xref: /linux/fs/buffer.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49 
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 			 enum rw_hint hint, struct writeback_control *wbc);
53 
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55 
56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
57 {
58 	bh->b_end_io = handler;
59 	bh->b_private = private;
60 }
61 EXPORT_SYMBOL(init_buffer);
62 
63 inline void touch_buffer(struct buffer_head *bh)
64 {
65 	trace_block_touch_buffer(bh);
66 	mark_page_accessed(bh->b_page);
67 }
68 EXPORT_SYMBOL(touch_buffer);
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
73 }
74 EXPORT_SYMBOL(__lock_buffer);
75 
76 void unlock_buffer(struct buffer_head *bh)
77 {
78 	clear_bit_unlock(BH_Lock, &bh->b_state);
79 	smp_mb__after_atomic();
80 	wake_up_bit(&bh->b_state, BH_Lock);
81 }
82 EXPORT_SYMBOL(unlock_buffer);
83 
84 /*
85  * Returns if the page has dirty or writeback buffers. If all the buffers
86  * are unlocked and clean then the PageDirty information is stale. If
87  * any of the pages are locked, it is assumed they are locked for IO.
88  */
89 void buffer_check_dirty_writeback(struct page *page,
90 				     bool *dirty, bool *writeback)
91 {
92 	struct buffer_head *head, *bh;
93 	*dirty = false;
94 	*writeback = false;
95 
96 	BUG_ON(!PageLocked(page));
97 
98 	if (!page_has_buffers(page))
99 		return;
100 
101 	if (PageWriteback(page))
102 		*writeback = true;
103 
104 	head = page_buffers(page);
105 	bh = head;
106 	do {
107 		if (buffer_locked(bh))
108 			*writeback = true;
109 
110 		if (buffer_dirty(bh))
111 			*dirty = true;
112 
113 		bh = bh->b_this_page;
114 	} while (bh != head);
115 }
116 EXPORT_SYMBOL(buffer_check_dirty_writeback);
117 
118 /*
119  * Block until a buffer comes unlocked.  This doesn't stop it
120  * from becoming locked again - you have to lock it yourself
121  * if you want to preserve its state.
122  */
123 void __wait_on_buffer(struct buffer_head * bh)
124 {
125 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
126 }
127 EXPORT_SYMBOL(__wait_on_buffer);
128 
129 static void
130 __clear_page_buffers(struct page *page)
131 {
132 	ClearPagePrivate(page);
133 	set_page_private(page, 0);
134 	put_page(page);
135 }
136 
137 static void buffer_io_error(struct buffer_head *bh, char *msg)
138 {
139 	if (!test_bit(BH_Quiet, &bh->b_state))
140 		printk_ratelimited(KERN_ERR
141 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
142 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
143 }
144 
145 /*
146  * End-of-IO handler helper function which does not touch the bh after
147  * unlocking it.
148  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149  * a race there is benign: unlock_buffer() only use the bh's address for
150  * hashing after unlocking the buffer, so it doesn't actually touch the bh
151  * itself.
152  */
153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
154 {
155 	if (uptodate) {
156 		set_buffer_uptodate(bh);
157 	} else {
158 		/* This happens, due to failed read-ahead attempts. */
159 		clear_buffer_uptodate(bh);
160 	}
161 	unlock_buffer(bh);
162 }
163 
164 /*
165  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
166  * unlock the buffer. This is what ll_rw_block uses too.
167  */
168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169 {
170 	__end_buffer_read_notouch(bh, uptodate);
171 	put_bh(bh);
172 }
173 EXPORT_SYMBOL(end_buffer_read_sync);
174 
175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176 {
177 	if (uptodate) {
178 		set_buffer_uptodate(bh);
179 	} else {
180 		buffer_io_error(bh, ", lost sync page write");
181 		mark_buffer_write_io_error(bh);
182 		clear_buffer_uptodate(bh);
183 	}
184 	unlock_buffer(bh);
185 	put_bh(bh);
186 }
187 EXPORT_SYMBOL(end_buffer_write_sync);
188 
189 /*
190  * Various filesystems appear to want __find_get_block to be non-blocking.
191  * But it's the page lock which protects the buffers.  To get around this,
192  * we get exclusion from try_to_free_buffers with the blockdev mapping's
193  * private_lock.
194  *
195  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196  * may be quite high.  This code could TryLock the page, and if that
197  * succeeds, there is no need to take private_lock. (But if
198  * private_lock is contended then so is mapping->tree_lock).
199  */
200 static struct buffer_head *
201 __find_get_block_slow(struct block_device *bdev, sector_t block)
202 {
203 	struct inode *bd_inode = bdev->bd_inode;
204 	struct address_space *bd_mapping = bd_inode->i_mapping;
205 	struct buffer_head *ret = NULL;
206 	pgoff_t index;
207 	struct buffer_head *bh;
208 	struct buffer_head *head;
209 	struct page *page;
210 	int all_mapped = 1;
211 
212 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
213 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
214 	if (!page)
215 		goto out;
216 
217 	spin_lock(&bd_mapping->private_lock);
218 	if (!page_has_buffers(page))
219 		goto out_unlock;
220 	head = page_buffers(page);
221 	bh = head;
222 	do {
223 		if (!buffer_mapped(bh))
224 			all_mapped = 0;
225 		else if (bh->b_blocknr == block) {
226 			ret = bh;
227 			get_bh(bh);
228 			goto out_unlock;
229 		}
230 		bh = bh->b_this_page;
231 	} while (bh != head);
232 
233 	/* we might be here because some of the buffers on this page are
234 	 * not mapped.  This is due to various races between
235 	 * file io on the block device and getblk.  It gets dealt with
236 	 * elsewhere, don't buffer_error if we had some unmapped buffers
237 	 */
238 	if (all_mapped) {
239 		printk("__find_get_block_slow() failed. "
240 			"block=%llu, b_blocknr=%llu\n",
241 			(unsigned long long)block,
242 			(unsigned long long)bh->b_blocknr);
243 		printk("b_state=0x%08lx, b_size=%zu\n",
244 			bh->b_state, bh->b_size);
245 		printk("device %pg blocksize: %d\n", bdev,
246 			1 << bd_inode->i_blkbits);
247 	}
248 out_unlock:
249 	spin_unlock(&bd_mapping->private_lock);
250 	put_page(page);
251 out:
252 	return ret;
253 }
254 
255 /*
256  * I/O completion handler for block_read_full_page() - pages
257  * which come unlocked at the end of I/O.
258  */
259 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
260 {
261 	unsigned long flags;
262 	struct buffer_head *first;
263 	struct buffer_head *tmp;
264 	struct page *page;
265 	int page_uptodate = 1;
266 
267 	BUG_ON(!buffer_async_read(bh));
268 
269 	page = bh->b_page;
270 	if (uptodate) {
271 		set_buffer_uptodate(bh);
272 	} else {
273 		clear_buffer_uptodate(bh);
274 		buffer_io_error(bh, ", async page read");
275 		SetPageError(page);
276 	}
277 
278 	/*
279 	 * Be _very_ careful from here on. Bad things can happen if
280 	 * two buffer heads end IO at almost the same time and both
281 	 * decide that the page is now completely done.
282 	 */
283 	first = page_buffers(page);
284 	local_irq_save(flags);
285 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
286 	clear_buffer_async_read(bh);
287 	unlock_buffer(bh);
288 	tmp = bh;
289 	do {
290 		if (!buffer_uptodate(tmp))
291 			page_uptodate = 0;
292 		if (buffer_async_read(tmp)) {
293 			BUG_ON(!buffer_locked(tmp));
294 			goto still_busy;
295 		}
296 		tmp = tmp->b_this_page;
297 	} while (tmp != bh);
298 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
299 	local_irq_restore(flags);
300 
301 	/*
302 	 * If none of the buffers had errors and they are all
303 	 * uptodate then we can set the page uptodate.
304 	 */
305 	if (page_uptodate && !PageError(page))
306 		SetPageUptodate(page);
307 	unlock_page(page);
308 	return;
309 
310 still_busy:
311 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
312 	local_irq_restore(flags);
313 	return;
314 }
315 
316 /*
317  * Completion handler for block_write_full_page() - pages which are unlocked
318  * during I/O, and which have PageWriteback cleared upon I/O completion.
319  */
320 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
321 {
322 	unsigned long flags;
323 	struct buffer_head *first;
324 	struct buffer_head *tmp;
325 	struct page *page;
326 
327 	BUG_ON(!buffer_async_write(bh));
328 
329 	page = bh->b_page;
330 	if (uptodate) {
331 		set_buffer_uptodate(bh);
332 	} else {
333 		buffer_io_error(bh, ", lost async page write");
334 		mark_buffer_write_io_error(bh);
335 		clear_buffer_uptodate(bh);
336 		SetPageError(page);
337 	}
338 
339 	first = page_buffers(page);
340 	local_irq_save(flags);
341 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
342 
343 	clear_buffer_async_write(bh);
344 	unlock_buffer(bh);
345 	tmp = bh->b_this_page;
346 	while (tmp != bh) {
347 		if (buffer_async_write(tmp)) {
348 			BUG_ON(!buffer_locked(tmp));
349 			goto still_busy;
350 		}
351 		tmp = tmp->b_this_page;
352 	}
353 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
354 	local_irq_restore(flags);
355 	end_page_writeback(page);
356 	return;
357 
358 still_busy:
359 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
360 	local_irq_restore(flags);
361 	return;
362 }
363 EXPORT_SYMBOL(end_buffer_async_write);
364 
365 /*
366  * If a page's buffers are under async readin (end_buffer_async_read
367  * completion) then there is a possibility that another thread of
368  * control could lock one of the buffers after it has completed
369  * but while some of the other buffers have not completed.  This
370  * locked buffer would confuse end_buffer_async_read() into not unlocking
371  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
372  * that this buffer is not under async I/O.
373  *
374  * The page comes unlocked when it has no locked buffer_async buffers
375  * left.
376  *
377  * PageLocked prevents anyone starting new async I/O reads any of
378  * the buffers.
379  *
380  * PageWriteback is used to prevent simultaneous writeout of the same
381  * page.
382  *
383  * PageLocked prevents anyone from starting writeback of a page which is
384  * under read I/O (PageWriteback is only ever set against a locked page).
385  */
386 static void mark_buffer_async_read(struct buffer_head *bh)
387 {
388 	bh->b_end_io = end_buffer_async_read;
389 	set_buffer_async_read(bh);
390 }
391 
392 static void mark_buffer_async_write_endio(struct buffer_head *bh,
393 					  bh_end_io_t *handler)
394 {
395 	bh->b_end_io = handler;
396 	set_buffer_async_write(bh);
397 }
398 
399 void mark_buffer_async_write(struct buffer_head *bh)
400 {
401 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
402 }
403 EXPORT_SYMBOL(mark_buffer_async_write);
404 
405 
406 /*
407  * fs/buffer.c contains helper functions for buffer-backed address space's
408  * fsync functions.  A common requirement for buffer-based filesystems is
409  * that certain data from the backing blockdev needs to be written out for
410  * a successful fsync().  For example, ext2 indirect blocks need to be
411  * written back and waited upon before fsync() returns.
412  *
413  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
414  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
415  * management of a list of dependent buffers at ->i_mapping->private_list.
416  *
417  * Locking is a little subtle: try_to_free_buffers() will remove buffers
418  * from their controlling inode's queue when they are being freed.  But
419  * try_to_free_buffers() will be operating against the *blockdev* mapping
420  * at the time, not against the S_ISREG file which depends on those buffers.
421  * So the locking for private_list is via the private_lock in the address_space
422  * which backs the buffers.  Which is different from the address_space
423  * against which the buffers are listed.  So for a particular address_space,
424  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
425  * mapping->private_list will always be protected by the backing blockdev's
426  * ->private_lock.
427  *
428  * Which introduces a requirement: all buffers on an address_space's
429  * ->private_list must be from the same address_space: the blockdev's.
430  *
431  * address_spaces which do not place buffers at ->private_list via these
432  * utility functions are free to use private_lock and private_list for
433  * whatever they want.  The only requirement is that list_empty(private_list)
434  * be true at clear_inode() time.
435  *
436  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
437  * filesystems should do that.  invalidate_inode_buffers() should just go
438  * BUG_ON(!list_empty).
439  *
440  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
441  * take an address_space, not an inode.  And it should be called
442  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
443  * queued up.
444  *
445  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
446  * list if it is already on a list.  Because if the buffer is on a list,
447  * it *must* already be on the right one.  If not, the filesystem is being
448  * silly.  This will save a ton of locking.  But first we have to ensure
449  * that buffers are taken *off* the old inode's list when they are freed
450  * (presumably in truncate).  That requires careful auditing of all
451  * filesystems (do it inside bforget()).  It could also be done by bringing
452  * b_inode back.
453  */
454 
455 /*
456  * The buffer's backing address_space's private_lock must be held
457  */
458 static void __remove_assoc_queue(struct buffer_head *bh)
459 {
460 	list_del_init(&bh->b_assoc_buffers);
461 	WARN_ON(!bh->b_assoc_map);
462 	bh->b_assoc_map = NULL;
463 }
464 
465 int inode_has_buffers(struct inode *inode)
466 {
467 	return !list_empty(&inode->i_data.private_list);
468 }
469 
470 /*
471  * osync is designed to support O_SYNC io.  It waits synchronously for
472  * all already-submitted IO to complete, but does not queue any new
473  * writes to the disk.
474  *
475  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
476  * you dirty the buffers, and then use osync_inode_buffers to wait for
477  * completion.  Any other dirty buffers which are not yet queued for
478  * write will not be flushed to disk by the osync.
