) { 1170 __ceph_build_xattrs_blob(ci); 1171 xattr_blob = ci->i_xattrs.blob; 1172 xattr_version = ci->i_xattrs.version; 1173 } 1174 1175 spin_unlock(&inode->i_lock); 1176 1177 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1178 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1179 size, max_size, &mtime, &atime, time_warp_seq, 1180 uid, gid, mode, xattr_version, xattr_blob, 1181 follows); 1182 if (ret < 0) { 1183 dout("error sending cap msg, must requeue %p\n", inode); 1184 delayed = 1; 1185 } 1186 1187 if (wake) 1188 wake_up_all(&ci->i_cap_wq); 1189 1190 return delayed; 1191 } 1192 1193 /* 1194 * When a snapshot is taken, clients accumulate dirty metadata on 1195 * inodes with capabilities in ceph_cap_snaps to describe the file 1196 * state at the time the snapshot was taken. This must be flushed 1197 * asynchronously back to the MDS once sync writes complete and dirty 1198 * data is written out. 1199 * 1200 * Unless @again is true, skip cap_snaps that were already sent to 1201 * the MDS (i.e., during this session). 1202 * 1203 * Called under i_lock. Takes s_mutex as needed. 1204 */ 1205 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1206 struct ceph_mds_session **psession, 1207 int again) 1208 __releases(ci->vfs_inode->i_lock) 1209 __acquires(ci->vfs_inode->i_lock) 1210 { 1211 struct inode *inode = &ci->vfs_inode; 1212 int mds; 1213 struct ceph_cap_snap *capsnap; 1214 u32 mseq; 1215 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1216 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1217 session->s_mutex */ 1218 u64 next_follows = 0; /* keep track of how far we've gotten through the 1219 i_cap_snaps list, and skip these entries next time 1220 around to avoid an infinite loop */ 1221 1222 if (psession) 1223 session = *psession; 1224 1225 dout("__flush_snaps %p\n", inode); 1226 retry: 1227 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1228 /* avoid an infiniute loop after retry */ 1229 if (capsnap->follows < next_follows) 1230 continue; 1231 /* 1232 * we need to wait for sync writes to complete and for dirty 1233 * pages to be written out. 1234 */ 1235 if (capsnap->dirty_pages || capsnap->writing) 1236 break; 1237 1238 /* 1239 * if cap writeback already occurred, we should have dropped 1240 * the capsnap in ceph_put_wrbuffer_cap_refs. 1241 */ 1242 BUG_ON(capsnap->dirty == 0); 1243 1244 /* pick mds, take s_mutex */ 1245 if (ci->i_auth_cap == NULL) { 1246 dout("no auth cap (migrating?), doing nothing\n"); 1247 goto out; 1248 } 1249 1250 /* only flush each capsnap once */ 1251 if (!again && !list_empty(&capsnap->flushing_item)) { 1252 dout("already flushed %p, skipping\n", capsnap); 1253 continue; 1254 } 1255 1256 mds = ci->i_auth_cap->session->s_mds; 1257 mseq = ci->i_auth_cap->mseq; 1258 1259 if (session && session->s_mds != mds) { 1260 dout("oops, wrong session %p mutex\n", session); 1261 mutex_unlock(&session->s_mutex); 1262 ceph_put_mds_session(session); 1263 session = NULL; 1264 } 1265 if (!session) { 1266 spin_unlock(&inode->i_lock); 1267 mutex_lock(&mdsc->mutex); 1268 session = __ceph_lookup_mds_session(mdsc, mds); 1269 mutex_unlock(&mdsc->mutex); 1270 if (session) { 1271 dout("inverting session/ino locks on %p\n", 1272 session); 1273 mutex_lock(&session->s_mutex); 1274 } 1275 /* 1276 * if session == NULL, we raced against a cap 1277 * deletion or migration. retry, and we'll 1278 * get a better @mds value next time. 1279 */ 1280 spin_lock(&inode->i_lock); 1281 goto retry; 1282 } 1283 1284 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1285 atomic_inc(&capsnap->nref); 1286 if (!list_empty(&capsnap->flushing_item)) 1287 list_del_init(&capsnap->flushing_item); 1288 list_add_tail(&capsnap->flushing_item, 1289 &session->s_cap_snaps_flushing); 1290 spin_unlock(&inode->i_lock); 1291 1292 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1293 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1294 send_cap_msg(session, ceph_vino(inode).ino, 0, 1295 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1296 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1297 capsnap->size, 0, 1298 &capsnap->mtime, &capsnap->atime, 1299 capsnap->time_warp_seq, 1300 capsnap->uid, capsnap->gid, capsnap->mode, 1301 capsnap->xattr_version, capsnap->xattr_blob, 1302 capsnap->follows); 1303 1304 next_follows = capsnap->follows + 1; 1305 ceph_put_cap_snap(capsnap); 1306 1307 spin_lock(&inode->i_lock); 1308 goto retry; 1309 } 1310 1311 /* we flushed them all; remove this inode from the queue */ 1312 spin_lock(&mdsc->snap_flush_lock); 1313 list_del_init(&ci->i_snap_flush_item); 1314 spin_unlock(&mdsc->snap_flush_lock); 1315 1316 out: 1317 if (psession) 1318 *psession = session; 1319 else if (session) { 1320 mutex_unlock(&session->s_mutex); 1321 ceph_put_mds_session(session); 1322 } 1323 } 1324 1325 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1326 { 1327 struct inode *inode = &ci->vfs_inode; 1328 1329 spin_lock(&inode->i_lock); 1330 __ceph_flush_snaps(ci, NULL, 0); 1331 spin_unlock(&inode->i_lock); 1332 } 1333 1334 /* 1335 * Mark caps dirty. If inode is newly dirty, return the dirty flags. 1336 * Caller is then responsible for calling __mark_inode_dirty with the 1337 * returned flags value. 1338 */ 1339 int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1340 { 1341 struct ceph_mds_client *mdsc = 1342 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1343 struct inode *inode = &ci->vfs_inode; 1344 int was = ci->i_dirty_caps; 1345 int dirty = 0; 1346 1347 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1348 ceph_cap_string(mask), ceph_cap_string(was), 1349 ceph_cap_string(was | mask)); 1350 ci->i_dirty_caps |= mask; 1351 if (was == 0) { 1352 if (!ci->i_head_snapc) 1353 ci->i_head_snapc = ceph_get_snap_context( 1354 ci->i_snap_realm->cached_context); 1355 dout(" inode %p now dirty snapc %p\n", &ci->vfs_inode, 1356 ci->i_head_snapc); 1357 BUG_ON(!list_empty(&ci->i_dirty_item)); 1358 spin_lock(&mdsc->cap_dirty_lock); 1359 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1360 spin_unlock(&mdsc->cap_dirty_lock); 1361 if (ci->i_flushing_caps == 0) { 1362 ihold(inode); 1363 dirty |= I_DIRTY_SYNC; 1364 } 1365 } 1366 BUG_ON(list_empty(&ci->i_dirty_item)); 1367 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1368 (mask & CEPH_CAP_FILE_BUFFER)) 1369 dirty |= I_DIRTY_DATASYNC; 1370 __cap_delay_requeue(mdsc, ci); 1371 return dirty; 1372 } 1373 1374 /* 1375 * Add dirty inode to the flushing list. Assigned a seq number so we 1376 * can wait for caps to flush without starving. 1377 * 1378 * Called under i_lock. 1379 */ 1380 static int __mark_caps_flushing(struct inode *inode, 1381 struct ceph_mds_session *session) 1382 { 1383 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1384 struct ceph_inode_info *ci = ceph_inode(inode); 1385 int flushing; 1386 1387 BUG_ON(ci->i_dirty_caps == 0); 1388 BUG_ON(list_empty(&ci->i_dirty_item)); 1389 1390 flushing = ci->i_dirty_caps; 1391 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1392 ceph_cap_string(flushing), 1393 ceph_cap_string(ci->i_flushing_caps), 1394 ceph_cap_string(ci->i_flushing_caps | flushing)); 1395 ci->i_flushing_caps |= flushing; 1396 ci->i_dirty_caps = 0; 1397 dout(" inode %p now !dirty\n", inode); 1398 1399 spin_lock(&mdsc->cap_dirty_lock); 1400 list_del_init(&ci->i_dirty_item); 1401 1402 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1403 if (list_empty(&ci->i_flushing_item)) { 1404 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1405 mdsc->num_cap_flushing++; 1406 dout(" inode %p now flushing seq %lld\n", inode, 1407 ci->i_cap_flush_seq); 1408 } else { 1409 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1410 dout(" inode %p now flushing (more) seq %lld\n", inode, 1411 ci->i_cap_flush_seq); 1412 } 1413 spin_unlock(&mdsc->cap_dirty_lock); 1414 1415 return flushing; 1416 } 1417 1418 /* 1419 * try to invalidate mapping pages without blocking. 