1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/module.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 56 static int sync_buffer(void *word) 57 { 58 struct block_device *bd; 59 struct buffer_head *bh 60 = container_of(word, struct buffer_head, b_state); 61 62 smp_mb(); 63 bd = bh->b_bdev; 64 if (bd) 65 blk_run_address_space(bd->bd_inode->i_mapping); 66 io_schedule(); 67 return 0; 68 } 69 70 void __lock_buffer(struct buffer_head *bh) 71 { 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 73 TASK_UNINTERRUPTIBLE); 74 } 75 EXPORT_SYMBOL(__lock_buffer); 76 77 void unlock_buffer(struct buffer_head *bh) 78 { 79 smp_mb__before_clear_bit(); 80 clear_buffer_locked(bh); 81 smp_mb__after_clear_bit(); 82 wake_up_bit(&bh->b_state, BH_Lock); 83 } 84 85 /* 86 * Block until a buffer comes unlocked. This doesn't stop it 87 * from becoming locked again - you have to lock it yourself 88 * if you want to preserve its state. 89 */ 90 void __wait_on_buffer(struct buffer_head * bh) 91 { 92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 93 } 94 95 static void 96 __clear_page_buffers(struct page *page) 97 { 98 ClearPagePrivate(page); 99 set_page_private(page, 0); 100 page_cache_release(page); 101 } 102 103 static void buffer_io_error(struct buffer_head *bh) 104 { 105 char b[BDEVNAME_SIZE]; 106 107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 108 bdevname(bh->b_bdev, b), 109 (unsigned long long)bh->b_blocknr); 110 } 111 112 /* 113 * End-of-IO handler helper function which does not touch the bh after 114 * unlocking it. 115 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 116 * a race there is benign: unlock_buffer() only use the bh's address for 117 * hashing after unlocking the buffer, so it doesn't actually touch the bh 118 * itself. 119 */ 120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 121 { 122 if (uptodate) { 123 set_buffer_uptodate(bh); 124 } else { 125 /* This happens, due to failed READA attempts. */ 126 clear_buffer_uptodate(bh); 127 } 128 unlock_buffer(bh); 129 } 130 131 /* 132 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 133 * unlock the buffer. This is what ll_rw_block uses too. 134 */ 135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 136 { 137 __end_buffer_read_notouch(bh, uptodate); 138 put_bh(bh); 139 } 140 141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 142 { 143 char b[BDEVNAME_SIZE]; 144 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 149 buffer_io_error(bh); 150 printk(KERN_WARNING "lost page write due to " 151 "I/O error on %s\n", 152 bdevname(bh->b_bdev, b)); 153 } 154 set_buffer_write_io_error(bh); 155 clear_buffer_uptodate(bh); 156 } 157 unlock_buffer(bh); 158 put_bh(bh); 159 } 160 161 /* 162 * Write out and wait upon all the dirty data associated with a block 163 * device via its mapping. Does not take the superblock lock. 164 */ 165 int sync_blockdev(struct block_device *bdev) 166 { 167 int ret = 0; 168 169 if (bdev) 170 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); 171 return ret; 172 } 173 EXPORT_SYMBOL(sync_blockdev); 174 175 /* 176 * Write out and wait upon all dirty data associated with this 177 * device. Filesystem data as well as the underlying block 178 * device. Takes the superblock lock. 179 */ 180 int fsync_bdev(struct block_device *bdev) 181 { 182 struct super_block *sb = get_super(bdev); 183 if (sb) { 184 int res = fsync_super(sb); 185 drop_super(sb); 186 return res; 187 } 188 return sync_blockdev(bdev); 189 } 190 191 /** 192 * freeze_bdev -- lock a filesystem and force it into a consistent state 193 * @bdev: blockdevice to lock 194 * 195 * This takes the block device bd_mount_sem to make sure no new mounts 196 * happen on bdev until thaw_bdev() is called. 197 * If a superblock is found on this device, we take the s_umount semaphore 198 * on it to make sure nobody unmounts until the snapshot creation is done. 199 */ 200 struct super_block *freeze_bdev(struct block_device *bdev) 201 { 202 struct super_block *sb; 203 204 down(&bdev->bd_mount_sem); 205 sb = get_super(bdev); 206 if (sb && !(sb->s_flags & MS_RDONLY)) { 207 sb->s_frozen = SB_FREEZE_WRITE; 208 smp_wmb(); 209 210 __fsync_super(sb); 211 212 sb->s_frozen = SB_FREEZE_TRANS; 213 smp_wmb(); 214 215 sync_blockdev(sb->s_bdev); 216 217 if (sb->s_op->write_super_lockfs) 218 sb->s_op->write_super_lockfs(sb); 219 } 220 221 sync_blockdev(bdev); 222 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ 223 } 224 EXPORT_SYMBOL(freeze_bdev); 225 226 /** 227 * thaw_bdev -- unlock filesystem 228 * @bdev: blockdevice to unlock 229 * @sb: associated superblock 230 * 231 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 232 */ 233 void thaw_bdev(struct block_device *bdev, struct super_block *sb) 234 { 235 if (sb) { 236 BUG_ON(sb->s_bdev != bdev); 237 238 if (sb->s_op->unlockfs) 239 sb->s_op->unlockfs(sb); 240 sb->s_frozen = SB_UNFROZEN; 241 smp_wmb(); 242 wake_up(&sb->s_wait_unfrozen); 243 drop_super(sb); 244 } 245 246 up(&bdev->bd_mount_sem); 247 } 248 EXPORT_SYMBOL(thaw_bdev); 249 250 /* 251 * Various filesystems appear to want __find_get_block to be non-blocking. 252 * But it's the page lock which protects the buffers. To get around this, 253 * we get exclusion from try_to_free_buffers with the blockdev mapping's 254 * private_lock. 255 * 256 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 257 * may be quite high. This code could TryLock the page, and if that 258 * succeeds, there is no need to take private_lock. (But if 259 * private_lock is contended then so is mapping->tree_lock). 260 */ 261 static struct buffer_head * 262 __find_get_block_slow(struct block_device *bdev, sector_t block) 263 { 264 struct inode *bd_inode = bdev->bd_inode; 265 struct address_space *bd_mapping = bd_inode->i_mapping; 266 struct buffer_head *ret = NULL; 267 pgoff_t index; 268 struct buffer_head *bh; 269 struct buffer_head *head; 270 struct page *page; 271 int all_mapped = 1; 272 273 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 274 page = find_get_page(bd_mapping, index); 275 if (!page) 276 goto out; 277 278 spin_lock(&bd_mapping->private_lock); 279 if (!page_has_buffers(page)) 280 goto out_unlock; 281 head = page_buffers(page); 282 bh = head; 283 do { 284 if (bh->b_blocknr == block) { 285 ret = bh; 286 get_bh(bh); 287 goto out_unlock; 288 } 289 if (!buffer_mapped(bh)) 290 all_mapped = 0; 291 bh = bh->b_this_page; 292 } while (bh != head); 293 294 /* we might be here because some of the buffers on this page are 295 * not mapped. This is due to various races between 296 * file io on the block device and getblk. It gets dealt with 297 * elsewhere, don't buffer_error if we had some unmapped buffers 298 */ 299 if (all_mapped) { 300 printk("__find_get_block_slow() failed. " 301 "block=%llu, b_blocknr=%llu\n", 302 (unsigned long long)block, 303 (unsigned long long)bh->b_blocknr); 304 printk("b_state=0x%08lx, b_size=%zu\n", 305 bh->b_state, bh->b_size); 306 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 307 } 308 out_unlock: 309 spin_unlock(&bd_mapping->private_lock); 310 page_cache_release(page); 311 out: 312 return ret; 313 } 314 315 /* If invalidate_buffers() will trash dirty buffers, it means some kind 316 of fs corruption is going on. Trashing dirty data always imply losing 317 information that was supposed to be just stored on the physical layer 318 by the user. 319 320 Thus invalidate_buffers in general usage is not allwowed to trash 321 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 322 be preserved. These buffers are simply skipped. 323 324 We also skip buffers which are still in use. For example this can 325 happen if a userspace program is reading the block device. 326 327 NOTE: In the case where the user removed a removable-media-disk even if 328 there's still dirty data not synced on disk (due a bug in the device driver 329 or due an error of the user), by not destroying the dirty buffers we could 330 generate corruption also on the next media inserted, thus a parameter is 331 necessary to handle this case in the most safe way possible (trying 332 to not corrupt also the new disk inserted with the data belonging to 333 the old now corrupted disk). Also for the ramdisk the natural thing 334 to do in order to release the ramdisk memory is to destroy dirty buffers. 335 336 These are two special cases. Normal usage imply the device driver 337 to issue a sync on the device (without waiting I/O completion) and 338 then an invalidate_buffers call that doesn't trash dirty buffers. 339 340 For handling cache coherency with the blkdev pagecache the 'update' case 341 is been introduced. It is needed to re-read from disk any pinned 342 buffer. NOTE: re-reading from disk is destructive so we can do it only 343 when we assume nobody is changing the buffercache under our I/O and when 344 we think the disk contains more recent information than the buffercache. 345 The update == 1 pass marks the buffers we need to update, the update == 2 346 pass does the actual I/O. */ 347 void invalidate_bdev(struct block_device *bdev) 348 { 349 struct address_space *mapping = bdev->bd_inode->i_mapping; 350 351 if (mapping->nrpages == 0) 352 return; 353 354 invalidate_bh_lrus(); 355 invalidate_mapping_pages(mapping, 0, -1); 356 } 357 358 /* 359 * Kick pdflush then try to free up some ZONE_NORMAL memory. 360 */ 361 static void free_more_memory(void) 362 { 363 struct zone **zones; 364 pg_data_t *pgdat; 365 366 wakeup_pdflush(1024); 367 yield(); 368 369 for_each_online_pgdat(pgdat) { 370 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones; 371 if (*zones) 372 try_to_free_pages(zones, 0, GFP_NOFS); 373 } 374 } 375 376 /* 377 * I/O completion handler for block_read_full_page() - pages 378 * which come unlocked at the end of I/O. 379 */ 380 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 381 { 382 unsigned long flags; 383 struct buffer_head *first; 384 struct buffer_head *tmp; 385 struct page *page; 386 int page_uptodate = 1; 387 388 BUG_ON(!buffer_async_read(bh)); 389 390 page = bh->b_page; 391 if (uptodate) { 392 set_buffer_uptodate(bh); 393 } else { 394 clear_buffer_uptodate(bh); 395 if (printk_ratelimit()) 396 buffer_io_error(bh); 397 SetPageError(page); 398 } 399 400 /* 401 * Be _very_ careful from here on. Bad things can happen if 402 * two buffer heads end IO at almost the same time and both 403 * decide that the page is now completely done. 404 */ 405 first = page_buffers(page); 406 local_irq_save(flags); 407 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 408 clear_buffer_async_read(bh); 409 unlock_buffer(bh); 410 tmp = bh; 411 do { 412 if (!buffer_uptodate(tmp)) 413 page_uptodate = 0; 414 if (buffer_async_read(tmp)) { 415 BUG_ON(!buffer_locked(tmp)); 416 goto still_busy; 417 } 418 tmp = tmp->b_this_page; 419 } while (tmp != bh); 420 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 421 local_irq_restore(flags); 422 423 /* 424 * If none of the buffers had errors and they are all 425 * uptodate then we can set the page uptodate. 426 */ 427 if (page_uptodate && !PageError(page)) 428 SetPageUptodate(page); 429 unlock_page(page); 430 return; 431 432 still_busy: 433 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 434 local_irq_restore(flags); 435 return; 436 } 437 438 /* 439 * Completion handler for block_write_full_page() - pages which are unlocked 440 * during I/O, and which have PageWriteback cleared upon I/O completion. 