1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/sched/signal.h> 23 #include <linux/syscalls.h> 24 #include <linux/fs.h> 25 #include <linux/iomap.h> 26 #include <linux/mm.h> 27 #include <linux/percpu.h> 28 #include <linux/slab.h> 29 #include <linux/capability.h> 30 #include <linux/blkdev.h> 31 #include <linux/file.h> 32 #include <linux/quotaops.h> 33 #include <linux/highmem.h> 34 #include <linux/export.h> 35 #include <linux/backing-dev.h> 36 #include <linux/writeback.h> 37 #include <linux/hash.h> 38 #include <linux/suspend.h> 39 #include <linux/buffer_head.h> 40 #include <linux/task_io_accounting_ops.h> 41 #include <linux/bio.h> 42 #include <linux/notifier.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <trace/events/block.h> 49 50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 52 enum rw_hint hint, struct writeback_control *wbc); 53 54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 55 56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 57 { 58 bh->b_end_io = handler; 59 bh->b_private = private; 60 } 61 EXPORT_SYMBOL(init_buffer); 62 63 inline void touch_buffer(struct buffer_head *bh) 64 { 65 trace_block_touch_buffer(bh); 66 mark_page_accessed(bh->b_page); 67 } 68 EXPORT_SYMBOL(touch_buffer); 69 70 void __lock_buffer(struct buffer_head *bh) 71 { 72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 73 } 74 EXPORT_SYMBOL(__lock_buffer); 75 76 void unlock_buffer(struct buffer_head *bh) 77 { 78 clear_bit_unlock(BH_Lock, &bh->b_state); 79 smp_mb__after_atomic(); 80 wake_up_bit(&bh->b_state, BH_Lock); 81 } 82 EXPORT_SYMBOL(unlock_buffer); 83 84 /* 85 * Returns if the page has dirty or writeback buffers. If all the buffers 86 * are unlocked and clean then the PageDirty information is stale. If 87 * any of the pages are locked, it is assumed they are locked for IO. 88 */ 89 void buffer_check_dirty_writeback(struct page *page, 90 bool *dirty, bool *writeback) 91 { 92 struct buffer_head *head, *bh; 93 *dirty = false; 94 *writeback = false; 95 96 BUG_ON(!PageLocked(page)); 97 98 if (!page_has_buffers(page)) 99 return; 100 101 if (PageWriteback(page)) 102 *writeback = true; 103 104 head = page_buffers(page); 105 bh = head; 106 do { 107 if (buffer_locked(bh)) 108 *writeback = true; 109 110 if (buffer_dirty(bh)) 111 *dirty = true; 112 113 bh = bh->b_this_page; 114 } while (bh != head); 115 } 116 EXPORT_SYMBOL(buffer_check_dirty_writeback); 117 118 /* 119 * Block until a buffer comes unlocked. This doesn't stop it 120 * from becoming locked again - you have to lock it yourself 121 * if you want to preserve its state. 122 */ 123 void __wait_on_buffer(struct buffer_head * bh) 124 { 125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 126 } 127 EXPORT_SYMBOL(__wait_on_buffer); 128 129 static void 130 __clear_page_buffers(struct page *page) 131 { 132 ClearPagePrivate(page); 133 set_page_private(page, 0); 134 put_page(page); 135 } 136 137 static void buffer_io_error(struct buffer_head *bh, char *msg) 138 { 139 if (!test_bit(BH_Quiet, &bh->b_state)) 140 printk_ratelimited(KERN_ERR 141 "Buffer I/O error on dev %pg, logical block %llu%s\n", 142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 143 } 144 145 /* 146 * End-of-IO handler helper function which does not touch the bh after 147 * unlocking it. 148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 149 * a race there is benign: unlock_buffer() only use the bh's address for 150 * hashing after unlocking the buffer, so it doesn't actually touch the bh 151 * itself. 152 */ 153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 154 { 155 if (uptodate) { 156 set_buffer_uptodate(bh); 157 } else { 158 /* This happens, due to failed read-ahead attempts. */ 159 clear_buffer_uptodate(bh); 160 } 161 unlock_buffer(bh); 162 } 163 164 /* 165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 166 * unlock the buffer. This is what ll_rw_block uses too. 167 */ 168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 169 { 170 __end_buffer_read_notouch(bh, uptodate); 171 put_bh(bh); 172 } 173 EXPORT_SYMBOL(end_buffer_read_sync); 174 175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 176 { 177 if (uptodate) { 178 set_buffer_uptodate(bh); 179 } else { 180 buffer_io_error(bh, ", lost sync page write"); 181 mark_buffer_write_io_error(bh); 182 clear_buffer_uptodate(bh); 183 } 184 unlock_buffer(bh); 185 put_bh(bh); 186 } 187 EXPORT_SYMBOL(end_buffer_write_sync); 188 189 /* 190 * Various filesystems appear to want __find_get_block to be non-blocking. 191 * But it's the page lock which protects the buffers. To get around this, 192 * we get exclusion from try_to_free_buffers with the blockdev mapping's 193 * private_lock. 194 * 195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 196 * may be quite high. This code could TryLock the page, and if that 197 * succeeds, there is no need to take private_lock. (But if 198 * private_lock is contended then so is mapping->tree_lock). 199 */ 200 static struct buffer_head * 201 __find_get_block_slow(struct block_device *bdev, sector_t block) 202 { 203 struct inode *bd_inode = bdev->bd_inode; 204 struct address_space *bd_mapping = bd_inode->i_mapping; 205 struct buffer_head *ret = NULL; 206 pgoff_t index; 207 struct buffer_head *bh; 208 struct buffer_head *head; 209 struct page *page; 210 int all_mapped = 1; 211 212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 214 if (!page) 215 goto out; 216 217 spin_lock(&bd_mapping->private_lock); 218 if (!page_has_buffers(page)) 219 goto out_unlock; 220 head = page_buffers(page); 221 bh = head; 222 do { 223 if (!buffer_mapped(bh)) 224 all_mapped = 0; 225 else if (bh->b_blocknr == block) { 226 ret = bh; 227 get_bh(bh); 228 goto out_unlock; 229 } 230 bh = bh->b_this_page; 231 } while (bh != head); 232 233 /* we might be here because some of the buffers on this page are 234 * not mapped. This is due to various races between 235 * file io on the block device and getblk. It gets dealt with 236 * elsewhere, don't buffer_error if we had some unmapped buffers 237 */ 238 if (all_mapped) { 239 printk("__find_get_block_slow() failed. " 240 "block=%llu, b_blocknr=%llu\n", 241 (unsigned long long)block, 242 (unsigned long long)bh->b_blocknr); 243 printk("b_state=0x%08lx, b_size=%zu\n", 244 bh->b_state, bh->b_size); 245 printk("device %pg blocksize: %d\n", bdev, 246 1 << bd_inode->i_blkbits); 247 } 248 out_unlock: 249 spin_unlock(&bd_mapping->private_lock); 250 put_page(page); 251 out: 252 return ret; 253 } 254 255 /* 256 * I/O completion handler for block_read_full_page() - pages 257 * which come unlocked at the end of I/O. 258 */ 259 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 260 { 261 unsigned long flags; 262 struct buffer_head *first; 263 struct buffer_head *tmp; 264 struct page *page; 265 int page_uptodate = 1; 266 267 BUG_ON(!buffer_async_read(bh)); 268 269 page = bh->b_page; 270 if (uptodate) { 271 set_buffer_uptodate(bh); 272 } else { 273 clear_buffer_uptodate(bh); 274 buffer_io_error(bh, ", async page read"); 275 SetPageError(page); 276 } 277 278 /* 279 * Be _very_ careful from here on. Bad things can happen if 280 * two buffer heads end IO at almost the same time and both 281 * decide that the page is now completely done. 282 */ 283 first = page_buffers(page); 284 local_irq_save(flags); 285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 286 clear_buffer_async_read(bh); 287 unlock_buffer(bh); 288 tmp = bh; 289 do { 290 if (!buffer_uptodate(tmp)) 291 page_uptodate = 0; 292 if (buffer_async_read(tmp)) { 293 BUG_ON(!buffer_locked(tmp)); 294 goto still_busy; 295 } 296 tmp = tmp->b_this_page; 297 } while (tmp != bh); 298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 299 local_irq_restore(flags); 300 301 /* 302 * If none of the buffers had errors and they are all 303 * uptodate then we can set the page uptodate. 304 */ 305 if (page_uptodate && !PageError(page)) 306 SetPageUptodate(page); 307 unlock_page(page); 308 return; 309 310 still_busy: 311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 312 local_irq_restore(flags); 313 return; 314 } 315 316 /* 317 * Completion handler for block_write_full_page() - pages which are unlocked 318 * during I/O, and which have PageWriteback cleared upon I/O completion. 319 */ 320 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 321 { 322 unsigned long flags; 323 struct buffer_head *first; 324 struct buffer_head *tmp; 325 struct page *page; 326 327 BUG_ON(!buffer_async_write(bh)); 328 329 page = bh->b_page; 330 if (uptodate) { 331 set_buffer_uptodate(bh); 332 } else { 333 buffer_io_error(bh, ", lost async page write"); 334 mark_buffer_write_io_error(bh); 335 clear_buffer_uptodate(bh); 336 SetPageError(page); 337 } 338 339 first = page_buffers(page); 340 local_irq_save(flags); 341 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 342 343 clear_buffer_async_write(bh); 344 unlock_buffer(bh); 345 tmp = bh->b_this_page; 346 while (tmp != bh) { 347 if (buffer_async_write(tmp)) { 348 BUG_ON(!buffer_locked(tmp)); 349 goto still_busy; 350 } 351 tmp = tmp->b_this_page; 352 } 353 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 354 local_irq_restore(flags); 355 end_page_writeback(page); 356 return; 357 358 still_busy: 359 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 360 local_irq_restore(flags); 361 return; 362 } 363 EXPORT_SYMBOL(end_buffer_async_write); 364 365 /* 366 * If a page's buffers are under async readin (end_buffer_async_read 367 * completion) then there is a possibility that another thread of 368 * control could lock one of the buffers after it has completed 369 * but while some of the other buffers have not completed. This 370 * locked buffer would confuse end_buffer_async_read() into not unlocking 371 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 372 * that this buffer is not under async I/O. 373 * 374 * The page comes unlocked when it has no locked buffer_async buffers 375 * left. 376 * 377 * PageLocked prevents anyone starting new async I/O reads any of 378 * the buffers. 379 * 380 * PageWriteback is used to prevent simultaneous writeout of the same 381 * page. 382 * 383 * PageLocked prevents anyone from starting writeback of a page which is 384 * under read I/O (PageWriteback is only ever set against a locked page). 385 */ 386 static void mark_buffer_async_read(struct buffer_head *bh) 387 { 388 bh->b_end_io = end_buffer_async_read; 389 set_buffer_async_read(bh); 390 } 391 392 static void mark_buffer_async_write_endio(struct buffer_head *bh, 393 bh_end_io_t *handler) 394 { 395 bh->b_end_io = handler; 396 set_buffer_async_write(bh); 397 } 398 399 void mark_buffer_async_write(struct buffer_head *bh) 400 { 401 mark_buffer_async_write_endio(bh, end_buffer_async_write); 402 } 403 EXPORT_SYMBOL(mark_buffer_async_write); 404 405 406 /* 407 * fs/buffer.c contains helper functions for buffer-backed address space's 408 * fsync functions. A common requirement for buffer-based filesystems is 409 * that certain data from the backing blockdev needs to be written out for 410 * a successful fsync(). For example, ext2 indirect blocks need to be 411 * written back and waited upon before fsync() returns. 412 * 413 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 414 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 415 * management of a list of dependent buffers at ->i_mapping->private_list. 416 * 417 * Locking is a little subtle: try_to_free_buffers() will remove buffers 418 * from their controlling inode's queue when they are being freed. But 419 * try_to_free_buffers() will be operating against the *blockdev* mapping 420 * at the time, not against the S_ISREG file which depends on those buffers. 421 * So the locking for private_list is via the private_lock in the address_space 422 * which backs the buffers. Which is different from the address_space 423 * against which the buffers are listed. So for a particular address_space, 424 * mapping->private_lock does *not* protect mapping->private_list! In fact, 425 * mapping->private_list will always be protected by the backing blockdev's 426 * ->private_lock. 427 * 428 * Which introduces a requirement: all buffers on an address_space's 429 * ->private_list must be from the same address_space: the blockdev's. 430 * 431 * address_spaces which do not place buffers at ->private_list via these 432 * utility functions are free to use private_lock and private_list for 433 * whatever they want. The only requirement is that list_empty(private_list) 434 * be true at clear_inode() time. 435 * 436 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 437 * filesystems should do that. invalidate_inode_buffers() should just go 438 * BUG_ON(!list_empty). 