479  */
480 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
481 {
482 	struct buffer_head *bh;
483 	struct list_head *p;
484 	int err = 0;
485 
486 	spin_lock(lock);
487 repeat:
488 	list_for_each_prev(p, list) {
489 		bh = BH_ENTRY(p);
490 		if (buffer_locked(bh)) {
491 			get_bh(bh);
492 			spin_unlock(lock);
493 			wait_on_buffer(bh);
494 			if (!buffer_uptodate(bh))
495 				err = -EIO;
496 			brelse(bh);
497 			spin_lock(lock);
498 			goto repeat;
499 		}
500 	}
501 	spin_unlock(lock);
502 	return err;
503 }
504 
505 static void do_thaw_one(struct super_block *sb, void *unused)
506 {
507 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
508 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
509 }
510 
511 static void do_thaw_all(struct work_struct *work)
512 {
513 	iterate_supers(do_thaw_one, NULL);
514 	kfree(work);
515 	printk(KERN_WARNING "Emergency Thaw complete\n");
516 }
517 
518 /**
519  * emergency_thaw_all -- forcibly thaw every frozen filesystem
520  *
521  * Used for emergency unfreeze of all filesystems via SysRq
522  */
523 void emergency_thaw_all(void)
524 {
525 	struct work_struct *work;
526 
527 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
528 	if (work) {
529 		INIT_WORK(work, do_thaw_all);
530 		schedule_work(work);
531 	}
532 }
533 
534 /**
535  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
536  * @mapping: the mapping which wants those buffers written
537  *
538  * Starts I/O against the buffers at mapping->private_list, and waits upon
539  * that I/O.
540  *
541  * Basically, this is a convenience function for fsync().
542  * @mapping is a file or directory which needs those buffers to be written for
543  * a successful fsync().
544  */
545 int sync_mapping_buffers(struct address_space *mapping)
546 {
547 	struct address_space *buffer_mapping = mapping->private_data;
548 
549 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
550 		return 0;
551 
552 	return fsync_buffers_list(&buffer_mapping->private_lock,
553 					&mapping->private_list);
554 }
555 EXPORT_SYMBOL(sync_mapping_buffers);
556 
557 /*
558  * Called when we've recently written block `bblock', and it is known that
559  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
560  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
561  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
562  */
563 void write_boundary_block(struct block_device *bdev,
564 			sector_t bblock, unsigned blocksize)
565 {
566 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
567 	if (bh) {
568 		if (buffer_dirty(bh))
569 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
570 		put_bh(bh);
571 	}
572 }
573 
574 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
575 {
576 	struct address_space *mapping = inode->i_mapping;
577 	struct address_space *buffer_mapping = bh->b_page->mapping;
578 
579 	mark_buffer_dirty(bh);
580 	if (!mapping->private_data) {
581 		mapping->private_data = buffer_mapping;
582 	} else {
583 		BUG_ON(mapping->private_data != buffer_mapping);
584 	}
585 	if (!bh->b_assoc_map) {
586 		spin_lock(&buffer_mapping->private_lock);
587 		list_move_tail(&bh->b_assoc_buffers,
588 				&mapping->private_list);
589 		bh->b_assoc_map = mapping;
590 		spin_unlock(&buffer_mapping->private_lock);
591 	}
592 }
593 EXPORT_SYMBOL(mark_buffer_dirty_inode);
594 
595 /*
596  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
597  * dirty.
598  *
599  * If warn is true, then emit a warning if the page is not uptodate and has
600  * not been truncated.
601  *
602  * The caller must hold lock_page_memcg().
603  */
604 static void __set_page_dirty(struct page *page, struct address_space *mapping,
605 			     int warn)
606 {
607 	unsigned long flags;
608 
609 	spin_lock_irqsave(&mapping->tree_lock, flags);
610 	if (page->mapping) {	/* Race with truncate? */
611 		WARN_ON_ONCE(warn && !PageUptodate(page));
612 		account_page_dirtied(page, mapping);
613 		radix_tree_tag_set(&mapping->page_tree,
614 				page_index(page), PAGECACHE_TAG_DIRTY);
615 	}
616 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
617 }
618 
619 /*
620  * Add a page to the dirty page list.
621  *
622  * It is a sad fact of life that this function is called from several places
623  * deeply under spinlocking.  It may not sleep.
624  *
625  * If the page has buffers, the uptodate buffers are set dirty, to preserve
626  * dirty-state coherency between the page and the buffers.  It the page does
627  * not have buffers then when they are later attached they will all be set
628  * dirty.
629  *
630  * The buffers are dirtied before the page is dirtied.  There's a small race
631  * window in which a writepage caller may see the page cleanness but not the
632  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
633  * before the buffers, a concurrent writepage caller could clear the page dirty
634  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
635  * page on the dirty page list.
636  *
637  * We use private_lock to lock against try_to_free_buffers while using the
638  * page's buffer list.  Also use this to protect against clean buffers being
639  * added to the page after it was set dirty.
640  *
641  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
642  * address_space though.
643  */
644 int __set_page_dirty_buffers(struct page *page)
645 {
646 	int newly_dirty;
647 	struct address_space *mapping = page_mapping(page);
648 
649 	if (unlikely(!mapping))
650 		return !TestSetPageDirty(page);
651 
652 	spin_lock(&mapping->private_lock);
653 	if (page_has_buffers(page)) {
654 		struct buffer_head *head = page_buffers(page);
655 		struct buffer_head *bh = head;
656 
657 		do {
658 			set_buffer_dirty(bh);
659 			bh = bh->b_this_page;
660 		} while (bh != head);
661 	}
662 	/*
663 	 * Lock out page->mem_cgroup migration to keep PageDirty
664 	 * synchronized with per-memcg dirty page counters.
665 	 */
666 	lock_page_memcg(page);
667 	newly_dirty = !TestSetPageDirty(page);
668 	spin_unlock(&mapping->private_lock);
669 
670 	if (newly_dirty)
671 		__set_page_dirty(page, mapping, 1);
672 
673 	unlock_page_memcg(page);
674 
675 	if (newly_dirty)
676 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
677 
678 	return newly_dirty;
679 }
680 EXPORT_SYMBOL(__set_page_dirty_buffers);
681 
682 /*
683  * Write out and wait upon a list of buffers.
684  *
685  * We have conflicting pressures: we want to make sure that all
686  * initially dirty buffers get waited on, but that any subsequently
687  * dirtied buffers don't.  After all, we don't want fsync to last
688  * forever if somebody is actively writing to the file.
689  *
690  * Do this in two main stages: first we copy dirty buffers to a
691  * temporary inode list, queueing the writes as we go.  Then we clean
692  * up, waiting for those writes to complete.
693  *
694  * During this second stage, any subsequent updates to the file may end
695  * up refiling the buffer on the original inode's dirty list again, so
696  * there is a chance we will end up with a buffer queued for write but
697  * not yet completed on that list.  So, as a final cleanup we go through
698  * the osync code to catch these locked, dirty buffers without requeuing
699  * any newly dirty buffers for write.
700  */
701 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
702 {
703 	struct buffer_head *bh;
704 	struct list_head tmp;
705 	struct address_space *mapping;
706 	int err = 0, err2;
707 	struct blk_plug plug;
708 
709 	INIT_LIST_HEAD(&tmp);
710 	blk_start_plug(&plug);
711 
712 	spin_lock(lock);
713 	while (!list_empty(list)) {
714 		bh = BH_ENTRY(list->next);
715 		mapping = bh->b_assoc_map;
716 		__remove_assoc_queue(bh);
717 		/* Avoid race with mark_buffer_dirty_inode() which does
718 		 * a lockless check and we rely on seeing the dirty bit */
719 		smp_mb();
720 		if (buffer_dirty(bh) || buffer_locked(bh)) {
721 			list_add(&bh->b_assoc_buffers, &tmp);
722 			bh->b_assoc_map = mapping;
723 			if (buffer_dirty(bh)) {
724 				get_bh(bh);
725 				spin_unlock(lock);
726 				/*
727 				 * Ensure any pending I/O completes so that
728 				 * write_dirty_buffer() actually writes the
729 				 * current contents - it is a noop if I/O is
730 				 * still in flight on potentially older
731 				 * contents.
732 				 */
733 				write_dirty_buffer(bh, REQ_SYNC);
734 
735 				/*
736 				 * Kick off IO for the previous mapping. Note
737 				 * that we will not run the very last mapping,
738 				 * wait_on_buffer() will do that for us
739 				 * through sync_buffer().
740 				 */
741 				brelse(bh);
742 				spin_lock(lock);
743 			}
744 		}
745 	}
746 
747 	spin_unlock(lock);
748 	blk_finish_plug(&plug);
749 	spin_lock(lock);
750 
751 	while (!list_empty(&tmp)) {
752 		bh = BH_ENTRY(tmp.prev);
753 		get_bh(bh);
754 		mapping = bh->b_assoc_map;
755 		__remove_assoc_queue(bh);
756 		/* Avoid race with mark_buffer_dirty_inode() which does
757 		 * a lockless check and we rely on seeing the dirty bit */
758 		smp_mb();
759 		if (buffer_dirty(bh)) {
760 			list_add(&bh->b_assoc_buffers,
761 				 &mapping->private_list);
762 			bh->b_assoc_map = mapping;
763 		}
764 		spin_unlock(lock);
765 		wait_on_buffer(bh);
766 		if (!buffer_uptodate(bh))
767 			err = -EIO;
768 		brelse(bh);
769 		spin_lock(lock);
770 	}
771 
772 	spin_unlock(lock);
773 	err2 = osync_buffers_list(lock, list);
774 	if (err)
775 		return err;
776 	else
777 		return err2;
778 }
779 
780 /*
781  * Invalidate any and all dirty buffers on a given inode.  We are
782  * probably unmounting the fs, but that doesn't mean we have already
783  * done a sync().  Just drop the buffers from the inode list.
784  *
785  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
786  * assumes that all the buffers are against the blockdev.  Not true
787  * for reiserfs.
788  */
789 void invalidate_inode_buffers(struct inode *inode)
790 {
791 	if (inode_has_buffers(inode)) {
792 		struct address_space *mapping = &inode->i_data;
793 		struct list_head *list = &mapping->private_list;
794 		struct address_space *buffer_mapping = mapping->private_data;
795 
796 		spin_lock(&buffer_mapping->private_lock);
797 		while (!list_empty(list))
798 			__remove_assoc_queue(BH_ENTRY(list->next));
799 		spin_unlock(&buffer_mapping->private_lock);
800 	}
801 }
802 EXPORT_SYMBOL(invalidate_inode_buffers);
803 
804 /*
805  * Remove any clean buffers from the inode's buffer list.  This is called
806  * when we're trying to free the inode itself.  Those buffers can pin it.
807  *
808  * Returns true if all buffers were removed.
809  */
810 int remove_inode_buffers(struct inode *inode)
811 {
812 	int ret = 1;
813 
814 	if (inode_has_buffers(inode)) {
815 		struct address_space *mapping = &inode->i_data;
816 		struct list_head *list = &mapping->private_list;
817 		struct address_space *buffer_mapping = mapping->private_data;
818 
819 		spin_lock(&buffer_mapping->private_lock);
820 		while (!list_empty(list)) {
821 			struct buffer_head *bh = BH_ENTRY(list->next);
822 			if (buffer_dirty(bh)) {
823 				ret = 0;
824 				break;
825 			}
826 			__remove_assoc_queue(bh);
827 		}
828 		spin_unlock(&buffer_mapping->private_lock);
829 	}
830 	return ret;
831 }
832 
833 /*
834  * Create the appropriate buffers when given a page for data area and
835  * the size of each buffer.. Use the bh->b_this_page linked list to
836  * follow the buffers created.  Return NULL if unable to create more
837  * buffers.
838  *
839  * The retry flag is used to differentiate async IO (paging, swapping)
840  * which may not fail from ordinary buffer allocations.
841  */
842 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
843 		bool retry)
844 {
845 	struct buffer_head *bh, *head;
846 	gfp_t gfp = GFP_NOFS;
847 	long offset;
848 
849 	if (retry)
850 		gfp |= __GFP_NOFAIL;
851 
852 	head = NULL;
853 	offset = PAGE_SIZE;
854 	while ((offset -= size) >= 0) {
855 		bh = alloc_buffer_head(gfp);
856 		if (!bh)
857 			goto no_grow;
858 
859 		bh->b_this_page = head;
860 		bh->b_blocknr = -1;
861 		head = bh;
862 
863 		bh->b_size = size;
864 
865 		/* Link the buffer to its page */
866 		set_bh_page(bh, page, offset);
867 	}
868 	return head;
869 /*
870  * In case anything failed, we just free everything we got.
871  */
872 no_grow:
873 	if (head) {
874 		do {
875 			bh = head;
876 			head = head->b_this_page;
877 			free_buffer_head(bh);
878 		} while (head);
879 	}
880 
881 	return NULL;
882 }
883 EXPORT_SYMBOL_GPL(alloc_page_buffers);
884 
885 static inline void
886 link_dev_buffers(struct page *page, struct buffer_head *head)
887 {
888 	struct buffer_head *bh, *tail;
889 
890 	bh = head;
891 	do {
892 		tail = bh;
893 		bh = bh->b_this_page;
894 	} while (bh);
895 	tail->b_this_page = head;
896 	attach_page_buffers(page, head);
897 }
898 
899 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
900 {
901 	sector_t retval = ~((sector_t)0);
902 	loff_t sz = i_size_read(bdev->bd_inode);
903 
904 	if (sz) {
905 		unsigned int sizebits = blksize_bits(size);
906 		retval = (sz >> sizebits);
907 	}
908 	return retval;
909 }
910 
911 /*
912  * Initialise the state of a blockdev page's buffers.
913  */
914 static sector_t
915 init_page_buffers(struct page *page, struct block_device *bdev,
916 			sector_t block, int size)
917 {
918 	struct buffer_head *head = page_buffers(page);
919 	struct buffer_head *bh = head;
920 	int uptodate = PageUptodate(page);
921 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
922 
923 	do {
924 		if (!buffer_mapped(bh)) {
925 			init_buffer(bh, NULL, NULL);
926 			bh->b_bdev = bdev;
927 			bh->b_blocknr = block;
928 			if (uptodate)
929 				set_buffer_uptodate(bh);
930 			if (block < end_block)
931 				set_buffer_mapped(bh);
932 		}
933 		block++;
934 		bh = bh->b_this_page;
935 	} while (bh != head);
936 
937 	/*
938 	 * Caller needs to validate requested block against end of device.
939 	 */
940 	return end_block;
941 }
942 
943 /*
944  * Create the page-cache page that contains the requested block.
945  *
946  * This is used purely for blockdev mappings.
947  */
948 static int
949 grow_dev_page(struct block_device *bdev, sector_t block,
950 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
951 {
952 	struct inode *inode = bdev->bd_inode;
953 	struct page *page;
954 	struct buffer_head *bh;
955 	sector_t end_block;
956 	int ret = 0;		/* Will call free_more_memory() */
957 	gfp_t gfp_mask;
958 
959 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
960 
961 	/*
962 	 * XXX: __getblk_slow() can not really deal with failure and
963 	 * will endlessly loop on improvised global reclaim.  Prefer
964 	 * looping in the allocator rather than here, at least that
965 	 * code knows what it's doing.