441 */ 442 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 443 { 444 char b[BDEVNAME_SIZE]; 445 unsigned long flags; 446 struct buffer_head *first; 447 struct buffer_head *tmp; 448 struct page *page; 449 450 BUG_ON(!buffer_async_write(bh)); 451 452 page = bh->b_page; 453 if (uptodate) { 454 set_buffer_uptodate(bh); 455 } else { 456 if (printk_ratelimit()) { 457 buffer_io_error(bh); 458 printk(KERN_WARNING "lost page write due to " 459 "I/O error on %s\n", 460 bdevname(bh->b_bdev, b)); 461 } 462 set_bit(AS_EIO, &page->mapping->flags); 463 set_buffer_write_io_error(bh); 464 clear_buffer_uptodate(bh); 465 SetPageError(page); 466 } 467 468 first = page_buffers(page); 469 local_irq_save(flags); 470 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 471 472 clear_buffer_async_write(bh); 473 unlock_buffer(bh); 474 tmp = bh->b_this_page; 475 while (tmp != bh) { 476 if (buffer_async_write(tmp)) { 477 BUG_ON(!buffer_locked(tmp)); 478 goto still_busy; 479 } 480 tmp = tmp->b_this_page; 481 } 482 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 483 local_irq_restore(flags); 484 end_page_writeback(page); 485 return; 486 487 still_busy: 488 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 489 local_irq_restore(flags); 490 return; 491 } 492 493 /* 494 * If a page's buffers are under async readin (end_buffer_async_read 495 * completion) then there is a possibility that another thread of 496 * control could lock one of the buffers after it has completed 497 * but while some of the other buffers have not completed. This 498 * locked buffer would confuse end_buffer_async_read() into not unlocking 499 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 500 * that this buffer is not under async I/O. 501 * 502 * The page comes unlocked when it has no locked buffer_async buffers 503 * left. 504 * 505 * PageLocked prevents anyone starting new async I/O reads any of 506 * the buffers. 507 * 508 * PageWriteback is used to prevent simultaneous writeout of the same 509 * page. 510 * 511 * PageLocked prevents anyone from starting writeback of a page which is 512 * under read I/O (PageWriteback is only ever set against a locked page). 513 */ 514 static void mark_buffer_async_read(struct buffer_head *bh) 515 { 516 bh->b_end_io = end_buffer_async_read; 517 set_buffer_async_read(bh); 518 } 519 520 void mark_buffer_async_write(struct buffer_head *bh) 521 { 522 bh->b_end_io = end_buffer_async_write; 523 set_buffer_async_write(bh); 524 } 525 EXPORT_SYMBOL(mark_buffer_async_write); 526 527 528 /* 529 * fs/buffer.c contains helper functions for buffer-backed address space's 530 * fsync functions. A common requirement for buffer-based filesystems is 531 * that certain data from the backing blockdev needs to be written out for 532 * a successful fsync(). For example, ext2 indirect blocks need to be 533 * written back and waited upon before fsync() returns. 534 * 535 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 536 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 537 * management of a list of dependent buffers at ->i_mapping->private_list. 538 * 539 * Locking is a little subtle: try_to_free_buffers() will remove buffers 540 * from their controlling inode's queue when they are being freed. But 541 * try_to_free_buffers() will be operating against the *blockdev* mapping 542 * at the time, not against the S_ISREG file which depends on those buffers. 543 * So the locking for private_list is via the private_lock in the address_space 544 * which backs the buffers. Which is different from the address_space 545 * against which the buffers are listed. So for a particular address_space, 546 * mapping->private_lock does *not* protect mapping->private_list! In fact, 547 * mapping->private_list will always be protected by the backing blockdev's 548 * ->private_lock. 549 * 550 * Which introduces a requirement: all buffers on an address_space's 551 * ->private_list must be from the same address_space: the blockdev's. 552 * 553 * address_spaces which do not place buffers at ->private_list via these 554 * utility functions are free to use private_lock and private_list for 555 * whatever they want. The only requirement is that list_empty(private_list) 556 * be true at clear_inode() time. 557 * 558 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 559 * filesystems should do that. invalidate_inode_buffers() should just go 560 * BUG_ON(!list_empty). 561 * 562 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 563 * take an address_space, not an inode. And it should be called 564 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 565 * queued up. 566 * 567 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 568 * list if it is already on a list. Because if the buffer is on a list, 569 * it *must* already be on the right one. If not, the filesystem is being 570 * silly. This will save a ton of locking. But first we have to ensure 571 * that buffers are taken *off* the old inode's list when they are freed 572 * (presumably in truncate). That requires careful auditing of all 573 * filesystems (do it inside bforget()). It could also be done by bringing 574 * b_inode back. 575 */ 576 577 /* 578 * The buffer's backing address_space's private_lock must be held 579 */ 580 static inline void __remove_assoc_queue(struct buffer_head *bh) 581 { 582 list_del_init(&bh->b_assoc_buffers); 583 WARN_ON(!bh->b_assoc_map); 584 if (buffer_write_io_error(bh)) 585 set_bit(AS_EIO, &bh->b_assoc_map->flags); 586 bh->b_assoc_map = NULL; 587 } 588 589 int inode_has_buffers(struct inode *inode) 590 { 591 return !list_empty(&inode->i_data.private_list); 592 } 593 594 /* 595 * osync is designed to support O_SYNC io. It waits synchronously for 596 * all already-submitted IO to complete, but does not queue any new 597 * writes to the disk. 598 * 599 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 600 * you dirty the buffers, and then use osync_inode_buffers to wait for 601 * completion. Any other dirty buffers which are not yet queued for 602 * write will not be flushed to disk by the osync. 603 */ 604 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 605 { 606 struct buffer_head *bh; 607 struct list_head *p; 608 int err = 0; 609 610 spin_lock(lock); 611 repeat: 612 list_for_each_prev(p, list) { 613 bh = BH_ENTRY(p); 614 if (buffer_locked(bh)) { 615 get_bh(bh); 616 spin_unlock(lock); 617 wait_on_buffer(bh); 618 if (!buffer_uptodate(bh)) 619 err = -EIO; 620 brelse(bh); 621 spin_lock(lock); 622 goto repeat; 623 } 624 } 625 spin_unlock(lock); 626 return err; 627 } 628 629 /** 630 * sync_mapping_buffers - write out and wait upon a mapping's "associated" 631 * buffers 632 * @mapping: the mapping which wants those buffers written 633 * 634 * Starts I/O against the buffers at mapping->private_list, and waits upon 635 * that I/O. 636 * 637 * Basically, this is a convenience function for fsync(). 638 * @mapping is a file or directory which needs those buffers to be written for 639 * a successful fsync(). 640 */ 641 int sync_mapping_buffers(struct address_space *mapping) 642 { 643 struct address_space *buffer_mapping = mapping->assoc_mapping; 644 645 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 646 return 0; 647 648 return fsync_buffers_list(&buffer_mapping->private_lock, 649 &mapping->private_list); 650 } 651 EXPORT_SYMBOL(sync_mapping_buffers); 652 653 /* 654 * Called when we've recently written block `bblock', and it is known that 655 * `bblock' was for a buffer_boundary() buffer. This means that the block at 656 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 657 * dirty, schedule it for IO. So that indirects merge nicely with their data. 658 */ 659 void write_boundary_block(struct block_device *bdev, 660 sector_t bblock, unsigned blocksize) 661 { 662 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 663 if (bh) { 664 if (buffer_dirty(bh)) 665 ll_rw_block(WRITE, 1, &bh); 666 put_bh(bh); 667 } 668 } 669 670 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 671 { 672 struct address_space *mapping = inode->i_mapping; 673 struct address_space *buffer_mapping = bh->b_page->mapping; 674 675 mark_buffer_dirty(bh); 676 if (!mapping->assoc_mapping) { 677 mapping->assoc_mapping = buffer_mapping; 678 } else { 679 BUG_ON(mapping->assoc_mapping != buffer_mapping); 680 } 681 if (!bh->b_assoc_map) { 682 spin_lock(&buffer_mapping->private_lock); 683 list_move_tail(&bh->b_assoc_buffers, 684 &mapping->private_list); 685 bh->b_assoc_map = mapping; 686 spin_unlock(&buffer_mapping->private_lock); 687 } 688 } 689 EXPORT_SYMBOL(mark_buffer_dirty_inode); 690 691 /* 692 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 693 * dirty. 694 * 695 * If warn is true, then emit a warning if the page is not uptodate and has 696 * not been truncated. 697 */ 698 static int __set_page_dirty(struct page *page, 699 struct address_space *mapping, int warn) 700 { 701 if (unlikely(!mapping)) 702 return !TestSetPageDirty(page); 703 704 if (TestSetPageDirty(page)) 705 return 0; 706 707 write_lock_irq(&mapping->tree_lock); 708 if (page->mapping) { /* Race with truncate? */ 709 WARN_ON_ONCE(warn && !PageUptodate(page)); 710 711 if (mapping_cap_account_dirty(mapping)) { 712 __inc_zone_page_state(page, NR_FILE_DIRTY); 713 __inc_bdi_stat(mapping->backing_dev_info, 714 BDI_RECLAIMABLE); 715 task_io_account_write(PAGE_CACHE_SIZE); 716 } 717 radix_tree_tag_set(&mapping->page_tree, 718 page_index(page), PAGECACHE_TAG_DIRTY); 719 } 720 write_unlock_irq(&mapping->tree_lock); 721 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 722 723 return 1; 724 } 725 726 /* 727 * Add a page to the dirty page list. 728 * 729 * It is a sad fact of life that this function is called from several places 730 * deeply under spinlocking. It may not sleep. 731 * 732 * If the page has buffers, the uptodate buffers are set dirty, to preserve 733 * dirty-state coherency between the page and the buffers. It the page does 734 * not have buffers then when they are later attached they will all be set 735 * dirty. 736 * 737 * The buffers are dirtied before the page is dirtied. There's a small race 738 * window in which a writepage caller may see the page cleanness but not the 739 * buffer dirtiness. That's fine. If this code were to set the page dirty 740 * before the buffers, a concurrent writepage caller could clear the page dirty 741 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 742 * page on the dirty page list. 743 * 744 * We use private_lock to lock against try_to_free_buffers while using the 745 * page's buffer list. Also use this to protect against clean buffers being 746 * added to the page after it was set dirty. 747 * 748 * FIXME: may need to call ->reservepage here as well. That's rather up to the 749 * address_space though. 750 */ 751 int __set_page_dirty_buffers(struct page *page) 752 { 753 struct address_space *mapping = page_mapping(page); 754 755 if (unlikely(!mapping)) 756 return !TestSetPageDirty(page); 757 758 spin_lock(&mapping->private_lock); 759 if (page_has_buffers(page)) { 760 struct buffer_head *head = page_buffers(page); 761 struct buffer_head *bh = head; 762 763 do { 764 set_buffer_dirty(bh); 765 bh = bh->b_this_page; 766 } while (bh != head); 767 } 768 spin_unlock(&mapping->private_lock); 769 770 return __set_page_dirty(page, mapping, 1); 771 } 772 EXPORT_SYMBOL(__set_page_dirty_buffers); 773 774 /* 775 * Write out and wait upon a list of buffers. 776 * 777 * We have conflicting pressures: we want to make sure that all 778 * initially dirty buffers get waited on, but that any subsequently 779 * dirtied buffers don't. After all, we don't want fsync to last 780 * forever if somebody is actively writing to the file. 781 * 782 * Do this in two main stages: first we copy dirty buffers to a 783 * temporary inode list, queueing the writes as we go. Then we clean 784 * up, waiting for those writes to complete. 785 * 786 * During this second stage, any subsequent updates to the file may end 787 * up refiling the buffer on the original inode's dirty list again, so 788 * there is a chance we will end up with a buffer queued for write but 789 * not yet completed on that list. So, as a final cleanup we go through 790 * the osync code to catch these locked, dirty buffers without requeuing 791 * any newly dirty buffers for write. 