xref: /linux/fs/ceph/addr.c (revision 34dc1baba215b826e454b8d19e4f24adbeb7d00d)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/backing-dev.h>
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/swap.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/pagevec.h>
11 #include <linux/task_io_accounting_ops.h>
12 #include <linux/signal.h>
13 #include <linux/iversion.h>
14 #include <linux/ktime.h>
15 #include <linux/netfs.h>
16 
17 #include "super.h"
18 #include "mds_client.h"
19 #include "cache.h"
20 #include "metric.h"
21 #include "crypto.h"
22 #include <linux/ceph/osd_client.h>
23 #include <linux/ceph/striper.h>
24 
25 /*
26  * Ceph address space ops.
27  *
28  * There are a few funny things going on here.
29  *
30  * The page->private field is used to reference a struct
31  * ceph_snap_context for _every_ dirty page.  This indicates which
32  * snapshot the page was logically dirtied in, and thus which snap
33  * context needs to be associated with the osd write during writeback.
34  *
35  * Similarly, struct ceph_inode_info maintains a set of counters to
36  * count dirty pages on the inode.  In the absence of snapshots,
37  * i_wrbuffer_ref == i_wrbuffer_ref_head == the dirty page count.
38  *
39  * When a snapshot is taken (that is, when the client receives
40  * notification that a snapshot was taken), each inode with caps and
41  * with dirty pages (dirty pages implies there is a cap) gets a new
42  * ceph_cap_snap in the i_cap_snaps list (which is sorted in ascending
43  * order, new snaps go to the tail).  The i_wrbuffer_ref_head count is
44  * moved to capsnap->dirty. (Unless a sync write is currently in
45  * progress.  In that case, the capsnap is said to be "pending", new
46  * writes cannot start, and the capsnap isn't "finalized" until the
47  * write completes (or fails) and a final size/mtime for the inode for
48  * that snap can be settled upon.)  i_wrbuffer_ref_head is reset to 0.
49  *
50  * On writeback, we must submit writes to the osd IN SNAP ORDER.  So,
51  * we look for the first capsnap in i_cap_snaps and write out pages in
52  * that snap context _only_.  Then we move on to the next capsnap,
53  * eventually reaching the "live" or "head" context (i.e., pages that
54  * are not yet snapped) and are writing the most recently dirtied
55  * pages.
56  *
57  * Invalidate and so forth must take care to ensure the dirty page
58  * accounting is preserved.
59  */
60 
61 #define CONGESTION_ON_THRESH(congestion_kb) (congestion_kb >> (PAGE_SHIFT-10))
62 #define CONGESTION_OFF_THRESH(congestion_kb)				\
63 	(CONGESTION_ON_THRESH(congestion_kb) -				\
64 	 (CONGESTION_ON_THRESH(congestion_kb) >> 2))
65 
66 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len,
67 					struct folio **foliop, void **_fsdata);
68 
69 static inline struct ceph_snap_context *page_snap_context(struct page *page)
70 {
71 	if (PagePrivate(page))
72 		return (void *)page->private;
73 	return NULL;
74 }
75 
76 /*
77  * Dirty a page.  Optimistically adjust accounting, on the assumption
78  * that we won't race with invalidate.  If we do, readjust.
79  */
80 static bool ceph_dirty_folio(struct address_space *mapping, struct folio *folio)
81 {
82 	struct inode *inode;
83 	struct ceph_inode_info *ci;
84 	struct ceph_snap_context *snapc;
85 
86 	if (folio_test_dirty(folio)) {
87 		dout("%p dirty_folio %p idx %lu -- already dirty\n",
88 		     mapping->host, folio, folio->index);
89 		VM_BUG_ON_FOLIO(!folio_test_private(folio), folio);
90 		return false;
91 	}
92 
93 	inode = mapping->host;
94 	ci = ceph_inode(inode);
95 
96 	/* dirty the head */
97 	spin_lock(&ci->i_ceph_lock);
98 	BUG_ON(ci->i_wr_ref == 0); // caller should hold Fw reference
99 	if (__ceph_have_pending_cap_snap(ci)) {
100 		struct ceph_cap_snap *capsnap =
101 				list_last_entry(&ci->i_cap_snaps,
102 						struct ceph_cap_snap,
103 						ci_item);
104 		snapc = ceph_get_snap_context(capsnap->context);
105 		capsnap->dirty_pages++;
106 	} else {
107 		BUG_ON(!ci->i_head_snapc);
108 		snapc = ceph_get_snap_context(ci->i_head_snapc);
109 		++ci->i_wrbuffer_ref_head;
110 	}
111 	if (ci->i_wrbuffer_ref == 0)
112 		ihold(inode);
113 	++ci->i_wrbuffer_ref;
114 	dout("%p dirty_folio %p idx %lu head %d/%d -> %d/%d "
115 	     "snapc %p seq %lld (%d snaps)\n",
116 	     mapping->host, folio, folio->index,
117 	     ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref_head-1,
118 	     ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
119 	     snapc, snapc->seq, snapc->num_snaps);
120 	spin_unlock(&ci->i_ceph_lock);
121 
122 	/*
123 	 * Reference snap context in folio->private.  Also set
124 	 * PagePrivate so that we get invalidate_folio callback.
125 	 */
126 	VM_WARN_ON_FOLIO(folio->private, folio);
127 	folio_attach_private(folio, snapc);
128 
129 	return ceph_fscache_dirty_folio(mapping, folio);
130 }
131 
132 /*
133  * If we are truncating the full folio (i.e. offset == 0), adjust the
134  * dirty folio counters appropriately.  Only called if there is private
135  * data on the folio.
136  */
137 static void ceph_invalidate_folio(struct folio *folio, size_t offset,
138 				size_t length)
139 {
140 	struct inode *inode;
141 	struct ceph_inode_info *ci;
142 	struct ceph_snap_context *snapc;
143 
144 	inode = folio->mapping->host;
145 	ci = ceph_inode(inode);
146 
147 	if (offset != 0 || length != folio_size(folio)) {
148 		dout("%p invalidate_folio idx %lu partial dirty page %zu~%zu\n",
149 		     inode, folio->index, offset, length);
150 		return;
151 	}
152 
153 	WARN_ON(!folio_test_locked(folio));
154 	if (folio_test_private(folio)) {
155 		dout("%p invalidate_folio idx %lu full dirty page\n",
156 		     inode, folio->index);
157 
158 		snapc = folio_detach_private(folio);
159 		ceph_put_wrbuffer_cap_refs(ci, 1, snapc);
160 		ceph_put_snap_context(snapc);
161 	}
162 
163 	folio_wait_fscache(folio);
164 }
165 
166 static bool ceph_release_folio(struct folio *folio, gfp_t gfp)
167 {
168 	struct inode *inode = folio->mapping->host;
169 
170 	dout("%llx:%llx release_folio idx %lu (%sdirty)\n",
171 	     ceph_vinop(inode),
172 	     folio->index, folio_test_dirty(folio) ? "" : "not ");
173 
174 	if (folio_test_private(folio))
175 		return false;
176 
177 	if (folio_test_fscache(folio)) {
178 		if (current_is_kswapd() || !(gfp & __GFP_FS))
179 			return false;
180 		folio_wait_fscache(folio);
181 	}
182 	ceph_fscache_note_page_release(inode);
183 	return true;
184 }
185 
186 static void ceph_netfs_expand_readahead(struct netfs_io_request *rreq)
187 {
188 	struct inode *inode = rreq->inode;
189 	struct ceph_inode_info *ci = ceph_inode(inode);
190 	struct ceph_file_layout *lo = &ci->i_layout;
191 	unsigned long max_pages = inode->i_sb->s_bdi->ra_pages;
192 	loff_t end = rreq->start + rreq->len, new_end;
193 	struct ceph_netfs_request_data *priv = rreq->netfs_priv;
194 	unsigned long max_len;
195 	u32 blockoff;
196 
197 	if (priv) {
198 		/* Readahead is disabled by posix_fadvise POSIX_FADV_RANDOM */
199 		if (priv->file_ra_disabled)
200 			max_pages = 0;
201 		else
202 			max_pages = priv->file_ra_pages;
203 
204 	}
205 
206 	/* Readahead is disabled */
207 	if (!max_pages)
208 		return;
209 
210 	max_len = max_pages << PAGE_SHIFT;
211 
212 	/*
213 	 * Try to expand the length forward by rounding up it to the next
214 	 * block, but do not exceed the file size, unless the original
215 	 * request already exceeds it.
