1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/config.h> 22 #include <linux/kernel.h> 23 #include <linux/syscalls.h> 24 #include <linux/fs.h> 25 #include <linux/mm.h> 26 #include <linux/percpu.h> 27 #include <linux/slab.h> 28 #include <linux/smp_lock.h> 29 #include <linux/capability.h> 30 #include <linux/blkdev.h> 31 #include <linux/file.h> 32 #include <linux/quotaops.h> 33 #include <linux/highmem.h> 34 #include <linux/module.h> 35 #include <linux/writeback.h> 36 #include <linux/hash.h> 37 #include <linux/suspend.h> 38 #include <linux/buffer_head.h> 39 #include <linux/bio.h> 40 #include <linux/notifier.h> 41 #include <linux/cpu.h> 42 #include <linux/bitops.h> 43 #include <linux/mpage.h> 44 #include <linux/bit_spinlock.h> 45 46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 47 static void invalidate_bh_lrus(void); 48 49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 50 51 inline void 52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 53 { 54 bh->b_end_io = handler; 55 bh->b_private = private; 56 } 57 58 static int sync_buffer(void *word) 59 { 60 struct block_device *bd; 61 struct buffer_head *bh 62 = container_of(word, struct buffer_head, b_state); 63 64 smp_mb(); 65 bd = bh->b_bdev; 66 if (bd) 67 blk_run_address_space(bd->bd_inode->i_mapping); 68 io_schedule(); 69 return 0; 70 } 71 72 void fastcall __lock_buffer(struct buffer_head *bh) 73 { 74 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 75 TASK_UNINTERRUPTIBLE); 76 } 77 EXPORT_SYMBOL(__lock_buffer); 78 79 void fastcall unlock_buffer(struct buffer_head *bh) 80 { 81 clear_buffer_locked(bh); 82 smp_mb__after_clear_bit(); 83 wake_up_bit(&bh->b_state, BH_Lock); 84 } 85 86 /* 87 * Block until a buffer comes unlocked. This doesn't stop it 88 * from becoming locked again - you have to lock it yourself 89 * if you want to preserve its state. 90 */ 91 void __wait_on_buffer(struct buffer_head * bh) 92 { 93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 94 } 95 96 static void 97 __clear_page_buffers(struct page *page) 98 { 99 ClearPagePrivate(page); 100 set_page_private(page, 0); 101 page_cache_release(page); 102 } 103 104 static void buffer_io_error(struct buffer_head *bh) 105 { 106 char b[BDEVNAME_SIZE]; 107 108 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 109 bdevname(bh->b_bdev, b), 110 (unsigned long long)bh->b_blocknr); 111 } 112 113 /* 114 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 115 * unlock the buffer. This is what ll_rw_block uses too. 116 */ 117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 118 { 119 if (uptodate) { 120 set_buffer_uptodate(bh); 121 } else { 122 /* This happens, due to failed READA attempts. */ 123 clear_buffer_uptodate(bh); 124 } 125 unlock_buffer(bh); 126 put_bh(bh); 127 } 128 129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 130 { 131 char b[BDEVNAME_SIZE]; 132 133 if (uptodate) { 134 set_buffer_uptodate(bh); 135 } else { 136 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 137 buffer_io_error(bh); 138 printk(KERN_WARNING "lost page write due to " 139 "I/O error on %s\n", 140 bdevname(bh->b_bdev, b)); 141 } 142 set_buffer_write_io_error(bh); 143 clear_buffer_uptodate(bh); 144 } 145 unlock_buffer(bh); 146 put_bh(bh); 147 } 148 149 /* 150 * Write out and wait upon all the dirty data associated with a block 151 * device via its mapping. Does not take the superblock lock. 152 */ 153 int sync_blockdev(struct block_device *bdev) 154 { 155 int ret = 0; 156 157 if (bdev) 158 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); 159 return ret; 160 } 161 EXPORT_SYMBOL(sync_blockdev); 162 163 static void __fsync_super(struct super_block *sb) 164 { 165 sync_inodes_sb(sb, 0); 166 DQUOT_SYNC(sb); 167 lock_super(sb); 168 if (sb->s_dirt && sb->s_op->write_super) 169 sb->s_op->write_super(sb); 170 unlock_super(sb); 171 if (sb->s_op->sync_fs) 172 sb->s_op->sync_fs(sb, 1); 173 sync_blockdev(sb->s_bdev); 174 sync_inodes_sb(sb, 1); 175 } 176 177 /* 178 * Write out and wait upon all dirty data associated with this 179 * superblock. Filesystem data as well as the underlying block 180 * device. Takes the superblock lock. 181 */ 182 int fsync_super(struct super_block *sb) 183 { 184 __fsync_super(sb); 185 return sync_blockdev(sb->s_bdev); 186 } 187 188 /* 189 * Write out and wait upon all dirty data associated with this 190 * device. Filesystem data as well as the underlying block 191 * device. Takes the superblock lock. 192 */ 193 int fsync_bdev(struct block_device *bdev) 194 { 195 struct super_block *sb = get_super(bdev); 196 if (sb) { 197 int res = fsync_super(sb); 198 drop_super(sb); 199 return res; 200 } 201 return sync_blockdev(bdev); 202 } 203 204 /** 205 * freeze_bdev -- lock a filesystem and force it into a consistent state 206 * @bdev: blockdevice to lock 207 * 208 * This takes the block device bd_mount_mutex to make sure no new mounts 209 * happen on bdev until thaw_bdev() is called. 