792 */ 793 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 794 { 795 struct buffer_head *bh; 796 struct list_head tmp; 797 struct address_space *mapping; 798 int err = 0, err2; 799 800 INIT_LIST_HEAD(&tmp); 801 802 spin_lock(lock); 803 while (!list_empty(list)) { 804 bh = BH_ENTRY(list->next); 805 mapping = bh->b_assoc_map; 806 __remove_assoc_queue(bh); 807 /* Avoid race with mark_buffer_dirty_inode() which does 808 * a lockless check and we rely on seeing the dirty bit */ 809 smp_mb(); 810 if (buffer_dirty(bh) || buffer_locked(bh)) { 811 list_add(&bh->b_assoc_buffers, &tmp); 812 bh->b_assoc_map = mapping; 813 if (buffer_dirty(bh)) { 814 get_bh(bh); 815 spin_unlock(lock); 816 /* 817 * Ensure any pending I/O completes so that 818 * ll_rw_block() actually writes the current 819 * contents - it is a noop if I/O is still in 820 * flight on potentially older contents. 821 */ 822 ll_rw_block(SWRITE, 1, &bh); 823 brelse(bh); 824 spin_lock(lock); 825 } 826 } 827 } 828 829 while (!list_empty(&tmp)) { 830 bh = BH_ENTRY(tmp.prev); 831 get_bh(bh); 832 mapping = bh->b_assoc_map; 833 __remove_assoc_queue(bh); 834 /* Avoid race with mark_buffer_dirty_inode() which does 835 * a lockless check and we rely on seeing the dirty bit */ 836 smp_mb(); 837 if (buffer_dirty(bh)) { 838 list_add(&bh->b_assoc_buffers, 839 &bh->b_assoc_map->private_list); 840 bh->b_assoc_map = mapping; 841 } 842 spin_unlock(lock); 843 wait_on_buffer(bh); 844 if (!buffer_uptodate(bh)) 845 err = -EIO; 846 brelse(bh); 847 spin_lock(lock); 848 } 849 850 spin_unlock(lock); 851 err2 = osync_buffers_list(lock, list); 852 if (err) 853 return err; 854 else 855 return err2; 856 } 857 858 /* 859 * Invalidate any and all dirty buffers on a given inode. We are 860 * probably unmounting the fs, but that doesn't mean we have already 861 * done a sync(). Just drop the buffers from the inode list. 862 * 863 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 864 * assumes that all the buffers are against the blockdev. Not true 865 * for reiserfs. 866 */ 867 void invalidate_inode_buffers(struct inode *inode) 868 { 869 if (inode_has_buffers(inode)) { 870 struct address_space *mapping = &inode->i_data; 871 struct list_head *list = &mapping->private_list; 872 struct address_space *buffer_mapping = mapping->assoc_mapping; 873 874 spin_lock(&buffer_mapping->private_lock); 875 while (!list_empty(list)) 876 __remove_assoc_queue(BH_ENTRY(list->next)); 877 spin_unlock(&buffer_mapping->private_lock); 878 } 879 } 880 881 /* 882 * Remove any clean buffers from the inode's buffer list. This is called 883 * when we're trying to free the inode itself. Those buffers can pin it. 884 * 885 * Returns true if all buffers were removed. 886 */ 887 int remove_inode_buffers(struct inode *inode) 888 { 889 int ret = 1; 890 891 if (inode_has_buffers(inode)) { 892 struct address_space *mapping = &inode->i_data; 893 struct list_head *list = &mapping->private_list; 894 struct address_space *buffer_mapping = mapping->assoc_mapping; 895 896 spin_lock(&buffer_mapping->private_lock); 897 while (!list_empty(list)) { 898 struct buffer_head *bh = BH_ENTRY(list->next); 899 if (buffer_dirty(bh)) { 900 ret = 0; 901 break; 902 } 903 __remove_assoc_queue(bh); 904 } 905 spin_unlock(&buffer_mapping->private_lock); 906 } 907 return ret; 908 } 909 910 /* 911 * Create the appropriate buffers when given a page for data area and 912 * the size of each buffer.. Use the bh->b_this_page linked list to 913 * follow the buffers created. Return NULL if unable to create more 914 * buffers. 915 * 916 * The retry flag is used to differentiate async IO (paging, swapping) 917 * which may not fail from ordinary buffer allocations. 918 */ 919 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 920 int retry) 921 { 922 struct buffer_head *bh, *head; 923 long offset; 924 925 try_again: 926 head = NULL; 927 offset = PAGE_SIZE; 928 while ((offset -= size) >= 0) { 929 bh = alloc_buffer_head(GFP_NOFS); 930 if (!bh) 931 goto no_grow; 932 933 bh->b_bdev = NULL; 934 bh->b_this_page = head; 935 bh->b_blocknr = -1; 936 head = bh; 937 938 bh->b_state = 0; 939 atomic_set(&bh->b_count, 0); 940 bh->b_private = NULL; 941 bh->b_size = size; 942 943 /* Link the buffer to its page */ 944 set_bh_page(bh, page, offset); 945 946 init_buffer(bh, NULL, NULL); 947 } 948 return head; 949 /* 950 * In case anything failed, we just free everything we got. 951 */ 952 no_grow: 953 if (head) { 954 do { 955 bh = head; 956 head = head->b_this_page; 957 free_buffer_head(bh); 958 } while (head); 959 } 960 961 /* 962 * Return failure for non-async IO requests. Async IO requests 963 * are not allowed to fail, so we have to wait until buffer heads 964 * become available. But we don't want tasks sleeping with 965 * partially complete buffers, so all were released above. 966 */ 967 if (!retry) 968 return NULL; 969 970 /* We're _really_ low on memory. Now we just 971 * wait for old buffer heads to become free due to 972 * finishing IO. Since this is an async request and 973 * the reserve list is empty, we're sure there are 974 * async buffer heads in use. 975 */ 976 free_more_memory(); 977 goto try_again; 978 } 979 EXPORT_SYMBOL_GPL(alloc_page_buffers); 980 981 static inline void 982 link_dev_buffers(struct page *page, struct buffer_head *head) 983 { 984 struct buffer_head *bh, *tail; 985 986 bh = head; 987 do { 988 tail = bh; 989 bh = bh->b_this_page; 990 } while (bh); 991 tail->b_this_page = head; 992 attach_page_buffers(page, head); 993 } 994 995 /* 996 * Initialise the state of a blockdev page's buffers. 997 */ 998 static void 999 init_page_buffers(struct page *page, struct block_device *bdev, 1000 sector_t block, int size) 1001 { 1002 struct buffer_head *head = page_buffers(page); 1003 struct buffer_head *bh = head; 1004 int uptodate = PageUptodate(page); 1005 1006 do { 1007 if (!buffer_mapped(bh)) { 1008 init_buffer(bh, NULL, NULL); 1009 bh->b_bdev = bdev; 1010 bh->b_blocknr = block; 1011 if (uptodate) 1012 set_buffer_uptodate(bh); 1013 set_buffer_mapped(bh); 1014 } 1015 block++; 1016 bh = bh->b_this_page; 1017 } while (bh != head); 1018 } 1019 1020 /* 1021 * Create the page-cache page that contains the requested block. 1022 * 1023 * This is user purely for blockdev mappings. 1024 */ 1025 static struct page * 1026 grow_dev_page(struct block_device *bdev, sector_t block, 1027 pgoff_t index, int size) 1028 { 1029 struct inode *inode = bdev->bd_inode; 1030 struct page *page; 1031 struct buffer_head *bh; 1032 1033 page = find_or_create_page(inode->i_mapping, index, 1034 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 1035 if (!page) 1036 return NULL; 1037 1038 BUG_ON(!PageLocked(page)); 1039 1040 if (page_has_buffers(page)) { 1041 bh = page_buffers(page); 1042 if (bh->b_size == size) { 1043 init_page_buffers(page, bdev, block, size); 1044 return page; 1045 } 1046 if (!try_to_free_buffers(page)) 1047 goto failed; 1048 } 1049 1050 /* 1051 * Allocate some buffers for this page 1052 */ 1053 bh = alloc_page_buffers(page, size, 0); 1054 if (!bh) 1055 goto failed; 1056 1057 /* 1058 * Link the page to the buffers and initialise them. Take the 1059 * lock to be atomic wrt __find_get_block(), which does not 1060 * run under the page lock. 1061 */ 1062 spin_lock(&inode->i_mapping->private_lock); 1063 link_dev_buffers(page, bh); 1064 init_page_buffers(page, bdev, block, size); 1065 spin_unlock(&inode->i_mapping->private_lock); 1066 return page; 1067 1068 failed: 1069 BUG(); 1070 unlock_page(page); 1071 page_cache_release(page); 1072 return NULL; 1073 } 1074 1075 /* 1076 * Create buffers for the specified block device block's page. If 1077 * that page was dirty, the buffers are set dirty also. 1078 */ 1079 static int 1080 grow_buffers(struct block_device *bdev, sector_t block, int size) 1081 { 1082 struct page *page; 1083 pgoff_t index; 1084 int sizebits; 1085 1086 sizebits = -1; 1087 do { 1088 sizebits++; 1089 } while ((size << sizebits) < PAGE_SIZE); 1090 1091 index = block >> sizebits; 1092 1093 /* 1094 * Check for a block which wants to lie outside our maximum possible 1095 * pagecache index. (this comparison is done using sector_t types). 1096 */ 1097 if (unlikely(index != block >> sizebits)) { 1098 char b[BDEVNAME_SIZE]; 1099 1100 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1101 "device %s\n", 1102 __FUNCTION__, (unsigned long long)block, 1103 bdevname(bdev, b)); 1104 return -EIO; 1105 } 1106 block = index << sizebits; 1107 /* Create a page with the proper size buffers.. */ 1108 page = grow_dev_page(bdev, block, index, size); 1109 if (!page) 1110 return 0; 1111 unlock_page(page); 1112 page_cache_release(page); 1113 return 1; 1114 } 1115 1116 static struct buffer_head * 1117 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1118 { 1119 /* Size must be multiple of hard sectorsize */ 1120 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1121 (size < 512 || size > PAGE_SIZE))) { 1122 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1123 size); 1124 printk(KERN_ERR "hardsect size: %d\n", 1125 bdev_hardsect_size(bdev)); 1126 1127 dump_stack(); 1128 return NULL; 1129 } 1130 1131 for (;;) { 1132 struct buffer_head * bh; 1133 int ret; 1134 1135 bh = __find_get_block(bdev, block, size); 1136 if (bh) 1137 return bh; 1138 1139 ret = grow_buffers(bdev, block, size); 1140 if (ret < 0) 1141 return NULL; 1142 if (ret == 0) 1143 free_more_memory(); 1144 } 1145 } 1146 1147 /* 1148 * The relationship between dirty buffers and dirty pages: 1149 * 1150 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1151 * the page is tagged dirty in its radix tree. 1152 * 1153 * At all times, the dirtiness of the buffers represents the dirtiness of 1154 * subsections of the page. If the page has buffers, the page dirty bit is 1155 * merely a hint about the true dirty state. 1156 * 1157 * When a page is set dirty in its entirety, all its buffers are marked dirty 1158 * (if the page has buffers). 1159 * 1160 * When a buffer is marked dirty, its page is dirtied, but the page's other 1161 * buffers are not. 1162 * 1163 * Also. When blockdev buffers are explicitly read with bread(), they 1164 * individually become uptodate. But their backing page remains not 1165 * uptodate - even if all of its buffers are uptodate. A subsequent 1166 * block_read_full_page() against that page will discover all the uptodate 1167 * buffers, will set the page uptodate and will perform no I/O. 1168 */ 1169 1170 /** 1171 * mark_buffer_dirty - mark a buffer_head as needing writeout 1172 * @bh: the buffer_head to mark dirty 1173 * 1174 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1175 * backing page dirty, then tag the page as dirty in its address_space's radix 1176 * tree and then attach the address_space's inode to its superblock's dirty 1177 * inode list. 1178 * 1179 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1180 * mapping->tree_lock and the global inode_lock. 1181 */ 1182 void mark_buffer_dirty(struct buffer_head *bh) 1183 { 1184 WARN_ON_ONCE(!buffer_uptodate(bh)); 1185 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) 1186 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0); 1187 } 1188 1189 /* 1190 * Decrement a buffer_head's reference count. If all buffers against a page 1191 * have zero reference count, are clean and unlocked, and if the page is clean 1192 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1193 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1194 * a page but it ends up not being freed, and buffers may later be reattached). 1195 */ 1196 void __brelse(struct buffer_head * buf) 1197 { 1198 if (atomic_read(&buf->b_count)) { 1199 put_bh(buf); 1200 return; 1201 } 1202 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1203 WARN_ON(1); 1204 } 1205 1206 /* 1207 * bforget() is like brelse(), except it discards any 1208 * potentially dirty data. 1209 */ 1210 void __bforget(struct buffer_head *bh) 1211 { 1212 clear_buffer_dirty(bh); 1213 if (bh->b_assoc_map) { 1214 struct address_space *buffer_mapping = bh->b_page->mapping; 1215 1216 spin_lock(&buffer_mapping->private_lock); 1217 list_del_init(&bh->b_assoc_buffers); 1218 bh->b_assoc_map = NULL; 1219 spin_unlock(&buffer_mapping->private_lock); 1220 } 1221 __brelse(bh); 1222 } 1223 1224 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1225 { 1226 lock_buffer(bh); 1227 if (buffer_uptodate(bh)) { 1228 unlock_buffer(bh); 1229 return bh; 1230 } else { 1231 get_bh(bh); 1232 bh->b_end_io = end_buffer_read_sync; 1233 submit_bh(READ, bh); 1234 wait_on_buffer(bh); 1235 if (buffer_uptodate(bh)) 1236 return bh; 1237 } 1238 brelse(bh); 1239 return NULL; 1240 } 1241 1242 /* 1243 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1244 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1245 * refcount elevated by one when they're in an LRU. A buffer can only appear 1246 * once in a particular CPU's LRU. A single buffer can be present in multiple 1247 * CPU's LRUs at the same time. 1248 * 1249 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1250 * sb_find_get_block(). 