216 	 */
217 	new_end = min(round_up(end, lo->stripe_unit), rreq->i_size);
218 	if (new_end > end && new_end <= rreq->start + max_len)
219 		rreq->len = new_end - rreq->start;
220 
221 	/* Try to expand the start downward */
222 	div_u64_rem(rreq->start, lo->stripe_unit, &blockoff);
223 	if (rreq->len + blockoff <= max_len) {
224 		rreq->start -= blockoff;
225 		rreq->len += blockoff;
226 	}
227 }
228 
229 static bool ceph_netfs_clamp_length(struct netfs_io_subrequest *subreq)
230 {
231 	struct inode *inode = subreq->rreq->inode;
232 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
233 	struct ceph_inode_info *ci = ceph_inode(inode);
234 	u64 objno, objoff;
235 	u32 xlen;
236 
237 	/* Truncate the extent at the end of the current block */
238 	ceph_calc_file_object_mapping(&ci->i_layout, subreq->start, subreq->len,
239 				      &objno, &objoff, &xlen);
240 	subreq->len = min(xlen, fsc->mount_options->rsize);
241 	return true;
242 }
243 
244 static void finish_netfs_read(struct ceph_osd_request *req)
245 {
246 	struct inode *inode = req->r_inode;
247 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
248 	struct ceph_osd_data *osd_data = osd_req_op_extent_osd_data(req, 0);
249 	struct netfs_io_subrequest *subreq = req->r_priv;
250 	struct ceph_osd_req_op *op = &req->r_ops[0];
251 	int err = req->r_result;
252 	bool sparse = (op->op == CEPH_OSD_OP_SPARSE_READ);
253 
254 	ceph_update_read_metrics(&fsc->mdsc->metric, req->r_start_latency,
255 				 req->r_end_latency, osd_data->length, err);
256 
257 	dout("%s: result %d subreq->len=%zu i_size=%lld\n", __func__, req->r_result,
258 	     subreq->len, i_size_read(req->r_inode));
259 
260 	/* no object means success but no data */
261 	if (err == -ENOENT)
262 		err = 0;
263 	else if (err == -EBLOCKLISTED)
264 		fsc->blocklisted = true;
265 
266 	if (err >= 0) {
267 		if (sparse && err > 0)
268 			err = ceph_sparse_ext_map_end(op);
269 		if (err < subreq->len)
270 			__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
271 		if (IS_ENCRYPTED(inode) && err > 0) {
272 			err = ceph_fscrypt_decrypt_extents(inode,
273 					osd_data->pages, subreq->start,
274 					op->extent.sparse_ext,
275 					op->extent.sparse_ext_cnt);
276 			if (err > subreq->len)
277 				err = subreq->len;
278 		}
279 	}
280 
281 	if (osd_data->type == CEPH_OSD_DATA_TYPE_PAGES) {
282 		ceph_put_page_vector(osd_data->pages,
283 				     calc_pages_for(osd_data->alignment,
284 					osd_data->length), false);
285 	}
286 	netfs_subreq_terminated(subreq, err, false);
287 	iput(req->r_inode);
288 	ceph_dec_osd_stopping_blocker(fsc->mdsc);
289 }
290 
291 static bool ceph_netfs_issue_op_inline(struct netfs_io_subrequest *subreq)
292 {
293 	struct netfs_io_request *rreq = subreq->rreq;
294 	struct inode *inode = rreq->inode;
295 	struct ceph_mds_reply_info_parsed *rinfo;
296 	struct ceph_mds_reply_info_in *iinfo;
297 	struct ceph_mds_request *req;
298 	struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
299 	struct ceph_inode_info *ci = ceph_inode(inode);
300 	struct iov_iter iter;
301 	ssize_t err = 0;
302 	size_t len;
303 	int mode;
304 
305 	__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
306 	__clear_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags);
307 
308 	if (subreq->start >= inode->i_size)
309 		goto out;
310 
311 	/* We need to fetch the inline data. */
312 	mode = ceph_try_to_choose_auth_mds(inode, CEPH_STAT_CAP_INLINE_DATA);
313 	req = ceph_mdsc_create_request(mdsc, CEPH_MDS_OP_GETATTR, mode);
314 	if (IS_ERR(req)) {
315 		err = PTR_ERR(req);
316 		goto out;
317 	}
318 	req->r_ino1 = ci->i_vino;
319 	req->r_args.getattr.mask = cpu_to_le32(CEPH_STAT_CAP_INLINE_DATA);
320 	req->r_num_caps = 2;
321 
322 	err = ceph_mdsc_do_request(mdsc, NULL, req);
323 	if (err < 0)
324 		goto out;
325 
326 	rinfo = &req->r_reply_info;
327 	iinfo = &rinfo->targeti;
328 	if (iinfo->inline_version == CEPH_INLINE_NONE) {
329 		/* The data got uninlined */
330 		ceph_mdsc_put_request(req);
331 		return false;
332 	}
333 
334 	len = min_t(size_t, iinfo->inline_len - subreq->start, subreq->len);
335 	iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len);
336 	err = copy_to_iter(iinfo->inline_data + subreq->start, len, &iter);
337 	if (err == 0)
338 		err = -EFAULT;
339 
340 	ceph_mdsc_put_request(req);
341 out:
342 	netfs_subreq_terminated(subreq, err, false);
343 	return true;
344 }
345 
346 static void ceph_netfs_issue_read(struct netfs_io_subrequest *subreq)
347 {
348 	struct netfs_io_request *rreq = subreq->rreq;
349 	struct inode *inode = rreq->inode;
350 	struct ceph_inode_info *ci = ceph_inode(inode);
351 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
352 	struct ceph_osd_request *req = NULL;
353 	struct ceph_vino vino = ceph_vino(inode);
354 	struct iov_iter iter;
355 	int err = 0;
356 	u64 len = subreq->len;
357 	bool sparse = IS_ENCRYPTED(inode) || ceph_test_mount_opt(fsc, SPARSEREAD);
358 	u64 off = subreq->start;
359 
360 	if (ceph_inode_is_shutdown(inode)) {
361 		err = -EIO;
362 		goto out;
363 	}
364 
365 	if (ceph_has_inline_data(ci) && ceph_netfs_issue_op_inline(subreq))
366 		return;
367 
368 	ceph_fscrypt_adjust_off_and_len(inode, &off, &len);
369 
370 	req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout, vino,
371 			off, &len, 0, 1, sparse ? CEPH_OSD_OP_SPARSE_READ : CEPH_OSD_OP_READ,
372 			CEPH_OSD_FLAG_READ | fsc->client->osdc.client->options->read_from_replica,
373 			NULL, ci->i_truncate_seq, ci->i_truncate_size, false);
374 	if (IS_ERR(req)) {
375 		err = PTR_ERR(req);
376 		req = NULL;
377 		goto out;
378 	}
379 
380 	if (sparse) {
381 		err = ceph_alloc_sparse_ext_map(&req->r_ops[0]);
382 		if (err)
383 			goto out;
384 	}
385 
386 	dout("%s: pos=%llu orig_len=%zu len=%llu\n", __func__, subreq->start, subreq->len, len);
387 
388 	iov_iter_xarray(&iter, ITER_DEST, &rreq->mapping->i_pages, subreq->start, len);
389 
390 	/*
391 	 * FIXME: For now, use CEPH_OSD_DATA_TYPE_PAGES instead of _ITER for
392 	 * encrypted inodes. We'd need infrastructure that handles an iov_iter
393 	 * instead of page arrays, and we don't have that as of yet. Once the
394 	 * dust settles on the write helpers and encrypt/decrypt routines for
395 	 * netfs, we should be able to rework this.
396 	 */
397 	if (IS_ENCRYPTED(inode)) {
398 		struct page **pages;
399 		size_t page_off;
400 
401 		err = iov_iter_get_pages_alloc2(&iter, &pages, len, &page_off);
402 		if (err < 0) {
403 			dout("%s: iov_ter_get_pages_alloc returned %d\n",
404 			     __func__, err);
405 			goto out;
406 		}
407 
408 		/* should always give us a page-aligned read */
409 		WARN_ON_ONCE(page_off);
410 		len = err;
411 		err = 0;
412 
413 		osd_req_op_extent_osd_data_pages(req, 0, pages, len, 0, false,
414 						 false);
415 	} else {
416 		osd_req_op_extent_osd_iter(req, 0, &iter);
417 	}
418 	if (!ceph_inc_osd_stopping_blocker(fsc->mdsc)) {
419 		err = -EIO;
420 		goto out;
421 	}
422 	req->r_callback = finish_netfs_read;
423 	req->r_priv = subreq;
424 	req->r_inode = inode;
425 	ihold(inode);
426 
427 	ceph_osdc_start_request(req->r_osdc, req);
428 out:
429 	ceph_osdc_put_request(req);
430 	if (err)
431 		netfs_subreq_terminated(subreq, err, false);
432 	dout("%s: result %d\n", __func__, err);
433 }
434 
435 static int ceph_init_request(struct netfs_io_request *rreq, struct file *file)
436 {
437 	struct inode *inode = rreq->inode;
438 	int got = 0, want = CEPH_CAP_FILE_CACHE;
439 	struct ceph_netfs_request_data *priv;
440 	int ret = 0;
441 
442 	if (rreq->origin != NETFS_READAHEAD)
443 		return 0;
444 
445 	priv = kzalloc(sizeof(*priv), GFP_NOFS);
446 	if (!priv)
447 		return -ENOMEM;
448 
449 	if (file) {
450 		struct ceph_rw_context *rw_ctx;
451 		struct ceph_file_info *fi = file->private_data;
452 
453 		priv->file_ra_pages = file->f_ra.ra_pages;
454 		priv->file_ra_disabled = file->f_mode & FMODE_RANDOM;
455 
456 		rw_ctx = ceph_find_rw_context(fi);
457 		if (rw_ctx) {
458 			rreq->netfs_priv = priv;
459 			return 0;
460 		}
461 	}
462 
463 	/*
464 	 * readahead callers do not necessarily hold Fcb caps
465 	 * (e.g. fadvise, madvise).
466 	 */
467 	ret = ceph_try_get_caps(inode, CEPH_CAP_FILE_RD, want, true, &got);
468 	if (ret < 0) {
469 		dout("start_read %p, error getting cap\n", inode);
470 		goto out;
471 	}
472 
473 	if (!(got & want)) {
474 		dout("start_read %p, no cache cap\n", inode);
475 		ret = -EACCES;
476 		goto out;
477 	}
478 	if (ret == 0) {
479 		ret = -EACCES;
480 		goto out;
481 	}
482 
483 	priv->caps = got;
484 	rreq->netfs_priv = priv;
485 
486 out:
487 	if (ret < 0)
488 		kfree(priv);
489 
490 	return ret;
491 }
492 
493 static void ceph_netfs_free_request(struct netfs_io_request *rreq)
494 {
495 	struct ceph_netfs_request_data *priv = rreq->netfs_priv;
496 
497 	if (!priv)
498 		return;
499 
500 	if (priv->caps)
501 		ceph_put_cap_refs(ceph_inode(rreq->inode), priv->caps);
502 	kfree(priv);
503 	rreq->netfs_priv = NULL;
504 }
505 
506 const struct netfs_request_ops ceph_netfs_ops = {
507 	.init_request		= ceph_init_request,
508 	.free_request		= ceph_netfs_free_request,
509 	.begin_cache_operation	= ceph_begin_cache_operation,
510 	.issue_read		= ceph_netfs_issue_read,
511 	.expand_readahead	= ceph_netfs_expand_readahead,
512 	.clamp_length		= ceph_netfs_clamp_length,
513 	.check_write_begin	= ceph_netfs_check_write_begin,
514 };
515 
516 #ifdef CONFIG_CEPH_FSCACHE
517 static void ceph_set_page_fscache(struct page *page)
518 {
519 	set_page_fscache(page);
520 }
521 
522 static void ceph_fscache_write_terminated(void *priv, ssize_t error, bool was_async)
523 {
524 	struct inode *inode = priv;
525 
526 	if (IS_ERR_VALUE(error) && error != -ENOBUFS)
527 		ceph_fscache_invalidate(inode, false);
528 }
529 
530 static void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching)
531 {
532 	struct ceph_inode_info *ci = ceph_inode(inode);
533 	struct fscache_cookie *cookie = ceph_fscache_cookie(ci);
534 
535 	fscache_write_to_cache(cookie, inode->i_mapping, off, len, i_size_read(inode),
536 			       ceph_fscache_write_terminated, inode, caching);
537 }
538 #else
539 static inline void ceph_set_page_fscache(struct page *page)
540 {
541 }
542 
543 static inline void ceph_fscache_write_to_cache(struct inode *inode, u64 off, u64 len, bool caching)
544 {
545 }
546 #endif /* CONFIG_CEPH_FSCACHE */
547 
548 struct ceph_writeback_ctl
549 {
550 	loff_t i_size;
551 	u64 truncate_size;
552 	u32 truncate_seq;
553 	bool size_stable;
554 	bool head_snapc;
555 };
556 
557 /*
558  * Get ref for the oldest snapc for an inode with dirty data... that is, the
559  * only snap context we are allowed to write back.