210 * If a superblock is found on this device, we take the s_umount semaphore 211 * on it to make sure nobody unmounts until the snapshot creation is done. 212 */ 213 struct super_block *freeze_bdev(struct block_device *bdev) 214 { 215 struct super_block *sb; 216 217 mutex_lock(&bdev->bd_mount_mutex); 218 sb = get_super(bdev); 219 if (sb && !(sb->s_flags & MS_RDONLY)) { 220 sb->s_frozen = SB_FREEZE_WRITE; 221 smp_wmb(); 222 223 __fsync_super(sb); 224 225 sb->s_frozen = SB_FREEZE_TRANS; 226 smp_wmb(); 227 228 sync_blockdev(sb->s_bdev); 229 230 if (sb->s_op->write_super_lockfs) 231 sb->s_op->write_super_lockfs(sb); 232 } 233 234 sync_blockdev(bdev); 235 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ 236 } 237 EXPORT_SYMBOL(freeze_bdev); 238 239 /** 240 * thaw_bdev -- unlock filesystem 241 * @bdev: blockdevice to unlock 242 * @sb: associated superblock 243 * 244 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 245 */ 246 void thaw_bdev(struct block_device *bdev, struct super_block *sb) 247 { 248 if (sb) { 249 BUG_ON(sb->s_bdev != bdev); 250 251 if (sb->s_op->unlockfs) 252 sb->s_op->unlockfs(sb); 253 sb->s_frozen = SB_UNFROZEN; 254 smp_wmb(); 255 wake_up(&sb->s_wait_unfrozen); 256 drop_super(sb); 257 } 258 259 mutex_unlock(&bdev->bd_mount_mutex); 260 } 261 EXPORT_SYMBOL(thaw_bdev); 262 263 /* 264 * sync everything. Start out by waking pdflush, because that writes back 265 * all queues in parallel. 266 */ 267 static void do_sync(unsigned long wait) 268 { 269 wakeup_pdflush(0); 270 sync_inodes(0); /* All mappings, inodes and their blockdevs */ 271 DQUOT_SYNC(NULL); 272 sync_supers(); /* Write the superblocks */ 273 sync_filesystems(0); /* Start syncing the filesystems */ 274 sync_filesystems(wait); /* Waitingly sync the filesystems */ 275 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */ 276 if (!wait) 277 printk("Emergency Sync complete\n"); 278 if (unlikely(laptop_mode)) 279 laptop_sync_completion(); 280 } 281 282 asmlinkage long sys_sync(void) 283 { 284 do_sync(1); 285 return 0; 286 } 287 288 void emergency_sync(void) 289 { 290 pdflush_operation(do_sync, 0); 291 } 292 293 /* 294 * Generic function to fsync a file. 295 * 296 * filp may be NULL if called via the msync of a vma. 297 */ 298 299 int file_fsync(struct file *filp, struct dentry *dentry, int datasync) 300 { 301 struct inode * inode = dentry->d_inode; 302 struct super_block * sb; 303 int ret, err; 304 305 /* sync the inode to buffers */ 306 ret = write_inode_now(inode, 0); 307 308 /* sync the superblock to buffers */ 309 sb = inode->i_sb; 310 lock_super(sb); 311 if (sb->s_op->write_super) 312 sb->s_op->write_super(sb); 313 unlock_super(sb); 314 315 /* .. finally sync the buffers to disk */ 316 err = sync_blockdev(sb->s_bdev); 317 if (!ret) 318 ret = err; 319 return ret; 320 } 321 322 long do_fsync(struct file *file, int datasync) 323 { 324 int ret; 325 int err; 326 struct address_space *mapping = file->f_mapping; 327 328 if (!file->f_op || !file->f_op->fsync) { 329 /* Why? We can still call filemap_fdatawrite */ 330 ret = -EINVAL; 331 goto out; 332 } 333 334 current->flags |= PF_SYNCWRITE; 335 ret = filemap_fdatawrite(mapping); 336 337 /* 338 * We need to protect against concurrent writers, which could cause 339 * livelocks in fsync_buffers_list(). 340 */ 341 mutex_lock(&mapping->host->i_mutex); 342 err = file->f_op->fsync(file, file->f_dentry, datasync); 343 if (!ret) 344 ret = err; 345 mutex_unlock(&mapping->host->i_mutex); 346 err = filemap_fdatawait(mapping); 347 if (!ret) 348 ret = err; 349 current->flags &= ~PF_SYNCWRITE; 350 out: 351 return ret; 352 } 353 354 static long __do_fsync(unsigned int fd, int datasync) 355 { 356 struct file *file; 357 int ret = -EBADF; 358 359 file = fget(fd); 360 if (file) { 361 ret = do_fsync(file, datasync); 362 fput(file); 363 } 364 return ret; 365 } 366 367 asmlinkage long sys_fsync(unsigned int fd) 368 { 369 return __do_fsync(fd, 0); 370 } 371 372 asmlinkage long sys_fdatasync(unsigned int fd) 373 { 374 return __do_fsync(fd, 1); 375 } 376 377 /* 378 * Various filesystems appear to want __find_get_block to be non-blocking. 379 * But it's the page lock which protects the buffers. To get around this, 380 * we get exclusion from try_to_free_buffers with the blockdev mapping's 381 * private_lock. 382 * 383 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 384 * may be quite high. This code could TryLock the page, and if that 385 * succeeds, there is no need to take private_lock. (But if 386 * private_lock is contended then so is mapping->tree_lock). 