1251 * 1252 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1253 * a local interrupt disable for that. 1254 */ 1255 1256 #define BH_LRU_SIZE 8 1257 1258 struct bh_lru { 1259 struct buffer_head *bhs[BH_LRU_SIZE]; 1260 }; 1261 1262 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1263 1264 #ifdef CONFIG_SMP 1265 #define bh_lru_lock() local_irq_disable() 1266 #define bh_lru_unlock() local_irq_enable() 1267 #else 1268 #define bh_lru_lock() preempt_disable() 1269 #define bh_lru_unlock() preempt_enable() 1270 #endif 1271 1272 static inline void check_irqs_on(void) 1273 { 1274 #ifdef irqs_disabled 1275 BUG_ON(irqs_disabled()); 1276 #endif 1277 } 1278 1279 /* 1280 * The LRU management algorithm is dopey-but-simple. Sorry. 1281 */ 1282 static void bh_lru_install(struct buffer_head *bh) 1283 { 1284 struct buffer_head *evictee = NULL; 1285 struct bh_lru *lru; 1286 1287 check_irqs_on(); 1288 bh_lru_lock(); 1289 lru = &__get_cpu_var(bh_lrus); 1290 if (lru->bhs[0] != bh) { 1291 struct buffer_head *bhs[BH_LRU_SIZE]; 1292 int in; 1293 int out = 0; 1294 1295 get_bh(bh); 1296 bhs[out++] = bh; 1297 for (in = 0; in < BH_LRU_SIZE; in++) { 1298 struct buffer_head *bh2 = lru->bhs[in]; 1299 1300 if (bh2 == bh) { 1301 __brelse(bh2); 1302 } else { 1303 if (out >= BH_LRU_SIZE) { 1304 BUG_ON(evictee != NULL); 1305 evictee = bh2; 1306 } else { 1307 bhs[out++] = bh2; 1308 } 1309 } 1310 } 1311 while (out < BH_LRU_SIZE) 1312 bhs[out++] = NULL; 1313 memcpy(lru->bhs, bhs, sizeof(bhs)); 1314 } 1315 bh_lru_unlock(); 1316 1317 if (evictee) 1318 __brelse(evictee); 1319 } 1320 1321 /* 1322 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1323 */ 1324 static struct buffer_head * 1325 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1326 { 1327 struct buffer_head *ret = NULL; 1328 struct bh_lru *lru; 1329 unsigned int i; 1330 1331 check_irqs_on(); 1332 bh_lru_lock(); 1333 lru = &__get_cpu_var(bh_lrus); 1334 for (i = 0; i < BH_LRU_SIZE; i++) { 1335 struct buffer_head *bh = lru->bhs[i]; 1336 1337 if (bh && bh->b_bdev == bdev && 1338 bh->b_blocknr == block && bh->b_size == size) { 1339 if (i) { 1340 while (i) { 1341 lru->bhs[i] = lru->bhs[i - 1]; 1342 i--; 1343 } 1344 lru->bhs[0] = bh; 1345 } 1346 get_bh(bh); 1347 ret = bh; 1348 break; 1349 } 1350 } 1351 bh_lru_unlock(); 1352 return ret; 1353 } 1354 1355 /* 1356 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1357 * it in the LRU and mark it as accessed. If it is not present then return 1358 * NULL 1359 */ 1360 struct buffer_head * 1361 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1362 { 1363 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1364 1365 if (bh == NULL) { 1366 bh = __find_get_block_slow(bdev, block); 1367 if (bh) 1368 bh_lru_install(bh); 1369 } 1370 if (bh) 1371 touch_buffer(bh); 1372 return bh; 1373 } 1374 EXPORT_SYMBOL(__find_get_block); 1375 1376 /* 1377 * __getblk will locate (and, if necessary, create) the buffer_head 1378 * which corresponds to the passed block_device, block and size. The 1379 * returned buffer has its reference count incremented. 1380 * 1381 * __getblk() cannot fail - it just keeps trying. If you pass it an 1382 * illegal block number, __getblk() will happily return a buffer_head 1383 * which represents the non-existent block. Very weird. 1384 * 1385 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1386 * attempt is failing. FIXME, perhaps? 1387 */ 1388 struct buffer_head * 1389 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1390 { 1391 struct buffer_head *bh = __find_get_block(bdev, block, size); 1392 1393 might_sleep(); 1394 if (bh == NULL) 1395 bh = __getblk_slow(bdev, block, size); 1396 return bh; 1397 } 1398 EXPORT_SYMBOL(__getblk); 1399 1400 /* 1401 * Do async read-ahead on a buffer.. 1402 */ 1403 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1404 { 1405 struct buffer_head *bh = __getblk(bdev, block, size); 1406 if (likely(bh)) { 1407 ll_rw_block(READA, 1, &bh); 1408 brelse(bh); 1409 } 1410 } 1411 EXPORT_SYMBOL(__breadahead); 1412 1413 /** 1414 * __bread() - reads a specified block and returns the bh 1415 * @bdev: the block_device to read from 1416 * @block: number of block 1417 * @size: size (in bytes) to read 1418 * 1419 * Reads a specified block, and returns buffer head that contains it. 1420 * It returns NULL if the block was unreadable. 1421 */ 1422 struct buffer_head * 1423 __bread(struct block_device *bdev, sector_t block, unsigned size) 1424 { 1425 struct buffer_head *bh = __getblk(bdev, block, size); 1426 1427 if (likely(bh) && !buffer_uptodate(bh)) 1428 bh = __bread_slow(bh); 1429 return bh; 1430 } 1431 EXPORT_SYMBOL(__bread); 1432 1433 /* 1434 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1435 * This doesn't race because it runs in each cpu either in irq 1436 * or with preempt disabled. 1437 */ 1438 static void invalidate_bh_lru(void *arg) 1439 { 1440 struct bh_lru *b = &get_cpu_var(bh_lrus); 1441 int i; 1442 1443 for (i = 0; i < BH_LRU_SIZE; i++) { 1444 brelse(b->bhs[i]); 1445 b->bhs[i] = NULL; 1446 } 1447 put_cpu_var(bh_lrus); 1448 } 1449 1450 void invalidate_bh_lrus(void) 1451 { 1452 on_each_cpu(invalidate_bh_lru, NULL, 1, 1); 1453 } 1454 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1455 1456 void set_bh_page(struct buffer_head *bh, 1457 struct page *page, unsigned long offset) 1458 { 1459 bh->b_page = page; 1460 BUG_ON(offset >= PAGE_SIZE); 1461 if (PageHighMem(page)) 1462 /* 1463 * This catches illegal uses and preserves the offset: 1464 */ 1465 bh->b_data = (char *)(0 + offset); 1466 else 1467 bh->b_data = page_address(page) + offset; 1468 } 1469 EXPORT_SYMBOL(set_bh_page); 1470 1471 /* 1472 * Called when truncating a buffer on a page completely. 1473 */ 1474 static void discard_buffer(struct buffer_head * bh) 1475 { 1476 lock_buffer(bh); 1477 clear_buffer_dirty(bh); 1478 bh->b_bdev = NULL; 1479 clear_buffer_mapped(bh); 1480 clear_buffer_req(bh); 1481 clear_buffer_new(bh); 1482 clear_buffer_delay(bh); 1483 clear_buffer_unwritten(bh); 1484 unlock_buffer(bh); 1485 } 1486 1487 /** 1488 * block_invalidatepage - invalidate part of all of a buffer-backed page 1489 * 1490 * @page: the page which is affected 1491 * @offset: the index of the truncation point 1492 * 1493 * block_invalidatepage() is called when all or part of the page has become 1494 * invalidatedby a truncate operation. 1495 * 1496 * block_invalidatepage() does not have to release all buffers, but it must 1497 * ensure that no dirty buffer is left outside @offset and that no I/O 1498 * is underway against any of the blocks which are outside the truncation 1499 * point. Because the caller is about to free (and possibly reuse) those 1500 * blocks on-disk. 1501 */ 1502 void block_invalidatepage(struct page *page, unsigned long offset) 1503 { 1504 struct buffer_head *head, *bh, *next; 1505 unsigned int curr_off = 0; 1506 1507 BUG_ON(!PageLocked(page)); 1508 if (!page_has_buffers(page)) 1509 goto out; 1510 1511 head = page_buffers(page); 1512 bh = head; 1513 do { 1514 unsigned int next_off = curr_off + bh->b_size; 1515 next = bh->b_this_page; 1516 1517 /* 1518 * is this block fully invalidated? 1519 */ 1520 if (offset <= curr_off) 1521 discard_buffer(bh); 1522 curr_off = next_off; 1523 bh = next; 1524 } while (bh != head); 1525 1526 /* 1527 * We release buffers only if the entire page is being invalidated. 1528 * The get_block cached value has been unconditionally invalidated, 1529 * so real IO is not possible anymore. 1530 */ 1531 if (offset == 0) 1532 try_to_release_page(page, 0); 1533 out: 1534 return; 1535 } 1536 EXPORT_SYMBOL(block_invalidatepage); 1537 1538 /* 1539 * We attach and possibly dirty the buffers atomically wrt 1540 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1541 * is already excluded via the page lock. 1542 */ 1543 void create_empty_buffers(struct page *page, 1544 unsigned long blocksize, unsigned long b_state) 1545 { 1546 struct buffer_head *bh, *head, *tail; 1547 1548 head = alloc_page_buffers(page, blocksize, 1); 1549 bh = head; 1550 do { 1551 bh->b_state |= b_state; 1552 tail = bh; 1553 bh = bh->b_this_page; 1554 } while (bh); 1555 tail->b_this_page = head; 1556 1557 spin_lock(&page->mapping->private_lock); 1558 if (PageUptodate(page) || PageDirty(page)) { 1559 bh = head; 1560 do { 1561 if (PageDirty(page)) 1562 set_buffer_dirty(bh); 1563 if (PageUptodate(page)) 1564 set_buffer_uptodate(bh); 1565 bh = bh->b_this_page; 1566 } while (bh != head); 1567 } 1568 attach_page_buffers(page, head); 1569 spin_unlock(&page->mapping->private_lock); 1570 } 1571 EXPORT_SYMBOL(create_empty_buffers); 1572 1573 /* 1574 * We are taking a block for data and we don't want any output from any 1575 * buffer-cache aliases starting from return from that function and 1576 * until the moment when something will explicitly mark the buffer 1577 * dirty (hopefully that will not happen until we will free that block ;-) 1578 * We don't even need to mark it not-uptodate - nobody can expect 1579 * anything from a newly allocated buffer anyway. We used to used 1580 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1581 * don't want to mark the alias unmapped, for example - it would confuse 1582 * anyone who might pick it with bread() afterwards... 1583 * 1584 * Also.. Note that bforget() doesn't lock the buffer. So there can 1585 * be writeout I/O going on against recently-freed buffers. We don't 1586 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1587 * only if we really need to. That happens here. 1588 */ 1589 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1590 { 1591 struct buffer_head *old_bh; 1592 1593 might_sleep(); 1594 1595 old_bh = __find_get_block_slow(bdev, block); 1596 if (old_bh) { 1597 clear_buffer_dirty(old_bh); 1598 wait_on_buffer(old_bh); 1599 clear_buffer_req(old_bh); 1600 __brelse(old_bh); 1601 } 1602 } 1603 EXPORT_SYMBOL(unmap_underlying_metadata); 1604 1605 /* 1606 * NOTE! All mapped/uptodate combinations are valid: 1607 * 1608 * Mapped Uptodate Meaning 1609 * 1610 * No No "unknown" - must do get_block() 1611 * No Yes "hole" - zero-filled 1612 * Yes No "allocated" - allocated on disk, not read in 1613 * Yes Yes "valid" - allocated and up-to-date in memory. 1614 * 1615 * "Dirty" is valid only with the last case (mapped+uptodate). 1616 */ 1617 1618 /* 1619 * While block_write_full_page is writing back the dirty buffers under 1620 * the page lock, whoever dirtied the buffers may decide to clean them 1621 * again at any time. We handle that by only looking at the buffer 1622 * state inside lock_buffer(). 1623 * 1624 * If block_write_full_page() is called for regular writeback 1625 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1626 * locked buffer. This only can happen if someone has written the buffer 1627 * directly, with submit_bh(). At the address_space level PageWriteback 1628 * prevents this contention from occurring. 1629 */ 1630 static int __block_write_full_page(struct inode *inode, struct page *page, 1631 get_block_t *get_block, struct writeback_control *wbc) 1632 { 1633 int err; 1634 sector_t block; 1635 sector_t last_block; 1636 struct buffer_head *bh, *head; 1637 const unsigned blocksize = 1 << inode->i_blkbits; 1638 int nr_underway = 0; 1639 1640 BUG_ON(!PageLocked(page)); 1641 1642 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1643 1644 if (!page_has_buffers(page)) { 1645 create_empty_buffers(page, blocksize, 1646 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1647 } 1648 1649 /* 1650 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1651 * here, and the (potentially unmapped) buffers may become dirty at 1652 * any time. If a buffer becomes dirty here after we've inspected it 1653 * then we just miss that fact, and the page stays dirty. 