439 * 440 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 441 * take an address_space, not an inode. And it should be called 442 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 443 * queued up. 444 * 445 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 446 * list if it is already on a list. Because if the buffer is on a list, 447 * it *must* already be on the right one. If not, the filesystem is being 448 * silly. This will save a ton of locking. But first we have to ensure 449 * that buffers are taken *off* the old inode's list when they are freed 450 * (presumably in truncate). That requires careful auditing of all 451 * filesystems (do it inside bforget()). It could also be done by bringing 452 * b_inode back. 453 */ 454 455 /* 456 * The buffer's backing address_space's private_lock must be held 457 */ 458 static void __remove_assoc_queue(struct buffer_head *bh) 459 { 460 list_del_init(&bh->b_assoc_buffers); 461 WARN_ON(!bh->b_assoc_map); 462 bh->b_assoc_map = NULL; 463 } 464 465 int inode_has_buffers(struct inode *inode) 466 { 467 return !list_empty(&inode->i_data.private_list); 468 } 469 470 /* 471 * osync is designed to support O_SYNC io. It waits synchronously for 472 * all already-submitted IO to complete, but does not queue any new 473 * writes to the disk. 474 * 475 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 476 * you dirty the buffers, and then use osync_inode_buffers to wait for 477 * completion. Any other dirty buffers which are not yet queued for 478 * write will not be flushed to disk by the osync. 479 */ 480 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 481 { 482 struct buffer_head *bh; 483 struct list_head *p; 484 int err = 0; 485 486 spin_lock(lock); 487 repeat: 488 list_for_each_prev(p, list) { 489 bh = BH_ENTRY(p); 490 if (buffer_locked(bh)) { 491 get_bh(bh); 492 spin_unlock(lock); 493 wait_on_buffer(bh); 494 if (!buffer_uptodate(bh)) 495 err = -EIO; 496 brelse(bh); 497 spin_lock(lock); 498 goto repeat; 499 } 500 } 501 spin_unlock(lock); 502 return err; 503 } 504 505 static void do_thaw_one(struct super_block *sb, void *unused) 506 { 507 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 508 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 509 } 510 511 static void do_thaw_all(struct work_struct *work) 512 { 513 iterate_supers(do_thaw_one, NULL); 514 kfree(work); 515 printk(KERN_WARNING "Emergency Thaw complete\n"); 516 } 517 518 /** 519 * emergency_thaw_all -- forcibly thaw every frozen filesystem 520 * 521 * Used for emergency unfreeze of all filesystems via SysRq 522 */ 523 void emergency_thaw_all(void) 524 { 525 struct work_struct *work; 526 527 work = kmalloc(sizeof(*work), GFP_ATOMIC); 528 if (work) { 529 INIT_WORK(work, do_thaw_all); 530 schedule_work(work); 531 } 532 } 533 534 /** 535 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 536 * @mapping: the mapping which wants those buffers written 537 * 538 * Starts I/O against the buffers at mapping->private_list, and waits upon 539 * that I/O. 540 * 541 * Basically, this is a convenience function for fsync(). 542 * @mapping is a file or directory which needs those buffers to be written for 543 * a successful fsync(). 544 */ 545 int sync_mapping_buffers(struct address_space *mapping) 546 { 547 struct address_space *buffer_mapping = mapping->private_data; 548 549 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 550 return 0; 551 552 return fsync_buffers_list(&buffer_mapping->private_lock, 553 &mapping->private_list); 554 } 555 EXPORT_SYMBOL(sync_mapping_buffers); 556 557 /* 558 * Called when we've recently written block `bblock', and it is known that 559 * `bblock' was for a buffer_boundary() buffer. This means that the block at 560 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 561 * dirty, schedule it for IO. So that indirects merge nicely with their data. 562 */ 563 void write_boundary_block(struct block_device *bdev, 564 sector_t bblock, unsigned blocksize) 565 { 566 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 567 if (bh) { 568 if (buffer_dirty(bh)) 569 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 570 put_bh(bh); 571 } 572 } 573 574 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 575 { 576 struct address_space *mapping = inode->i_mapping; 577 struct address_space *buffer_mapping = bh->b_page->mapping; 578 579 mark_buffer_dirty(bh); 580 if (!mapping->private_data) { 581 mapping->private_data = buffer_mapping; 582 } else { 583 BUG_ON(mapping->private_data != buffer_mapping); 584 } 585 if (!bh->b_assoc_map) { 586 spin_lock(&buffer_mapping->private_lock); 587 list_move_tail(&bh->b_assoc_buffers, 588 &mapping->private_list); 589 bh->b_assoc_map = mapping; 590 spin_unlock(&buffer_mapping->private_lock); 591 } 592 } 593 EXPORT_SYMBOL(mark_buffer_dirty_inode); 594 595 /* 596 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 597 * dirty. 598 * 599 * If warn is true, then emit a warning if the page is not uptodate and has 600 * not been truncated. 601 * 602 * The caller must hold lock_page_memcg(). 603 */ 604 static void __set_page_dirty(struct page *page, struct address_space *mapping, 605 int warn) 606 { 607 unsigned long flags; 608 609 spin_lock_irqsave(&mapping->tree_lock, flags); 610 if (page->mapping) { /* Race with truncate? */ 611 WARN_ON_ONCE(warn && !PageUptodate(page)); 612 account_page_dirtied(page, mapping); 613 radix_tree_tag_set(&mapping->page_tree, 614 page_index(page), PAGECACHE_TAG_DIRTY); 615 } 616 spin_unlock_irqrestore(&mapping->tree_lock, flags); 617 } 618 619 /* 620 * Add a page to the dirty page list. 621 * 622 * It is a sad fact of life that this function is called from several places 623 * deeply under spinlocking. It may not sleep. 624 * 625 * If the page has buffers, the uptodate buffers are set dirty, to preserve 626 * dirty-state coherency between the page and the buffers. It the page does 627 * not have buffers then when they are later attached they will all be set 628 * dirty. 629 * 630 * The buffers are dirtied before the page is dirtied. There's a small race 631 * window in which a writepage caller may see the page cleanness but not the 632 * buffer dirtiness. That's fine. If this code were to set the page dirty 633 * before the buffers, a concurrent writepage caller could clear the page dirty 634 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 635 * page on the dirty page list. 636 * 637 * We use private_lock to lock against try_to_free_buffers while using the 638 * page's buffer list. Also use this to protect against clean buffers being 639 * added to the page after it was set dirty. 640 * 641 * FIXME: may need to call ->reservepage here as well. That's rather up to the 642 * address_space though. 643 */ 644 int __set_page_dirty_buffers(struct page *page) 645 { 646 int newly_dirty; 647 struct address_space *mapping = page_mapping(page); 648 649 if (unlikely(!mapping)) 650 return !TestSetPageDirty(page); 651 652 spin_lock(&mapping->private_lock); 653 if (page_has_buffers(page)) { 654 struct buffer_head *head = page_buffers(page); 655 struct buffer_head *bh = head; 656 657 do { 658 set_buffer_dirty(bh); 659 bh = bh->b_this_page; 660 } while (bh != head); 661 } 662 /* 663 * Lock out page->mem_cgroup migration to keep PageDirty 664 * synchronized with per-memcg dirty page counters. 665 */ 666 lock_page_memcg(page); 667 newly_dirty = !TestSetPageDirty(page); 668 spin_unlock(&mapping->private_lock); 669 670 if (newly_dirty) 671 __set_page_dirty(page, mapping, 1); 672 673 unlock_page_memcg(page); 674 675 if (newly_dirty) 676 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 677 678 return newly_dirty; 679 } 680 EXPORT_SYMBOL(__set_page_dirty_buffers); 681 682 /* 683 * Write out and wait upon a list of buffers. 684 * 685 * We have conflicting pressures: we want to make sure that all 686 * initially dirty buffers get waited on, but that any subsequently 687 * dirtied buffers don't. After all, we don't want fsync to last 688 * forever if somebody is actively writing to the file. 689 * 690 * Do this in two main stages: first we copy dirty buffers to a 691 * temporary inode list, queueing the writes as we go. Then we clean 692 * up, waiting for those writes to complete. 693 * 694 * During this second stage, any subsequent updates to the file may end 695 * up refiling the buffer on the original inode's dirty list again, so 696 * there is a chance we will end up with a buffer queued for write but 697 * not yet completed on that list. So, as a final cleanup we go through 698 * the osync code to catch these locked, dirty buffers without requeuing 699 * any newly dirty buffers for write. 700 */ 701 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 702 { 703 struct buffer_head *bh; 704 struct list_head tmp; 705 struct address_space *mapping; 706 int err = 0, err2; 707 struct blk_plug plug; 708 709 INIT_LIST_HEAD(&tmp); 710 blk_start_plug(&plug); 711 712 spin_lock(lock); 713 while (!list_empty(list)) { 714 bh = BH_ENTRY(list->next); 715 mapping = bh->b_assoc_map; 716 __remove_assoc_queue(bh); 717 /* Avoid race with mark_buffer_dirty_inode() which does 718 * a lockless check and we rely on seeing the dirty bit */ 719 smp_mb(); 720 if (buffer_dirty(bh) || buffer_locked(bh)) { 721 list_add(&bh->b_assoc_buffers, &tmp); 722 bh->b_assoc_map = mapping; 723 if (buffer_dirty(bh)) { 724 get_bh(bh); 725 spin_unlock(lock); 726 /* 727 * Ensure any pending I/O completes so that 728 * write_dirty_buffer() actually writes the 729 * current contents - it is a noop if I/O is 730 * still in flight on potentially older 731 * contents. 732 */ 733 write_dirty_buffer(bh, REQ_SYNC); 734 735 /* 736 * Kick off IO for the previous mapping. Note 737 * that we will not run the very last mapping, 738 * wait_on_buffer() will do that for us 739 * through sync_buffer(). 740 */ 741 brelse(bh); 742 spin_lock(lock); 743 } 744 } 745 } 746 747 spin_unlock(lock); 748 blk_finish_plug(&plug); 749 spin_lock(lock); 750 751 while (!list_empty(&tmp)) { 752 bh = BH_ENTRY(tmp.prev); 753 get_bh(bh); 754 mapping = bh->b_assoc_map; 755 __remove_assoc_queue(bh); 756 /* Avoid race with mark_buffer_dirty_inode() which does 757 * a lockless check and we rely on seeing the dirty bit */ 758 smp_mb(); 759 if (buffer_dirty(bh)) { 760 list_add(&bh->b_assoc_buffers, 761 &mapping->private_list); 762 bh->b_assoc_map = mapping; 763 } 764 spin_unlock(lock); 765 wait_on_buffer(bh); 766 if (!buffer_uptodate(bh)) 767 err = -EIO; 768 brelse(bh); 769 spin_lock(lock); 770 } 771 772 spin_unlock(lock); 773 err2 = osync_buffers_list(lock, list); 774 if (err) 775 return err; 776 else 777 return err2; 778 } 779 780 /* 781 * Invalidate any and all dirty buffers on a given inode. We are 782 * probably unmounting the fs, but that doesn't mean we have already 783 * done a sync(). Just drop the buffers from the inode list. 784 * 785 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 786 * assumes that all the buffers are against the blockdev. Not true 787 * for reiserfs. 788 */ 789 void invalidate_inode_buffers(struct inode *inode) 790 { 791 if (inode_has_buffers(inode)) { 792 struct address_space *mapping = &inode->i_data; 793 struct list_head *list = &mapping->private_list; 794 struct address_space *buffer_mapping = mapping->private_data; 795 796 spin_lock(&buffer_mapping->private_lock); 797 while (!list_empty(list)) 798 __remove_assoc_queue(BH_ENTRY(list->next)); 799 spin_unlock(&buffer_mapping->private_lock); 800 } 801 } 802 EXPORT_SYMBOL(invalidate_inode_buffers); 803 804 /* 805 * Remove any clean buffers from the inode's buffer list. This is called 806 * when we're trying to free the inode itself. Those buffers can pin it. 807 * 808 * Returns true if all buffers were removed. 809 */ 810 int remove_inode_buffers(struct inode *inode) 811 { 812 int ret = 1; 813 814 if (inode_has_buffers(inode)) { 815 struct address_space *mapping = &inode->i_data; 816 struct list_head *list = &mapping->private_list; 817 struct address_space *buffer_mapping = mapping->private_data; 818 819 spin_lock(&buffer_mapping->private_lock); 820 while (!list_empty(list)) { 821 struct buffer_head *bh = BH_ENTRY(list->next); 822 if (buffer_dirty(bh)) { 823 ret = 0; 824 break; 825 } 826 __remove_assoc_queue(bh); 827 } 828 spin_unlock(&buffer_mapping->private_lock); 829 } 830 return ret; 831 } 832 833 /* 834 * Create the appropriate buffers when given a page for data area and 835 * the size of each buffer.. Use the bh->b_this_page linked list to 836 * follow the buffers created. Return NULL if unable to create more 837 * buffers. 838 * 839 * The retry flag is used to differentiate async IO (paging, swapping) 840 * which may not fail from ordinary buffer allocations. 