387 */ 388 static struct buffer_head * 389 __find_get_block_slow(struct block_device *bdev, sector_t block) 390 { 391 struct inode *bd_inode = bdev->bd_inode; 392 struct address_space *bd_mapping = bd_inode->i_mapping; 393 struct buffer_head *ret = NULL; 394 pgoff_t index; 395 struct buffer_head *bh; 396 struct buffer_head *head; 397 struct page *page; 398 int all_mapped = 1; 399 400 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 401 page = find_get_page(bd_mapping, index); 402 if (!page) 403 goto out; 404 405 spin_lock(&bd_mapping->private_lock); 406 if (!page_has_buffers(page)) 407 goto out_unlock; 408 head = page_buffers(page); 409 bh = head; 410 do { 411 if (bh->b_blocknr == block) { 412 ret = bh; 413 get_bh(bh); 414 goto out_unlock; 415 } 416 if (!buffer_mapped(bh)) 417 all_mapped = 0; 418 bh = bh->b_this_page; 419 } while (bh != head); 420 421 /* we might be here because some of the buffers on this page are 422 * not mapped. This is due to various races between 423 * file io on the block device and getblk. It gets dealt with 424 * elsewhere, don't buffer_error if we had some unmapped buffers 425 */ 426 if (all_mapped) { 427 printk("__find_get_block_slow() failed. " 428 "block=%llu, b_blocknr=%llu\n", 429 (unsigned long long)block, 430 (unsigned long long)bh->b_blocknr); 431 printk("b_state=0x%08lx, b_size=%zu\n", 432 bh->b_state, bh->b_size); 433 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 434 } 435 out_unlock: 436 spin_unlock(&bd_mapping->private_lock); 437 page_cache_release(page); 438 out: 439 return ret; 440 } 441 442 /* If invalidate_buffers() will trash dirty buffers, it means some kind 443 of fs corruption is going on. Trashing dirty data always imply losing 444 information that was supposed to be just stored on the physical layer 445 by the user. 446 447 Thus invalidate_buffers in general usage is not allwowed to trash 448 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 449 be preserved. These buffers are simply skipped. 450 451 We also skip buffers which are still in use. For example this can 452 happen if a userspace program is reading the block device. 453 454 NOTE: In the case where the user removed a removable-media-disk even if 455 there's still dirty data not synced on disk (due a bug in the device driver 456 or due an error of the user), by not destroying the dirty buffers we could 457 generate corruption also on the next media inserted, thus a parameter is 458 necessary to handle this case in the most safe way possible (trying 459 to not corrupt also the new disk inserted with the data belonging to 460 the old now corrupted disk). Also for the ramdisk the natural thing 461 to do in order to release the ramdisk memory is to destroy dirty buffers. 462 463 These are two special cases. Normal usage imply the device driver 464 to issue a sync on the device (without waiting I/O completion) and 465 then an invalidate_buffers call that doesn't trash dirty buffers. 466 467 For handling cache coherency with the blkdev pagecache the 'update' case 468 is been introduced. It is needed to re-read from disk any pinned 469 buffer. NOTE: re-reading from disk is destructive so we can do it only 470 when we assume nobody is changing the buffercache under our I/O and when 471 we think the disk contains more recent information than the buffercache. 472 The update == 1 pass marks the buffers we need to update, the update == 2 473 pass does the actual I/O. */ 474 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers) 475 { 476 invalidate_bh_lrus(); 477 /* 478 * FIXME: what about destroy_dirty_buffers? 479 * We really want to use invalidate_inode_pages2() for 480 * that, but not until that's cleaned up. 481 */ 482 invalidate_inode_pages(bdev->bd_inode->i_mapping); 483 } 484 485 /* 486 * Kick pdflush then try to free up some ZONE_NORMAL memory. 487 */ 488 static void free_more_memory(void) 489 { 490 struct zone **zones; 491 pg_data_t *pgdat; 492 493 wakeup_pdflush(1024); 494 yield(); 495 496 for_each_online_pgdat(pgdat) { 497 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones; 498 if (*zones) 499 try_to_free_pages(zones, GFP_NOFS); 500 } 501 } 502 503 /* 504 * I/O completion handler for block_read_full_page() - pages 505 * which come unlocked at the end of I/O. 506 */ 507 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 508 { 509 unsigned long flags; 510 struct buffer_head *first; 511 struct buffer_head *tmp; 512 struct page *page; 513 int page_uptodate = 1; 514 515 BUG_ON(!buffer_async_read(bh)); 516 517 page = bh->b_page; 518 if (uptodate) { 519 set_buffer_uptodate(bh); 520 } else { 521 clear_buffer_uptodate(bh); 522 if (printk_ratelimit()) 523 buffer_io_error(bh); 524 