1654 * 1655 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1656 * handle that here by just cleaning them. 1657 */ 1658 1659 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1660 head = page_buffers(page); 1661 bh = head; 1662 1663 /* 1664 * Get all the dirty buffers mapped to disk addresses and 1665 * handle any aliases from the underlying blockdev's mapping. 1666 */ 1667 do { 1668 if (block > last_block) { 1669 /* 1670 * mapped buffers outside i_size will occur, because 1671 * this page can be outside i_size when there is a 1672 * truncate in progress. 1673 */ 1674 /* 1675 * The buffer was zeroed by block_write_full_page() 1676 */ 1677 clear_buffer_dirty(bh); 1678 set_buffer_uptodate(bh); 1679 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { 1680 WARN_ON(bh->b_size != blocksize); 1681 err = get_block(inode, block, bh, 1); 1682 if (err) 1683 goto recover; 1684 if (buffer_new(bh)) { 1685 /* blockdev mappings never come here */ 1686 clear_buffer_new(bh); 1687 unmap_underlying_metadata(bh->b_bdev, 1688 bh->b_blocknr); 1689 } 1690 } 1691 bh = bh->b_this_page; 1692 block++; 1693 } while (bh != head); 1694 1695 do { 1696 if (!buffer_mapped(bh)) 1697 continue; 1698 /* 1699 * If it's a fully non-blocking write attempt and we cannot 1700 * lock the buffer then redirty the page. Note that this can 1701 * potentially cause a busy-wait loop from pdflush and kswapd 1702 * activity, but those code paths have their own higher-level 1703 * throttling. 1704 */ 1705 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1706 lock_buffer(bh); 1707 } else if (test_set_buffer_locked(bh)) { 1708 redirty_page_for_writepage(wbc, page); 1709 continue; 1710 } 1711 if (test_clear_buffer_dirty(bh)) { 1712 mark_buffer_async_write(bh); 1713 } else { 1714 unlock_buffer(bh); 1715 } 1716 } while ((bh = bh->b_this_page) != head); 1717 1718 /* 1719 * The page and its buffers are protected by PageWriteback(), so we can 1720 * drop the bh refcounts early. 1721 */ 1722 BUG_ON(PageWriteback(page)); 1723 set_page_writeback(page); 1724 1725 do { 1726 struct buffer_head *next = bh->b_this_page; 1727 if (buffer_async_write(bh)) { 1728 submit_bh(WRITE, bh); 1729 nr_underway++; 1730 } 1731 bh = next; 1732 } while (bh != head); 1733 unlock_page(page); 1734 1735 err = 0; 1736 done: 1737 if (nr_underway == 0) { 1738 /* 1739 * The page was marked dirty, but the buffers were 1740 * clean. Someone wrote them back by hand with 1741 * ll_rw_block/submit_bh. A rare case. 1742 */ 1743 end_page_writeback(page); 1744 1745 /* 1746 * The page and buffer_heads can be released at any time from 1747 * here on. 1748 */ 1749 } 1750 return err; 1751 1752 recover: 1753 /* 1754 * ENOSPC, or some other error. We may already have added some 1755 * blocks to the file, so we need to write these out to avoid 1756 * exposing stale data. 1757 * The page is currently locked and not marked for writeback 1758 */ 1759 bh = head; 1760 /* Recovery: lock and submit the mapped buffers */ 1761 do { 1762 if (buffer_mapped(bh) && buffer_dirty(bh)) { 1763 lock_buffer(bh); 1764 mark_buffer_async_write(bh); 1765 } else { 1766 /* 1767 * The buffer may have been set dirty during 1768 * attachment to a dirty page. 1769 */ 1770 clear_buffer_dirty(bh); 1771 } 1772 } while ((bh = bh->b_this_page) != head); 1773 SetPageError(page); 1774 BUG_ON(PageWriteback(page)); 1775 mapping_set_error(page->mapping, err); 1776 set_page_writeback(page); 1777 do { 1778 struct buffer_head *next = bh->b_this_page; 1779 if (buffer_async_write(bh)) { 1780 clear_buffer_dirty(bh); 1781 submit_bh(WRITE, bh); 1782 nr_underway++; 1783 } 1784 bh = next; 1785 } while (bh != head); 1786 unlock_page(page); 1787 goto done; 1788 } 1789 1790 /* 1791 * If a page has any new buffers, zero them out here, and mark them uptodate 1792 * and dirty so they'll be written out (in order to prevent uninitialised 1793 * block data from leaking). And clear the new bit. 1794 */ 1795 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1796 { 1797 unsigned int block_start, block_end; 1798 struct buffer_head *head, *bh; 1799 1800 BUG_ON(!PageLocked(page)); 1801 if (!page_has_buffers(page)) 1802 return; 1803 1804 bh = head = page_buffers(page); 1805 block_start = 0; 1806 do { 1807 block_end = block_start + bh->b_size; 1808 1809 if (buffer_new(bh)) { 1810 if (block_end > from && block_start < to) { 1811 if (!PageUptodate(page)) { 1812 unsigned start, size; 1813 1814 start = max(from, block_start); 1815 size = min(to, block_end) - start; 1816 1817 zero_user(page, start, size); 1818 set_buffer_uptodate(bh); 1819 } 1820 1821 clear_buffer_new(bh); 1822 mark_buffer_dirty(bh); 1823 } 1824 } 1825 1826 block_start = block_end; 1827 bh = bh->b_this_page; 1828 } while (bh != head); 1829 } 1830 EXPORT_SYMBOL(page_zero_new_buffers); 1831 1832 static int __block_prepare_write(struct inode *inode, struct page *page, 1833 unsigned from, unsigned to, get_block_t *get_block) 1834 { 1835 unsigned block_start, block_end; 1836 sector_t block; 1837 int err = 0; 1838 unsigned blocksize, bbits; 1839 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1840 1841 BUG_ON(!PageLocked(page)); 1842 BUG_ON(from > PAGE_CACHE_SIZE); 1843 BUG_ON(to > PAGE_CACHE_SIZE); 1844 BUG_ON(from > to); 1845 1846 blocksize = 1 << inode->i_blkbits; 1847 if (!page_has_buffers(page)) 1848 create_empty_buffers(page, blocksize, 0); 1849 head = page_buffers(page); 1850 1851 bbits = inode->i_blkbits; 1852 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1853 1854 for(bh = head, block_start = 0; bh != head || !block_start; 1855 block++, block_start=block_end, bh = bh->b_this_page) { 1856 block_end = block_start + blocksize; 1857 if (block_end <= from || block_start >= to) { 1858 if (PageUptodate(page)) { 1859 if (!buffer_uptodate(bh)) 1860 set_buffer_uptodate(bh); 1861 } 1862 continue; 1863 } 1864 if (buffer_new(bh)) 1865 clear_buffer_new(bh); 1866 if (!buffer_mapped(bh)) { 1867 WARN_ON(bh->b_size != blocksize); 1868 err = get_block(inode, block, bh, 1); 1869 if (err) 1870 break; 1871 if (buffer_new(bh)) { 1872 unmap_underlying_metadata(bh->b_bdev, 1873 bh->b_blocknr); 1874 if (PageUptodate(page)) { 1875 clear_buffer_new(bh); 1876 set_buffer_uptodate(bh); 1877 mark_buffer_dirty(bh); 1878 continue; 1879 } 1880 if (block_end > to || block_start < from) 1881 zero_user_segments(page, 1882 to, block_end, 1883 block_start, from); 1884 continue; 1885 } 1886 } 1887 if (PageUptodate(page)) { 1888 if (!buffer_uptodate(bh)) 1889 set_buffer_uptodate(bh); 1890 continue; 1891 } 1892 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1893 !buffer_unwritten(bh) && 1894 (block_start < from || block_end > to)) { 1895 ll_rw_block(READ, 1, &bh); 1896 *wait_bh++=bh; 1897 } 1898 } 1899 /* 1900 * If we issued read requests - let them complete. 1901 */ 1902 while(wait_bh > wait) { 1903 wait_on_buffer(*--wait_bh); 1904 if (!buffer_uptodate(*wait_bh)) 1905 err = -EIO; 1906 } 1907 if (unlikely(err)) 1908 page_zero_new_buffers(page, from, to); 1909 return err; 1910 } 1911 1912 static int __block_commit_write(struct inode *inode, struct page *page, 1913 unsigned from, unsigned to) 1914 { 1915 unsigned block_start, block_end; 1916 int partial = 0; 1917 unsigned blocksize; 1918 struct buffer_head *bh, *head; 1919 1920 blocksize = 1 << inode->i_blkbits; 1921 1922 for(bh = head = page_buffers(page), block_start = 0; 1923 bh != head || !block_start; 1924 block_start=block_end, bh = bh->b_this_page) { 1925 block_end = block_start + blocksize; 1926 if (block_end <= from || block_start >= to) { 1927 if (!buffer_uptodate(bh)) 1928 partial = 1; 1929 } else { 1930 set_buffer_uptodate(bh); 1931 mark_buffer_dirty(bh); 1932 } 1933 clear_buffer_new(bh); 1934 } 1935 1936 /* 1937 * If this is a partial write which happened to make all buffers 1938 * uptodate then we can optimize away a bogus readpage() for 1939 * the next read(). Here we 'discover' whether the page went 1940 * uptodate as a result of this (potentially partial) write. 1941 */ 1942 if (!partial) 1943 SetPageUptodate(page); 1944 return 0; 1945 } 1946 1947 /* 1948 * block_write_begin takes care of the basic task of block allocation and 1949 * bringing partial write blocks uptodate first. 1950 * 1951 * If *pagep is not NULL, then block_write_begin uses the locked page 1952 * at *pagep rather than allocating its own. In this case, the page will 1953 * not be unlocked or deallocated on failure. 1954 */ 1955 int block_write_begin(struct file *file, struct address_space *mapping, 1956 loff_t pos, unsigned len, unsigned flags, 1957 struct page **pagep, void **fsdata, 1958 get_block_t *get_block) 1959 { 1960 struct inode *inode = mapping->host; 1961 int status = 0; 1962 struct page *page; 1963 pgoff_t index; 1964 unsigned start, end; 1965 int ownpage = 0; 1966 1967 index = pos >> PAGE_CACHE_SHIFT; 1968 start = pos & (PAGE_CACHE_SIZE - 1); 1969 end = start + len; 1970 1971 page = *pagep; 1972 if (page == NULL) { 1973 ownpage = 1; 1974 page = __grab_cache_page(mapping, index); 1975 if (!page) { 1976 status = -ENOMEM; 1977 goto out; 1978 } 1979 *pagep = page; 1980 } else 1981 BUG_ON(!PageLocked(page)); 1982 1983 status = __block_prepare_write(inode, page, start, end, get_block); 1984 if (unlikely(status)) { 1985 ClearPageUptodate(page); 1986 1987 if (ownpage) { 1988 unlock_page(page); 1989 page_cache_release(page); 1990 *pagep = NULL; 1991 1992 /* 1993 * prepare_write() may have instantiated a few blocks 1994 * outside i_size. Trim these off again. Don't need 1995 * i_size_read because we hold i_mutex. 1996 */ 1997 if (pos + len > inode->i_size) 1998 vmtruncate(inode, inode->i_size); 1999 } 2000 goto out; 2001 } 2002 2003 out: 2004 return status; 2005 } 2006 EXPORT_SYMBOL(block_write_begin); 2007 2008 int block_write_end(struct file *file, struct address_space *mapping, 2009 loff_t pos, unsigned len, unsigned copied, 2010 struct page *page, void *fsdata) 2011 { 2012 struct inode *inode = mapping->host; 2013 unsigned start; 2014 2015 start = pos & (PAGE_CACHE_SIZE - 1); 2016 2017 if (unlikely(copied < len)) { 2018 /* 2019 * The buffers that were written will now be uptodate, so we 2020 * don't have to worry about a readpage reading them and 2021 * overwriting a partial write. However if we have encountered 2022 * a short write and only partially written into a buffer, it 2023 * will not be marked uptodate, so a readpage might come in and 2024 * destroy our partial write. 2025 * 2026 * Do the simplest thing, and just treat any short write to a 2027 * non uptodate page as a zero-length write, and force the 2028 * caller to redo the whole thing. 2029 */ 2030 if (!PageUptodate(page)) 2031 copied = 0; 2032 2033 page_zero_new_buffers(page, start+copied, start+len); 2034 } 2035 flush_dcache_page(page); 2036 2037 /* This could be a short (even 0-length) commit */ 2038 __block_commit_write(inode, page, start, start+copied); 2039 2040 return copied; 2041 } 2042 EXPORT_SYMBOL(block_write_end); 2043 2044 int generic_write_end(struct file *file, struct address_space *mapping, 2045 loff_t pos, unsigned len, unsigned copied, 2046 struct page *page, void *fsdata) 2047 { 2048 struct inode *inode = mapping->host; 2049 2050 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2051 2052 /* 2053 * No need to use i_size_read() here, the i_size 2054 * cannot change under us because we hold i_mutex. 2055 * 2056 * But it's important to update i_size while still holding page lock: 2057 * page writeout could otherwise come in and zero beyond i_size. 2058 */ 2059 if (pos+copied > inode->i_size) { 2060 i_size_write(inode, pos+copied); 2061 mark_inode_dirty(inode); 2062 } 2063 2064 unlock_page(page); 2065 page_cache_release(page); 2066 2067 return copied; 2068 } 2069 EXPORT_SYMBOL(generic_write_end); 2070 2071 /* 2072 * Generic "read page" function for block devices that have the normal 2073 * get_block functionality. This is most of the block device filesystems. 