1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/ceph/ceph_debug.h> 3 4 #include <linux/backing-dev.h> 5 #include <linux/fs.h> 6 #include <linux/mm.h> 7 #include <linux/swap.h> 8 #include <linux/pagemap.h> 9 #include <linux/slab.h> 10 #include <linux/pagevec.h> 11 #include <linux/task_io_accounting_ops.h> 12 #include <linux/signal.h> 13 #include <linux/iversion.h> 14 #include <linux/ktime.h> 15 #include <linux/netfs.h> 16 17 #include "super.h" 18 #include "mds_client.h" 19 #include "cache.h" 20 #include "metric.h" 21 #include <linux/ceph/osd_client.h> 22 #include <linux/ceph/striper.h> 23 24 /* 25 * Ceph address space ops. 26 * 27 * There are a few funny things going on here. 28 * 29 * The page->private field is used to reference a struct 30 * ceph_snap_context for _every_ dirty page. This indicates which 31 * snapshot the page was logically dirtied in, and thus which snap 32 * context needs to be associated with the osd write during writeback. 33 * 34 * Similarly, struct ceph_inode_info maintains a set of counters to 35 * count dirty pages on the inode. In the absence of snapshots, 36 * i_wrbuffer_ref == i_wrbuffer_ref_head == the dirty page count. 37 * 38 * When a snapshot is taken (that is, when the client receives 39 * notification that a snapshot was taken), each inode with caps and 40 * with dirty pages (dirty pages implies there is a cap) gets a new 41 * ceph_cap_snap in the i_cap_snaps list (which is sorted in ascending 42 * order, new snaps go to the tail). The i_wrbuffer_ref_head count is 43 * moved to capsnap->dirty. (Unless a sync write is currently in 44 * progress. In that case, the capsnap is said to be "pending", new 45 * writes cannot start, and the capsnap isn't "finalized" until the 46 * write completes (or fails) and a final size/mtime for the inode for 47 * that snap can be settled upon.) i_wrbuffer_ref_head is reset to 0. 48 * 49 * On writeback, we must submit writes to the osd IN SNAP ORDER. So, 50 * we look for the first capsnap in i_cap_snaps and write out pages in 51 * that snap context _only_. Then we move on to the next capsnap, 52 * eventually reaching the "live" or "head" context (i.e., pages that 53 * are not yet snapped) and are writing the most recently dirtied 54 * pages. 55 * 56 * Invalidate and so forth must take care to ensure the dirty page 57 * accounting is preserved. 58 */ 59 60 #define CONGESTION_ON_THRESH(congestion_kb) (congestion_kb >> (PAGE_SHIFT-10)) 61 #define CONGESTION_OFF_THRESH(congestion_kb) \ 62 (CONGESTION_ON_THRESH(congestion_kb) - \ 63 (CONGESTION_ON_THRESH(congestion_kb) >> 2)) 64 65 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len, 66 struct folio *folio, void **_fsdata); 67 68 static inline struct ceph_snap_context *page_snap_context(struct page *page) 69 { 70 if (PagePrivate(page)) 71 return (void *)page->private; 72 return NULL; 73 } 74 75 /* 76 * Dirty a page. Optimistically adjust accounting, on the assumption 77 * that we won't race with invalidate. If we do, readjust. 78 */ 79 static bool ceph_dirty_folio(struct address_space *mapping, struct folio *folio) 80 { 81 struct inode *inode; 82 struct ceph_inode_info *ci; 83 struct ceph_snap_context *snapc; 84 85 if (folio_test_dirty(folio)) { 86 dout("%p dirty_folio %p idx %lu -- already dirty\n", 87 mapping->host, folio, folio->index); 88 BUG_ON(!folio_get_private(folio)); 89 return false; 90 } 91 92 inode = mapping->host; 93 ci = ceph_inode(inode); 94 95 /* dirty the head */ 96 spin_lock(&ci->i_ceph_lock); 97 BUG_ON(ci->i_wr_ref == 0); // caller should hold Fw reference 98 if (__ceph_have_pending_cap_snap(ci)) { 99 struct ceph_cap_snap *capsnap = 100 list_last_entry(&ci->i_cap_snaps, 101 struct ceph_cap_snap, 102 ci_item); 103 snapc = ceph_get_snap_context(capsnap->context); 104 capsnap->dirty_pages++; 105 } else { 106 BUG_ON(!ci->i_head_snapc); 107 snapc = ceph_get_snap_context(ci->i_head_snapc); 108 ++ci->i_wrbuffer_ref_head; 109 } 110 if (ci->i_wrbuffer_ref == 0) 111 ihold(inode); 112 ++ci->i_wrbuffer_ref; 113 dout("%p dirty_folio %p idx %lu head %d/%d -> %d/%d " 114 "snapc %p seq %lld (%d snaps)\n", 115 mapping->host, folio, folio->index, 116 ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref_head-1, 117 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head, 118 snapc, snapc->seq, snapc->num_snaps); 119 spin_unlock(&ci->i_ceph_lock); 120 121 /* 122 * Reference snap context in folio->private. Also set 123 * PagePrivate so that we get invalidate_folio callback. 124 */ 125 BUG_ON(folio_get_private(folio)); 126 folio_attach_private(folio, snapc); 127 128 return ceph_fscache_dirty_folio(mapping, folio); 129 } 130 131 /* 132 * If we are truncating the full folio (i.e. offset == 0), adjust the 133 * dirty folio counters appropriately. Only called if there is private 134 * data on the folio. 135 */ 136 static void ceph_invalidate_folio(struct folio *folio, size_t offset, 137 size_t length) 138 { 139 struct inode *inode; 140 struct ceph_inode_info *ci; 141 struct ceph_snap_context *snapc; 142 143 inode = folio->mapping->host; 144 ci = ceph_inode(inode); 145 146 if (offset != 0 || length != folio_size(folio)) { 147 dout("%p invalidate_folio idx %lu partial dirty page %zu~%zu\n", 148 inode, folio->index, offset, length); 149 return; 150 } 151 152 WARN_ON(!folio_test_locked(folio)); 153 if (folio_get_private(folio)) { 154 dout("%p invalidate_folio idx %lu full dirty page\n", 155 inode, folio->index); 156 157 snapc = folio_detach_private(folio); 158 ceph_put_wrbuffer_cap_refs(ci, 1, snapc); 159 ceph_put_snap_context(snapc); 160 } 161 162 folio_wait_fscache(folio); 163 } 164 165 static int ceph_releasepage(struct page *page, gfp_t gfp) 166 { 167 struct inode *inode = page->mapping->host; 168 169 dout("%llx:%llx releasepage %p idx %lu (%sdirty)\n", 170 ceph_vinop(inode), page, 171 page->index, PageDirty(page) ? "" : "not "); 172 173 if (PagePrivate(page)) 174 return 0; 175 176 if (PageFsCache(page)) { 177 if (current_is_kswapd() || !(gfp & __GFP_FS)) 178 return 0; 179 wait_on_page_fscache(page); 180 } 181 ceph_fscache_note_page_release(inode); 182 return 1; 183 } 184 185 static void ceph_netfs_expand_readahead(struct netfs_io_request *rreq) 186 { 187 struct inode *inode = rreq->inode; 188 struct ceph_inode_info *ci = ceph_inode(inode); 189 struct ceph_file_layout *lo = &ci->i_layout; 190 u32 blockoff; 191 u64 blockno; 192 193 /* Expand the start downward */ 194 blockno = div_u64_rem(rreq->start, lo->stripe_unit, &blockoff); 195 rreq->start = blockno * lo->stripe_unit; 196 rreq->len += blockoff; 197 198 /* Now, round up the length to the next block */ 199 rreq->len = roundup(rreq->len, lo->stripe_unit); 200 } 201 202 static bool ceph_netfs_clamp_length(struct netfs_io_subrequest *subreq) 203 { 204 struct inode *inode = subreq->rreq->inode; 205 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 206 struct ceph_inode_info *ci = ceph_inode(inode); 207 u64 objno, objoff; 208 u32 xlen; 209 210 /* Truncate the extent at the end of the current block */ 211 ceph_calc_file_object_mapping(&ci->i_layout, subreq->start, subreq->len, 212 &objno, &objoff, &xlen); 213 subreq->len = min(xlen, fsc->mount_options->rsize); 214 return true; 215 } 216 217 static void finish_netfs_read(struct ceph_osd_request *req) 218 { 219 struct ceph_fs_client *fsc = ceph_inode_to_client(req->r_inode); 220 struct ceph_osd_data *osd_data = osd_req_op_extent_osd_data(req, 0); 221 struct netfs_io_subrequest *subreq = req->r_priv; 222 int num_pages; 223 int err = req->r_result; 224 225 ceph_update_read_metrics(&fsc->mdsc->metric, req->r_start_latency, 