1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/fs.h> 4 #include <linux/kernel.h> 5 #include <linux/sched.h> 6 #include <linux/slab.h> 7 #include <linux/vmalloc.h> 8 #include <linux/wait.h> 9 #include <linux/writeback.h> 10 11 #include "super.h" 12 #include "mds_client.h" 13 #include <linux/ceph/decode.h> 14 #include <linux/ceph/messenger.h> 15 16 /* 17 * Capability management 18 * 19 * The Ceph metadata servers control client access to inode metadata 20 * and file data by issuing capabilities, granting clients permission 21 * to read and/or write both inode field and file data to OSDs 22 * (storage nodes). Each capability consists of a set of bits 23 * indicating which operations are allowed. 24 * 25 * If the client holds a *_SHARED cap, the client has a coherent value 26 * that can be safely read from the cached inode. 27 * 28 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the 29 * client is allowed to change inode attributes (e.g., file size, 30 * mtime), note its dirty state in the ceph_cap, and asynchronously 31 * flush that metadata change to the MDS. 32 * 33 * In the event of a conflicting operation (perhaps by another 34 * client), the MDS will revoke the conflicting client capabilities. 35 * 36 * In order for a client to cache an inode, it must hold a capability 37 * with at least one MDS server. When inodes are released, release 38 * notifications are batched and periodically sent en masse to the MDS 39 * cluster to release server state. 40 */ 41 42 43 /* 44 * Generate readable cap strings for debugging output. 45 */ 46 #define MAX_CAP_STR 20 47 static char cap_str[MAX_CAP_STR][40]; 48 static DEFINE_SPINLOCK(cap_str_lock); 49 static int last_cap_str; 50 51 static char *gcap_string(char *s, int c) 52 { 53 if (c & CEPH_CAP_GSHARED) 54 *s++ = 's'; 55 if (c & CEPH_CAP_GEXCL) 56 *s++ = 'x'; 57 if (c & CEPH_CAP_GCACHE) 58 *s++ = 'c'; 59 if (c & CEPH_CAP_GRD) 60 *s++ = 'r'; 61 if (c & CEPH_CAP_GWR) 62 *s++ = 'w'; 63 if (c & CEPH_CAP_GBUFFER) 64 *s++ = 'b'; 65 if (c & CEPH_CAP_GLAZYIO) 66 *s++ = 'l'; 67 return s; 68 } 69 70 const char *ceph_cap_string(int caps) 71 { 72 int i; 73 char *s; 74 int c; 75 76 spin_lock(&cap_str_lock); 77 i = last_cap_str++; 78 if (last_cap_str == MAX_CAP_STR) 79 last_cap_str = 0; 80 spin_unlock(&cap_str_lock); 81 82 s = cap_str[i]; 83 84 if (caps & CEPH_CAP_PIN) 85 *s++ = 'p'; 86 87 c = (caps >> CEPH_CAP_SAUTH) & 3; 88 if (c) { 89 *s++ = 'A'; 90 s = gcap_string(s, c); 91 } 92 93 c = (caps >> CEPH_CAP_SLINK) & 3; 94 if (c) { 95 *s++ = 'L'; 96 s = gcap_string(s, c); 97 } 98 99 c = (caps >> CEPH_CAP_SXATTR) & 3; 100 if (c) { 101 *s++ = 'X'; 102 s = gcap_string(s, c); 103 } 104 105 c = caps >> CEPH_CAP_SFILE; 106 if (c) { 107 *s++ = 'F'; 108 s = gcap_string(s, c); 109 } 110 111 if (s == cap_str[i]) 112 *s++ = '-'; 113 *s = 0; 114 return cap_str[i]; 115 } 116 117 void ceph_caps_init(struct ceph_mds_client *mdsc) 118 { 119 INIT_LIST_HEAD(&mdsc->caps_list); 120 spin_lock_init(&mdsc->caps_list_lock); 121 } 122 123 void ceph_caps_finalize(struct ceph_mds_client *mdsc) 124 { 125 struct ceph_cap *cap; 126 127 spin_lock(&mdsc->caps_list_lock); 128 while (!list_empty(&mdsc->caps_list)) { 129 cap = list_first_entry(&mdsc->caps_list, 130 struct ceph_cap, caps_item); 131 list_del(&cap->caps_item); 132 kmem_cache_free(ceph_cap_cachep, cap); 133 } 134 mdsc->caps_total_count = 0; 135 mdsc->caps_avail_count = 0; 136 mdsc->caps_use_count = 0; 137 mdsc->caps_reserve_count = 0; 138 mdsc->caps_min_count = 0; 139 spin_unlock(&mdsc->caps_list_lock); 140 } 141 142 void ceph_adjust_min_caps(struct ceph_mds_client *mdsc, int delta) 143 { 144 spin_lock(&mdsc->caps_list_lock); 145 mdsc->caps_min_count += delta; 146 BUG_ON(mdsc->caps_min_count < 0); 147 spin_unlock(&mdsc->caps_list_lock); 148 } 149 150 int ceph_reserve_caps(struct ceph_mds_client *mdsc, 151 struct ceph_cap_reservation *ctx, int need) 152 { 153 int i; 154 struct ceph_cap *cap; 155 int have; 156 int alloc = 0; 157 LIST_HEAD(newcaps); 158 int ret = 0; 159 160 dout("reserve caps ctx=%p need=%d\n", ctx, need); 161 162 /* first reserve any caps that are already allocated */ 163 spin_lock(&mdsc->caps_list_lock); 164 if (mdsc->caps_avail_count >= need) 165 have = need; 166 else 167 have = mdsc->caps_avail_count; 168 mdsc->caps_avail_count -= have; 169 mdsc->caps_reserve_count += have; 170 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 171 mdsc->caps_reserve_count + 172 mdsc->caps_avail_count); 173 spin_unlock(&mdsc->caps_list_lock); 174 175 for (i = have; i < need; i++) { 176 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 177 if (!cap) { 178 ret = -ENOMEM; 179 goto out_alloc_count; 180 } 181 list_add(&cap->caps_item, &newcaps); 182 alloc++; 183 } 184 BUG_ON(have + alloc != need); 185 186 spin_lock(&mdsc->caps_list_lock); 187 mdsc->caps_total_count += alloc; 188 mdsc->caps_reserve_count += alloc; 189 list_splice(&newcaps, &mdsc->caps_list); 190 191 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 192 mdsc->caps_reserve_count + 193 mdsc->caps_avail_count); 194 spin_unlock(&mdsc->caps_list_lock); 195 196 ctx->count = need; 197 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n", 198 ctx, mdsc->caps_total_count, mdsc->caps_use_count, 199 mdsc->caps_reserve_count, mdsc->caps_avail_count); 200 return 0; 201 202 out_alloc_count: 203 /* we didn't manage to reserve as much as we needed */ 204 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n", 205 ctx, need, have); 206 return ret; 207 } 208 209 int ceph_unreserve_caps(struct ceph_mds_client *mdsc, 210 struct ceph_cap_reservation *ctx) 211 { 212 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count); 213 if (ctx->count) { 214 spin_lock(&mdsc->caps_list_lock); 215 BUG_ON(mdsc->caps_reserve_count < ctx->count); 216 mdsc->caps_reserve_count -= ctx->count; 217 mdsc->caps_avail_count += ctx->count; 218 ctx->count = 0; 219 dout("unreserve caps %d = %d used + %d resv + %d avail\n", 220 mdsc->caps_total_count, mdsc->caps_use_count, 221 mdsc->caps_reserve_count, mdsc->caps_avail_count); 222 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 223 mdsc->caps_reserve_count + 224 mdsc->caps_avail_count); 225 spin_unlock(&mdsc->caps_list_lock); 226 } 227 return 0; 228 } 229 230 static struct ceph_cap *get_cap(struct ceph_mds_client *mdsc, 231 struct ceph_cap_reservation *ctx) 232 { 233 struct ceph_cap *cap = NULL; 234 235 /* temporary, until we do something about cap import/export */ 236 if (!ctx) { 237 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS); 238 if (cap) { 239 mdsc->caps_use_count++; 240 mdsc->caps_total_count++; 241 } 242 return cap; 243 } 244 245 spin_lock(&mdsc->caps_list_lock); 246 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n", 247 ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count, 248 mdsc->caps_reserve_count, mdsc->caps_avail_count); 249 BUG_ON(!ctx->count); 250 BUG_ON(ctx->count > mdsc->caps_reserve_count); 251 BUG_ON(list_empty(&mdsc->caps_list)); 252 253 ctx->count--; 254 mdsc->caps_reserve_count--; 255 mdsc->caps_use_count++; 256 257 cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item); 258 list_del(&cap->caps_item); 259 260 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 261 mdsc->caps_reserve_count + mdsc->caps_avail_count); 262 spin_unlock(&mdsc->caps_list_lock); 263 return cap; 264 } 265 266 void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap) 267 { 268 spin_lock(&mdsc->caps_list_lock); 269 dout("put_cap %p %d = %d used + %d resv + %d avail\n", 270 cap, mdsc->caps_total_count, mdsc->caps_use_count, 271 mdsc->caps_reserve_count, mdsc->caps_avail_count); 272 mdsc->caps_use_count--; 273 /* 274 * Keep some preallocated caps around (ceph_min_count), to 275 * avoid lots of free/alloc churn. 276 */ 277 if (mdsc->caps_avail_count >= mdsc->caps_reserve_count + 278 mdsc->caps_min_count) { 279 mdsc->caps_total_count--; 280 kmem_cache_free(ceph_cap_cachep, cap); 281 } else { 282 mdsc->caps_avail_count++; 283 list_add(&cap->caps_item, &mdsc->caps_list); 284 } 285 286 BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count + 287 mdsc->caps_reserve_count + mdsc->caps_avail_count); 288 spin_unlock(&mdsc->caps_list_lock); 289 } 290 291 void ceph_reservation_status(struct ceph_fs_client *fsc, 292 int *total, int *avail, int *used, int *reserved, 293 int *min) 294 { 295 struct ceph_mds_client *mdsc = fsc->mdsc; 296 297 if (total) 298 *total = mdsc->caps_total_count; 299 if (avail) 300 *avail = mdsc->caps_avail_count; 301 if (used) 302 *used = mdsc->caps_use_count; 303 if (reserved) 304 *reserved = mdsc->caps_reserve_count; 305 if (min) 306 *min = mdsc->caps_min_count; 307 } 308 309 /* 310 * Find ceph_cap for given mds, if any. 311 * 312 * Called with i_lock held. 313 */ 314 static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds) 315 { 316 struct ceph_cap *cap; 317 struct rb_node *n = ci->i_caps.rb_node; 318 319 while (n) { 320 cap = rb_entry(n, struct ceph_cap, ci_node); 321 if (mds < cap->mds) 322 n = n->rb_left; 323 else if (mds > cap->mds) 324 n = n->rb_right; 325 else 326 return cap; 327 } 328 return NULL; 329 } 330 331 struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds) 332 { 333 struct ceph_cap *cap; 334 335 spin_lock(&ci->vfs_inode.i_lock); 336 cap = __get_cap_for_mds(ci, mds); 337 spin_unlock(&ci->vfs_inode.i_lock); 338 return cap; 339 } 340 341 /* 342 * Return id of any MDS with a cap, preferably FILE_WR|BUFFER|EXCL, else -1. 343 */ 344 static int __ceph_get_cap_mds(struct ceph_inode_info *ci) 345 { 346 struct ceph_cap *cap; 347 int mds = -1; 348 struct rb_node *p; 349 350 /* prefer mds with WR|BUFFER|EXCL caps */ 351 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 352 cap = rb_entry(p, struct ceph_cap, ci_node); 353 mds = cap->mds; 354 if (cap->issued & (CEPH_CAP_FILE_WR | 355 CEPH_CAP_FILE_BUFFER | 356 CEPH_CAP_FILE_EXCL)) 357 break; 358 } 359 return mds; 360 } 361 362 int ceph_get_cap_mds(struct inode *inode) 363 { 364 int mds; 365 spin_lock(&inode->i_lock); 366 mds = __ceph_get_cap_mds(ceph_inode(inode)); 367 spin_unlock(&inode->i_lock); 368 return mds; 369 } 370 371 /* 372 * Called under i_lock. 373 */ 374 static void __insert_cap_node(struct ceph_inode_info *ci, 375 struct ceph_cap *new) 376 { 377 struct rb_node **p = &ci->i_caps.rb_node; 378 struct rb_node *parent = NULL; 379 struct ceph_cap *cap = NULL; 380 381 while (*p) { 382 parent = *p; 383 cap = rb_entry(parent, struct ceph_cap, ci_node); 384 if (new->mds < cap->mds) 385 p = &(*p)->rb_left; 386 else if (new->mds > cap->mds) 387 p = &(*p)->rb_right; 388 else 389 BUG(); 390 } 391 392 rb_link_node(&new->ci_node, parent, p); 393 rb_insert_color(&new->ci_node, &ci->i_caps); 394 } 395 396 /* 397 * (re)set cap hold timeouts, which control the delayed release 398 * of unused caps back to the MDS. Should be called on cap use. 399 */ 400 static void __cap_set_timeouts(struct ceph_mds_client *mdsc, 401 struct ceph_inode_info *ci) 402 { 403 struct ceph_mount_options *ma = mdsc->fsc->mount_options; 404 405 ci->i_hold_caps_min = round_jiffies(jiffies + 406 ma->caps_wanted_delay_min * HZ); 407 ci->i_hold_caps_max = round_jiffies(jiffies + 408 ma->caps_wanted_delay_max * HZ); 409 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode, 410 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies); 411 } 412 413 /* 414 * (Re)queue cap at the end of the delayed cap release list. 415 * 416 * If I_FLUSH is set, leave the inode at the front of the list. 417 * 418 * Caller holds i_lock 419 * -> we take mdsc->cap_delay_lock 420 */ 421 static void __cap_delay_requeue(struct ceph_mds_client *mdsc, 422 struct ceph_inode_info *ci) 423 { 424 __cap_set_timeouts(mdsc, ci); 425 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode, 426 ci->i_ceph_flags, ci->i_hold_caps_max); 427 if (!mdsc->stopping) { 428 spin_lock(&mdsc->cap_delay_lock); 429 if (!list_empty(&ci->i_cap_delay_list)) { 430 if (ci->i_ceph_flags & CEPH_I_FLUSH) 431 goto no_change; 432 list_del_init(&ci->i_cap_delay_list); 433 } 434 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 435 no_change: 436 spin_unlock(&mdsc->cap_delay_lock); 437 } 438 } 439 440 /* 441 * Queue an inode for immediate writeback. Mark inode with I_FLUSH, 442 * indicating we should send a cap message to flush dirty metadata 443 * asap, and move to the front of the delayed cap list. 444 */ 445 static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc, 446 struct ceph_inode_info *ci) 447 { 448 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode); 449 spin_lock(&mdsc->cap_delay_lock); 450 ci->i_ceph_flags |= CEPH_I_FLUSH; 451 if (!list_empty(&ci->i_cap_delay_list)) 452 list_del_init(&ci->i_cap_delay_list); 453 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list); 454 spin_unlock(&mdsc->cap_delay_lock); 455 } 456 457 /* 458 * Cancel delayed work on cap. 459 * 460 * Caller must hold i_lock. 461 */ 462 static void __cap_delay_cancel(struct ceph_mds_client *mdsc, 463 struct ceph_inode_info *ci) 464 { 465 dout("__cap_delay_cancel %p\n", &ci->vfs_inode); 466 if (list_empty(&ci->i_cap_delay_list)) 467 return; 468 spin_lock(&mdsc->cap_delay_lock); 469 list_del_init(&ci->i_cap_delay_list); 470 spin_unlock(&mdsc->cap_delay_lock); 471 } 472 473 /* 474 * Common issue checks for add_cap, handle_cap_grant. 