2074 * Reads the page asynchronously --- the unlock_buffer() and 2075 * set/clear_buffer_uptodate() functions propagate buffer state into the 2076 * page struct once IO has completed. 2077 */ 2078 int block_read_full_page(struct page *page, get_block_t *get_block) 2079 { 2080 struct inode *inode = page->mapping->host; 2081 sector_t iblock, lblock; 2082 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2083 unsigned int blocksize; 2084 int nr, i; 2085 int fully_mapped = 1; 2086 2087 BUG_ON(!PageLocked(page)); 2088 blocksize = 1 << inode->i_blkbits; 2089 if (!page_has_buffers(page)) 2090 create_empty_buffers(page, blocksize, 0); 2091 head = page_buffers(page); 2092 2093 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2094 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2095 bh = head; 2096 nr = 0; 2097 i = 0; 2098 2099 do { 2100 if (buffer_uptodate(bh)) 2101 continue; 2102 2103 if (!buffer_mapped(bh)) { 2104 int err = 0; 2105 2106 fully_mapped = 0; 2107 if (iblock < lblock) { 2108 WARN_ON(bh->b_size != blocksize); 2109 err = get_block(inode, iblock, bh, 0); 2110 if (err) 2111 SetPageError(page); 2112 } 2113 if (!buffer_mapped(bh)) { 2114 zero_user(page, i * blocksize, blocksize); 2115 if (!err) 2116 set_buffer_uptodate(bh); 2117 continue; 2118 } 2119 /* 2120 * get_block() might have updated the buffer 2121 * synchronously 2122 */ 2123 if (buffer_uptodate(bh)) 2124 continue; 2125 } 2126 arr[nr++] = bh; 2127 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2128 2129 if (fully_mapped) 2130 SetPageMappedToDisk(page); 2131 2132 if (!nr) { 2133 /* 2134 * All buffers are uptodate - we can set the page uptodate 2135 * as well. But not if get_block() returned an error. 2136 */ 2137 if (!PageError(page)) 2138 SetPageUptodate(page); 2139 unlock_page(page); 2140 return 0; 2141 } 2142 2143 /* Stage two: lock the buffers */ 2144 for (i = 0; i < nr; i++) { 2145 bh = arr[i]; 2146 lock_buffer(bh); 2147 mark_buffer_async_read(bh); 2148 } 2149 2150 /* 2151 * Stage 3: start the IO. Check for uptodateness 2152 * inside the buffer lock in case another process reading 2153 * the underlying blockdev brought it uptodate (the sct fix). 2154 */ 2155 for (i = 0; i < nr; i++) { 2156 bh = arr[i]; 2157 if (buffer_uptodate(bh)) 2158 end_buffer_async_read(bh, 1); 2159 else 2160 submit_bh(READ, bh); 2161 } 2162 return 0; 2163 } 2164 2165 /* utility function for filesystems that need to do work on expanding 2166 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2167 * deal with the hole. 2168 */ 2169 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2170 { 2171 struct address_space *mapping = inode->i_mapping; 2172 struct page *page; 2173 void *fsdata; 2174 unsigned long limit; 2175 int err; 2176 2177 err = -EFBIG; 2178 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2179 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2180 send_sig(SIGXFSZ, current, 0); 2181 goto out; 2182 } 2183 if (size > inode->i_sb->s_maxbytes) 2184 goto out; 2185 2186 err = pagecache_write_begin(NULL, mapping, size, 0, 2187 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2188 &page, &fsdata); 2189 if (err) 2190 goto out; 2191 2192 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2193 BUG_ON(err > 0); 2194 2195 out: 2196 return err; 2197 } 2198 2199 int cont_expand_zero(struct file *file, struct address_space *mapping, 2200 loff_t pos, loff_t *bytes) 2201 { 2202 struct inode *inode = mapping->host; 2203 unsigned blocksize = 1 << inode->i_blkbits; 2204 struct page *page; 2205 void *fsdata; 2206 pgoff_t index, curidx; 2207 loff_t curpos; 2208 unsigned zerofrom, offset, len; 2209 int err = 0; 2210 2211 index = pos >> PAGE_CACHE_SHIFT; 2212 offset = pos & ~PAGE_CACHE_MASK; 2213 2214 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2215 zerofrom = curpos & ~PAGE_CACHE_MASK; 2216 if (zerofrom & (blocksize-1)) { 2217 *bytes |= (blocksize-1); 2218 (*bytes)++; 2219 } 2220 len = PAGE_CACHE_SIZE - zerofrom; 2221 2222 err = pagecache_write_begin(file, mapping, curpos, len, 2223 AOP_FLAG_UNINTERRUPTIBLE, 2224 &page, &fsdata); 2225 if (err) 2226 goto out; 2227 zero_user(page, zerofrom, len); 2228 err = pagecache_write_end(file, mapping, curpos, len, len, 2229 page, fsdata); 2230 if (err < 0) 2231 goto out; 2232 BUG_ON(err != len); 2233 err = 0; 2234 } 2235 2236 /* page covers the boundary, find the boundary offset */ 2237 if (index == curidx) { 2238 zerofrom = curpos & ~PAGE_CACHE_MASK; 2239 /* if we will expand the thing last block will be filled */ 2240 if (offset <= zerofrom) { 2241 goto out; 2242 } 2243 if (zerofrom & (blocksize-1)) { 2244 *bytes |= (blocksize-1); 2245 (*bytes)++; 2246 } 2247 len = offset - zerofrom; 2248 2249 err = pagecache_write_begin(file, mapping, curpos, len, 2250 AOP_FLAG_UNINTERRUPTIBLE, 2251 &page, &fsdata); 2252 if (err) 2253 goto out; 2254 zero_user(page, zerofrom, len); 2255 err = pagecache_write_end(file, mapping, curpos, len, len, 2256 page, fsdata); 2257 if (err < 0) 2258 goto out; 2259 BUG_ON(err != len); 2260 err = 0; 2261 } 2262 out: 2263 return err; 2264 } 2265 2266 /* 2267 * For moronic filesystems that do not allow holes in file. 2268 * We may have to extend the file. 2269 */ 2270 int cont_write_begin(struct file *file, struct address_space *mapping, 2271 loff_t pos, unsigned len, unsigned flags, 2272 struct page **pagep, void **fsdata, 2273 get_block_t *get_block, loff_t *bytes) 2274 { 2275 struct inode *inode = mapping->host; 2276 unsigned blocksize = 1 << inode->i_blkbits; 2277 unsigned zerofrom; 2278 int err; 2279 2280 err = cont_expand_zero(file, mapping, pos, bytes); 2281 if (err) 2282 goto out; 2283 2284 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2285 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2286 *bytes |= (blocksize-1); 2287 (*bytes)++; 2288 } 2289 2290 *pagep = NULL; 2291 err = block_write_begin(file, mapping, pos, len, 2292 flags, pagep, fsdata, get_block); 2293 out: 2294 return err; 2295 } 2296 2297 int block_prepare_write(struct page *page, unsigned from, unsigned to, 2298 get_block_t *get_block) 2299 { 2300 struct inode *inode = page->mapping->host; 2301 int err = __block_prepare_write(inode, page, from, to, get_block); 2302 if (err) 2303 ClearPageUptodate(page); 2304 return err; 2305 } 2306 2307 int block_commit_write(struct page *page, unsigned from, unsigned to) 2308 { 2309 struct inode *inode = page->mapping->host; 2310 __block_commit_write(inode,page,from,to); 2311 return 0; 2312 } 2313 2314 int generic_commit_write(struct file *file, struct page *page, 2315 unsigned from, unsigned to) 2316 { 2317 struct inode *inode = page->mapping->host; 2318 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2319 __block_commit_write(inode,page,from,to); 2320 /* 2321 * No need to use i_size_read() here, the i_size 2322 * cannot change under us because we hold i_mutex. 2323 */ 2324 if (pos > inode->i_size) { 2325 i_size_write(inode, pos); 2326 mark_inode_dirty(inode); 2327 } 2328 return 0; 2329 } 2330 2331 /* 2332 * block_page_mkwrite() is not allowed to change the file size as it gets 2333 * called from a page fault handler when a page is first dirtied. Hence we must 2334 * be careful to check for EOF conditions here. We set the page up correctly 2335 * for a written page which means we get ENOSPC checking when writing into 2336 * holes and correct delalloc and unwritten extent mapping on filesystems that 2337 * support these features. 2338 * 2339 * We are not allowed to take the i_mutex here so we have to play games to 2340 * protect against truncate races as the page could now be beyond EOF. Because 2341 * vmtruncate() writes the inode size before removing pages, once we have the 2342 * page lock we can determine safely if the page is beyond EOF. If it is not 2343 * beyond EOF, then the page is guaranteed safe against truncation until we 2344 * unlock the page. 2345 */ 2346 int 2347 block_page_mkwrite(struct vm_area_struct *vma, struct page *page, 2348 get_block_t get_block) 2349 { 2350 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2351 unsigned long end; 2352 loff_t size; 2353 int ret = -EINVAL; 2354 2355 lock_page(page); 2356 size = i_size_read(inode); 2357 if ((page->mapping != inode->i_mapping) || 2358 (page_offset(page) > size)) { 2359 /* page got truncated out from underneath us */ 2360 goto out_unlock; 2361 } 2362 2363 /* page is wholly or partially inside EOF */ 2364 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2365 end = size & ~PAGE_CACHE_MASK; 2366 else 2367 end = PAGE_CACHE_SIZE; 2368 2369 ret = block_prepare_write(page, 0, end, get_block); 2370 if (!ret) 2371 ret = block_commit_write(page, 0, end); 2372 2373 out_unlock: 2374 unlock_page(page); 2375 return ret; 2376 } 2377 2378 /* 2379 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2380 * immediately, while under the page lock. So it needs a special end_io 2381 * handler which does not touch the bh after unlocking it. 2382 */ 2383 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2384 { 2385 __end_buffer_read_notouch(bh, uptodate); 2386 } 2387 2388 /* 2389 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2390 * the page (converting it to circular linked list and taking care of page 2391 * dirty races). 2392 */ 2393 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2394 { 2395 struct buffer_head *bh; 2396 2397 BUG_ON(!PageLocked(page)); 2398 2399 spin_lock(&page->mapping->private_lock); 2400 bh = head; 2401 do { 2402 if (PageDirty(page)) 2403 set_buffer_dirty(bh); 2404 if (!bh->b_this_page) 2405 bh->b_this_page = head; 2406 bh = bh->b_this_page; 2407 } while (bh != head); 2408 attach_page_buffers(page, head); 2409 spin_unlock(&page->mapping->private_lock); 2410 } 2411 2412 /* 2413 * On entry, the page is fully not uptodate. 2414 * On exit the page is fully uptodate in the areas outside (from,to) 2415 */ 2416 int nobh_write_begin(struct file *file, struct address_space *mapping, 2417 loff_t pos, unsigned len, unsigned flags, 2418 struct page **pagep, void **fsdata, 2419 get_block_t *get_block) 2420 { 2421 struct inode *inode = mapping->host; 2422 const unsigned blkbits = inode->i_blkbits; 2423 const unsigned blocksize = 1 << blkbits; 2424 struct buffer_head *head, *bh; 2425 struct page *page; 2426 pgoff_t index; 2427 unsigned from, to; 2428 unsigned block_in_page; 2429 unsigned block_start, block_end; 2430 sector_t block_in_file; 2431 int nr_reads = 0; 2432 int ret = 0; 2433 int is_mapped_to_disk = 1; 2434 2435 index = pos >> PAGE_CACHE_SHIFT; 2436 from = pos & (PAGE_CACHE_SIZE - 1); 2437 to = from + len; 2438 2439 page = __grab_cache_page(mapping, index); 2440 if (!page) 2441 return -ENOMEM; 2442 *pagep = page; 2443 *fsdata = NULL; 2444 2445 if (page_has_buffers(page)) { 2446 unlock_page(page); 2447 page_cache_release(page); 2448 *pagep = NULL; 2449 return block_write_begin(file, mapping, pos, len, flags, pagep, 2450 fsdata, get_block); 2451 } 2452 2453 if (PageMappedToDisk(page)) 2454 return 0; 2455 2456 /* 2457 * Allocate buffers so that we can keep track of state, and potentially 2458 * attach them to the page if an error occurs. In the common case of 2459 * no error, they will just be freed again without ever being attached 2460 * to the page (which is all OK, because we're under the page lock). 