226 req->r_end_latency, osd_data->length, err); 227 228 dout("%s: result %d subreq->len=%zu i_size=%lld\n", __func__, req->r_result, 229 subreq->len, i_size_read(req->r_inode)); 230 231 /* no object means success but no data */ 232 if (err == -ENOENT) 233 err = 0; 234 else if (err == -EBLOCKLISTED) 235 fsc->blocklisted = true; 236 237 if (err >= 0 && err < subreq->len) 238 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 239 240 netfs_subreq_terminated(subreq, err, true); 241 242 num_pages = calc_pages_for(osd_data->alignment, osd_data->length); 243 ceph_put_page_vector(osd_data->pages, num_pages, false); 244 iput(req->r_inode); 245 } 246 247 static bool ceph_netfs_issue_op_inline(struct netfs_io_subrequest *subreq) 248 { 249 struct netfs_io_request *rreq = subreq->rreq; 250 struct inode *inode = rreq->inode; 251 struct ceph_mds_reply_info_parsed *rinfo; 252 struct ceph_mds_reply_info_in *iinfo; 253 struct ceph_mds_request *req; 254 struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb); 255 struct ceph_inode_info *ci = ceph_inode(inode); 256 struct iov_iter iter; 257 ssize_t err = 0; 258 size_t len; 259 260 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags); 261 __clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags); 262 263 if (subreq->start >= inode->i_size) 264 goto out; 265 266 /* We need to fetch the inline data. */ 267 req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, USE_ANY_MDS); 268 if (IS_ERR(req)) { 269 err = PTR_ERR(req); 270 goto out; 271 } 272 req->r_ino1 = ci->i_vino; 273 req->r_args.getattr.mask = cpu_to_le32(CEPH_STAT_CAP_INLINE_DATA); 274 req->r_num_caps = 2; 275 276 err = ceph_mdsc_do_request(mdsc, NULL, req); 277 if (err < 0) 278 goto out; 279 280 rinfo = &req->r_reply_info; 281 iinfo = &rinfo->targeti; 282 if (iinfo->inline_version == CEPH_INLINE_NONE) { 283 /* The data got uninlined */ 284 ceph_mdsc_put_request(req); 285 return false; 286 } 287 288 len = min_t(size_t, iinfo->inline_len - subreq->start, subreq->len); 289 iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, subreq->start, len); 290 err = copy_to_iter(iinfo->inline_data + subreq->start, len, &iter); 291 if (err == 0) 292 err = -EFAULT; 293 294 ceph_mdsc_put_request(req); 295 out: 296 netfs_subreq_terminated(subreq, err, false); 297 return true; 298 } 299 300 static void ceph_netfs_issue_read(struct netfs_io_subrequest *subreq) 301 { 302 struct netfs_io_request *rreq = subreq->rreq; 303 struct inode *inode = rreq->inode; 304 struct ceph_inode_info *ci = ceph_inode(inode); 305 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 306 struct ceph_osd_request *req; 307 struct ceph_vino vino = ceph_vino(inode); 308 struct iov_iter iter; 309 struct page **pages; 310 size_t page_off; 311 int err = 0; 312 u64 len = subreq->len; 313 314 if (ci->i_inline_version != CEPH_INLINE_NONE && 315 ceph_netfs_issue_op_inline(subreq)) 316 return; 317 318 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino, subreq->start, &len, 319 0, 1, CEPH_OSD_OP_READ, 320 CEPH_OSD_FLAG_READ | fsc->client->osdc.client->options->read_from_replica, 321 NULL, ci->i_truncate_seq, ci->i_truncate_size, false); 322 if (IS_ERR(req)) { 323 err = PTR_ERR(req); 324 req = NULL; 325 goto out; 326 } 327 328 dout("%s: pos=%llu orig_len=%zu len=%llu\n", __func__, subreq->start, subreq->len, len); 329 iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages, subreq->start, len); 330 err = iov_iter_get_pages_alloc(&iter, &pages, len, &page_off); 331 if (err < 0) { 332 dout("%s: iov_ter_get_pages_alloc returned %d\n", __func__, err); 333 goto out; 334 } 335 336 /* should always give us a page-aligned read */ 337 WARN_ON_ONCE(page_off); 338 len = err; 339 340 osd_req_op_extent_osd_data_pages(req, 0, pages, len, 0, false, false); 341 req->r_callback = finish_netfs_read; 342 req->r_priv = subreq; 343 req->r_inode = inode; 344 ihold(inode); 345 346 err = ceph_osdc_start_request(req->r_osdc, req, false); 347 if (err) 348 iput(inode); 349 out: 350 ceph_osdc_put_request(req); 351 if (err) 352 netfs_subreq_terminated(subreq, err, false); 353 dout("%s: result %d\n", __func__, err); 354 } 355 356 static int ceph_init_request(struct netfs_io_request *rreq, struct file *file) 357 { 358 struct inode *inode = rreq->inode; 359 int got = 0, want = CEPH_CAP_FILE_CACHE; 360 int ret = 0; 361 362 if (rreq->origin != NETFS_READAHEAD) 363 return 0; 364 365 if (file) { 366 struct ceph_rw_context *rw_ctx; 367 struct ceph_file_info *fi = file->private_data; 368 369 rw_ctx = ceph_find_rw_context(fi); 370 if (rw_ctx) 371 return 0; 372 } 373 374 /* 375 * readahead callers do not necessarily hold Fcb caps 376 * (e.g. fadvise, madvise). 377 */ 378 ret = ceph_try_get_caps(inode, CEPH_CAP_FILE_RD, want, true, &got); 379 if (ret < 0) { 380 dout("start_read %p, error getting cap\n", inode); 381 return ret; 382 } 383 384 if (!(got & want)) { 385 dout("start_read %p, no cache cap\n", inode); 386 return -EACCES; 387 } 388 if (ret == 0) 389 return -EACCES; 390 391 rreq->netfs_priv = (void *)(uintptr_t)got; 392 return 0; 393 } 394 395 static void ceph_readahead_cleanup(struct address_space *mapping, void *priv) 396 { 397 struct inode *inode = mapping->host; 398 struct ceph_inode_info *ci = ceph_inode(inode); 399 int got = (uintptr_t)priv; 400 401 if (got) 402 ceph_put_cap_refs(ci, got); 403 } 404 405 const struct netfs_request_ops ceph_netfs_ops = { 406 .init_request = ceph_init_request, 407 .begin_cache_operation = ceph_begin_cache_operation, 408 .issue_read = ceph_netfs_issue_read, 409 .expand_readahead = ceph_netfs_expand_readahead, 410 .clamp_length = ceph_netfs_clamp_length, 411 .check_write_begin = ceph_netfs_check_write_begin, 412 .cleanup = ceph_readahead_cleanup, 413 }; 414 415 #ifdef CONFIG_CEPH_FSCACHE 416 static void ceph_set_page_fscache(struct page *page) 417 { 418 set_page_fscache(page); 419 } 420 421 static void ceph_fscache_write_terminated(void *priv, ssize_t error, bool was_async) 422 { 423 struct inode *inode = priv; 424 425 if (IS_ERR_VALUE(error) && error != -ENOBUFS) 426 ceph_fscache_invalidate(inode, false); 427 } 428 429 static void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching) 430 { 431 struct ceph_inode_info *ci = ceph_inode(inode); 432 struct fscache_cookie *cookie = ceph_fscache_cookie(ci); 433 434 fscache_write_to_cache(cookie, inode->i_mapping, off, len, i_size_read(inode), 435 ceph_fscache_write_terminated, inode, caching); 436 } 437 #else 438 static inline void ceph_set_page_fscache(struct page *page) 439 { 440 } 441 442 static inline void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching) 443 { 444 } 445 #endif /* CONFIG_CEPH_FSCACHE */ 446 447 struct ceph_writeback_ctl 448 { 449 loff_t i_size; 450 u64 truncate_size; 451 u32 truncate_seq; 452 bool size_stable; 453 bool head_snapc; 454 }; 455 456 /* 457 * Get ref for the oldest snapc for an inode with dirty data... that is, the 458 * only snap context we are allowed to write back. 459 */ 460 static struct ceph_snap_context * 461 get_oldest_context(struct inode *inode, struct ceph_writeback_ctl *ctl, 462 struct ceph_snap_context *page_snapc) 463 { 464 struct ceph_inode_info *ci = ceph_inode(inode); 465 struct ceph_snap_context *snapc = NULL; 466 struct ceph_cap_snap *capsnap = NULL; 467 468 spin_lock(&ci->i_ceph_lock); 469 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 470 dout(" cap_snap %p snapc %p has %d dirty pages\n", capsnap, 471 capsnap->context, capsnap->dirty_pages); 472 if (!capsnap->dirty_pages) 473 continue; 474 475 /* get i_size, truncate_{seq,size} for page_snapc? */ 