966 	 */
967 	gfp_mask |= __GFP_NOFAIL;
968 
969 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
970 
971 	BUG_ON(!PageLocked(page));
972 
973 	if (page_has_buffers(page)) {
974 		bh = page_buffers(page);
975 		if (bh->b_size == size) {
976 			end_block = init_page_buffers(page, bdev,
977 						(sector_t)index << sizebits,
978 						size);
979 			goto done;
980 		}
981 		if (!try_to_free_buffers(page))
982 			goto failed;
983 	}
984 
985 	/*
986 	 * Allocate some buffers for this page
987 	 */
988 	bh = alloc_page_buffers(page, size, true);
989 
990 	/*
991 	 * Link the page to the buffers and initialise them.  Take the
992 	 * lock to be atomic wrt __find_get_block(), which does not
993 	 * run under the page lock.
994 	 */
995 	spin_lock(&inode->i_mapping->private_lock);
996 	link_dev_buffers(page, bh);
997 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
998 			size);
999 	spin_unlock(&inode->i_mapping->private_lock);
1000 done:
1001 	ret = (block < end_block) ? 1 : -ENXIO;
1002 failed:
1003 	unlock_page(page);
1004 	put_page(page);
1005 	return ret;
1006 }
1007 
1008 /*
1009  * Create buffers for the specified block device block's page.  If
1010  * that page was dirty, the buffers are set dirty also.
1011  */
1012 static int
1013 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1014 {
1015 	pgoff_t index;
1016 	int sizebits;
1017 
1018 	sizebits = -1;
1019 	do {
1020 		sizebits++;
1021 	} while ((size << sizebits) < PAGE_SIZE);
1022 
1023 	index = block >> sizebits;
1024 
1025 	/*
1026 	 * Check for a block which wants to lie outside our maximum possible
1027 	 * pagecache index.  (this comparison is done using sector_t types).
1028 	 */
1029 	if (unlikely(index != block >> sizebits)) {
1030 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1031 			"device %pg\n",
1032 			__func__, (unsigned long long)block,
1033 			bdev);
1034 		return -EIO;
1035 	}
1036 
1037 	/* Create a page with the proper size buffers.. */
1038 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1039 }
1040 
1041 static struct buffer_head *
1042 __getblk_slow(struct block_device *bdev, sector_t block,
1043 	     unsigned size, gfp_t gfp)
1044 {
1045 	/* Size must be multiple of hard sectorsize */
1046 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1047 			(size < 512 || size > PAGE_SIZE))) {
1048 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1049 					size);
1050 		printk(KERN_ERR "logical block size: %d\n",
1051 					bdev_logical_block_size(bdev));
1052 
1053 		dump_stack();
1054 		return NULL;
1055 	}
1056 
1057 	for (;;) {
1058 		struct buffer_head *bh;
1059 		int ret;
1060 
1061 		bh = __find_get_block(bdev, block, size);
1062 		if (bh)
1063 			return bh;
1064 
1065 		ret = grow_buffers(bdev, block, size, gfp);
1066 		if (ret < 0)
1067 			return NULL;
1068 	}
1069 }
1070 
1071 /*
1072  * The relationship between dirty buffers and dirty pages:
1073  *
1074  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1075  * the page is tagged dirty in its radix tree.
1076  *
1077  * At all times, the dirtiness of the buffers represents the dirtiness of
1078  * subsections of the page.  If the page has buffers, the page dirty bit is
1079  * merely a hint about the true dirty state.
1080  *
1081  * When a page is set dirty in its entirety, all its buffers are marked dirty
1082  * (if the page has buffers).
1083  *
1084  * When a buffer is marked dirty, its page is dirtied, but the page's other
1085  * buffers are not.
1086  *
1087  * Also.  When blockdev buffers are explicitly read with bread(), they
1088  * individually become uptodate.  But their backing page remains not
1089  * uptodate - even if all of its buffers are uptodate.  A subsequent
1090  * block_read_full_page() against that page will discover all the uptodate
1091  * buffers, will set the page uptodate and will perform no I/O.
1092  */
1093 
1094 /**
1095  * mark_buffer_dirty - mark a buffer_head as needing writeout
1096  * @bh: the buffer_head to mark dirty
1097  *
1098  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1099  * backing page dirty, then tag the page as dirty in its address_space's radix
1100  * tree and then attach the address_space's inode to its superblock's dirty
1101  * inode list.
1102  *
1103  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1104  * mapping->tree_lock and mapping->host->i_lock.
1105  */
1106 void mark_buffer_dirty(struct buffer_head *bh)
1107 {
1108 	WARN_ON_ONCE(!buffer_uptodate(bh));
1109 
1110 	trace_block_dirty_buffer(bh);
1111 
1112 	/*
1113 	 * Very *carefully* optimize the it-is-already-dirty case.
1114 	 *
1115 	 * Don't let the final "is it dirty" escape to before we
1116 	 * perhaps modified the buffer.
1117 	 */
1118 	if (buffer_dirty(bh)) {
1119 		smp_mb();
1120 		if (buffer_dirty(bh))
1121 			return;
1122 	}
1123 
1124 	if (!test_set_buffer_dirty(bh)) {
1125 		struct page *page = bh->b_page;
1126 		struct address_space *mapping = NULL;
1127 
1128 		lock_page_memcg(page);
1129 		if (!TestSetPageDirty(page)) {
1130 			mapping = page_mapping(page);
1131 			if (mapping)
1132 				__set_page_dirty(page, mapping, 0);
1133 		}
1134 		unlock_page_memcg(page);
1135 		if (mapping)
1136 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1137 	}
1138 }
1139 EXPORT_SYMBOL(mark_buffer_dirty);
1140 
1141 void mark_buffer_write_io_error(struct buffer_head *bh)
1142 {
1143 	set_buffer_write_io_error(bh);
1144 	/* FIXME: do we need to set this in both places? */
1145 	if (bh->b_page && bh->b_page->mapping)
1146 		mapping_set_error(bh->b_page->mapping, -EIO);
1147 	if (bh->b_assoc_map)
1148 		mapping_set_error(bh->b_assoc_map, -EIO);
1149 }
1150 EXPORT_SYMBOL(mark_buffer_write_io_error);
1151 
1152 /*
1153  * Decrement a buffer_head's reference count.  If all buffers against a page
1154  * have zero reference count, are clean and unlocked, and if the page is clean
1155  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1156  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1157  * a page but it ends up not being freed, and buffers may later be reattached).
1158  */
1159 void __brelse(struct buffer_head * buf)
1160 {
1161 	if (atomic_read(&buf->b_count)) {
1162 		put_bh(buf);
1163 		return;
1164 	}
1165 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1166 }
1167 EXPORT_SYMBOL(__brelse);
1168 
1169 /*
1170  * bforget() is like brelse(), except it discards any
1171  * potentially dirty data.
1172  */
1173 void __bforget(struct buffer_head *bh)
1174 {
1175 	clear_buffer_dirty(bh);
1176 	if (bh->b_assoc_map) {
1177 		struct address_space *buffer_mapping = bh->b_page->mapping;
1178 
1179 		spin_lock(&buffer_mapping->private_lock);
1180 		list_del_init(&bh->b_assoc_buffers);
1181 		bh->b_assoc_map = NULL;
1182 		spin_unlock(&buffer_mapping->private_lock);
1183 	}
1184 	__brelse(bh);
1185 }
1186 EXPORT_SYMBOL(__bforget);
1187 
1188 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1189 {
1190 	lock_buffer(bh);
1191 	if (buffer_uptodate(bh)) {
1192 		unlock_buffer(bh);
1193 		return bh;
1194 	} else {
1195 		get_bh(bh);
1196 		bh->b_end_io = end_buffer_read_sync;
1197 		submit_bh(REQ_OP_READ, 0, bh);
1198 		wait_on_buffer(bh);
1199 		if (buffer_uptodate(bh))
1200 			return bh;
1201 	}
1202 	brelse(bh);
1203 	return NULL;
1204 }
1205 
1206 /*
1207  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1208  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1209  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1210  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1211  * CPU's LRUs at the same time.
1212  *
1213  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1214  * sb_find_get_block().
1215  *
1216  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1217  * a local interrupt disable for that.
1218  */
1219 
1220 #define BH_LRU_SIZE	16
1221 
1222 struct bh_lru {
1223 	struct buffer_head *bhs[BH_LRU_SIZE];
1224 };
1225 
1226 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1227 
1228 #ifdef CONFIG_SMP
1229 #define bh_lru_lock()	local_irq_disable()
1230 #define bh_lru_unlock()	local_irq_enable()
1231 #else
1232 #define bh_lru_lock()	preempt_disable()
1233 #define bh_lru_unlock()	preempt_enable()
1234 #endif
1235 
1236 static inline void check_irqs_on(void)
1237 {
1238 #ifdef irqs_disabled
1239 	BUG_ON(irqs_disabled());
1240 #endif
1241 }
1242 
1243 /*
1244  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1245  * inserted at the front, and the buffer_head at the back if any is evicted.
1246  * Or, if already in the LRU it is moved to the front.
1247  */
1248 static void bh_lru_install(struct buffer_head *bh)
1249 {
1250 	struct buffer_head *evictee = bh;
1251 	struct bh_lru *b;
1252 	int i;
1253 
1254 	check_irqs_on();
1255 	bh_lru_lock();
1256 
1257 	b = this_cpu_ptr(&bh_lrus);
1258 	for (i = 0; i < BH_LRU_SIZE; i++) {
1259 		swap(evictee, b->bhs[i]);
1260 		if (evictee == bh) {
1261 			bh_lru_unlock();
1262 			return;
1263 		}
1264 	}
1265 
1266 	get_bh(bh);
1267 	bh_lru_unlock();
1268 	brelse(evictee);
1269 }
1270 
1271 /*
1272  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1273  */
1274 static struct buffer_head *
1275 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1276 {
1277 	struct buffer_head *ret = NULL;
1278 	unsigned int i;
1279 
1280 	check_irqs_on();
1281 	bh_lru_lock();
1282 	for (i = 0; i < BH_LRU_SIZE; i++) {
1283 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1284 
1285 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1286 		    bh->b_size == size) {
1287 			if (i) {
1288 				while (i) {
1289 					__this_cpu_write(bh_lrus.bhs[i],
1290 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1291 					i--;
1292 				}
1293 				__this_cpu_write(bh_lrus.bhs[0], bh);
1294 			}
1295 			get_bh(bh);
1296 			ret = bh;
1297 			break;
1298 		}
1299 	}
1300 	bh_lru_unlock();
1301 	return ret;
1302 }
1303 
1304 /*
1305  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1306  * it in the LRU and mark it as accessed.  If it is not present then return
1307  * NULL
1308  */
1309 struct buffer_head *
1310 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1311 {
1312 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1313 
1314 	if (bh == NULL) {
1315 		/* __find_get_block_slow will mark the page accessed */
1316 		bh = __find_get_block_slow(bdev, block);
1317 		if (bh)
1318 			bh_lru_install(bh);
1319 	} else
1320 		touch_buffer(bh);
1321 
1322 	return bh;
1323 }
1324 EXPORT_SYMBOL(__find_get_block);
1325 
1326 /*
1327  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1328  * which corresponds to the passed block_device, block and size. The
1329  * returned buffer has its reference count incremented.
1330  *
1331  * __getblk_gfp() will lock up the machine if grow_dev_page's
1332  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1333  */
1334 struct buffer_head *
1335 __getblk_gfp(struct block_device *bdev, sector_t block,
1336 	     unsigned size, gfp_t gfp)
1337 {
1338 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1339 
1340 	might_sleep();
1341 	if (bh == NULL)
1342 		bh = __getblk_slow(bdev, block, size, gfp);
1343 	return bh;
1344 }
1345 EXPORT_SYMBOL(__getblk_gfp);
1346 
1347 /*
1348  * Do async read-ahead on a buffer..
1349  */
1350 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1351 {
1352 	struct buffer_head *bh = __getblk(bdev, block, size);
1353 	if (likely(bh)) {
1354 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1355 		brelse(bh);
1356 	}
1357 }
1358 EXPORT_SYMBOL(__breadahead);
1359 
1360 /**
1361  *  __bread_gfp() - reads a specified block and returns the bh
1362  *  @bdev: the block_device to read from
1363  *  @block: number of block
1364  *  @size: size (in bytes) to read
1365  *  @gfp: page allocation flag
1366  *
1367  *  Reads a specified block, and returns buffer head that contains it.
1368  *  The page cache can be allocated from non-movable area
1369  *  not to prevent page migration if you set gfp to zero.
1370  *  It returns NULL if the block was unreadable.
1371  */
1372 struct buffer_head *
1373 __bread_gfp(struct block_device *bdev, sector_t block,
1374 		   unsigned size, gfp_t gfp)
1375 {
1376 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1377 
1378 	if (likely(bh) && !buffer_uptodate(bh))
1379 		bh = __bread_slow(bh);
1380 	return bh;
1381 }
1382 EXPORT_SYMBOL(__bread_gfp);
1383 
1384 /*
1385  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1386  * This doesn't race because it runs in each cpu either in irq
1387  * or with preempt disabled.
1388  */
1389 static void invalidate_bh_lru(void *arg)
1390 {
1391 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1392 	int i;
1393 
1394 	for (i = 0; i < BH_LRU_SIZE; i++) {
1395 		brelse(b->bhs[i]);
1396 		b->bhs[i] = NULL;
1397 	}
1398 	put_cpu_var(bh_lrus);
1399 }
1400 
1401 static bool has_bh_in_lru(int cpu, void *dummy)
1402 {
1403 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1404 	int i;
1405 
1406 	for (i = 0; i < BH_LRU_SIZE; i++) {
1407 		if (b->bhs[i])
1408 			return 1;
1409 	}
1410 
1411 	return 0;
1412 }
1413 
1414 void invalidate_bh_lrus(void)
1415 {
1416 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1417 }
1418 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1419 
1420 void set_bh_page(struct buffer_head *bh,
1421 		struct page *page, unsigned long offset)
1422 {
1423 	bh->b_page = page;
1424 	BUG_ON(offset >= PAGE_SIZE);
1425 	if (PageHighMem(page))
1426 		/*
1427 		 * This catches illegal uses and preserves the offset:
1428 		 */
1429 		bh->b_data = (char *)(0 + offset);
1430 	else
1431 		bh->b_data = page_address(page) + offset;
1432 }
1433 EXPORT_SYMBOL(set_bh_page);
1434 
1435 /*
1436  * Called when truncating a buffer on a page completely.