560  */
561 static struct ceph_snap_context *
562 get_oldest_context(struct inode *inode, struct ceph_writeback_ctl *ctl,
563 		   struct ceph_snap_context *page_snapc)
564 {
565 	struct ceph_inode_info *ci = ceph_inode(inode);
566 	struct ceph_snap_context *snapc = NULL;
567 	struct ceph_cap_snap *capsnap = NULL;
568 
569 	spin_lock(&ci->i_ceph_lock);
570 	list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
571 		dout(" cap_snap %p snapc %p has %d dirty pages\n", capsnap,
572 		     capsnap->context, capsnap->dirty_pages);
573 		if (!capsnap->dirty_pages)
574 			continue;
575 
576 		/* get i_size, truncate_{seq,size} for page_snapc? */
577 		if (snapc && capsnap->context != page_snapc)
578 			continue;
579 
580 		if (ctl) {
581 			if (capsnap->writing) {
582 				ctl->i_size = i_size_read(inode);
583 				ctl->size_stable = false;
584 			} else {
585 				ctl->i_size = capsnap->size;
586 				ctl->size_stable = true;
587 			}
588 			ctl->truncate_size = capsnap->truncate_size;
589 			ctl->truncate_seq = capsnap->truncate_seq;
590 			ctl->head_snapc = false;
591 		}
592 
593 		if (snapc)
594 			break;
595 
596 		snapc = ceph_get_snap_context(capsnap->context);
597 		if (!page_snapc ||
598 		    page_snapc == snapc ||
599 		    page_snapc->seq > snapc->seq)
600 			break;
601 	}
602 	if (!snapc && ci->i_wrbuffer_ref_head) {
603 		snapc = ceph_get_snap_context(ci->i_head_snapc);
604 		dout(" head snapc %p has %d dirty pages\n",
605 		     snapc, ci->i_wrbuffer_ref_head);
606 		if (ctl) {
607 			ctl->i_size = i_size_read(inode);
608 			ctl->truncate_size = ci->i_truncate_size;
609 			ctl->truncate_seq = ci->i_truncate_seq;
610 			ctl->size_stable = false;
611 			ctl->head_snapc = true;
612 		}
613 	}
614 	spin_unlock(&ci->i_ceph_lock);
615 	return snapc;
616 }
617 
618 static u64 get_writepages_data_length(struct inode *inode,
619 				      struct page *page, u64 start)
620 {
621 	struct ceph_inode_info *ci = ceph_inode(inode);
622 	struct ceph_snap_context *snapc;
623 	struct ceph_cap_snap *capsnap = NULL;
624 	u64 end = i_size_read(inode);
625 	u64 ret;
626 
627 	snapc = page_snap_context(ceph_fscrypt_pagecache_page(page));
628 	if (snapc != ci->i_head_snapc) {
629 		bool found = false;
630 		spin_lock(&ci->i_ceph_lock);
631 		list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
632 			if (capsnap->context == snapc) {
633 				if (!capsnap->writing)
634 					end = capsnap->size;
635 				found = true;
636 				break;
637 			}
638 		}
639 		spin_unlock(&ci->i_ceph_lock);
640 		WARN_ON(!found);
641 	}
642 	if (end > ceph_fscrypt_page_offset(page) + thp_size(page))
643 		end = ceph_fscrypt_page_offset(page) + thp_size(page);
644 	ret = end > start ? end - start : 0;
645 	if (ret && fscrypt_is_bounce_page(page))
646 		ret = round_up(ret, CEPH_FSCRYPT_BLOCK_SIZE);
647 	return ret;
648 }
649 
650 /*
651  * Write a single page, but leave the page locked.
652  *
653  * If we get a write error, mark the mapping for error, but still adjust the
654  * dirty page accounting (i.e., page is no longer dirty).
655  */
656 static int writepage_nounlock(struct page *page, struct writeback_control *wbc)
657 {
658 	struct folio *folio = page_folio(page);
659 	struct inode *inode = page->mapping->host;
660 	struct ceph_inode_info *ci = ceph_inode(inode);
661 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
662 	struct ceph_snap_context *snapc, *oldest;
663 	loff_t page_off = page_offset(page);
664 	int err;
665 	loff_t len = thp_size(page);
666 	loff_t wlen;
667 	struct ceph_writeback_ctl ceph_wbc;
668 	struct ceph_osd_client *osdc = &fsc->client->osdc;
669 	struct ceph_osd_request *req;
670 	bool caching = ceph_is_cache_enabled(inode);
671 	struct page *bounce_page = NULL;
672 
673 	dout("writepage %p idx %lu\n", page, page->index);
674 
675 	if (ceph_inode_is_shutdown(inode))
676 		return -EIO;
677 
678 	/* verify this is a writeable snap context */
679 	snapc = page_snap_context(page);
680 	if (!snapc) {
681 		dout("writepage %p page %p not dirty?\n", inode, page);
682 		return 0;
683 	}
684 	oldest = get_oldest_context(inode, &ceph_wbc, snapc);
685 	if (snapc->seq > oldest->seq) {
686 		dout("writepage %p page %p snapc %p not writeable - noop\n",
687 		     inode, page, snapc);
688 		/* we should only noop if called by kswapd */
689 		WARN_ON(!(current->flags & PF_MEMALLOC));
690 		ceph_put_snap_context(oldest);
691 		redirty_page_for_writepage(wbc, page);
692 		return 0;
693 	}
694 	ceph_put_snap_context(oldest);
695 
696 	/* is this a partial page at end of file? */
697 	if (page_off >= ceph_wbc.i_size) {
698 		dout("folio at %lu beyond eof %llu\n", folio->index,
699 				ceph_wbc.i_size);
700 		folio_invalidate(folio, 0, folio_size(folio));
701 		return 0;
702 	}
703 
704 	if (ceph_wbc.i_size < page_off + len)
705 		len = ceph_wbc.i_size - page_off;
706 
707 	wlen = IS_ENCRYPTED(inode) ? round_up(len, CEPH_FSCRYPT_BLOCK_SIZE) : len;
708 	dout("writepage %p page %p index %lu on %llu~%llu snapc %p seq %lld\n",
709 	     inode, page, page->index, page_off, wlen, snapc, snapc->seq);
710 
711 	if (atomic_long_inc_return(&fsc->writeback_count) >
712 	    CONGESTION_ON_THRESH(fsc->mount_options->congestion_kb))
713 		fsc->write_congested = true;
714 
715 	req = ceph_osdc_new_request(osdc, &ci->i_layout, ceph_vino(inode),
716 				    page_off, &wlen, 0, 1, CEPH_OSD_OP_WRITE,
717 				    CEPH_OSD_FLAG_WRITE, snapc,
718 				    ceph_wbc.truncate_seq,
719 				    ceph_wbc.truncate_size, true);
720 	if (IS_ERR(req)) {
721 		redirty_page_for_writepage(wbc, page);
722 		return PTR_ERR(req);
723 	}
724 
725 	if (wlen < len)
726 		len = wlen;
727 
728 	set_page_writeback(page);
729 	if (caching)
730 		ceph_set_page_fscache(page);
731 	ceph_fscache_write_to_cache(inode, page_off, len, caching);
732 
733 	if (IS_ENCRYPTED(inode)) {
734 		bounce_page = fscrypt_encrypt_pagecache_blocks(page,
735 						    CEPH_FSCRYPT_BLOCK_SIZE, 0,
736 						    GFP_NOFS);
737 		if (IS_ERR(bounce_page)) {
738 			redirty_page_for_writepage(wbc, page);
739 			end_page_writeback(page);
740 			ceph_osdc_put_request(req);
741 			return PTR_ERR(bounce_page);
742 		}
743 	}
744 
745 	/* it may be a short write due to an object boundary */
746 	WARN_ON_ONCE(len > thp_size(page));
747 	osd_req_op_extent_osd_data_pages(req, 0,
748 			bounce_page ? &bounce_page : &page, wlen, 0,
749 			false, false);
750 	dout("writepage %llu~%llu (%llu bytes, %sencrypted)\n",
751 	     page_off, len, wlen, IS_ENCRYPTED(inode) ? "" : "not ");
752 
753 	req->r_mtime = inode->i_mtime;
754 	ceph_osdc_start_request(osdc, req);
755 	err = ceph_osdc_wait_request(osdc, req);
756 
757 	ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
758 				  req->r_end_latency, len, err);
759 	fscrypt_free_bounce_page(bounce_page);
760 	ceph_osdc_put_request(req);
761 	if (err == 0)
762 		err = len;
763 
764 	if (err < 0) {
765 		struct writeback_control tmp_wbc;
766 		if (!wbc)
767 			wbc = &tmp_wbc;
768 		if (err == -ERESTARTSYS) {
769 			/* killed by SIGKILL */
770 			dout("writepage interrupted page %p\n", page);
771 			redirty_page_for_writepage(wbc, page);
772 			end_page_writeback(page);
773 			return err;
774 		}
775 		if (err == -EBLOCKLISTED)
776 			fsc->blocklisted = true;
777 		dout("writepage setting page/mapping error %d %p\n",
778 		     err, page);
779 		mapping_set_error(&inode->i_data, err);
780 		wbc->pages_skipped++;
781 	} else {
782 		dout("writepage cleaned page %p\n", page);
783 		err = 0;  /* vfs expects us to return 0 */
784 	}
785 	oldest = detach_page_private(page);
786 	WARN_ON_ONCE(oldest != snapc);
787 	end_page_writeback(page);
788 	ceph_put_wrbuffer_cap_refs(ci, 1, snapc);
789 	ceph_put_snap_context(snapc);  /* page's reference */
790 
791 	if (atomic_long_dec_return(&fsc->writeback_count) <
792 	    CONGESTION_OFF_THRESH(fsc->mount_options->congestion_kb))
793 		fsc->write_congested = false;
794 
795 	return err;
796 }
797 
798 static int ceph_writepage(struct page *page, struct writeback_control *wbc)
799 {
800 	int err;
801 	struct inode *inode = page->mapping->host;
802 	BUG_ON(!inode);
803 	ihold(inode);
804 
805 	if (wbc->sync_mode == WB_SYNC_NONE &&
806 	    ceph_inode_to_client(inode)->write_congested)
807 		return AOP_WRITEPAGE_ACTIVATE;
808 
809 	wait_on_page_fscache(page);
810 
811 	err = writepage_nounlock(page, wbc);
812 	if (err == -ERESTARTSYS) {
813 		/* direct memory reclaimer was killed by SIGKILL. return 0
814 		 * to prevent caller from setting mapping/page error */
815 		err = 0;
816 	}
817 	unlock_page(page);
818 	iput(inode);
819 	return err;
820 }
821 
822 /*
823  * async writeback completion handler.
824  *
825  * If we get an error, set the mapping error bit, but not the individual
826  * page error bits.