1420 */ 1421 static int try_nonblocking_invalidate(struct inode *inode) 1422 { 1423 struct ceph_inode_info *ci = ceph_inode(inode); 1424 u32 invalidating_gen = ci->i_rdcache_gen; 1425 1426 spin_unlock(&inode->i_lock); 1427 invalidate_mapping_pages(&inode->i_data, 0, -1); 1428 spin_lock(&inode->i_lock); 1429 1430 if (inode->i_data.nrpages == 0 && 1431 invalidating_gen == ci->i_rdcache_gen) { 1432 /* success. */ 1433 dout("try_nonblocking_invalidate %p success\n", inode); 1434 /* save any racing async invalidate some trouble */ 1435 ci->i_rdcache_revoking = ci->i_rdcache_gen - 1; 1436 return 0; 1437 } 1438 dout("try_nonblocking_invalidate %p failed\n", inode); 1439 return -1; 1440 } 1441 1442 /* 1443 * Swiss army knife function to examine currently used and wanted 1444 * versus held caps. Release, flush, ack revoked caps to mds as 1445 * appropriate. 1446 * 1447 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1448 * cap release further. 1449 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1450 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1451 * further delay. 1452 */ 1453 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1454 struct ceph_mds_session *session) 1455 { 1456 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1457 struct ceph_mds_client *mdsc = fsc->mdsc; 1458 struct inode *inode = &ci->vfs_inode; 1459 struct ceph_cap *cap; 1460 int file_wanted, used; 1461 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1462 int issued, implemented, want, retain, revoking, flushing = 0; 1463 int mds = -1; /* keep track of how far we've gone through i_caps list 1464 to avoid an infinite loop on retry */ 1465 struct rb_node *p; 1466 int tried_invalidate = 0; 1467 int delayed = 0, sent = 0, force_requeue = 0, num; 1468 int queue_invalidate = 0; 1469 int is_delayed = flags & CHECK_CAPS_NODELAY; 1470 1471 /* if we are unmounting, flush any unused caps immediately. */ 1472 if (mdsc->stopping) 1473 is_delayed = 1; 1474 1475 spin_lock(&inode->i_lock); 1476 1477 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1478 flags |= CHECK_CAPS_FLUSH; 1479 1480 /* flush snaps first time around only */ 1481 if (!list_empty(&ci->i_cap_snaps)) 1482 __ceph_flush_snaps(ci, &session, 0); 1483 goto retry_locked; 1484 retry: 1485 spin_lock(&inode->i_lock); 1486 retry_locked: 1487 file_wanted = __ceph_caps_file_wanted(ci); 1488 used = __ceph_caps_used(ci); 1489 want = file_wanted | used; 1490 issued = __ceph_caps_issued(ci, &implemented); 1491 revoking = implemented & ~issued; 1492 1493 retain = want | CEPH_CAP_PIN; 1494 if (!mdsc->stopping && inode->i_nlink > 0) { 1495 if (want) { 1496 retain |= CEPH_CAP_ANY; /* be greedy */ 1497 } else { 1498 retain |= CEPH_CAP_ANY_SHARED; 1499 /* 1500 * keep RD only if we didn't have the file open RW, 1501 * because then the mds would revoke it anyway to 1502 * journal max_size=0. 1503 */ 1504 if (ci->i_max_size == 0) 1505 retain |= CEPH_CAP_ANY_RD; 1506 } 1507 } 1508 1509 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1510 " issued %s revoking %s retain %s %s%s%s\n", inode, 1511 ceph_cap_string(file_wanted), 1512 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1513 ceph_cap_string(ci->i_flushing_caps), 1514 ceph_cap_string(issued), ceph_cap_string(revoking), 1515 ceph_cap_string(retain), 1516 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1517 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1518 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1519 1520 /* 1521 * If we no longer need to hold onto old our caps, and we may 1522 * have cached pages, but don't want them, then try to invalidate. 1523 * If we fail, it's because pages are locked.... try again later. 1524 */ 1525 if ((!is_delayed || mdsc->stopping) && 1526 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1527 inode->i_data.nrpages && /* have cached pages */ 1528 (file_wanted == 0 || /* no open files */ 1529 (revoking & (CEPH_CAP_FILE_CACHE| 1530 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1531 !tried_invalidate) { 1532 dout("check_caps trying to invalidate on %p\n", inode); 1533 if (try_nonblocking_invalidate(inode) < 0) { 1534 if (revoking & (CEPH_CAP_FILE_CACHE| 1535 CEPH_CAP_FILE_LAZYIO)) { 1536 dout("check_caps queuing invalidate\n"); 1537 queue_invalidate = 1; 1538 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1539 } else { 1540 dout("check_caps failed to invalidate pages\n"); 1541 /* we failed to invalidate pages. check these 1542 caps again later. */ 1543 force_requeue = 1; 1544 __cap_set_timeouts(mdsc, ci); 1545 } 1546 } 1547 tried_invalidate = 1; 1548 goto retry_locked; 1549 } 1550 1551 num = 0; 1552 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1553 cap = rb_entry(p, struct ceph_cap, ci_node); 1554 num++; 1555 1556 /* avoid looping forever */ 1557 if (mds >= cap->mds || 1558 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1559 continue; 1560 1561 /* NOTE: no side-effects allowed, until we take s_mutex */ 1562 1563 revoking = cap->implemented & ~cap->issued; 1564 dout(" mds%d cap %p issued %s implemented %s revoking %s\n", 1565 cap->mds, cap, ceph_cap_string(cap->issued), 1566 ceph_cap_string(cap->implemented), 1567 ceph_cap_string(revoking)); 1568 1569 if (cap == ci->i_auth_cap && 1570 (cap->issued & CEPH_CAP_FILE_WR)) { 1571 /* request larger max_size from MDS? */ 1572 if (ci->i_wanted_max_size > ci->i_max_size && 1573 ci->i_wanted_max_size > ci->i_requested_max_size) { 1574 dout("requesting new max_size\n"); 1575 goto ack; 1576 } 1577 1578 /* approaching file_max? */ 1579 if ((inode->i_size << 1) >= ci->i_max_size && 1580 (ci->i_reported_size << 1) < ci->i_max_size) { 1581 dout("i_size approaching max_size\n"); 1582 goto ack; 1583 } 1584 } 1585 /* flush anything dirty? */ 1586 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1587 ci->i_dirty_caps) { 1588 dout("flushing dirty caps\n"); 1589 goto ack; 1590 } 1591 1592 /* completed revocation? going down and there are no caps? */ 1593 if (revoking && (revoking & used) == 0) { 1594 dout("completed revocation of %s\n", 1595 ceph_cap_string(cap->implemented & ~cap->issued)); 1596 goto ack; 1597 } 1598 1599 /* want more caps from mds? */ 1600 if (want & ~(cap->mds_wanted | cap->issued)) 1601 goto ack; 1602 1603 /* things we might delay */ 1604 if ((cap->issued & ~retain) == 0 && 1605 cap->mds_wanted == want) 1606 continue; /* nope, all good */ 1607 1608 if (is_delayed) 1609 goto ack; 1610 1611 /* delay? */ 1612 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1613 time_before(jiffies, ci->i_hold_caps_max)) { 1614 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1615 ceph_cap_string(cap->issued), 1616 ceph_cap_string(cap->issued & retain), 1617 ceph_cap_string(cap->mds_wanted), 1618 ceph_cap_string(want)); 1619 delayed++; 1620 continue; 1621 } 1622 1623 ack: 1624 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1625 dout(" skipping %p I_NOFLUSH