841 */ 842 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 843 bool retry) 844 { 845 struct buffer_head *bh, *head; 846 gfp_t gfp = GFP_NOFS; 847 long offset; 848 849 if (retry) 850 gfp |= __GFP_NOFAIL; 851 852 head = NULL; 853 offset = PAGE_SIZE; 854 while ((offset -= size) >= 0) { 855 bh = alloc_buffer_head(gfp); 856 if (!bh) 857 goto no_grow; 858 859 bh->b_this_page = head; 860 bh->b_blocknr = -1; 861 head = bh; 862 863 bh->b_size = size; 864 865 /* Link the buffer to its page */ 866 set_bh_page(bh, page, offset); 867 } 868 return head; 869 /* 870 * In case anything failed, we just free everything we got. 871 */ 872 no_grow: 873 if (head) { 874 do { 875 bh = head; 876 head = head->b_this_page; 877 free_buffer_head(bh); 878 } while (head); 879 } 880 881 return NULL; 882 } 883 EXPORT_SYMBOL_GPL(alloc_page_buffers); 884 885 static inline void 886 link_dev_buffers(struct page *page, struct buffer_head *head) 887 { 888 struct buffer_head *bh, *tail; 889 890 bh = head; 891 do { 892 tail = bh; 893 bh = bh->b_this_page; 894 } while (bh); 895 tail->b_this_page = head; 896 attach_page_buffers(page, head); 897 } 898 899 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 900 { 901 sector_t retval = ~((sector_t)0); 902 loff_t sz = i_size_read(bdev->bd_inode); 903 904 if (sz) { 905 unsigned int sizebits = blksize_bits(size); 906 retval = (sz >> sizebits); 907 } 908 return retval; 909 } 910 911 /* 912 * Initialise the state of a blockdev page's buffers. 913 */ 914 static sector_t 915 init_page_buffers(struct page *page, struct block_device *bdev, 916 sector_t block, int size) 917 { 918 struct buffer_head *head = page_buffers(page); 919 struct buffer_head *bh = head; 920 int uptodate = PageUptodate(page); 921 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 922 923 do { 924 if (!buffer_mapped(bh)) { 925 init_buffer(bh, NULL, NULL); 926 bh->b_bdev = bdev; 927 bh->b_blocknr = block; 928 if (uptodate) 929 set_buffer_uptodate(bh); 930 if (block < end_block) 931 set_buffer_mapped(bh); 932 } 933 block++; 934 bh = bh->b_this_page; 935 } while (bh != head); 936 937 /* 938 * Caller needs to validate requested block against end of device. 939 */ 940 return end_block; 941 } 942 943 /* 944 * Create the page-cache page that contains the requested block. 945 * 946 * This is used purely for blockdev mappings. 947 */ 948 static int 949 grow_dev_page(struct block_device *bdev, sector_t block, 950 pgoff_t index, int size, int sizebits, gfp_t gfp) 951 { 952 struct inode *inode = bdev->bd_inode; 953 struct page *page; 954 struct buffer_head *bh; 955 sector_t end_block; 956 int ret = 0; /* Will call free_more_memory() */ 957 gfp_t gfp_mask; 958 959 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 960 961 /* 962 * XXX: __getblk_slow() can not really deal with failure and 963 * will endlessly loop on improvised global reclaim. Prefer 964 * looping in the allocator rather than here, at least that 965 * code knows what it's doing. 966 */ 967 gfp_mask |= __GFP_NOFAIL; 968 969 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 970 971 BUG_ON(!PageLocked(page)); 972 973 if (page_has_buffers(page)) { 974 bh = page_buffers(page); 975 if (bh->b_size == size) { 976 end_block = init_page_buffers(page, bdev, 977 (sector_t)index << sizebits, 978 size); 979 goto done; 980 } 981 if (!try_to_free_buffers(page)) 982 goto failed; 983 } 984 985 /* 986 * Allocate some buffers for this page 987 */ 988 bh = alloc_page_buffers(page, size, true); 989 990 /* 991 * Link the page to the buffers and initialise them. Take the 992 * lock to be atomic wrt __find_get_block(), which does not 993 * run under the page lock. 994 */ 995 spin_lock(&inode->i_mapping->private_lock); 996 link_dev_buffers(page, bh); 997 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 998 size); 999 spin_unlock(&inode->i_mapping->private_lock); 1000 done: 1001 ret = (block < end_block) ? 1 : -ENXIO; 1002 failed: 1003 unlock_page(page); 1004 put_page(page); 1005 return ret; 1006 } 1007 1008 /* 1009 * Create buffers for the specified block device block's page. If 1010 * that page was dirty, the buffers are set dirty also. 1011 */ 1012 static int 1013 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1014 { 1015 pgoff_t index; 1016 int sizebits; 1017 1018 sizebits = -1; 1019 do { 1020 sizebits++; 1021 } while ((size << sizebits) < PAGE_SIZE); 1022 1023 index = block >> sizebits; 1024 1025 /* 1026 * Check for a block which wants to lie outside our maximum possible 1027 * pagecache index. (this comparison is done using sector_t types). 1028 */ 1029 if (unlikely(index != block >> sizebits)) { 1030 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1031 "device %pg\n", 1032 __func__, (unsigned long long)block, 1033 bdev); 1034 return -EIO; 1035 } 1036 1037 /* Create a page with the proper size buffers.. */ 1038 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1039 } 1040 1041 static struct buffer_head * 1042 __getblk_slow(struct block_device *bdev, sector_t block, 1043 unsigned size, gfp_t gfp) 1044 { 1045 /* Size must be multiple of hard sectorsize */ 1046 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1047 (size < 512 || size > PAGE_SIZE))) { 1048 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1049 size); 1050 printk(KERN_ERR "logical block size: %d\n", 1051 bdev_logical_block_size(bdev)); 1052 1053 dump_stack(); 1054 return NULL; 1055 } 1056 1057 for (;;) { 1058 struct buffer_head *bh; 1059 int ret; 1060 1061 bh = __find_get_block(bdev, block, size); 1062 if (bh) 1063 return bh; 1064 1065 ret = grow_buffers(bdev, block, size, gfp); 1066 if (ret < 0) 1067 return NULL; 1068 } 1069 } 1070 1071 /* 1072 * The relationship between dirty buffers and dirty pages: 1073 * 1074 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1075 * the page is tagged dirty in its radix tree. 1076 * 1077 * At all times, the dirtiness of the buffers represents the dirtiness of 1078 * subsections of the page. If the page has buffers, the page dirty bit is 1079 * merely a hint about the true dirty state. 1080 * 1081 * When a page is set dirty in its entirety, all its buffers are marked dirty 1082 * (if the page has buffers). 1083 * 1084 * When a buffer is marked dirty, its page is dirtied, but the page's other 1085 * buffers are not. 1086 * 1087 * Also. When blockdev buffers are explicitly read with bread(), they 1088 * individually become uptodate. But their backing page remains not 1089 * uptodate - even if all of its buffers are uptodate. A subsequent 1090 * block_read_full_page() against that page will discover all the uptodate 1091 * buffers, will set the page uptodate and will perform no I/O. 1092 */ 1093 1094 /** 1095 * mark_buffer_dirty - mark a buffer_head as needing writeout 1096 * @bh: the buffer_head to mark dirty 1097 * 1098 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1099 * backing page dirty, then tag the page as dirty in its address_space's radix 1100 * tree and then attach the address_space's inode to its superblock's dirty 1101 * inode list. 1102 * 1103 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1104 * mapping->tree_lock and mapping->host->i_lock. 1105 */ 1106 void mark_buffer_dirty(struct buffer_head *bh) 1107 { 1108 WARN_ON_ONCE(!buffer_uptodate(bh)); 1109 1110 trace_block_dirty_buffer(bh); 1111 1112 /* 1113 * Very *carefully* optimize the it-is-already-dirty case. 1114 * 1115 * Don't let the final "is it dirty" escape to before we 1116 * perhaps modified the buffer. 1117 */ 1118 if (buffer_dirty(bh)) { 1119 smp_mb(); 1120 if (buffer_dirty(bh)) 1121 return; 1122 } 1123 1124 if (!test_set_buffer_dirty(bh)) { 1125 struct page *page = bh->b_page; 1126 struct address_space *mapping = NULL; 1127 1128 lock_page_memcg(page); 1129 if (!TestSetPageDirty(page)) { 1130 mapping = page_mapping(page); 1131 if (mapping) 1132 __set_page_dirty(page, mapping, 0); 1133 } 1134 unlock_page_memcg(page); 1135 if (mapping) 1136 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1137 } 1138 } 1139 EXPORT_SYMBOL(mark_buffer_dirty); 1140 1141 void mark_buffer_write_io_error(struct buffer_head *bh) 1142 { 1143 set_buffer_write_io_error(bh); 1144 /* FIXME: do we need to set this in both places? */ 1145 if (bh->b_page && bh->b_page->mapping) 1146 mapping_set_error(bh->b_page->mapping, -EIO); 1147 if (bh->b_assoc_map) 1148 mapping_set_error(bh->b_assoc_map, -EIO); 1149 } 1150 EXPORT_SYMBOL(mark_buffer_write_io_error); 1151 1152 /* 1153 * Decrement a buffer_head's reference count. If all buffers against a page 1154 * have zero reference count, are clean and unlocked, and if the page is clean 1155 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1156 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1157 * a page but it ends up not being freed, and buffers may later be reattached). 1158 */ 1159 void __brelse(struct buffer_head * buf) 1160 { 1161 if (atomic_read(&buf->b_count)) { 1162 put_bh(buf); 1163 return; 1164 } 1165 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1166 } 1167 EXPORT_SYMBOL(__brelse); 1168 1169 /* 1170 * bforget() is like brelse(), except it discards any 1171 * potentially dirty data. 1172 */ 1173 void __bforget(struct buffer_head *bh) 1174 { 1175 clear_buffer_dirty(bh); 1176 if (bh->b_assoc_map) { 1177 struct address_space *buffer_mapping = bh->b_page->mapping; 1178 1179 spin_lock(&buffer_mapping->private_lock); 1180 list_del_init(&bh->b_assoc_buffers); 1181 bh->b_assoc_map = NULL; 1182 spin_unlock(&buffer_mapping->private_lock); 1183 } 1184 __brelse(bh); 1185 } 1186 EXPORT_SYMBOL(__bforget); 1187 1188 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1189 { 1190 lock_buffer(bh); 1191 if (buffer_uptodate(bh)) { 1192 unlock_buffer(bh); 1193 return bh; 1194 } else { 1195 get_bh(bh); 1196 bh->b_end_io = end_buffer_read_sync; 1197 submit_bh(REQ_OP_READ, 0, bh); 1198 wait_on_buffer(bh); 1199 if (buffer_uptodate(bh)) 1200 return bh; 1201 } 1202 brelse(bh); 1203 return NULL; 1204 } 1205 1206 /* 1207 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1208 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1209 * refcount elevated by one when they're in an LRU. A buffer can only appear 1210 * once in a particular CPU's LRU. A single buffer can be present in multiple 1211 * CPU's LRUs at the same time. 1212 * 1213 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1214 * sb_find_get_block(). 1215 * 1216 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1217 * a local interrupt disable for that. 1218 */ 1219 1220 #define BH_LRU_SIZE 16 1221 1222 struct bh_lru { 1223 struct buffer_head *bhs[BH_LRU_SIZE]; 1224 }; 1225 1226 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1227 1228 #ifdef CONFIG_SMP 1229 #define bh_lru_lock() local_irq_disable() 1230 #define bh_lru_unlock() local_irq_enable() 1231 #else 1232 #define bh_lru_lock() preempt_disable() 1233 #define bh_lru_unlock() preempt_enable() 1234 #endif 1235 1236 static inline void check_irqs_on(void) 1237 { 1238 #ifdef irqs_disabled 1239 BUG_ON(irqs_disabled()); 1240 #endif 1241 } 1242 1243 /* 1244 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1245 * inserted at the front, and the buffer_head at the back if any is evicted. 1246 * Or, if already in the LRU it is moved to the front. 1247 */ 1248 static void bh_lru_install(struct buffer_head *bh) 1249 { 1250 struct buffer_head *evictee = bh; 1251 struct bh_lru *b; 1252 int i; 1253 1254 check_irqs_on(); 1255 bh_lru_lock(); 1256 1257 b = this_cpu_ptr(&bh_lrus); 1258 for (i = 0; i < BH_LRU_SIZE; i++) { 1259 swap(evictee, b->bhs[i]); 1260 if (evictee == bh) { 1261 bh_lru_unlock(); 1262 return; 1263 } 1264 } 1265 1266 get_bh(bh); 1267 bh_lru_unlock(); 1268 brelse(evictee); 1269 } 1270 1271 /* 1272 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1273 */ 1274 static struct buffer_head * 1275 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1276 { 1277 struct buffer_head *ret = NULL; 1278 unsigned int i; 1279 1280 check_irqs_on(); 1281 bh_lru_lock(); 1282 for (i = 0; i < BH_LRU_SIZE; i++) { 1283 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1284 1285 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1286 bh->b_size == size) { 1287 if (i) { 1288 while (i) { 1289 __this_cpu_write(bh_lrus.bhs[i], 1290 __this_cpu_read(bh_lrus.bhs[i - 1])); 1291 i--; 1292 } 1293 __this_cpu_write(bh_lrus.bhs[0], bh); 1294 } 1295 get_bh(bh); 1296 ret = bh; 1297 break; 1298 } 1299 } 1300 bh_lru_unlock(); 1301 return ret; 1302 } 1303 1304 /* 1305 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1306 * it in the LRU and mark it as accessed. If it is not present then return 1307 * NULL 1308 */ 1309 struct buffer_head * 1310 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1311 { 1312 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1313 1314 if (bh == NULL) { 1315 /* __find_get_block_slow will mark the page accessed */ 1316 bh = __find_get_block_slow(bdev, block); 1317 if (bh) 1318 bh_lru_install(bh); 1319 } else 1320 touch_buffer(bh); 1321 1322 return bh; 1323 } 1324 EXPORT_SYMBOL(__find_get_block); 1325 1326 /* 1327 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1328 * which corresponds to the passed block_device, block and size. The 1329 * returned buffer has its reference count incremented. 1330 * 1331 * __getblk_gfp() will lock up the machine if grow_dev_page's 1332 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1333 */ 1334 struct buffer_head * 1335 __getblk_gfp(struct block_device *bdev, sector_t block, 1336 unsigned size, gfp_t gfp) 1337 { 1338 struct buffer_head *bh = __find_get_block(bdev, block, size); 1339 1340 might_sleep(); 1341 if (bh == NULL) 1342 bh = __getblk_slow(bdev, block, size, gfp); 1343 return bh; 1344 } 1345 EXPORT_SYMBOL(__getblk_gfp); 1346 1347 /* 1348 * Do async read-ahead on a buffer.. 