SetPageError(page); 525 } 526 527 /* 528 * Be _very_ careful from here on. Bad things can happen if 529 * two buffer heads end IO at almost the same time and both 530 * decide that the page is now completely done. 531 */ 532 first = page_buffers(page); 533 local_irq_save(flags); 534 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 535 clear_buffer_async_read(bh); 536 unlock_buffer(bh); 537 tmp = bh; 538 do { 539 if (!buffer_uptodate(tmp)) 540 page_uptodate = 0; 541 if (buffer_async_read(tmp)) { 542 BUG_ON(!buffer_locked(tmp)); 543 goto still_busy; 544 } 545 tmp = tmp->b_this_page; 546 } while (tmp != bh); 547 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 548 local_irq_restore(flags); 549 550 /* 551 * If none of the buffers had errors and they are all 552 * uptodate then we can set the page uptodate. 553 */ 554 if (page_uptodate && !PageError(page)) 555 SetPageUptodate(page); 556 unlock_page(page); 557 return; 558 559 still_busy: 560 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 561 local_irq_restore(flags); 562 return; 563 } 564 565 /* 566 * Completion handler for block_write_full_page() - pages which are unlocked 567 * during I/O, and which have PageWriteback cleared upon I/O completion. 568 */ 569 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 570 { 571 char b[BDEVNAME_SIZE]; 572 unsigned long flags; 573 struct buffer_head *first; 574 struct buffer_head *tmp; 575 struct page *page; 576 577 BUG_ON(!buffer_async_write(bh)); 578 579 page = bh->b_page; 580 if (uptodate) { 581 set_buffer_uptodate(bh); 582 } else { 583 if (printk_ratelimit()) { 584 buffer_io_error(bh); 585 printk(KERN_WARNING "lost page write due to " 586 "I/O error on %s\n", 587 bdevname(bh->b_bdev, b)); 588 } 589 set_bit(AS_EIO, &page->mapping->flags); 590 clear_buffer_uptodate(bh); 591 SetPageError(page); 592 } 593 594 first = page_buffers(page); 595 local_irq_save(flags); 596 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 597 598 clear_buffer_async_write(bh); 599 unlock_buffer(bh); 600 tmp = bh->b_this_page; 601 while (tmp != bh) { 602 if (buffer_async_write(tmp)) { 603 BUG_ON(!buffer_locked(tmp)); 604 goto still_busy; 605 } 606 tmp = tmp->b_this_page; 607 } 608 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 609 local_irq_restore(flags); 610 end_page_writeback(page); 611 return; 612 613 still_busy: 614 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 615 local_irq_restore(flags); 616 return; 617 } 618 619 /* 620 * If a page's buffers are under async readin (end_buffer_async_read 621 * completion) then there is a possibility that another thread of 622 * control could lock one of the buffers after it has completed 623 * but while some of the other buffers have not completed. This 624 * locked buffer would confuse end_buffer_async_read() into not unlocking 625 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 626 * that this buffer is not under async I/O. 627 * 628 * The page comes unlocked when it has no locked buffer_async buffers 629 * left. 630 * 631 * PageLocked prevents anyone starting new async I/O reads any of 632 * the buffers. 633 * 634 * PageWriteback is used to prevent simultaneous writeout of the same 635 * page. 636 * 637 * PageLocked prevents anyone from starting writeback of a page which is 638 * under read I/O (PageWriteback is only ever set against a locked page). 639 */ 640 static void mark_buffer_async_read(struct buffer_head *bh) 641 { 642 bh->b_end_io = end_buffer_async_read; 643 set_buffer_async_read(bh); 644 } 645 646 void mark_buffer_async_write(struct buffer_head *bh) 647 { 648 bh->b_end_io = end_buffer_async_write; 649 set_buffer_async_write(bh); 650 } 651 EXPORT_SYMBOL(mark_buffer_async_write); 652 653 654 /* 655 * fs/buffer.c contains helper functions for buffer-backed address space's 656 * fsync functions. A common requirement for buffer-based filesystems is 657 * that certain data from the backing blockdev needs to be written out for 658 * a successful fsync(). For example, ext2 indirect blocks need to be 659 * written back and waited upon before fsync() returns. 660 * 661 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 662 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 663 * management of a list of dependent buffers at ->i_mapping->private_list. 664 * 665 * Locking is a little subtle: try_to_free_buffers() will remove buffers 666 * from their controlling inode's queue when they are being freed. But 667 * try_to_free_buffers() will be operating against the *blockdev* mapping 668 * at the time, not against the S_ISREG file which depends on those buffers. 