827  */
828 static void writepages_finish(struct ceph_osd_request *req)
829 {
830 	struct inode *inode = req->r_inode;
831 	struct ceph_inode_info *ci = ceph_inode(inode);
832 	struct ceph_osd_data *osd_data;
833 	struct page *page;
834 	int num_pages, total_pages = 0;
835 	int i, j;
836 	int rc = req->r_result;
837 	struct ceph_snap_context *snapc = req->r_snapc;
838 	struct address_space *mapping = inode->i_mapping;
839 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
840 	unsigned int len = 0;
841 	bool remove_page;
842 
843 	dout("writepages_finish %p rc %d\n", inode, rc);
844 	if (rc < 0) {
845 		mapping_set_error(mapping, rc);
846 		ceph_set_error_write(ci);
847 		if (rc == -EBLOCKLISTED)
848 			fsc->blocklisted = true;
849 	} else {
850 		ceph_clear_error_write(ci);
851 	}
852 
853 	/*
854 	 * We lost the cache cap, need to truncate the page before
855 	 * it is unlocked, otherwise we'd truncate it later in the
856 	 * page truncation thread, possibly losing some data that
857 	 * raced its way in
858 	 */
859 	remove_page = !(ceph_caps_issued(ci) &
860 			(CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO));
861 
862 	/* clean all pages */
863 	for (i = 0; i < req->r_num_ops; i++) {
864 		if (req->r_ops[i].op != CEPH_OSD_OP_WRITE) {
865 			pr_warn("%s incorrect op %d req %p index %d tid %llu\n",
866 				__func__, req->r_ops[i].op, req, i, req->r_tid);
867 			break;
868 		}
869 
870 		osd_data = osd_req_op_extent_osd_data(req, i);
871 		BUG_ON(osd_data->type != CEPH_OSD_DATA_TYPE_PAGES);
872 		len += osd_data->length;
873 		num_pages = calc_pages_for((u64)osd_data->alignment,
874 					   (u64)osd_data->length);
875 		total_pages += num_pages;
876 		for (j = 0; j < num_pages; j++) {
877 			page = osd_data->pages[j];
878 			if (fscrypt_is_bounce_page(page)) {
879 				page = fscrypt_pagecache_page(page);
880 				fscrypt_free_bounce_page(osd_data->pages[j]);
881 				osd_data->pages[j] = page;
882 			}
883 			BUG_ON(!page);
884 			WARN_ON(!PageUptodate(page));
885 
886 			if (atomic_long_dec_return(&fsc->writeback_count) <
887 			     CONGESTION_OFF_THRESH(
888 					fsc->mount_options->congestion_kb))
889 				fsc->write_congested = false;
890 
891 			ceph_put_snap_context(detach_page_private(page));
892 			end_page_writeback(page);
893 			dout("unlocking %p\n", page);
894 
895 			if (remove_page)
896 				generic_error_remove_page(inode->i_mapping,
897 							  page);
898 
899 			unlock_page(page);
900 		}
901 		dout("writepages_finish %p wrote %llu bytes cleaned %d pages\n",
902 		     inode, osd_data->length, rc >= 0 ? num_pages : 0);
903 
904 		release_pages(osd_data->pages, num_pages);
905 	}
906 
907 	ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
908 				  req->r_end_latency, len, rc);
909 
910 	ceph_put_wrbuffer_cap_refs(ci, total_pages, snapc);
911 
912 	osd_data = osd_req_op_extent_osd_data(req, 0);
913 	if (osd_data->pages_from_pool)
914 		mempool_free(osd_data->pages, ceph_wb_pagevec_pool);
915 	else
916 		kfree(osd_data->pages);
917 	ceph_osdc_put_request(req);
918 	ceph_dec_osd_stopping_blocker(fsc->mdsc);
919 }
920 
921 /*
922  * initiate async writeback
923  */
924 static int ceph_writepages_start(struct address_space *mapping,
925 				 struct writeback_control *wbc)
926 {
927 	struct inode *inode = mapping->host;
928 	struct ceph_inode_info *ci = ceph_inode(inode);
929 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
930 	struct ceph_vino vino = ceph_vino(inode);
931 	pgoff_t index, start_index, end = -1;
932 	struct ceph_snap_context *snapc = NULL, *last_snapc = NULL, *pgsnapc;
933 	struct folio_batch fbatch;
934 	int rc = 0;
935 	unsigned int wsize = i_blocksize(inode);
936 	struct ceph_osd_request *req = NULL;
937 	struct ceph_writeback_ctl ceph_wbc;
938 	bool should_loop, range_whole = false;
939 	bool done = false;
940 	bool caching = ceph_is_cache_enabled(inode);
941 	xa_mark_t tag;
942 
943 	if (wbc->sync_mode == WB_SYNC_NONE &&
944 	    fsc->write_congested)
945 		return 0;
946 
947 	dout("writepages_start %p (mode=%s)\n", inode,
948 	     wbc->sync_mode == WB_SYNC_NONE ? "NONE" :
949 	     (wbc->sync_mode == WB_SYNC_ALL ? "ALL" : "HOLD"));
950 
951 	if (ceph_inode_is_shutdown(inode)) {
952 		if (ci->i_wrbuffer_ref > 0) {
953 			pr_warn_ratelimited(
954 				"writepage_start %p %lld forced umount\n",
955 				inode, ceph_ino(inode));
956 		}
957 		mapping_set_error(mapping, -EIO);
958 		return -EIO; /* we're in a forced umount, don't write! */
959 	}
960 	if (fsc->mount_options->wsize < wsize)
961 		wsize = fsc->mount_options->wsize;
962 
963 	folio_batch_init(&fbatch);
964 
965 	start_index = wbc->range_cyclic ? mapping->writeback_index : 0;
966 	index = start_index;
967 
968 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
969 		tag = PAGECACHE_TAG_TOWRITE;
970 	} else {
971 		tag = PAGECACHE_TAG_DIRTY;
972 	}
973 retry:
974 	/* find oldest snap context with dirty data */
975 	snapc = get_oldest_context(inode, &ceph_wbc, NULL);
976 	if (!snapc) {
977 		/* hmm, why does writepages get called when there
978 		   is no dirty data? */
979 		dout(" no snap context with dirty data?\n");
980 		goto out;
981 	}
982 	dout(" oldest snapc is %p seq %lld (%d snaps)\n",
983 	     snapc, snapc->seq, snapc->num_snaps);
984 
985 	should_loop = false;
986 	if (ceph_wbc.head_snapc && snapc != last_snapc) {
987 		/* where to start/end? */
988 		if (wbc->range_cyclic) {
989 			index = start_index;
990 			end = -1;
991 			if (index > 0)
992 				should_loop = true;
993 			dout(" cyclic, start at %lu\n", index);
994 		} else {
995 			index = wbc->range_start >> PAGE_SHIFT;
996 			end = wbc->range_end >> PAGE_SHIFT;
997 			if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
998 				range_whole = true;
999 			dout(" not cyclic, %lu to %lu\n", index, end);
1000 		}
1001 	} else if (!ceph_wbc.head_snapc) {
1002 		/* Do not respect wbc->range_{start,end}. Dirty pages
1003 		 * in that range can be associated with newer snapc.
1004 		 * They are not writeable until we write all dirty pages
1005 		 * associated with 'snapc' get written */
1006 		if (index > 0)
1007 			should_loop = true;
1008 		dout(" non-head snapc, range whole\n");
1009 	}
1010 
1011 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1012 		tag_pages_for_writeback(mapping, index, end);
1013 
1014 	ceph_put_snap_context(last_snapc);
1015 	last_snapc = snapc;
1016 
1017 	while (!done && index <= end) {
1018 		int num_ops = 0, op_idx;
1019 		unsigned i, nr_folios, max_pages, locked_pages = 0;
1020 		struct page **pages = NULL, **data_pages;
1021 		struct page *page;
1022 		pgoff_t strip_unit_end = 0;
1023 		u64 offset = 0, len = 0;
1024 		bool from_pool = false;
1025 
1026 		max_pages = wsize >> PAGE_SHIFT;
1027 
1028 get_more_pages:
1029 		nr_folios = filemap_get_folios_tag(mapping, &index,
1030 						   end, tag, &fbatch);
1031 		dout("pagevec_lookup_range_tag got %d\n", nr_folios);
1032 		if (!nr_folios && !locked_pages)
1033 			break;
1034 		for (i = 0; i < nr_folios && locked_pages < max_pages; i++) {
1035 			page = &fbatch.folios[i]->page;
1036 			dout("? %p idx %lu\n", page, page->index);
1037 			if (locked_pages == 0)
1038 				lock_page(page);  /* first page */
1039 			else if (!trylock_page(page))
1040 				break;
1041 
1042 			/* only dirty pages, or our accounting breaks */
1043 			if (unlikely(!PageDirty(page)) ||
1044 			    unlikely(page->mapping != mapping)) {
1045 				dout("!dirty or !mapping %p\n", page);
1046 				unlock_page(page);
1047 				continue;
1048 			}
1049 			/* only if matching snap context */
1050 			pgsnapc = page_snap_context(page);
1051 			if (pgsnapc != snapc) {
1052 				dout("page snapc %p %lld != oldest %p %lld\n",
1053 				     pgsnapc, pgsnapc->seq, snapc, snapc->seq);
1054 				if (!should_loop &&
1055 				    !ceph_wbc.head_snapc &&
1056 				    wbc->sync_mode != WB_SYNC_NONE)
1057 					should_loop = true;
1058 				unlock_page(page);
1059 				continue;
1060 			}
1061 			if (page_offset(page) >= ceph_wbc.i_size) {
1062 				struct folio *folio = page_folio(page);
1063 
1064 				dout("folio at %lu beyond eof %llu\n",
1065 				     folio->index, ceph_wbc.i_size);
1066 				if ((ceph_wbc.size_stable ||
1067 				    folio_pos(folio) >= i_size_read(inode)) &&
1068 				    folio_clear_dirty_for_io(folio))
1069 					folio_invalidate(folio, 0,
1070 							folio_size(folio));
1071 				folio_unlock(folio);
1072 				continue;
1073 			}
1074 			if (strip_unit_end && (page->index > strip_unit_end)) {
1075 				dout("end of strip unit %p\n", page);
1076 				unlock_page(page);
1077 				break;
1078 			}
1079 			if (PageWriteback(page) || PageFsCache(page)) {
1080 				if (wbc->sync_mode == WB_SYNC_NONE) {
1081 					dout("%p under writeback\n", page);
1082 					unlock_page(page);
1083 					continue;
1084 				}
1085 				dout("waiting on writeback %p\n", page);
1086 				wait_on_page_writeback(page);
1087 				wait_on_page_fscache(page);
1088 			}
1089 
1090 			if (!clear_page_dirty_for_io(page)) {
1091 				dout("%p !clear_page_dirty_for_io\n", page);
1092 				unlock_page(page);
1093 				continue;
1094 			}
1095 
1096 			/*
1097 			 * We have something to write.  If this is
1098 			 * the first locked page this time through,
1099 			 * calculate max possinle write size and
1100 			 * allocate a page array
1101 			 */
1102 			if (locked_pages == 0) {
1103 				u64 objnum;
1104 				u64 objoff;
1105 				u32 xlen;
1106 
1107 				/* prepare async write request */
1108 				offset = (u64)page_offset(page);
1109 				ceph_calc_file_object_mapping(&ci->i_layout,
1110 							      offset, wsize,
1111 							      &objnum, &objoff,
1112 							      &xlen);
1113 				len = xlen;
1114 
1115 				num_ops = 1;
1116 				strip_unit_end = page->index +
1117 					((len - 1) >> PAGE_SHIFT);
1118 
1119 				BUG_ON(pages);