1349 */ 1350 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1351 { 1352 struct buffer_head *bh = __getblk(bdev, block, size); 1353 if (likely(bh)) { 1354 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1355 brelse(bh); 1356 } 1357 } 1358 EXPORT_SYMBOL(__breadahead); 1359 1360 /** 1361 * __bread_gfp() - reads a specified block and returns the bh 1362 * @bdev: the block_device to read from 1363 * @block: number of block 1364 * @size: size (in bytes) to read 1365 * @gfp: page allocation flag 1366 * 1367 * Reads a specified block, and returns buffer head that contains it. 1368 * The page cache can be allocated from non-movable area 1369 * not to prevent page migration if you set gfp to zero. 1370 * It returns NULL if the block was unreadable. 1371 */ 1372 struct buffer_head * 1373 __bread_gfp(struct block_device *bdev, sector_t block, 1374 unsigned size, gfp_t gfp) 1375 { 1376 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1377 1378 if (likely(bh) && !buffer_uptodate(bh)) 1379 bh = __bread_slow(bh); 1380 return bh; 1381 } 1382 EXPORT_SYMBOL(__bread_gfp); 1383 1384 /* 1385 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1386 * This doesn't race because it runs in each cpu either in irq 1387 * or with preempt disabled. 1388 */ 1389 static void invalidate_bh_lru(void *arg) 1390 { 1391 struct bh_lru *b = &get_cpu_var(bh_lrus); 1392 int i; 1393 1394 for (i = 0; i < BH_LRU_SIZE; i++) { 1395 brelse(b->bhs[i]); 1396 b->bhs[i] = NULL; 1397 } 1398 put_cpu_var(bh_lrus); 1399 } 1400 1401 static bool has_bh_in_lru(int cpu, void *dummy) 1402 { 1403 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1404 int i; 1405 1406 for (i = 0; i < BH_LRU_SIZE; i++) { 1407 if (b->bhs[i]) 1408 return 1; 1409 } 1410 1411 return 0; 1412 } 1413 1414 void invalidate_bh_lrus(void) 1415 { 1416 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1417 } 1418 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1419 1420 void set_bh_page(struct buffer_head *bh, 1421 struct page *page, unsigned long offset) 1422 { 1423 bh->b_page = page; 1424 BUG_ON(offset >= PAGE_SIZE); 1425 if (PageHighMem(page)) 1426 /* 1427 * This catches illegal uses and preserves the offset: 1428 */ 1429 bh->b_data = (char *)(0 + offset); 1430 else 1431 bh->b_data = page_address(page) + offset; 1432 } 1433 EXPORT_SYMBOL(set_bh_page); 1434 1435 /* 1436 * Called when truncating a buffer on a page completely. 1437 */ 1438 1439 /* Bits that are cleared during an invalidate */ 1440 #define BUFFER_FLAGS_DISCARD \ 1441 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1442 1 << BH_Delay | 1 << BH_Unwritten) 1443 1444 static void discard_buffer(struct buffer_head * bh) 1445 { 1446 unsigned long b_state, b_state_old; 1447 1448 lock_buffer(bh); 1449 clear_buffer_dirty(bh); 1450 bh->b_bdev = NULL; 1451 b_state = bh->b_state; 1452 for (;;) { 1453 b_state_old = cmpxchg(&bh->b_state, b_state, 1454 (b_state & ~BUFFER_FLAGS_DISCARD)); 1455 if (b_state_old == b_state) 1456 break; 1457 b_state = b_state_old; 1458 } 1459 unlock_buffer(bh); 1460 } 1461 1462 /** 1463 * block_invalidatepage - invalidate part or all of a buffer-backed page 1464 * 1465 * @page: the page which is affected 1466 * @offset: start of the range to invalidate 1467 * @length: length of the range to invalidate 1468 * 1469 * block_invalidatepage() is called when all or part of the page has become 1470 * invalidated by a truncate operation. 1471 * 1472 * block_invalidatepage() does not have to release all buffers, but it must 1473 * ensure that no dirty buffer is left outside @offset and that no I/O 1474 * is underway against any of the blocks which are outside the truncation 1475 * point. Because the caller is about to free (and possibly reuse) those 1476 * blocks on-disk. 1477 */ 1478 void block_invalidatepage(struct page *page, unsigned int offset, 1479 unsigned int length) 1480 { 1481 struct buffer_head *head, *bh, *next; 1482 unsigned int curr_off = 0; 1483 unsigned int stop = length + offset; 1484 1485 BUG_ON(!PageLocked(page)); 1486 if (!page_has_buffers(page)) 1487 goto out; 1488 1489 /* 1490 * Check for overflow 1491 */ 1492 BUG_ON(stop > PAGE_SIZE || stop < length); 1493 1494 head = page_buffers(page); 1495 bh = head; 1496 do { 1497 unsigned int next_off = curr_off + bh->b_size; 1498 next = bh->b_this_page; 1499 1500 /* 1501 * Are we still fully in range ? 1502 */ 1503 if (next_off > stop) 1504 goto out; 1505 1506 /* 1507 * is this block fully invalidated? 1508 */ 1509 if (offset <= curr_off) 1510 discard_buffer(bh); 1511 curr_off = next_off; 1512 bh = next; 1513 } while (bh != head); 1514 1515 /* 1516 * We release buffers only if the entire page is being invalidated. 1517 * The get_block cached value has been unconditionally invalidated, 1518 * so real IO is not possible anymore. 1519 */ 1520 if (offset == 0) 1521 try_to_release_page(page, 0); 1522 out: 1523 return; 1524 } 1525 EXPORT_SYMBOL(block_invalidatepage); 1526 1527 1528 /* 1529 * We attach and possibly dirty the buffers atomically wrt 1530 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1531 * is already excluded via the page lock. 1532 */ 1533 void create_empty_buffers(struct page *page, 1534 unsigned long blocksize, unsigned long b_state) 1535 { 1536 struct buffer_head *bh, *head, *tail; 1537 1538 head = alloc_page_buffers(page, blocksize, true); 1539 bh = head; 1540 do { 1541 bh->b_state |= b_state; 1542 tail = bh; 1543 bh = bh->b_this_page; 1544 } while (bh); 1545 tail->b_this_page = head; 1546 1547 spin_lock(&page->mapping->private_lock); 1548 if (PageUptodate(page) || PageDirty(page)) { 1549 bh = head; 1550 do { 1551 if (PageDirty(page)) 1552 set_buffer_dirty(bh); 1553 if (PageUptodate(page)) 1554 set_buffer_uptodate(bh); 1555 bh = bh->b_this_page; 1556 } while (bh != head); 1557 } 1558 attach_page_buffers(page, head); 1559 spin_unlock(&page->mapping->private_lock); 1560 } 1561 EXPORT_SYMBOL(create_empty_buffers); 1562 1563 /** 1564 * clean_bdev_aliases: clean a range of buffers in block device 1565 * @bdev: Block device to clean buffers in 1566 * @block: Start of a range of blocks to clean 1567 * @len: Number of blocks to clean 1568 * 1569 * We are taking a range of blocks for data and we don't want writeback of any 1570 * buffer-cache aliases starting from return from this function and until the 1571 * moment when something will explicitly mark the buffer dirty (hopefully that 1572 * will not happen until we will free that block ;-) We don't even need to mark 1573 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1574 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1575 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1576 * would confuse anyone who might pick it with bread() afterwards... 1577 * 1578 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1579 * writeout I/O going on against recently-freed buffers. We don't wait on that 1580 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1581 * need to. That happens here. 1582 */ 1583 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1584 { 1585 struct inode *bd_inode = bdev->bd_inode; 1586 struct address_space *bd_mapping = bd_inode->i_mapping; 1587 struct pagevec pvec; 1588 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1589 pgoff_t end; 1590 int i, count; 1591 struct buffer_head *bh; 1592 struct buffer_head *head; 1593 1594 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1595 pagevec_init(&pvec); 1596 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1597 count = pagevec_count(&pvec); 1598 for (i = 0; i < count; i++) { 1599 struct page *page = pvec.pages[i]; 1600 1601 if (!page_has_buffers(page)) 1602 continue; 1603 /* 1604 * We use page lock instead of bd_mapping->private_lock 1605 * to pin buffers here since we can afford to sleep and 1606 * it scales better than a global spinlock lock. 1607 */ 1608 lock_page(page); 1609 /* Recheck when the page is locked which pins bhs */ 1610 if (!page_has_buffers(page)) 1611 goto unlock_page; 1612 head = page_buffers(page); 1613 bh = head; 1614 do { 1615 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1616 goto next; 1617 if (bh->b_blocknr >= block + len) 1618 break; 1619 clear_buffer_dirty(bh); 1620 wait_on_buffer(bh); 1621 clear_buffer_req(bh); 1622 next: 1623 bh = bh->b_this_page; 1624 } while (bh != head); 1625 unlock_page: 1626 unlock_page(page); 1627 } 1628 pagevec_release(&pvec); 1629 cond_resched(); 1630 /* End of range already reached? */ 1631 if (index > end || !index) 1632 break; 1633 } 1634 } 1635 EXPORT_SYMBOL(clean_bdev_aliases); 1636 1637 /* 1638 * Size is a power-of-two in the range 512..PAGE_SIZE, 1639 * and the case we care about most is PAGE_SIZE. 1640 * 1641 * So this *could* possibly be written with those 1642 * constraints in mind (relevant mostly if some 1643 * architecture has a slow bit-scan instruction) 1644 */ 1645 static inline int block_size_bits(unsigned int blocksize) 1646 { 1647 return ilog2(blocksize); 1648 } 1649 1650 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1651 { 1652 BUG_ON(!PageLocked(page)); 1653 1654 if (!page_has_buffers(page)) 1655 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1656 b_state); 1657 return page_buffers(page); 1658 } 1659 1660 /* 1661 * NOTE! All mapped/uptodate combinations are valid: 1662 * 1663 * Mapped Uptodate Meaning 1664 * 1665 * No No "unknown" - must do get_block() 1666 * No Yes "hole" - zero-filled 1667 * Yes No "allocated" - allocated on disk, not read in 1668 * Yes Yes "valid" - allocated and up-to-date in memory. 1669 * 1670 * "Dirty" is valid only with the last case (mapped+uptodate). 1671 */ 1672 1673 /* 1674 * While block_write_full_page is writing back the dirty buffers under 1675 * the page lock, whoever dirtied the buffers may decide to clean them 1676 * again at any time. We handle that by only looking at the buffer 1677 * state inside lock_buffer(). 1678 * 1679 * If block_write_full_page() is called for regular writeback 1680 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1681 * locked buffer. This only can happen if someone has written the buffer 1682 * directly, with submit_bh(). At the address_space level PageWriteback 1683 * prevents this contention from occurring. 1684 * 1685 * If block_write_full_page() is called with wbc->sync_mode == 1686 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1687 * causes the writes to be flagged as synchronous writes. 1688 */ 1689 int __block_write_full_page(struct inode *inode, struct page *page, 1690 get_block_t *get_block, struct writeback_control *wbc, 1691 bh_end_io_t *handler) 1692 { 1693 int err; 1694 sector_t block; 1695 sector_t last_block; 1696 struct buffer_head *bh, *head; 1697 unsigned int blocksize, bbits; 1698 int nr_underway = 0; 1699 int write_flags = wbc_to_write_flags(wbc); 1700 1701 head = create_page_buffers(page, inode, 1702 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1703 1704 /* 1705 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1706 * here, and the (potentially unmapped) buffers may become dirty at 1707 * any time. If a buffer becomes dirty here after we've inspected it 1708 * then we just miss that fact, and the page stays dirty. 1709 * 1710 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1711 * handle that here by just cleaning them. 1712 */ 1713 1714 bh = head; 1715 blocksize = bh->b_size; 1716 bbits = block_size_bits(blocksize); 1717 1718 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1719 last_block = (i_size_read(inode) - 1) >> bbits; 1720 1721 /* 1722 * Get all the dirty buffers mapped to disk addresses and 1723 * handle any aliases from the underlying blockdev's mapping. 1724 */ 1725 do { 1726 if (block > last_block) { 1727 /* 1728 * mapped buffers outside i_size will occur, because 1729 * this page can be outside i_size when there is a 1730 * truncate in progress. 1731 */ 1732 /* 1733 * The buffer was zeroed by block_write_full_page() 1734 */ 1735 clear_buffer_dirty(bh); 1736 set_buffer_uptodate(bh); 1737 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1738 buffer_dirty(bh)) { 1739 WARN_ON(bh->b_size != blocksize); 1740 err = get_block(inode, block, bh, 1); 1741 if (err) 1742 goto recover; 1743 clear_buffer_delay(bh); 1744 if (buffer_new(bh)) { 1745 /* blockdev mappings never come here */ 1746 clear_buffer_new(bh); 1747 clean_bdev_bh_alias(bh); 1748 } 1749 } 1750 bh = bh->b_this_page; 1751 block++; 1752 } while (bh != head); 1753 1754 do { 1755 if (!buffer_mapped(bh)) 1756 continue; 1757 /* 1758 * If it's a fully non-blocking write attempt and we cannot 1759 * lock the buffer then redirty the page. Note that this can 1760 * potentially cause a busy-wait loop from writeback threads 1761 * and kswapd activity, but those code paths have their own 1762 * higher-level throttling. 