475 */ 476 static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap, 477 unsigned issued) 478 { 479 unsigned had = __ceph_caps_issued(ci, NULL); 480 481 /* 482 * Each time we receive FILE_CACHE anew, we increment 483 * i_rdcache_gen. 484 */ 485 if ((issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) && 486 (had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) 487 ci->i_rdcache_gen++; 488 489 /* 490 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we 491 * don't know what happened to this directory while we didn't 492 * have the cap. 493 */ 494 if ((issued & CEPH_CAP_FILE_SHARED) && 495 (had & CEPH_CAP_FILE_SHARED) == 0) { 496 ci->i_shared_gen++; 497 if (S_ISDIR(ci->vfs_inode.i_mode)) { 498 dout(" marking %p NOT complete\n", &ci->vfs_inode); 499 ci->i_ceph_flags &= ~CEPH_I_COMPLETE; 500 } 501 } 502 } 503 504 /* 505 * Add a capability under the given MDS session. 506 * 507 * Caller should hold session snap_rwsem (read) and s_mutex. 508 * 509 * @fmode is the open file mode, if we are opening a file, otherwise 510 * it is < 0. (This is so we can atomically add the cap and add an 511 * open file reference to it.) 512 */ 513 int ceph_add_cap(struct inode *inode, 514 struct ceph_mds_session *session, u64 cap_id, 515 int fmode, unsigned issued, unsigned wanted, 516 unsigned seq, unsigned mseq, u64 realmino, int flags, 517 struct ceph_cap_reservation *caps_reservation) 518 { 519 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 520 struct ceph_inode_info *ci = ceph_inode(inode); 521 struct ceph_cap *new_cap = NULL; 522 struct ceph_cap *cap; 523 int mds = session->s_mds; 524 int actual_wanted; 525 526 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode, 527 session->s_mds, cap_id, ceph_cap_string(issued), seq); 528 529 /* 530 * If we are opening the file, include file mode wanted bits 531 * in wanted. 532 */ 533 if (fmode >= 0) 534 wanted |= ceph_caps_for_mode(fmode); 535 536 retry: 537 spin_lock(&inode->i_lock); 538 cap = __get_cap_for_mds(ci, mds); 539 if (!cap) { 540 if (new_cap) { 541 cap = new_cap; 542 new_cap = NULL; 543 } else { 544 spin_unlock(&inode->i_lock); 545 new_cap = get_cap(mdsc, caps_reservation); 546 if (new_cap == NULL) 547 return -ENOMEM; 548 goto retry; 549 } 550 551 cap->issued = 0; 552 cap->implemented = 0; 553 cap->mds = mds; 554 cap->mds_wanted = 0; 555 556 cap->ci = ci; 557 __insert_cap_node(ci, cap); 558 559 /* clear out old exporting info? (i.e. on cap import) */ 560 if (ci->i_cap_exporting_mds == mds) { 561 ci->i_cap_exporting_issued = 0; 562 ci->i_cap_exporting_mseq = 0; 563 ci->i_cap_exporting_mds = -1; 564 } 565 566 /* add to session cap list */ 567 cap->session = session; 568 spin_lock(&session->s_cap_lock); 569 list_add_tail(&cap->session_caps, &session->s_caps); 570 session->s_nr_caps++; 571 spin_unlock(&session->s_cap_lock); 572 } 573 574 if (!ci->i_snap_realm) { 575 /* 576 * add this inode to the appropriate snap realm 577 */ 578 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc, 579 realmino); 580 if (realm) { 581 ceph_get_snap_realm(mdsc, realm); 582 spin_lock(&realm->inodes_with_caps_lock); 583 ci->i_snap_realm = realm; 584 list_add(&ci->i_snap_realm_item, 585 &realm->inodes_with_caps); 586 spin_unlock(&realm->inodes_with_caps_lock); 587 } else { 588 pr_err("ceph_add_cap: couldn't find snap realm %llx\n", 589 realmino); 590 WARN_ON(!realm); 591 } 592 } 593 594 __check_cap_issue(ci, cap, issued); 595 596 /* 597 * If we are issued caps we don't want, or the mds' wanted 598 * value appears to be off, queue a check so we'll release 599 * later and/or update the mds wanted value. 600 */ 601 actual_wanted = __ceph_caps_wanted(ci); 602 if ((wanted & ~actual_wanted) || 603 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) { 604 dout(" issued %s, mds wanted %s, actual %s, queueing\n", 605 ceph_cap_string(issued), ceph_cap_string(wanted), 606 ceph_cap_string(actual_wanted)); 607 __cap_delay_requeue(mdsc, ci); 608 } 609 610 if (flags & CEPH_CAP_FLAG_AUTH) 611 ci->i_auth_cap = cap; 612 else if (ci->i_auth_cap == cap) 613 ci->i_auth_cap = NULL; 614 615 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n", 616 inode, ceph_vinop(inode), cap, ceph_cap_string(issued), 617 ceph_cap_string(issued|cap->issued), seq, mds); 618 cap->cap_id = cap_id; 619 cap->issued = issued; 620 cap->implemented |= issued; 621 cap->mds_wanted |= wanted; 622 cap->seq = seq; 623 cap->issue_seq = seq; 624 cap->mseq = mseq; 625 cap->cap_gen = session->s_cap_gen; 626 627 if (fmode >= 0) 628 __ceph_get_fmode(ci, fmode); 629 spin_unlock(&inode->i_lock); 630 wake_up_all(&ci->i_cap_wq); 631 return 0; 632 } 633 634 /* 635 * Return true if cap has not timed out and belongs to the current 636 * generation of the MDS session (i.e. has not gone 'stale' due to 637 * us losing touch with the mds). 638 */ 639 static int __cap_is_valid(struct ceph_cap *cap) 640 { 641 unsigned long ttl; 642 u32 gen; 643 644 spin_lock(&cap->session->s_cap_lock); 645 gen = cap->session->s_cap_gen; 646 ttl = cap->session->s_cap_ttl; 647 spin_unlock(&cap->session->s_cap_lock); 648 649 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) { 650 dout("__cap_is_valid %p cap %p issued %s " 651 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode, 652 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen); 653 return 0; 654 } 655 656 return 1; 657 } 658 659 /* 660 * Return set of valid cap bits issued to us. Note that caps time 661 * out, and may be invalidated in bulk if the client session times out 662 * and session->s_cap_gen is bumped. 663 */ 664 int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented) 665 { 666 int have = ci->i_snap_caps | ci->i_cap_exporting_issued; 667 struct ceph_cap *cap; 668 struct rb_node *p; 669 670 if (implemented) 671 *implemented = 0; 672 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 673 cap = rb_entry(p, struct ceph_cap, ci_node); 674 if (!__cap_is_valid(cap)) 675 continue; 676 dout("__ceph_caps_issued %p cap %p issued %s\n", 677 &ci->vfs_inode, cap, ceph_cap_string(cap->issued)); 678 have |= cap->issued; 679 if (implemented) 680 *implemented |= cap->implemented; 681 } 682 return have; 683 } 684 685 /* 686 * Get cap bits issued by caps other than @ocap 687 */ 688 int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap) 689 { 690 int have = ci->i_snap_caps; 691 struct ceph_cap *cap; 692 struct rb_node *p; 693 694 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 695 cap = rb_entry(p, struct ceph_cap, ci_node); 696 if (cap == ocap) 697 continue; 698 if (!__cap_is_valid(cap)) 699 continue; 700 have |= cap->issued; 701 } 702 return have; 703 } 704 705 /* 706 * Move a cap to the end of the LRU (oldest caps at list head, newest 707 * at list tail). 708 */ 709 static void __touch_cap(struct ceph_cap *cap) 710 { 711 struct ceph_mds_session *s = cap->session; 712 713 spin_lock(&s->s_cap_lock); 714 if (s->s_cap_iterator == NULL) { 715 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap, 716 s->s_mds); 717 list_move_tail(&cap->session_caps, &s->s_caps); 718 } else { 719 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n", 720 &cap->ci->vfs_inode, cap, s->s_mds); 721 } 722 spin_unlock(&s->s_cap_lock); 723 } 724 725 /* 726 * Check if we hold the given mask. If so, move the cap(s) to the 727 * front of their respective LRUs. (This is the preferred way for 728 * callers to check for caps they want.) 729 */ 730 int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch) 731 { 732 struct ceph_cap *cap; 733 struct rb_node *p; 734 int have = ci->i_snap_caps; 735 736 if ((have & mask) == mask) { 737 dout("__ceph_caps_issued_mask %p snap issued %s" 738 " (mask %s)\n", &ci->vfs_inode, 739 ceph_cap_string(have), 740 ceph_cap_string(mask)); 741 return 1; 742 } 743 744 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 745 cap = rb_entry(p, struct ceph_cap, ci_node); 746 if (!__cap_is_valid(cap)) 747 continue; 748 if ((cap->issued & mask) == mask) { 749 dout("__ceph_caps_issued_mask %p cap %p issued %s" 750 " (mask %s)\n", &ci->vfs_inode, cap, 751 ceph_cap_string(cap->issued), 752 ceph_cap_string(mask)); 753 if (touch) 754 __touch_cap(cap); 755 return 1; 756 } 757 758 /* does a combination of caps satisfy mask? */ 759 have |= cap->issued; 760 if ((have & mask) == mask) { 761 dout("__ceph_caps_issued_mask %p combo issued %s" 762 " (mask %s)\n", &ci->vfs_inode, 763 ceph_cap_string(cap->issued), 764 ceph_cap_string(mask)); 765 if (touch) { 766 struct rb_node *q; 767 768 /* touch this + preceeding caps */ 769 __touch_cap(cap); 770 for (q = rb_first(&ci->i_caps); q != p; 771 q = rb_next(q)) { 772 cap = rb_entry(q, struct ceph_cap, 773 ci_node); 774 if (!__cap_is_valid(cap)) 775 continue; 776 __touch_cap(cap); 777 } 778 } 779 return 1; 780 } 781 } 782 783 return 0; 784 } 785 786 /* 787 * Return true if mask caps are currently being revoked by an MDS. 788 */ 789 int ceph_caps_revoking(struct ceph_inode_info *ci, int mask) 790 { 791 struct inode *inode = &ci->vfs_inode; 792 struct ceph_cap *cap; 793 struct rb_node *p; 794 int ret = 0; 795 796 spin_lock(&inode->i_lock); 797 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 798 cap = rb_entry(p, struct ceph_cap, ci_node); 799 if (__cap_is_valid(cap) && 800 (cap->implemented & ~cap->issued & mask)) { 801 ret = 1; 802 break; 803 } 804 } 805 spin_unlock(&inode->i_lock); 806 dout("ceph_caps_revoking %p %s = %d\n", inode, 807 ceph_cap_string(mask), ret); 808 return ret; 809 } 810 811 int __ceph_caps_used(struct ceph_inode_info *ci) 812 { 813 int used = 0; 814 if (ci->i_pin_ref) 815 used |= CEPH_CAP_PIN; 816 if (ci->i_rd_ref) 817 used |= CEPH_CAP_FILE_RD; 818 if (ci->i_rdcache_ref || ci->vfs_inode.i_data.nrpages) 819 used |= CEPH_CAP_FILE_CACHE; 820 if (ci->i_wr_ref) 821 used |= CEPH_CAP_FILE_WR; 822 if (ci->i_wrbuffer_ref) 823 used |= CEPH_CAP_FILE_BUFFER; 824 return used; 825 } 826 827 /* 828 * wanted, by virtue of open file modes 829 */ 830 int __ceph_caps_file_wanted(struct ceph_inode_info *ci) 831 { 832 int want = 0; 833 int mode; 834 for (mode = 0; mode < CEPH_FILE_MODE_NUM; mode++) 835 if (ci->i_nr_by_mode[mode]) 836 want |= ceph_caps_for_mode(mode); 837 return want; 838 } 839 840 /* 841 * Return caps we have registered with the MDS(s) as 'wanted'. 