set\n", inode); 1626 continue; 1627 } 1628 1629 if (session && session != cap->session) { 1630 dout("oops, wrong session %p mutex\n", session); 1631 mutex_unlock(&session->s_mutex); 1632 session = NULL; 1633 } 1634 if (!session) { 1635 session = cap->session; 1636 if (mutex_trylock(&session->s_mutex) == 0) { 1637 dout("inverting session/ino locks on %p\n", 1638 session); 1639 spin_unlock(&inode->i_lock); 1640 if (took_snap_rwsem) { 1641 up_read(&mdsc->snap_rwsem); 1642 took_snap_rwsem = 0; 1643 } 1644 mutex_lock(&session->s_mutex); 1645 goto retry; 1646 } 1647 } 1648 /* take snap_rwsem after session mutex */ 1649 if (!took_snap_rwsem) { 1650 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1651 dout("inverting snap/in locks on %p\n", 1652 inode); 1653 spin_unlock(&inode->i_lock); 1654 down_read(&mdsc->snap_rwsem); 1655 took_snap_rwsem = 1; 1656 goto retry; 1657 } 1658 took_snap_rwsem = 1; 1659 } 1660 1661 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1662 flushing = __mark_caps_flushing(inode, session); 1663 else 1664 flushing = 0; 1665 1666 mds = cap->mds; /* remember mds, so we don't repeat */ 1667 sent++; 1668 1669 /* __send_cap drops i_lock */ 1670 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want, 1671 retain, flushing, NULL); 1672 goto retry; /* retake i_lock and restart our cap scan. */ 1673 } 1674 1675 /* 1676 * Reschedule delayed caps release if we delayed anything, 1677 * otherwise cancel. 1678 */ 1679 if (delayed && is_delayed) 1680 force_requeue = 1; /* __send_cap delayed release; requeue */ 1681 if (!delayed && !is_delayed) 1682 __cap_delay_cancel(mdsc, ci); 1683 else if (!is_delayed || force_requeue) 1684 __cap_delay_requeue(mdsc, ci); 1685 1686 spin_unlock(&inode->i_lock); 1687 1688 if (queue_invalidate) 1689 ceph_queue_invalidate(inode); 1690 1691 if (session) 1692 mutex_unlock(&session->s_mutex); 1693 if (took_snap_rwsem) 1694 up_read(&mdsc->snap_rwsem); 1695 } 1696 1697 /* 1698 * Try to flush dirty caps back to the auth mds. 1699 */ 1700 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1701 unsigned *flush_tid) 1702 { 1703 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1704 struct ceph_inode_info *ci = ceph_inode(inode); 1705 int unlock_session = session ? 0 : 1; 1706 int flushing = 0; 1707 1708 retry: 1709 spin_lock(&inode->i_lock); 1710 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1711 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1712 goto out; 1713 } 1714 if (ci->i_dirty_caps && ci->i_auth_cap) { 1715 struct ceph_cap *cap = ci->i_auth_cap; 1716 int used = __ceph_caps_used(ci); 1717 int want = __ceph_caps_wanted(ci); 1718 int delayed; 1719 1720 if (!session) { 1721 spin_unlock(&inode->i_lock); 1722 session = cap->session; 1723 mutex_lock(&session->s_mutex); 1724 goto retry; 1725 } 1726 BUG_ON(session != cap->session); 1727 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1728 goto out; 1729 1730 flushing = __mark_caps_flushing(inode, session); 1731 1732 /* __send_cap drops i_lock */ 1733 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1734 cap->issued | cap->implemented, flushing, 1735 flush_tid); 1736 if (!delayed) 1737 goto out_unlocked; 1738 1739 spin_lock(&inode->i_lock); 1740 __cap_delay_requeue(mdsc, ci); 1741 } 1742 out: 1743 spin_unlock(&inode->i_lock); 1744 out_unlocked: 1745 if (session && unlock_session) 1746 mutex_unlock(&session->s_mutex); 1747 return flushing; 1748 } 1749 1750 /* 1751 * Return true if we've flushed caps through the given flush_tid. 1752 */ 1753 static int caps_are_flushed(struct inode *inode, unsigned tid) 1754 { 1755 struct ceph_inode_info *ci = ceph_inode(inode); 1756 int i, ret = 1; 1757 1758 spin_lock(&inode->i_lock); 1759 for (i = 0; i < CEPH_CAP_BITS; i++) 1760 if ((ci->i_flushing_caps & (1 << i)) && 1761 ci->i_cap_flush_tid[i] <= tid) { 1762 /* still flushing this bit */ 1763 ret = 0; 1764 break; 1765 } 1766 spin_unlock(&inode->i_lock); 1767 return ret; 1768 } 1769 1770 /* 1771 * Wait on any unsafe replies for the given inode. First wait on the 1772 * newest request, and make that the upper bound. Then, if there are 1773 * more requests, keep waiting on the oldest as long as it is still older 1774 * than the original request. 1775 */ 1776 static void sync_write_wait(struct inode *inode) 1777 { 1778 struct ceph_inode_info *ci = ceph_inode(inode); 1779 struct list_head *head = &ci->i_unsafe_writes; 1780 struct ceph_osd_request *req; 1781 u64 last_tid; 1782 1783 spin_lock(&ci->i_unsafe_lock); 1784 if (list_empty(head)) 1785 goto out; 1786 1787 /* set upper bound as _last_ entry in chain */ 1788 req = list_entry(head->prev, struct ceph_osd_request, 1789 r_unsafe_item); 1790 last_tid = req->r_tid; 1791 1792 do { 1793 ceph_osdc_get_request(req); 1794 spin_unlock(&ci->i_unsafe_lock); 1795 dout("sync_write_wait on tid %llu (until %llu)\n", 1796 req->r_tid, last_tid); 1797 wait_for_completion(&req->r_safe_completion); 1798 spin_lock(&ci->i_unsafe_lock); 1799 ceph_osdc_put_request(req); 1800 1801 /* 1802 * from here on look at first entry in chain, since we 1803 * only want to wait for anything older than last_tid 1804 */ 1805 if (list_empty(head)) 1806 break; 1807 req = list_entry(head->next, struct ceph_osd_request, 1808 r_unsafe_item); 1809 } while (req->r_tid < last_tid); 1810 out: 1811 spin_unlock(&ci->i_unsafe_lock); 1812 } 1813 1814 int ceph_fsync(struct file *file, int datasync) 1815 { 1816 struct inode *inode = file->f_mapping->host; 1817 struct ceph_inode_info *ci = ceph_inode(inode); 1818 unsigned flush_tid; 1819 int ret; 1820 int dirty; 1821 1822 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1823 sync_write_wait(inode); 1824 1825 ret = filemap_write_and_wait(inode->i_mapping); 1826 if (ret < 0) 1827 return ret; 1828 1829 dirty = try_flush_caps(inode, NULL, &flush_tid); 1830 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1831 1832 /* 1833 * only wait on non-file metadata writeback (the mds 1834 * can recover size and mtime, so we don't need to 1835 * wait for that) 1836 */ 1837 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1838 dout("fsync waiting for flush_tid %u\n", flush_tid); 1839 ret = wait_event_interruptible(ci->i_cap_wq, 1840 caps_are_flushed(inode, flush_tid)); 1841 } 1842 1843 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1844 return ret; 1845 } 1846 1847 /* 1848 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1849 * queue inode for flush but don't do so immediately, because we can 1850 * get by with fewer MDS messages if we wait for data writeback to 1851 * complete first. 1852 */ 1853 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1854 { 1855 struct ceph_inode_info *ci = ceph_inode(inode); 1856 unsigned flush_tid; 1857 int err = 0; 1858 int dirty; 1859 int wait = wbc->sync_mode == WB_SYNC_ALL; 1860 1861 dout("write_inode %p wait=%d\n", inode, wait); 1862 if (wait) { 1863 dirty = try_flush_caps(inode, NULL, &flush_tid); 1864 if (dirty) 1865 err = wait_event_interruptible(ci->i_cap_wq, 1866 caps_are_flushed(inode, flush_tid)); 1867 } else { 1868 struct ceph_mds_client *mdsc = 1869 ceph_sb_to_client(inode->i_sb)->mdsc; 1870 1871 spin_lock(&inode->i_lock); 1872 if (__ceph_caps_dirty(ci)) 1873 __cap_delay_requeue_front(mdsc, ci); 1874 spin_unlock(&inode->i_lock); 1875 } 1876 return err; 1877 } 1878 1879 /* 1880 * After a recovering MDS goes active, we need to resend any caps 1881 * we were flushing. 