2461 * 2462 * Be careful: the buffer linked list is a NULL terminated one, rather 2463 * than the circular one we're used to. 2464 */ 2465 head = alloc_page_buffers(page, blocksize, 0); 2466 if (!head) { 2467 ret = -ENOMEM; 2468 goto out_release; 2469 } 2470 2471 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2472 2473 /* 2474 * We loop across all blocks in the page, whether or not they are 2475 * part of the affected region. This is so we can discover if the 2476 * page is fully mapped-to-disk. 2477 */ 2478 for (block_start = 0, block_in_page = 0, bh = head; 2479 block_start < PAGE_CACHE_SIZE; 2480 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2481 int create; 2482 2483 block_end = block_start + blocksize; 2484 bh->b_state = 0; 2485 create = 1; 2486 if (block_start >= to) 2487 create = 0; 2488 ret = get_block(inode, block_in_file + block_in_page, 2489 bh, create); 2490 if (ret) 2491 goto failed; 2492 if (!buffer_mapped(bh)) 2493 is_mapped_to_disk = 0; 2494 if (buffer_new(bh)) 2495 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2496 if (PageUptodate(page)) { 2497 set_buffer_uptodate(bh); 2498 continue; 2499 } 2500 if (buffer_new(bh) || !buffer_mapped(bh)) { 2501 zero_user_segments(page, block_start, from, 2502 to, block_end); 2503 continue; 2504 } 2505 if (buffer_uptodate(bh)) 2506 continue; /* reiserfs does this */ 2507 if (block_start < from || block_end > to) { 2508 lock_buffer(bh); 2509 bh->b_end_io = end_buffer_read_nobh; 2510 submit_bh(READ, bh); 2511 nr_reads++; 2512 } 2513 } 2514 2515 if (nr_reads) { 2516 /* 2517 * The page is locked, so these buffers are protected from 2518 * any VM or truncate activity. Hence we don't need to care 2519 * for the buffer_head refcounts. 2520 */ 2521 for (bh = head; bh; bh = bh->b_this_page) { 2522 wait_on_buffer(bh); 2523 if (!buffer_uptodate(bh)) 2524 ret = -EIO; 2525 } 2526 if (ret) 2527 goto failed; 2528 } 2529 2530 if (is_mapped_to_disk) 2531 SetPageMappedToDisk(page); 2532 2533 *fsdata = head; /* to be released by nobh_write_end */ 2534 2535 return 0; 2536 2537 failed: 2538 BUG_ON(!ret); 2539 /* 2540 * Error recovery is a bit difficult. We need to zero out blocks that 2541 * were newly allocated, and dirty them to ensure they get written out. 2542 * Buffers need to be attached to the page at this point, otherwise 2543 * the handling of potential IO errors during writeout would be hard 2544 * (could try doing synchronous writeout, but what if that fails too?) 2545 */ 2546 attach_nobh_buffers(page, head); 2547 page_zero_new_buffers(page, from, to); 2548 2549 out_release: 2550 unlock_page(page); 2551 page_cache_release(page); 2552 *pagep = NULL; 2553 2554 if (pos + len > inode->i_size) 2555 vmtruncate(inode, inode->i_size); 2556 2557 return ret; 2558 } 2559 EXPORT_SYMBOL(nobh_write_begin); 2560 2561 int nobh_write_end(struct file *file, struct address_space *mapping, 2562 loff_t pos, unsigned len, unsigned copied, 2563 struct page *page, void *fsdata) 2564 { 2565 struct inode *inode = page->mapping->host; 2566 struct buffer_head *head = fsdata; 2567 struct buffer_head *bh; 2568 2569 if (!PageMappedToDisk(page)) { 2570 if (unlikely(copied < len) && !page_has_buffers(page)) 2571 attach_nobh_buffers(page, head); 2572 if (page_has_buffers(page)) 2573 return generic_write_end(file, mapping, pos, len, 2574 copied, page, fsdata); 2575 } 2576 2577 SetPageUptodate(page); 2578 set_page_dirty(page); 2579 if (pos+copied > inode->i_size) { 2580 i_size_write(inode, pos+copied); 2581 mark_inode_dirty(inode); 2582 } 2583 2584 unlock_page(page); 2585 page_cache_release(page); 2586 2587 while (head) { 2588 bh = head; 2589 head = head->b_this_page; 2590 free_buffer_head(bh); 2591 } 2592 2593 return copied; 2594 } 2595 EXPORT_SYMBOL(nobh_write_end); 2596 2597 /* 2598 * nobh_writepage() - based on block_full_write_page() except 2599 * that it tries to operate without attaching bufferheads to 2600 * the page. 2601 */ 2602 int nobh_writepage(struct page *page, get_block_t *get_block, 2603 struct writeback_control *wbc) 2604 { 2605 struct inode * const inode = page->mapping->host; 2606 loff_t i_size = i_size_read(inode); 2607 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2608 unsigned offset; 2609 int ret; 2610 2611 /* Is the page fully inside i_size? */ 2612 if (page->index < end_index) 2613 goto out; 2614 2615 /* Is the page fully outside i_size? (truncate in progress) */ 2616 offset = i_size & (PAGE_CACHE_SIZE-1); 2617 if (page->index >= end_index+1 || !offset) { 2618 /* 2619 * The page may have dirty, unmapped buffers. For example, 2620 * they may have been added in ext3_writepage(). Make them 2621 * freeable here, so the page does not leak. 2622 */ 2623 #if 0 2624 /* Not really sure about this - do we need this ? */ 2625 if (page->mapping->a_ops->invalidatepage) 2626 page->mapping->a_ops->invalidatepage(page, offset); 2627 #endif 2628 unlock_page(page); 2629 return 0; /* don't care */ 2630 } 2631 2632 /* 2633 * The page straddles i_size. It must be zeroed out on each and every 2634 * writepage invocation because it may be mmapped. "A file is mapped 2635 * in multiples of the page size. For a file that is not a multiple of 2636 * the page size, the remaining memory is zeroed when mapped, and 2637 * writes to that region are not written out to the file." 2638 */ 2639 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2640 out: 2641 ret = mpage_writepage(page, get_block, wbc); 2642 if (ret == -EAGAIN) 2643 ret = __block_write_full_page(inode, page, get_block, wbc); 2644 return ret; 2645 } 2646 EXPORT_SYMBOL(nobh_writepage); 2647 2648 int nobh_truncate_page(struct address_space *mapping, 2649 loff_t from, get_block_t *get_block) 2650 { 2651 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2652 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2653 unsigned blocksize; 2654 sector_t iblock; 2655 unsigned length, pos; 2656 struct inode *inode = mapping->host; 2657 struct page *page; 2658 struct buffer_head map_bh; 2659 int err; 2660 2661 blocksize = 1 << inode->i_blkbits; 2662 length = offset & (blocksize - 1); 2663 2664 /* Block boundary? Nothing to do */ 2665 if (!length) 2666 return 0; 2667 2668 length = blocksize - length; 2669 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2670 2671 page = grab_cache_page(mapping, index); 2672 err = -ENOMEM; 2673 if (!page) 2674 goto out; 2675 2676 if (page_has_buffers(page)) { 2677 has_buffers: 2678 unlock_page(page); 2679 page_cache_release(page); 2680 return block_truncate_page(mapping, from, get_block); 2681 } 2682 2683 /* Find the buffer that contains "offset" */ 2684 pos = blocksize; 2685 while (offset >= pos) { 2686 iblock++; 2687 pos += blocksize; 2688 } 2689 2690 err = get_block(inode, iblock, &map_bh, 0); 2691 if (err) 2692 goto unlock; 2693 /* unmapped? It's a hole - nothing to do */ 2694 if (!buffer_mapped(&map_bh)) 2695 goto unlock; 2696 2697 /* Ok, it's mapped. Make sure it's up-to-date */ 2698 if (!PageUptodate(page)) { 2699 err = mapping->a_ops->readpage(NULL, page); 2700 if (err) { 2701 page_cache_release(page); 2702 goto out; 2703 } 2704 lock_page(page); 2705 if (!PageUptodate(page)) { 2706 err = -EIO; 2707 goto unlock; 2708 } 2709 if (page_has_buffers(page)) 2710 goto has_buffers; 2711 } 2712 zero_user(page, offset, length); 2713 set_page_dirty(page); 2714 err = 0; 2715 2716 unlock: 2717 unlock_page(page); 2718 page_cache_release(page); 2719 out: 2720 return err; 2721 } 2722 EXPORT_SYMBOL(nobh_truncate_page); 2723 2724 int block_truncate_page(struct address_space *mapping, 2725 loff_t from, get_block_t *get_block) 2726 { 2727 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2728 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2729 unsigned blocksize; 2730 sector_t iblock; 2731 unsigned length, pos; 2732 struct inode *inode = mapping->host; 2733 struct page *page; 2734 struct buffer_head *bh; 2735 int err; 2736 2737 blocksize = 1 << inode->i_blkbits; 2738 length = offset & (blocksize - 1); 2739 2740 /* Block boundary? Nothing to do */ 2741 if (!length) 2742 return 0; 2743 2744 length = blocksize - length; 2745 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2746 2747 page = grab_cache_page(mapping, index); 2748 err = -ENOMEM; 2749 if (!page) 2750 goto out; 2751 2752 if (!page_has_buffers(page)) 2753 create_empty_buffers(page, blocksize, 0); 2754 2755 /* Find the buffer that contains "offset" */ 2756 bh = page_buffers(page); 2757 pos = blocksize; 2758 while (offset >= pos) { 2759 bh = bh->b_this_page; 2760 iblock++; 2761 pos += blocksize; 2762 } 2763 2764 err = 0; 2765 if (!buffer_mapped(bh)) { 2766 WARN_ON(bh->b_size != blocksize); 2767 err = get_block(inode, iblock, bh, 0); 2768 if (err) 2769 goto unlock; 2770 /* unmapped? It's a hole - nothing to do */ 2771 if (!buffer_mapped(bh)) 2772 goto unlock; 2773 } 2774 2775 /* Ok, it's mapped. Make sure it's up-to-date */ 2776 if (PageUptodate(page)) 2777 set_buffer_uptodate(bh); 2778 2779 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2780 err = -EIO; 2781 ll_rw_block(READ, 1, &bh); 2782 wait_on_buffer(bh); 2783 /* Uhhuh. Read error. Complain and punt. */ 2784 if (!buffer_uptodate(bh)) 2785 goto unlock; 2786 } 2787 2788 zero_user(page, offset, length); 2789 mark_buffer_dirty(bh); 2790 err = 0; 2791 2792 unlock: 2793 unlock_page(page); 2794 page_cache_release(page); 2795 out: 2796 return err; 2797 } 2798 2799 /* 2800 * The generic ->writepage function for buffer-backed address_spaces 2801 */ 2802 int block_write_full_page(struct page *page, get_block_t *get_block, 2803 struct writeback_control *wbc) 2804 { 2805 struct inode * const inode = page->mapping->host; 2806 loff_t i_size = i_size_read(inode); 2807 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2808 unsigned offset; 2809 2810 /* Is the page fully inside i_size? */ 2811 if (page->index < end_index) 2812 return __block_write_full_page(inode, page, get_block, wbc); 2813 2814 /* Is the page fully outside i_size? (truncate in progress) */ 2815 offset = i_size & (PAGE_CACHE_SIZE-1); 2816 if (page->index >= end_index+1 || !offset) { 2817 /* 2818 * The page may have dirty, unmapped buffers. For example, 2819 * they may have been added in ext3_writepage(). Make them 2820 * freeable here, so the page does not leak. 2821 */ 2822 do_invalidatepage(page, 0); 2823 unlock_page(page); 2824 return 0; /* don't care */ 2825 } 2826 2827 /* 2828 * The page straddles i_size. It must be zeroed out on each and every 2829 * writepage invokation because it may be mmapped. "A file is mapped 2830 * in multiples of the page size. For a file that is not a multiple of 2831 * the page size, the remaining memory is zeroed when mapped, and 2832 * writes to that region are not written out to the file." 2833 */ 2834 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2835 return __block_write_full_page(inode, page, get_block, wbc); 2836 } 2837 2838 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2839 get_block_t *get_block) 2840 { 2841 struct buffer_head tmp; 2842 struct inode *inode = mapping->host; 2843 tmp.b_state = 0; 2844 tmp.b_blocknr = 0; 2845 tmp.b_size = 1 << inode->i_blkbits; 2846 get_block(inode, block, &tmp, 0); 2847 return tmp.b_blocknr; 2848 } 2849 2850 static void end_bio_bh_io_sync(struct bio *bio, int err) 2851 { 2852 struct buffer_head *bh = bio->bi_private; 2853 2854 if (err == -EOPNOTSUPP) { 2855 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2856 set_bit(BH_Eopnotsupp, &bh->b_state); 2857 } 2858 2859 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2860 bio_put(bio); 2861 } 2862 2863 int submit_bh(int rw, struct buffer_head * bh) 2864 { 2865 struct bio *bio; 2866 int ret = 0; 2867 2868 BUG_ON(!buffer_locked(bh)); 2869 BUG_ON(!buffer_mapped(bh)); 2870 BUG_ON(!bh->b_end_io); 2871 2872 if (buffer_ordered(bh) && (rw == WRITE)) 2873 rw = WRITE_BARRIER; 2874 2875 /* 2876 * Only clear out a write error when rewriting, should this 2877 * include WRITE_SYNC as well? 2878 */ 2879 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) 2880 clear_buffer_write_io_error(bh); 2881 2882 /* 2883 * from here on down, it's all bio -- do the initial mapping, 2884 * submit_bio -> generic_make_request may further map this bio around 2885 */ 2886 bio = bio_alloc(GFP_NOIO, 1); 2887 2888 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2889 bio->bi_bdev = bh->b_bdev; 2890 bio->bi_io_vec[0].bv_page = bh->b_page; 2891 bio->bi_io_vec[0].bv_len = bh->b_size; 2892 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2893 2894 bio->bi_vcnt = 1; 2895 bio->bi_idx = 0; 2896 bio->bi_size = bh->b_size; 2897 2898 bio->bi_end_io = end_bio_bh_io_sync; 2899 bio->bi_private = bh; 2900 2901 bio_get(bio); 2902 submit_bio(rw, bio); 2903 2904 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2905 ret = -EOPNOTSUPP; 2906 2907 bio_put(bio); 2908 return ret; 2909 } 2910 2911 /** 2912 * ll_rw_block: low-level access to block devices (DEPRECATED) 2913 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 2914 * @nr: number of &struct buffer_heads in the array 2915 * @bhs: array of pointers to &struct buffer_head 2916 * 2917 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2918 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2919 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 2920 * are sent to disk. The fourth %READA option is described in the documentation 2921 * for generic_make_request() which ll_rw_block() calls. 