476 if (snapc && capsnap->context != page_snapc) 477 continue; 478 479 if (ctl) { 480 if (capsnap->writing) { 481 ctl->i_size = i_size_read(inode); 482 ctl->size_stable = false; 483 } else { 484 ctl->i_size = capsnap->size; 485 ctl->size_stable = true; 486 } 487 ctl->truncate_size = capsnap->truncate_size; 488 ctl->truncate_seq = capsnap->truncate_seq; 489 ctl->head_snapc = false; 490 } 491 492 if (snapc) 493 break; 494 495 snapc = ceph_get_snap_context(capsnap->context); 496 if (!page_snapc || 497 page_snapc == snapc || 498 page_snapc->seq > snapc->seq) 499 break; 500 } 501 if (!snapc && ci->i_wrbuffer_ref_head) { 502 snapc = ceph_get_snap_context(ci->i_head_snapc); 503 dout(" head snapc %p has %d dirty pages\n", 504 snapc, ci->i_wrbuffer_ref_head); 505 if (ctl) { 506 ctl->i_size = i_size_read(inode); 507 ctl->truncate_size = ci->i_truncate_size; 508 ctl->truncate_seq = ci->i_truncate_seq; 509 ctl->size_stable = false; 510 ctl->head_snapc = true; 511 } 512 } 513 spin_unlock(&ci->i_ceph_lock); 514 return snapc; 515 } 516 517 static u64 get_writepages_data_length(struct inode *inode, 518 struct page *page, u64 start) 519 { 520 struct ceph_inode_info *ci = ceph_inode(inode); 521 struct ceph_snap_context *snapc = page_snap_context(page); 522 struct ceph_cap_snap *capsnap = NULL; 523 u64 end = i_size_read(inode); 524 525 if (snapc != ci->i_head_snapc) { 526 bool found = false; 527 spin_lock(&ci->i_ceph_lock); 528 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) { 529 if (capsnap->context == snapc) { 530 if (!capsnap->writing) 531 end = capsnap->size; 532 found = true; 533 break; 534 } 535 } 536 spin_unlock(&ci->i_ceph_lock); 537 WARN_ON(!found); 538 } 539 if (end > page_offset(page) + thp_size(page)) 540 end = page_offset(page) + thp_size(page); 541 return end > start ? end - start : 0; 542 } 543 544 /* 545 * Write a single page, but leave the page locked. 546 * 547 * If we get a write error, mark the mapping for error, but still adjust the 548 * dirty page accounting (i.e., page is no longer dirty). 549 */ 550 static int writepage_nounlock(struct page *page, struct writeback_control *wbc) 551 { 552 struct folio *folio = page_folio(page); 553 struct inode *inode = page->mapping->host; 554 struct ceph_inode_info *ci = ceph_inode(inode); 555 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 556 struct ceph_snap_context *snapc, *oldest; 557 loff_t page_off = page_offset(page); 558 int err; 559 loff_t len = thp_size(page); 560 struct ceph_writeback_ctl ceph_wbc; 561 struct ceph_osd_client *osdc = &fsc->client->osdc; 562 struct ceph_osd_request *req; 563 bool caching = ceph_is_cache_enabled(inode); 564 565 dout("writepage %p idx %lu\n", page, page->index); 566 567 /* verify this is a writeable snap context */ 568 snapc = page_snap_context(page); 569 if (!snapc) { 570 dout("writepage %p page %p not dirty?\n", inode, page); 571 return 0; 572 } 573 oldest = get_oldest_context(inode, &ceph_wbc, snapc); 574 if (snapc->seq > oldest->seq) { 575 dout("writepage %p page %p snapc %p not writeable - noop\n", 576 inode, page, snapc); 577 /* we should only noop if called by kswapd */ 578 WARN_ON(!(current->flags & PF_MEMALLOC)); 579 ceph_put_snap_context(oldest); 580 redirty_page_for_writepage(wbc, page); 581 return 0; 582 } 583 ceph_put_snap_context(oldest); 584 585 /* is this a partial page at end of file? */ 586 if (page_off >= ceph_wbc.i_size) { 587 dout("folio at %lu beyond eof %llu\n", folio->index, 588 ceph_wbc.i_size); 589 folio_invalidate(folio, 0, folio_size(folio)); 590 return 0; 591 } 592 593 if (ceph_wbc.i_size < page_off + len) 594 len = ceph_wbc.i_size - page_off; 595 596 dout("writepage %p page %p index %lu on %llu~%llu snapc %p seq %lld\n", 597 inode, page, page->index, page_off, len, snapc, snapc->seq); 598 599 if (atomic_long_inc_return(&fsc->writeback_count) > 600 CONGESTION_ON_THRESH(fsc->mount_options->congestion_kb)) 601 fsc->write_congested = true; 602 603 req = ceph_osdc_new_request(osdc, &ci->i_layout, ceph_vino(inode), page_off, &len, 0, 1, 604 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, snapc, 605 ceph_wbc.truncate_seq, ceph_wbc.truncate_size, 606 true); 607 if (IS_ERR(req)) 608 return PTR_ERR(req); 609 610 set_page_writeback(page); 611 if (caching) 612 ceph_set_page_fscache(page); 613 ceph_fscache_write_to_cache(inode, page_off, len, caching); 614 615 /* it may be a short write due to an object boundary */ 616 WARN_ON_ONCE(len > thp_size(page)); 617 osd_req_op_extent_osd_data_pages(req, 0, &page, len, 0, false, false); 618 dout("writepage %llu~%llu (%llu bytes)\n", page_off, len, len); 619 620 req->r_mtime = inode->i_mtime; 621 err = ceph_osdc_start_request(osdc, req, true); 622 if (!err) 623 err = ceph_osdc_wait_request(osdc, req); 624 625 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 626 req->r_end_latency, len, err); 627 628 ceph_osdc_put_request(req); 629 if (err == 0) 630 err = len; 631 632 if (err < 0) { 633 struct writeback_control tmp_wbc; 634 if (!wbc) 635 wbc = &tmp_wbc; 636 if (err == -ERESTARTSYS) { 637 /* killed by SIGKILL */ 638 dout("writepage interrupted page %p\n", page); 639 redirty_page_for_writepage(wbc, page); 640 end_page_writeback(page); 641 return err; 642 } 643 if (err == -EBLOCKLISTED) 644 fsc->blocklisted = true; 645 dout("writepage setting page/mapping error %d %p\n", 646 err, page); 647 mapping_set_error(&inode->i_data, err); 648 wbc->pages_skipped++; 649 } else { 650 dout("writepage cleaned page %p\n", page); 651 err = 0; /* vfs expects us to return 0 */ 652 } 653 oldest = detach_page_private(page); 654 WARN_ON_ONCE(oldest != snapc); 655 end_page_writeback(page); 656 ceph_put_wrbuffer_cap_refs(ci, 1, snapc); 657 ceph_put_snap_context(snapc); /* page's reference */ 658 659 if (atomic_long_dec_return(&fsc->writeback_count) < 660 CONGESTION_OFF_THRESH(fsc->mount_options->congestion_kb)) 661 fsc->write_congested = false; 662 663 return err; 664 } 665 666 static int ceph_writepage(struct page *page, struct writeback_control *wbc) 667 { 668 int err; 669 struct inode *inode = page->mapping->host; 670 BUG_ON(!inode); 671 ihold(inode); 672 673 if (wbc->sync_mode == WB_SYNC_NONE && 674 ceph_inode_to_client(inode)->write_congested) 675 return AOP_WRITEPAGE_ACTIVATE; 676 677 wait_on_page_fscache(page); 678 679 err = writepage_nounlock(page, wbc); 680 if (err == -ERESTARTSYS) { 681 /* direct memory reclaimer was killed by SIGKILL. return 0 682 * to prevent caller from setting mapping/page error */ 683 err = 0; 684 } 685 unlock_page(page); 686 iput(inode); 687 return err; 688 } 689 690 /* 691 * async writeback completion handler. 692 * 693 * If we get an error, set the mapping error bit, but not the individual 694 * page error bits. 695 */ 696 static void writepages_finish(struct ceph_osd_request *req) 697 { 698 struct inode *inode = req->r_inode; 699 struct ceph_inode_info *ci = ceph_inode(inode); 700 struct ceph_osd_data *osd_data; 701 struct page *page; 702 int num_pages, total_pages = 0; 703 int i, j; 704 int rc = req->r_result; 705 struct ceph_snap_context *snapc = req->r_snapc; 706 struct address_space *mapping = inode->i_mapping; 707 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 708 unsigned int len = 0; 709 bool remove_page; 710 711 dout("writepages_finish %p rc %d\n", inode, rc); 712 if (rc < 0) { 713 mapping_set_error(mapping, rc); 714 ceph_set_error_write(ci); 715 if (rc == -EBLOCKLISTED) 716 fsc->blocklisted = true; 717 } else { 718 ceph_clear_error_write(ci); 719 } 720 721 /* 722 * We lost the cache cap, need to truncate the page before 723 * it is unlocked, otherwise we'd truncate it later in the 724 * page truncation thread, possibly losing some data that 725 * raced its way in 726 */ 727 remove_page = !