842 */ 843 int __ceph_caps_mds_wanted(struct ceph_inode_info *ci) 844 { 845 struct ceph_cap *cap; 846 struct rb_node *p; 847 int mds_wanted = 0; 848 849 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 850 cap = rb_entry(p, struct ceph_cap, ci_node); 851 if (!__cap_is_valid(cap)) 852 continue; 853 mds_wanted |= cap->mds_wanted; 854 } 855 return mds_wanted; 856 } 857 858 /* 859 * called under i_lock 860 */ 861 static int __ceph_is_any_caps(struct ceph_inode_info *ci) 862 { 863 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0; 864 } 865 866 /* 867 * Remove a cap. Take steps to deal with a racing iterate_session_caps. 868 * 869 * caller should hold i_lock. 870 * caller will not hold session s_mutex if called from destroy_inode. 871 */ 872 void __ceph_remove_cap(struct ceph_cap *cap) 873 { 874 struct ceph_mds_session *session = cap->session; 875 struct ceph_inode_info *ci = cap->ci; 876 struct ceph_mds_client *mdsc = 877 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 878 int removed = 0; 879 880 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode); 881 882 /* remove from session list */ 883 spin_lock(&session->s_cap_lock); 884 if (session->s_cap_iterator == cap) { 885 /* not yet, we are iterating over this very cap */ 886 dout("__ceph_remove_cap delaying %p removal from session %p\n", 887 cap, cap->session); 888 } else { 889 list_del_init(&cap->session_caps); 890 session->s_nr_caps--; 891 cap->session = NULL; 892 removed = 1; 893 } 894 /* protect backpointer with s_cap_lock: see iterate_session_caps */ 895 cap->ci = NULL; 896 spin_unlock(&session->s_cap_lock); 897 898 /* remove from inode list */ 899 rb_erase(&cap->ci_node, &ci->i_caps); 900 if (ci->i_auth_cap == cap) 901 ci->i_auth_cap = NULL; 902 903 if (removed) 904 ceph_put_cap(mdsc, cap); 905 906 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) { 907 struct ceph_snap_realm *realm = ci->i_snap_realm; 908 spin_lock(&realm->inodes_with_caps_lock); 909 list_del_init(&ci->i_snap_realm_item); 910 ci->i_snap_realm_counter++; 911 ci->i_snap_realm = NULL; 912 spin_unlock(&realm->inodes_with_caps_lock); 913 ceph_put_snap_realm(mdsc, realm); 914 } 915 if (!__ceph_is_any_real_caps(ci)) 916 __cap_delay_cancel(mdsc, ci); 917 } 918 919 /* 920 * Build and send a cap message to the given MDS. 921 * 922 * Caller should be holding s_mutex. 923 */ 924 static int send_cap_msg(struct ceph_mds_session *session, 925 u64 ino, u64 cid, int op, 926 int caps, int wanted, int dirty, 927 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq, 928 u64 size, u64 max_size, 929 struct timespec *mtime, struct timespec *atime, 930 u64 time_warp_seq, 931 uid_t uid, gid_t gid, mode_t mode, 932 u64 xattr_version, 933 struct ceph_buffer *xattrs_buf, 934 u64 follows) 935 { 936 struct ceph_mds_caps *fc; 937 struct ceph_msg *msg; 938 939 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s" 940 " seq %u/%u mseq %u follows %lld size %llu/%llu" 941 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op), 942 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted), 943 ceph_cap_string(dirty), 944 seq, issue_seq, mseq, follows, size, max_size, 945 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0); 946 947 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), GFP_NOFS); 948 if (!msg) 949 return -ENOMEM; 950 951 msg->hdr.tid = cpu_to_le64(flush_tid); 952 953 fc = msg->front.iov_base; 954 memset(fc, 0, sizeof(*fc)); 955 956 fc->cap_id = cpu_to_le64(cid); 957 fc->op = cpu_to_le32(op); 958 fc->seq = cpu_to_le32(seq); 959 fc->issue_seq = cpu_to_le32(issue_seq); 960 fc->migrate_seq = cpu_to_le32(mseq); 961 fc->caps = cpu_to_le32(caps); 962 fc->wanted = cpu_to_le32(wanted); 963 fc->dirty = cpu_to_le32(dirty); 964 fc->ino = cpu_to_le64(ino); 965 fc->snap_follows = cpu_to_le64(follows); 966 967 fc->size = cpu_to_le64(size); 968 fc->max_size = cpu_to_le64(max_size); 969 if (mtime) 970 ceph_encode_timespec(&fc->mtime, mtime); 971 if (atime) 972 ceph_encode_timespec(&fc->atime, atime); 973 fc->time_warp_seq = cpu_to_le32(time_warp_seq); 974 975 fc->uid = cpu_to_le32(uid); 976 fc->gid = cpu_to_le32(gid); 977 fc->mode = cpu_to_le32(mode); 978 979 fc->xattr_version = cpu_to_le64(xattr_version); 980 if (xattrs_buf) { 981 msg->middle = ceph_buffer_get(xattrs_buf); 982 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len); 983 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len); 984 } 985 986 ceph_con_send(&session->s_con, msg); 987 return 0; 988 } 989 990 static void __queue_cap_release(struct ceph_mds_session *session, 991 u64 ino, u64 cap_id, u32 migrate_seq, 992 u32 issue_seq) 993 { 994 struct ceph_msg *msg; 995 struct ceph_mds_cap_release *head; 996 struct ceph_mds_cap_item *item; 997 998 spin_lock(&session->s_cap_lock); 999 BUG_ON(!session->s_num_cap_releases); 1000 msg = list_first_entry(&session->s_cap_releases, 1001 struct ceph_msg, list_head); 1002 1003 dout(" adding %llx release to mds%d msg %p (%d left)\n", 1004 ino, session->s_mds, msg, session->s_num_cap_releases); 1005 1006 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE); 1007 head = msg->front.iov_base; 1008 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1); 1009 item = msg->front.iov_base + msg->front.iov_len; 1010 item->ino = cpu_to_le64(ino); 1011 item->cap_id = cpu_to_le64(cap_id); 1012 item->migrate_seq = cpu_to_le32(migrate_seq); 1013 item->seq = cpu_to_le32(issue_seq); 1014 1015 session->s_num_cap_releases--; 1016 1017 msg->front.iov_len += sizeof(*item); 1018 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) { 1019 dout(" release msg %p full\n", msg); 1020 list_move_tail(&msg->list_head, &session->s_cap_releases_done); 1021 } else { 1022 dout(" release msg %p at %d/%d (%d)\n", msg, 1023 (int)le32_to_cpu(head->num), 1024 (int)CEPH_CAPS_PER_RELEASE, 1025 (int)msg->front.iov_len); 1026 } 1027 spin_unlock(&session->s_cap_lock); 1028 } 1029 1030 /* 1031 * Queue cap releases when an inode is dropped from our cache. Since 1032 * inode is about to be destroyed, there is no need for i_lock. 1033 */ 1034 void ceph_queue_caps_release(struct inode *inode) 1035 { 1036 struct ceph_inode_info *ci = ceph_inode(inode); 1037 struct rb_node *p; 1038 1039 p = rb_first(&ci->i_caps); 1040 while (p) { 1041 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node); 1042 struct ceph_mds_session *session = cap->session; 1043 1044 __queue_cap_release(session, ceph_ino(inode), cap->cap_id, 1045 cap->mseq, cap->issue_seq); 1046 p = rb_next(p); 1047 __ceph_remove_cap(cap); 1048 } 1049 } 1050 1051 /* 1052 * Send a cap msg on the given inode. Update our caps state, then 1053 * drop i_lock and send the message. 1054 * 1055 * Make note of max_size reported/requested from mds, revoked caps 1056 * that have now been implemented. 1057 * 1058 * Make half-hearted attempt ot to invalidate page cache if we are 1059 * dropping RDCACHE. Note that this will leave behind locked pages 1060 * that we'll then need to deal with elsewhere. 1061 * 1062 * Return non-zero if delayed release, or we experienced an error 1063 * such that the caller should requeue + retry later. 1064 * 1065 * called with i_lock, then drops it. 1066 * caller should hold snap_rwsem (read), s_mutex. 1067 */ 1068 static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap, 1069 int op, int used, int want, int retain, int flushing, 1070 unsigned *pflush_tid) 1071 __releases(cap->ci->vfs_inode->i_lock) 1072 { 1073 struct ceph_inode_info *ci = cap->ci; 1074 struct inode *inode = &ci->vfs_inode; 1075 u64 cap_id = cap->cap_id; 1076 int held, revoking, dropping, keep; 1077 u64 seq, issue_seq, mseq, time_warp_seq, follows; 1078 u64 size, max_size; 1079 struct timespec mtime, atime; 1080 int wake = 0; 1081 mode_t mode; 1082 uid_t uid; 1083 gid_t gid; 1084 struct ceph_mds_session *session; 1085 u64 xattr_version = 0; 1086 struct ceph_buffer *xattr_blob = NULL; 1087 int delayed = 0; 1088 u64 flush_tid = 0; 1089 int i; 1090 int ret; 1091 1092 held = cap->issued | cap->implemented; 1093 revoking = cap->implemented & ~cap->issued; 1094 retain &= ~revoking; 1095 dropping = cap->issued & ~retain; 1096 1097 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n", 1098 inode, cap, cap->session, 1099 ceph_cap_string(held), ceph_cap_string(held & retain), 1100 ceph_cap_string(revoking)); 1101 BUG_ON((retain & CEPH_CAP_PIN) == 0); 1102 1103 session = cap->session; 1104 1105 /* don't release wanted unless we've waited a bit. */ 1106 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1107 time_before(jiffies, ci->i_hold_caps_min)) { 1108 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n", 1109 ceph_cap_string(cap->issued), 1110 ceph_cap_string(cap->issued & retain), 1111 ceph_cap_string(cap->mds_wanted), 1112 ceph_cap_string(want)); 1113 want |= cap->mds_wanted; 1114 retain |= cap->issued; 1115 delayed = 1; 1116 } 1117 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH); 1118 1119 cap->issued &= retain; /* drop bits we don't want */ 1120 if (cap->implemented & ~cap->issued) { 1121 /* 1122 * Wake up any waiters on wanted -> needed transition. 1123 * This is due to the weird transition from buffered 1124 * to sync IO... we need to flush dirty pages _before_ 1125 * allowing sync writes to avoid reordering. 1126 */ 1127 wake = 1; 1128 } 1129 cap->implemented &= cap->issued | used; 1130 cap->mds_wanted = want; 1131 1132 if (flushing) { 1133 /* 1134 * assign a tid for flush operations so we can avoid 1135 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark 1136 * clean type races. track latest tid for every bit 1137 * so we can handle flush AxFw, flush Fw, and have the 1138 * first ack clean Ax. 1139 */ 1140 flush_tid = ++ci->i_cap_flush_last_tid; 1141 if (pflush_tid) 1142 *pflush_tid = flush_tid; 1143 dout(" cap_flush_tid %d\n", (int)flush_tid); 1144 for (i = 0; i < CEPH_CAP_BITS; i++) 1145 if (flushing & (1 << i)) 1146 ci->i_cap_flush_tid[i] = flush_tid; 1147 1148 follows = ci->i_head_snapc->seq; 1149 } else { 1150 follows = 0; 1151 } 1152 1153 keep = cap->implemented; 1154 seq = cap->seq; 1155 issue_seq = cap->issue_seq; 1156 mseq = cap->mseq; 1157 size = inode->i_size; 1158 ci->i_reported_size = size; 1159 max_size = ci->i_wanted_max_size; 1160 ci->i_requested_max_size = max_size; 1161 mtime = inode->i_mtime; 1162 atime = inode->i_atime; 1163 time_warp_seq = ci->i_time_warp_seq; 1164 uid = inode->i_uid; 1165 gid = inode->i_gid; 1166 mode = inode->i_mode; 1167 1168 if (flushing & CEPH_CAP_XATTR_EXCL) { 1169 __ceph_build_xattrs_blob(ci); 1170 xattr_blob = ci->i_xattrs.blob; 1171 xattr_version = ci->i_xattrs.version; 1172 } 1173 1174 spin_unlock(&inode->i_lock); 1175 1176 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id, 1177 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq, 1178 size, max_size, &mtime, &atime, time_warp_seq, 1179 uid, gid, mode, xattr_version, xattr_blob, 1180 follows); 1181 if (ret < 0) { 1182 dout("error sending cap msg, must requeue %p\n", inode); 1183 delayed = 1; 1184 } 1185 1186 if (wake) 1187 wake_up_all(&ci->i_cap_wq); 1188 1189 return delayed; 1190 } 1191 1192 /* 1193 * When a snapshot is taken, clients accumulate dirty metadata on 1194 * inodes with capabilities in ceph_cap_snaps to describe the file 1195 * state at the time the snapshot was taken. This must be flushed 1196 * asynchronously back to the MDS once sync writes complete and dirty 1197 * data is written out. 1198 * 1199 * Unless @again is true, skip cap_snaps that were already sent to 1200 * the MDS (i.e., during this session). 