1882 * 1883 * Caller holds session->s_mutex. 1884 */ 1885 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1886 struct ceph_mds_session *session) 1887 { 1888 struct ceph_cap_snap *capsnap; 1889 1890 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1891 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1892 flushing_item) { 1893 struct ceph_inode_info *ci = capsnap->ci; 1894 struct inode *inode = &ci->vfs_inode; 1895 struct ceph_cap *cap; 1896 1897 spin_lock(&inode->i_lock); 1898 cap = ci->i_auth_cap; 1899 if (cap && cap->session == session) { 1900 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1901 cap, capsnap); 1902 __ceph_flush_snaps(ci, &session, 1); 1903 } else { 1904 pr_err("%p auth cap %p not mds%d ???\n", inode, 1905 cap, session->s_mds); 1906 } 1907 spin_unlock(&inode->i_lock); 1908 } 1909 } 1910 1911 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1912 struct ceph_mds_session *session) 1913 { 1914 struct ceph_inode_info *ci; 1915 1916 kick_flushing_capsnaps(mdsc, session); 1917 1918 dout("kick_flushing_caps mds%d\n", session->s_mds); 1919 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1920 struct inode *inode = &ci->vfs_inode; 1921 struct ceph_cap *cap; 1922 int delayed = 0; 1923 1924 spin_lock(&inode->i_lock); 1925 cap = ci->i_auth_cap; 1926 if (cap && cap->session == session) { 1927 dout("kick_flushing_caps %p cap %p %s\n", inode, 1928 cap, ceph_cap_string(ci->i_flushing_caps)); 1929 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1930 __ceph_caps_used(ci), 1931 __ceph_caps_wanted(ci), 1932 cap->issued | cap->implemented, 1933 ci->i_flushing_caps, NULL); 1934 if (delayed) { 1935 spin_lock(&inode->i_lock); 1936 __cap_delay_requeue(mdsc, ci); 1937 spin_unlock(&inode->i_lock); 1938 } 1939 } else { 1940 pr_err("%p auth cap %p not mds%d ???\n", inode, 1941 cap, session->s_mds); 1942 spin_unlock(&inode->i_lock); 1943 } 1944 } 1945 } 1946 1947 static void kick_flushing_inode_caps(struct ceph_mds_client *mdsc, 1948 struct ceph_mds_session *session, 1949 struct inode *inode) 1950 { 1951 struct ceph_inode_info *ci = ceph_inode(inode); 1952 struct ceph_cap *cap; 1953 int delayed = 0; 1954 1955 spin_lock(&inode->i_lock); 1956 cap = ci->i_auth_cap; 1957 dout("kick_flushing_inode_caps %p flushing %s flush_seq %lld\n", inode, 1958 ceph_cap_string(ci->i_flushing_caps), ci->i_cap_flush_seq); 1959 __ceph_flush_snaps(ci, &session, 1); 1960 if (ci->i_flushing_caps) { 1961 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1962 __ceph_caps_used(ci), 1963 __ceph_caps_wanted(ci), 1964 cap->issued | cap->implemented, 1965 ci->i_flushing_caps, NULL); 1966 if (delayed) { 1967 spin_lock(&inode->i_lock); 1968 __cap_delay_requeue(mdsc, ci); 1969 spin_unlock(&inode->i_lock); 1970 } 1971 } else { 1972 spin_unlock(&inode->i_lock); 1973 } 1974 } 1975 1976 1977 /* 1978 * Take references to capabilities we hold, so that we don't release 1979 * them to the MDS prematurely. 1980 * 1981 * Protected by i_lock. 1982 */ 1983 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 1984 { 1985 if (got & CEPH_CAP_PIN) 1986 ci->i_pin_ref++; 1987 if (got & CEPH_CAP_FILE_RD) 1988 ci->i_rd_ref++; 1989 if (got & CEPH_CAP_FILE_CACHE) 1990 ci->i_rdcache_ref++; 1991 if (got & CEPH_CAP_FILE_WR) 1992 ci->i_wr_ref++; 1993 if (got & CEPH_CAP_FILE_BUFFER) { 1994 if (ci->i_wb_ref == 0) 1995 ihold(&ci->vfs_inode); 1996 ci->i_wb_ref++; 1997 dout("__take_cap_refs %p wb %d -> %d (?)\n", 1998 &ci->vfs_inode, ci->i_wb_ref-1, ci->i_wb_ref); 1999 } 2000 } 2001 2002 /* 2003 * Try to grab cap references. Specify those refs we @want, and the 2004 * minimal set we @need. Also include the larger offset we are writing 2005 * to (when applicable), and check against max_size here as well. 2006 * Note that caller is responsible for ensuring max_size increases are 2007 * requested from the MDS. 2008 */ 2009 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 2010 int *got, loff_t endoff, int *check_max, int *err) 2011 { 2012 struct inode *inode = &ci->vfs_inode; 2013 int ret = 0; 2014 int have, implemented; 2015 int file_wanted; 2016 2017 dout("get_cap_refs %p need %s want %s\n", inode, 2018 ceph_cap_string(need), ceph_cap_string(want)); 2019 spin_lock(&inode->i_lock); 2020 2021 /* make sure file is actually open */ 2022 file_wanted = __ceph_caps_file_wanted(ci); 2023 if ((file_wanted & need) == 0) { 2024 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 2025 ceph_cap_string(need), ceph_cap_string(file_wanted)); 2026 *err = -EBADF; 2027 ret = 1; 2028 goto out; 2029 } 2030 2031 if (need & CEPH_CAP_FILE_WR) { 2032 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2033 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2034 inode, endoff, ci->i_max_size); 2035 if (endoff > ci->i_wanted_max_size) { 2036 *check_max = 1; 2037 ret = 1; 2038 } 2039 goto out; 2040 } 2041 /* 2042 * If a sync write is in progress, we must wait, so that we 2043 * can get a final snapshot value for size+mtime. 2044 */ 2045 if (__ceph_have_pending_cap_snap(ci)) { 2046 dout("get_cap_refs %p cap_snap_pending\n", inode); 2047 goto out; 2048 } 2049 } 2050 have = __ceph_caps_issued(ci, &implemented); 2051 2052 /* 2053 * disallow writes while a truncate is pending 2054 */ 2055 if (ci->i_truncate_pending) 2056 have &= ~CEPH_CAP_FILE_WR; 2057 2058 if ((have & need) == need) { 2059 /* 2060 * Look at (implemented & ~have & not) so that we keep waiting 2061 * on transition from wanted -> needed caps. This is needed 2062 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2063 * going before a prior buffered writeback happens. 2064 */ 2065 int not = want & ~(have & need); 2066 int revoking = implemented & ~have; 2067 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2068 inode, ceph_cap_string(have), ceph_cap_string(not), 2069 ceph_cap_string(revoking)); 2070 if ((revoking & not) == 0) { 2071 *got = need | (have & want); 2072 __take_cap_refs(ci, *got); 2073 ret = 1; 2074 } 2075 } else { 2076 dout("get_cap_refs %p have %s needed %s\n", inode, 2077 ceph_cap_string(have), ceph_cap_string(need)); 2078 } 2079 out: 2080 spin_unlock(&inode->i_lock); 2081 dout("get_cap_refs %p ret %d got %s\n", inode, 2082 ret, ceph_cap_string(*got)); 2083 return ret; 2084 } 2085 2086 /* 2087 * Check the offset we are writing up to against our current 2088 * max_size. If necessary, tell the MDS we want to write to 2089 * a larger offset. 2090 */ 2091 static void check_max_size(struct inode *inode, loff_t endoff) 2092 { 2093 struct ceph_inode_info *ci = ceph_inode(inode); 2094 int check = 0; 2095 2096 /* do we need to explicitly request a larger max_size? */ 2097 spin_lock(&inode->i_lock); 2098 if ((endoff >= ci->i_max_size || 2099 endoff > (inode->i_size << 1)) && 2100 endoff > ci->i_wanted_max_size) { 2101 dout("write %p at large endoff %llu, req max_size\n", 2102 inode, endoff); 2103 ci->i_wanted_max_size = endoff; 2104 check = 1; 2105 } 2106 spin_unlock(&inode->i_lock); 2107 if (check) 2108 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2109 } 2110 2111 /* 2112 * Wait for caps, and take cap references. If we can't get a WR cap 2113 * due to a small max_size, make sure we check_max_size (and possibly 2114 * ask the mds) so we don't get hung up indefinitely. 