(ceph_caps_issued(ci) & 728 (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)); 729 730 /* clean all pages */ 731 for (i = 0; i < req->r_num_ops; i++) { 732 if (req->r_ops[i].op != CEPH_OSD_OP_WRITE) 733 break; 734 735 osd_data = osd_req_op_extent_osd_data(req, i); 736 BUG_ON(osd_data->type != CEPH_OSD_DATA_TYPE_PAGES); 737 len += osd_data->length; 738 num_pages = calc_pages_for((u64)osd_data->alignment, 739 (u64)osd_data->length); 740 total_pages += num_pages; 741 for (j = 0; j < num_pages; j++) { 742 page = osd_data->pages[j]; 743 BUG_ON(!page); 744 WARN_ON(!PageUptodate(page)); 745 746 if (atomic_long_dec_return(&fsc->writeback_count) < 747 CONGESTION_OFF_THRESH( 748 fsc->mount_options->congestion_kb)) 749 fsc->write_congested = false; 750 751 ceph_put_snap_context(detach_page_private(page)); 752 end_page_writeback(page); 753 dout("unlocking %p\n", page); 754 755 if (remove_page) 756 generic_error_remove_page(inode->i_mapping, 757 page); 758 759 unlock_page(page); 760 } 761 dout("writepages_finish %p wrote %llu bytes cleaned %d pages\n", 762 inode, osd_data->length, rc >= 0 ? num_pages : 0); 763 764 release_pages(osd_data->pages, num_pages); 765 } 766 767 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 768 req->r_end_latency, len, rc); 769 770 ceph_put_wrbuffer_cap_refs(ci, total_pages, snapc); 771 772 osd_data = osd_req_op_extent_osd_data(req, 0); 773 if (osd_data->pages_from_pool) 774 mempool_free(osd_data->pages, ceph_wb_pagevec_pool); 775 else 776 kfree(osd_data->pages); 777 ceph_osdc_put_request(req); 778 } 779 780 /* 781 * initiate async writeback 782 */ 783 static int ceph_writepages_start(struct address_space *mapping, 784 struct writeback_control *wbc) 785 { 786 struct inode *inode = mapping->host; 787 struct ceph_inode_info *ci = ceph_inode(inode); 788 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 789 struct ceph_vino vino = ceph_vino(inode); 790 pgoff_t index, start_index, end = -1; 791 struct ceph_snap_context *snapc = NULL, *last_snapc = NULL, *pgsnapc; 792 struct pagevec pvec; 793 int rc = 0; 794 unsigned int wsize = i_blocksize(inode); 795 struct ceph_osd_request *req = NULL; 796 struct ceph_writeback_ctl ceph_wbc; 797 bool should_loop, range_whole = false; 798 bool done = false; 799 bool caching = ceph_is_cache_enabled(inode); 800 801 if (wbc->sync_mode == WB_SYNC_NONE && 802 fsc->write_congested) 803 return 0; 804 805 dout("writepages_start %p (mode=%s)\n", inode, 806 wbc->sync_mode == WB_SYNC_NONE ? "NONE" : 807 (wbc->sync_mode == WB_SYNC_ALL ? "ALL" : "HOLD")); 808 809 if (ceph_inode_is_shutdown(inode)) { 810 if (ci->i_wrbuffer_ref > 0) { 811 pr_warn_ratelimited( 812 "writepage_start %p %lld forced umount\n", 813 inode, ceph_ino(inode)); 814 } 815 mapping_set_error(mapping, -EIO); 816 return -EIO; /* we're in a forced umount, don't write! */ 817 } 818 if (fsc->mount_options->wsize < wsize) 819 wsize = fsc->mount_options->wsize; 820 821 pagevec_init(&pvec); 822 823 start_index = wbc->range_cyclic ? mapping->writeback_index : 0; 824 index = start_index; 825 826 retry: 827 /* find oldest snap context with dirty data */ 828 snapc = get_oldest_context(inode, &ceph_wbc, NULL); 829 if (!snapc) { 830 /* hmm, why does writepages get called when there 831 is no dirty data? */ 832 dout(" no snap context with dirty data?\n"); 833 goto out; 834 } 835 dout(" oldest snapc is %p seq %lld (%d snaps)\n", 836 snapc, snapc->seq, snapc->num_snaps); 837 838 should_loop = false; 839 if (ceph_wbc.head_snapc && snapc != last_snapc) { 840 /* where to start/end? */ 841 if (wbc->range_cyclic) { 842 index = start_index; 843 end = -1; 844 if (index > 0) 845 should_loop = true; 846 dout(" cyclic, start at %lu\n", index); 847 } else { 848 index = wbc->range_start >> PAGE_SHIFT; 849 end = wbc->range_end >> PAGE_SHIFT; 850 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 851 range_whole = true; 852 dout(" not cyclic, %lu to %lu\n", index, end); 853 } 854 } else if (!ceph_wbc.head_snapc) { 855 /* Do not respect wbc->range_{start,end}. Dirty pages 856 * in that range can be associated with newer snapc. 857 * They are not writeable until we write all dirty pages 858 * associated with 'snapc' get written */ 859 if (index > 0) 860 should_loop = true; 861 dout(" non-head snapc, range whole\n"); 862 } 863 864 ceph_put_snap_context(last_snapc); 865 last_snapc = snapc; 866 867 while (!done && index <= end) { 868 int num_ops = 0, op_idx; 869 unsigned i, pvec_pages, max_pages, locked_pages = 0; 870 struct page **pages = NULL, **data_pages; 871 struct page *page; 872 pgoff_t strip_unit_end = 0; 873 u64 offset = 0, len = 0; 874 bool from_pool = false; 875 876 max_pages = wsize >> PAGE_SHIFT; 877 878 get_more_pages: 879 pvec_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 880 end, PAGECACHE_TAG_DIRTY); 881 dout("pagevec_lookup_range_tag got %d\n", pvec_pages); 882 if (!pvec_pages && !locked_pages) 883 break; 884 for (i = 0; i < pvec_pages && locked_pages < max_pages; i++) { 885 page = pvec.pages[i]; 886 dout("? %p idx %lu\n", page, page->index); 887 if (locked_pages == 0) 888 lock_page(page); /* first page */ 889 else if (!trylock_page(page)) 890 break; 891 892 /* only dirty pages, or our accounting breaks */ 893 if (unlikely(!PageDirty(page)) || 894 unlikely(page->mapping != mapping)) { 895 dout("!dirty or !mapping %p\n", page); 896 unlock_page(page); 897 continue; 898 } 899 /* only if matching snap context */ 900 pgsnapc = page_snap_context(page); 901 if (pgsnapc != snapc) { 902 dout("page snapc %p %lld != oldest %p %lld\n", 903 pgsnapc, pgsnapc->seq, snapc, snapc->seq); 904 if (!should_loop && 905 !ceph_wbc.head_snapc && 906 wbc->sync_mode != WB_SYNC_NONE) 907 should_loop = true; 908 unlock_page(page); 909 continue; 910 } 911 if (page_offset(page) >= ceph_wbc.i_size) { 912 struct folio *folio = page_folio(page); 913 914 dout("folio at %lu beyond eof %llu\n", 915 folio->index, ceph_wbc.i_size); 916 if ((ceph_wbc.size_stable || 917 folio_pos(folio) >= i_size_read(inode)) && 918 folio_clear_dirty_for_io(folio)) 919 folio_invalidate(folio, 0, 920 folio_size(folio)); 921 folio_unlock(folio); 922 continue; 923 } 924 if (strip_unit_end && (page->index > strip_unit_end)) { 925 dout("end of strip unit %p\n", page); 926 unlock_page(page); 927 break; 928 } 929 if (PageWriteback(page) || PageFsCache(page)) { 930 if (wbc->sync_mode == WB_SYNC_NONE) { 931 dout("%p under writeback\n", page); 932 unlock_page(page); 933 continue; 934 } 935 dout("waiting on writeback %p\n", page); 936 wait_on_page_writeback(page); 937 wait_on_page_fscache(page); 938 } 939 940 if (!clear_page_dirty_for_io(page)) { 941 dout("%p !clear_page_dirty_for_io\n", page); 942 unlock_page(page); 943 continue; 944 } 945 946 /* 947 * We have something to write. If this is 948 * the first locked page this time through, 949 * calculate max possinle write size and 950 * allocate a page array 951 */ 952 if (locked_pages == 0) { 953 u64 objnum; 954 u64 objoff; 955 u32 xlen; 956 957 /* prepare async write request */ 958 offset = (u64)page_offset(page); 959 ceph_calc_file_object_mapping(&ci->i_layout, 960 offset, wsize, 961 &objnum, &objoff, 962 &xlen); 963 len = xlen; 964 965 num_ops = 1; 966 strip_unit_end = page->index + 967 ((len - 1) >> PAGE_SHIFT); 968 969 BUG_ON(pages); 970 max_pages = calc_pages_for(0, (u64)len); 971 pages = kmalloc_array(max_pages, 972 sizeof(*pages), 973 GFP_NOFS); 974 if (!pages) { 975 from_pool = true; 976 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS); 977 BUG_ON(!pages); 978 } 979 980 len = 0; 981 } else if (page->index != 982 (offset + len) >> PAGE_SHIFT) { 983 if (num_ops >= (from_pool ? CEPH_OSD_SLAB_OPS : 984 CEPH_OSD_MAX_OPS)) { 985 redirty_page_for_writepage(wbc, page); 986 unlock_page(page); 987 break; 988 } 989 990 num_ops++; 991 offset = (u64)page_offset(page); 992 len = 0; 993 } 994 995 /* note position of first page in pvec */ 996 dout("%p will write page %p idx %lu\n", 997 inode, page, page->index); 998 999 if (atomic_long_inc_return(&fsc->writeback_count) > 1000 CONGESTION_ON_THRESH( 1001 fsc->mount_options->congestion_kb)) 1002 fsc->write_congested = true; 1003 1004 pages[locked_pages++] = page; 1005 pvec.pages[i] = NULL; 1006 1007 len += thp_size(page); 1008 } 1009 1010 /* did we get anything? */ 1011 if (!locked_pages) 1012 goto release_pvec_pages; 1013 if (i) { 1014 unsigned j, n = 0; 1015 /* shift unused page to beginning of pvec */ 1016 for (j = 0; j < pvec_pages; j++) { 1017 if (!pvec.pages[j]) 1018 continue; 1019 if (n < j) 1020 pvec.pages[n] = pvec.pages[j]; 1021 n++; 1022 } 1023 pvec.nr = n; 1024 1025 if (pvec_pages && i == pvec_pages && 1026 locked_pages < max_pages) { 1027 dout("reached end pvec, trying for more\n"); 1028 pagevec_release(&pvec); 1029 goto get_more_pages; 1030 } 1031 } 1032 1033 new_request: 1034 offset = page_offset(pages[0]); 1035 len = wsize; 1036 1037 req = ceph_osdc_new_request(&fsc->client->osdc, 1038 &ci->i_layout, vino, 1039 offset, &len, 0, num_ops, 1040 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, 1041 snapc, ceph_wbc.truncate_seq, 1042 ceph_wbc.truncate_size, false); 1043 if (IS_ERR(req)) { 1044 req = ceph_osdc_new_request(&fsc->client->osdc, 1045 &ci->i_layout, vino, 1046 offset, &len, 0, 1047 min(num_ops, 1048 CEPH_OSD_SLAB_OPS), 1049 CEPH_OSD_OP_WRITE, 1050 CEPH_OSD_FLAG_WRITE, 1051 snapc, ceph_wbc.truncate_seq, 1052 ceph_wbc.truncate_size, true); 1053 BUG_ON(IS_ERR(req)); 1054 } 1055 BUG_ON(len < page_offset(pages[locked_pages - 1]) + 1056 thp_size(page) - offset); 1057 1058 req->r_callback = writepages_finish; 1059 req->r_inode = inode; 1060 1061 /* Format the osd request message and submit the write */ 1062 len = 0; 1063 data_pages = pages; 1064 op_idx = 0; 1065 for (i = 0; i < locked_pages; i++) { 1066 u64 cur_offset = page_offset(pages[i]); 1067 /* 1068 * Discontinuity in page range? Ceph can handle that by just passing 1069 * multiple extents in the write op. 1070 */ 1071 if (offset + len != cur_offset) { 1072 /* If it's full, stop here */ 1073 if (op_idx + 1 == req->r_num_ops) 1074 break; 1075 1076 /* Kick off an fscache write with what we have so far. */ 1077 ceph_fscache_write_to_cache(inode, offset, len, caching); 1078 1079 /* Start a new extent */ 1080 osd_req_op_extent_dup_last(req, op_idx, 1081 cur_offset - offset); 1082 dout("writepages got pages at %llu~%llu\n", 1083 offset, len); 1084 osd_req_op_extent_osd_data_pages(req, op_idx, 1085 data_pages, len, 0, 1086 from_pool, false); 1087 osd_req_op_extent_update(req, op_idx, len); 1088 1089 len = 0; 1090 offset = cur_offset; 1091 data_pages = pages + i; 1092 op_idx++; 1093 } 1094 1095 set_page_writeback(pages[i]); 1096 if (caching) 1097 ceph_set_page_fscache(pages[i]); 1098 len += thp_size(page); 1099 } 1100 ceph_fscache_write_to_cache(inode, offset, len, caching); 1101 1102 if (ceph_wbc.size_stable) { 1103 len = min(len, ceph_wbc.i_size - offset); 1104 } else if (i == locked_pages) { 1105 /* writepages_finish() clears writeback pages 1106 * according to the data length, so make sure 1107 * data length covers all locked pages */ 1108 u64 min_len = len + 1 - thp_size(page); 1109 len = get_writepages_data_length(inode, pages[i - 1], 1110 offset); 1111 len = max(len, min_len); 1112 } 1113 dout("writepages got pages at %llu~%llu\n", offset, len); 1114 1115 osd_req_op_extent_osd_data_pages(req, op_idx, data_pages, len, 1116 0, from_pool, false); 1117 osd_req_op_extent_update(req, op_idx, len); 1118 1119 BUG_ON(op_idx + 1 != req->r_num_ops); 1120 1121 from_pool = false; 1122 if (i < locked_pages) { 1123 BUG_ON(num_ops <= req->r_num_ops); 1124 num_ops -= req->r_num_ops; 1125 locked_pages -= i; 1126 1127 /* allocate new pages array for next request */ 1128 data_pages = pages; 1129 pages = kmalloc_array(locked_pages, sizeof(*pages), 1130 GFP_NOFS); 1131 if (!pages) { 1132 from_pool = true; 1133 pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS); 1134 BUG_ON(!pages); 1135 } 1136 memcpy(pages, data_pages + i, 1137 locked_pages * sizeof(*pages)); 1138 memset(data_pages + i, 0, 1139 locked_pages * sizeof(*pages)); 1140 } else { 1141 BUG_ON(num_ops != req->r_num_ops); 1142 index = pages[i - 1]->index + 1; 1143 /* request message now owns the pages array */ 1144 pages = NULL; 1145 } 1146 1147 req->r_mtime = inode->i_mtime; 1148 rc = ceph_osdc_start_request(&fsc->client->osdc, req, true); 1149 BUG_ON(rc); 1150 req = NULL; 1151 1152 wbc->nr_to_write -= i; 1153 if (pages) 1154 goto new_request; 1155 1156 /* 1157 * We stop writing back only if we are not doing 1158 * integrity sync. In case of integrity sync we have to 1159 * keep going until we have written all the pages 1160 * we tagged for writeback prior to entering this loop. 1161 */ 1162 if (wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) 1163 done = true; 1164 1165 release_pvec_pages: 1166 dout("pagevec_release on %d pages (%p)\n", (int)pvec.nr, 1167 pvec.nr ? pvec.pages[0] : NULL); 1168 pagevec_release(&pvec); 1169 } 1170 1171 if (should_loop && !done) { 1172 /* more to do; loop back to beginning of file */ 1173 dout("writepages looping back to beginning of file\n"); 1174 end = start_index - 1; /* OK even when start_index == 0 */ 1175 1176 /* to write dirty pages associated with next snapc, 1177 * we need to wait until current writes complete */ 1178 if (wbc->sync_mode != WB_SYNC_NONE && 1179 start_index == 0 && /* all dirty pages were checked */ 1180 !ceph_wbc.head_snapc) { 1181 struct page *page; 1182 unsigned i, nr; 1183 index = 0; 1184 while ((index <= end) && 1185 (nr = pagevec_lookup_tag(&pvec, mapping, &index, 1186 PAGECACHE_TAG_WRITEBACK))) { 1187 for (i = 0; i < nr; i++) { 1188 page = pvec.pages[i]; 1189 if (page_snap_context(page) != snapc) 1190 continue; 1191 wait_on_page_writeback(page); 1192 } 1193 pagevec_release(&pvec); 1194 cond_resched(); 1195 } 1196 } 1197 1198 start_index = 0; 1199 index = 0; 1200 goto retry; 1201 } 1202 1203 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1204 mapping->writeback_index = index; 1205 1206 out: 1207 ceph_osdc_put_request(req); 1208 ceph_put_snap_context(last_snapc); 1209 dout("writepages dend - startone, rc = %d\n", rc); 1210 return rc; 1211 } 1212 1213 1214 1215 /* 1216 * See if a given @snapc is either writeable, or already written. 1217 */ 1218 static int context_is_writeable_or_written(struct inode *inode, 1219 struct ceph_snap_context *snapc) 1220 { 1221 struct ceph_snap_context *oldest = get_oldest_context(inode, NULL, NULL); 1222 int ret = !oldest || snapc->seq <= oldest->seq; 1223 1224 ceph_put_snap_context(oldest); 1225 return ret; 1226 } 1227 1228 /** 1229 * ceph_find_incompatible - find an incompatible context and return it 1230 * @page: page being dirtied 1231 * 1232 * We are only allowed to write into/dirty a page if the page is 1233 * clean, or already dirty within the same snap context. Returns a 1234 * conflicting context if there is one, NULL if there isn't, or a 1235 * negative error code on other errors. 