1201 * 1202 * Called under i_lock. Takes s_mutex as needed. 1203 */ 1204 void __ceph_flush_snaps(struct ceph_inode_info *ci, 1205 struct ceph_mds_session **psession, 1206 int again) 1207 __releases(ci->vfs_inode->i_lock) 1208 __acquires(ci->vfs_inode->i_lock) 1209 { 1210 struct inode *inode = &ci->vfs_inode; 1211 int mds; 1212 struct ceph_cap_snap *capsnap; 1213 u32 mseq; 1214 struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc; 1215 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold 1216 session->s_mutex */ 1217 u64 next_follows = 0; /* keep track of how far we've gotten through the 1218 i_cap_snaps list, and skip these entries next time 1219 around to avoid an infinite loop */ 1220 1221 if (psession) 1222 session = *psession; 1223 1224 dout("__flush_snaps %p\n", inode); 1225 retry: 1226 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 1227 /* avoid an infiniute loop after retry */ 1228 if (capsnap->follows < next_follows) 1229 continue; 1230 /* 1231 * we need to wait for sync writes to complete and for dirty 1232 * pages to be written out. 1233 */ 1234 if (capsnap->dirty_pages || capsnap->writing) 1235 break; 1236 1237 /* 1238 * if cap writeback already occurred, we should have dropped 1239 * the capsnap in ceph_put_wrbuffer_cap_refs. 1240 */ 1241 BUG_ON(capsnap->dirty == 0); 1242 1243 /* pick mds, take s_mutex */ 1244 if (ci->i_auth_cap == NULL) { 1245 dout("no auth cap (migrating?), doing nothing\n"); 1246 goto out; 1247 } 1248 1249 /* only flush each capsnap once */ 1250 if (!again && !list_empty(&capsnap->flushing_item)) { 1251 dout("already flushed %p, skipping\n", capsnap); 1252 continue; 1253 } 1254 1255 mds = ci->i_auth_cap->session->s_mds; 1256 mseq = ci->i_auth_cap->mseq; 1257 1258 if (session && session->s_mds != mds) { 1259 dout("oops, wrong session %p mutex\n", session); 1260 mutex_unlock(&session->s_mutex); 1261 ceph_put_mds_session(session); 1262 session = NULL; 1263 } 1264 if (!session) { 1265 spin_unlock(&inode->i_lock); 1266 mutex_lock(&mdsc->mutex); 1267 session = __ceph_lookup_mds_session(mdsc, mds); 1268 mutex_unlock(&mdsc->mutex); 1269 if (session) { 1270 dout("inverting session/ino locks on %p\n", 1271 session); 1272 mutex_lock(&session->s_mutex); 1273 } 1274 /* 1275 * if session == NULL, we raced against a cap 1276 * deletion or migration. retry, and we'll 1277 * get a better @mds value next time. 1278 */ 1279 spin_lock(&inode->i_lock); 1280 goto retry; 1281 } 1282 1283 capsnap->flush_tid = ++ci->i_cap_flush_last_tid; 1284 atomic_inc(&capsnap->nref); 1285 if (!list_empty(&capsnap->flushing_item)) 1286 list_del_init(&capsnap->flushing_item); 1287 list_add_tail(&capsnap->flushing_item, 1288 &session->s_cap_snaps_flushing); 1289 spin_unlock(&inode->i_lock); 1290 1291 dout("flush_snaps %p cap_snap %p follows %lld tid %llu\n", 1292 inode, capsnap, capsnap->follows, capsnap->flush_tid); 1293 send_cap_msg(session, ceph_vino(inode).ino, 0, 1294 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0, 1295 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq, 1296 capsnap->size, 0, 1297 &capsnap->mtime, &capsnap->atime, 1298 capsnap->time_warp_seq, 1299 capsnap->uid, capsnap->gid, capsnap->mode, 1300 capsnap->xattr_version, capsnap->xattr_blob, 1301 capsnap->follows); 1302 1303 next_follows = capsnap->follows + 1; 1304 ceph_put_cap_snap(capsnap); 1305 1306 spin_lock(&inode->i_lock); 1307 goto retry; 1308 } 1309 1310 /* we flushed them all; remove this inode from the queue */ 1311 spin_lock(&mdsc->snap_flush_lock); 1312 list_del_init(&ci->i_snap_flush_item); 1313 spin_unlock(&mdsc->snap_flush_lock); 1314 1315 out: 1316 if (psession) 1317 *psession = session; 1318 else if (session) { 1319 mutex_unlock(&session->s_mutex); 1320 ceph_put_mds_session(session); 1321 } 1322 } 1323 1324 static void ceph_flush_snaps(struct ceph_inode_info *ci) 1325 { 1326 struct inode *inode = &ci->vfs_inode; 1327 1328 spin_lock(&inode->i_lock); 1329 __ceph_flush_snaps(ci, NULL, 0); 1330 spin_unlock(&inode->i_lock); 1331 } 1332 1333 /* 1334 * Mark caps dirty. If inode is newly dirty, add to the global dirty 1335 * list. 1336 */ 1337 void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask) 1338 { 1339 struct ceph_mds_client *mdsc = 1340 ceph_sb_to_client(ci->vfs_inode.i_sb)->mdsc; 1341 struct inode *inode = &ci->vfs_inode; 1342 int was = ci->i_dirty_caps; 1343 int dirty = 0; 1344 1345 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode, 1346 ceph_cap_string(mask), ceph_cap_string(was), 1347 ceph_cap_string(was | mask)); 1348 ci->i_dirty_caps |= mask; 1349 if (was == 0) { 1350 if (!ci->i_head_snapc) 1351 ci->i_head_snapc = ceph_get_snap_context( 1352 ci->i_snap_realm->cached_context); 1353 dout(" inode %p now dirty snapc %p\n", &ci->vfs_inode, 1354 ci->i_head_snapc); 1355 BUG_ON(!list_empty(&ci->i_dirty_item)); 1356 spin_lock(&mdsc->cap_dirty_lock); 1357 list_add(&ci->i_dirty_item, &mdsc->cap_dirty); 1358 spin_unlock(&mdsc->cap_dirty_lock); 1359 if (ci->i_flushing_caps == 0) { 1360 igrab(inode); 1361 dirty |= I_DIRTY_SYNC; 1362 } 1363 } 1364 BUG_ON(list_empty(&ci->i_dirty_item)); 1365 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) && 1366 (mask & CEPH_CAP_FILE_BUFFER)) 1367 dirty |= I_DIRTY_DATASYNC; 1368 if (dirty) 1369 __mark_inode_dirty(inode, dirty); 1370 __cap_delay_requeue(mdsc, ci); 1371 } 1372 1373 /* 1374 * Add dirty inode to the flushing list. Assigned a seq number so we 1375 * can wait for caps to flush without starving. 1376 * 1377 * Called under i_lock. 1378 */ 1379 static int __mark_caps_flushing(struct inode *inode, 1380 struct ceph_mds_session *session) 1381 { 1382 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1383 struct ceph_inode_info *ci = ceph_inode(inode); 1384 int flushing; 1385 1386 BUG_ON(ci->i_dirty_caps == 0); 1387 BUG_ON(list_empty(&ci->i_dirty_item)); 1388 1389 flushing = ci->i_dirty_caps; 1390 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n", 1391 ceph_cap_string(flushing), 1392 ceph_cap_string(ci->i_flushing_caps), 1393 ceph_cap_string(ci->i_flushing_caps | flushing)); 1394 ci->i_flushing_caps |= flushing; 1395 ci->i_dirty_caps = 0; 1396 dout(" inode %p now !dirty\n", inode); 1397 1398 spin_lock(&mdsc->cap_dirty_lock); 1399 list_del_init(&ci->i_dirty_item); 1400 1401 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq; 1402 if (list_empty(&ci->i_flushing_item)) { 1403 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1404 mdsc->num_cap_flushing++; 1405 dout(" inode %p now flushing seq %lld\n", inode, 1406 ci->i_cap_flush_seq); 1407 } else { 1408 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing); 1409 dout(" inode %p now flushing (more) seq %lld\n", inode, 1410 ci->i_cap_flush_seq); 1411 } 1412 spin_unlock(&mdsc->cap_dirty_lock); 1413 1414 return flushing; 1415 } 1416 1417 /* 1418 * try to invalidate mapping pages without blocking. 1419 */ 1420 static int try_nonblocking_invalidate(struct inode *inode) 1421 { 1422 struct ceph_inode_info *ci = ceph_inode(inode); 1423 u32 invalidating_gen = ci->i_rdcache_gen; 1424 1425 spin_unlock(&inode->i_lock); 1426 invalidate_mapping_pages(&inode->i_data, 0, -1); 1427 spin_lock(&inode->i_lock); 1428 1429 if (inode->i_data.nrpages == 0 && 1430 invalidating_gen == ci->i_rdcache_gen) { 1431 /* success. */ 1432 dout("try_nonblocking_invalidate %p success\n", inode); 1433 ci->i_rdcache_gen = 0; 1434 ci->i_rdcache_revoking = 0; 1435 return 0; 1436 } 1437 dout("try_nonblocking_invalidate %p failed\n", inode); 1438 return -1; 1439 } 1440 1441 /* 1442 * Swiss army knife function to examine currently used and wanted 1443 * versus held caps. Release, flush, ack revoked caps to mds as 1444 * appropriate. 1445 * 1446 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay 1447 * cap release further. 1448 * CHECK_CAPS_AUTHONLY - we should only check the auth cap 1449 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without 1450 * further delay. 1451 */ 1452 void ceph_check_caps(struct ceph_inode_info *ci, int flags, 1453 struct ceph_mds_session *session) 1454 { 1455 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1456 struct ceph_mds_client *mdsc = fsc->mdsc; 1457 struct inode *inode = &ci->vfs_inode; 1458 struct ceph_cap *cap; 1459 int file_wanted, used; 1460 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */ 1461 int issued, implemented, want, retain, revoking, flushing = 0; 1462 int mds = -1; /* keep track of how far we've gone through i_caps list 1463 to avoid an infinite loop on retry */ 1464 struct rb_node *p; 1465 int tried_invalidate = 0; 1466 int delayed = 0, sent = 0, force_requeue = 0, num; 1467 int queue_invalidate = 0; 1468 int is_delayed = flags & CHECK_CAPS_NODELAY; 1469 1470 /* if we are unmounting, flush any unused caps immediately. */ 1471 if (mdsc->stopping) 1472 is_delayed = 1; 1473 1474 spin_lock(&inode->i_lock); 1475 1476 if (ci->i_ceph_flags & CEPH_I_FLUSH) 1477 flags |= CHECK_CAPS_FLUSH; 1478 1479 /* flush snaps first time around only */ 1480 if (!list_empty(&ci->i_cap_snaps)) 1481 __ceph_flush_snaps(ci, &session, 0); 1482 goto retry_locked; 1483 retry: 1484 spin_lock(&inode->i_lock); 1485 retry_locked: 1486 file_wanted = __ceph_caps_file_wanted(ci); 1487 used = __ceph_caps_used(ci); 1488 want = file_wanted | used; 1489 issued = __ceph_caps_issued(ci, &implemented); 1490 revoking = implemented & ~issued; 1491 1492 retain = want | CEPH_CAP_PIN; 1493 if (!mdsc->stopping && inode->i_nlink > 0) { 1494 if (want) { 1495 retain |= CEPH_CAP_ANY; /* be greedy */ 1496 } else { 1497 retain |= CEPH_CAP_ANY_SHARED; 1498 /* 1499 * keep RD only if we didn't have the file open RW, 1500 * because then the mds would revoke it anyway to 1501 * journal max_size=0. 1502 */ 1503 if (ci->i_max_size == 0) 1504 retain |= CEPH_CAP_ANY_RD; 1505 } 1506 } 1507 1508 dout("check_caps %p file_want %s used %s dirty %s flushing %s" 1509 " issued %s revoking %s retain %s %s%s%s\n", inode, 1510 ceph_cap_string(file_wanted), 1511 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps), 1512 ceph_cap_string(ci->i_flushing_caps), 1513 ceph_cap_string(issued), ceph_cap_string(revoking), 1514 ceph_cap_string(retain), 1515 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "", 1516 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "", 1517 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : ""); 1518 1519 /* 1520 * If we no longer need to hold onto old our caps, and we may 1521 * have cached pages, but don't want them, then try to invalidate. 1522 * If we fail, it's because pages are locked.... try again later. 