2922 * 2923 * This function drops any buffer that it cannot get a lock on (with the 2924 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 2925 * clean when doing a write request, and any buffer that appears to be 2926 * up-to-date when doing read request. Further it marks as clean buffers that 2927 * are processed for writing (the buffer cache won't assume that they are 2928 * actually clean until the buffer gets unlocked). 2929 * 2930 * ll_rw_block sets b_end_io to simple completion handler that marks 2931 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2932 * any waiters. 2933 * 2934 * All of the buffers must be for the same device, and must also be a 2935 * multiple of the current approved size for the device. 2936 */ 2937 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2938 { 2939 int i; 2940 2941 for (i = 0; i < nr; i++) { 2942 struct buffer_head *bh = bhs[i]; 2943 2944 if (rw == SWRITE) 2945 lock_buffer(bh); 2946 else if (test_set_buffer_locked(bh)) 2947 continue; 2948 2949 if (rw == WRITE || rw == SWRITE) { 2950 if (test_clear_buffer_dirty(bh)) { 2951 bh->b_end_io = end_buffer_write_sync; 2952 get_bh(bh); 2953 submit_bh(WRITE, bh); 2954 continue; 2955 } 2956 } else { 2957 if (!buffer_uptodate(bh)) { 2958 bh->b_end_io = end_buffer_read_sync; 2959 get_bh(bh); 2960 submit_bh(rw, bh); 2961 continue; 2962 } 2963 } 2964 unlock_buffer(bh); 2965 } 2966 } 2967 2968 /* 2969 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2970 * and then start new I/O and then wait upon it. The caller must have a ref on 2971 * the buffer_head. 2972 */ 2973 int sync_dirty_buffer(struct buffer_head *bh) 2974 { 2975 int ret = 0; 2976 2977 WARN_ON(atomic_read(&bh->b_count) < 1); 2978 lock_buffer(bh); 2979 if (test_clear_buffer_dirty(bh)) { 2980 get_bh(bh); 2981 bh->b_end_io = end_buffer_write_sync; 2982 ret = submit_bh(WRITE, bh); 2983 wait_on_buffer(bh); 2984 if (buffer_eopnotsupp(bh)) { 2985 clear_buffer_eopnotsupp(bh); 2986 ret = -EOPNOTSUPP; 2987 } 2988 if (!ret && !buffer_uptodate(bh)) 2989 ret = -EIO; 2990 } else { 2991 unlock_buffer(bh); 2992 } 2993 return ret; 2994 } 2995 2996 /* 2997 * try_to_free_buffers() checks if all the buffers on this particular page 2998 * are unused, and releases them if so. 2999 * 3000 * Exclusion against try_to_free_buffers may be obtained by either 3001 * locking the page or by holding its mapping's private_lock. 3002 * 3003 * If the page is dirty but all the buffers are clean then we need to 3004 * be sure to mark the page clean as well. This is because the page 3005 * may be against a block device, and a later reattachment of buffers 3006 * to a dirty page will set *all* buffers dirty. Which would corrupt 3007 * filesystem data on the same device. 3008 * 3009 * The same applies to regular filesystem pages: if all the buffers are 3010 * clean then we set the page clean and proceed. To do that, we require 3011 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3012 * private_lock. 3013 * 3014 * try_to_free_buffers() is non-blocking. 3015 */ 3016 static inline int buffer_busy(struct buffer_head *bh) 3017 { 3018 return atomic_read(&bh->b_count) | 3019 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3020 } 3021 3022 static int 3023 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3024 { 3025 struct buffer_head *head = page_buffers(page); 3026 struct buffer_head *bh; 3027 3028 bh = head; 3029 do { 3030 if (buffer_write_io_error(bh) && page->mapping) 3031 set_bit(AS_EIO, &page->mapping->flags); 3032 if (buffer_busy(bh)) 3033 goto failed; 3034 bh = bh->b_this_page; 3035 } while (bh != head); 3036 3037 do { 3038 struct buffer_head *next = bh->b_this_page; 3039 3040 if (bh->b_assoc_map) 3041 __remove_assoc_queue(bh); 3042 bh = next; 3043 } while (bh != head); 3044 *buffers_to_free = head; 3045 __clear_page_buffers(page); 3046 return 1; 3047 failed: 3048 return 0; 3049 } 3050 3051 int try_to_free_buffers(struct page *page) 3052 { 3053 struct address_space * const mapping = page->mapping; 3054 struct buffer_head *buffers_to_free = NULL; 3055 int ret = 0; 3056 3057 BUG_ON(!PageLocked(page)); 3058 if (PageWriteback(page)) 3059 return 0; 3060 3061 if (mapping == NULL) { /* can this still happen? */ 3062 ret = drop_buffers(page, &buffers_to_free); 3063 goto out; 3064 } 3065 3066 spin_lock(&mapping->private_lock); 3067 ret = drop_buffers(page, &buffers_to_free); 3068 3069 /* 3070 * If the filesystem writes its buffers by hand (eg ext3) 3071 * then we can have clean buffers against a dirty page. We 3072 * clean the page here; otherwise the VM will never notice 3073 * that the filesystem did any IO at all. 3074 * 3075 * Also, during truncate, discard_buffer will have marked all 3076 * the page's buffers clean. We discover that here and clean 3077 * the page also. 3078 * 3079 * private_lock must be held over this entire operation in order 3080 * to synchronise against __set_page_dirty_buffers and prevent the 3081 * dirty bit from being lost. 3082 */ 3083 if (ret) 3084 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3085 spin_unlock(&mapping->private_lock); 3086 out: 3087 if (buffers_to_free) { 3088 struct buffer_head *bh = buffers_to_free; 3089 3090 do { 3091 struct buffer_head *next = bh->b_this_page; 3092 free_buffer_head(bh); 3093 bh = next; 3094 } while (bh != buffers_to_free); 3095 } 3096 return ret; 3097 } 3098 EXPORT_SYMBOL(try_to_free_buffers); 3099 3100 void block_sync_page(struct page *page) 3101 { 3102 struct address_space *mapping; 3103 3104 smp_mb(); 3105 mapping = page_mapping(page); 3106 if (mapping) 3107 blk_run_backing_dev(mapping->backing_dev_info, page); 3108 } 3109 3110 /* 3111 * There are no bdflush tunables left. But distributions are 3112 * still running obsolete flush daemons, so we terminate them here. 3113 * 3114 * Use of bdflush() is deprecated and will be removed in a future kernel. 3115 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 3116 */ 3117 asmlinkage long sys_bdflush(int func, long data) 3118 { 3119 static int msg_count; 3120 3121 if (!capable(CAP_SYS_ADMIN)) 3122 return -EPERM; 3123 3124 if (msg_count < 5) { 3125 msg_count++; 3126 printk(KERN_INFO 3127 "warning: process `%s' used the obsolete bdflush" 3128 " system call\n", current->comm); 3129 printk(KERN_INFO "Fix your initscripts?\n"); 3130 } 3131 3132 if (func == 1) 3133 do_exit(0); 3134 return 0; 3135 } 3136 3137 /* 3138 * Buffer-head allocation 3139 */ 3140 static struct kmem_cache *bh_cachep; 3141 3142 /* 3143 * Once the number of bh's in the machine exceeds this level, we start 3144 * stripping them in writeback. 3145 */ 3146 static int max_buffer_heads; 3147 3148 int buffer_heads_over_limit; 3149 3150 struct bh_accounting { 3151 int nr; /* Number of live bh's */ 3152 int ratelimit; /* Limit cacheline bouncing */ 3153 }; 3154 3155 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3156 3157 static void recalc_bh_state(void) 3158 { 3159 int i; 3160 int tot = 0; 3161 3162 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 3163 return; 3164 __get_cpu_var(bh_accounting).ratelimit = 0; 3165 for_each_online_cpu(i) 3166 tot += per_cpu(bh_accounting, i).nr; 3167 buffer_heads_over_limit = (tot > max_buffer_heads); 3168 } 3169 3170 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3171 { 3172 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, 3173 set_migrateflags(gfp_flags, __GFP_RECLAIMABLE)); 3174 if (ret) { 3175 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3176 get_cpu_var(bh_accounting).nr++; 3177 recalc_bh_state(); 3178 put_cpu_var(bh_accounting); 3179 } 3180 return ret; 3181 } 3182 EXPORT_SYMBOL(alloc_buffer_head); 3183 3184 void free_buffer_head(struct buffer_head *bh) 3185 { 3186 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3187 kmem_cache_free(bh_cachep, bh); 3188 get_cpu_var(bh_accounting).nr--; 3189 recalc_bh_state(); 3190 put_cpu_var(bh_accounting); 3191 } 3192 EXPORT_SYMBOL(free_buffer_head); 3193 3194 static void buffer_exit_cpu(int cpu) 3195 { 3196 int i; 3197 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3198 3199 for (i = 0; i < BH_LRU_SIZE; i++) { 3200 brelse(b->bhs[i]); 3201 b->bhs[i] = NULL; 3202 } 3203 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 3204 per_cpu(bh_accounting, cpu).nr = 0; 3205 put_cpu_var(bh_accounting); 3206 } 3207 3208 static int buffer_cpu_notify(struct notifier_block *self, 3209 unsigned long action, void *hcpu) 3210 { 3211 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3212 buffer_exit_cpu((unsigned long)hcpu); 3213 return NOTIFY_OK; 3214 } 3215 3216 /** 3217 * bh_uptodate_or_lock: Test whether the buffer is uptodate 3218 * @bh: struct buffer_head 3219 * 3220 * Return true if the buffer is up-to-date and false, 3221 * with the buffer locked, if not. 3222 */ 3223 int bh_uptodate_or_lock(struct buffer_head *bh) 3224 { 3225 if (!buffer_uptodate(bh)) { 3226 lock_buffer(bh); 3227 if (!buffer_uptodate(bh)) 3228 return 0; 3229 unlock_buffer(bh); 3230 } 3231 return 1; 3232 } 3233 EXPORT_SYMBOL(bh_uptodate_or_lock); 3234 3235 /** 3236 * bh_submit_read: Submit a locked buffer for reading 3237 * @bh: struct buffer_head 3238 * 3239 * Returns zero on success and -EIO on error. 3240 */ 3241 int bh_submit_read(struct buffer_head *bh) 3242 { 3243 BUG_ON(!buffer_locked(bh)); 3244 3245 if (buffer_uptodate(bh)) { 3246 unlock_buffer(bh); 3247 return 0; 3248 } 3249 3250 get_bh(bh); 3251 bh->b_end_io = end_buffer_read_sync; 3252 submit_bh(READ, bh); 3253 wait_on_buffer(bh); 3254 if (buffer_uptodate(bh)) 3255 return 0; 3256 return -EIO; 3257 } 3258 EXPORT_SYMBOL(bh_submit_read); 3259 3260 static void 3261 init_buffer_head(struct kmem_cache *cachep, void *data) 3262 { 3263 struct buffer_head *bh = data; 3264 3265 memset(bh, 0, sizeof(*bh)); 3266 INIT_LIST_HEAD(&bh->b_assoc_buffers); 3267 } 3268 3269 void __init buffer_init(void) 3270 { 3271 int nrpages; 3272 3273 bh_cachep = kmem_cache_create("buffer_head", 3274 sizeof(struct buffer_head), 0, 3275 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3276 SLAB_MEM_SPREAD), 3277 init_buffer_head); 3278 3279 /* 3280 * Limit the bh occupancy to 10% of ZONE_NORMAL 3281 */ 3282 nrpages = (nr_free_buffer_pages() * 10) / 100; 3283 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3284 hotcpu_notifier(buffer_cpu_notify, 0); 3285 } 3286 3287 EXPORT_SYMBOL(__bforget); 3288 EXPORT_SYMBOL(__brelse); 3289 EXPORT_SYMBOL(__wait_on_buffer); 3290 EXPORT_SYMBOL(block_commit_write); 3291 EXPORT_SYMBOL(block_prepare_write); 3292 EXPORT_SYMBOL(block_page_mkwrite); 3293 EXPORT_SYMBOL(block_read_full_page); 3294 EXPORT_SYMBOL(block_sync_page); 3295 EXPORT_SYMBOL(block_truncate_page); 3296 EXPORT_SYMBOL(block_write_full_page); 3297 EXPORT_SYMBOL(cont_write_begin); 3298 EXPORT_SYMBOL(end_buffer_read_sync); 3299 EXPORT_SYMBOL(end_buffer_write_sync); 3300 EXPORT_SYMBOL(file_fsync); 3301 EXPORT_SYMBOL(fsync_bdev); 3302 EXPORT_SYMBOL(generic_block_bmap); 3303 EXPORT_SYMBOL(generic_commit_write); 3304 EXPORT_SYMBOL(generic_cont_expand_simple); 3305 EXPORT_SYMBOL(init_buffer); 3306 EXPORT_SYMBOL(invalidate_bdev); 3307 EXPORT_SYMBOL(ll_rw_block); 3308 EXPORT_SYMBOL(mark_buffer_dirty); 3309 EXPORT_SYMBOL(submit_bh); 3310 EXPORT_SYMBOL(sync_dirty_buffer); 3311 EXPORT_SYMBOL(unlock_buffer); 3312