1236 * 1237 * Must be called with page lock held. 1238 */ 1239 static struct ceph_snap_context * 1240 ceph_find_incompatible(struct page *page) 1241 { 1242 struct inode *inode = page->mapping->host; 1243 struct ceph_inode_info *ci = ceph_inode(inode); 1244 1245 if (ceph_inode_is_shutdown(inode)) { 1246 dout(" page %p %llx:%llx is shutdown\n", page, 1247 ceph_vinop(inode)); 1248 return ERR_PTR(-ESTALE); 1249 } 1250 1251 for (;;) { 1252 struct ceph_snap_context *snapc, *oldest; 1253 1254 wait_on_page_writeback(page); 1255 1256 snapc = page_snap_context(page); 1257 if (!snapc || snapc == ci->i_head_snapc) 1258 break; 1259 1260 /* 1261 * this page is already dirty in another (older) snap 1262 * context! is it writeable now? 1263 */ 1264 oldest = get_oldest_context(inode, NULL, NULL); 1265 if (snapc->seq > oldest->seq) { 1266 /* not writeable -- return it for the caller to deal with */ 1267 ceph_put_snap_context(oldest); 1268 dout(" page %p snapc %p not current or oldest\n", page, snapc); 1269 return ceph_get_snap_context(snapc); 1270 } 1271 ceph_put_snap_context(oldest); 1272 1273 /* yay, writeable, do it now (without dropping page lock) */ 1274 dout(" page %p snapc %p not current, but oldest\n", page, snapc); 1275 if (clear_page_dirty_for_io(page)) { 1276 int r = writepage_nounlock(page, NULL); 1277 if (r < 0) 1278 return ERR_PTR(r); 1279 } 1280 } 1281 return NULL; 1282 } 1283 1284 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len, 1285 struct folio *folio, void **_fsdata) 1286 { 1287 struct inode *inode = file_inode(file); 1288 struct ceph_inode_info *ci = ceph_inode(inode); 1289 struct ceph_snap_context *snapc; 1290 1291 snapc = ceph_find_incompatible(folio_page(folio, 0)); 1292 if (snapc) { 1293 int r; 1294 1295 folio_unlock(folio); 1296 folio_put(folio); 1297 if (IS_ERR(snapc)) 1298 return PTR_ERR(snapc); 1299 1300 ceph_queue_writeback(inode); 1301 r = wait_event_killable(ci->i_cap_wq, 1302 context_is_writeable_or_written(inode, snapc)); 1303 ceph_put_snap_context(snapc); 1304 return r == 0 ? -EAGAIN : r; 1305 } 1306 return 0; 1307 } 1308 1309 /* 1310 * We are only allowed to write into/dirty the page if the page is 1311 * clean, or already dirty within the same snap context. 1312 */ 1313 static int ceph_write_begin(struct file *file, struct address_space *mapping, 1314 loff_t pos, unsigned len, unsigned aop_flags, 1315 struct page **pagep, void **fsdata) 1316 { 1317 struct inode *inode = file_inode(file); 1318 struct folio *folio = NULL; 1319 int r; 1320 1321 r = netfs_write_begin(file, inode->i_mapping, pos, len, 0, &folio, NULL); 1322 if (r == 0) 1323 folio_wait_fscache(folio); 1324 if (r < 0) { 1325 if (folio) 1326 folio_put(folio); 1327 } else { 1328 WARN_ON_ONCE(!folio_test_locked(folio)); 1329 *pagep = &folio->page; 1330 } 1331 return r; 1332 } 1333 1334 /* 1335 * we don't do anything in here that simple_write_end doesn't do 1336 * except adjust dirty page accounting 1337 */ 1338 static int ceph_write_end(struct file *file, struct address_space *mapping, 1339 loff_t pos, unsigned len, unsigned copied, 1340 struct page *subpage, void *fsdata) 1341 { 1342 struct folio *folio = page_folio(subpage); 1343 struct inode *inode = file_inode(file); 1344 bool check_cap = false; 1345 1346 dout("write_end file %p inode %p folio %p %d~%d (%d)\n", file, 1347 inode, folio, (int)pos, (int)copied, (int)len); 1348 1349 if (!folio_test_uptodate(folio)) { 1350 /* just return that nothing was copied on a short copy */ 1351 if (copied < len) { 1352 copied = 0; 1353 goto out; 1354 } 1355 folio_mark_uptodate(folio); 1356 } 1357 1358 /* did file size increase? */ 1359 if (pos+copied > i_size_read(inode)) 1360 check_cap = ceph_inode_set_size(inode, pos+copied); 1361 1362 folio_mark_dirty(folio); 1363 1364 out: 1365 folio_unlock(folio); 1366 folio_put(folio); 1367 1368 if (check_cap) 1369 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_AUTHONLY, NULL); 1370 1371 return copied; 1372 } 1373 1374 const struct address_space_operations ceph_aops = { 1375 .readpage = netfs_readpage, 1376 .readahead = netfs_readahead, 1377 .writepage = ceph_writepage, 1378 .writepages = ceph_writepages_start, 1379 .write_begin = ceph_write_begin, 1380 .write_end = ceph_write_end, 1381 .dirty_folio = ceph_dirty_folio, 1382 .invalidate_folio = ceph_invalidate_folio, 1383 .releasepage = ceph_releasepage, 1384 .direct_IO = noop_direct_IO, 1385 }; 1386 1387 static void ceph_block_sigs(sigset_t *oldset) 1388 { 1389 sigset_t mask; 1390 siginitsetinv(&mask, sigmask(SIGKILL)); 1391 sigprocmask(SIG_BLOCK, &mask, oldset); 1392 } 1393 1394 static void ceph_restore_sigs(sigset_t *oldset) 1395 { 1396 sigprocmask(SIG_SETMASK, oldset, NULL); 1397 } 1398 1399 /* 1400 * vm ops 1401 */ 1402 static vm_fault_t ceph_filemap_fault(struct vm_fault *vmf) 1403 { 1404 struct vm_area_struct *vma = vmf->vma; 1405 struct inode *inode = file_inode(vma->vm_file); 1406 struct ceph_inode_info *ci = ceph_inode(inode); 1407 struct ceph_file_info *fi = vma->vm_file->private_data; 1408 loff_t off = (loff_t)vmf->pgoff << PAGE_SHIFT; 1409 int want, got, err; 1410 sigset_t oldset; 1411 vm_fault_t ret = VM_FAULT_SIGBUS; 1412 1413 if (ceph_inode_is_shutdown(inode)) 1414 return ret; 1415 1416 ceph_block_sigs(&oldset); 1417 1418 dout("filemap_fault %p %llx.%llx %llu trying to get caps\n", 1419 inode, ceph_vinop(inode), off); 1420 if (fi->fmode & CEPH_FILE_MODE_LAZY) 1421 want = CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO; 1422 else 1423 want = CEPH_CAP_FILE_CACHE; 1424 1425 got = 0; 1426 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_RD, want, -1, &got); 1427 if (err < 0) 1428 goto out_restore; 1429 1430 dout("filemap_fault %p %llu got cap refs on %s\n", 1431 inode, off, ceph_cap_string(got)); 1432 1433 if ((got & (CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO)) || 1434 ci->i_inline_version == CEPH_INLINE_NONE) { 1435 CEPH_DEFINE_RW_CONTEXT(rw_ctx, got); 1436 ceph_add_rw_context(fi, &rw_ctx); 1437 ret = filemap_fault(vmf); 1438 ceph_del_rw_context(fi, &rw_ctx); 1439 dout("filemap_fault %p %llu drop cap refs %s ret %x\n", 1440 inode, off, ceph_cap_string(got), ret); 1441 } else 1442 err = -EAGAIN; 1443 1444 ceph_put_cap_refs(ci, got); 1445 1446 if (err != -EAGAIN) 1447 goto out_restore; 1448 1449 /* read inline data */ 1450 if (off >= PAGE_SIZE) { 1451 /* does not support inline data > PAGE_SIZE */ 1452 ret = VM_FAULT_SIGBUS; 1453 } else { 1454 struct address_space *mapping = inode->i_mapping; 1455 struct page *page; 1456 1457 filemap_invalidate_lock_shared(mapping); 1458 page = find_or_create_page(mapping, 0, 1459 mapping_gfp_constraint(mapping, ~__GFP_FS)); 1460 if (!page) { 1461 ret = VM_FAULT_OOM; 1462 goto out_inline; 1463 } 1464 err = __ceph_do_getattr(inode, page, 1465 CEPH_STAT_CAP_INLINE_DATA, true); 1466 if (err < 0 || off >= i_size_read(inode)) { 1467 unlock_page(page); 1468 put_page(page); 1469 ret = vmf_error(err); 1470 goto out_inline; 1471 } 1472 if (err < PAGE_SIZE) 1473 zero_user_segment(page, err, PAGE_SIZE); 1474 else 1475 flush_dcache_page(page); 1476 SetPageUptodate(page); 1477 vmf->page = page; 1478 ret = VM_FAULT_MAJOR | VM_FAULT_LOCKED; 1479 out_inline: 1480 filemap_invalidate_unlock_shared(mapping); 1481 dout("filemap_fault %p %llu read inline data ret %x\n", 1482 inode, off, ret); 1483 } 1484 out_restore: 1485 ceph_restore_sigs(&oldset); 1486 if (err < 0) 1487 ret = vmf_error(err); 1488 1489 return ret; 1490 } 1491 1492 static vm_fault_t ceph_page_mkwrite(struct vm_fault *vmf) 1493 { 1494 struct vm_area_struct *vma = vmf->vma; 1495 struct inode *inode = file_inode(vma->vm_file); 1496 struct ceph_inode_info *ci = ceph_inode(inode); 1497 struct ceph_file_info *fi = vma->vm_file->private_data; 1498 struct ceph_cap_flush *prealloc_cf; 1499 struct page *page = vmf->page; 1500 loff_t off = page_offset(page); 1501 loff_t size = i_size_read(inode); 1502 size_t len; 1503 int want, got, err; 1504 sigset_t oldset; 1505 vm_fault_t ret = VM_FAULT_SIGBUS; 1506 1507 if (ceph_inode_is_shutdown(inode)) 1508 return ret; 1509 1510 prealloc_cf = ceph_alloc_cap_flush(); 1511 if (!prealloc_cf) 1512 return VM_FAULT_OOM; 1513 1514 sb_start_pagefault(inode->i_sb); 1515 ceph_block_sigs(&oldset); 1516 1517 if (off + thp_size(page) <= size) 1518 len = thp_size(page); 1519 else 1520 len = offset_in_thp(page, size); 1521 1522 dout("page_mkwrite %p %llx.