1763 */ 1764 if (wbc->sync_mode != WB_SYNC_NONE) { 1765 lock_buffer(bh); 1766 } else if (!trylock_buffer(bh)) { 1767 redirty_page_for_writepage(wbc, page); 1768 continue; 1769 } 1770 if (test_clear_buffer_dirty(bh)) { 1771 mark_buffer_async_write_endio(bh, handler); 1772 } else { 1773 unlock_buffer(bh); 1774 } 1775 } while ((bh = bh->b_this_page) != head); 1776 1777 /* 1778 * The page and its buffers are protected by PageWriteback(), so we can 1779 * drop the bh refcounts early. 1780 */ 1781 BUG_ON(PageWriteback(page)); 1782 set_page_writeback(page); 1783 1784 do { 1785 struct buffer_head *next = bh->b_this_page; 1786 if (buffer_async_write(bh)) { 1787 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1788 inode->i_write_hint, wbc); 1789 nr_underway++; 1790 } 1791 bh = next; 1792 } while (bh != head); 1793 unlock_page(page); 1794 1795 err = 0; 1796 done: 1797 if (nr_underway == 0) { 1798 /* 1799 * The page was marked dirty, but the buffers were 1800 * clean. Someone wrote them back by hand with 1801 * ll_rw_block/submit_bh. A rare case. 1802 */ 1803 end_page_writeback(page); 1804 1805 /* 1806 * The page and buffer_heads can be released at any time from 1807 * here on. 1808 */ 1809 } 1810 return err; 1811 1812 recover: 1813 /* 1814 * ENOSPC, or some other error. We may already have added some 1815 * blocks to the file, so we need to write these out to avoid 1816 * exposing stale data. 1817 * The page is currently locked and not marked for writeback 1818 */ 1819 bh = head; 1820 /* Recovery: lock and submit the mapped buffers */ 1821 do { 1822 if (buffer_mapped(bh) && buffer_dirty(bh) && 1823 !buffer_delay(bh)) { 1824 lock_buffer(bh); 1825 mark_buffer_async_write_endio(bh, handler); 1826 } else { 1827 /* 1828 * The buffer may have been set dirty during 1829 * attachment to a dirty page. 1830 */ 1831 clear_buffer_dirty(bh); 1832 } 1833 } while ((bh = bh->b_this_page) != head); 1834 SetPageError(page); 1835 BUG_ON(PageWriteback(page)); 1836 mapping_set_error(page->mapping, err); 1837 set_page_writeback(page); 1838 do { 1839 struct buffer_head *next = bh->b_this_page; 1840 if (buffer_async_write(bh)) { 1841 clear_buffer_dirty(bh); 1842 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1843 inode->i_write_hint, wbc); 1844 nr_underway++; 1845 } 1846 bh = next; 1847 } while (bh != head); 1848 unlock_page(page); 1849 goto done; 1850 } 1851 EXPORT_SYMBOL(__block_write_full_page); 1852 1853 /* 1854 * If a page has any new buffers, zero them out here, and mark them uptodate 1855 * and dirty so they'll be written out (in order to prevent uninitialised 1856 * block data from leaking). And clear the new bit. 1857 */ 1858 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1859 { 1860 unsigned int block_start, block_end; 1861 struct buffer_head *head, *bh; 1862 1863 BUG_ON(!PageLocked(page)); 1864 if (!page_has_buffers(page)) 1865 return; 1866 1867 bh = head = page_buffers(page); 1868 block_start = 0; 1869 do { 1870 block_end = block_start + bh->b_size; 1871 1872 if (buffer_new(bh)) { 1873 if (block_end > from && block_start < to) { 1874 if (!PageUptodate(page)) { 1875 unsigned start, size; 1876 1877 start = max(from, block_start); 1878 size = min(to, block_end) - start; 1879 1880 zero_user(page, start, size); 1881 set_buffer_uptodate(bh); 1882 } 1883 1884 clear_buffer_new(bh); 1885 mark_buffer_dirty(bh); 1886 } 1887 } 1888 1889 block_start = block_end; 1890 bh = bh->b_this_page; 1891 } while (bh != head); 1892 } 1893 EXPORT_SYMBOL(page_zero_new_buffers); 1894 1895 static void 1896 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1897 struct iomap *iomap) 1898 { 1899 loff_t offset = block << inode->i_blkbits; 1900 1901 bh->b_bdev = iomap->bdev; 1902 1903 /* 1904 * Block points to offset in file we need to map, iomap contains 1905 * the offset at which the map starts. If the map ends before the 1906 * current block, then do not map the buffer and let the caller 1907 * handle it. 1908 */ 1909 BUG_ON(offset >= iomap->offset + iomap->length); 1910 1911 switch (iomap->type) { 1912 case IOMAP_HOLE: 1913 /* 1914 * If the buffer is not up to date or beyond the current EOF, 1915 * we need to mark it as new to ensure sub-block zeroing is 1916 * executed if necessary. 1917 */ 1918 if (!buffer_uptodate(bh) || 1919 (offset >= i_size_read(inode))) 1920 set_buffer_new(bh); 1921 break; 1922 case IOMAP_DELALLOC: 1923 if (!buffer_uptodate(bh) || 1924 (offset >= i_size_read(inode))) 1925 set_buffer_new(bh); 1926 set_buffer_uptodate(bh); 1927 set_buffer_mapped(bh); 1928 set_buffer_delay(bh); 1929 break; 1930 case IOMAP_UNWRITTEN: 1931 /* 1932 * For unwritten regions, we always need to ensure that 1933 * sub-block writes cause the regions in the block we are not 1934 * writing to are zeroed. Set the buffer as new to ensure this. 1935 */ 1936 set_buffer_new(bh); 1937 set_buffer_unwritten(bh); 1938 /* FALLTHRU */ 1939 case IOMAP_MAPPED: 1940 if (offset >= i_size_read(inode)) 1941 set_buffer_new(bh); 1942 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1943 inode->i_blkbits; 1944 set_buffer_mapped(bh); 1945 break; 1946 } 1947 } 1948 1949 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1950 get_block_t *get_block, struct iomap *iomap) 1951 { 1952 unsigned from = pos & (PAGE_SIZE - 1); 1953 unsigned to = from + len; 1954 struct inode *inode = page->mapping->host; 1955 unsigned block_start, block_end; 1956 sector_t block; 1957 int err = 0; 1958 unsigned blocksize, bbits; 1959 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1960 1961 BUG_ON(!PageLocked(page)); 1962 BUG_ON(from > PAGE_SIZE); 1963 BUG_ON(to > PAGE_SIZE); 1964 BUG_ON(from > to); 1965 1966 head = create_page_buffers(page, inode, 0); 1967 blocksize = head->b_size; 1968 bbits = block_size_bits(blocksize); 1969 1970 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1971 1972 for(bh = head, block_start = 0; bh != head || !block_start; 1973 block++, block_start=block_end, bh = bh->b_this_page) { 1974 block_end = block_start + blocksize; 1975 if (block_end <= from || block_start >= to) { 1976 if (PageUptodate(page)) { 1977 if (!buffer_uptodate(bh)) 1978 set_buffer_uptodate(bh); 1979 } 1980 continue; 1981 } 1982 if (buffer_new(bh)) 1983 clear_buffer_new(bh); 1984 if (!buffer_mapped(bh)) { 1985 WARN_ON(bh->b_size != blocksize); 1986 if (get_block) { 1987 err = get_block(inode, block, bh, 1); 1988 if (err) 1989 break; 1990 } else { 1991 iomap_to_bh(inode, block, bh, iomap); 1992 } 1993 1994 if (buffer_new(bh)) { 1995 clean_bdev_bh_alias(bh); 1996 if (PageUptodate(page)) { 1997 clear_buffer_new(bh); 1998 set_buffer_uptodate(bh); 1999 mark_buffer_dirty(bh); 2000 continue; 2001 } 2002 if (block_end > to || block_start < from) 2003 zero_user_segments(page, 2004 to, block_end, 2005 block_start, from); 2006 continue; 2007 } 2008 } 2009 if (PageUptodate(page)) { 2010 if (!buffer_uptodate(bh)) 2011 set_buffer_uptodate(bh); 2012 continue; 2013 } 2014 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2015 !buffer_unwritten(bh) && 2016 (block_start < from || block_end > to)) { 2017 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2018 *wait_bh++=bh; 2019 } 2020 } 2021 /* 2022 * If we issued read requests - let them complete. 2023 */ 2024 while(wait_bh > wait) { 2025 wait_on_buffer(*--wait_bh); 2026 if (!buffer_uptodate(*wait_bh)) 2027 err = -EIO; 2028 } 2029 if (unlikely(err)) 2030 page_zero_new_buffers(page, from, to); 2031 return err; 2032 } 2033 2034 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2035 get_block_t *get_block) 2036 { 2037 return __block_write_begin_int(page, pos, len, get_block, NULL); 2038 } 2039 EXPORT_SYMBOL(__block_write_begin); 2040 2041 static int __block_commit_write(struct inode *inode, struct page *page, 2042 unsigned from, unsigned to) 2043 { 2044 unsigned block_start, block_end; 2045 int partial = 0; 2046 unsigned blocksize; 2047 struct buffer_head *bh, *head; 2048 2049 bh = head = page_buffers(page); 2050 blocksize = bh->b_size; 2051 2052 block_start = 0; 2053 do { 2054 block_end = block_start + blocksize; 2055 if (block_end <= from || block_start >= to) { 2056 if (!buffer_uptodate(bh)) 2057 partial = 1; 2058 } else { 2059 set_buffer_uptodate(bh); 2060 mark_buffer_dirty(bh); 2061 } 2062 clear_buffer_new(bh); 2063 2064 block_start = block_end; 2065 bh = bh->b_this_page; 2066 } while (bh != head); 2067 2068 /* 2069 * If this is a partial write which happened to make all buffers 2070 * uptodate then we can optimize away a bogus readpage() for 2071 * the next read(). Here we 'discover' whether the page went 2072 * uptodate as a result of this (potentially partial) write. 2073 */ 2074 if (!partial) 2075 SetPageUptodate(page); 2076 return 0; 2077 } 2078 2079 /* 2080 * block_write_begin takes care of the basic task of block allocation and 2081 * bringing partial write blocks uptodate first. 2082 * 2083 * The filesystem needs to handle block truncation upon failure. 2084 */ 2085 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2086 unsigned flags, struct page **pagep, get_block_t *get_block) 2087 { 2088 pgoff_t index = pos >> PAGE_SHIFT; 2089 struct page *page; 2090 int status; 2091 2092 page = grab_cache_page_write_begin(mapping, index, flags); 2093 if (!page) 2094 return -ENOMEM; 2095 2096 status = __block_write_begin(page, pos, len, get_block); 2097 if (unlikely(status)) { 2098 unlock_page(page); 2099 put_page(page); 2100 page = NULL; 2101 } 2102 2103 *pagep = page; 2104 return status; 2105 } 2106 EXPORT_SYMBOL(block_write_begin); 2107 2108 int block_write_end(struct file *file, struct address_space *mapping, 2109 loff_t pos, unsigned len, unsigned copied, 2110 struct page *page, void *fsdata) 2111 { 2112 struct inode *inode = mapping->host; 2113 unsigned start; 2114 2115 start = pos & (PAGE_SIZE - 1); 2116 2117 if (unlikely(copied < len)) { 2118 /* 2119 * The buffers that were written will now be uptodate, so we 2120 * don't have to worry about a readpage reading them and 2121 * overwriting a partial write. However if we have encountered 2122 * a short write and only partially written into a buffer, it 2123 * will not be marked uptodate, so a readpage might come in and 2124 * destroy our partial write. 2125 * 2126 * Do the simplest thing, and just treat any short write to a 2127 * non uptodate page as a zero-length write, and force the 2128 * caller to redo the whole thing. 2129 */ 2130 if (!PageUptodate(page)) 2131 copied = 0; 2132 2133 page_zero_new_buffers(page, start+copied, start+len); 2134 } 2135 flush_dcache_page(page); 2136 2137 /* This could be a short (even 0-length) commit */ 2138 __block_commit_write(inode, page, start, start+copied); 2139 2140 return copied; 2141 } 2142 EXPORT_SYMBOL(block_write_end); 2143 2144 int generic_write_end(struct file *file, struct address_space *mapping, 2145 loff_t pos, unsigned len, unsigned copied, 2146 struct page *page, void *fsdata) 2147 { 2148 struct inode *inode = mapping->host; 2149 loff_t old_size = inode->i_size; 2150 int i_size_changed = 0; 2151 2152 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2153 2154 /* 2155 * No need to use i_size_read() here, the i_size 2156 * cannot change under us because we hold i_mutex. 2157 * 2158 * But it's important to update i_size while still holding page lock: 2159 * page writeout could otherwise come in and zero beyond i_size. 2160 */ 2161 if (pos+copied > inode->i_size) { 2162 i_size_write(inode, pos+copied); 2163 i_size_changed = 1; 2164 } 2165 2166 unlock_page(page); 2167 put_page(page); 2168 2169 if (old_size < pos) 2170 pagecache_isize_extended(inode, old_size, pos); 2171 /* 2172 * Don't mark the inode dirty under page lock. First, it unnecessarily 2173 * makes the holding time of page lock longer. Second, it forces lock 2174 * ordering of page lock and transaction start for journaling 2175 * filesystems. 2176 */ 2177 if (i_size_changed) 2178 mark_inode_dirty(inode); 2179 2180 return copied; 2181 } 2182 EXPORT_SYMBOL(generic_write_end); 2183 2184 /* 2185 * block_is_partially_uptodate checks whether buffers within a page are 2186 * uptodate or not. 2187 * 2188 * Returns true if all buffers which correspond to a file portion 2189 * we want to read are uptodate. 2190 */ 2191 int block_is_partially_uptodate(struct page *page, unsigned long from, 2192 unsigned long count) 2193 { 2194 unsigned block_start, block_end, blocksize; 2195 unsigned to; 2196 struct buffer_head *bh, *head; 2197 int ret = 1; 2198 2199 if (!page_has_buffers(page)) 2200 return 0; 2201 2202 head = page_buffers(page); 2203 blocksize = head->b_size; 2204 to = min_t(unsigned, PAGE_SIZE - from, count); 2205 to = from + to; 2206 if (from < blocksize && to > PAGE_SIZE - blocksize) 2207 return 0; 2208 2209 bh = head; 2210 block_start = 0; 2211 do { 2212 block_end = block_start + blocksize; 2213 if (block_end > from && block_start < to) { 2214 if (!buffer_uptodate(bh)) { 2215 ret = 0; 2216 break; 2217 } 2218 if (block_end >= to) 2219 break; 2220 } 2221 block_start = block_end; 2222 bh = bh->b_this_page; 2223 } while (bh != head); 2224 2225 return ret; 2226 } 2227 EXPORT_SYMBOL(block_is_partially_uptodate); 2228 2229 /* 2230 * Generic "read page" function for block devices that have the normal 2231 * get_block functionality. This is most of the block device filesystems. 