669 * So the locking for private_list is via the private_lock in the address_space 670 * which backs the buffers. Which is different from the address_space 671 * against which the buffers are listed. So for a particular address_space, 672 * mapping->private_lock does *not* protect mapping->private_list! In fact, 673 * mapping->private_list will always be protected by the backing blockdev's 674 * ->private_lock. 675 * 676 * Which introduces a requirement: all buffers on an address_space's 677 * ->private_list must be from the same address_space: the blockdev's. 678 * 679 * address_spaces which do not place buffers at ->private_list via these 680 * utility functions are free to use private_lock and private_list for 681 * whatever they want. The only requirement is that list_empty(private_list) 682 * be true at clear_inode() time. 683 * 684 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 685 * filesystems should do that. invalidate_inode_buffers() should just go 686 * BUG_ON(!list_empty). 687 * 688 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 689 * take an address_space, not an inode. And it should be called 690 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 691 * queued up. 692 * 693 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 694 * list if it is already on a list. Because if the buffer is on a list, 695 * it *must* already be on the right one. If not, the filesystem is being 696 * silly. This will save a ton of locking. But first we have to ensure 697 * that buffers are taken *off* the old inode's list when they are freed 698 * (presumably in truncate). That requires careful auditing of all 699 * filesystems (do it inside bforget()). It could also be done by bringing 700 * b_inode back. 701 */ 702 703 /* 704 * The buffer's backing address_space's private_lock must be held 705 */ 706 static inline void __remove_assoc_queue(struct buffer_head *bh) 707 { 708 list_del_init(&bh->b_assoc_buffers); 709 } 710 711 int inode_has_buffers(struct inode *inode) 712 { 713 return !list_empty(&inode->i_data.private_list); 714 } 715 716 /* 717 * osync is designed to support O_SYNC io. It waits synchronously for 718 * all already-submitted IO to complete, but does not queue any new 719 * writes to the disk. 720 * 721 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 722 * you dirty the buffers, and then use osync_inode_buffers to wait for 723 * completion. Any other dirty buffers which are not yet queued for 724 * write will not be flushed to disk by the osync. 725 */ 726 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 727 { 728 struct buffer_head *bh; 729 struct list_head *p; 730 int err = 0; 731 732 spin_lock(lock); 733 repeat: 734 list_for_each_prev(p, list) { 735 bh = BH_ENTRY(p); 736 if (buffer_locked(bh)) { 737 get_bh(bh); 738 spin_unlock(lock); 739 wait_on_buffer(bh); 740 if (!buffer_uptodate(bh)) 741 err = -EIO; 742 brelse(bh); 743 spin_lock(lock); 744 goto repeat; 745 } 746 } 747 spin_unlock(lock); 748 return err; 749 } 750 751 /** 752 * sync_mapping_buffers - write out and wait upon a mapping's "associated" 753 * buffers 754 * @mapping: the mapping which wants those buffers written 755 * 756 * Starts I/O against the buffers at mapping->private_list, and waits upon 757 * that I/O. 758 * 759 * Basically, this is a convenience function for fsync(). 760 * @mapping is a file or directory which needs those buffers to be written for 761 * a successful fsync(). 762 */ 763 int sync_mapping_buffers(struct address_space *mapping) 764 { 765 struct address_space *buffer_mapping = mapping->assoc_mapping; 766 767 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 768 return 0; 769 770 return fsync_buffers_list(&buffer_mapping->private_lock, 771 &mapping->private_list); 772 } 773 EXPORT_SYMBOL(sync_mapping_buffers); 774 775 /* 776 * Called when we've recently written block `bblock', and it is known that 777 * `bblock' was for a buffer_boundary() buffer. This means that the block at 778 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 779 * dirty, schedule it for IO. So that indirects merge nicely with their data. 780 */ 781 void write_boundary_block(struct block_device *bdev, 782 sector_t bblock, unsigned blocksize) 783 { 784 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 785 if (bh) { 786 if (buffer_dirty(bh)) 787 ll_rw_block(WRITE, 1, &bh); 788 put_bh(bh); 789 } 790 } 791 792 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 793 { 794 struct address_space *mapping = inode->i_mapping; 795 struct address_space *buffer_mapping = bh->b_page->mapping; 796 797 mark_buffer_dirty(bh); 798 if (!mapping->assoc_mapping) { 799 mapping->assoc_mapping = buffer_mapping; 800 } else { 801 BUG_ON(mapping->assoc_mapping != buffer_mapping); 802 } 803 if (list_empty(&bh->b_assoc_buffers)) { 804 spin_lock(&buffer_mapping->private_lock); 805 list_move_tail(&bh->b_assoc_buffers, 806 &mapping->private_list); 807 spin_unlock(&buffer_mapping->private_lock); 808 } 809 } 810 EXPORT_SYMBOL(mark_buffer_dirty_inode); 811 812 /* 813 * Add a page to the dirty page list. 814 * 815 * It is a sad fact of life that this function is called from several places 816 * deeply under spinlocking. It may not sleep. 