1120 				max_pages = calc_pages_for(0, (u64)len);
1121 				pages = kmalloc_array(max_pages,
1122 						      sizeof(*pages),
1123 						      GFP_NOFS);
1124 				if (!pages) {
1125 					from_pool = true;
1126 					pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS);
1127 					BUG_ON(!pages);
1128 				}
1129 
1130 				len = 0;
1131 			} else if (page->index !=
1132 				   (offset + len) >> PAGE_SHIFT) {
1133 				if (num_ops >= (from_pool ?  CEPH_OSD_SLAB_OPS :
1134 							     CEPH_OSD_MAX_OPS)) {
1135 					redirty_page_for_writepage(wbc, page);
1136 					unlock_page(page);
1137 					break;
1138 				}
1139 
1140 				num_ops++;
1141 				offset = (u64)page_offset(page);
1142 				len = 0;
1143 			}
1144 
1145 			/* note position of first page in fbatch */
1146 			dout("%p will write page %p idx %lu\n",
1147 			     inode, page, page->index);
1148 
1149 			if (atomic_long_inc_return(&fsc->writeback_count) >
1150 			    CONGESTION_ON_THRESH(
1151 				    fsc->mount_options->congestion_kb))
1152 				fsc->write_congested = true;
1153 
1154 			if (IS_ENCRYPTED(inode)) {
1155 				pages[locked_pages] =
1156 					fscrypt_encrypt_pagecache_blocks(page,
1157 						PAGE_SIZE, 0,
1158 						locked_pages ? GFP_NOWAIT : GFP_NOFS);
1159 				if (IS_ERR(pages[locked_pages])) {
1160 					if (PTR_ERR(pages[locked_pages]) == -EINVAL)
1161 						pr_err("%s: inode->i_blkbits=%hhu\n",
1162 							__func__, inode->i_blkbits);
1163 					/* better not fail on first page! */
1164 					BUG_ON(locked_pages == 0);
1165 					pages[locked_pages] = NULL;
1166 					redirty_page_for_writepage(wbc, page);
1167 					unlock_page(page);
1168 					break;
1169 				}
1170 				++locked_pages;
1171 			} else {
1172 				pages[locked_pages++] = page;
1173 			}
1174 
1175 			fbatch.folios[i] = NULL;
1176 			len += thp_size(page);
1177 		}
1178 
1179 		/* did we get anything? */
1180 		if (!locked_pages)
1181 			goto release_folios;
1182 		if (i) {
1183 			unsigned j, n = 0;
1184 			/* shift unused page to beginning of fbatch */
1185 			for (j = 0; j < nr_folios; j++) {
1186 				if (!fbatch.folios[j])
1187 					continue;
1188 				if (n < j)
1189 					fbatch.folios[n] = fbatch.folios[j];
1190 				n++;
1191 			}
1192 			fbatch.nr = n;
1193 
1194 			if (nr_folios && i == nr_folios &&
1195 			    locked_pages < max_pages) {
1196 				dout("reached end fbatch, trying for more\n");
1197 				folio_batch_release(&fbatch);
1198 				goto get_more_pages;
1199 			}
1200 		}
1201 
1202 new_request:
1203 		offset = ceph_fscrypt_page_offset(pages[0]);
1204 		len = wsize;
1205 
1206 		req = ceph_osdc_new_request(&fsc->client->osdc,
1207 					&ci->i_layout, vino,
1208 					offset, &len, 0, num_ops,
1209 					CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE,
1210 					snapc, ceph_wbc.truncate_seq,
1211 					ceph_wbc.truncate_size, false);
1212 		if (IS_ERR(req)) {
1213 			req = ceph_osdc_new_request(&fsc->client->osdc,
1214 						&ci->i_layout, vino,
1215 						offset, &len, 0,
1216 						min(num_ops,
1217 						    CEPH_OSD_SLAB_OPS),
1218 						CEPH_OSD_OP_WRITE,
1219 						CEPH_OSD_FLAG_WRITE,
1220 						snapc, ceph_wbc.truncate_seq,
1221 						ceph_wbc.truncate_size, true);
1222 			BUG_ON(IS_ERR(req));
1223 		}
1224 		BUG_ON(len < ceph_fscrypt_page_offset(pages[locked_pages - 1]) +
1225 			     thp_size(pages[locked_pages - 1]) - offset);
1226 
1227 		if (!ceph_inc_osd_stopping_blocker(fsc->mdsc)) {
1228 			rc = -EIO;
1229 			goto release_folios;
1230 		}
1231 		req->r_callback = writepages_finish;
1232 		req->r_inode = inode;
1233 
1234 		/* Format the osd request message and submit the write */
1235 		len = 0;
1236 		data_pages = pages;
1237 		op_idx = 0;
1238 		for (i = 0; i < locked_pages; i++) {
1239 			struct page *page = ceph_fscrypt_pagecache_page(pages[i]);
1240 
1241 			u64 cur_offset = page_offset(page);
1242 			/*
1243 			 * Discontinuity in page range? Ceph can handle that by just passing
1244 			 * multiple extents in the write op.
1245 			 */
1246 			if (offset + len != cur_offset) {
1247 				/* If it's full, stop here */
1248 				if (op_idx + 1 == req->r_num_ops)
1249 					break;
1250 
1251 				/* Kick off an fscache write with what we have so far. */
1252 				ceph_fscache_write_to_cache(inode, offset, len, caching);
1253 
1254 				/* Start a new extent */
1255 				osd_req_op_extent_dup_last(req, op_idx,
1256 							   cur_offset - offset);
1257 				dout("writepages got pages at %llu~%llu\n",
1258 				     offset, len);
1259 				osd_req_op_extent_osd_data_pages(req, op_idx,
1260 							data_pages, len, 0,
1261 							from_pool, false);
1262 				osd_req_op_extent_update(req, op_idx, len);
1263 
1264 				len = 0;
1265 				offset = cur_offset;
1266 				data_pages = pages + i;
1267 				op_idx++;
1268 			}
1269 
1270 			set_page_writeback(page);
1271 			if (caching)
1272 				ceph_set_page_fscache(page);
1273 			len += thp_size(page);
1274 		}
1275 		ceph_fscache_write_to_cache(inode, offset, len, caching);
1276 
1277 		if (ceph_wbc.size_stable) {
1278 			len = min(len, ceph_wbc.i_size - offset);
1279 		} else if (i == locked_pages) {
1280 			/* writepages_finish() clears writeback pages
1281 			 * according to the data length, so make sure
1282 			 * data length covers all locked pages */
1283 			u64 min_len = len + 1 - thp_size(page);
1284 			len = get_writepages_data_length(inode, pages[i - 1],
1285 							 offset);
1286 			len = max(len, min_len);
1287 		}
1288 		if (IS_ENCRYPTED(inode))
1289 			len = round_up(len, CEPH_FSCRYPT_BLOCK_SIZE);
1290 
1291 		dout("writepages got pages at %llu~%llu\n", offset, len);
1292 
1293 		if (IS_ENCRYPTED(inode) &&
1294 		    ((offset | len) & ~CEPH_FSCRYPT_BLOCK_MASK))
1295 			pr_warn("%s: bad encrypted write offset=%lld len=%llu\n",
1296 				__func__, offset, len);
1297 
1298 		osd_req_op_extent_osd_data_pages(req, op_idx, data_pages, len,
1299 						 0, from_pool, false);
1300 		osd_req_op_extent_update(req, op_idx, len);
1301 
1302 		BUG_ON(op_idx + 1 != req->r_num_ops);
1303 
1304 		from_pool = false;
1305 		if (i < locked_pages) {
1306 			BUG_ON(num_ops <= req->r_num_ops);
1307 			num_ops -= req->r_num_ops;
1308 			locked_pages -= i;
1309 
1310 			/* allocate new pages array for next request */
1311 			data_pages = pages;
1312 			pages = kmalloc_array(locked_pages, sizeof(*pages),
1313 					      GFP_NOFS);
1314 			if (!pages) {
1315 				from_pool = true;
1316 				pages = mempool_alloc(ceph_wb_pagevec_pool, GFP_NOFS);
1317 				BUG_ON(!pages);
1318 			}
1319 			memcpy(pages, data_pages + i,
1320 			       locked_pages * sizeof(*pages));
1321 			memset(data_pages + i, 0,
1322 			       locked_pages * sizeof(*pages));
1323 		} else {
1324 			BUG_ON(num_ops != req->r_num_ops);
1325 			index = pages[i - 1]->index + 1;
1326 			/* request message now owns the pages array */
1327 			pages = NULL;
1328 		}
1329 
1330 		req->r_mtime = inode->i_mtime;
1331 		ceph_osdc_start_request(&fsc->client->osdc, req);
1332 		req = NULL;
1333 
1334 		wbc->nr_to_write -= i;
1335 		if (pages)
1336 			goto new_request;
1337 
1338 		/*
1339 		 * We stop writing back only if we are not doing
1340 		 * integrity sync. In case of integrity sync we have to
1341 		 * keep going until we have written all the pages
1342 		 * we tagged for writeback prior to entering this loop.
1343 		 */
1344 		if (wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE)
1345 			done = true;
1346 
1347 release_folios:
1348 		dout("folio_batch release on %d folios (%p)\n", (int)fbatch.nr,
1349 		     fbatch.nr ? fbatch.folios[0] : NULL);
1350 		folio_batch_release(&fbatch);
1351 	}
1352 
1353 	if (should_loop && !done) {
1354 		/* more to do; loop back to beginning of file */
1355 		dout("writepages looping back to beginning of file\n");
1356 		end = start_index - 1; /* OK even when start_index == 0 */
1357 
1358 		/* to write dirty pages associated with next snapc,
1359 		 * we need to wait until current writes complete */
1360 		if (wbc->sync_mode != WB_SYNC_NONE &&
1361 		    start_index == 0 && /* all dirty pages were checked */
1362 		    !ceph_wbc.head_snapc) {
1363 			struct page *page;
1364 			unsigned i, nr;
1365 			index = 0;
1366 			while ((index <= end) &&
1367 			       (nr = filemap_get_folios_tag(mapping, &index,
1368 						(pgoff_t)-1,
1369 						PAGECACHE_TAG_WRITEBACK,
1370 						&fbatch))) {
1371 				for (i = 0; i < nr; i++) {
1372 					page = &fbatch.folios[i]->page;
1373 					if (page_snap_context(page) != snapc)
1374 						continue;
1375 					wait_on_page_writeback(page);
1376 				}
1377 				folio_batch_release(&fbatch);
1378 				cond_resched();
1379 			}
1380 		}
1381 
1382 		start_index = 0;
1383 		index = 0;
1384 		goto retry;
1385 	}
1386 
1387 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1388 		mapping->writeback_index = index;
1389 
1390 out:
1391 	ceph_osdc_put_request(req);
1392 	ceph_put_snap_context(last_snapc);
1393 	dout("writepages dend - startone, rc = %d\n", rc);
1394 	return rc;
1395 }
1396 
1397 
1398 
1399 /*
1400  * See if a given @snapc is either writeable, or already written.
1401  */
1402 static int context_is_writeable_or_written(struct inode *inode,
1403 					   struct ceph_snap_context *snapc)
1404 {
1405 	struct ceph_snap_context *oldest = get_oldest_context(inode, NULL, NULL);
1406 	int ret = !oldest || snapc->seq <= oldest->seq;
1407 
1408 	ceph_put_snap_context(oldest);
1409 	return ret;
1410 }
1411 
1412 /**
1413  * ceph_find_incompatible - find an incompatible context and return it
1414  * @page: page being dirtied
1415  *
1416  * We are only allowed to write into/dirty a page if the page is
1417  * clean, or already dirty within the same snap context. Returns a
1418  * conflicting context if there is one, NULL if there isn't, or a
1419  * negative error code on other errors.