1523 */ 1524 if ((!is_delayed || mdsc->stopping) && 1525 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */ 1526 inode->i_data.nrpages && /* have cached pages */ 1527 (file_wanted == 0 || /* no open files */ 1528 (revoking & (CEPH_CAP_FILE_CACHE| 1529 CEPH_CAP_FILE_LAZYIO))) && /* or revoking cache */ 1530 !tried_invalidate) { 1531 dout("check_caps trying to invalidate on %p\n", inode); 1532 if (try_nonblocking_invalidate(inode) < 0) { 1533 if (revoking & (CEPH_CAP_FILE_CACHE| 1534 CEPH_CAP_FILE_LAZYIO)) { 1535 dout("check_caps queuing invalidate\n"); 1536 queue_invalidate = 1; 1537 ci->i_rdcache_revoking = ci->i_rdcache_gen; 1538 } else { 1539 dout("check_caps failed to invalidate pages\n"); 1540 /* we failed to invalidate pages. check these 1541 caps again later. */ 1542 force_requeue = 1; 1543 __cap_set_timeouts(mdsc, ci); 1544 } 1545 } 1546 tried_invalidate = 1; 1547 goto retry_locked; 1548 } 1549 1550 num = 0; 1551 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 1552 cap = rb_entry(p, struct ceph_cap, ci_node); 1553 num++; 1554 1555 /* avoid looping forever */ 1556 if (mds >= cap->mds || 1557 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap)) 1558 continue; 1559 1560 /* NOTE: no side-effects allowed, until we take s_mutex */ 1561 1562 revoking = cap->implemented & ~cap->issued; 1563 if (revoking) 1564 dout(" mds%d revoking %s\n", cap->mds, 1565 ceph_cap_string(revoking)); 1566 1567 if (cap == ci->i_auth_cap && 1568 (cap->issued & CEPH_CAP_FILE_WR)) { 1569 /* request larger max_size from MDS? */ 1570 if (ci->i_wanted_max_size > ci->i_max_size && 1571 ci->i_wanted_max_size > ci->i_requested_max_size) { 1572 dout("requesting new max_size\n"); 1573 goto ack; 1574 } 1575 1576 /* approaching file_max? */ 1577 if ((inode->i_size << 1) >= ci->i_max_size && 1578 (ci->i_reported_size << 1) < ci->i_max_size) { 1579 dout("i_size approaching max_size\n"); 1580 goto ack; 1581 } 1582 } 1583 /* flush anything dirty? */ 1584 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) && 1585 ci->i_dirty_caps) { 1586 dout("flushing dirty caps\n"); 1587 goto ack; 1588 } 1589 1590 /* completed revocation? going down and there are no caps? */ 1591 if (revoking && (revoking & used) == 0) { 1592 dout("completed revocation of %s\n", 1593 ceph_cap_string(cap->implemented & ~cap->issued)); 1594 goto ack; 1595 } 1596 1597 /* want more caps from mds? */ 1598 if (want & ~(cap->mds_wanted | cap->issued)) 1599 goto ack; 1600 1601 /* things we might delay */ 1602 if ((cap->issued & ~retain) == 0 && 1603 cap->mds_wanted == want) 1604 continue; /* nope, all good */ 1605 1606 if (is_delayed) 1607 goto ack; 1608 1609 /* delay? */ 1610 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 && 1611 time_before(jiffies, ci->i_hold_caps_max)) { 1612 dout(" delaying issued %s -> %s, wanted %s -> %s\n", 1613 ceph_cap_string(cap->issued), 1614 ceph_cap_string(cap->issued & retain), 1615 ceph_cap_string(cap->mds_wanted), 1616 ceph_cap_string(want)); 1617 delayed++; 1618 continue; 1619 } 1620 1621 ack: 1622 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1623 dout(" skipping %p I_NOFLUSH set\n", inode); 1624 continue; 1625 } 1626 1627 if (session && session != cap->session) { 1628 dout("oops, wrong session %p mutex\n", session); 1629 mutex_unlock(&session->s_mutex); 1630 session = NULL; 1631 } 1632 if (!session) { 1633 session = cap->session; 1634 if (mutex_trylock(&session->s_mutex) == 0) { 1635 dout("inverting session/ino locks on %p\n", 1636 session); 1637 spin_unlock(&inode->i_lock); 1638 if (took_snap_rwsem) { 1639 up_read(&mdsc->snap_rwsem); 1640 took_snap_rwsem = 0; 1641 } 1642 mutex_lock(&session->s_mutex); 1643 goto retry; 1644 } 1645 } 1646 /* take snap_rwsem after session mutex */ 1647 if (!took_snap_rwsem) { 1648 if (down_read_trylock(&mdsc->snap_rwsem) == 0) { 1649 dout("inverting snap/in locks on %p\n", 1650 inode); 1651 spin_unlock(&inode->i_lock); 1652 down_read(&mdsc->snap_rwsem); 1653 took_snap_rwsem = 1; 1654 goto retry; 1655 } 1656 took_snap_rwsem = 1; 1657 } 1658 1659 if (cap == ci->i_auth_cap && ci->i_dirty_caps) 1660 flushing = __mark_caps_flushing(inode, session); 1661 1662 mds = cap->mds; /* remember mds, so we don't repeat */ 1663 sent++; 1664 1665 /* __send_cap drops i_lock */ 1666 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want, 1667 retain, flushing, NULL); 1668 goto retry; /* retake i_lock and restart our cap scan. */ 1669 } 1670 1671 /* 1672 * Reschedule delayed caps release if we delayed anything, 1673 * otherwise cancel. 1674 */ 1675 if (delayed && is_delayed) 1676 force_requeue = 1; /* __send_cap delayed release; requeue */ 1677 if (!delayed && !is_delayed) 1678 __cap_delay_cancel(mdsc, ci); 1679 else if (!is_delayed || force_requeue) 1680 __cap_delay_requeue(mdsc, ci); 1681 1682 spin_unlock(&inode->i_lock); 1683 1684 if (queue_invalidate) 1685 ceph_queue_invalidate(inode); 1686 1687 if (session) 1688 mutex_unlock(&session->s_mutex); 1689 if (took_snap_rwsem) 1690 up_read(&mdsc->snap_rwsem); 1691 } 1692 1693 /* 1694 * Try to flush dirty caps back to the auth mds. 1695 */ 1696 static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session, 1697 unsigned *flush_tid) 1698 { 1699 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 1700 struct ceph_inode_info *ci = ceph_inode(inode); 1701 int unlock_session = session ? 0 : 1; 1702 int flushing = 0; 1703 1704 retry: 1705 spin_lock(&inode->i_lock); 1706 if (ci->i_ceph_flags & CEPH_I_NOFLUSH) { 1707 dout("try_flush_caps skipping %p I_NOFLUSH set\n", inode); 1708 goto out; 1709 } 1710 if (ci->i_dirty_caps && ci->i_auth_cap) { 1711 struct ceph_cap *cap = ci->i_auth_cap; 1712 int used = __ceph_caps_used(ci); 1713 int want = __ceph_caps_wanted(ci); 1714 int delayed; 1715 1716 if (!session) { 1717 spin_unlock(&inode->i_lock); 1718 session = cap->session; 1719 mutex_lock(&session->s_mutex); 1720 goto retry; 1721 } 1722 BUG_ON(session != cap->session); 1723 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN) 1724 goto out; 1725 1726 flushing = __mark_caps_flushing(inode, session); 1727 1728 /* __send_cap drops i_lock */ 1729 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want, 1730 cap->issued | cap->implemented, flushing, 1731 flush_tid); 1732 if (!delayed) 1733 goto out_unlocked; 1734 1735 spin_lock(&inode->i_lock); 1736 __cap_delay_requeue(mdsc, ci); 1737 } 1738 out: 1739 spin_unlock(&inode->i_lock); 1740 out_unlocked: 1741 if (session && unlock_session) 1742 mutex_unlock(&session->s_mutex); 1743 return flushing; 1744 } 1745 1746 /* 1747 * Return true if we've flushed caps through the given flush_tid. 1748 */ 1749 static int caps_are_flushed(struct inode *inode, unsigned tid) 1750 { 1751 struct ceph_inode_info *ci = ceph_inode(inode); 1752 int i, ret = 1; 1753 1754 spin_lock(&inode->i_lock); 1755 for (i = 0; i < CEPH_CAP_BITS; i++) 1756 if ((ci->i_flushing_caps & (1 << i)) && 1757 ci->i_cap_flush_tid[i] <= tid) { 1758 /* still flushing this bit */ 1759 ret = 0; 1760 break; 1761 } 1762 spin_unlock(&inode->i_lock); 1763 return ret; 1764 } 1765 1766 /* 1767 * Wait on any unsafe replies for the given inode. First wait on the 1768 * newest request, and make that the upper bound. Then, if there are 1769 * more requests, keep waiting on the oldest as long as it is still older 1770 * than the original request. 1771 */ 1772 static void sync_write_wait(struct inode *inode) 1773 { 1774 struct ceph_inode_info *ci = ceph_inode(inode); 1775 struct list_head *head = &ci->i_unsafe_writes; 1776 struct ceph_osd_request *req; 1777 u64 last_tid; 1778 1779 spin_lock(&ci->i_unsafe_lock); 1780 if (list_empty(head)) 1781 goto out; 1782 1783 /* set upper bound as _last_ entry in chain */ 1784 req = list_entry(head->prev, struct ceph_osd_request, 1785 r_unsafe_item); 1786 last_tid = req->r_tid; 1787 1788 do { 1789 ceph_osdc_get_request(req); 1790 spin_unlock(&ci->i_unsafe_lock); 1791 dout("sync_write_wait on tid %llu (until %llu)\n", 1792 req->r_tid, last_tid); 1793 wait_for_completion(&req->r_safe_completion); 1794 spin_lock(&ci->i_unsafe_lock); 1795 ceph_osdc_put_request(req); 1796 1797 /* 1798 * from here on look at first entry in chain, since we 1799 * only want to wait for anything older than last_tid 1800 */ 1801 if (list_empty(head)) 1802 break; 1803 req = list_entry(head->next, struct ceph_osd_request, 1804 r_unsafe_item); 1805 } while (req->r_tid < last_tid); 1806 out: 1807 spin_unlock(&ci->i_unsafe_lock); 1808 } 1809 1810 int ceph_fsync(struct file *file, int datasync) 1811 { 1812 struct inode *inode = file->f_mapping->host; 1813 struct ceph_inode_info *ci = ceph_inode(inode); 1814 unsigned flush_tid; 1815 int ret; 1816 int dirty; 1817 1818 dout("fsync %p%s\n", inode, datasync ? " datasync" : ""); 1819 sync_write_wait(inode); 1820 1821 ret = filemap_write_and_wait(inode->i_mapping); 1822 if (ret < 0) 1823 return ret; 1824 1825 dirty = try_flush_caps(inode, NULL, &flush_tid); 1826 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty)); 1827 1828 /* 1829 * only wait on non-file metadata writeback (the mds 1830 * can recover size and mtime, so we don't need to 1831 * wait for that) 1832 */ 1833 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) { 1834 dout("fsync waiting for flush_tid %u\n", flush_tid); 1835 ret = wait_event_interruptible(ci->i_cap_wq, 1836 caps_are_flushed(inode, flush_tid)); 1837 } 1838 1839 dout("fsync %p%s done\n", inode, datasync ? " datasync" : ""); 1840 return ret; 1841 } 1842 1843 /* 1844 * Flush any dirty caps back to the mds. If we aren't asked to wait, 1845 * queue inode for flush but don't do so immediately, because we can 1846 * get by with fewer MDS messages if we wait for data writeback to 1847 * complete first. 1848 */ 1849 int ceph_write_inode(struct inode *inode, struct writeback_control *wbc) 1850 { 1851 struct ceph_inode_info *ci = ceph_inode(inode); 1852 unsigned flush_tid; 1853 int err = 0; 1854 int dirty; 1855 int wait = wbc->sync_mode == WB_SYNC_ALL; 1856 1857 dout("write_inode %p wait=%d\n", inode, wait); 1858 if (wait) { 1859 dirty = try_flush_caps(inode, NULL, &flush_tid); 1860 if (dirty) 1861 err = wait_event_interruptible(ci->i_cap_wq, 1862 caps_are_flushed(inode, flush_tid)); 1863 } else { 1864 struct ceph_mds_client *mdsc = 1865 ceph_sb_to_client(inode->i_sb)->mdsc; 1866 1867 spin_lock(&inode->i_lock); 1868 if (__ceph_caps_dirty(ci)) 1869 __cap_delay_requeue_front(mdsc, ci); 1870 spin_unlock(&inode->i_lock); 1871 } 1872 return err; 1873 } 1874 1875 /* 1876 * After a recovering MDS goes active, we need to resend any caps 1877 * we were flushing. 1878 * 1879 * Caller holds session->s_mutex. 1880 */ 1881 static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc, 1882 struct ceph_mds_session *session) 1883 { 1884 struct ceph_cap_snap *capsnap; 1885 1886 dout("kick_flushing_capsnaps mds%d\n", session->s_mds); 1887 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing, 1888 flushing_item) { 1889 struct ceph_inode_info *ci = capsnap->ci; 1890 struct inode *inode = &ci->vfs_inode; 1891 struct ceph_cap *cap; 1892 1893 spin_lock(&inode->i_lock); 1894 cap = ci->i_auth_cap; 1895 if (cap && cap->session == session) { 1896 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode, 1897 cap, capsnap); 1898 __ceph_flush_snaps(ci, &session, 1); 1899 } else { 1900 pr_err("%p auth cap %p not mds%d ???\n", inode, 1901 cap, session->s_mds); 1902 } 1903 spin_unlock(&inode->i_lock); 1904 } 1905 } 1906 1907 void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc, 1908 struct ceph_mds_session *session) 1909 { 1910 struct ceph_inode_info *ci; 1911 1912 kick_flushing_capsnaps(mdsc, session); 1913 1914 dout("kick_flushing_caps mds%d\n", session->s_mds); 1915 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) { 1916 struct inode *inode = &ci->vfs_inode; 1917 struct ceph_cap *cap; 1918 int delayed = 0; 1919 1920 spin_lock(&inode->i_lock); 1921 cap = ci->i_auth_cap; 1922 if (cap && cap->session == session) { 1923 dout("kick_flushing_caps %p cap %p %s\n", inode, 1924 cap, ceph_cap_string(ci->i_flushing_caps)); 1925 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, 1926 __ceph_caps_used(ci), 1927 __ceph_caps_wanted(ci), 1928 cap->issued | cap->implemented, 1929 ci->i_flushing_caps, NULL); 1930 if (delayed) { 1931 spin_lock(&inode->i_lock); 1932 __cap_delay_requeue(mdsc, ci); 1933 spin_unlock(&inode->i_lock); 1934 } 1935 } else { 1936 pr_err("%p auth cap %p not mds%d ???