1437  */
1438 
1439 /* Bits that are cleared during an invalidate */
1440 #define BUFFER_FLAGS_DISCARD \
1441 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1442 	 1 << BH_Delay | 1 << BH_Unwritten)
1443 
1444 static void discard_buffer(struct buffer_head * bh)
1445 {
1446 	unsigned long b_state, b_state_old;
1447 
1448 	lock_buffer(bh);
1449 	clear_buffer_dirty(bh);
1450 	bh->b_bdev = NULL;
1451 	b_state = bh->b_state;
1452 	for (;;) {
1453 		b_state_old = cmpxchg(&bh->b_state, b_state,
1454 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1455 		if (b_state_old == b_state)
1456 			break;
1457 		b_state = b_state_old;
1458 	}
1459 	unlock_buffer(bh);
1460 }
1461 
1462 /**
1463  * block_invalidatepage - invalidate part or all of a buffer-backed page
1464  *
1465  * @page: the page which is affected
1466  * @offset: start of the range to invalidate
1467  * @length: length of the range to invalidate
1468  *
1469  * block_invalidatepage() is called when all or part of the page has become
1470  * invalidated by a truncate operation.
1471  *
1472  * block_invalidatepage() does not have to release all buffers, but it must
1473  * ensure that no dirty buffer is left outside @offset and that no I/O
1474  * is underway against any of the blocks which are outside the truncation
1475  * point.  Because the caller is about to free (and possibly reuse) those
1476  * blocks on-disk.
1477  */
1478 void block_invalidatepage(struct page *page, unsigned int offset,
1479 			  unsigned int length)
1480 {
1481 	struct buffer_head *head, *bh, *next;
1482 	unsigned int curr_off = 0;
1483 	unsigned int stop = length + offset;
1484 
1485 	BUG_ON(!PageLocked(page));
1486 	if (!page_has_buffers(page))
1487 		goto out;
1488 
1489 	/*
1490 	 * Check for overflow
1491 	 */
1492 	BUG_ON(stop > PAGE_SIZE || stop < length);
1493 
1494 	head = page_buffers(page);
1495 	bh = head;
1496 	do {
1497 		unsigned int next_off = curr_off + bh->b_size;
1498 		next = bh->b_this_page;
1499 
1500 		/*
1501 		 * Are we still fully in range ?
1502 		 */
1503 		if (next_off > stop)
1504 			goto out;
1505 
1506 		/*
1507 		 * is this block fully invalidated?
1508 		 */
1509 		if (offset <= curr_off)
1510 			discard_buffer(bh);
1511 		curr_off = next_off;
1512 		bh = next;
1513 	} while (bh != head);
1514 
1515 	/*
1516 	 * We release buffers only if the entire page is being invalidated.
1517 	 * The get_block cached value has been unconditionally invalidated,
1518 	 * so real IO is not possible anymore.
1519 	 */
1520 	if (offset == 0)
1521 		try_to_release_page(page, 0);
1522 out:
1523 	return;
1524 }
1525 EXPORT_SYMBOL(block_invalidatepage);
1526 
1527 
1528 /*
1529  * We attach and possibly dirty the buffers atomically wrt
1530  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1531  * is already excluded via the page lock.
1532  */
1533 void create_empty_buffers(struct page *page,
1534 			unsigned long blocksize, unsigned long b_state)
1535 {
1536 	struct buffer_head *bh, *head, *tail;
1537 
1538 	head = alloc_page_buffers(page, blocksize, true);
1539 	bh = head;
1540 	do {
1541 		bh->b_state |= b_state;
1542 		tail = bh;
1543 		bh = bh->b_this_page;
1544 	} while (bh);
1545 	tail->b_this_page = head;
1546 
1547 	spin_lock(&page->mapping->private_lock);
1548 	if (PageUptodate(page) || PageDirty(page)) {
1549 		bh = head;
1550 		do {
1551 			if (PageDirty(page))
1552 				set_buffer_dirty(bh);
1553 			if (PageUptodate(page))
1554 				set_buffer_uptodate(bh);
1555 			bh = bh->b_this_page;
1556 		} while (bh != head);
1557 	}
1558 	attach_page_buffers(page, head);
1559 	spin_unlock(&page->mapping->private_lock);
1560 }
1561 EXPORT_SYMBOL(create_empty_buffers);
1562 
1563 /**
1564  * clean_bdev_aliases: clean a range of buffers in block device
1565  * @bdev: Block device to clean buffers in
1566  * @block: Start of a range of blocks to clean
1567  * @len: Number of blocks to clean
1568  *
1569  * We are taking a range of blocks for data and we don't want writeback of any
1570  * buffer-cache aliases starting from return from this function and until the
1571  * moment when something will explicitly mark the buffer dirty (hopefully that
1572  * will not happen until we will free that block ;-) We don't even need to mark
1573  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1574  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1575  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1576  * would confuse anyone who might pick it with bread() afterwards...
1577  *
1578  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1579  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1580  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1581  * need to.  That happens here.
1582  */
1583 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1584 {
1585 	struct inode *bd_inode = bdev->bd_inode;
1586 	struct address_space *bd_mapping = bd_inode->i_mapping;
1587 	struct pagevec pvec;
1588 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1589 	pgoff_t end;
1590 	int i, count;
1591 	struct buffer_head *bh;
1592 	struct buffer_head *head;
1593 
1594 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1595 	pagevec_init(&pvec);
1596 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1597 		count = pagevec_count(&pvec);
1598 		for (i = 0; i < count; i++) {
1599 			struct page *page = pvec.pages[i];
1600 
1601 			if (!page_has_buffers(page))
1602 				continue;
1603 			/*
1604 			 * We use page lock instead of bd_mapping->private_lock
1605 			 * to pin buffers here since we can afford to sleep and
1606 			 * it scales better than a global spinlock lock.
1607 			 */
1608 			lock_page(page);
1609 			/* Recheck when the page is locked which pins bhs */
1610 			if (!page_has_buffers(page))
1611 				goto unlock_page;
1612 			head = page_buffers(page);
1613 			bh = head;
1614 			do {
1615 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1616 					goto next;
1617 				if (bh->b_blocknr >= block + len)
1618 					break;
1619 				clear_buffer_dirty(bh);
1620 				wait_on_buffer(bh);
1621 				clear_buffer_req(bh);
1622 next:
1623 				bh = bh->b_this_page;
1624 			} while (bh != head);
1625 unlock_page:
1626 			unlock_page(page);
1627 		}
1628 		pagevec_release(&pvec);
1629 		cond_resched();
1630 		/* End of range already reached? */
1631 		if (index > end || !index)
1632 			break;
1633 	}
1634 }
1635 EXPORT_SYMBOL(clean_bdev_aliases);
1636 
1637 /*
1638  * Size is a power-of-two in the range 512..PAGE_SIZE,
1639  * and the case we care about most is PAGE_SIZE.
1640  *
1641  * So this *could* possibly be written with those
1642  * constraints in mind (relevant mostly if some
1643  * architecture has a slow bit-scan instruction)
1644  */
1645 static inline int block_size_bits(unsigned int blocksize)
1646 {
1647 	return ilog2(blocksize);
1648 }
1649 
1650 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1651 {
1652 	BUG_ON(!PageLocked(page));
1653 
1654 	if (!page_has_buffers(page))
1655 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1656 				     b_state);
1657 	return page_buffers(page);
1658 }
1659 
1660 /*
1661  * NOTE! All mapped/uptodate combinations are valid:
1662  *
1663  *	Mapped	Uptodate	Meaning
1664  *
1665  *	No	No		"unknown" - must do get_block()
1666  *	No	Yes		"hole" - zero-filled
1667  *	Yes	No		"allocated" - allocated on disk, not read in
1668  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1669  *
1670  * "Dirty" is valid only with the last case (mapped+uptodate).
1671  */
1672 
1673 /*
1674  * While block_write_full_page is writing back the dirty buffers under
1675  * the page lock, whoever dirtied the buffers may decide to clean them
1676  * again at any time.  We handle that by only looking at the buffer
1677  * state inside lock_buffer().
1678  *
1679  * If block_write_full_page() is called for regular writeback
1680  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1681  * locked buffer.   This only can happen if someone has written the buffer
1682  * directly, with submit_bh().  At the address_space level PageWriteback
1683  * prevents this contention from occurring.
1684  *
1685  * If block_write_full_page() is called with wbc->sync_mode ==
1686  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1687  * causes the writes to be flagged as synchronous writes.
1688  */
1689 int __block_write_full_page(struct inode *inode, struct page *page,
1690 			get_block_t *get_block, struct writeback_control *wbc,
1691 			bh_end_io_t *handler)
1692 {
1693 	int err;
1694 	sector_t block;
1695 	sector_t last_block;
1696 	struct buffer_head *bh, *head;
1697 	unsigned int blocksize, bbits;
1698 	int nr_underway = 0;
1699 	int write_flags = wbc_to_write_flags(wbc);
1700 
1701 	head = create_page_buffers(page, inode,
1702 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1703 
1704 	/*
1705 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1706 	 * here, and the (potentially unmapped) buffers may become dirty at
1707 	 * any time.  If a buffer becomes dirty here after we've inspected it
1708 	 * then we just miss that fact, and the page stays dirty.
1709 	 *
1710 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1711 	 * handle that here by just cleaning them.
1712 	 */
1713 
1714 	bh = head;
1715 	blocksize = bh->b_size;
1716 	bbits = block_size_bits(blocksize);
1717 
1718 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1719 	last_block = (i_size_read(inode) - 1) >> bbits;
1720 
1721 	/*
1722 	 * Get all the dirty buffers mapped to disk addresses and
1723 	 * handle any aliases from the underlying blockdev's mapping.
1724 	 */
1725 	do {
1726 		if (block > last_block) {
1727 			/*
1728 			 * mapped buffers outside i_size will occur, because
1729 			 * this page can be outside i_size when there is a
1730 			 * truncate in progress.
1731 			 */
1732 			/*
1733 			 * The buffer was zeroed by block_write_full_page()
1734 			 */
1735 			clear_buffer_dirty(bh);
1736 			set_buffer_uptodate(bh);
1737 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1738 			   buffer_dirty(bh)) {
1739 			WARN_ON(bh->b_size != blocksize);
1740 			err = get_block(inode, block, bh, 1);
1741 			if (err)
1742 				goto recover;
1743 			clear_buffer_delay(bh);
1744 			if (buffer_new(bh)) {
1745 				/* blockdev mappings never come here */
1746 				clear_buffer_new(bh);
1747 				clean_bdev_bh_alias(bh);
1748 			}
1749 		}
1750 		bh = bh->b_this_page;
1751 		block++;
1752 	} while (bh != head);
1753 
1754 	do {
1755 		if (!buffer_mapped(bh))
1756 			continue;
1757 		/*
1758 		 * If it's a fully non-blocking write attempt and we cannot
1759 		 * lock the buffer then redirty the page.  Note that this can
1760 		 * potentially cause a busy-wait loop from writeback threads
1761 		 * and kswapd activity, but those code paths have their own
1762 		 * higher-level throttling.
1763 		 */
1764 		if (wbc->sync_mode != WB_SYNC_NONE) {
1765 			lock_buffer(bh);
1766 		} else if (!trylock_buffer(bh)) {
1767 			redirty_page_for_writepage(wbc, page);
1768 			continue;
1769 		}
1770 		if (test_clear_buffer_dirty(bh)) {
1771 			mark_buffer_async_write_endio(bh, handler);
1772 		} else {
1773 			unlock_buffer(bh);
1774 		}
1775 	} while ((bh = bh->b_this_page) != head);
1776 
1777 	/*
1778 	 * The page and its buffers are protected by PageWriteback(), so we can
1779 	 * drop the bh refcounts early.
1780 	 */
1781 	BUG_ON(PageWriteback(page));
1782 	set_page_writeback(page);
1783 
1784 	do {
1785 		struct buffer_head *next = bh->b_this_page;
1786 		if (buffer_async_write(bh)) {
1787 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1788 					inode->i_write_hint, wbc);
1789 			nr_underway++;
1790 		}
1791 		bh = next;
1792 	} while (bh != head);
1793 	unlock_page(page);
1794 
1795 	err = 0;
1796 done:
1797 	if (nr_underway == 0) {
1798 		/*
1799 		 * The page was marked dirty, but the buffers were
1800 		 * clean.  Someone wrote them back by hand with
1801 		 * ll_rw_block/submit_bh.  A rare case.
1802 		 */
1803 		end_page_writeback(page);
1804 
1805 		/*
1806 		 * The page and buffer_heads can be released at any time from
1807 		 * here on.
1808 		 */
1809 	}
1810 	return err;
1811 
1812 recover:
1813 	/*
1814 	 * ENOSPC, or some other error.  We may already have added some
1815 	 * blocks to the file, so we need to write these out to avoid
1816 	 * exposing stale data.
1817 	 * The page is currently locked and not marked for writeback
1818 	 */
1819 	bh = head;
1820 	/* Recovery: lock and submit the mapped buffers */
1821 	do {
1822 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1823 		    !buffer_delay(bh)) {
1824 			lock_buffer(bh);
1825 			mark_buffer_async_write_endio(bh, handler);
1826 		} else {
1827 			/*
1828 			 * The buffer may have been set dirty during
1829 			 * attachment to a dirty page.
1830 			 */
1831 			clear_buffer_dirty(bh);
1832 		}
1833 	} while ((bh = bh->b_this_page) != head);
1834 	SetPageError(page);
1835 	BUG_ON(PageWriteback(page));
1836 	mapping_set_error(page->mapping, err);
1837 	set_page_writeback(page);
1838 	do {
1839 		struct buffer_head *next = bh->b_this_page;
1840 		if (buffer_async_write(bh)) {
1841 			clear_buffer_dirty(bh);
1842 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1843 					inode->i_write_hint, wbc);
1844 			nr_underway++;
1845 		}
1846 		bh = next;
1847 	} while (bh != head);
1848 	unlock_page(page);
1849 	goto done;
1850 }
1851 EXPORT_SYMBOL(__block_write_full_page);
1852 
1853 /*
1854  * If a page has any new buffers, zero them out here, and mark them uptodate
1855  * and dirty so they'll be written out (in order to prevent uninitialised
1856  * block data from leaking). And clear the new bit.