1420  *
1421  * Must be called with page lock held.
1422  */
1423 static struct ceph_snap_context *
1424 ceph_find_incompatible(struct page *page)
1425 {
1426 	struct inode *inode = page->mapping->host;
1427 	struct ceph_inode_info *ci = ceph_inode(inode);
1428 
1429 	if (ceph_inode_is_shutdown(inode)) {
1430 		dout(" page %p %llx:%llx is shutdown\n", page,
1431 		     ceph_vinop(inode));
1432 		return ERR_PTR(-ESTALE);
1433 	}
1434 
1435 	for (;;) {
1436 		struct ceph_snap_context *snapc, *oldest;
1437 
1438 		wait_on_page_writeback(page);
1439 
1440 		snapc = page_snap_context(page);
1441 		if (!snapc || snapc == ci->i_head_snapc)
1442 			break;
1443 
1444 		/*
1445 		 * this page is already dirty in another (older) snap
1446 		 * context!  is it writeable now?
1447 		 */
1448 		oldest = get_oldest_context(inode, NULL, NULL);
1449 		if (snapc->seq > oldest->seq) {
1450 			/* not writeable -- return it for the caller to deal with */
1451 			ceph_put_snap_context(oldest);
1452 			dout(" page %p snapc %p not current or oldest\n", page, snapc);
1453 			return ceph_get_snap_context(snapc);
1454 		}
1455 		ceph_put_snap_context(oldest);
1456 
1457 		/* yay, writeable, do it now (without dropping page lock) */
1458 		dout(" page %p snapc %p not current, but oldest\n", page, snapc);
1459 		if (clear_page_dirty_for_io(page)) {
1460 			int r = writepage_nounlock(page, NULL);
1461 			if (r < 0)
1462 				return ERR_PTR(r);
1463 		}
1464 	}
1465 	return NULL;
1466 }
1467 
1468 static int ceph_netfs_check_write_begin(struct file *file, loff_t pos, unsigned int len,
1469 					struct folio **foliop, void **_fsdata)
1470 {
1471 	struct inode *inode = file_inode(file);
1472 	struct ceph_inode_info *ci = ceph_inode(inode);
1473 	struct ceph_snap_context *snapc;
1474 
1475 	snapc = ceph_find_incompatible(folio_page(*foliop, 0));
1476 	if (snapc) {
1477 		int r;
1478 
1479 		folio_unlock(*foliop);
1480 		folio_put(*foliop);
1481 		*foliop = NULL;
1482 		if (IS_ERR(snapc))
1483 			return PTR_ERR(snapc);
1484 
1485 		ceph_queue_writeback(inode);
1486 		r = wait_event_killable(ci->i_cap_wq,
1487 					context_is_writeable_or_written(inode, snapc));
1488 		ceph_put_snap_context(snapc);
1489 		return r == 0 ? -EAGAIN : r;
1490 	}
1491 	return 0;
1492 }
1493 
1494 /*
1495  * We are only allowed to write into/dirty the page if the page is
1496  * clean, or already dirty within the same snap context.
1497  */
1498 static int ceph_write_begin(struct file *file, struct address_space *mapping,
1499 			    loff_t pos, unsigned len,
1500 			    struct page **pagep, void **fsdata)
1501 {
1502 	struct inode *inode = file_inode(file);
1503 	struct ceph_inode_info *ci = ceph_inode(inode);
1504 	struct folio *folio = NULL;
1505 	int r;
1506 
1507 	r = netfs_write_begin(&ci->netfs, file, inode->i_mapping, pos, len, &folio, NULL);
1508 	if (r < 0)
1509 		return r;
1510 
1511 	folio_wait_fscache(folio);
1512 	WARN_ON_ONCE(!folio_test_locked(folio));
1513 	*pagep = &folio->page;
1514 	return 0;
1515 }
1516 
1517 /*
1518  * we don't do anything in here that simple_write_end doesn't do
1519  * except adjust dirty page accounting
1520  */
1521 static int ceph_write_end(struct file *file, struct address_space *mapping,
1522 			  loff_t pos, unsigned len, unsigned copied,
1523 			  struct page *subpage, void *fsdata)
1524 {
1525 	struct folio *folio = page_folio(subpage);
1526 	struct inode *inode = file_inode(file);
1527 	bool check_cap = false;
1528 
1529 	dout("write_end file %p inode %p folio %p %d~%d (%d)\n", file,
1530 	     inode, folio, (int)pos, (int)copied, (int)len);
1531 
1532 	if (!folio_test_uptodate(folio)) {
1533 		/* just return that nothing was copied on a short copy */
1534 		if (copied < len) {
1535 			copied = 0;
1536 			goto out;
1537 		}
1538 		folio_mark_uptodate(folio);
1539 	}
1540 
1541 	/* did file size increase? */
1542 	if (pos+copied > i_size_read(inode))
1543 		check_cap = ceph_inode_set_size(inode, pos+copied);
1544 
1545 	folio_mark_dirty(folio);
1546 
1547 out:
1548 	folio_unlock(folio);
1549 	folio_put(folio);
1550 
1551 	if (check_cap)
1552 		ceph_check_caps(ceph_inode(inode), CHECK_CAPS_AUTHONLY);
1553 
1554 	return copied;
1555 }
1556 
1557 const struct address_space_operations ceph_aops = {
1558 	.read_folio = netfs_read_folio,
1559 	.readahead = netfs_readahead,
1560 	.writepage = ceph_writepage,
1561 	.writepages = ceph_writepages_start,
1562 	.write_begin = ceph_write_begin,
1563 	.write_end = ceph_write_end,
1564 	.dirty_folio = ceph_dirty_folio,
1565 	.invalidate_folio = ceph_invalidate_folio,
1566 	.release_folio = ceph_release_folio,
1567 	.direct_IO = noop_direct_IO,
1568 };
1569 
1570 static void ceph_block_sigs(sigset_t *oldset)
1571 {
1572 	sigset_t mask;
1573 	siginitsetinv(&mask, sigmask(SIGKILL));
1574 	sigprocmask(SIG_BLOCK, &mask, oldset);
1575 }
1576 
1577 static void ceph_restore_sigs(sigset_t *oldset)
1578 {
1579 	sigprocmask(SIG_SETMASK, oldset, NULL);
1580 }
1581 
1582 /*
1583  * vm ops
1584  */
1585 static vm_fault_t ceph_filemap_fault(struct vm_fault *vmf)
1586 {
1587 	struct vm_area_struct *vma = vmf->vma;
1588 	struct inode *inode = file_inode(vma->vm_file);
1589 	struct ceph_inode_info *ci = ceph_inode(inode);
1590 	struct ceph_file_info *fi = vma->vm_file->private_data;
1591 	loff_t off = (loff_t)vmf->pgoff << PAGE_SHIFT;
1592 	int want, got, err;
1593 	sigset_t oldset;
1594 	vm_fault_t ret = VM_FAULT_SIGBUS;
1595 
1596 	if (ceph_inode_is_shutdown(inode))
1597 		return ret;
1598 
1599 	ceph_block_sigs(&oldset);
1600 
1601 	dout("filemap_fault %p %llx.%llx %llu trying to get caps\n",
1602 	     inode, ceph_vinop(inode), off);
1603 	if (fi->fmode & CEPH_FILE_MODE_LAZY)
1604 		want = CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO;
1605 	else
1606 		want = CEPH_CAP_FILE_CACHE;
1607 
1608 	got = 0;
1609 	err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_RD, want, -1, &got);
1610 	if (err < 0)
1611 		goto out_restore;
1612 
1613 	dout("filemap_fault %p %llu got cap refs on %s\n",
1614 	     inode, off, ceph_cap_string(got));
1615 
1616 	if ((got & (CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO)) ||
1617 	    !ceph_has_inline_data(ci)) {
1618 		CEPH_DEFINE_RW_CONTEXT(rw_ctx, got);
1619 		ceph_add_rw_context(fi, &rw_ctx);
1620 		ret = filemap_fault(vmf);
1621 		ceph_del_rw_context(fi, &rw_ctx);
1622 		dout("filemap_fault %p %llu drop cap refs %s ret %x\n",
1623 		     inode, off, ceph_cap_string(got), ret);
1624 	} else
1625 		err = -EAGAIN;
1626 
1627 	ceph_put_cap_refs(ci, got);
1628 
1629 	if (err != -EAGAIN)
1630 		goto out_restore;
1631 
1632 	/* read inline data */
1633 	if (off >= PAGE_SIZE) {
1634 		/* does not support inline data > PAGE_SIZE */
1635 		ret = VM_FAULT_SIGBUS;
1636 	} else {
1637 		struct address_space *mapping = inode->i_mapping;
1638 		struct page *page;
1639 
1640 		filemap_invalidate_lock_shared(mapping);
1641 		page = find_or_create_page(mapping, 0,
1642 				mapping_gfp_constraint(mapping, ~__GFP_FS));
1643 		if (!page) {
1644 			ret = VM_FAULT_OOM;
1645 			goto out_inline;
1646 		}
1647 		err = __ceph_do_getattr(inode, page,
1648 					 CEPH_STAT_CAP_INLINE_DATA, true);
1649 		if (err < 0 || off >= i_size_read(inode)) {
1650 			unlock_page(page);
1651 			put_page(page);
1652 			ret = vmf_error(err);
1653 			goto out_inline;
1654 		}
1655 		if (err < PAGE_SIZE)
1656 			zero_user_segment(page, err, PAGE_SIZE);
1657 		else
1658 			flush_dcache_page(page);
1659 		SetPageUptodate(page);
1660 		vmf->page = page;
1661 		ret = VM_FAULT_MAJOR | VM_FAULT_LOCKED;
1662 out_inline:
1663 		filemap_invalidate_unlock_shared(mapping);
1664 		dout("filemap_fault %p %llu read inline data ret %x\n",
1665 		     inode, off, ret);
1666 	}
1667 out_restore:
1668 	ceph_restore_sigs(&oldset);
1669 	if (err < 0)
1670 		ret = vmf_error(err);
1671 
1672 	return ret;
1673 }
1674 
1675 static vm_fault_t ceph_page_mkwrite(struct vm_fault *vmf)
1676 {
1677 	struct vm_area_struct *vma = vmf->vma;
1678 	struct inode *inode = file_inode(vma->vm_file);
1679 	struct ceph_inode_info *ci = ceph_inode(inode);