%llx %llu~%zd getting caps i_size %llu\n", 1523 inode, ceph_vinop(inode), off, len, size); 1524 if (fi->fmode & CEPH_FILE_MODE_LAZY) 1525 want = CEPH_CAP_FILE_BUFFER | CEPH_CAP_FILE_LAZYIO; 1526 else 1527 want = CEPH_CAP_FILE_BUFFER; 1528 1529 got = 0; 1530 err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_WR, want, off + len, &got); 1531 if (err < 0) 1532 goto out_free; 1533 1534 dout("page_mkwrite %p %llu~%zd got cap refs on %s\n", 1535 inode, off, len, ceph_cap_string(got)); 1536 1537 /* Update time before taking page lock */ 1538 file_update_time(vma->vm_file); 1539 inode_inc_iversion_raw(inode); 1540 1541 do { 1542 struct ceph_snap_context *snapc; 1543 1544 lock_page(page); 1545 1546 if (page_mkwrite_check_truncate(page, inode) < 0) { 1547 unlock_page(page); 1548 ret = VM_FAULT_NOPAGE; 1549 break; 1550 } 1551 1552 snapc = ceph_find_incompatible(page); 1553 if (!snapc) { 1554 /* success. we'll keep the page locked. */ 1555 set_page_dirty(page); 1556 ret = VM_FAULT_LOCKED; 1557 break; 1558 } 1559 1560 unlock_page(page); 1561 1562 if (IS_ERR(snapc)) { 1563 ret = VM_FAULT_SIGBUS; 1564 break; 1565 } 1566 1567 ceph_queue_writeback(inode); 1568 err = wait_event_killable(ci->i_cap_wq, 1569 context_is_writeable_or_written(inode, snapc)); 1570 ceph_put_snap_context(snapc); 1571 } while (err == 0); 1572 1573 if (ret == VM_FAULT_LOCKED) { 1574 int dirty; 1575 spin_lock(&ci->i_ceph_lock); 1576 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, 1577 &prealloc_cf); 1578 spin_unlock(&ci->i_ceph_lock); 1579 if (dirty) 1580 __mark_inode_dirty(inode, dirty); 1581 } 1582 1583 dout("page_mkwrite %p %llu~%zd dropping cap refs on %s ret %x\n", 1584 inode, off, len, ceph_cap_string(got), ret); 1585 ceph_put_cap_refs_async(ci, got); 1586 out_free: 1587 ceph_restore_sigs(&oldset); 1588 sb_end_pagefault(inode->i_sb); 1589 ceph_free_cap_flush(prealloc_cf); 1590 if (err < 0) 1591 ret = vmf_error(err); 1592 return ret; 1593 } 1594 1595 void ceph_fill_inline_data(struct inode *inode, struct page *locked_page, 1596 char *data, size_t len) 1597 { 1598 struct address_space *mapping = inode->i_mapping; 1599 struct page *page; 1600 1601 if (locked_page) { 1602 page = locked_page; 1603 } else { 1604 if (i_size_read(inode) == 0) 1605 return; 1606 page = find_or_create_page(mapping, 0, 1607 mapping_gfp_constraint(mapping, 1608 ~__GFP_FS)); 1609 if (!page) 1610 return; 1611 if (PageUptodate(page)) { 1612 unlock_page(page); 1613 put_page(page); 1614 return; 1615 } 1616 } 1617 1618 dout("fill_inline_data %p %llx.%llx len %zu locked_page %p\n", 1619 inode, ceph_vinop(inode), len, locked_page); 1620 1621 if (len > 0) { 1622 void *kaddr = kmap_atomic(page); 1623 memcpy(kaddr, data, len); 1624 kunmap_atomic(kaddr); 1625 } 1626 1627 if (page != locked_page) { 1628 if (len < PAGE_SIZE) 1629 zero_user_segment(page, len, PAGE_SIZE); 1630 else 1631 flush_dcache_page(page); 1632 1633 SetPageUptodate(page); 1634 unlock_page(page); 1635 put_page(page); 1636 } 1637 } 1638 1639 int ceph_uninline_data(struct file *file) 1640 { 1641 struct inode *inode = file_inode(file); 1642 struct ceph_inode_info *ci = ceph_inode(inode); 1643 struct ceph_fs_client *fsc = ceph_inode_to_client(inode); 1644 struct ceph_osd_request *req; 1645 struct ceph_cap_flush *prealloc_cf; 1646 struct folio *folio = NULL; 1647 u64 inline_version = CEPH_INLINE_NONE; 1648 struct page *pages[1]; 1649 int err = 0; 1650 u64 len; 1651 1652 prealloc_cf = ceph_alloc_cap_flush(); 1653 if (!prealloc_cf) 1654 return -ENOMEM; 1655 1656 folio = read_mapping_folio(inode->i_mapping, 0, file); 1657 if (IS_ERR(folio)) { 1658 err = PTR_ERR(folio); 1659 goto out; 1660 } 1661 1662 folio_lock(folio); 1663 1664 spin_lock(&ci->i_ceph_lock); 1665 inline_version = ci->i_inline_version; 1666 spin_unlock(&ci->i_ceph_lock); 1667 1668 dout("uninline_data %p %llx.%llx inline_version %llu\n", 1669 inode, ceph_vinop(inode), inline_version); 1670 1671 if (inline_version == 1 || /* initial version, no data */ 1672 inline_version == CEPH_INLINE_NONE) 1673 goto out_unlock; 1674 1675 len = i_size_read(inode); 1676 if (len > folio_size(folio)) 1677 len = folio_size(folio); 1678 1679 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, 1680 ceph_vino(inode), 0, &len, 0, 1, 1681 CEPH_OSD_OP_CREATE, CEPH_OSD_FLAG_WRITE, 1682 NULL, 0, 0, false); 1683 if (IS_ERR(req)) { 1684 err = PTR_ERR(req); 1685 goto out_unlock; 1686 } 1687 1688 req->r_mtime = inode->i_mtime; 1689 err = ceph_osdc_start_request(&fsc->client->osdc, req, false); 1690 if (!err) 1691 err = ceph_osdc_wait_request(&fsc->client->osdc, req); 1692 ceph_osdc_put_request(req); 1693 if (err < 0) 1694 goto out_unlock; 1695 1696 req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, 1697 ceph_vino(inode), 0, &len, 1, 3, 1698 CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE, 1699 NULL, ci->i_truncate_seq, 1700 ci->i_truncate_size, false); 1701 if (IS_ERR(req)) { 1702 err = PTR_ERR(req); 1703 goto out_unlock; 1704 } 1705 1706 pages[0] = folio_page(folio, 0); 1707 osd_req_op_extent_osd_data_pages(req, 1, pages, len, 0, false, false); 1708 1709 { 1710 __le64 xattr_buf = cpu_to_le64(inline_version); 1711 err = osd_req_op_xattr_init(req, 0, CEPH_OSD_OP_CMPXATTR, 1712 "inline_version", &xattr_buf, 1713 sizeof(xattr_buf), 1714 CEPH_OSD_CMPXATTR_OP_GT, 1715 CEPH_OSD_CMPXATTR_MODE_U64); 1716 if (err) 1717 goto out_put_req; 1718 } 1719 1720 { 1721 char xattr_buf[32]; 1722 int xattr_len = snprintf(xattr_buf, sizeof(xattr_buf), 1723 "%llu", inline_version); 1724 err = osd_req_op_xattr_init(req, 2, CEPH_OSD_OP_SETXATTR, 1725 "inline_version", 1726 xattr_buf, xattr_len, 0, 0); 1727 if (err) 1728 goto out_put_req; 1729 } 1730 1731 req->r_mtime = inode->i_mtime; 1732 err = ceph_osdc_start_request(&fsc->client->osdc, req, false); 1733 if (!err) 1734 err = ceph_osdc_wait_request(&fsc->client->osdc, req); 1735 1736 ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency, 1737 req->r_end_latency, len, err); 1738 1739 if (!err) { 1740 int dirty; 1741 1742 /* Set to CAP_INLINE_NONE and dirty the caps */ 1743 down_read(&fsc->mdsc->snap_rwsem); 1744 spin_lock(&ci->i_ceph_lock); 1745 ci->i_inline_version = CEPH_INLINE_NONE; 1746 dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, &prealloc_cf); 1747 spin_unlock(&ci->i_ceph_lock); 1748 up_read(&fsc->mdsc->snap_rwsem); 1749 if (dirty) 1750 __mark_inode_dirty(inode, dirty); 1751 } 1752 out_put_req: 1753 ceph_osdc_put_request(req); 1754 if (err == -ECANCELED) 1755 err = 0; 1756 out_unlock: 1757 folio_unlock(folio); 1758 folio_put(folio); 1759 out: 1760 ceph_free_cap_flush(prealloc_cf); 1761 dout("uninline_data %p %llx.