2115 */ 2116 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2117 loff_t endoff) 2118 { 2119 int check_max, ret, err; 2120 2121 retry: 2122 if (endoff > 0) 2123 check_max_size(&ci->vfs_inode, endoff); 2124 check_max = 0; 2125 err = 0; 2126 ret = wait_event_interruptible(ci->i_cap_wq, 2127 try_get_cap_refs(ci, need, want, 2128 got, endoff, 2129 &check_max, &err)); 2130 if (err) 2131 ret = err; 2132 if (check_max) 2133 goto retry; 2134 return ret; 2135 } 2136 2137 /* 2138 * Take cap refs. Caller must already know we hold at least one ref 2139 * on the caps in question or we don't know this is safe. 2140 */ 2141 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2142 { 2143 spin_lock(&ci->vfs_inode.i_lock); 2144 __take_cap_refs(ci, caps); 2145 spin_unlock(&ci->vfs_inode.i_lock); 2146 } 2147 2148 /* 2149 * Release cap refs. 2150 * 2151 * If we released the last ref on any given cap, call ceph_check_caps 2152 * to release (or schedule a release). 2153 * 2154 * If we are releasing a WR cap (from a sync write), finalize any affected 2155 * cap_snap, and wake up any waiters. 2156 */ 2157 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2158 { 2159 struct inode *inode = &ci->vfs_inode; 2160 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2161 struct ceph_cap_snap *capsnap; 2162 2163 spin_lock(&inode->i_lock); 2164 if (had & CEPH_CAP_PIN) 2165 --ci->i_pin_ref; 2166 if (had & CEPH_CAP_FILE_RD) 2167 if (--ci->i_rd_ref == 0) 2168 last++; 2169 if (had & CEPH_CAP_FILE_CACHE) 2170 if (--ci->i_rdcache_ref == 0) 2171 last++; 2172 if (had & CEPH_CAP_FILE_BUFFER) { 2173 if (--ci->i_wb_ref == 0) { 2174 last++; 2175 put++; 2176 } 2177 dout("put_cap_refs %p wb %d -> %d (?)\n", 2178 inode, ci->i_wb_ref+1, ci->i_wb_ref); 2179 } 2180 if (had & CEPH_CAP_FILE_WR) 2181 if (--ci->i_wr_ref == 0) { 2182 last++; 2183 if (!list_empty(&ci->i_cap_snaps)) { 2184 capsnap = list_first_entry(&ci->i_cap_snaps, 2185 struct ceph_cap_snap, 2186 ci_item); 2187 if (capsnap->writing) { 2188 capsnap->writing = 0; 2189 flushsnaps = 2190 __ceph_finish_cap_snap(ci, 2191 capsnap); 2192 wake = 1; 2193 } 2194 } 2195 } 2196 spin_unlock(&inode->i_lock); 2197 2198 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2199 last ? " last" : "", put ? " put" : ""); 2200 2201 if (last && !flushsnaps) 2202 ceph_check_caps(ci, 0, NULL); 2203 else if (flushsnaps) 2204 ceph_flush_snaps(ci); 2205 if (wake) 2206 wake_up_all(&ci->i_cap_wq); 2207 if (put) 2208 iput(inode); 2209 } 2210 2211 /* 2212 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2213 * context. Adjust per-snap dirty page accounting as appropriate. 2214 * Once all dirty data for a cap_snap is flushed, flush snapped file 2215 * metadata back to the MDS. If we dropped the last ref, call 2216 * ceph_check_caps. 2217 */ 2218 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2219 struct ceph_snap_context *snapc) 2220 { 2221 struct inode *inode = &ci->vfs_inode; 2222 int last = 0; 2223 int complete_capsnap = 0; 2224 int drop_capsnap = 0; 2225 int found = 0; 2226 struct ceph_cap_snap *capsnap = NULL; 2227 2228 spin_lock(&inode->i_lock); 2229 ci->i_wrbuffer_ref -= nr; 2230 last = !ci->i_wrbuffer_ref; 2231 2232 if (ci->i_head_snapc == snapc) { 2233 ci->i_wrbuffer_ref_head -= nr; 2234 if (ci->i_wrbuffer_ref_head == 0 && 2235 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { 2236 BUG_ON(!ci->i_head_snapc); 2237 ceph_put_snap_context(ci->i_head_snapc); 2238 ci->i_head_snapc = NULL; 2239 } 2240 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2241 inode, 2242 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2243 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2244 last ? " LAST" : ""); 2245 } else { 2246 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2247 if (capsnap->context == snapc) { 2248 found = 1; 2249 break; 2250 } 2251 } 2252 BUG_ON(!found); 2253 capsnap->dirty_pages -= nr; 2254 if (capsnap->dirty_pages == 0) { 2255 complete_capsnap = 1; 2256 if (capsnap->dirty == 0) 2257 /* cap writeback completed before we created 2258 * the cap_snap; no FLUSHSNAP is needed */ 2259 drop_capsnap = 1; 2260 } 2261 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2262 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2263 inode, capsnap, capsnap->context->seq, 2264 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2265 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2266 last ? " (wrbuffer last)" : "", 2267 complete_capsnap ? " (complete capsnap)" : "", 2268 drop_capsnap ? " (drop capsnap)" : ""); 2269 if (drop_capsnap) { 2270 ceph_put_snap_context(capsnap->context); 2271 list_del(&capsnap->ci_item); 2272 list_del(&capsnap->flushing_item); 2273 ceph_put_cap_snap(capsnap); 2274 } 2275 } 2276 2277 spin_unlock(&inode->i_lock); 2278 2279 if (last) { 2280 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2281 iput(inode); 2282 } else if (complete_capsnap) { 2283 ceph_flush_snaps(ci); 2284 wake_up_all(&ci->i_cap_wq); 2285 } 2286 if (drop_capsnap) 2287 iput(inode); 2288 } 2289 2290 /* 2291 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2292 * actually be a revocation if it specifies a smaller cap set.) 2293 * 2294 * caller holds s_mutex and i_lock, we drop both. 2295 * 2296 * return value: 2297 * 0 - ok 2298 * 1 - check_caps on auth cap only (writeback) 2299 * 2 - check_caps (ack revoke) 2300 */ 2301 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2302 struct ceph_mds_session *session, 2303 struct ceph_cap *cap, 2304 struct ceph_buffer *xattr_buf) 2305 __releases(inode->i_lock) 2306 { 2307 struct ceph_inode_info *ci = ceph_inode(inode); 2308 int mds = session->s_mds; 2309 int seq = le32_to_cpu(grant->seq); 2310 int newcaps = le32_to_cpu(grant->caps); 2311 int issued, implemented, used, wanted, dirty; 2312 u64 size = le64_to_cpu(grant->size); 2313 u64 max_size = le64_to_cpu(grant->max_size); 2314 struct timespec mtime, atime, ctime; 2315 int check_caps = 0; 2316 int wake = 0; 2317 int writeback = 0; 2318 int revoked_rdcache = 0; 2319 int queue_invalidate = 0; 2320 2321 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n", 2322 inode, cap, mds, seq, ceph_cap_string(newcaps)); 2323 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2324 inode->i_size); 2325 2326 /* 2327 * If CACHE is being revoked, and we have no dirty buffers, 2328 * try to invalidate (once). (If there are dirty buffers, we 2329 * will invalidate _after_ writeback.) 2330 */ 2331 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2332 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2333 !ci->i_wrbuffer_ref) { 2334 if (try_nonblocking_invalidate(inode) == 0) { 2335 revoked_rdcache = 1; 2336 } else { 2337 /* there were locked pages.. invalidate later 2338 in a separate thread. */ 2339 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2340 queue_invalidate = 1; 2341 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2342 } 2343 } 2344 } 2345 2346 /* side effects now are allowed */ 2347 2348 issued = __ceph_caps_issued(ci, &implemented); 2349 issued |= implemented | __ceph_caps_dirty(ci); 2350 2351 cap->cap_gen = session->s_cap_gen; 2352 2353 __check_cap_issue(ci, cap, newcaps); 2354 2355 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2356 inode->i_mode = le32_to_cpu(grant->mode); 2357 inode->i_uid = le32_to_cpu(grant->uid); 2358 inode->i_gid = le32_to_cpu(grant->gid); 2359 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2360 inode->i_uid, inode->i_gid); 2361 } 2362 2363 if ((issued & CEPH_CAP_LINK_EXCL) == 0) 2364 inode->i_nlink = le32_to_cpu(grant->nlink); 2365 2366 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2367 