\n", inode, 1937 cap, session->s_mds); 1938 spin_unlock(&inode->i_lock); 1939 } 1940 } 1941 } 1942 1943 1944 /* 1945 * Take references to capabilities we hold, so that we don't release 1946 * them to the MDS prematurely. 1947 * 1948 * Protected by i_lock. 1949 */ 1950 static void __take_cap_refs(struct ceph_inode_info *ci, int got) 1951 { 1952 if (got & CEPH_CAP_PIN) 1953 ci->i_pin_ref++; 1954 if (got & CEPH_CAP_FILE_RD) 1955 ci->i_rd_ref++; 1956 if (got & CEPH_CAP_FILE_CACHE) 1957 ci->i_rdcache_ref++; 1958 if (got & CEPH_CAP_FILE_WR) 1959 ci->i_wr_ref++; 1960 if (got & CEPH_CAP_FILE_BUFFER) { 1961 if (ci->i_wrbuffer_ref == 0) 1962 igrab(&ci->vfs_inode); 1963 ci->i_wrbuffer_ref++; 1964 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n", 1965 &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref); 1966 } 1967 } 1968 1969 /* 1970 * Try to grab cap references. Specify those refs we @want, and the 1971 * minimal set we @need. Also include the larger offset we are writing 1972 * to (when applicable), and check against max_size here as well. 1973 * Note that caller is responsible for ensuring max_size increases are 1974 * requested from the MDS. 1975 */ 1976 static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want, 1977 int *got, loff_t endoff, int *check_max, int *err) 1978 { 1979 struct inode *inode = &ci->vfs_inode; 1980 int ret = 0; 1981 int have, implemented; 1982 int file_wanted; 1983 1984 dout("get_cap_refs %p need %s want %s\n", inode, 1985 ceph_cap_string(need), ceph_cap_string(want)); 1986 spin_lock(&inode->i_lock); 1987 1988 /* make sure file is actually open */ 1989 file_wanted = __ceph_caps_file_wanted(ci); 1990 if ((file_wanted & need) == 0) { 1991 dout("try_get_cap_refs need %s file_wanted %s, EBADF\n", 1992 ceph_cap_string(need), ceph_cap_string(file_wanted)); 1993 *err = -EBADF; 1994 ret = 1; 1995 goto out; 1996 } 1997 1998 if (need & CEPH_CAP_FILE_WR) { 1999 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) { 2000 dout("get_cap_refs %p endoff %llu > maxsize %llu\n", 2001 inode, endoff, ci->i_max_size); 2002 if (endoff > ci->i_wanted_max_size) { 2003 *check_max = 1; 2004 ret = 1; 2005 } 2006 goto out; 2007 } 2008 /* 2009 * If a sync write is in progress, we must wait, so that we 2010 * can get a final snapshot value for size+mtime. 2011 */ 2012 if (__ceph_have_pending_cap_snap(ci)) { 2013 dout("get_cap_refs %p cap_snap_pending\n", inode); 2014 goto out; 2015 } 2016 } 2017 have = __ceph_caps_issued(ci, &implemented); 2018 2019 /* 2020 * disallow writes while a truncate is pending 2021 */ 2022 if (ci->i_truncate_pending) 2023 have &= ~CEPH_CAP_FILE_WR; 2024 2025 if ((have & need) == need) { 2026 /* 2027 * Look at (implemented & ~have & not) so that we keep waiting 2028 * on transition from wanted -> needed caps. This is needed 2029 * for WRBUFFER|WR -> WR to avoid a new WR sync write from 2030 * going before a prior buffered writeback happens. 2031 */ 2032 int not = want & ~(have & need); 2033 int revoking = implemented & ~have; 2034 dout("get_cap_refs %p have %s but not %s (revoking %s)\n", 2035 inode, ceph_cap_string(have), ceph_cap_string(not), 2036 ceph_cap_string(revoking)); 2037 if ((revoking & not) == 0) { 2038 *got = need | (have & want); 2039 __take_cap_refs(ci, *got); 2040 ret = 1; 2041 } 2042 } else { 2043 dout("get_cap_refs %p have %s needed %s\n", inode, 2044 ceph_cap_string(have), ceph_cap_string(need)); 2045 } 2046 out: 2047 spin_unlock(&inode->i_lock); 2048 dout("get_cap_refs %p ret %d got %s\n", inode, 2049 ret, ceph_cap_string(*got)); 2050 return ret; 2051 } 2052 2053 /* 2054 * Check the offset we are writing up to against our current 2055 * max_size. If necessary, tell the MDS we want to write to 2056 * a larger offset. 2057 */ 2058 static void check_max_size(struct inode *inode, loff_t endoff) 2059 { 2060 struct ceph_inode_info *ci = ceph_inode(inode); 2061 int check = 0; 2062 2063 /* do we need to explicitly request a larger max_size? */ 2064 spin_lock(&inode->i_lock); 2065 if ((endoff >= ci->i_max_size || 2066 endoff > (inode->i_size << 1)) && 2067 endoff > ci->i_wanted_max_size) { 2068 dout("write %p at large endoff %llu, req max_size\n", 2069 inode, endoff); 2070 ci->i_wanted_max_size = endoff; 2071 check = 1; 2072 } 2073 spin_unlock(&inode->i_lock); 2074 if (check) 2075 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2076 } 2077 2078 /* 2079 * Wait for caps, and take cap references. If we can't get a WR cap 2080 * due to a small max_size, make sure we check_max_size (and possibly 2081 * ask the mds) so we don't get hung up indefinitely. 2082 */ 2083 int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got, 2084 loff_t endoff) 2085 { 2086 int check_max, ret, err; 2087 2088 retry: 2089 if (endoff > 0) 2090 check_max_size(&ci->vfs_inode, endoff); 2091 check_max = 0; 2092 err = 0; 2093 ret = wait_event_interruptible(ci->i_cap_wq, 2094 try_get_cap_refs(ci, need, want, 2095 got, endoff, 2096 &check_max, &err)); 2097 if (err) 2098 ret = err; 2099 if (check_max) 2100 goto retry; 2101 return ret; 2102 } 2103 2104 /* 2105 * Take cap refs. Caller must already know we hold at least one ref 2106 * on the caps in question or we don't know this is safe. 2107 */ 2108 void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps) 2109 { 2110 spin_lock(&ci->vfs_inode.i_lock); 2111 __take_cap_refs(ci, caps); 2112 spin_unlock(&ci->vfs_inode.i_lock); 2113 } 2114 2115 /* 2116 * Release cap refs. 2117 * 2118 * If we released the last ref on any given cap, call ceph_check_caps 2119 * to release (or schedule a release). 2120 * 2121 * If we are releasing a WR cap (from a sync write), finalize any affected 2122 * cap_snap, and wake up any waiters. 2123 */ 2124 void ceph_put_cap_refs(struct ceph_inode_info *ci, int had) 2125 { 2126 struct inode *inode = &ci->vfs_inode; 2127 int last = 0, put = 0, flushsnaps = 0, wake = 0; 2128 struct ceph_cap_snap *capsnap; 2129 2130 spin_lock(&inode->i_lock); 2131 if (had & CEPH_CAP_PIN) 2132 --ci->i_pin_ref; 2133 if (had & CEPH_CAP_FILE_RD) 2134 if (--ci->i_rd_ref == 0) 2135 last++; 2136 if (had & CEPH_CAP_FILE_CACHE) 2137 if (--ci->i_rdcache_ref == 0) 2138 last++; 2139 if (had & CEPH_CAP_FILE_BUFFER) { 2140 if (--ci->i_wrbuffer_ref == 0) { 2141 last++; 2142 put++; 2143 } 2144 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n", 2145 inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref); 2146 } 2147 if (had & CEPH_CAP_FILE_WR) 2148 if (--ci->i_wr_ref == 0) { 2149 last++; 2150 if (!list_empty(&ci->i_cap_snaps)) { 2151 capsnap = list_first_entry(&ci->i_cap_snaps, 2152 struct ceph_cap_snap, 2153 ci_item); 2154 if (capsnap->writing) { 2155 capsnap->writing = 0; 2156 flushsnaps = 2157 __ceph_finish_cap_snap(ci, 2158 capsnap); 2159 wake = 1; 2160 } 2161 } 2162 } 2163 spin_unlock(&inode->i_lock); 2164 2165 dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had), 2166 last ? " last" : "", put ? " put" : ""); 2167 2168 if (last && !flushsnaps) 2169 ceph_check_caps(ci, 0, NULL); 2170 else if (flushsnaps) 2171 ceph_flush_snaps(ci); 2172 if (wake) 2173 wake_up_all(&ci->i_cap_wq); 2174 if (put) 2175 iput(inode); 2176 } 2177 2178 /* 2179 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap 2180 * context. Adjust per-snap dirty page accounting as appropriate. 2181 * Once all dirty data for a cap_snap is flushed, flush snapped file 2182 * metadata back to the MDS. If we dropped the last ref, call 2183 * ceph_check_caps. 2184 */ 2185 void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr, 2186 struct ceph_snap_context *snapc) 2187 { 2188 struct inode *inode = &ci->vfs_inode; 2189 int last = 0; 2190 int complete_capsnap = 0; 2191 int drop_capsnap = 0; 2192 int found = 0; 2193 struct ceph_cap_snap *capsnap = NULL; 2194 2195 spin_lock(&inode->i_lock); 2196 ci->i_wrbuffer_ref -= nr; 2197 last = !ci->i_wrbuffer_ref; 2198 2199 if (ci->i_head_snapc == snapc) { 2200 ci->i_wrbuffer_ref_head -= nr; 2201 if (ci->i_wrbuffer_ref_head == 0 && 2202 ci->i_dirty_caps == 0 && ci->i_flushing_caps == 0) { 2203 BUG_ON(!ci->i_head_snapc); 2204 ceph_put_snap_context(ci->i_head_snapc); 2205 ci->i_head_snapc = NULL; 2206 } 2207 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n", 2208 inode, 2209 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr, 2210 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 2211 last ? " LAST" : ""); 2212 } else { 2213 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2214 if (capsnap->context == snapc) { 2215 found = 1; 2216 break; 2217 } 2218 } 2219 BUG_ON(!found); 2220 capsnap->dirty_pages -= nr; 2221 if (capsnap->dirty_pages == 0) { 2222 complete_capsnap = 1; 2223 if (capsnap->dirty == 0) 2224 /* cap writeback completed before we created 2225 * the cap_snap; no FLUSHSNAP is needed */ 2226 drop_capsnap = 1; 2227 } 2228 dout("put_wrbuffer_cap_refs on %p cap_snap %p " 2229 " snap %lld %d/%d -> %d/%d %s%s%s\n", 2230 inode, capsnap, capsnap->context->seq, 2231 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr, 2232 ci->i_wrbuffer_ref, capsnap->dirty_pages, 2233 last ? " (wrbuffer last)" : "", 2234 complete_capsnap ? " (complete capsnap)" : "", 2235 drop_capsnap ? " (drop capsnap)" : ""); 2236 if (drop_capsnap) { 2237 ceph_put_snap_context(capsnap->context); 2238 list_del(&capsnap->ci_item); 2239 list_del(&capsnap->flushing_item); 2240 ceph_put_cap_snap(capsnap); 2241 } 2242 } 2243 2244 spin_unlock(&inode->i_lock); 2245 2246 if (last) { 2247 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL); 2248 iput(inode); 2249 } else if (complete_capsnap) { 2250 ceph_flush_snaps(ci); 2251 wake_up_all(&ci->i_cap_wq); 2252 } 2253 if (drop_capsnap) 2254 iput(inode); 2255 } 2256 2257 /* 2258 * Handle a cap GRANT message from the MDS. (Note that a GRANT may 2259 * actually be a revocation if it specifies a smaller cap set.) 2260 * 2261 * caller holds s_mutex and i_lock, we drop both. 2262 * 2263 * return value: 2264 * 0 - ok 2265 * 1 - check_caps on auth cap only (writeback) 2266 * 2 - check_caps (ack revoke) 2267 */ 2268 static void handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant, 2269 struct ceph_mds_session *session, 2270 struct ceph_cap *cap, 2271 struct ceph_buffer *xattr_buf) 2272 __releases(inode->i_lock) 2273 { 2274 struct ceph_inode_info *ci = ceph_inode(inode); 2275 int mds = session->s_mds; 2276 unsigned seq = le32_to_cpu(grant->seq); 2277 unsigned issue_seq = le32_to_cpu(grant->issue_seq); 2278 int newcaps = le32_to_cpu(grant->caps); 2279 int issued, implemented, used, wanted, dirty; 2280 u64 size = le64_to_cpu(grant->size); 2281 u64 max_size = le64_to_cpu(grant->max_size); 2282 struct timespec mtime, atime, ctime; 2283 int check_caps = 0; 2284 int wake = 0; 2285 int writeback = 0; 2286 int revoked_rdcache = 0; 2287 int queue_invalidate = 0; 2288 2289 dout("handle_cap_grant inode %p cap %p mds%d seq %u/%u %s\n", 2290 inode, cap, mds, seq, issue_seq, ceph_cap_string(newcaps)); 2291 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size, 2292 inode->i_size); 2293 2294 /* 2295 * If CACHE is being revoked, and we have no dirty buffers, 2296 * try to invalidate (once). (If there are dirty buffers, we 2297 * will invalidate _after_ writeback.) 