1857  */
1858 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1859 {
1860 	unsigned int block_start, block_end;
1861 	struct buffer_head *head, *bh;
1862 
1863 	BUG_ON(!PageLocked(page));
1864 	if (!page_has_buffers(page))
1865 		return;
1866 
1867 	bh = head = page_buffers(page);
1868 	block_start = 0;
1869 	do {
1870 		block_end = block_start + bh->b_size;
1871 
1872 		if (buffer_new(bh)) {
1873 			if (block_end > from && block_start < to) {
1874 				if (!PageUptodate(page)) {
1875 					unsigned start, size;
1876 
1877 					start = max(from, block_start);
1878 					size = min(to, block_end) - start;
1879 
1880 					zero_user(page, start, size);
1881 					set_buffer_uptodate(bh);
1882 				}
1883 
1884 				clear_buffer_new(bh);
1885 				mark_buffer_dirty(bh);
1886 			}
1887 		}
1888 
1889 		block_start = block_end;
1890 		bh = bh->b_this_page;
1891 	} while (bh != head);
1892 }
1893 EXPORT_SYMBOL(page_zero_new_buffers);
1894 
1895 static void
1896 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1897 		struct iomap *iomap)
1898 {
1899 	loff_t offset = block << inode->i_blkbits;
1900 
1901 	bh->b_bdev = iomap->bdev;
1902 
1903 	/*
1904 	 * Block points to offset in file we need to map, iomap contains
1905 	 * the offset at which the map starts. If the map ends before the
1906 	 * current block, then do not map the buffer and let the caller
1907 	 * handle it.
1908 	 */
1909 	BUG_ON(offset >= iomap->offset + iomap->length);
1910 
1911 	switch (iomap->type) {
1912 	case IOMAP_HOLE:
1913 		/*
1914 		 * If the buffer is not up to date or beyond the current EOF,
1915 		 * we need to mark it as new to ensure sub-block zeroing is
1916 		 * executed if necessary.
1917 		 */
1918 		if (!buffer_uptodate(bh) ||
1919 		    (offset >= i_size_read(inode)))
1920 			set_buffer_new(bh);
1921 		break;
1922 	case IOMAP_DELALLOC:
1923 		if (!buffer_uptodate(bh) ||
1924 		    (offset >= i_size_read(inode)))
1925 			set_buffer_new(bh);
1926 		set_buffer_uptodate(bh);
1927 		set_buffer_mapped(bh);
1928 		set_buffer_delay(bh);
1929 		break;
1930 	case IOMAP_UNWRITTEN:
1931 		/*
1932 		 * For unwritten regions, we always need to ensure that
1933 		 * sub-block writes cause the regions in the block we are not
1934 		 * writing to are zeroed. Set the buffer as new to ensure this.
1935 		 */
1936 		set_buffer_new(bh);
1937 		set_buffer_unwritten(bh);
1938 		/* FALLTHRU */
1939 	case IOMAP_MAPPED:
1940 		if (offset >= i_size_read(inode))
1941 			set_buffer_new(bh);
1942 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1943 				inode->i_blkbits;
1944 		set_buffer_mapped(bh);
1945 		break;
1946 	}
1947 }
1948 
1949 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1950 		get_block_t *get_block, struct iomap *iomap)
1951 {
1952 	unsigned from = pos & (PAGE_SIZE - 1);
1953 	unsigned to = from + len;
1954 	struct inode *inode = page->mapping->host;
1955 	unsigned block_start, block_end;
1956 	sector_t block;
1957 	int err = 0;
1958 	unsigned blocksize, bbits;
1959 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1960 
1961 	BUG_ON(!PageLocked(page));
1962 	BUG_ON(from > PAGE_SIZE);
1963 	BUG_ON(to > PAGE_SIZE);
1964 	BUG_ON(from > to);
1965 
1966 	head = create_page_buffers(page, inode, 0);
1967 	blocksize = head->b_size;
1968 	bbits = block_size_bits(blocksize);
1969 
1970 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1971 
1972 	for(bh = head, block_start = 0; bh != head || !block_start;
1973 	    block++, block_start=block_end, bh = bh->b_this_page) {
1974 		block_end = block_start + blocksize;
1975 		if (block_end <= from || block_start >= to) {
1976 			if (PageUptodate(page)) {
1977 				if (!buffer_uptodate(bh))
1978 					set_buffer_uptodate(bh);
1979 			}
1980 			continue;
1981 		}
1982 		if (buffer_new(bh))
1983 			clear_buffer_new(bh);
1984 		if (!buffer_mapped(bh)) {
1985 			WARN_ON(bh->b_size != blocksize);
1986 			if (get_block) {
1987 				err = get_block(inode, block, bh, 1);
1988 				if (err)
1989 					break;
1990 			} else {
1991 				iomap_to_bh(inode, block, bh, iomap);
1992 			}
1993 
1994 			if (buffer_new(bh)) {
1995 				clean_bdev_bh_alias(bh);
1996 				if (PageUptodate(page)) {
1997 					clear_buffer_new(bh);
1998 					set_buffer_uptodate(bh);
1999 					mark_buffer_dirty(bh);
2000 					continue;
2001 				}
2002 				if (block_end > to || block_start < from)
2003 					zero_user_segments(page,
2004 						to, block_end,
2005 						block_start, from);
2006 				continue;
2007 			}
2008 		}
2009 		if (PageUptodate(page)) {
2010 			if (!buffer_uptodate(bh))
2011 				set_buffer_uptodate(bh);
2012 			continue;
2013 		}
2014 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2015 		    !buffer_unwritten(bh) &&
2016 		     (block_start < from || block_end > to)) {
2017 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2018 			*wait_bh++=bh;
2019 		}
2020 	}
2021 	/*
2022 	 * If we issued read requests - let them complete.
2023 	 */
2024 	while(wait_bh > wait) {
2025 		wait_on_buffer(*--wait_bh);
2026 		if (!buffer_uptodate(*wait_bh))
2027 			err = -EIO;
2028 	}
2029 	if (unlikely(err))
2030 		page_zero_new_buffers(page, from, to);
2031 	return err;
2032 }
2033 
2034 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2035 		get_block_t *get_block)
2036 {
2037 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2038 }
2039 EXPORT_SYMBOL(__block_write_begin);
2040 
2041 static int __block_commit_write(struct inode *inode, struct page *page,
2042 		unsigned from, unsigned to)
2043 {
2044 	unsigned block_start, block_end;
2045 	int partial = 0;
2046 	unsigned blocksize;
2047 	struct buffer_head *bh, *head;
2048 
2049 	bh = head = page_buffers(page);
2050 	blocksize = bh->b_size;
2051 
2052 	block_start = 0;
2053 	do {
2054 		block_end = block_start + blocksize;
2055 		if (block_end <= from || block_start >= to) {
2056 			if (!buffer_uptodate(bh))
2057 				partial = 1;
2058 		} else {
2059 			set_buffer_uptodate(bh);
2060 			mark_buffer_dirty(bh);
2061 		}
2062 		clear_buffer_new(bh);
2063 
2064 		block_start = block_end;
2065 		bh = bh->b_this_page;
2066 	} while (bh != head);
2067 
2068 	/*
2069 	 * If this is a partial write which happened to make all buffers
2070 	 * uptodate then we can optimize away a bogus readpage() for
2071 	 * the next read(). Here we 'discover' whether the page went
2072 	 * uptodate as a result of this (potentially partial) write.
2073 	 */
2074 	if (!partial)
2075 		SetPageUptodate(page);
2076 	return 0;
2077 }
2078 
2079 /*
2080  * block_write_begin takes care of the basic task of block allocation and
2081  * bringing partial write blocks uptodate first.
2082  *
2083  * The filesystem needs to handle block truncation upon failure.
2084  */
2085 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2086 		unsigned flags, struct page **pagep, get_block_t *get_block)
2087 {
2088 	pgoff_t index = pos >> PAGE_SHIFT;
2089 	struct page *page;
2090 	int status;
2091 
2092 	page = grab_cache_page_write_begin(mapping, index, flags);
2093 	if (!page)
2094 		return -ENOMEM;
2095 
2096 	status = __block_write_begin(page, pos, len, get_block);
2097 	if (unlikely(status)) {
2098 		unlock_page(page);
2099 		put_page(page);
2100 		page = NULL;
2101 	}
2102 
2103 	*pagep = page;
2104 	return status;
2105 }
2106 EXPORT_SYMBOL(block_write_begin);
2107 
2108 int block_write_end(struct file *file, struct address_space *mapping,
2109 			loff_t pos, unsigned len, unsigned copied,
2110 			struct page *page, void *fsdata)
2111 {
2112 	struct inode *inode = mapping->host;
2113 	unsigned start;
2114 
2115 	start = pos & (PAGE_SIZE - 1);
2116 
2117 	if (unlikely(copied < len)) {
2118 		/*
2119 		 * The buffers that were written will now be uptodate, so we
2120 		 * don't have to worry about a readpage reading them and
2121 		 * overwriting a partial write. However if we have encountered
2122 		 * a short write and only partially written into a buffer, it
2123 		 * will not be marked uptodate, so a readpage might come in and
2124 		 * destroy our partial write.
2125 		 *
2126 		 * Do the simplest thing, and just treat any short write to a
2127 		 * non uptodate page as a zero-length write, and force the
2128 		 * caller to redo the whole thing.
2129 		 */
2130 		if (!PageUptodate(page))
2131 			copied = 0;
2132 
2133 		page_zero_new_buffers(page, start+copied, start+len);
2134 	}
2135 	flush_dcache_page(page);
2136 
2137 	/* This could be a short (even 0-length) commit */
2138 	__block_commit_write(inode, page, start, start+copied);
2139 
2140 	return copied;
2141 }
2142 EXPORT_SYMBOL(block_write_end);
2143 
2144 int generic_write_end(struct file *file, struct address_space *mapping,
2145 			loff_t pos, unsigned len, unsigned copied,
2146 			struct page *page, void *fsdata)
2147 {
2148 	struct inode *inode = mapping->host;
2149 	loff_t old_size = inode->i_size;
2150 	int i_size_changed = 0;
2151 
2152 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2153 
2154 	/*
2155 	 * No need to use i_size_read() here, the i_size
2156 	 * cannot change under us because we hold i_mutex.
2157 	 *
2158 	 * But it's important to update i_size while still holding page lock:
2159 	 * page writeout could otherwise come in and zero beyond i_size.
2160 	 */
2161 	if (pos+copied > inode->i_size) {
2162 		i_size_write(inode, pos+copied);
2163 		i_size_changed = 1;
2164 	}
2165 
2166 	unlock_page(page);
2167 	put_page(page);
2168 
2169 	if (old_size < pos)
2170 		pagecache_isize_extended(inode, old_size, pos);
2171 	/*
2172 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2173 	 * makes the holding time of page lock longer. Second, it forces lock
2174 	 * ordering of page lock and transaction start for journaling
2175 	 * filesystems.
2176 	 */
2177 	if (i_size_changed)
2178 		mark_inode_dirty(inode);
2179 
2180 	return copied;
2181 }
2182 EXPORT_SYMBOL(generic_write_end);
2183 
2184 /*
2185  * block_is_partially_uptodate checks whether buffers within a page are
2186  * uptodate or not.
2187  *
2188  * Returns true if all buffers which correspond to a file portion
2189  * we want to read are uptodate.
2190  */
2191 int block_is_partially_uptodate(struct page *page, unsigned long from,
2192 					unsigned long count)
2193 {
2194 	unsigned block_start, block_end, blocksize;
2195 	unsigned to;
2196 	struct buffer_head *bh, *head;
2197 	int ret = 1;
2198 
2199 	if (!page_has_buffers(page))
2200 		return 0;
2201 
2202 	head = page_buffers(page);
2203 	blocksize = head->b_size;
2204 	to = min_t(unsigned, PAGE_SIZE - from, count);
2205 	to = from + to;
2206 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2207 		return 0;
2208 
2209 	bh = head;
2210 	block_start = 0;
2211 	do {
2212 		block_end = block_start + blocksize;
2213 		if (block_end > from && block_start < to) {
2214 			if (!buffer_uptodate(bh)) {
2215 				ret = 0;
2216 				break;
2217 			}
2218 			if (block_end >= to)
2219 				break;
2220 		}
2221 		block_start = block_end;
2222 		bh = bh->b_this_page;
2223 	} while (bh != head);
2224 
2225 	return ret;
2226 }
2227 EXPORT_SYMBOL(block_is_partially_uptodate);
2228 
2229 /*
2230  * Generic "read page" function for block devices that have the normal
2231  * get_block functionality. This is most of the block device filesystems.
2232  * Reads the page asynchronously --- the unlock_buffer() and
2233  * set/clear_buffer_uptodate() functions propagate buffer state into the
2234  * page struct once IO has completed.
2235  */
2236 int block_read_full_page(struct page *page, get_block_t *get_block)
2237 {
2238 	struct inode *inode = page->mapping->host;
2239 	sector_t iblock, lblock;
2240 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2241 	unsigned int blocksize, bbits;
2242 	int nr, i;
2243 	int fully_mapped = 1;
2244 
2245 	head = create_page_buffers(page, inode, 0);
2246 	blocksize = head->b_size;
2247 	bbits = block_size_bits(blocksize);
2248 
2249 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2250 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2251 	bh = head;
2252 	nr = 0;
2253 	i = 0;
2254 
2255 	do {
2256 		if (buffer_uptodate(bh))
2257 			continue;
2258 
2259 		if (!buffer_mapped(bh)) {
2260 			int err = 0;
2261 
2262 			fully_mapped = 0;
2263 			if (iblock < lblock) {
2264 				WARN_ON(bh->b_size != blocksize);
2265 				err = get_block(inode, iblock, bh, 0);
2266 				if (err)
2267 					SetPageError(page);
2268 			}
2269 			if (!buffer_mapped(bh)) {
2270 				zero_user(page, i * blocksize, blocksize);
2271 				if (!err)
2272 					set_buffer_uptodate(bh);
2273 				continue;
2274 			}
2275 			/*
2276 			 * get_block() might have updated the buffer
2277 			 * synchronously
2278 			 */
2279 			if (buffer_uptodate(bh))
2280 				continue;
2281 		}
2282 		arr[nr++] = bh;
2283 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2284 
2285 	if (fully_mapped)
2286 		SetPageMappedToDisk(page);
2287 
2288 	if (!nr) {
2289 		/*
2290 		 * All buffers are uptodate - we can set the page uptodate
2291 		 * as well. But not if get_block() returned an error.