int len = le32_to_cpu(grant->xattr_len); 2368 u64 version = le64_to_cpu(grant->xattr_version); 2369 2370 if (version > ci->i_xattrs.version) { 2371 dout(" got new xattrs v%llu on %p len %d\n", 2372 version, inode, len); 2373 if (ci->i_xattrs.blob) 2374 ceph_buffer_put(ci->i_xattrs.blob); 2375 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2376 ci->i_xattrs.version = version; 2377 } 2378 } 2379 2380 /* size/ctime/mtime/atime? */ 2381 ceph_fill_file_size(inode, issued, 2382 le32_to_cpu(grant->truncate_seq), 2383 le64_to_cpu(grant->truncate_size), size); 2384 ceph_decode_timespec(&mtime, &grant->mtime); 2385 ceph_decode_timespec(&atime, &grant->atime); 2386 ceph_decode_timespec(&ctime, &grant->ctime); 2387 ceph_fill_file_time(inode, issued, 2388 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2389 &atime); 2390 2391 /* max size increase? */ 2392 if (max_size != ci->i_max_size) { 2393 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2394 ci->i_max_size = max_size; 2395 if (max_size >= ci->i_wanted_max_size) { 2396 ci->i_wanted_max_size = 0; /* reset */ 2397 ci->i_requested_max_size = 0; 2398 } 2399 wake = 1; 2400 } 2401 2402 /* check cap bits */ 2403 wanted = __ceph_caps_wanted(ci); 2404 used = __ceph_caps_used(ci); 2405 dirty = __ceph_caps_dirty(ci); 2406 dout(" my wanted = %s, used = %s, dirty %s\n", 2407 ceph_cap_string(wanted), 2408 ceph_cap_string(used), 2409 ceph_cap_string(dirty)); 2410 if (wanted != le32_to_cpu(grant->wanted)) { 2411 dout("mds wanted %s -> %s\n", 2412 ceph_cap_string(le32_to_cpu(grant->wanted)), 2413 ceph_cap_string(wanted)); 2414 grant->wanted = cpu_to_le32(wanted); 2415 } 2416 2417 cap->seq = seq; 2418 2419 /* file layout may have changed */ 2420 ci->i_layout = grant->layout; 2421 2422 /* revocation, grant, or no-op? */ 2423 if (cap->issued & ~newcaps) { 2424 int revoking = cap->issued & ~newcaps; 2425 2426 dout("revocation: %s -> %s (revoking %s)\n", 2427 ceph_cap_string(cap->issued), 2428 ceph_cap_string(newcaps), 2429 ceph_cap_string(revoking)); 2430 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2431 writeback = 1; /* initiate writeback; will delay ack */ 2432 else if (revoking == CEPH_CAP_FILE_CACHE && 2433 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2434 queue_invalidate) 2435 ; /* do nothing yet, invalidation will be queued */ 2436 else if (cap == ci->i_auth_cap) 2437 check_caps = 1; /* check auth cap only */ 2438 else 2439 check_caps = 2; /* check all caps */ 2440 cap->issued = newcaps; 2441 cap->implemented |= newcaps; 2442 } else if (cap->issued == newcaps) { 2443 dout("caps unchanged: %s -> %s\n", 2444 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2445 } else { 2446 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2447 ceph_cap_string(newcaps)); 2448 cap->issued = newcaps; 2449 cap->implemented |= newcaps; /* add bits only, to 2450 * avoid stepping on a 2451 * pending revocation */ 2452 wake = 1; 2453 } 2454 BUG_ON(cap->issued & ~cap->implemented); 2455 2456 spin_unlock(&inode->i_lock); 2457 if (writeback) 2458 /* 2459 * queue inode for writeback: we can't actually call 2460 * filemap_write_and_wait, etc. from message handler 2461 * context. 2462 */ 2463 ceph_queue_writeback(inode); 2464 if (queue_invalidate) 2465 ceph_queue_invalidate(inode); 2466 if (wake) 2467 wake_up_all(&ci->i_cap_wq); 2468 2469 if (check_caps == 1) 2470 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2471 session); 2472 else if (check_caps == 2) 2473 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2474 else 2475 mutex_unlock(&session->s_mutex); 2476 } 2477 2478 /* 2479 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2480 * MDS has been safely committed. 2481 */ 2482 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2483 struct ceph_mds_caps *m, 2484 struct ceph_mds_session *session, 2485 struct ceph_cap *cap) 2486 __releases(inode->i_lock) 2487 { 2488 struct ceph_inode_info *ci = ceph_inode(inode); 2489 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 2490 unsigned seq = le32_to_cpu(m->seq); 2491 int dirty = le32_to_cpu(m->dirty); 2492 int cleaned = 0; 2493 int drop = 0; 2494 int i; 2495 2496 for (i = 0; i < CEPH_CAP_BITS; i++) 2497 if ((dirty & (1 << i)) && 2498 flush_tid == ci->i_cap_flush_tid[i]) 2499 cleaned |= 1 << i; 2500 2501 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2502 " flushing %s -> %s\n", 2503 inode, session->s_mds, seq, ceph_cap_string(dirty), 2504 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2505 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2506 2507 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2508 goto out; 2509 2510 ci->i_flushing_caps &= ~cleaned; 2511 2512 spin_lock(&mdsc->cap_dirty_lock); 2513 if (ci->i_flushing_caps == 0) { 2514 list_del_init(&ci->i_flushing_item); 2515 if (!list_empty(&session->s_cap_flushing)) 2516 dout(" mds%d still flushing cap on %p\n", 2517 session->s_mds, 2518 &list_entry(session->s_cap_flushing.next, 2519 struct ceph_inode_info, 2520 i_flushing_item)->vfs_inode); 2521 mdsc->num_cap_flushing--; 2522 wake_up_all(&mdsc->cap_flushing_wq); 2523 dout(" inode %p now !flushing\n", inode); 2524 2525 if (ci->i_dirty_caps == 0) { 2526 dout(" inode %p now clean\n", inode); 2527 BUG_ON(!list_empty(&ci->i_dirty_item)); 2528 drop = 1; 2529 if (ci->i_wrbuffer_ref_head == 0) { 2530 BUG_ON(!ci->i_head_snapc); 2531 ceph_put_snap_context(ci->i_head_snapc); 2532 ci->i_head_snapc = NULL; 2533 } 2534 } else { 2535 BUG_ON(list_empty(&ci->i_dirty_item)); 2536 } 2537 } 2538 spin_unlock(&mdsc->cap_dirty_lock); 2539 wake_up_all(&ci->i_cap_wq); 2540 2541 out: 2542 spin_unlock(&inode->i_lock); 2543 if (drop) 2544 iput(inode); 2545 } 2546 2547 /* 2548 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2549 * throw away our cap_snap. 2550 * 2551 * Caller hold s_mutex. 2552 */ 2553 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2554 struct ceph_mds_caps *m, 2555 struct ceph_mds_session *session) 2556 { 2557 struct ceph_inode_info *ci = ceph_inode(inode); 2558 u64 follows = le64_to_cpu(m->snap_follows); 2559 struct ceph_cap_snap *capsnap; 2560 int drop = 0; 2561 2562 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2563 inode, ci, session->s_mds, follows); 2564 2565 spin_lock(&inode->i_lock); 2566 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2567 if (capsnap->follows == follows) { 2568 if (capsnap->flush_tid != flush_tid) { 2569 dout(" cap_snap %p follows %lld tid %lld !=" 2570 " %lld\n", capsnap, follows, 2571 flush_tid, capsnap->flush_tid); 2572 break; 2573 } 2574 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2575 dout(" removing %p cap_snap %p follows %lld\n", 2576 inode, capsnap, follows); 2577 ceph_put_snap_context(capsnap->context); 2578 list_del(&capsnap->ci_item); 2579 list_del(&capsnap->flushing_item); 2580 ceph_put_cap_snap(capsnap); 2581 drop = 1; 2582 break; 2583 } else { 2584 dout(" skipping cap_snap %p follows %lld\n", 2585 capsnap, capsnap->follows); 2586 } 2587 } 2588 spin_unlock(&inode->i_lock); 2589 if (drop) 2590 iput(inode); 2591 } 2592 2593 /* 2594 * Handle TRUNC from MDS, indicating file truncation. 2595 * 2596 * caller hold s_mutex. 