%llx inline_version %llu = %d\n", 1762 inode, ceph_vinop(inode), inline_version, err); 1763 return err; 1764 } 1765 1766 static const struct vm_operations_struct ceph_vmops = { 1767 .fault = ceph_filemap_fault, 1768 .page_mkwrite = ceph_page_mkwrite, 1769 }; 1770 1771 int ceph_mmap(struct file *file, struct vm_area_struct *vma) 1772 { 1773 struct address_space *mapping = file->f_mapping; 1774 1775 if (!mapping->a_ops->readpage) 1776 return -ENOEXEC; 1777 file_accessed(file); 1778 vma->vm_ops = &ceph_vmops; 1779 return 0; 1780 } 1781 1782 enum { 1783 POOL_READ = 1, 1784 POOL_WRITE = 2, 1785 }; 1786 1787 static int __ceph_pool_perm_get(struct ceph_inode_info *ci, 1788 s64 pool, struct ceph_string *pool_ns) 1789 { 1790 struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->vfs_inode); 1791 struct ceph_mds_client *mdsc = fsc->mdsc; 1792 struct ceph_osd_request *rd_req = NULL, *wr_req = NULL; 1793 struct rb_node **p, *parent; 1794 struct ceph_pool_perm *perm; 1795 struct page **pages; 1796 size_t pool_ns_len; 1797 int err = 0, err2 = 0, have = 0; 1798 1799 down_read(&mdsc->pool_perm_rwsem); 1800 p = &mdsc->pool_perm_tree.rb_node; 1801 while (*p) { 1802 perm = rb_entry(*p, struct ceph_pool_perm, node); 1803 if (pool < perm->pool) 1804 p = &(*p)->rb_left; 1805 else if (pool > perm->pool) 1806 p = &(*p)->rb_right; 1807 else { 1808 int ret = ceph_compare_string(pool_ns, 1809 perm->pool_ns, 1810 perm->pool_ns_len); 1811 if (ret < 0) 1812 p = &(*p)->rb_left; 1813 else if (ret > 0) 1814 p = &(*p)->rb_right; 1815 else { 1816 have = perm->perm; 1817 break; 1818 } 1819 } 1820 } 1821 up_read(&mdsc->pool_perm_rwsem); 1822 if (*p) 1823 goto out; 1824 1825 if (pool_ns) 1826 dout("__ceph_pool_perm_get pool %lld ns %.*s no perm cached\n", 1827 pool, (int)pool_ns->len, pool_ns->str); 1828 else 1829 dout("__ceph_pool_perm_get pool %lld no perm cached\n", pool); 1830 1831 down_write(&mdsc->pool_perm_rwsem); 1832 p = &mdsc->pool_perm_tree.rb_node; 1833 parent = NULL; 1834 while (*p) { 1835 parent = *p; 1836 perm = rb_entry(parent, struct ceph_pool_perm, node); 1837 if (pool < perm->pool) 1838 p = &(*p)->rb_left; 1839 else if (pool > perm->pool) 1840 p = &(*p)->rb_right; 1841 else { 1842 int ret = ceph_compare_string(pool_ns, 1843 perm->pool_ns, 1844 perm->pool_ns_len); 1845 if (ret < 0) 1846 p = &(*p)->rb_left; 1847 else if (ret > 0) 1848 p = &(*p)->rb_right; 1849 else { 1850 have = perm->perm; 1851 break; 1852 } 1853 } 1854 } 1855 if (*p) { 1856 up_write(&mdsc->pool_perm_rwsem); 1857 goto out; 1858 } 1859 1860 rd_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL, 1861 1, false, GFP_NOFS); 1862 if (!rd_req) { 1863 err = -ENOMEM; 1864 goto out_unlock; 1865 } 1866 1867 rd_req->r_flags = CEPH_OSD_FLAG_READ; 1868 osd_req_op_init(rd_req, 0, CEPH_OSD_OP_STAT, 0); 1869 rd_req->r_base_oloc.pool = pool; 1870 if (pool_ns) 1871 rd_req->r_base_oloc.pool_ns = ceph_get_string(pool_ns); 1872 ceph_oid_printf(&rd_req->r_base_oid, "%llx.00000000", ci->i_vino.ino); 1873 1874 err = ceph_osdc_alloc_messages(rd_req, GFP_NOFS); 1875 if (err) 1876 goto out_unlock; 1877 1878 wr_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL, 1879 1, false, GFP_NOFS); 1880 if (!wr_req) { 1881 err = -ENOMEM; 1882 goto out_unlock; 1883 } 1884 1885 wr_req->r_flags = CEPH_OSD_FLAG_WRITE; 1886 osd_req_op_init(wr_req, 0, CEPH_OSD_OP_CREATE, CEPH_OSD_OP_FLAG_EXCL); 1887 ceph_oloc_copy(&wr_req->r_base_oloc, &rd_req->r_base_oloc); 1888 ceph_oid_copy(&wr_req->r_base_oid, &rd_req->r_base_oid); 1889 1890 err = ceph_osdc_alloc_messages(wr_req, GFP_NOFS); 1891 if (err) 1892 goto out_unlock; 1893 1894 /* one page should be large enough for STAT data */ 1895 pages = ceph_alloc_page_vector(1, GFP_KERNEL); 1896 if (IS_ERR(pages)) { 1897 err = PTR_ERR(pages); 1898 goto out_unlock; 1899 } 1900 1901 osd_req_op_raw_data_in_pages(rd_req, 0, pages, PAGE_SIZE, 1902 0, false, true); 1903 err = ceph_osdc_start_request(&fsc->client->osdc, rd_req, false); 1904 1905 wr_req->r_mtime = ci->vfs_inode.i_mtime; 1906 err2 = ceph_osdc_start_request(&fsc->client->osdc, wr_req, false); 1907 1908 if (!err) 1909 err = ceph_osdc_wait_request(&fsc->client->osdc, rd_req); 1910 if (!err2) 1911 err2 = ceph_osdc_wait_request(&fsc->client->osdc, wr_req); 1912 1913 if (err >= 0 || err == -ENOENT) 1914 have |= POOL_READ; 1915 else if (err != -EPERM) { 1916 if (err == -EBLOCKLISTED) 1917 fsc->blocklisted = true; 1918 goto out_unlock; 1919 } 1920 1921 if (err2 == 0 || err2 == -EEXIST) 1922 have |= POOL_WRITE; 1923 else if (err2 != -EPERM) { 1924 if (err2 == -EBLOCKLISTED) 1925 fsc->blocklisted = true; 1926 err = err2; 1927 goto out_unlock; 1928 } 1929 1930 pool_ns_len = pool_ns ? pool_ns->len : 0; 1931 perm = kmalloc(sizeof(*perm) + pool_ns_len + 1, GFP_NOFS); 1932 if (!perm) { 1933 err = -ENOMEM; 1934 goto out_unlock; 1935 } 1936 1937 perm->pool = pool; 1938 perm->perm = have; 1939 perm->pool_ns_len = pool_ns_len; 1940 if (pool_ns_len > 0) 1941 memcpy(perm->pool_ns, pool_ns->str, pool_ns_len); 1942 perm->pool_ns[pool_ns_len] = 0; 1943 1944 rb_link_node(&perm->node, parent, p); 1945 rb_insert_color(&perm->node, &mdsc->pool_perm_tree); 1946 err = 0; 1947 out_unlock: 1948 up_write(&mdsc->pool_perm_rwsem); 1949 1950 ceph_osdc_put_request(rd_req); 1951 ceph_osdc_put_request(wr_req); 1952 out: 1953 if (!err) 1954 err = have; 1955 if (pool_ns) 1956 dout("__ceph_pool_perm_get pool %lld ns %.*s result = %d\n", 1957 pool, (int)pool_ns->len, pool_ns->str, err); 1958 else 1959 dout("__ceph_pool_perm_get pool %lld result = %d\n", pool, err); 1960 return err; 1961 } 1962 1963 int ceph_pool_perm_check(struct inode *inode, int need) 1964 { 1965 struct ceph_inode_info *ci = ceph_inode(inode); 1966 struct ceph_string *pool_ns; 1967 s64 pool; 1968 int ret, flags; 1969 1970 /* Only need to do this for regular files */ 1971 if (!S_ISREG(inode->i_mode)) 1972 return 0; 1973 1974 if (ci->i_vino.snap != CEPH_NOSNAP) { 1975 /* 1976 * Pool permission check needs to write to the first object. 1977 * But for snapshot, head of the first object may have alread 1978 * been deleted. Skip check to avoid creating orphan object. 1979 */ 1980 return 0; 1981 } 1982 1983 if (ceph_test_mount_opt(ceph_inode_to_client(inode), 1984 NOPOOLPERM)) 1985 return 0; 1986 1987 spin_lock(&ci->i_ceph_lock); 1988 flags = ci->i_ceph_flags; 1989 pool = ci->i_layout.pool_id; 1990 spin_unlock(&ci->i_ceph_lock); 1991 check: 1992 if (flags & CEPH_I_POOL_PERM) { 1993 if ((need & CEPH_CAP_FILE_RD) && !(flags & CEPH_I_POOL_RD)) { 1994 dout("ceph_pool_perm_check pool %lld no read perm\n", 1995 pool); 1996 return -EPERM; 1997 } 1998 if ((need & CEPH_CAP_FILE_WR) && !(flags & CEPH_I_POOL_WR)) { 1999 dout("ceph_pool_perm_check pool %lld no write perm\n", 2000 pool); 2001 return -EPERM; 2002 } 2003 return 0; 2004 } 2005 2006 pool_ns = ceph_try_get_string(ci->i_layout.pool_ns); 2007 ret = __ceph_pool_perm_get(ci, pool, pool_ns); 2008 ceph_put_string(pool_ns); 2009 if (ret < 0) 2010 return ret; 2011 2012 flags = CEPH_I_POOL_PERM; 2013 if (ret & POOL_READ) 2014 flags |= CEPH_I_POOL_RD; 2015 if (ret & POOL_WRITE) 2016 flags |= CEPH_I_POOL_WR; 2017 2018 spin_lock(&ci->i_ceph_lock); 2019 if (pool == ci->i_layout.pool_id && 2020 pool_ns == rcu_dereference_raw(ci->i_layout.pool_ns)) { 2021 ci->i_ceph_flags |= flags; 2022 } else { 2023 pool = ci->i_layout.pool_id; 2024 flags = ci->i_ceph_flags; 2025 } 2026 spin_unlock(&ci->i_ceph_lock); 2027 goto check; 2028 } 2029 2030 void ceph_pool_perm_destroy(struct ceph_mds_client *mdsc) 2031 { 2032 struct ceph_pool_perm *perm; 2033 struct rb_node *n; 2034 2035 while (!RB_EMPTY_ROOT(&mdsc->pool_perm_tree)) { 2036 n = rb_first(&mdsc->pool_perm_tree); 2037 perm = rb_entry(n, struct ceph_pool_perm, node); 2038 rb_erase(n, &mdsc->pool_perm_tree); 2039 kfree(perm); 2040 } 2041 } 2042