817 * 818 * If the page has buffers, the uptodate buffers are set dirty, to preserve 819 * dirty-state coherency between the page and the buffers. It the page does 820 * not have buffers then when they are later attached they will all be set 821 * dirty. 822 * 823 * The buffers are dirtied before the page is dirtied. There's a small race 824 * window in which a writepage caller may see the page cleanness but not the 825 * buffer dirtiness. That's fine. If this code were to set the page dirty 826 * before the buffers, a concurrent writepage caller could clear the page dirty 827 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 828 * page on the dirty page list. 829 * 830 * We use private_lock to lock against try_to_free_buffers while using the 831 * page's buffer list. Also use this to protect against clean buffers being 832 * added to the page after it was set dirty. 833 * 834 * FIXME: may need to call ->reservepage here as well. That's rather up to the 835 * address_space though. 836 */ 837 int __set_page_dirty_buffers(struct page *page) 838 { 839 struct address_space * const mapping = page->mapping; 840 841 spin_lock(&mapping->private_lock); 842 if (page_has_buffers(page)) { 843 struct buffer_head *head = page_buffers(page); 844 struct buffer_head *bh = head; 845 846 do { 847 set_buffer_dirty(bh); 848 bh = bh->b_this_page; 849 } while (bh != head); 850 } 851 spin_unlock(&mapping->private_lock); 852 853 if (!TestSetPageDirty(page)) { 854 write_lock_irq(&mapping->tree_lock); 855 if (page->mapping) { /* Race with truncate? */ 856 if (mapping_cap_account_dirty(mapping)) 857 inc_page_state(nr_dirty); 858 radix_tree_tag_set(&mapping->page_tree, 859 page_index(page), 860 PAGECACHE_TAG_DIRTY); 861 } 862 write_unlock_irq(&mapping->tree_lock); 863 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 864 return 1; 865 } 866 return 0; 867 } 868 EXPORT_SYMBOL(__set_page_dirty_buffers); 869 870 /* 871 * Write out and wait upon a list of buffers. 872 * 873 * We have conflicting pressures: we want to make sure that all 874 * initially dirty buffers get waited on, but that any subsequently 875 * dirtied buffers don't. After all, we don't want fsync to last 876 * forever if somebody is actively writing to the file. 877 * 878 * Do this in two main stages: first we copy dirty buffers to a 879 * temporary inode list, queueing the writes as we go. Then we clean 880 * up, waiting for those writes to complete. 881 * 882 * During this second stage, any subsequent updates to the file may end 883 * up refiling the buffer on the original inode's dirty list again, so 884 * there is a chance we will end up with a buffer queued for write but 885 * not yet completed on that list. So, as a final cleanup we go through 886 * the osync code to catch these locked, dirty buffers without requeuing 887 * any newly dirty buffers for write. 888 */ 889 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 890 { 891 struct buffer_head *bh; 892 struct list_head tmp; 893 int err = 0, err2; 894 895 INIT_LIST_HEAD(&tmp); 896 897 spin_lock(lock); 898 while (!list_empty(list)) { 899 bh = BH_ENTRY(list->next); 900 list_del_init(&bh->b_assoc_buffers); 901 if (buffer_dirty(bh) || buffer_locked(bh)) { 902 list_add(&bh->b_assoc_buffers, &tmp); 903 if (buffer_dirty(bh)) { 904 get_bh(bh); 905 spin_unlock(lock); 906 /* 907 * Ensure any pending I/O completes so that 908 * ll_rw_block() actually writes the current 909 * contents - it is a noop if I/O is still in 910 * flight on potentially older contents. 911 */ 912 ll_rw_block(SWRITE, 1, &bh); 913 brelse(bh); 914 spin_lock(lock); 915 } 916 } 917 } 918 919 while (!list_empty(&tmp)) { 920 bh = BH_ENTRY(tmp.prev); 921 __remove_assoc_queue(bh); 922 get_bh(bh); 923 spin_unlock(lock); 924 wait_on_buffer(bh); 925 if (!buffer_uptodate(bh)) 926 err = -EIO; 927 brelse(bh); 928 spin_lock(lock); 929 } 930 931 spin_unlock(lock); 932 err2 = osync_buffers_list(lock, list); 933 if (err) 934 return err; 935 else 936 return err2; 937 } 938 939 /* 940 * Invalidate any and all dirty buffers on a given inode. We are 941 * probably unmounting the fs, but that doesn't mean we have already 942 * done a sync(). Just drop the buffers from the inode list. 943 * 944 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 945 * assumes that all the buffers are against the blockdev. Not true 946 * for reiserfs. 