2597 */ 2598 static void handle_cap_trunc(struct inode *inode, 2599 struct ceph_mds_caps *trunc, 2600 struct ceph_mds_session *session) 2601 __releases(inode->i_lock) 2602 { 2603 struct ceph_inode_info *ci = ceph_inode(inode); 2604 int mds = session->s_mds; 2605 int seq = le32_to_cpu(trunc->seq); 2606 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2607 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2608 u64 size = le64_to_cpu(trunc->size); 2609 int implemented = 0; 2610 int dirty = __ceph_caps_dirty(ci); 2611 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2612 int queue_trunc = 0; 2613 2614 issued |= implemented | dirty; 2615 2616 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2617 inode, mds, seq, truncate_size, truncate_seq); 2618 queue_trunc = ceph_fill_file_size(inode, issued, 2619 truncate_seq, truncate_size, size); 2620 spin_unlock(&inode->i_lock); 2621 2622 if (queue_trunc) 2623 ceph_queue_vmtruncate(inode); 2624 } 2625 2626 /* 2627 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2628 * different one. If we are the most recent migration we've seen (as 2629 * indicated by mseq), make note of the migrating cap bits for the 2630 * duration (until we see the corresponding IMPORT). 2631 * 2632 * caller holds s_mutex 2633 */ 2634 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2635 struct ceph_mds_session *session, 2636 int *open_target_sessions) 2637 { 2638 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 2639 struct ceph_inode_info *ci = ceph_inode(inode); 2640 int mds = session->s_mds; 2641 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2642 struct ceph_cap *cap = NULL, *t; 2643 struct rb_node *p; 2644 int remember = 1; 2645 2646 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2647 inode, ci, mds, mseq); 2648 2649 spin_lock(&inode->i_lock); 2650 2651 /* make sure we haven't seen a higher mseq */ 2652 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2653 t = rb_entry(p, struct ceph_cap, ci_node); 2654 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2655 dout(" higher mseq on cap from mds%d\n", 2656 t->session->s_mds); 2657 remember = 0; 2658 } 2659 if (t->session->s_mds == mds) 2660 cap = t; 2661 } 2662 2663 if (cap) { 2664 if (remember) { 2665 /* make note */ 2666 ci->i_cap_exporting_mds = mds; 2667 ci->i_cap_exporting_mseq = mseq; 2668 ci->i_cap_exporting_issued = cap->issued; 2669 2670 /* 2671 * make sure we have open sessions with all possible 2672 * export targets, so that we get the matching IMPORT 2673 */ 2674 *open_target_sessions = 1; 2675 2676 /* 2677 * we can't flush dirty caps that we've seen the 2678 * EXPORT but no IMPORT for 2679 */ 2680 spin_lock(&mdsc->cap_dirty_lock); 2681 if (!list_empty(&ci->i_dirty_item)) { 2682 dout(" moving %p to cap_dirty_migrating\n", 2683 inode); 2684 list_move(&ci->i_dirty_item, 2685 &mdsc->cap_dirty_migrating); 2686 } 2687 spin_unlock(&mdsc->cap_dirty_lock); 2688 } 2689 __ceph_remove_cap(cap); 2690 } 2691 /* else, we already released it */ 2692 2693 spin_unlock(&inode->i_lock); 2694 } 2695 2696 /* 2697 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2698 * clean them up. 2699 * 2700 * caller holds s_mutex. 2701 */ 2702 static void handle_cap_import(struct ceph_mds_client *mdsc, 2703 struct inode *inode, struct ceph_mds_caps *im, 2704 struct ceph_mds_session *session, 2705 void *snaptrace, int snaptrace_len) 2706 { 2707 struct ceph_inode_info *ci = ceph_inode(inode); 2708 int mds = session->s_mds; 2709 unsigned issued = le32_to_cpu(im->caps); 2710 unsigned wanted = le32_to_cpu(im->wanted); 2711 unsigned seq = le32_to_cpu(im->seq); 2712 unsigned mseq = le32_to_cpu(im->migrate_seq); 2713 u64 realmino = le64_to_cpu(im->realm); 2714 u64 cap_id = le64_to_cpu(im->cap_id); 2715 2716 if (ci->i_cap_exporting_mds >= 0 && 2717 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2718 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2719 " - cleared exporting from mds%d\n", 2720 inode, ci, mds, mseq, 2721 ci->i_cap_exporting_mds); 2722 ci->i_cap_exporting_issued = 0; 2723 ci->i_cap_exporting_mseq = 0; 2724 ci->i_cap_exporting_mds = -1; 2725 2726 spin_lock(&mdsc->cap_dirty_lock); 2727 if (!list_empty(&ci->i_dirty_item)) { 2728 dout(" moving %p back to cap_dirty\n", inode); 2729 list_move(&ci->i_dirty_item, &mdsc->cap_dirty); 2730 } 2731 spin_unlock(&mdsc->cap_dirty_lock); 2732 } else { 2733 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2734 inode, ci, mds, mseq); 2735 } 2736 2737 down_write(&mdsc->snap_rwsem); 2738 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2739 false); 2740 downgrade_write(&mdsc->snap_rwsem); 2741 ceph_add_cap(inode, session, cap_id, -1, 2742 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2743 NULL /* no caps context */); 2744 kick_flushing_inode_caps(mdsc, session, inode); 2745 up_read(&mdsc->snap_rwsem); 2746 2747 /* make sure we re-request max_size, if necessary */ 2748 spin_lock(&inode->i_lock); 2749 ci->i_requested_max_size = 0; 2750 spin_unlock(&inode->i_lock); 2751 } 2752 2753 /* 2754 * Handle a caps message from the MDS. 2755 * 2756 * Identify the appropriate session, inode, and call the right handler 2757 * based on the cap op. 2758 */ 2759 void ceph_handle_caps(struct ceph_mds_session *session, 2760 struct ceph_msg *msg) 2761 { 2762 struct ceph_mds_client *mdsc = session->s_mdsc; 2763 struct super_block *sb = mdsc->fsc->sb; 2764 struct inode *inode; 2765 struct ceph_cap *cap; 2766 struct ceph_mds_caps *h; 2767 int mds = session->s_mds; 2768 int op; 2769 u32 seq, mseq; 2770 struct ceph_vino vino; 2771 u64 cap_id; 2772 u64 size, max_size; 2773 u64 tid; 2774 void *snaptrace; 2775 size_t snaptrace_len; 2776 void *flock; 2777 u32 flock_len; 2778 int open_target_sessions = 0; 2779 2780 dout("handle_caps from mds%d\n", mds); 2781 2782 /* decode */ 2783 tid = le64_to_cpu(msg->hdr.tid); 2784 if (msg->front.iov_len < sizeof(*h)) 2785 goto bad; 2786 h = msg->front.iov_base; 2787 op = le32_to_cpu(h->op); 2788 vino.ino = le64_to_cpu(h->ino); 2789 vino.snap = CEPH_NOSNAP; 2790 cap_id = le64_to_cpu(h->cap_id); 2791 seq = le32_to_cpu(h->seq); 2792 mseq = le32_to_cpu(h->migrate_seq); 2793 size = le64_to_cpu(h->size); 2794 max_size = le64_to_cpu(h->max_size); 2795 2796 snaptrace = h + 1; 2797 snaptrace_len = le32_to_cpu(h->snap_trace_len); 2798 2799 if (le16_to_cpu(msg->hdr.version) >= 2) { 2800 void *p, *end; 2801 2802 p = snaptrace + snaptrace_len; 2803 end = msg->front.iov_base + msg->front.iov_len; 2804 ceph_decode_32_safe(&p, end, flock_len, bad); 2805 flock = p; 2806 } else { 2807 flock = NULL; 2808 flock_len = 0; 2809 } 2810 2811 mutex_lock(&session->s_mutex); 2812 session->s_seq++; 2813 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2814 (unsigned)seq); 2815 2816 /* lookup ino */ 2817 inode = ceph_find_inode(sb, vino); 2818 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2819 vino.snap, inode); 2820 if (!inode) { 2821 dout(" i don't have ino %llx\n", vino.ino); 2822 2823 if (op == CEPH_CAP_OP_IMPORT) 2824 __queue_cap_release(session, vino.ino, cap_id, 2825 mseq, seq); 2826 goto flush_cap_releases; 2827 } 2828 2829 /* these will work even if we don't have a cap yet */ 2830 switch (op) { 2831 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2832 handle_cap_flushsnap_ack(inode, tid, h, session); 2833 goto done; 2834 2835 case CEPH_CAP_OP_EXPORT: 2836 handle_cap_export(inode, h, session, &open_target_sessions); 2837 goto done; 2838 2839 case CEPH_CAP_OP_IMPORT: 2840 handle_cap_import(mdsc, inode, h, session, 2841 snaptrace, snaptrace_len); 2842 ceph_check_caps(ceph_inode(inode), 0, session); 2843 goto done_unlocked; 2844 } 2845 2846 /* the rest require a cap */ 2847 spin_lock(&inode->i_lock); 2848 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2849 if (!cap) { 2850 dout(" no cap on %p ino %llx.