1680 	struct ceph_file_info *fi = vma->vm_file->private_data;
1681 	struct ceph_cap_flush *prealloc_cf;
1682 	struct page *page = vmf->page;
1683 	loff_t off = page_offset(page);
1684 	loff_t size = i_size_read(inode);
1685 	size_t len;
1686 	int want, got, err;
1687 	sigset_t oldset;
1688 	vm_fault_t ret = VM_FAULT_SIGBUS;
1689 
1690 	if (ceph_inode_is_shutdown(inode))
1691 		return ret;
1692 
1693 	prealloc_cf = ceph_alloc_cap_flush();
1694 	if (!prealloc_cf)
1695 		return VM_FAULT_OOM;
1696 
1697 	sb_start_pagefault(inode->i_sb);
1698 	ceph_block_sigs(&oldset);
1699 
1700 	if (off + thp_size(page) <= size)
1701 		len = thp_size(page);
1702 	else
1703 		len = offset_in_thp(page, size);
1704 
1705 	dout("page_mkwrite %p %llx.%llx %llu~%zd getting caps i_size %llu\n",
1706 	     inode, ceph_vinop(inode), off, len, size);
1707 	if (fi->fmode & CEPH_FILE_MODE_LAZY)
1708 		want = CEPH_CAP_FILE_BUFFER | CEPH_CAP_FILE_LAZYIO;
1709 	else
1710 		want = CEPH_CAP_FILE_BUFFER;
1711 
1712 	got = 0;
1713 	err = ceph_get_caps(vma->vm_file, CEPH_CAP_FILE_WR, want, off + len, &got);
1714 	if (err < 0)
1715 		goto out_free;
1716 
1717 	dout("page_mkwrite %p %llu~%zd got cap refs on %s\n",
1718 	     inode, off, len, ceph_cap_string(got));
1719 
1720 	/* Update time before taking page lock */
1721 	file_update_time(vma->vm_file);
1722 	inode_inc_iversion_raw(inode);
1723 
1724 	do {
1725 		struct ceph_snap_context *snapc;
1726 
1727 		lock_page(page);
1728 
1729 		if (page_mkwrite_check_truncate(page, inode) < 0) {
1730 			unlock_page(page);
1731 			ret = VM_FAULT_NOPAGE;
1732 			break;
1733 		}
1734 
1735 		snapc = ceph_find_incompatible(page);
1736 		if (!snapc) {
1737 			/* success.  we'll keep the page locked. */
1738 			set_page_dirty(page);
1739 			ret = VM_FAULT_LOCKED;
1740 			break;
1741 		}
1742 
1743 		unlock_page(page);
1744 
1745 		if (IS_ERR(snapc)) {
1746 			ret = VM_FAULT_SIGBUS;
1747 			break;
1748 		}
1749 
1750 		ceph_queue_writeback(inode);
1751 		err = wait_event_killable(ci->i_cap_wq,
1752 				context_is_writeable_or_written(inode, snapc));
1753 		ceph_put_snap_context(snapc);
1754 	} while (err == 0);
1755 
1756 	if (ret == VM_FAULT_LOCKED) {
1757 		int dirty;
1758 		spin_lock(&ci->i_ceph_lock);
1759 		dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR,
1760 					       &prealloc_cf);
1761 		spin_unlock(&ci->i_ceph_lock);
1762 		if (dirty)
1763 			__mark_inode_dirty(inode, dirty);
1764 	}
1765 
1766 	dout("page_mkwrite %p %llu~%zd dropping cap refs on %s ret %x\n",
1767 	     inode, off, len, ceph_cap_string(got), ret);
1768 	ceph_put_cap_refs_async(ci, got);
1769 out_free:
1770 	ceph_restore_sigs(&oldset);
1771 	sb_end_pagefault(inode->i_sb);
1772 	ceph_free_cap_flush(prealloc_cf);
1773 	if (err < 0)
1774 		ret = vmf_error(err);
1775 	return ret;
1776 }
1777 
1778 void ceph_fill_inline_data(struct inode *inode, struct page *locked_page,
1779 			   char	*data, size_t len)
1780 {
1781 	struct address_space *mapping = inode->i_mapping;
1782 	struct page *page;
1783 
1784 	if (locked_page) {
1785 		page = locked_page;
1786 	} else {
1787 		if (i_size_read(inode) == 0)
1788 			return;
1789 		page = find_or_create_page(mapping, 0,
1790 					   mapping_gfp_constraint(mapping,
1791 					   ~__GFP_FS));
1792 		if (!page)
1793 			return;
1794 		if (PageUptodate(page)) {
1795 			unlock_page(page);
1796 			put_page(page);
1797 			return;
1798 		}
1799 	}
1800 
1801 	dout("fill_inline_data %p %llx.%llx len %zu locked_page %p\n",
1802 	     inode, ceph_vinop(inode), len, locked_page);
1803 
1804 	if (len > 0) {
1805 		void *kaddr = kmap_atomic(page);
1806 		memcpy(kaddr, data, len);
1807 		kunmap_atomic(kaddr);
1808 	}
1809 
1810 	if (page != locked_page) {
1811 		if (len < PAGE_SIZE)
1812 			zero_user_segment(page, len, PAGE_SIZE);
1813 		else
1814 			flush_dcache_page(page);
1815 
1816 		SetPageUptodate(page);
1817 		unlock_page(page);
1818 		put_page(page);
1819 	}
1820 }
1821 
1822 int ceph_uninline_data(struct file *file)
1823 {
1824 	struct inode *inode = file_inode(file);
1825 	struct ceph_inode_info *ci = ceph_inode(inode);
1826 	struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
1827 	struct ceph_osd_request *req = NULL;
1828 	struct ceph_cap_flush *prealloc_cf = NULL;
1829 	struct folio *folio = NULL;
1830 	u64 inline_version = CEPH_INLINE_NONE;
1831 	struct page *pages[1];
1832 	int err = 0;
1833 	u64 len;
1834 
1835 	spin_lock(&ci->i_ceph_lock);
1836 	inline_version = ci->i_inline_version;
1837 	spin_unlock(&ci->i_ceph_lock);
1838 
1839 	dout("uninline_data %p %llx.%llx inline_version %llu\n",
1840 	     inode, ceph_vinop(inode), inline_version);
1841 
1842 	if (ceph_inode_is_shutdown(inode)) {
1843 		err = -EIO;
1844 		goto out;
1845 	}
1846 
1847 	if (inline_version == CEPH_INLINE_NONE)
1848 		return 0;
1849 
1850 	prealloc_cf = ceph_alloc_cap_flush();
1851 	if (!prealloc_cf)
1852 		return -ENOMEM;
1853 
1854 	if (inline_version == 1) /* initial version, no data */
1855 		goto out_uninline;
1856 
1857 	folio = read_mapping_folio(inode->i_mapping, 0, file);
1858 	if (IS_ERR(folio)) {
1859 		err = PTR_ERR(folio);
1860 		goto out;
1861 	}
1862 
1863 	folio_lock(folio);
1864 
1865 	len = i_size_read(inode);
1866 	if (len > folio_size(folio))
1867 		len = folio_size(folio);
1868 
1869 	req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout,
1870 				    ceph_vino(inode), 0, &len, 0, 1,
1871 				    CEPH_OSD_OP_CREATE, CEPH_OSD_FLAG_WRITE,
1872 				    NULL, 0, 0, false);
1873 	if (IS_ERR(req)) {
1874 		err = PTR_ERR(req);
1875 		goto out_unlock;
1876 	}
1877 
1878 	req->r_mtime = inode->i_mtime;
1879 	ceph_osdc_start_request(&fsc->client->osdc, req);
1880 	err = ceph_osdc_wait_request(&fsc->client->osdc, req);
1881 	ceph_osdc_put_request(req);
1882 	if (err < 0)
1883 		goto out_unlock;
1884 
1885 	req = ceph_osdc_new_request(&fsc->client->osdc, &ci->i_layout,
1886 				    ceph_vino(inode), 0, &len, 1, 3,
1887 				    CEPH_OSD_OP_WRITE, CEPH_OSD_FLAG_WRITE,
1888 				    NULL, ci->i_truncate_seq,
1889 				    ci->i_truncate_size, false);
1890 	if (IS_ERR(req)) {
1891 		err = PTR_ERR(req);
1892 		goto out_unlock;
1893 	}
1894 
1895 	pages[0] = folio_page(folio, 0);
1896 	osd_req_op_extent_osd_data_pages(req, 1, pages, len, 0, false, false);
1897 
1898 	{
1899 		__le64 xattr_buf = cpu_to_le64(inline_version);
1900 		err = osd_req_op_xattr_init(req, 0, CEPH_OSD_OP_CMPXATTR,
1901 					    "inline_version", &xattr_buf,
1902 					    sizeof(xattr_buf),
1903 					    CEPH_OSD_CMPXATTR_OP_GT,
1904 					    CEPH_OSD_CMPXATTR_MODE_U64);
1905 		if (err)
1906 			goto out_put_req;
1907 	}
1908 
1909 	{
1910 		char xattr_buf[32];
1911 		int xattr_len = snprintf(xattr_buf, sizeof(xattr_buf),
1912 					 "%llu", inline_version);
1913 		err = osd_req_op_xattr_init(req, 2, CEPH_OSD_OP_SETXATTR,
1914 					    "inline_version",
1915 					    xattr_buf, xattr_len, 0, 0);
1916 		if (err)
1917 			goto out_put_req;
1918 	}
1919 
1920 	req->r_mtime = inode->i_mtime;
1921 	ceph_osdc_start_request(&fsc->client->osdc, req);
1922 	err = ceph_osdc_wait_request(&fsc->client->osdc, req);
1923 
1924 	ceph_update_write_metrics(&fsc->mdsc->metric, req->r_start_latency,
1925 				  req->r_end_latency, len, err);
1926 
1927 out_uninline:
1928 	if (!err) {
1929 		int dirty;
1930 
1931 		/* Set to CAP_INLINE_NONE and dirty the caps */
1932 		down_read(&fsc->mdsc->snap_rwsem);
1933 		spin_lock(&ci->i_ceph_lock);
1934 		ci->i_inline_version = CEPH_INLINE_NONE;
1935 		dirty = __ceph_mark_dirty_caps(ci, CEPH_CAP_FILE_WR, &prealloc_cf);
1936 		spin_unlock(&ci->i_ceph_lock);
1937 		up_read(&fsc->mdsc->snap_rwsem);
1938 		if (dirty)
1939 			__mark_inode_dirty(inode, dirty);
1940 	}
1941 out_put_req:
1942 	ceph_osdc_put_request(req);
1943 	if (err == -ECANCELED)
1944 		err = 0;
1945 out_unlock:
1946 	if (folio) {
1947 		folio_unlock(folio);
1948 		folio_put(folio);
1949 	}
1950 out:
1951 	ceph_free_cap_flush(prealloc_cf);
1952 	dout("uninline_data %p %llx.%llx inline_version %llu = %d\n",
1953 	     inode, ceph_vinop(inode), inline_version, err);