947 */ 948 void invalidate_inode_buffers(struct inode *inode) 949 { 950 if (inode_has_buffers(inode)) { 951 struct address_space *mapping = &inode->i_data; 952 struct list_head *list = &mapping->private_list; 953 struct address_space *buffer_mapping = mapping->assoc_mapping; 954 955 spin_lock(&buffer_mapping->private_lock); 956 while (!list_empty(list)) 957 __remove_assoc_queue(BH_ENTRY(list->next)); 958 spin_unlock(&buffer_mapping->private_lock); 959 } 960 } 961 962 /* 963 * Remove any clean buffers from the inode's buffer list. This is called 964 * when we're trying to free the inode itself. Those buffers can pin it. 965 * 966 * Returns true if all buffers were removed. 967 */ 968 int remove_inode_buffers(struct inode *inode) 969 { 970 int ret = 1; 971 972 if (inode_has_buffers(inode)) { 973 struct address_space *mapping = &inode->i_data; 974 struct list_head *list = &mapping->private_list; 975 struct address_space *buffer_mapping = mapping->assoc_mapping; 976 977 spin_lock(&buffer_mapping->private_lock); 978 while (!list_empty(list)) { 979 struct buffer_head *bh = BH_ENTRY(list->next); 980 if (buffer_dirty(bh)) { 981 ret = 0; 982 break; 983 } 984 __remove_assoc_queue(bh); 985 } 986 spin_unlock(&buffer_mapping->private_lock); 987 } 988 return ret; 989 } 990 991 /* 992 * Create the appropriate buffers when given a page for data area and 993 * the size of each buffer.. Use the bh->b_this_page linked list to 994 * follow the buffers created. Return NULL if unable to create more 995 * buffers. 996 * 997 * The retry flag is used to differentiate async IO (paging, swapping) 998 * which may not fail from ordinary buffer allocations. 999 */ 1000 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 1001 int retry) 1002 { 1003 struct buffer_head *bh, *head; 1004 long offset; 1005 1006 try_again: 1007 head = NULL; 1008 offset = PAGE_SIZE; 1009 while ((offset -= size) >= 0) { 1010 bh = alloc_buffer_head(GFP_NOFS); 1011 if (!bh) 1012 goto no_grow; 1013 1014 bh->b_bdev = NULL; 1015 bh->b_this_page = head; 1016 bh->b_blocknr = -1; 1017 head = bh; 1018 1019 bh->b_state = 0; 1020 atomic_set(&bh->b_count, 0); 1021 bh->b_private = NULL; 1022 bh->b_size = size; 1023 1024 /* Link the buffer to its page */ 1025 set_bh_page(bh, page, offset); 1026 1027 init_buffer(bh, NULL, NULL); 1028 } 1029 return head; 1030 /* 1031 * In case anything failed, we just free everything we got. 1032 */ 1033 no_grow: 1034 if (head) { 1035 do { 1036 bh = head; 1037 head = head->b_this_page; 1038 free_buffer_head(bh); 1039 } while (head); 1040 } 1041 1042 /* 1043 * Return failure for non-async IO requests. Async IO requests 1044 * are not allowed to fail, so we have to wait until buffer heads 1045 * become available. But we don't want tasks sleeping with 1046 * partially complete buffers, so all were released above. 1047 */ 1048 if (!retry) 1049 return NULL; 1050 1051 /* We're _really_ low on memory. Now we just 1052 * wait for old buffer heads to become free due to 1053 * finishing IO. Since this is an async request and 1054 * the reserve list is empty, we're sure there are 1055 * async buffer heads in use. 1056 */ 1057 free_more_memory(); 1058 goto try_again; 1059 } 1060 EXPORT_SYMBOL_GPL(alloc_page_buffers); 1061 1062 static inline void 1063 link_dev_buffers(struct page *page, struct buffer_head *head) 1064 { 1065 struct buffer_head *bh, *tail; 1066 1067 bh = head; 1068 do { 1069 tail = bh; 1070 bh = bh->b_this_page; 1071 } while (bh); 1072 tail->b_this_page = head; 1073 attach_page_buffers(page, head); 1074 } 1075 1076 /* 1077 * Initialise the state of a blockdev page's buffers. 1078 */ 1079 static void 1080 init_page_buffers(struct page *page, struct block_device *bdev, 1081 sector_t block, int size) 1082 { 1083 struct buffer_head *head = page_buffers(page); 1084 struct buffer_head *bh = head; 1085 int uptodate = PageUptodate(page); 1086 1087 do { 1088 if (!buffer_mapped(bh)) { 1089 init_buffer(bh, NULL, NULL); 1090 bh->b_bdev = bdev; 1091 bh->b_blocknr = block; 1092 if (uptodate) 1093 set_buffer_uptodate(bh); 1094 set_buffer_mapped(bh); 1095 } 1096 block++; 1097 bh = bh->b_this_page; 1098 } while (bh != head); 1099 } 1100 1101 /* 1102 * Create the page-cache page that contains the requested block. 1103 * 1104 * This is user purely for blockdev mappings. 