2232 * Reads the page asynchronously --- the unlock_buffer() and 2233 * set/clear_buffer_uptodate() functions propagate buffer state into the 2234 * page struct once IO has completed. 2235 */ 2236 int block_read_full_page(struct page *page, get_block_t *get_block) 2237 { 2238 struct inode *inode = page->mapping->host; 2239 sector_t iblock, lblock; 2240 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2241 unsigned int blocksize, bbits; 2242 int nr, i; 2243 int fully_mapped = 1; 2244 2245 head = create_page_buffers(page, inode, 0); 2246 blocksize = head->b_size; 2247 bbits = block_size_bits(blocksize); 2248 2249 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2250 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2251 bh = head; 2252 nr = 0; 2253 i = 0; 2254 2255 do { 2256 if (buffer_uptodate(bh)) 2257 continue; 2258 2259 if (!buffer_mapped(bh)) { 2260 int err = 0; 2261 2262 fully_mapped = 0; 2263 if (iblock < lblock) { 2264 WARN_ON(bh->b_size != blocksize); 2265 err = get_block(inode, iblock, bh, 0); 2266 if (err) 2267 SetPageError(page); 2268 } 2269 if (!buffer_mapped(bh)) { 2270 zero_user(page, i * blocksize, blocksize); 2271 if (!err) 2272 set_buffer_uptodate(bh); 2273 continue; 2274 } 2275 /* 2276 * get_block() might have updated the buffer 2277 * synchronously 2278 */ 2279 if (buffer_uptodate(bh)) 2280 continue; 2281 } 2282 arr[nr++] = bh; 2283 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2284 2285 if (fully_mapped) 2286 SetPageMappedToDisk(page); 2287 2288 if (!nr) { 2289 /* 2290 * All buffers are uptodate - we can set the page uptodate 2291 * as well. But not if get_block() returned an error. 2292 */ 2293 if (!PageError(page)) 2294 SetPageUptodate(page); 2295 unlock_page(page); 2296 return 0; 2297 } 2298 2299 /* Stage two: lock the buffers */ 2300 for (i = 0; i < nr; i++) { 2301 bh = arr[i]; 2302 lock_buffer(bh); 2303 mark_buffer_async_read(bh); 2304 } 2305 2306 /* 2307 * Stage 3: start the IO. Check for uptodateness 2308 * inside the buffer lock in case another process reading 2309 * the underlying blockdev brought it uptodate (the sct fix). 2310 */ 2311 for (i = 0; i < nr; i++) { 2312 bh = arr[i]; 2313 if (buffer_uptodate(bh)) 2314 end_buffer_async_read(bh, 1); 2315 else 2316 submit_bh(REQ_OP_READ, 0, bh); 2317 } 2318 return 0; 2319 } 2320 EXPORT_SYMBOL(block_read_full_page); 2321 2322 /* utility function for filesystems that need to do work on expanding 2323 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2324 * deal with the hole. 2325 */ 2326 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2327 { 2328 struct address_space *mapping = inode->i_mapping; 2329 struct page *page; 2330 void *fsdata; 2331 int err; 2332 2333 err = inode_newsize_ok(inode, size); 2334 if (err) 2335 goto out; 2336 2337 err = pagecache_write_begin(NULL, mapping, size, 0, 2338 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2339 if (err) 2340 goto out; 2341 2342 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2343 BUG_ON(err > 0); 2344 2345 out: 2346 return err; 2347 } 2348 EXPORT_SYMBOL(generic_cont_expand_simple); 2349 2350 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2351 loff_t pos, loff_t *bytes) 2352 { 2353 struct inode *inode = mapping->host; 2354 unsigned int blocksize = i_blocksize(inode); 2355 struct page *page; 2356 void *fsdata; 2357 pgoff_t index, curidx; 2358 loff_t curpos; 2359 unsigned zerofrom, offset, len; 2360 int err = 0; 2361 2362 index = pos >> PAGE_SHIFT; 2363 offset = pos & ~PAGE_MASK; 2364 2365 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2366 zerofrom = curpos & ~PAGE_MASK; 2367 if (zerofrom & (blocksize-1)) { 2368 *bytes |= (blocksize-1); 2369 (*bytes)++; 2370 } 2371 len = PAGE_SIZE - zerofrom; 2372 2373 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2374 &page, &fsdata); 2375 if (err) 2376 goto out; 2377 zero_user(page, zerofrom, len); 2378 err = pagecache_write_end(file, mapping, curpos, len, len, 2379 page, fsdata); 2380 if (err < 0) 2381 goto out; 2382 BUG_ON(err != len); 2383 err = 0; 2384 2385 balance_dirty_pages_ratelimited(mapping); 2386 2387 if (unlikely(fatal_signal_pending(current))) { 2388 err = -EINTR; 2389 goto out; 2390 } 2391 } 2392 2393 /* page covers the boundary, find the boundary offset */ 2394 if (index == curidx) { 2395 zerofrom = curpos & ~PAGE_MASK; 2396 /* if we will expand the thing last block will be filled */ 2397 if (offset <= zerofrom) { 2398 goto out; 2399 } 2400 if (zerofrom & (blocksize-1)) { 2401 *bytes |= (blocksize-1); 2402 (*bytes)++; 2403 } 2404 len = offset - zerofrom; 2405 2406 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2407 &page, &fsdata); 2408 if (err) 2409 goto out; 2410 zero_user(page, zerofrom, len); 2411 err = pagecache_write_end(file, mapping, curpos, len, len, 2412 page, fsdata); 2413 if (err < 0) 2414 goto out; 2415 BUG_ON(err != len); 2416 err = 0; 2417 } 2418 out: 2419 return err; 2420 } 2421 2422 /* 2423 * For moronic filesystems that do not allow holes in file. 2424 * We may have to extend the file. 2425 */ 2426 int cont_write_begin(struct file *file, struct address_space *mapping, 2427 loff_t pos, unsigned len, unsigned flags, 2428 struct page **pagep, void **fsdata, 2429 get_block_t *get_block, loff_t *bytes) 2430 { 2431 struct inode *inode = mapping->host; 2432 unsigned int blocksize = i_blocksize(inode); 2433 unsigned int zerofrom; 2434 int err; 2435 2436 err = cont_expand_zero(file, mapping, pos, bytes); 2437 if (err) 2438 return err; 2439 2440 zerofrom = *bytes & ~PAGE_MASK; 2441 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2442 *bytes |= (blocksize-1); 2443 (*bytes)++; 2444 } 2445 2446 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2447 } 2448 EXPORT_SYMBOL(cont_write_begin); 2449 2450 int block_commit_write(struct page *page, unsigned from, unsigned to) 2451 { 2452 struct inode *inode = page->mapping->host; 2453 __block_commit_write(inode,page,from,to); 2454 return 0; 2455 } 2456 EXPORT_SYMBOL(block_commit_write); 2457 2458 /* 2459 * block_page_mkwrite() is not allowed to change the file size as it gets 2460 * called from a page fault handler when a page is first dirtied. Hence we must 2461 * be careful to check for EOF conditions here. We set the page up correctly 2462 * for a written page which means we get ENOSPC checking when writing into 2463 * holes and correct delalloc and unwritten extent mapping on filesystems that 2464 * support these features. 2465 * 2466 * We are not allowed to take the i_mutex here so we have to play games to 2467 * protect against truncate races as the page could now be beyond EOF. Because 2468 * truncate writes the inode size before removing pages, once we have the 2469 * page lock we can determine safely if the page is beyond EOF. If it is not 2470 * beyond EOF, then the page is guaranteed safe against truncation until we 2471 * unlock the page. 2472 * 2473 * Direct callers of this function should protect against filesystem freezing 2474 * using sb_start_pagefault() - sb_end_pagefault() functions. 2475 */ 2476 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2477 get_block_t get_block) 2478 { 2479 struct page *page = vmf->page; 2480 struct inode *inode = file_inode(vma->vm_file); 2481 unsigned long end; 2482 loff_t size; 2483 int ret; 2484 2485 lock_page(page); 2486 size = i_size_read(inode); 2487 if ((page->mapping != inode->i_mapping) || 2488 (page_offset(page) > size)) { 2489 /* We overload EFAULT to mean page got truncated */ 2490 ret = -EFAULT; 2491 goto out_unlock; 2492 } 2493 2494 /* page is wholly or partially inside EOF */ 2495 if (((page->index + 1) << PAGE_SHIFT) > size) 2496 end = size & ~PAGE_MASK; 2497 else 2498 end = PAGE_SIZE; 2499 2500 ret = __block_write_begin(page, 0, end, get_block); 2501 if (!ret) 2502 ret = block_commit_write(page, 0, end); 2503 2504 if (unlikely(ret < 0)) 2505 goto out_unlock; 2506 set_page_dirty(page); 2507 wait_for_stable_page(page); 2508 return 0; 2509 out_unlock: 2510 unlock_page(page); 2511 return ret; 2512 } 2513 EXPORT_SYMBOL(block_page_mkwrite); 2514 2515 /* 2516 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2517 * immediately, while under the page lock. So it needs a special end_io 2518 * handler which does not touch the bh after unlocking it. 2519 */ 2520 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2521 { 2522 __end_buffer_read_notouch(bh, uptodate); 2523 } 2524 2525 /* 2526 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2527 * the page (converting it to circular linked list and taking care of page 2528 * dirty races). 2529 */ 2530 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2531 { 2532 struct buffer_head *bh; 2533 2534 BUG_ON(!PageLocked(page)); 2535 2536 spin_lock(&page->mapping->private_lock); 2537 bh = head; 2538 do { 2539 if (PageDirty(page)) 2540 set_buffer_dirty(bh); 2541 if (!bh->b_this_page) 2542 bh->b_this_page = head; 2543 bh = bh->b_this_page; 2544 } while (bh != head); 2545 attach_page_buffers(page, head); 2546 spin_unlock(&page->mapping->private_lock); 2547 } 2548 2549 /* 2550 * On entry, the page is fully not uptodate. 2551 * On exit the page is fully uptodate in the areas outside (from,to) 2552 * The filesystem needs to handle block truncation upon failure. 2553 */ 2554 int nobh_write_begin(struct address_space *mapping, 2555 loff_t pos, unsigned len, unsigned flags, 2556 struct page **pagep, void **fsdata, 2557 get_block_t *get_block) 2558 { 2559 struct inode *inode = mapping->host; 2560 const unsigned blkbits = inode->i_blkbits; 2561 const unsigned blocksize = 1 << blkbits; 2562 struct buffer_head *head, *bh; 2563 struct page *page; 2564 pgoff_t index; 2565 unsigned from, to; 2566 unsigned block_in_page; 2567 unsigned block_start, block_end; 2568 sector_t block_in_file; 2569 int nr_reads = 0; 2570 int ret = 0; 2571 int is_mapped_to_disk = 1; 2572 2573 index = pos >> PAGE_SHIFT; 2574 from = pos & (PAGE_SIZE - 1); 2575 to = from + len; 2576 2577 page = grab_cache_page_write_begin(mapping, index, flags); 2578 if (!page) 2579 return -ENOMEM; 2580 *pagep = page; 2581 *fsdata = NULL; 2582 2583 if (page_has_buffers(page)) { 2584 ret = __block_write_begin(page, pos, len, get_block); 2585 if (unlikely(ret)) 2586 goto out_release; 2587 return ret; 2588 } 2589 2590 if (PageMappedToDisk(page)) 2591 return 0; 2592 2593 /* 2594 * Allocate buffers so that we can keep track of state, and potentially 2595 * attach them to the page if an error occurs. In the common case of 2596 * no error, they will just be freed again without ever being attached 2597 * to the page (which is all OK, because we're under the page lock). 2598 * 2599 * Be careful: the buffer linked list is a NULL terminated one, rather 2600 * than the circular one we're used to. 2601 */ 2602 head = alloc_page_buffers(page, blocksize, false); 2603 if (!head) { 2604 ret = -ENOMEM; 2605 goto out_release; 2606 } 2607 2608 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2609 2610 /* 2611 * We loop across all blocks in the page, whether or not they are 2612 * part of the affected region. This is so we can discover if the 2613 * page is fully mapped-to-disk. 2614 */ 2615 for (block_start = 0, block_in_page = 0, bh = head; 2616 block_start < PAGE_SIZE; 2617 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2618 int create; 2619 2620 block_end = block_start + blocksize; 2621 bh->b_state = 0; 2622 create = 1; 2623 if (block_start >= to) 2624 create = 0; 2625 ret = get_block(inode, block_in_file + block_in_page, 2626 bh, create); 2627 if (ret) 2628 goto failed; 2629 if (!buffer_mapped(bh)) 2630 is_mapped_to_disk = 0; 2631 if (buffer_new(bh)) 2632 clean_bdev_bh_alias(bh); 2633 if (PageUptodate(page)) { 2634 set_buffer_uptodate(bh); 2635 continue; 2636 } 2637 if (buffer_new(bh) || !buffer_mapped(bh)) { 2638 zero_user_segments(page, block_start, from, 2639 to, block_end); 2640 continue; 2641 } 2642 if (buffer_uptodate(bh)) 2643 continue; /* reiserfs does this */ 2644 if (block_start < from || block_end > to) { 2645 lock_buffer(bh); 2646 bh->b_end_io = end_buffer_read_nobh; 2647 submit_bh(REQ_OP_READ, 0, bh); 2648 nr_reads++; 2649 } 2650 } 2651 2652 if (nr_reads) { 2653 /* 2654 * The page is locked, so these buffers are protected from 2655 * any VM or truncate activity. Hence we don't need to care 2656 * for the buffer_head refcounts. 