2298 */ 2299 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) && 2300 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2301 !ci->i_wrbuffer_ref) { 2302 if (try_nonblocking_invalidate(inode) == 0) { 2303 revoked_rdcache = 1; 2304 } else { 2305 /* there were locked pages.. invalidate later 2306 in a separate thread. */ 2307 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) { 2308 queue_invalidate = 1; 2309 ci->i_rdcache_revoking = ci->i_rdcache_gen; 2310 } 2311 } 2312 } 2313 2314 /* side effects now are allowed */ 2315 2316 issued = __ceph_caps_issued(ci, &implemented); 2317 issued |= implemented | __ceph_caps_dirty(ci); 2318 2319 cap->cap_gen = session->s_cap_gen; 2320 2321 __check_cap_issue(ci, cap, newcaps); 2322 2323 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) { 2324 inode->i_mode = le32_to_cpu(grant->mode); 2325 inode->i_uid = le32_to_cpu(grant->uid); 2326 inode->i_gid = le32_to_cpu(grant->gid); 2327 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode, 2328 inode->i_uid, inode->i_gid); 2329 } 2330 2331 if ((issued & CEPH_CAP_LINK_EXCL) == 0) 2332 inode->i_nlink = le32_to_cpu(grant->nlink); 2333 2334 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) { 2335 int len = le32_to_cpu(grant->xattr_len); 2336 u64 version = le64_to_cpu(grant->xattr_version); 2337 2338 if (version > ci->i_xattrs.version) { 2339 dout(" got new xattrs v%llu on %p len %d\n", 2340 version, inode, len); 2341 if (ci->i_xattrs.blob) 2342 ceph_buffer_put(ci->i_xattrs.blob); 2343 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf); 2344 ci->i_xattrs.version = version; 2345 } 2346 } 2347 2348 /* size/ctime/mtime/atime? */ 2349 ceph_fill_file_size(inode, issued, 2350 le32_to_cpu(grant->truncate_seq), 2351 le64_to_cpu(grant->truncate_size), size); 2352 ceph_decode_timespec(&mtime, &grant->mtime); 2353 ceph_decode_timespec(&atime, &grant->atime); 2354 ceph_decode_timespec(&ctime, &grant->ctime); 2355 ceph_fill_file_time(inode, issued, 2356 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime, 2357 &atime); 2358 2359 /* max size increase? */ 2360 if (max_size != ci->i_max_size) { 2361 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size); 2362 ci->i_max_size = max_size; 2363 if (max_size >= ci->i_wanted_max_size) { 2364 ci->i_wanted_max_size = 0; /* reset */ 2365 ci->i_requested_max_size = 0; 2366 } 2367 wake = 1; 2368 } 2369 2370 /* check cap bits */ 2371 wanted = __ceph_caps_wanted(ci); 2372 used = __ceph_caps_used(ci); 2373 dirty = __ceph_caps_dirty(ci); 2374 dout(" my wanted = %s, used = %s, dirty %s\n", 2375 ceph_cap_string(wanted), 2376 ceph_cap_string(used), 2377 ceph_cap_string(dirty)); 2378 if (wanted != le32_to_cpu(grant->wanted)) { 2379 dout("mds wanted %s -> %s\n", 2380 ceph_cap_string(le32_to_cpu(grant->wanted)), 2381 ceph_cap_string(wanted)); 2382 grant->wanted = cpu_to_le32(wanted); 2383 } 2384 2385 cap->seq = seq; 2386 cap->issue_seq = issue_seq; 2387 2388 /* file layout may have changed */ 2389 ci->i_layout = grant->layout; 2390 2391 /* revocation, grant, or no-op? */ 2392 if (cap->issued & ~newcaps) { 2393 int revoking = cap->issued & ~newcaps; 2394 2395 dout("revocation: %s -> %s (revoking %s)\n", 2396 ceph_cap_string(cap->issued), 2397 ceph_cap_string(newcaps), 2398 ceph_cap_string(revoking)); 2399 if (revoking & used & CEPH_CAP_FILE_BUFFER) 2400 writeback = 1; /* initiate writeback; will delay ack */ 2401 else if (revoking == CEPH_CAP_FILE_CACHE && 2402 (newcaps & CEPH_CAP_FILE_LAZYIO) == 0 && 2403 queue_invalidate) 2404 ; /* do nothing yet, invalidation will be queued */ 2405 else if (cap == ci->i_auth_cap) 2406 check_caps = 1; /* check auth cap only */ 2407 else 2408 check_caps = 2; /* check all caps */ 2409 cap->issued = newcaps; 2410 cap->implemented |= newcaps; 2411 } else if (cap->issued == newcaps) { 2412 dout("caps unchanged: %s -> %s\n", 2413 ceph_cap_string(cap->issued), ceph_cap_string(newcaps)); 2414 } else { 2415 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued), 2416 ceph_cap_string(newcaps)); 2417 cap->issued = newcaps; 2418 cap->implemented |= newcaps; /* add bits only, to 2419 * avoid stepping on a 2420 * pending revocation */ 2421 wake = 1; 2422 } 2423 BUG_ON(cap->issued & ~cap->implemented); 2424 2425 spin_unlock(&inode->i_lock); 2426 if (writeback) 2427 /* 2428 * queue inode for writeback: we can't actually call 2429 * filemap_write_and_wait, etc. from message handler 2430 * context. 2431 */ 2432 ceph_queue_writeback(inode); 2433 if (queue_invalidate) 2434 ceph_queue_invalidate(inode); 2435 if (wake) 2436 wake_up_all(&ci->i_cap_wq); 2437 2438 if (check_caps == 1) 2439 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY, 2440 session); 2441 else if (check_caps == 2) 2442 ceph_check_caps(ci, CHECK_CAPS_NODELAY, session); 2443 else 2444 mutex_unlock(&session->s_mutex); 2445 } 2446 2447 /* 2448 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the 2449 * MDS has been safely committed. 2450 */ 2451 static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid, 2452 struct ceph_mds_caps *m, 2453 struct ceph_mds_session *session, 2454 struct ceph_cap *cap) 2455 __releases(inode->i_lock) 2456 { 2457 struct ceph_inode_info *ci = ceph_inode(inode); 2458 struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc; 2459 unsigned seq = le32_to_cpu(m->seq); 2460 int dirty = le32_to_cpu(m->dirty); 2461 int cleaned = 0; 2462 int drop = 0; 2463 int i; 2464 2465 for (i = 0; i < CEPH_CAP_BITS; i++) 2466 if ((dirty & (1 << i)) && 2467 flush_tid == ci->i_cap_flush_tid[i]) 2468 cleaned |= 1 << i; 2469 2470 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s," 2471 " flushing %s -> %s\n", 2472 inode, session->s_mds, seq, ceph_cap_string(dirty), 2473 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps), 2474 ceph_cap_string(ci->i_flushing_caps & ~cleaned)); 2475 2476 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned)) 2477 goto out; 2478 2479 ci->i_flushing_caps &= ~cleaned; 2480 2481 spin_lock(&mdsc->cap_dirty_lock); 2482 if (ci->i_flushing_caps == 0) { 2483 list_del_init(&ci->i_flushing_item); 2484 if (!list_empty(&session->s_cap_flushing)) 2485 dout(" mds%d still flushing cap on %p\n", 2486 session->s_mds, 2487 &list_entry(session->s_cap_flushing.next, 2488 struct ceph_inode_info, 2489 i_flushing_item)->vfs_inode); 2490 mdsc->num_cap_flushing--; 2491 wake_up_all(&mdsc->cap_flushing_wq); 2492 dout(" inode %p now !flushing\n", inode); 2493 2494 if (ci->i_dirty_caps == 0) { 2495 dout(" inode %p now clean\n", inode); 2496 BUG_ON(!list_empty(&ci->i_dirty_item)); 2497 drop = 1; 2498 if (ci->i_wrbuffer_ref_head == 0) { 2499 BUG_ON(!ci->i_head_snapc); 2500 ceph_put_snap_context(ci->i_head_snapc); 2501 ci->i_head_snapc = NULL; 2502 } 2503 } else { 2504 BUG_ON(list_empty(&ci->i_dirty_item)); 2505 } 2506 } 2507 spin_unlock(&mdsc->cap_dirty_lock); 2508 wake_up_all(&ci->i_cap_wq); 2509 2510 out: 2511 spin_unlock(&inode->i_lock); 2512 if (drop) 2513 iput(inode); 2514 } 2515 2516 /* 2517 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can 2518 * throw away our cap_snap. 2519 * 2520 * Caller hold s_mutex. 2521 */ 2522 static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid, 2523 struct ceph_mds_caps *m, 2524 struct ceph_mds_session *session) 2525 { 2526 struct ceph_inode_info *ci = ceph_inode(inode); 2527 u64 follows = le64_to_cpu(m->snap_follows); 2528 struct ceph_cap_snap *capsnap; 2529 int drop = 0; 2530 2531 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n", 2532 inode, ci, session->s_mds, follows); 2533 2534 spin_lock(&inode->i_lock); 2535 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 2536 if (capsnap->follows == follows) { 2537 if (capsnap->flush_tid != flush_tid) { 2538 dout(" cap_snap %p follows %lld tid %lld !=" 2539 " %lld\n", capsnap, follows, 2540 flush_tid, capsnap->flush_tid); 2541 break; 2542 } 2543 WARN_ON(capsnap->dirty_pages || capsnap->writing); 2544 dout(" removing %p cap_snap %p follows %lld\n", 2545 inode, capsnap, follows); 2546 ceph_put_snap_context(capsnap->context); 2547 list_del(&capsnap->ci_item); 2548 list_del(&capsnap->flushing_item); 2549 ceph_put_cap_snap(capsnap); 2550 drop = 1; 2551 break; 2552 } else { 2553 dout(" skipping cap_snap %p follows %lld\n", 2554 capsnap, capsnap->follows); 2555 } 2556 } 2557 spin_unlock(&inode->i_lock); 2558 if (drop) 2559 iput(inode); 2560 } 2561 2562 /* 2563 * Handle TRUNC from MDS, indicating file truncation. 2564 * 2565 * caller hold s_mutex. 2566 */ 2567 static void handle_cap_trunc(struct inode *inode, 2568 struct ceph_mds_caps *trunc, 2569 struct ceph_mds_session *session) 2570 __releases(inode->i_lock) 2571 { 2572 struct ceph_inode_info *ci = ceph_inode(inode); 2573 int mds = session->s_mds; 2574 int seq = le32_to_cpu(trunc->seq); 2575 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq); 2576 u64 truncate_size = le64_to_cpu(trunc->truncate_size); 2577 u64 size = le64_to_cpu(trunc->size); 2578 int implemented = 0; 2579 int dirty = __ceph_caps_dirty(ci); 2580 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented); 2581 int queue_trunc = 0; 2582 2583 issued |= implemented | dirty; 2584 2585 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n", 2586 inode, mds, seq, truncate_size, truncate_seq); 2587 queue_trunc = ceph_fill_file_size(inode, issued, 2588 truncate_seq, truncate_size, size); 2589 spin_unlock(&inode->i_lock); 2590 2591 if (queue_trunc) 2592 ceph_queue_vmtruncate(inode); 2593 } 2594 2595 /* 2596 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a 2597 * different one. If we are the most recent migration we've seen (as 2598 * indicated by mseq), make note of the migrating cap bits for the 2599 * duration (until we see the corresponding IMPORT). 2600 * 2601 * caller holds s_mutex 2602 */ 2603 static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex, 2604 struct ceph_mds_session *session, 2605 int *open_target_sessions) 2606 { 2607 struct ceph_inode_info *ci = ceph_inode(inode); 2608 int mds = session->s_mds; 2609 unsigned mseq = le32_to_cpu(ex->migrate_seq); 2610 struct ceph_cap *cap = NULL, *t; 2611 struct rb_node *p; 2612 int remember = 1; 2613 2614 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n", 2615 inode, ci, mds, mseq); 2616 2617 spin_lock(&inode->i_lock); 2618 2619 /* make sure we haven't seen a higher mseq */ 2620 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) { 2621 t = rb_entry(p, struct ceph_cap, ci_node); 2622 if (ceph_seq_cmp(t->mseq, mseq) > 0) { 2623 dout(" higher mseq on cap from mds%d\n", 2624 t->session->s_mds); 2625 remember = 0; 2626 } 2627 if (t->session->s_mds == mds) 2628 cap = t; 2629 } 2630 2631 if (cap) { 2632 if (remember) { 2633 /* make note */ 2634 ci->i_cap_exporting_mds = mds; 2635 ci->i_cap_exporting_mseq = mseq; 2636 ci->i_cap_exporting_issued = cap->issued; 2637 2638 /* 2639 * make sure we have open sessions with all possible 2640 * export targets, so that we get the matching IMPORT 2641 */ 2642 *open_target_sessions = 1; 2643 } 2644 __ceph_remove_cap(cap); 2645 } 2646 /* else, we already released it */ 2647 2648 spin_unlock(&inode->i_lock); 2649 } 2650 2651 /* 2652 * Handle cap IMPORT. If there are temp bits from an older EXPORT, 2653 * clean them up. 2654 * 2655 * caller holds s_mutex. 