2292 		 */
2293 		if (!PageError(page))
2294 			SetPageUptodate(page);
2295 		unlock_page(page);
2296 		return 0;
2297 	}
2298 
2299 	/* Stage two: lock the buffers */
2300 	for (i = 0; i < nr; i++) {
2301 		bh = arr[i];
2302 		lock_buffer(bh);
2303 		mark_buffer_async_read(bh);
2304 	}
2305 
2306 	/*
2307 	 * Stage 3: start the IO.  Check for uptodateness
2308 	 * inside the buffer lock in case another process reading
2309 	 * the underlying blockdev brought it uptodate (the sct fix).
2310 	 */
2311 	for (i = 0; i < nr; i++) {
2312 		bh = arr[i];
2313 		if (buffer_uptodate(bh))
2314 			end_buffer_async_read(bh, 1);
2315 		else
2316 			submit_bh(REQ_OP_READ, 0, bh);
2317 	}
2318 	return 0;
2319 }
2320 EXPORT_SYMBOL(block_read_full_page);
2321 
2322 /* utility function for filesystems that need to do work on expanding
2323  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2324  * deal with the hole.
2325  */
2326 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2327 {
2328 	struct address_space *mapping = inode->i_mapping;
2329 	struct page *page;
2330 	void *fsdata;
2331 	int err;
2332 
2333 	err = inode_newsize_ok(inode, size);
2334 	if (err)
2335 		goto out;
2336 
2337 	err = pagecache_write_begin(NULL, mapping, size, 0,
2338 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2339 	if (err)
2340 		goto out;
2341 
2342 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2343 	BUG_ON(err > 0);
2344 
2345 out:
2346 	return err;
2347 }
2348 EXPORT_SYMBOL(generic_cont_expand_simple);
2349 
2350 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2351 			    loff_t pos, loff_t *bytes)
2352 {
2353 	struct inode *inode = mapping->host;
2354 	unsigned int blocksize = i_blocksize(inode);
2355 	struct page *page;
2356 	void *fsdata;
2357 	pgoff_t index, curidx;
2358 	loff_t curpos;
2359 	unsigned zerofrom, offset, len;
2360 	int err = 0;
2361 
2362 	index = pos >> PAGE_SHIFT;
2363 	offset = pos & ~PAGE_MASK;
2364 
2365 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2366 		zerofrom = curpos & ~PAGE_MASK;
2367 		if (zerofrom & (blocksize-1)) {
2368 			*bytes |= (blocksize-1);
2369 			(*bytes)++;
2370 		}
2371 		len = PAGE_SIZE - zerofrom;
2372 
2373 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2374 					    &page, &fsdata);
2375 		if (err)
2376 			goto out;
2377 		zero_user(page, zerofrom, len);
2378 		err = pagecache_write_end(file, mapping, curpos, len, len,
2379 						page, fsdata);
2380 		if (err < 0)
2381 			goto out;
2382 		BUG_ON(err != len);
2383 		err = 0;
2384 
2385 		balance_dirty_pages_ratelimited(mapping);
2386 
2387 		if (unlikely(fatal_signal_pending(current))) {
2388 			err = -EINTR;
2389 			goto out;
2390 		}
2391 	}
2392 
2393 	/* page covers the boundary, find the boundary offset */
2394 	if (index == curidx) {
2395 		zerofrom = curpos & ~PAGE_MASK;
2396 		/* if we will expand the thing last block will be filled */
2397 		if (offset <= zerofrom) {
2398 			goto out;
2399 		}
2400 		if (zerofrom & (blocksize-1)) {
2401 			*bytes |= (blocksize-1);
2402 			(*bytes)++;
2403 		}
2404 		len = offset - zerofrom;
2405 
2406 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2407 					    &page, &fsdata);
2408 		if (err)
2409 			goto out;
2410 		zero_user(page, zerofrom, len);
2411 		err = pagecache_write_end(file, mapping, curpos, len, len,
2412 						page, fsdata);
2413 		if (err < 0)
2414 			goto out;
2415 		BUG_ON(err != len);
2416 		err = 0;
2417 	}
2418 out:
2419 	return err;
2420 }
2421 
2422 /*
2423  * For moronic filesystems that do not allow holes in file.
2424  * We may have to extend the file.
2425  */
2426 int cont_write_begin(struct file *file, struct address_space *mapping,
2427 			loff_t pos, unsigned len, unsigned flags,
2428 			struct page **pagep, void **fsdata,
2429 			get_block_t *get_block, loff_t *bytes)
2430 {
2431 	struct inode *inode = mapping->host;
2432 	unsigned int blocksize = i_blocksize(inode);
2433 	unsigned int zerofrom;
2434 	int err;
2435 
2436 	err = cont_expand_zero(file, mapping, pos, bytes);
2437 	if (err)
2438 		return err;
2439 
2440 	zerofrom = *bytes & ~PAGE_MASK;
2441 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2442 		*bytes |= (blocksize-1);
2443 		(*bytes)++;
2444 	}
2445 
2446 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2447 }
2448 EXPORT_SYMBOL(cont_write_begin);
2449 
2450 int block_commit_write(struct page *page, unsigned from, unsigned to)
2451 {
2452 	struct inode *inode = page->mapping->host;
2453 	__block_commit_write(inode,page,from,to);
2454 	return 0;
2455 }
2456 EXPORT_SYMBOL(block_commit_write);
2457 
2458 /*
2459  * block_page_mkwrite() is not allowed to change the file size as it gets
2460  * called from a page fault handler when a page is first dirtied. Hence we must
2461  * be careful to check for EOF conditions here. We set the page up correctly
2462  * for a written page which means we get ENOSPC checking when writing into
2463  * holes and correct delalloc and unwritten extent mapping on filesystems that
2464  * support these features.
2465  *
2466  * We are not allowed to take the i_mutex here so we have to play games to
2467  * protect against truncate races as the page could now be beyond EOF.  Because
2468  * truncate writes the inode size before removing pages, once we have the
2469  * page lock we can determine safely if the page is beyond EOF. If it is not
2470  * beyond EOF, then the page is guaranteed safe against truncation until we
2471  * unlock the page.
2472  *
2473  * Direct callers of this function should protect against filesystem freezing
2474  * using sb_start_pagefault() - sb_end_pagefault() functions.
2475  */
2476 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2477 			 get_block_t get_block)
2478 {
2479 	struct page *page = vmf->page;
2480 	struct inode *inode = file_inode(vma->vm_file);
2481 	unsigned long end;
2482 	loff_t size;
2483 	int ret;
2484 
2485 	lock_page(page);
2486 	size = i_size_read(inode);
2487 	if ((page->mapping != inode->i_mapping) ||
2488 	    (page_offset(page) > size)) {
2489 		/* We overload EFAULT to mean page got truncated */
2490 		ret = -EFAULT;
2491 		goto out_unlock;
2492 	}
2493 
2494 	/* page is wholly or partially inside EOF */
2495 	if (((page->index + 1) << PAGE_SHIFT) > size)
2496 		end = size & ~PAGE_MASK;
2497 	else
2498 		end = PAGE_SIZE;
2499 
2500 	ret = __block_write_begin(page, 0, end, get_block);
2501 	if (!ret)
2502 		ret = block_commit_write(page, 0, end);
2503 
2504 	if (unlikely(ret < 0))
2505 		goto out_unlock;
2506 	set_page_dirty(page);
2507 	wait_for_stable_page(page);
2508 	return 0;
2509 out_unlock:
2510 	unlock_page(page);
2511 	return ret;
2512 }
2513 EXPORT_SYMBOL(block_page_mkwrite);
2514 
2515 /*
2516  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2517  * immediately, while under the page lock.  So it needs a special end_io
2518  * handler which does not touch the bh after unlocking it.
2519  */
2520 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2521 {
2522 	__end_buffer_read_notouch(bh, uptodate);
2523 }
2524 
2525 /*
2526  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2527  * the page (converting it to circular linked list and taking care of page
2528  * dirty races).
2529  */
2530 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2531 {
2532 	struct buffer_head *bh;
2533 
2534 	BUG_ON(!PageLocked(page));
2535 
2536 	spin_lock(&page->mapping->private_lock);
2537 	bh = head;
2538 	do {
2539 		if (PageDirty(page))
2540 			set_buffer_dirty(bh);
2541 		if (!bh->b_this_page)
2542 			bh->b_this_page = head;
2543 		bh = bh->b_this_page;
2544 	} while (bh != head);
2545 	attach_page_buffers(page, head);
2546 	spin_unlock(&page->mapping->private_lock);
2547 }
2548 
2549 /*
2550  * On entry, the page is fully not uptodate.
2551  * On exit the page is fully uptodate in the areas outside (from,to)
2552  * The filesystem needs to handle block truncation upon failure.
2553  */
2554 int nobh_write_begin(struct address_space *mapping,
2555 			loff_t pos, unsigned len, unsigned flags,
2556 			struct page **pagep, void **fsdata,
2557 			get_block_t *get_block)
2558 {
2559 	struct inode *inode = mapping->host;
2560 	const unsigned blkbits = inode->i_blkbits;
2561 	const unsigned blocksize = 1 << blkbits;
2562 	struct buffer_head *head, *bh;
2563 	struct page *page;
2564 	pgoff_t index;
2565 	unsigned from, to;
2566 	unsigned block_in_page;
2567 	unsigned block_start, block_end;
2568 	sector_t block_in_file;
2569 	int nr_reads = 0;
2570 	int ret = 0;
2571 	int is_mapped_to_disk = 1;
2572 
2573 	index = pos >> PAGE_SHIFT;
2574 	from = pos & (PAGE_SIZE - 1);
2575 	to = from + len;
2576 
2577 	page = grab_cache_page_write_begin(mapping, index, flags);
2578 	if (!page)
2579 		return -ENOMEM;
2580 	*pagep = page;
2581 	*fsdata = NULL;
2582 
2583 	if (page_has_buffers(page)) {
2584 		ret = __block_write_begin(page, pos, len, get_block);
2585 		if (unlikely(ret))
2586 			goto out_release;
2587 		return ret;
2588 	}
2589 
2590 	if (PageMappedToDisk(page))
2591 		return 0;
2592 
2593 	/*
2594 	 * Allocate buffers so that we can keep track of state, and potentially
2595 	 * attach them to the page if an error occurs. In the common case of
2596 	 * no error, they will just be freed again without ever being attached
2597 	 * to the page (which is all OK, because we're under the page lock).
2598 	 *
2599 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2600 	 * than the circular one we're used to.
2601 	 */
2602 	head = alloc_page_buffers(page, blocksize, false);
2603 	if (!head) {
2604 		ret = -ENOMEM;
2605 		goto out_release;
2606 	}
2607 
2608 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2609 
2610 	/*
2611 	 * We loop across all blocks in the page, whether or not they are
2612 	 * part of the affected region.  This is so we can discover if the
2613 	 * page is fully mapped-to-disk.
2614 	 */
2615 	for (block_start = 0, block_in_page = 0, bh = head;
2616 		  block_start < PAGE_SIZE;
2617 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2618 		int create;
2619 
2620 		block_end = block_start + blocksize;
2621 		bh->b_state = 0;
2622 		create = 1;
2623 		if (block_start >= to)
2624 			create = 0;
2625 		ret = get_block(inode, block_in_file + block_in_page,
2626 					bh, create);
2627 		if (ret)
2628 			goto failed;
2629 		if (!buffer_mapped(bh))
2630 			is_mapped_to_disk = 0;
2631 		if (buffer_new(bh))
2632 			clean_bdev_bh_alias(bh);
2633 		if (PageUptodate(page)) {
2634 			set_buffer_uptodate(bh);
2635 			continue;
2636 		}
2637 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2638 			zero_user_segments(page, block_start, from,
2639 							to, block_end);
2640 			continue;
2641 		}
2642 		if (buffer_uptodate(bh))
2643 			continue;	/* reiserfs does this */
2644 		if (block_start < from || block_end > to) {
2645 			lock_buffer(bh);
2646 			bh->b_end_io = end_buffer_read_nobh;
2647 			submit_bh(REQ_OP_READ, 0, bh);
2648 			nr_reads++;
2649 		}
2650 	}
2651 
2652 	if (nr_reads) {
2653 		/*
2654 		 * The page is locked, so these buffers are protected from
2655 		 * any VM or truncate activity.  Hence we don't need to care
2656 		 * for the buffer_head refcounts.
2657 		 */
2658 		for (bh = head; bh; bh = bh->b_this_page) {
2659 			wait_on_buffer(bh);
2660 			if (!buffer_uptodate(bh))
2661 				ret = -EIO;
2662 		}
2663 		if (ret)
2664 			goto failed;
2665 	}
2666 
2667 	if (is_mapped_to_disk)
2668 		SetPageMappedToDisk(page);
2669 
2670 	*fsdata = head; /* to be released by nobh_write_end */
2671 
2672 	return 0;
2673 
2674 failed:
2675 	BUG_ON(!ret);
2676 	/*
2677 	 * Error recovery is a bit difficult. We need to zero out blocks that
2678 	 * were newly allocated, and dirty them to ensure they get written out.
2679 	 * Buffers need to be attached to the page at this point, otherwise
2680 	 * the handling of potential IO errors during writeout would be hard
2681 	 * (could try doing synchronous writeout, but what if that fails too?)
2682 	 */
2683 	attach_nobh_buffers(page, head);
2684 	page_zero_new_buffers(page, from, to);
2685 
2686 out_release:
2687 	unlock_page(page);
2688 	put_page(page);
2689 	*pagep = NULL;
2690 
2691 	return ret;
2692 }
2693 EXPORT_SYMBOL(nobh_write_begin);
2694 
2695 int nobh_write_end(struct file *file, struct address_space *mapping,
2696 			loff_t pos, unsigned len, unsigned copied,
2697 			struct page *page, void *fsdata)
2698 {
2699 	struct inode *inode = page->mapping->host;
2700 	struct buffer_head *head = fsdata;
2701 	struct buffer_head *bh;
2702 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2703 
2704 	if (unlikely(copied < len) && head)
2705 		attach_nobh_buffers(page, head);
2706 	if (page_has_buffers(page))
2707 		return generic_write_end(file, mapping, pos, len,
2708 					copied, page, fsdata);
2709 
2710 	SetPageUptodate(page);
2711 	set_page_dirty(page);
2712 	if (pos+copied > inode->i_size) {
2713 		i_size_write(inode, pos+copied);
2714 		mark_inode_dirty(inode);
2715 	}
2716 
2717 	unlock_page(page);
2718 	put_page(page);
2719 
2720 	while (head) {
2721 		bh = head;
2722 		head = head->b_this_page;
2723 		free_buffer_head(bh);
2724 	}
2725 
2726 	return copied;
2727 }
2728 EXPORT_SYMBOL(nobh_write_end);
2729 
2730 /*
2731  * nobh_writepage() - based on block_full_write_page() except
2732  * that it tries to operate without attaching bufferheads to
2733  * the page.