2657 */ 2658 for (bh = head; bh; bh = bh->b_this_page) { 2659 wait_on_buffer(bh); 2660 if (!buffer_uptodate(bh)) 2661 ret = -EIO; 2662 } 2663 if (ret) 2664 goto failed; 2665 } 2666 2667 if (is_mapped_to_disk) 2668 SetPageMappedToDisk(page); 2669 2670 *fsdata = head; /* to be released by nobh_write_end */ 2671 2672 return 0; 2673 2674 failed: 2675 BUG_ON(!ret); 2676 /* 2677 * Error recovery is a bit difficult. We need to zero out blocks that 2678 * were newly allocated, and dirty them to ensure they get written out. 2679 * Buffers need to be attached to the page at this point, otherwise 2680 * the handling of potential IO errors during writeout would be hard 2681 * (could try doing synchronous writeout, but what if that fails too?) 2682 */ 2683 attach_nobh_buffers(page, head); 2684 page_zero_new_buffers(page, from, to); 2685 2686 out_release: 2687 unlock_page(page); 2688 put_page(page); 2689 *pagep = NULL; 2690 2691 return ret; 2692 } 2693 EXPORT_SYMBOL(nobh_write_begin); 2694 2695 int nobh_write_end(struct file *file, struct address_space *mapping, 2696 loff_t pos, unsigned len, unsigned copied, 2697 struct page *page, void *fsdata) 2698 { 2699 struct inode *inode = page->mapping->host; 2700 struct buffer_head *head = fsdata; 2701 struct buffer_head *bh; 2702 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2703 2704 if (unlikely(copied < len) && head) 2705 attach_nobh_buffers(page, head); 2706 if (page_has_buffers(page)) 2707 return generic_write_end(file, mapping, pos, len, 2708 copied, page, fsdata); 2709 2710 SetPageUptodate(page); 2711 set_page_dirty(page); 2712 if (pos+copied > inode->i_size) { 2713 i_size_write(inode, pos+copied); 2714 mark_inode_dirty(inode); 2715 } 2716 2717 unlock_page(page); 2718 put_page(page); 2719 2720 while (head) { 2721 bh = head; 2722 head = head->b_this_page; 2723 free_buffer_head(bh); 2724 } 2725 2726 return copied; 2727 } 2728 EXPORT_SYMBOL(nobh_write_end); 2729 2730 /* 2731 * nobh_writepage() - based on block_full_write_page() except 2732 * that it tries to operate without attaching bufferheads to 2733 * the page. 2734 */ 2735 int nobh_writepage(struct page *page, get_block_t *get_block, 2736 struct writeback_control *wbc) 2737 { 2738 struct inode * const inode = page->mapping->host; 2739 loff_t i_size = i_size_read(inode); 2740 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2741 unsigned offset; 2742 int ret; 2743 2744 /* Is the page fully inside i_size? */ 2745 if (page->index < end_index) 2746 goto out; 2747 2748 /* Is the page fully outside i_size? (truncate in progress) */ 2749 offset = i_size & (PAGE_SIZE-1); 2750 if (page->index >= end_index+1 || !offset) { 2751 /* 2752 * The page may have dirty, unmapped buffers. For example, 2753 * they may have been added in ext3_writepage(). Make them 2754 * freeable here, so the page does not leak. 2755 */ 2756 #if 0 2757 /* Not really sure about this - do we need this ? */ 2758 if (page->mapping->a_ops->invalidatepage) 2759 page->mapping->a_ops->invalidatepage(page, offset); 2760 #endif 2761 unlock_page(page); 2762 return 0; /* don't care */ 2763 } 2764 2765 /* 2766 * The page straddles i_size. It must be zeroed out on each and every 2767 * writepage invocation because it may be mmapped. "A file is mapped 2768 * in multiples of the page size. For a file that is not a multiple of 2769 * the page size, the remaining memory is zeroed when mapped, and 2770 * writes to that region are not written out to the file." 2771 */ 2772 zero_user_segment(page, offset, PAGE_SIZE); 2773 out: 2774 ret = mpage_writepage(page, get_block, wbc); 2775 if (ret == -EAGAIN) 2776 ret = __block_write_full_page(inode, page, get_block, wbc, 2777 end_buffer_async_write); 2778 return ret; 2779 } 2780 EXPORT_SYMBOL(nobh_writepage); 2781 2782 int nobh_truncate_page(struct address_space *mapping, 2783 loff_t from, get_block_t *get_block) 2784 { 2785 pgoff_t index = from >> PAGE_SHIFT; 2786 unsigned offset = from & (PAGE_SIZE-1); 2787 unsigned blocksize; 2788 sector_t iblock; 2789 unsigned length, pos; 2790 struct inode *inode = mapping->host; 2791 struct page *page; 2792 struct buffer_head map_bh; 2793 int err; 2794 2795 blocksize = i_blocksize(inode); 2796 length = offset & (blocksize - 1); 2797 2798 /* Block boundary? Nothing to do */ 2799 if (!length) 2800 return 0; 2801 2802 length = blocksize - length; 2803 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2804 2805 page = grab_cache_page(mapping, index); 2806 err = -ENOMEM; 2807 if (!page) 2808 goto out; 2809 2810 if (page_has_buffers(page)) { 2811 has_buffers: 2812 unlock_page(page); 2813 put_page(page); 2814 return block_truncate_page(mapping, from, get_block); 2815 } 2816 2817 /* Find the buffer that contains "offset" */ 2818 pos = blocksize; 2819 while (offset >= pos) { 2820 iblock++; 2821 pos += blocksize; 2822 } 2823 2824 map_bh.b_size = blocksize; 2825 map_bh.b_state = 0; 2826 err = get_block(inode, iblock, &map_bh, 0); 2827 if (err) 2828 goto unlock; 2829 /* unmapped? It's a hole - nothing to do */ 2830 if (!buffer_mapped(&map_bh)) 2831 goto unlock; 2832 2833 /* Ok, it's mapped. Make sure it's up-to-date */ 2834 if (!PageUptodate(page)) { 2835 err = mapping->a_ops->readpage(NULL, page); 2836 if (err) { 2837 put_page(page); 2838 goto out; 2839 } 2840 lock_page(page); 2841 if (!PageUptodate(page)) { 2842 err = -EIO; 2843 goto unlock; 2844 } 2845 if (page_has_buffers(page)) 2846 goto has_buffers; 2847 } 2848 zero_user(page, offset, length); 2849 set_page_dirty(page); 2850 err = 0; 2851 2852 unlock: 2853 unlock_page(page); 2854 put_page(page); 2855 out: 2856 return err; 2857 } 2858 EXPORT_SYMBOL(nobh_truncate_page); 2859 2860 int block_truncate_page(struct address_space *mapping, 2861 loff_t from, get_block_t *get_block) 2862 { 2863 pgoff_t index = from >> PAGE_SHIFT; 2864 unsigned offset = from & (PAGE_SIZE-1); 2865 unsigned blocksize; 2866 sector_t iblock; 2867 unsigned length, pos; 2868 struct inode *inode = mapping->host; 2869 struct page *page; 2870 struct buffer_head *bh; 2871 int err; 2872 2873 blocksize = i_blocksize(inode); 2874 length = offset & (blocksize - 1); 2875 2876 /* Block boundary? Nothing to do */ 2877 if (!length) 2878 return 0; 2879 2880 length = blocksize - length; 2881 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2882 2883 page = grab_cache_page(mapping, index); 2884 err = -ENOMEM; 2885 if (!page) 2886 goto out; 2887 2888 if (!page_has_buffers(page)) 2889 create_empty_buffers(page, blocksize, 0); 2890 2891 /* Find the buffer that contains "offset" */ 2892 bh = page_buffers(page); 2893 pos = blocksize; 2894 while (offset >= pos) { 2895 bh = bh->b_this_page; 2896 iblock++; 2897 pos += blocksize; 2898 } 2899 2900 err = 0; 2901 if (!buffer_mapped(bh)) { 2902 WARN_ON(bh->b_size != blocksize); 2903 err = get_block(inode, iblock, bh, 0); 2904 if (err) 2905 goto unlock; 2906 /* unmapped? It's a hole - nothing to do */ 2907 if (!buffer_mapped(bh)) 2908 goto unlock; 2909 } 2910 2911 /* Ok, it's mapped. Make sure it's up-to-date */ 2912 if (PageUptodate(page)) 2913 set_buffer_uptodate(bh); 2914 2915 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2916 err = -EIO; 2917 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2918 wait_on_buffer(bh); 2919 /* Uhhuh. Read error. Complain and punt. */ 2920 if (!buffer_uptodate(bh)) 2921 goto unlock; 2922 } 2923 2924 zero_user(page, offset, length); 2925 mark_buffer_dirty(bh); 2926 err = 0; 2927 2928 unlock: 2929 unlock_page(page); 2930 put_page(page); 2931 out: 2932 return err; 2933 } 2934 EXPORT_SYMBOL(block_truncate_page); 2935 2936 /* 2937 * The generic ->writepage function for buffer-backed address_spaces 2938 */ 2939 int block_write_full_page(struct page *page, get_block_t *get_block, 2940 struct writeback_control *wbc) 2941 { 2942 struct inode * const inode = page->mapping->host; 2943 loff_t i_size = i_size_read(inode); 2944 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2945 unsigned offset; 2946 2947 /* Is the page fully inside i_size? */ 2948 if (page->index < end_index) 2949 return __block_write_full_page(inode, page, get_block, wbc, 2950 end_buffer_async_write); 2951 2952 /* Is the page fully outside i_size? (truncate in progress) */ 2953 offset = i_size & (PAGE_SIZE-1); 2954 if (page->index >= end_index+1 || !offset) { 2955 /* 2956 * The page may have dirty, unmapped buffers. For example, 2957 * they may have been added in ext3_writepage(). Make them 2958 * freeable here, so the page does not leak. 2959 */ 2960 do_invalidatepage(page, 0, PAGE_SIZE); 2961 unlock_page(page); 2962 return 0; /* don't care */ 2963 } 2964 2965 /* 2966 * The page straddles i_size. It must be zeroed out on each and every 2967 * writepage invocation because it may be mmapped. "A file is mapped 2968 * in multiples of the page size. For a file that is not a multiple of 2969 * the page size, the remaining memory is zeroed when mapped, and 2970 * writes to that region are not written out to the file." 2971 */ 2972 zero_user_segment(page, offset, PAGE_SIZE); 2973 return __block_write_full_page(inode, page, get_block, wbc, 2974 end_buffer_async_write); 2975 } 2976 EXPORT_SYMBOL(block_write_full_page); 2977 2978 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2979 get_block_t *get_block) 2980 { 2981 struct inode *inode = mapping->host; 2982 struct buffer_head tmp = { 2983 .b_size = i_blocksize(inode), 2984 }; 2985 2986 get_block(inode, block, &tmp, 0); 2987 return tmp.b_blocknr; 2988 } 2989 EXPORT_SYMBOL(generic_block_bmap); 2990 2991 static void end_bio_bh_io_sync(struct bio *bio) 2992 { 2993 struct buffer_head *bh = bio->bi_private; 2994 2995 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2996 set_bit(BH_Quiet, &bh->b_state); 2997 2998 bh->b_end_io(bh, !bio->bi_status); 2999 bio_put(bio); 3000 } 3001 3002 /* 3003 * This allows us to do IO even on the odd last sectors 3004 * of a device, even if the block size is some multiple 3005 * of the physical sector size. 3006 * 3007 * We'll just truncate the bio to the size of the device, 3008 * and clear the end of the buffer head manually. 3009 * 3010 * Truly out-of-range accesses will turn into actual IO 3011 * errors, this only handles the "we need to be able to 3012 * do IO at the final sector" case. 3013 */ 3014 void guard_bio_eod(int op, struct bio *bio) 3015 { 3016 sector_t maxsector; 3017 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 3018 unsigned truncated_bytes; 3019 struct hd_struct *part; 3020 3021 rcu_read_lock(); 3022 part = __disk_get_part(bio->bi_disk, bio->bi_partno); 3023 if (part) 3024 maxsector = part_nr_sects_read(part); 3025 else 3026 maxsector = get_capacity(bio->bi_disk); 3027 rcu_read_unlock(); 3028 3029 if (!maxsector) 3030 return; 3031 3032 /* 3033 * If the *whole* IO is past the end of the device, 3034 * let it through, and the IO layer will turn it into 3035 * an EIO. 3036 */ 3037 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3038 return; 3039 3040 maxsector -= bio->bi_iter.bi_sector; 3041 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3042 return; 3043 3044 /* Uhhuh. We've got a bio that straddles the device size! */ 3045 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3046 3047 /* Truncate the bio.. */ 3048 bio->bi_iter.bi_size -= truncated_bytes; 3049 bvec->bv_len -= truncated_bytes; 3050 3051 /* ..and clear the end of the buffer for reads */ 3052 if (op == REQ_OP_READ) { 3053 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 3054 truncated_bytes); 3055 } 3056 } 3057 3058 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3059 enum rw_hint write_hint, struct writeback_control *wbc) 3060 { 3061 struct bio *bio; 3062 3063 BUG_ON(!buffer_locked(bh)); 3064 BUG_ON(!buffer_mapped(bh)); 3065 BUG_ON(!bh->b_end_io); 3066 BUG_ON(buffer_delay(bh)); 3067 BUG_ON(buffer_unwritten(bh)); 3068 3069 /* 3070 * Only clear out a write error when rewriting 3071 */ 3072 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3073 clear_buffer_write_io_error(bh); 3074 3075 /* 3076 * from here on down, it's all bio -- do the initial mapping, 3077 * submit_bio -> generic_make_request may further map this bio around 3078 */ 3079 bio = bio_alloc(GFP_NOIO, 1); 3080 3081 if (wbc) { 3082 wbc_init_bio(wbc, bio); 3083 wbc_account_io(wbc, bh->b_page, bh->b_size); 3084 } 3085 3086 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3087 bio_set_dev(bio, bh->b_bdev); 3088 bio->bi_write_hint = write_hint; 3089 3090 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3091 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3092 3093 bio->bi_end_io = end_bio_bh_io_sync; 3094 bio->bi_private = bh; 3095 3096 /* Take care of bh's that straddle the end of the device */ 3097 guard_bio_eod(op, bio); 3098 3099 if (buffer_meta(bh)) 3100 op_flags |= REQ_META; 3101 if (buffer_prio(bh)) 3102 op_flags |= REQ_PRIO; 3103 bio_set_op_attrs(bio, op, op_flags); 3104 3105 submit_bio(bio); 3106 return 0; 3107 } 3108 3109 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3110 { 3111 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3112 } 3113 EXPORT_SYMBOL(submit_bh); 3114 3115 /** 3116 * ll_rw_block: low-level access to block devices (DEPRECATED) 3117 * @op: whether to %READ or %WRITE 3118 * @op_flags: req_flag_bits 3119 * @nr: number of &struct buffer_heads in the array 3120 * @bhs: array of pointers to &struct buffer_head 3121 * 3122 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3123 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3124 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3125 * %REQ_RAHEAD. 