1954 	return err;
1955 }
1956 
1957 static const struct vm_operations_struct ceph_vmops = {
1958 	.fault		= ceph_filemap_fault,
1959 	.page_mkwrite	= ceph_page_mkwrite,
1960 };
1961 
1962 int ceph_mmap(struct file *file, struct vm_area_struct *vma)
1963 {
1964 	struct address_space *mapping = file->f_mapping;
1965 
1966 	if (!mapping->a_ops->read_folio)
1967 		return -ENOEXEC;
1968 	vma->vm_ops = &ceph_vmops;
1969 	return 0;
1970 }
1971 
1972 enum {
1973 	POOL_READ	= 1,
1974 	POOL_WRITE	= 2,
1975 };
1976 
1977 static int __ceph_pool_perm_get(struct ceph_inode_info *ci,
1978 				s64 pool, struct ceph_string *pool_ns)
1979 {
1980 	struct ceph_fs_client *fsc = ceph_inode_to_client(&ci->netfs.inode);
1981 	struct ceph_mds_client *mdsc = fsc->mdsc;
1982 	struct ceph_osd_request *rd_req = NULL, *wr_req = NULL;
1983 	struct rb_node **p, *parent;
1984 	struct ceph_pool_perm *perm;
1985 	struct page **pages;
1986 	size_t pool_ns_len;
1987 	int err = 0, err2 = 0, have = 0;
1988 
1989 	down_read(&mdsc->pool_perm_rwsem);
1990 	p = &mdsc->pool_perm_tree.rb_node;
1991 	while (*p) {
1992 		perm = rb_entry(*p, struct ceph_pool_perm, node);
1993 		if (pool < perm->pool)
1994 			p = &(*p)->rb_left;
1995 		else if (pool > perm->pool)
1996 			p = &(*p)->rb_right;
1997 		else {
1998 			int ret = ceph_compare_string(pool_ns,
1999 						perm->pool_ns,
2000 						perm->pool_ns_len);
2001 			if (ret < 0)
2002 				p = &(*p)->rb_left;
2003 			else if (ret > 0)
2004 				p = &(*p)->rb_right;
2005 			else {
2006 				have = perm->perm;
2007 				break;
2008 			}
2009 		}
2010 	}
2011 	up_read(&mdsc->pool_perm_rwsem);
2012 	if (*p)
2013 		goto out;
2014 
2015 	if (pool_ns)
2016 		dout("__ceph_pool_perm_get pool %lld ns %.*s no perm cached\n",
2017 		     pool, (int)pool_ns->len, pool_ns->str);
2018 	else
2019 		dout("__ceph_pool_perm_get pool %lld no perm cached\n", pool);
2020 
2021 	down_write(&mdsc->pool_perm_rwsem);
2022 	p = &mdsc->pool_perm_tree.rb_node;
2023 	parent = NULL;
2024 	while (*p) {
2025 		parent = *p;
2026 		perm = rb_entry(parent, struct ceph_pool_perm, node);
2027 		if (pool < perm->pool)
2028 			p = &(*p)->rb_left;
2029 		else if (pool > perm->pool)
2030 			p = &(*p)->rb_right;
2031 		else {
2032 			int ret = ceph_compare_string(pool_ns,
2033 						perm->pool_ns,
2034 						perm->pool_ns_len);
2035 			if (ret < 0)
2036 				p = &(*p)->rb_left;
2037 			else if (ret > 0)
2038 				p = &(*p)->rb_right;
2039 			else {
2040 				have = perm->perm;
2041 				break;
2042 			}
2043 		}
2044 	}
2045 	if (*p) {
2046 		up_write(&mdsc->pool_perm_rwsem);
2047 		goto out;
2048 	}
2049 
2050 	rd_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL,
2051 					 1, false, GFP_NOFS);
2052 	if (!rd_req) {
2053 		err = -ENOMEM;
2054 		goto out_unlock;
2055 	}
2056 
2057 	rd_req->r_flags = CEPH_OSD_FLAG_READ;
2058 	osd_req_op_init(rd_req, 0, CEPH_OSD_OP_STAT, 0);
2059 	rd_req->r_base_oloc.pool = pool;
2060 	if (pool_ns)
2061 		rd_req->r_base_oloc.pool_ns = ceph_get_string(pool_ns);
2062 	ceph_oid_printf(&rd_req->r_base_oid, "%llx.00000000", ci->i_vino.ino);
2063 
2064 	err = ceph_osdc_alloc_messages(rd_req, GFP_NOFS);
2065 	if (err)
2066 		goto out_unlock;
2067 
2068 	wr_req = ceph_osdc_alloc_request(&fsc->client->osdc, NULL,
2069 					 1, false, GFP_NOFS);
2070 	if (!wr_req) {
2071 		err = -ENOMEM;
2072 		goto out_unlock;
2073 	}
2074 
2075 	wr_req->r_flags = CEPH_OSD_FLAG_WRITE;
2076 	osd_req_op_init(wr_req, 0, CEPH_OSD_OP_CREATE, CEPH_OSD_OP_FLAG_EXCL);
2077 	ceph_oloc_copy(&wr_req->r_base_oloc, &rd_req->r_base_oloc);
2078 	ceph_oid_copy(&wr_req->r_base_oid, &rd_req->r_base_oid);
2079 
2080 	err = ceph_osdc_alloc_messages(wr_req, GFP_NOFS);
2081 	if (err)
2082 		goto out_unlock;
2083 
2084 	/* one page should be large enough for STAT data */
2085 	pages = ceph_alloc_page_vector(1, GFP_KERNEL);
2086 	if (IS_ERR(pages)) {
2087 		err = PTR_ERR(pages);
2088 		goto out_unlock;
2089 	}
2090 
2091 	osd_req_op_raw_data_in_pages(rd_req, 0, pages, PAGE_SIZE,
2092 				     0, false, true);
2093 	ceph_osdc_start_request(&fsc->client->osdc, rd_req);
2094 
2095 	wr_req->r_mtime = ci->netfs.inode.i_mtime;
2096 	ceph_osdc_start_request(&fsc->client->osdc, wr_req);
2097 
2098 	err = ceph_osdc_wait_request(&fsc->client->osdc, rd_req);
2099 	err2 = ceph_osdc_wait_request(&fsc->client->osdc, wr_req);
2100 
2101 	if (err >= 0 || err == -ENOENT)
2102 		have |= POOL_READ;
2103 	else if (err != -EPERM) {
2104 		if (err == -EBLOCKLISTED)
2105 			fsc->blocklisted = true;
2106 		goto out_unlock;
2107 	}
2108 
2109 	if (err2 == 0 || err2 == -EEXIST)
2110 		have |= POOL_WRITE;
2111 	else if (err2 != -EPERM) {
2112 		if (err2 == -EBLOCKLISTED)
2113 			fsc->blocklisted = true;
2114 		err = err2;
2115 		goto out_unlock;
2116 	}
2117 
2118 	pool_ns_len = pool_ns ? pool_ns->len : 0;
2119 	perm = kmalloc(sizeof(*perm) + pool_ns_len + 1, GFP_NOFS);
2120 	if (!perm) {
2121 		err = -ENOMEM;
2122 		goto out_unlock;
2123 	}
2124 
2125 	perm->pool = pool;
2126 	perm->perm = have;
2127 	perm->pool_ns_len = pool_ns_len;
2128 	if (pool_ns_len > 0)
2129 		memcpy(perm->pool_ns, pool_ns->str, pool_ns_len);
2130 	perm->pool_ns[pool_ns_len] = 0;
2131 
2132 	rb_link_node(&perm->node, parent, p);
2133 	rb_insert_color(&perm->node, &mdsc->pool_perm_tree);
2134 	err = 0;
2135 out_unlock:
2136 	up_write(&mdsc->pool_perm_rwsem);
2137 
2138 	ceph_osdc_put_request(rd_req);
2139 	ceph_osdc_put_request(wr_req);
2140 out:
2141 	if (!err)
2142 		err = have;
2143 	if (pool_ns)
2144 		dout("__ceph_pool_perm_get pool %lld ns %.*s result = %d\n",
2145 		     pool, (int)pool_ns->len, pool_ns->str, err);
2146 	else
2147 		dout("__ceph_pool_perm_get pool %lld result = %d\n", pool, err);
2148 	return err;
2149 }
2150 
2151 int ceph_pool_perm_check(struct inode *inode, int need)
2152 {
2153 	struct ceph_inode_info *ci = ceph_inode(inode);
2154 	struct ceph_string *pool_ns;
2155 	s64 pool;
2156 	int ret, flags;
2157 
2158 	/* Only need to do this for regular files */
2159 	if (!S_ISREG(inode->i_mode))
2160 		return 0;
2161 
2162 	if (ci->i_vino.snap != CEPH_NOSNAP) {
2163 		/*
2164 		 * Pool permission check needs to write to the first object.
2165 		 * But for snapshot, head of the first object may have alread
2166 		 * been deleted. Skip check to avoid creating orphan object.
2167 		 */
2168 		return 0;
2169 	}
2170 
2171 	if (ceph_test_mount_opt(ceph_inode_to_client(inode),
2172 				NOPOOLPERM))
2173 		return 0;
2174 
2175 	spin_lock(&ci->i_ceph_lock);
2176 	flags = ci->i_ceph_flags;
2177 	pool = ci->i_layout.pool_id;
2178 	spin_unlock(&ci->i_ceph_lock);
2179 check:
2180 	if (flags & CEPH_I_POOL_PERM) {
2181 		if ((need & CEPH_CAP_FILE_RD) && !(flags & CEPH_I_POOL_RD)) {
2182 			dout("ceph_pool_perm_check pool %lld no read perm\n",
2183 			     pool);
2184 			return -EPERM;
2185 		}
2186 		if ((need & CEPH_CAP_FILE_WR) && !(flags & CEPH_I_POOL_WR)) {
2187 			dout("ceph_pool_perm_check pool %lld no write perm\n",
2188 			     pool);
2189 			return -EPERM;
2190 		}
2191 		return 0;
2192 	}
2193 
2194 	pool_ns = ceph_try_get_string(ci->i_layout.pool_ns);
2195 	ret = __ceph_pool_perm_get(ci, pool, pool_ns);
2196 	ceph_put_string(pool_ns);
2197 	if (ret < 0)
2198 		return ret;
2199 
2200 	flags = CEPH_I_POOL_PERM;
2201 	if (ret & POOL_READ)
2202 		flags |= CEPH_I_POOL_RD;
2203 	if (ret & POOL_WRITE)
2204 		flags |= CEPH_I_POOL_WR;
2205 
2206 	spin_lock(&ci->i_ceph_lock);
2207 	if (pool == ci->i_layout.pool_id &&
2208 	    pool_ns == rcu_dereference_raw(ci->i_layout.pool_ns)) {
2209 		ci->i_ceph_flags |= flags;
2210         } else {
2211 		pool = ci->i_layout.pool_id;
2212 		flags = ci->i_ceph_flags;
2213 	}
2214 	spin_unlock(&ci->i_ceph_lock);
2215 	goto check;
2216 }
2217 
2218 void ceph_pool_perm_destroy(struct ceph_mds_client *mdsc)
2219 {
2220 	struct ceph_pool_perm *perm;
2221 	struct rb_node *n;
2222 
2223 	while (!RB_EMPTY_ROOT(&mdsc->pool_perm_tree)) {
2224 		n = rb_first(&mdsc->pool_perm_tree);
2225 		perm = rb_entry(n, struct ceph_pool_perm, node);
2226 		rb_erase(n, &mdsc->pool_perm_tree);
2227 		kfree(perm);
2228 	}
2229 }
2230