2656 */ 2657 static void handle_cap_import(struct ceph_mds_client *mdsc, 2658 struct inode *inode, struct ceph_mds_caps *im, 2659 struct ceph_mds_session *session, 2660 void *snaptrace, int snaptrace_len) 2661 { 2662 struct ceph_inode_info *ci = ceph_inode(inode); 2663 int mds = session->s_mds; 2664 unsigned issued = le32_to_cpu(im->caps); 2665 unsigned wanted = le32_to_cpu(im->wanted); 2666 unsigned seq = le32_to_cpu(im->seq); 2667 unsigned mseq = le32_to_cpu(im->migrate_seq); 2668 u64 realmino = le64_to_cpu(im->realm); 2669 u64 cap_id = le64_to_cpu(im->cap_id); 2670 2671 if (ci->i_cap_exporting_mds >= 0 && 2672 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) { 2673 dout("handle_cap_import inode %p ci %p mds%d mseq %d" 2674 " - cleared exporting from mds%d\n", 2675 inode, ci, mds, mseq, 2676 ci->i_cap_exporting_mds); 2677 ci->i_cap_exporting_issued = 0; 2678 ci->i_cap_exporting_mseq = 0; 2679 ci->i_cap_exporting_mds = -1; 2680 } else { 2681 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n", 2682 inode, ci, mds, mseq); 2683 } 2684 2685 down_write(&mdsc->snap_rwsem); 2686 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len, 2687 false); 2688 downgrade_write(&mdsc->snap_rwsem); 2689 ceph_add_cap(inode, session, cap_id, -1, 2690 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH, 2691 NULL /* no caps context */); 2692 try_flush_caps(inode, session, NULL); 2693 up_read(&mdsc->snap_rwsem); 2694 } 2695 2696 /* 2697 * Handle a caps message from the MDS. 2698 * 2699 * Identify the appropriate session, inode, and call the right handler 2700 * based on the cap op. 2701 */ 2702 void ceph_handle_caps(struct ceph_mds_session *session, 2703 struct ceph_msg *msg) 2704 { 2705 struct ceph_mds_client *mdsc = session->s_mdsc; 2706 struct super_block *sb = mdsc->fsc->sb; 2707 struct inode *inode; 2708 struct ceph_cap *cap; 2709 struct ceph_mds_caps *h; 2710 int mds = session->s_mds; 2711 int op; 2712 u32 seq, mseq; 2713 struct ceph_vino vino; 2714 u64 cap_id; 2715 u64 size, max_size; 2716 u64 tid; 2717 void *snaptrace; 2718 size_t snaptrace_len; 2719 void *flock; 2720 u32 flock_len; 2721 int open_target_sessions = 0; 2722 2723 dout("handle_caps from mds%d\n", mds); 2724 2725 /* decode */ 2726 tid = le64_to_cpu(msg->hdr.tid); 2727 if (msg->front.iov_len < sizeof(*h)) 2728 goto bad; 2729 h = msg->front.iov_base; 2730 op = le32_to_cpu(h->op); 2731 vino.ino = le64_to_cpu(h->ino); 2732 vino.snap = CEPH_NOSNAP; 2733 cap_id = le64_to_cpu(h->cap_id); 2734 seq = le32_to_cpu(h->seq); 2735 mseq = le32_to_cpu(h->migrate_seq); 2736 size = le64_to_cpu(h->size); 2737 max_size = le64_to_cpu(h->max_size); 2738 2739 snaptrace = h + 1; 2740 snaptrace_len = le32_to_cpu(h->snap_trace_len); 2741 2742 if (le16_to_cpu(msg->hdr.version) >= 2) { 2743 void *p, *end; 2744 2745 p = snaptrace + snaptrace_len; 2746 end = msg->front.iov_base + msg->front.iov_len; 2747 ceph_decode_32_safe(&p, end, flock_len, bad); 2748 flock = p; 2749 } else { 2750 flock = NULL; 2751 flock_len = 0; 2752 } 2753 2754 mutex_lock(&session->s_mutex); 2755 session->s_seq++; 2756 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq, 2757 (unsigned)seq); 2758 2759 /* lookup ino */ 2760 inode = ceph_find_inode(sb, vino); 2761 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino, 2762 vino.snap, inode); 2763 if (!inode) { 2764 dout(" i don't have ino %llx\n", vino.ino); 2765 2766 if (op == CEPH_CAP_OP_IMPORT) 2767 __queue_cap_release(session, vino.ino, cap_id, 2768 mseq, seq); 2769 goto flush_cap_releases; 2770 } 2771 2772 /* these will work even if we don't have a cap yet */ 2773 switch (op) { 2774 case CEPH_CAP_OP_FLUSHSNAP_ACK: 2775 handle_cap_flushsnap_ack(inode, tid, h, session); 2776 goto done; 2777 2778 case CEPH_CAP_OP_EXPORT: 2779 handle_cap_export(inode, h, session, &open_target_sessions); 2780 goto done; 2781 2782 case CEPH_CAP_OP_IMPORT: 2783 handle_cap_import(mdsc, inode, h, session, 2784 snaptrace, snaptrace_len); 2785 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, 2786 session); 2787 goto done_unlocked; 2788 } 2789 2790 /* the rest require a cap */ 2791 spin_lock(&inode->i_lock); 2792 cap = __get_cap_for_mds(ceph_inode(inode), mds); 2793 if (!cap) { 2794 dout(" no cap on %p ino %llx.%llx from mds%d\n", 2795 inode, ceph_ino(inode), ceph_snap(inode), mds); 2796 spin_unlock(&inode->i_lock); 2797 goto flush_cap_releases; 2798 } 2799 2800 /* note that each of these drops i_lock for us */ 2801 switch (op) { 2802 case CEPH_CAP_OP_REVOKE: 2803 case CEPH_CAP_OP_GRANT: 2804 handle_cap_grant(inode, h, session, cap, msg->middle); 2805 goto done_unlocked; 2806 2807 case CEPH_CAP_OP_FLUSH_ACK: 2808 handle_cap_flush_ack(inode, tid, h, session, cap); 2809 break; 2810 2811 case CEPH_CAP_OP_TRUNC: 2812 handle_cap_trunc(inode, h, session); 2813 break; 2814 2815 default: 2816 spin_unlock(&inode->i_lock); 2817 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op, 2818 ceph_cap_op_name(op)); 2819 } 2820 2821 goto done; 2822 2823 flush_cap_releases: 2824 /* 2825 * send any full release message to try to move things 2826 * along for the mds (who clearly thinks we still have this 2827 * cap). 2828 */ 2829 ceph_add_cap_releases(mdsc, session); 2830 ceph_send_cap_releases(mdsc, session); 2831 2832 done: 2833 mutex_unlock(&session->s_mutex); 2834 done_unlocked: 2835 if (inode) 2836 iput(inode); 2837 if (open_target_sessions) 2838 ceph_mdsc_open_export_target_sessions(mdsc, session); 2839 return; 2840 2841 bad: 2842 pr_err("ceph_handle_caps: corrupt message\n"); 2843 ceph_msg_dump(msg); 2844 return; 2845 } 2846 2847 /* 2848 * Delayed work handler to process end of delayed cap release LRU list. 2849 */ 2850 void ceph_check_delayed_caps(struct ceph_mds_client *mdsc) 2851 { 2852 struct ceph_inode_info *ci; 2853 int flags = CHECK_CAPS_NODELAY; 2854 2855 dout("check_delayed_caps\n"); 2856 while (1) { 2857 spin_lock(&mdsc->cap_delay_lock); 2858 if (list_empty(&mdsc->cap_delay_list)) 2859 break; 2860 ci = list_first_entry(&mdsc->cap_delay_list, 2861 struct ceph_inode_info, 2862 i_cap_delay_list); 2863 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 && 2864 time_before(jiffies, ci->i_hold_caps_max)) 2865 break; 2866 list_del_init(&ci->i_cap_delay_list); 2867 spin_unlock(&mdsc->cap_delay_lock); 2868 dout("check_delayed_caps on %p\n", &ci->vfs_inode); 2869 ceph_check_caps(ci, flags, NULL); 2870 } 2871 spin_unlock(&mdsc->cap_delay_lock); 2872 } 2873 2874 /* 2875 * Flush all dirty caps to the mds 2876 */ 2877 void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc) 2878 { 2879 struct ceph_inode_info *ci, *nci = NULL; 2880 struct inode *inode, *ninode = NULL; 2881 struct list_head *p, *n; 2882 2883 dout("flush_dirty_caps\n"); 2884 spin_lock(&mdsc->cap_dirty_lock); 2885 list_for_each_safe(p, n, &mdsc->cap_dirty) { 2886 if (nci) { 2887 ci = nci; 2888 inode = ninode; 2889 ci->i_ceph_flags &= ~CEPH_I_NOFLUSH; 2890 dout("flush_dirty_caps inode %p (was next inode)\n", 2891 inode); 2892 } else { 2893 ci = list_entry(p, struct ceph_inode_info, 2894 i_dirty_item); 2895 inode = igrab(&ci->vfs_inode); 2896 BUG_ON(!inode); 2897 dout("flush_dirty_caps inode %p\n", inode); 2898 } 2899 if (n != &mdsc->cap_dirty) { 2900 nci = list_entry(n, struct ceph_inode_info, 2901 i_dirty_item); 2902 ninode = igrab(&nci->vfs_inode); 2903 BUG_ON(!ninode); 2904 nci->i_ceph_flags |= CEPH_I_NOFLUSH; 2905 dout("flush_dirty_caps next inode %p, noflush\n", 2906 ninode); 2907 } else { 2908 nci = NULL; 2909 ninode = NULL; 2910 } 2911 spin_unlock(&mdsc->cap_dirty_lock); 2912 if (inode) { 2913 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH, 2914 NULL); 2915 iput(inode); 2916 } 2917 spin_lock(&mdsc->cap_dirty_lock); 2918 } 2919 spin_unlock(&mdsc->cap_dirty_lock); 2920 } 2921 2922 /* 2923 * Drop open file reference. If we were the last open file, 2924 * we may need to release capabilities to the MDS (or schedule 2925 * their delayed release). 2926 */ 2927 void ceph_put_fmode(struct ceph_inode_info *ci, int fmode) 2928 { 2929 struct inode *inode = &ci->vfs_inode; 2930 int last = 0; 2931 2932 spin_lock(&inode->i_lock); 2933 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode, 2934 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1); 2935 BUG_ON(ci->i_nr_by_mode[fmode] == 0); 2936 if (--ci->i_nr_by_mode[fmode] == 0) 2937 last++; 2938 spin_unlock(&inode->i_lock); 2939 2940 if (last && ci->i_vino.snap == CEPH_NOSNAP) 2941 ceph_check_caps(ci, 0, NULL); 2942 } 2943 2944 /* 2945 * Helpers for embedding cap and dentry lease releases into mds 2946 * requests. 2947 * 2948 * @force is used by dentry_release (below) to force inclusion of a 2949 * record for the directory inode, even when there aren't any caps to 2950 * drop. 2951 */ 2952 int ceph_encode_inode_release(void **p, struct inode *inode, 2953 int mds, int drop, int unless, int force) 2954 { 2955 struct ceph_inode_info *ci = ceph_inode(inode); 2956 struct ceph_cap *cap; 2957 struct ceph_mds_request_release *rel = *p; 2958 int used, dirty; 2959 int ret = 0; 2960 2961 spin_lock(&inode->i_lock); 2962 used = __ceph_caps_used(ci); 2963 dirty = __ceph_caps_dirty(ci); 2964 2965 dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n", 2966 inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop), 2967 ceph_cap_string(unless)); 2968 2969 /* only drop unused, clean caps */ 2970 drop &= ~(used | dirty); 2971 2972 cap = __get_cap_for_mds(ci, mds); 2973 if (cap && __cap_is_valid(cap)) { 2974 if (force || 2975 ((cap->issued & drop) && 2976 (cap->issued & unless) == 0)) { 2977 if ((cap->issued & drop) && 2978 (cap->issued & unless) == 0) { 2979 dout("encode_inode_release %p cap %p %s -> " 2980 "%s\n", inode, cap, 2981 ceph_cap_string(cap->issued), 2982 ceph_cap_string(cap->issued & ~drop)); 2983 cap->issued &= ~drop; 2984 cap->implemented &= ~drop; 2985 if (ci->i_ceph_flags & CEPH_I_NODELAY) { 2986 int wanted = __ceph_caps_wanted(ci); 2987 dout(" wanted %s -> %s (act %s)\n", 2988 ceph_cap_string(cap->mds_wanted), 2989 ceph_cap_string(cap->mds_wanted & 2990 ~wanted), 2991 ceph_cap_string(wanted)); 2992 cap->mds_wanted &= wanted; 2993 } 2994 } else { 2995 dout("encode_inode_release %p cap %p %s" 2996 " (force)\n", inode, cap, 2997 ceph_cap_string(cap->issued)); 2998 } 2999 3000 rel->ino = cpu_to_le64(ceph_ino(inode)); 3001 rel->cap_id = cpu_to_le64(cap->cap_id); 3002 rel->seq = cpu_to_le32(cap->seq); 3003 rel->issue_seq = cpu_to_le32(cap->issue_seq), 3004 rel->mseq = cpu_to_le32(cap->mseq); 3005 rel->caps = cpu_to_le32(cap->issued); 3006 rel->wanted = cpu_to_le32(cap->mds_wanted); 3007 rel->dname_len = 0; 3008 rel->dname_seq = 0; 3009 *p += sizeof(*rel); 3010 ret = 1; 3011 } else { 3012 dout("encode_inode_release %p cap %p %s\n", 3013 inode, cap, ceph_cap_string(cap->issued)); 3014 } 3015 } 3016 spin_unlock(&inode->i_lock); 3017 return ret; 3018 } 3019 3020 int ceph_encode_dentry_release(void **p, struct dentry *dentry, 3021 int mds, int drop, int unless) 3022 { 3023 struct inode *dir = dentry->d_parent->d_inode; 3024 struct ceph_mds_request_release *rel = *p; 3025 struct ceph_dentry_info *di = ceph_dentry(dentry); 3026 int force = 0; 3027 int ret; 3028 3029 /* 3030 * force an record for the directory caps if we have a dentry lease. 3031 * this is racy (can't take i_lock and d_lock together), but it 3032 * doesn't have to be perfect; the mds will revoke anything we don't 3033 * release. 3034 */ 3035 spin_lock(&dentry->d_lock); 3036 if (di->lease_session && di->lease_session->s_mds == mds) 3037 force = 1; 3038 spin_unlock(&dentry->d_lock); 3039 3040 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force); 3041 3042 spin_lock(&dentry->d_lock); 3043 if (ret && di->lease_session && di->lease_session->s_mds == mds) { 3044 dout("encode_dentry_release %p mds%d seq %d\n", 3045 dentry, mds, (int)di->lease_seq); 3046 rel->dname_len = cpu_to_le32(dentry->d_name.len); 3047 memcpy(*p, dentry->d_name.name, dentry->d_name.len); 3048 *p += dentry->d_name.len; 3049 rel->dname_seq = cpu_to_le32(di->lease_seq); 3050 __ceph_mdsc_drop_dentry_lease(dentry); 3051 } 3052 spin_unlock(&dentry->d_lock); 3053 return ret; 3054 } 3055