3126 * 3127 * This function drops any buffer that it cannot get a lock on (with the 3128 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3129 * request, and any buffer that appears to be up-to-date when doing read 3130 * request. Further it marks as clean buffers that are processed for 3131 * writing (the buffer cache won't assume that they are actually clean 3132 * until the buffer gets unlocked). 3133 * 3134 * ll_rw_block sets b_end_io to simple completion handler that marks 3135 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3136 * any waiters. 3137 * 3138 * All of the buffers must be for the same device, and must also be a 3139 * multiple of the current approved size for the device. 3140 */ 3141 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3142 { 3143 int i; 3144 3145 for (i = 0; i < nr; i++) { 3146 struct buffer_head *bh = bhs[i]; 3147 3148 if (!trylock_buffer(bh)) 3149 continue; 3150 if (op == WRITE) { 3151 if (test_clear_buffer_dirty(bh)) { 3152 bh->b_end_io = end_buffer_write_sync; 3153 get_bh(bh); 3154 submit_bh(op, op_flags, bh); 3155 continue; 3156 } 3157 } else { 3158 if (!buffer_uptodate(bh)) { 3159 bh->b_end_io = end_buffer_read_sync; 3160 get_bh(bh); 3161 submit_bh(op, op_flags, bh); 3162 continue; 3163 } 3164 } 3165 unlock_buffer(bh); 3166 } 3167 } 3168 EXPORT_SYMBOL(ll_rw_block); 3169 3170 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3171 { 3172 lock_buffer(bh); 3173 if (!test_clear_buffer_dirty(bh)) { 3174 unlock_buffer(bh); 3175 return; 3176 } 3177 bh->b_end_io = end_buffer_write_sync; 3178 get_bh(bh); 3179 submit_bh(REQ_OP_WRITE, op_flags, bh); 3180 } 3181 EXPORT_SYMBOL(write_dirty_buffer); 3182 3183 /* 3184 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3185 * and then start new I/O and then wait upon it. The caller must have a ref on 3186 * the buffer_head. 3187 */ 3188 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3189 { 3190 int ret = 0; 3191 3192 WARN_ON(atomic_read(&bh->b_count) < 1); 3193 lock_buffer(bh); 3194 if (test_clear_buffer_dirty(bh)) { 3195 get_bh(bh); 3196 bh->b_end_io = end_buffer_write_sync; 3197 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3198 wait_on_buffer(bh); 3199 if (!ret && !buffer_uptodate(bh)) 3200 ret = -EIO; 3201 } else { 3202 unlock_buffer(bh); 3203 } 3204 return ret; 3205 } 3206 EXPORT_SYMBOL(__sync_dirty_buffer); 3207 3208 int sync_dirty_buffer(struct buffer_head *bh) 3209 { 3210 return __sync_dirty_buffer(bh, REQ_SYNC); 3211 } 3212 EXPORT_SYMBOL(sync_dirty_buffer); 3213 3214 /* 3215 * try_to_free_buffers() checks if all the buffers on this particular page 3216 * are unused, and releases them if so. 3217 * 3218 * Exclusion against try_to_free_buffers may be obtained by either 3219 * locking the page or by holding its mapping's private_lock. 3220 * 3221 * If the page is dirty but all the buffers are clean then we need to 3222 * be sure to mark the page clean as well. This is because the page 3223 * may be against a block device, and a later reattachment of buffers 3224 * to a dirty page will set *all* buffers dirty. Which would corrupt 3225 * filesystem data on the same device. 3226 * 3227 * The same applies to regular filesystem pages: if all the buffers are 3228 * clean then we set the page clean and proceed. To do that, we require 3229 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3230 * private_lock. 3231 * 3232 * try_to_free_buffers() is non-blocking. 3233 */ 3234 static inline int buffer_busy(struct buffer_head *bh) 3235 { 3236 return atomic_read(&bh->b_count) | 3237 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3238 } 3239 3240 static int 3241 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3242 { 3243 struct buffer_head *head = page_buffers(page); 3244 struct buffer_head *bh; 3245 3246 bh = head; 3247 do { 3248 if (buffer_busy(bh)) 3249 goto failed; 3250 bh = bh->b_this_page; 3251 } while (bh != head); 3252 3253 do { 3254 struct buffer_head *next = bh->b_this_page; 3255 3256 if (bh->b_assoc_map) 3257 __remove_assoc_queue(bh); 3258 bh = next; 3259 } while (bh != head); 3260 *buffers_to_free = head; 3261 __clear_page_buffers(page); 3262 return 1; 3263 failed: 3264 return 0; 3265 } 3266 3267 int try_to_free_buffers(struct page *page) 3268 { 3269 struct address_space * const mapping = page->mapping; 3270 struct buffer_head *buffers_to_free = NULL; 3271 int ret = 0; 3272 3273 BUG_ON(!PageLocked(page)); 3274 if (PageWriteback(page)) 3275 return 0; 3276 3277 if (mapping == NULL) { /* can this still happen? */ 3278 ret = drop_buffers(page, &buffers_to_free); 3279 goto out; 3280 } 3281 3282 spin_lock(&mapping->private_lock); 3283 ret = drop_buffers(page, &buffers_to_free); 3284 3285 /* 3286 * If the filesystem writes its buffers by hand (eg ext3) 3287 * then we can have clean buffers against a dirty page. We 3288 * clean the page here; otherwise the VM will never notice 3289 * that the filesystem did any IO at all. 3290 * 3291 * Also, during truncate, discard_buffer will have marked all 3292 * the page's buffers clean. We discover that here and clean 3293 * the page also. 3294 * 3295 * private_lock must be held over this entire operation in order 3296 * to synchronise against __set_page_dirty_buffers and prevent the 3297 * dirty bit from being lost. 3298 */ 3299 if (ret) 3300 cancel_dirty_page(page); 3301 spin_unlock(&mapping->private_lock); 3302 out: 3303 if (buffers_to_free) { 3304 struct buffer_head *bh = buffers_to_free; 3305 3306 do { 3307 struct buffer_head *next = bh->b_this_page; 3308 free_buffer_head(bh); 3309 bh = next; 3310 } while (bh != buffers_to_free); 3311 } 3312 return ret; 3313 } 3314 EXPORT_SYMBOL(try_to_free_buffers); 3315 3316 /* 3317 * There are no bdflush tunables left. But distributions are 3318 * still running obsolete flush daemons, so we terminate them here. 3319 * 3320 * Use of bdflush() is deprecated and will be removed in a future kernel. 3321 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3322 */ 3323 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3324 { 3325 static int msg_count; 3326 3327 if (!capable(CAP_SYS_ADMIN)) 3328 return -EPERM; 3329 3330 if (msg_count < 5) { 3331 msg_count++; 3332 printk(KERN_INFO 3333 "warning: process `%s' used the obsolete bdflush" 3334 " system call\n", current->comm); 3335 printk(KERN_INFO "Fix your initscripts?\n"); 3336 } 3337 3338 if (func == 1) 3339 do_exit(0); 3340 return 0; 3341 } 3342 3343 /* 3344 * Buffer-head allocation 3345 */ 3346 static struct kmem_cache *bh_cachep __read_mostly; 3347 3348 /* 3349 * Once the number of bh's in the machine exceeds this level, we start 3350 * stripping them in writeback. 3351 */ 3352 static unsigned long max_buffer_heads; 3353 3354 int buffer_heads_over_limit; 3355 3356 struct bh_accounting { 3357 int nr; /* Number of live bh's */ 3358 int ratelimit; /* Limit cacheline bouncing */ 3359 }; 3360 3361 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3362 3363 static void recalc_bh_state(void) 3364 { 3365 int i; 3366 int tot = 0; 3367 3368 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3369 return; 3370 __this_cpu_write(bh_accounting.ratelimit, 0); 3371 for_each_online_cpu(i) 3372 tot += per_cpu(bh_accounting, i).nr; 3373 buffer_heads_over_limit = (tot > max_buffer_heads); 3374 } 3375 3376 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3377 { 3378 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3379 if (ret) { 3380 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3381 preempt_disable(); 3382 __this_cpu_inc(bh_accounting.nr); 3383 recalc_bh_state(); 3384 preempt_enable(); 3385 } 3386 return ret; 3387 } 3388 EXPORT_SYMBOL(alloc_buffer_head); 3389 3390 void free_buffer_head(struct buffer_head *bh) 3391 { 3392 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3393 kmem_cache_free(bh_cachep, bh); 3394 preempt_disable(); 3395 __this_cpu_dec(bh_accounting.nr); 3396 recalc_bh_state(); 3397 preempt_enable(); 3398 } 3399 EXPORT_SYMBOL(free_buffer_head); 3400 3401 static int buffer_exit_cpu_dead(unsigned int cpu) 3402 { 3403 int i; 3404 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3405 3406 for (i = 0; i < BH_LRU_SIZE; i++) { 3407 brelse(b->bhs[i]); 3408 b->bhs[i] = NULL; 3409 } 3410 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3411 per_cpu(bh_accounting, cpu).nr = 0; 3412 return 0; 3413 } 3414 3415 /** 3416 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3417 * @bh: struct buffer_head 3418 * 3419 * Return true if the buffer is up-to-date and false, 3420 * with the buffer locked, if not. 3421 */ 3422 int bh_uptodate_or_lock(struct buffer_head *bh) 3423 { 3424 if (!buffer_uptodate(bh)) { 3425 lock_buffer(bh); 3426 if (!buffer_uptodate(bh)) 3427 return 0; 3428 unlock_buffer(bh); 3429 } 3430 return 1; 3431 } 3432 EXPORT_SYMBOL(bh_uptodate_or_lock); 3433 3434 /** 3435 * bh_submit_read - Submit a locked buffer for reading 3436 * @bh: struct buffer_head 3437 * 3438 * Returns zero on success and -EIO on error. 3439 */ 3440 int bh_submit_read(struct buffer_head *bh) 3441 { 3442 BUG_ON(!buffer_locked(bh)); 3443 3444 if (buffer_uptodate(bh)) { 3445 unlock_buffer(bh); 3446 return 0; 3447 } 3448 3449 get_bh(bh); 3450 bh->b_end_io = end_buffer_read_sync; 3451 submit_bh(REQ_OP_READ, 0, bh); 3452 wait_on_buffer(bh); 3453 if (buffer_uptodate(bh)) 3454 return 0; 3455 return -EIO; 3456 } 3457 EXPORT_SYMBOL(bh_submit_read); 3458 3459 /* 3460 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff. 3461 * 3462 * Returns the offset within the file on success, and -ENOENT otherwise. 3463 */ 3464 static loff_t 3465 page_seek_hole_data(struct page *page, loff_t lastoff, int whence) 3466 { 3467 loff_t offset = page_offset(page); 3468 struct buffer_head *bh, *head; 3469 bool seek_data = whence == SEEK_DATA; 3470 3471 if (lastoff < offset) 3472 lastoff = offset; 3473 3474 bh = head = page_buffers(page); 3475 do { 3476 offset += bh->b_size; 3477 if (lastoff >= offset) 3478 continue; 3479 3480 /* 3481 * Unwritten extents that have data in the page cache covering 3482 * them can be identified by the BH_Unwritten state flag. 3483 * Pages with multiple buffers might have a mix of holes, data 3484 * and unwritten extents - any buffer with valid data in it 3485 * should have BH_Uptodate flag set on it. 3486 */ 3487 3488 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data) 3489 return lastoff; 3490 3491 lastoff = offset; 3492 } while ((bh = bh->b_this_page) != head); 3493 return -ENOENT; 3494 } 3495 3496 /* 3497 * Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3498 * 3499 * Within unwritten extents, the page cache determines which parts are holes 3500 * and which are data: unwritten and uptodate buffer heads count as data; 3501 * everything else counts as a hole. 3502 * 3503 * Returns the resulting offset on successs, and -ENOENT otherwise. 3504 */ 3505 loff_t 3506 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length, 3507 int whence) 3508 { 3509 pgoff_t index = offset >> PAGE_SHIFT; 3510 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE); 3511 loff_t lastoff = offset; 3512 struct pagevec pvec; 3513 3514 if (length <= 0) 3515 return -ENOENT; 3516 3517 pagevec_init(&pvec); 3518 3519 do { 3520 unsigned nr_pages, i; 3521 3522 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index, 3523 end - 1); 3524 if (nr_pages == 0) 3525 break; 3526 3527 for (i = 0; i < nr_pages; i++) { 3528 struct page *page = pvec.pages[i]; 3529 3530 /* 3531 * At this point, the page may be truncated or 3532 * invalidated (changing page->mapping to NULL), or 3533 * even swizzled back from swapper_space to tmpfs file 3534 * mapping. However, page->index will not change 3535 * because we have a reference on the page. 3536 * 3537 * If current page offset is beyond where we've ended, 3538 * we've found a hole. 3539 */ 3540 if (whence == SEEK_HOLE && 3541 lastoff < page_offset(page)) 3542 goto check_range; 3543 3544 lock_page(page); 3545 if (likely(page->mapping == inode->i_mapping) && 3546 page_has_buffers(page)) { 3547 lastoff = page_seek_hole_data(page, lastoff, whence); 3548 if (lastoff >= 0) { 3549 unlock_page(page); 3550 goto check_range; 3551 } 3552 } 3553 unlock_page(page); 3554 lastoff = page_offset(page) + PAGE_SIZE; 3555 } 3556 pagevec_release(&pvec); 3557 } while (index < end); 3558 3559 /* When no page at lastoff and we are not done, we found a hole. */ 3560 if (whence != SEEK_HOLE) 3561 goto not_found; 3562 3563 check_range: 3564 if (lastoff < offset + length) 3565 goto out; 3566 not_found: 3567 lastoff = -ENOENT; 3568 out: 3569 pagevec_release(&pvec); 3570 return lastoff; 3571 } 3572 3573 void __init buffer_init(void) 3574 { 3575 unsigned long nrpages; 3576 int ret; 3577 3578 bh_cachep = kmem_cache_create("buffer_head", 3579 sizeof(struct buffer_head), 0, 3580 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3581 SLAB_MEM_SPREAD), 3582 NULL); 3583 3584 /* 3585 * Limit the bh occupancy to 10% of ZONE_NORMAL 3586 */ 3587 nrpages = (nr_free_buffer_pages() * 10) / 100; 3588 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3589 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3590 NULL, buffer_exit_cpu_dead); 3591 WARN_ON(ret < 0); 3592 } 3593