2734  */
2735 int nobh_writepage(struct page *page, get_block_t *get_block,
2736 			struct writeback_control *wbc)
2737 {
2738 	struct inode * const inode = page->mapping->host;
2739 	loff_t i_size = i_size_read(inode);
2740 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2741 	unsigned offset;
2742 	int ret;
2743 
2744 	/* Is the page fully inside i_size? */
2745 	if (page->index < end_index)
2746 		goto out;
2747 
2748 	/* Is the page fully outside i_size? (truncate in progress) */
2749 	offset = i_size & (PAGE_SIZE-1);
2750 	if (page->index >= end_index+1 || !offset) {
2751 		/*
2752 		 * The page may have dirty, unmapped buffers.  For example,
2753 		 * they may have been added in ext3_writepage().  Make them
2754 		 * freeable here, so the page does not leak.
2755 		 */
2756 #if 0
2757 		/* Not really sure about this  - do we need this ? */
2758 		if (page->mapping->a_ops->invalidatepage)
2759 			page->mapping->a_ops->invalidatepage(page, offset);
2760 #endif
2761 		unlock_page(page);
2762 		return 0; /* don't care */
2763 	}
2764 
2765 	/*
2766 	 * The page straddles i_size.  It must be zeroed out on each and every
2767 	 * writepage invocation because it may be mmapped.  "A file is mapped
2768 	 * in multiples of the page size.  For a file that is not a multiple of
2769 	 * the  page size, the remaining memory is zeroed when mapped, and
2770 	 * writes to that region are not written out to the file."
2771 	 */
2772 	zero_user_segment(page, offset, PAGE_SIZE);
2773 out:
2774 	ret = mpage_writepage(page, get_block, wbc);
2775 	if (ret == -EAGAIN)
2776 		ret = __block_write_full_page(inode, page, get_block, wbc,
2777 					      end_buffer_async_write);
2778 	return ret;
2779 }
2780 EXPORT_SYMBOL(nobh_writepage);
2781 
2782 int nobh_truncate_page(struct address_space *mapping,
2783 			loff_t from, get_block_t *get_block)
2784 {
2785 	pgoff_t index = from >> PAGE_SHIFT;
2786 	unsigned offset = from & (PAGE_SIZE-1);
2787 	unsigned blocksize;
2788 	sector_t iblock;
2789 	unsigned length, pos;
2790 	struct inode *inode = mapping->host;
2791 	struct page *page;
2792 	struct buffer_head map_bh;
2793 	int err;
2794 
2795 	blocksize = i_blocksize(inode);
2796 	length = offset & (blocksize - 1);
2797 
2798 	/* Block boundary? Nothing to do */
2799 	if (!length)
2800 		return 0;
2801 
2802 	length = blocksize - length;
2803 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2804 
2805 	page = grab_cache_page(mapping, index);
2806 	err = -ENOMEM;
2807 	if (!page)
2808 		goto out;
2809 
2810 	if (page_has_buffers(page)) {
2811 has_buffers:
2812 		unlock_page(page);
2813 		put_page(page);
2814 		return block_truncate_page(mapping, from, get_block);
2815 	}
2816 
2817 	/* Find the buffer that contains "offset" */
2818 	pos = blocksize;
2819 	while (offset >= pos) {
2820 		iblock++;
2821 		pos += blocksize;
2822 	}
2823 
2824 	map_bh.b_size = blocksize;
2825 	map_bh.b_state = 0;
2826 	err = get_block(inode, iblock, &map_bh, 0);
2827 	if (err)
2828 		goto unlock;
2829 	/* unmapped? It's a hole - nothing to do */
2830 	if (!buffer_mapped(&map_bh))
2831 		goto unlock;
2832 
2833 	/* Ok, it's mapped. Make sure it's up-to-date */
2834 	if (!PageUptodate(page)) {
2835 		err = mapping->a_ops->readpage(NULL, page);
2836 		if (err) {
2837 			put_page(page);
2838 			goto out;
2839 		}
2840 		lock_page(page);
2841 		if (!PageUptodate(page)) {
2842 			err = -EIO;
2843 			goto unlock;
2844 		}
2845 		if (page_has_buffers(page))
2846 			goto has_buffers;
2847 	}
2848 	zero_user(page, offset, length);
2849 	set_page_dirty(page);
2850 	err = 0;
2851 
2852 unlock:
2853 	unlock_page(page);
2854 	put_page(page);
2855 out:
2856 	return err;
2857 }
2858 EXPORT_SYMBOL(nobh_truncate_page);
2859 
2860 int block_truncate_page(struct address_space *mapping,
2861 			loff_t from, get_block_t *get_block)
2862 {
2863 	pgoff_t index = from >> PAGE_SHIFT;
2864 	unsigned offset = from & (PAGE_SIZE-1);
2865 	unsigned blocksize;
2866 	sector_t iblock;
2867 	unsigned length, pos;
2868 	struct inode *inode = mapping->host;
2869 	struct page *page;
2870 	struct buffer_head *bh;
2871 	int err;
2872 
2873 	blocksize = i_blocksize(inode);
2874 	length = offset & (blocksize - 1);
2875 
2876 	/* Block boundary? Nothing to do */
2877 	if (!length)
2878 		return 0;
2879 
2880 	length = blocksize - length;
2881 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2882 
2883 	page = grab_cache_page(mapping, index);
2884 	err = -ENOMEM;
2885 	if (!page)
2886 		goto out;
2887 
2888 	if (!page_has_buffers(page))
2889 		create_empty_buffers(page, blocksize, 0);
2890 
2891 	/* Find the buffer that contains "offset" */
2892 	bh = page_buffers(page);
2893 	pos = blocksize;
2894 	while (offset >= pos) {
2895 		bh = bh->b_this_page;
2896 		iblock++;
2897 		pos += blocksize;
2898 	}
2899 
2900 	err = 0;
2901 	if (!buffer_mapped(bh)) {
2902 		WARN_ON(bh->b_size != blocksize);
2903 		err = get_block(inode, iblock, bh, 0);
2904 		if (err)
2905 			goto unlock;
2906 		/* unmapped? It's a hole - nothing to do */
2907 		if (!buffer_mapped(bh))
2908 			goto unlock;
2909 	}
2910 
2911 	/* Ok, it's mapped. Make sure it's up-to-date */
2912 	if (PageUptodate(page))
2913 		set_buffer_uptodate(bh);
2914 
2915 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2916 		err = -EIO;
2917 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2918 		wait_on_buffer(bh);
2919 		/* Uhhuh. Read error. Complain and punt. */
2920 		if (!buffer_uptodate(bh))
2921 			goto unlock;
2922 	}
2923 
2924 	zero_user(page, offset, length);
2925 	mark_buffer_dirty(bh);
2926 	err = 0;
2927 
2928 unlock:
2929 	unlock_page(page);
2930 	put_page(page);
2931 out:
2932 	return err;
2933 }
2934 EXPORT_SYMBOL(block_truncate_page);
2935 
2936 /*
2937  * The generic ->writepage function for buffer-backed address_spaces
2938  */
2939 int block_write_full_page(struct page *page, get_block_t *get_block,
2940 			struct writeback_control *wbc)
2941 {
2942 	struct inode * const inode = page->mapping->host;
2943 	loff_t i_size = i_size_read(inode);
2944 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2945 	unsigned offset;
2946 
2947 	/* Is the page fully inside i_size? */
2948 	if (page->index < end_index)
2949 		return __block_write_full_page(inode, page, get_block, wbc,
2950 					       end_buffer_async_write);
2951 
2952 	/* Is the page fully outside i_size? (truncate in progress) */
2953 	offset = i_size & (PAGE_SIZE-1);
2954 	if (page->index >= end_index+1 || !offset) {
2955 		/*
2956 		 * The page may have dirty, unmapped buffers.  For example,
2957 		 * they may have been added in ext3_writepage().  Make them
2958 		 * freeable here, so the page does not leak.
2959 		 */
2960 		do_invalidatepage(page, 0, PAGE_SIZE);
2961 		unlock_page(page);
2962 		return 0; /* don't care */
2963 	}
2964 
2965 	/*
2966 	 * The page straddles i_size.  It must be zeroed out on each and every
2967 	 * writepage invocation because it may be mmapped.  "A file is mapped
2968 	 * in multiples of the page size.  For a file that is not a multiple of
2969 	 * the  page size, the remaining memory is zeroed when mapped, and
2970 	 * writes to that region are not written out to the file."
2971 	 */
2972 	zero_user_segment(page, offset, PAGE_SIZE);
2973 	return __block_write_full_page(inode, page, get_block, wbc,
2974 							end_buffer_async_write);
2975 }
2976 EXPORT_SYMBOL(block_write_full_page);
2977 
2978 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2979 			    get_block_t *get_block)
2980 {
2981 	struct inode *inode = mapping->host;
2982 	struct buffer_head tmp = {
2983 		.b_size = i_blocksize(inode),
2984 	};
2985 
2986 	get_block(inode, block, &tmp, 0);
2987 	return tmp.b_blocknr;
2988 }
2989 EXPORT_SYMBOL(generic_block_bmap);
2990 
2991 static void end_bio_bh_io_sync(struct bio *bio)
2992 {
2993 	struct buffer_head *bh = bio->bi_private;
2994 
2995 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2996 		set_bit(BH_Quiet, &bh->b_state);
2997 
2998 	bh->b_end_io(bh, !bio->bi_status);
2999 	bio_put(bio);
3000 }
3001 
3002 /*
3003  * This allows us to do IO even on the odd last sectors
3004  * of a device, even if the block size is some multiple
3005  * of the physical sector size.
3006  *
3007  * We'll just truncate the bio to the size of the device,
3008  * and clear the end of the buffer head manually.
3009  *
3010  * Truly out-of-range accesses will turn into actual IO
3011  * errors, this only handles the "we need to be able to
3012  * do IO at the final sector" case.
3013  */
3014 void guard_bio_eod(int op, struct bio *bio)
3015 {
3016 	sector_t maxsector;
3017 	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3018 	unsigned truncated_bytes;
3019 	struct hd_struct *part;
3020 
3021 	rcu_read_lock();
3022 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3023 	if (part)
3024 		maxsector = part_nr_sects_read(part);
3025 	else
3026 		maxsector = get_capacity(bio->bi_disk);
3027 	rcu_read_unlock();
3028 
3029 	if (!maxsector)
3030 		return;
3031 
3032 	/*
3033 	 * If the *whole* IO is past the end of the device,
3034 	 * let it through, and the IO layer will turn it into
3035 	 * an EIO.
3036 	 */
3037 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3038 		return;
3039 
3040 	maxsector -= bio->bi_iter.bi_sector;
3041 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3042 		return;
3043 
3044 	/* Uhhuh. We've got a bio that straddles the device size! */
3045 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3046 
3047 	/* Truncate the bio.. */
3048 	bio->bi_iter.bi_size -= truncated_bytes;
3049 	bvec->bv_len -= truncated_bytes;
3050 
3051 	/* ..and clear the end of the buffer for reads */
3052 	if (op == REQ_OP_READ) {
3053 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3054 				truncated_bytes);
3055 	}
3056 }
3057 
3058 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3059 			 enum rw_hint write_hint, struct writeback_control *wbc)
3060 {
3061 	struct bio *bio;
3062 
3063 	BUG_ON(!buffer_locked(bh));
3064 	BUG_ON(!buffer_mapped(bh));
3065 	BUG_ON(!bh->b_end_io);
3066 	BUG_ON(buffer_delay(bh));
3067 	BUG_ON(buffer_unwritten(bh));
3068 
3069 	/*
3070 	 * Only clear out a write error when rewriting
3071 	 */
3072 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3073 		clear_buffer_write_io_error(bh);
3074 
3075 	/*
3076 	 * from here on down, it's all bio -- do the initial mapping,
3077 	 * submit_bio -> generic_make_request may further map this bio around
3078 	 */
3079 	bio = bio_alloc(GFP_NOIO, 1);
3080 
3081 	if (wbc) {
3082 		wbc_init_bio(wbc, bio);
3083 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3084 	}
3085 
3086 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3087 	bio_set_dev(bio, bh->b_bdev);
3088 	bio->bi_write_hint = write_hint;
3089 
3090 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3091 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3092 
3093 	bio->bi_end_io = end_bio_bh_io_sync;
3094 	bio->bi_private = bh;
3095 
3096 	/* Take care of bh's that straddle the end of the device */
3097 	guard_bio_eod(op, bio);
3098 
3099 	if (buffer_meta(bh))
3100 		op_flags |= REQ_META;
3101 	if (buffer_prio(bh))
3102 		op_flags |= REQ_PRIO;
3103 	bio_set_op_attrs(bio, op, op_flags);
3104 
3105 	submit_bio(bio);
3106 	return 0;
3107 }
3108 
3109 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3110 {
3111 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3112 }
3113 EXPORT_SYMBOL(submit_bh);
3114 
3115 /**
3116  * ll_rw_block: low-level access to block devices (DEPRECATED)
3117  * @op: whether to %READ or %WRITE
3118  * @op_flags: req_flag_bits
3119  * @nr: number of &struct buffer_heads in the array
3120  * @bhs: array of pointers to &struct buffer_head
3121  *
3122  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3123  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3124  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3125  * %REQ_RAHEAD.
3126  *
3127  * This function drops any buffer that it cannot get a lock on (with the
3128  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3129  * request, and any buffer that appears to be up-to-date when doing read
3130  * request.  Further it marks as clean buffers that are processed for
3131  * writing (the buffer cache won't assume that they are actually clean
3132  * until the buffer gets unlocked).
3133  *
3134  * ll_rw_block sets b_end_io to simple completion handler that marks
3135  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3136  * any waiters.