%llx from mds%d\n", 2851 inode, ceph_ino(inode), ceph_snap(inode), mds); 2852 spin_unlock(&inode->i_lock); 2853 goto flush_cap_releases; 2854 } 2855 2856 /* note that each of these drops i_lock for us */ 2857 switch (op) { 2858 case CEPH_CAP_OP_REVOKE: 2859 case CEPH_CAP_OP_GRANT: 2860 handle_cap_grant(inode, h, session, cap, msg->middle); 2861 goto done_unlocked; 2862 2863 case CEPH_CAP_OP_FLUSH_ACK: 2864 handle_cap_flush_ack(inode, tid, h, session, cap); 2865 break; 2866 2867 case CEPH_CAP_OP_TRUNC: 2868 handle_cap_trunc(inode, h, session); 2869 break; 2870 2871 default: 2872 spin_unlock(&inode->i_lock); 2873 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2874 ceph_cap_op_name(op)); 2875 } 2876 2877 goto done; 2878 2879 flush_cap_releases: 2880 /* 2881 * send any full release message to try to move things 2882 * along for the mds (who clearly thinks we still have this 2883 * cap). 2884 */ 2885 ceph_add_cap_releases(mdsc, session); 2886 ceph_send_cap_releases(mdsc, session); 2887 2888 done: 2889 mutex_unlock(&session->s_mutex); 2890 done_unlocked: 2891 if (inode) 2892 iput(inode); 2893 if (open_target_sessions) 2894 ceph_mdsc_open_export_target_sessions(mdsc, session); 2895 return; 2896 2897 bad: 2898 pr_err("ceph_handle_caps: corrupt message\n"); 2899 ceph_msg_dump(msg); 2900 return; 2901 } 2902 2903 /* 2904 * Delayed work handler to process end of delayed cap release LRU list. 2905 */ 2906 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 2907 { 2908 struct ceph_inode_info *ci; 2909 int flags = CHECK_CAPS_NODELAY; 2910 2911 dout("check_delayed_caps\n"); 2912 while (1) { 2913 spin_lock(&mdsc->cap_delay_lock); 2914 if (list_empty(&mdsc->cap_delay_list)) 2915 break; 2916 ci = list_first_entry(&mdsc->cap_delay_list, 2917 struct ceph_inode_info, 2918 i_cap_delay_list); 2919 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 2920 time_before(jiffies, ci->i_hold_caps_max)) 2921 break; 2922 list_del_init(&ci->i_cap_delay_list); 2923 spin_unlock(&mdsc->cap_delay_lock); 2924 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 2925 ceph_check_caps(ci, flags, NULL); 2926 } 2927 spin_unlock(&mdsc->cap_delay_lock); 2928 } 2929 2930 /* 2931 * Flush all dirty caps to the mds 2932 */ 2933 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 2934 { 2935 struct ceph_inode_info *ci; 2936 struct inode *inode; 2937 2938 dout("flush_dirty_caps\n"); 2939 spin_lock(&mdsc->cap_dirty_lock); 2940 while (!list_empty(&mdsc->cap_dirty)) { 2941 ci = list_first_entry(&mdsc->cap_dirty, struct ceph_inode_info, 2942 i_dirty_item); 2943 inode = igrab(&ci->vfs_inode); 2944 dout("flush_dirty_caps %p\n", inode); 2945 spin_unlock(&mdsc->cap_dirty_lock); 2946 if (inode) { 2947 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, 2948 NULL); 2949 iput(inode); 2950 } 2951 spin_lock(&mdsc->cap_dirty_lock); 2952 } 2953 spin_unlock(&mdsc->cap_dirty_lock); 2954 dout("flush_dirty_caps done\n"); 2955 } 2956 2957 /* 2958 * Drop open file reference. If we were the last open file, 2959 * we may need to release capabilities to the MDS (or schedule 2960 * their delayed release). 2961 */ 2962 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 2963 { 2964 struct inode *inode = &ci->vfs_inode; 2965 int last = 0; 2966 2967 spin_lock(&inode->i_lock); 2968 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 2969 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 2970 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 2971 if (--ci->i_nr_by_mode[fmode] == 0) 2972 last++; 2973 spin_unlock(&inode->i_lock); 2974 2975 if (last && ci->i_vino.snap == CEPH_NOSNAP) 2976 ceph_check_caps(ci, 0, NULL); 2977 } 2978 2979 /* 2980 * Helpers for embedding cap and dentry lease releases into mds 2981 * requests. 2982 * 2983 * @force is used by dentry_release (below) to force inclusion of a 2984 * record for the directory inode, even when there aren't any caps to 2985 * drop. 2986 */ 2987 int ceph_encode_inode_release(void **p, struct inode *inode, 2988 int mds, int drop, int unless, int force) 2989 { 2990 struct ceph_inode_info *ci = ceph_inode(inode); 2991 struct ceph_cap *cap; 2992 struct ceph_mds_request_release *rel = *p; 2993 int used, dirty; 2994 int ret = 0; 2995 2996 spin_lock(&inode->i_lock); 2997 used = __ceph_caps_used(ci); 2998 dirty = __ceph_caps_dirty(ci); 2999 3000 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 3001 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 3002 ceph_cap_string(unless)); 3003 3004 /* only drop unused, clean caps */ 3005 drop &= ~(used | dirty); 3006 3007 cap = __get_cap_for_mds(ci, mds); 3008 if (cap && __cap_is_valid(cap)) { 3009 if (force || 3010 ((cap->issued & drop) && 3011 (cap->issued & unless) == 0)) { 3012 if ((cap->issued & drop) && 3013 (cap->issued & unless) == 0) { 3014 dout("encode_inode_release %p cap %p %s -> " 3015 "%s\n", inode, cap, 3016 ceph_cap_string(cap->issued), 3017 ceph_cap_string(cap->issued & ~drop)); 3018 cap->issued &= ~drop; 3019 cap->implemented &= ~drop; 3020 if (ci->i_ceph_flags & CEPH_I_NODELAY) { 3021 int wanted = __ceph_caps_wanted(ci); 3022 dout(" wanted %s -> %s (act %s)\n", 3023 ceph_cap_string(cap->mds_wanted), 3024 ceph_cap_string(cap->mds_wanted & 3025 ~wanted), 3026 ceph_cap_string(wanted)); 3027 cap->mds_wanted &= wanted; 3028 } 3029 } else { 3030 dout("encode_inode_release %p cap %p %s" 3031 " (force)\n", inode, cap, 3032 ceph_cap_string(cap->issued)); 3033 } 3034 3035 rel->ino = cpu_to_le64(ceph_ino(inode)); 3036 rel->cap_id = cpu_to_le64(cap->cap_id); 3037 rel->seq = cpu_to_le32(cap->seq); 3038 rel->issue_seq = cpu_to_le32(cap->issue_seq), 3039 rel->mseq = cpu_to_le32(cap->mseq); 3040 rel->caps = cpu_to_le32(cap->issued); 3041 rel->wanted = cpu_to_le32(cap->mds_wanted); 3042 rel->dname_len = 0; 3043 rel->dname_seq = 0; 3044 *p += sizeof(*rel); 3045 ret = 1; 3046 } else { 3047 dout("encode_inode_release %p cap %p %s\n", 3048 inode, cap, ceph_cap_string(cap->issued)); 3049 } 3050 } 3051 spin_unlock(&inode->i_lock); 3052 return ret; 3053 } 3054 3055 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3056 int mds, int drop, int unless) 3057 { 3058 struct inode *dir = dentry->d_parent->d_inode; 3059 struct ceph_mds_request_release *rel = *p; 3060 struct ceph_dentry_info *di = ceph_dentry(dentry); 3061 int force = 0; 3062 int ret; 3063 3064 /* 3065 * force an record for the directory caps if we have a dentry lease. 3066 * this is racy (can't take i_lock and d_lock together), but it 3067 * doesn't have to be perfect; the mds will revoke anything we don't 3068 * release. 3069 */ 3070 spin_lock(&dentry->d_lock); 3071 if (di->lease_session && di->lease_session->s_mds == mds) 3072 force = 1; 3073 spin_unlock(&dentry->d_lock); 3074 3075 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3076 3077 spin_lock(&dentry->d_lock); 3078 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3079 dout("encode_dentry_release %p mds%d seq %d\n", 3080 dentry, mds, (int)di->lease_seq); 3081 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3082 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3083 *p += dentry->d_name.len; 3084 rel->dname_seq = cpu_to_le32(di->lease_seq); 3085 __ceph_mdsc_drop_dentry_lease(dentry); 3086 } 3087 spin_unlock(&dentry->d_lock); 3088 return ret; 3089 } 3090