3137  *
3138  * All of the buffers must be for the same device, and must also be a
3139  * multiple of the current approved size for the device.
3140  */
3141 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3142 {
3143 	int i;
3144 
3145 	for (i = 0; i < nr; i++) {
3146 		struct buffer_head *bh = bhs[i];
3147 
3148 		if (!trylock_buffer(bh))
3149 			continue;
3150 		if (op == WRITE) {
3151 			if (test_clear_buffer_dirty(bh)) {
3152 				bh->b_end_io = end_buffer_write_sync;
3153 				get_bh(bh);
3154 				submit_bh(op, op_flags, bh);
3155 				continue;
3156 			}
3157 		} else {
3158 			if (!buffer_uptodate(bh)) {
3159 				bh->b_end_io = end_buffer_read_sync;
3160 				get_bh(bh);
3161 				submit_bh(op, op_flags, bh);
3162 				continue;
3163 			}
3164 		}
3165 		unlock_buffer(bh);
3166 	}
3167 }
3168 EXPORT_SYMBOL(ll_rw_block);
3169 
3170 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3171 {
3172 	lock_buffer(bh);
3173 	if (!test_clear_buffer_dirty(bh)) {
3174 		unlock_buffer(bh);
3175 		return;
3176 	}
3177 	bh->b_end_io = end_buffer_write_sync;
3178 	get_bh(bh);
3179 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3180 }
3181 EXPORT_SYMBOL(write_dirty_buffer);
3182 
3183 /*
3184  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3185  * and then start new I/O and then wait upon it.  The caller must have a ref on
3186  * the buffer_head.
3187  */
3188 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3189 {
3190 	int ret = 0;
3191 
3192 	WARN_ON(atomic_read(&bh->b_count) < 1);
3193 	lock_buffer(bh);
3194 	if (test_clear_buffer_dirty(bh)) {
3195 		get_bh(bh);
3196 		bh->b_end_io = end_buffer_write_sync;
3197 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3198 		wait_on_buffer(bh);
3199 		if (!ret && !buffer_uptodate(bh))
3200 			ret = -EIO;
3201 	} else {
3202 		unlock_buffer(bh);
3203 	}
3204 	return ret;
3205 }
3206 EXPORT_SYMBOL(__sync_dirty_buffer);
3207 
3208 int sync_dirty_buffer(struct buffer_head *bh)
3209 {
3210 	return __sync_dirty_buffer(bh, REQ_SYNC);
3211 }
3212 EXPORT_SYMBOL(sync_dirty_buffer);
3213 
3214 /*
3215  * try_to_free_buffers() checks if all the buffers on this particular page
3216  * are unused, and releases them if so.
3217  *
3218  * Exclusion against try_to_free_buffers may be obtained by either
3219  * locking the page or by holding its mapping's private_lock.
3220  *
3221  * If the page is dirty but all the buffers are clean then we need to
3222  * be sure to mark the page clean as well.  This is because the page
3223  * may be against a block device, and a later reattachment of buffers
3224  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3225  * filesystem data on the same device.
3226  *
3227  * The same applies to regular filesystem pages: if all the buffers are
3228  * clean then we set the page clean and proceed.  To do that, we require
3229  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3230  * private_lock.
3231  *
3232  * try_to_free_buffers() is non-blocking.
3233  */
3234 static inline int buffer_busy(struct buffer_head *bh)
3235 {
3236 	return atomic_read(&bh->b_count) |
3237 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3238 }
3239 
3240 static int
3241 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3242 {
3243 	struct buffer_head *head = page_buffers(page);
3244 	struct buffer_head *bh;
3245 
3246 	bh = head;
3247 	do {
3248 		if (buffer_busy(bh))
3249 			goto failed;
3250 		bh = bh->b_this_page;
3251 	} while (bh != head);
3252 
3253 	do {
3254 		struct buffer_head *next = bh->b_this_page;
3255 
3256 		if (bh->b_assoc_map)
3257 			__remove_assoc_queue(bh);
3258 		bh = next;
3259 	} while (bh != head);
3260 	*buffers_to_free = head;
3261 	__clear_page_buffers(page);
3262 	return 1;
3263 failed:
3264 	return 0;
3265 }
3266 
3267 int try_to_free_buffers(struct page *page)
3268 {
3269 	struct address_space * const mapping = page->mapping;
3270 	struct buffer_head *buffers_to_free = NULL;
3271 	int ret = 0;
3272 
3273 	BUG_ON(!PageLocked(page));
3274 	if (PageWriteback(page))
3275 		return 0;
3276 
3277 	if (mapping == NULL) {		/* can this still happen? */
3278 		ret = drop_buffers(page, &buffers_to_free);
3279 		goto out;
3280 	}
3281 
3282 	spin_lock(&mapping->private_lock);
3283 	ret = drop_buffers(page, &buffers_to_free);
3284 
3285 	/*
3286 	 * If the filesystem writes its buffers by hand (eg ext3)
3287 	 * then we can have clean buffers against a dirty page.  We
3288 	 * clean the page here; otherwise the VM will never notice
3289 	 * that the filesystem did any IO at all.
3290 	 *
3291 	 * Also, during truncate, discard_buffer will have marked all
3292 	 * the page's buffers clean.  We discover that here and clean
3293 	 * the page also.
3294 	 *
3295 	 * private_lock must be held over this entire operation in order
3296 	 * to synchronise against __set_page_dirty_buffers and prevent the
3297 	 * dirty bit from being lost.
3298 	 */
3299 	if (ret)
3300 		cancel_dirty_page(page);
3301 	spin_unlock(&mapping->private_lock);
3302 out:
3303 	if (buffers_to_free) {
3304 		struct buffer_head *bh = buffers_to_free;
3305 
3306 		do {
3307 			struct buffer_head *next = bh->b_this_page;
3308 			free_buffer_head(bh);
3309 			bh = next;
3310 		} while (bh != buffers_to_free);
3311 	}
3312 	return ret;
3313 }
3314 EXPORT_SYMBOL(try_to_free_buffers);
3315 
3316 /*
3317  * There are no bdflush tunables left.  But distributions are
3318  * still running obsolete flush daemons, so we terminate them here.
3319  *
3320  * Use of bdflush() is deprecated and will be removed in a future kernel.
3321  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3322  */
3323 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3324 {
3325 	static int msg_count;
3326 
3327 	if (!capable(CAP_SYS_ADMIN))
3328 		return -EPERM;
3329 
3330 	if (msg_count < 5) {
3331 		msg_count++;
3332 		printk(KERN_INFO
3333 			"warning: process `%s' used the obsolete bdflush"
3334 			" system call\n", current->comm);
3335 		printk(KERN_INFO "Fix your initscripts?\n");
3336 	}
3337 
3338 	if (func == 1)
3339 		do_exit(0);
3340 	return 0;
3341 }
3342 
3343 /*
3344  * Buffer-head allocation
3345  */
3346 static struct kmem_cache *bh_cachep __read_mostly;
3347 
3348 /*
3349  * Once the number of bh's in the machine exceeds this level, we start
3350  * stripping them in writeback.
3351  */
3352 static unsigned long max_buffer_heads;
3353 
3354 int buffer_heads_over_limit;
3355 
3356 struct bh_accounting {
3357 	int nr;			/* Number of live bh's */
3358 	int ratelimit;		/* Limit cacheline bouncing */
3359 };
3360 
3361 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3362 
3363 static void recalc_bh_state(void)
3364 {
3365 	int i;
3366 	int tot = 0;
3367 
3368 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3369 		return;
3370 	__this_cpu_write(bh_accounting.ratelimit, 0);
3371 	for_each_online_cpu(i)
3372 		tot += per_cpu(bh_accounting, i).nr;
3373 	buffer_heads_over_limit = (tot > max_buffer_heads);
3374 }
3375 
3376 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3377 {
3378 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3379 	if (ret) {
3380 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3381 		preempt_disable();
3382 		__this_cpu_inc(bh_accounting.nr);
3383 		recalc_bh_state();
3384 		preempt_enable();
3385 	}
3386 	return ret;
3387 }
3388 EXPORT_SYMBOL(alloc_buffer_head);
3389 
3390 void free_buffer_head(struct buffer_head *bh)
3391 {
3392 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3393 	kmem_cache_free(bh_cachep, bh);
3394 	preempt_disable();
3395 	__this_cpu_dec(bh_accounting.nr);
3396 	recalc_bh_state();
3397 	preempt_enable();
3398 }
3399 EXPORT_SYMBOL(free_buffer_head);
3400 
3401 static int buffer_exit_cpu_dead(unsigned int cpu)
3402 {
3403 	int i;
3404 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3405 
3406 	for (i = 0; i < BH_LRU_SIZE; i++) {
3407 		brelse(b->bhs[i]);
3408 		b->bhs[i] = NULL;
3409 	}
3410 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3411 	per_cpu(bh_accounting, cpu).nr = 0;
3412 	return 0;
3413 }
3414 
3415 /**
3416  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3417  * @bh: struct buffer_head
3418  *
3419  * Return true if the buffer is up-to-date and false,
3420  * with the buffer locked, if not.
3421  */
3422 int bh_uptodate_or_lock(struct buffer_head *bh)
3423 {
3424 	if (!buffer_uptodate(bh)) {
3425 		lock_buffer(bh);
3426 		if (!buffer_uptodate(bh))
3427 			return 0;
3428 		unlock_buffer(bh);
3429 	}
3430 	return 1;
3431 }
3432 EXPORT_SYMBOL(bh_uptodate_or_lock);
3433 
3434 /**
3435  * bh_submit_read - Submit a locked buffer for reading
3436  * @bh: struct buffer_head
3437  *
3438  * Returns zero on success and -EIO on error.
3439  */
3440 int bh_submit_read(struct buffer_head *bh)
3441 {
3442 	BUG_ON(!buffer_locked(bh));
3443 
3444 	if (buffer_uptodate(bh)) {
3445 		unlock_buffer(bh);
3446 		return 0;
3447 	}
3448 
3449 	get_bh(bh);
3450 	bh->b_end_io = end_buffer_read_sync;
3451 	submit_bh(REQ_OP_READ, 0, bh);
3452 	wait_on_buffer(bh);
3453 	if (buffer_uptodate(bh))
3454 		return 0;
3455 	return -EIO;
3456 }
3457 EXPORT_SYMBOL(bh_submit_read);
3458 
3459 /*
3460  * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3461  *
3462  * Returns the offset within the file on success, and -ENOENT otherwise.
3463  */
3464 static loff_t
3465 page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3466 {
3467 	loff_t offset = page_offset(page);
3468 	struct buffer_head *bh, *head;
3469 	bool seek_data = whence == SEEK_DATA;
3470 
3471 	if (lastoff < offset)
3472 		lastoff = offset;
3473 
3474 	bh = head = page_buffers(page);
3475 	do {
3476 		offset += bh->b_size;
3477 		if (lastoff >= offset)
3478 			continue;
3479 
3480 		/*
3481 		 * Unwritten extents that have data in the page cache covering
3482 		 * them can be identified by the BH_Unwritten state flag.
3483 		 * Pages with multiple buffers might have a mix of holes, data
3484 		 * and unwritten extents - any buffer with valid data in it
3485 		 * should have BH_Uptodate flag set on it.
3486 		 */
3487 
3488 		if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3489 			return lastoff;
3490 
3491 		lastoff = offset;
3492 	} while ((bh = bh->b_this_page) != head);
3493 	return -ENOENT;
3494 }
3495 
3496 /*
3497  * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3498  *
3499  * Within unwritten extents, the page cache determines which parts are holes
3500  * and which are data: unwritten and uptodate buffer heads count as data;
3501  * everything else counts as a hole.
3502  *
3503  * Returns the resulting offset on successs, and -ENOENT otherwise.
3504  */
3505 loff_t
3506 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3507 			  int whence)
3508 {
3509 	pgoff_t index = offset >> PAGE_SHIFT;
3510 	pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3511 	loff_t lastoff = offset;
3512 	struct pagevec pvec;
3513 
3514 	if (length <= 0)
3515 		return -ENOENT;
3516 
3517 	pagevec_init(&pvec);
3518 
3519 	do {
3520 		unsigned nr_pages, i;
3521 
3522 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3523 						end - 1);
3524 		if (nr_pages == 0)
3525 			break;
3526 
3527 		for (i = 0; i < nr_pages; i++) {
3528 			struct page *page = pvec.pages[i];
3529 
3530 			/*
3531 			 * At this point, the page may be truncated or
3532 			 * invalidated (changing page->mapping to NULL), or
3533 			 * even swizzled back from swapper_space to tmpfs file
3534 			 * mapping.  However, page->index will not change
3535 			 * because we have a reference on the page.
3536                          *
3537 			 * If current page offset is beyond where we've ended,
3538 			 * we've found a hole.
3539                          */
3540 			if (whence == SEEK_HOLE &&
3541 			    lastoff < page_offset(page))
3542 				goto check_range;
3543 
3544 			lock_page(page);
3545 			if (likely(page->mapping == inode->i_mapping) &&
3546 			    page_has_buffers(page)) {
3547 				lastoff = page_seek_hole_data(page, lastoff, whence);
3548 				if (lastoff >= 0) {
3549 					unlock_page(page);
3550 					goto check_range;
3551 				}
3552 			}
3553 			unlock_page(page);
3554 			lastoff = page_offset(page) + PAGE_SIZE;
3555 		}
3556 		pagevec_release(&pvec);
3557 	} while (index < end);
3558 
3559 	/* When no page at lastoff and we are not done, we found a hole. */
3560 	if (whence != SEEK_HOLE)
3561 		goto not_found;
3562 
3563 check_range:
3564 	if (lastoff < offset + length)
3565 		goto out;
3566 not_found:
3567 	lastoff = -ENOENT;
3568 out:
3569 	pagevec_release(&pvec);
3570 	return lastoff;
3571 }
3572 
3573 void __init buffer_init(void)
3574 {
3575 	unsigned long nrpages;
3576 	int ret;
3577 
3578 	bh_cachep = kmem_cache_create("buffer_head",
3579 			sizeof(struct buffer_head), 0,
3580 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3581 				SLAB_MEM_SPREAD),
3582 				NULL);
3583 
3584 	/*
3585 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3586 	 */
3587 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3588 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3589 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3590 					NULL, buffer_exit_cpu_dead);
3591 	WARN_ON(ret < 0);
3592 }
3593