1105 */ 1106 static struct page * 1107 grow_dev_page(struct block_device *bdev, sector_t block, 1108 pgoff_t index, int size) 1109 { 1110 struct inode *inode = bdev->bd_inode; 1111 struct page *page; 1112 struct buffer_head *bh; 1113 1114 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 1115 if (!page) 1116 return NULL; 1117 1118 BUG_ON(!PageLocked(page)); 1119 1120 if (page_has_buffers(page)) { 1121 bh = page_buffers(page); 1122 if (bh->b_size == size) { 1123 init_page_buffers(page, bdev, block, size); 1124 return page; 1125 } 1126 if (!try_to_free_buffers(page)) 1127 goto failed; 1128 } 1129 1130 /* 1131 * Allocate some buffers for this page 1132 */ 1133 bh = alloc_page_buffers(page, size, 0); 1134 if (!bh) 1135 goto failed; 1136 1137 /* 1138 * Link the page to the buffers and initialise them. Take the 1139 * lock to be atomic wrt __find_get_block(), which does not 1140 * run under the page lock. 1141 */ 1142 spin_lock(&inode->i_mapping->private_lock); 1143 link_dev_buffers(page, bh); 1144 init_page_buffers(page, bdev, block, size); 1145 spin_unlock(&inode->i_mapping->private_lock); 1146 return page; 1147 1148 failed: 1149 BUG(); 1150 unlock_page(page); 1151 page_cache_release(page); 1152 return NULL; 1153 } 1154 1155 /* 1156 * Create buffers for the specified block device block's page. If 1157 * that page was dirty, the buffers are set dirty also. 1158 * 1159 * Except that's a bug. Attaching dirty buffers to a dirty 1160 * blockdev's page can result in filesystem corruption, because 1161 * some of those buffers may be aliases of filesystem data. 1162 * grow_dev_page() will go BUG() if this happens. 1163 */ 1164 static int 1165 grow_buffers(struct block_device *bdev, sector_t block, int size) 1166 { 1167 struct page *page; 1168 pgoff_t index; 1169 int sizebits; 1170 1171 sizebits = -1; 1172 do { 1173 sizebits++; 1174 } while ((size << sizebits) < PAGE_SIZE); 1175 1176 index = block >> sizebits; 1177 block = index << sizebits; 1178 1179 /* Create a page with the proper size buffers.. */ 1180 page = grow_dev_page(bdev, block, index, size); 1181 if (!page) 1182 return 0; 1183 unlock_page(page); 1184 page_cache_release(page); 1185 return 1; 1186 } 1187 1188 static struct buffer_head * 1189 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1190 { 1191 /* Size must be multiple of hard sectorsize */ 1192 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1193 (size < 512 || size > PAGE_SIZE))) { 1194 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1195 size); 1196 printk(KERN_ERR "hardsect size: %d\n", 1197 bdev_hardsect_size(bdev)); 1198 1199 dump_stack(); 1200 return NULL; 1201 } 1202 1203 for (;;) { 1204 struct buffer_head * bh; 1205 1206 bh = __find_get_block(bdev, block, size); 1207 if (bh) 1208 return bh; 1209 1210 if (!grow_buffers(bdev, block, size)) 1211 free_more_memory(); 1212 } 1213 } 1214 1215 /* 1216 * The relationship between dirty buffers and dirty pages: 1217 * 1218 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1219 * the page is tagged dirty in its radix tree. 1220 * 1221 * At all times, the dirtiness of the buffers represents the dirtiness of 1222 * subsections of the page. If the page has buffers, the page dirty bit is 1223 * merely a hint about the true dirty state. 1224 * 1225 * When a page is set dirty in its entirety, all its buffers are marked dirty 1226 * (if the page has buffers). 1227 * 1228 * When a buffer is marked dirty, its page is dirtied, but the page's other 1229 * buffers are not. 1230 * 1231 * Also. When blockdev buffers are explicitly read with bread(), they 1232 * individually become uptodate. But their backing page remains not 1233 * uptodate - even if all of its buffers are uptodate. A subsequent 1234 * block_read_full_page() against that page will discover all the uptodate 1235 * buffers, will set the page uptodate and will perform no I/O. 1236 */ 1237 1238 /** 1239 * mark_buffer_dirty - mark a buffer_head as needing writeout 1240 * @bh: the buffer_head to mark dirty 1241 * 1242 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1243 * backing page dirty, then tag the page as dirty in its address_space's radix 1244 * tree and then attach the address_space's inode to its superblock's dirty 1245 * inode list. 1246 * 1247 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1248 * mapping->tree_lock and the global inode_lock. 1249 */ 1250 void fastcall mark_buffer_dirty(struct buffer_head *bh) 1251 { 1252 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) 1253 __set_page_dirty_nobuffers(bh->b_page); 1254 } 1255 1256 /* 1257 * Decrement a buffer_head's reference count. If all buffers against a page 1258 * have zero reference count, are clean and unlocked, and if the page is clean 1259 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1260 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1261 * a page but it ends up not being freed, and buffers may later be reattached). 1262 */ 1263 void __brelse(struct buffer_head * buf) 1264 { 1265 if (atomic_read(&buf->b_count)) { 1266 put_bh(buf); 1267 return; 1268 } 1269 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1270 WARN_ON(1); 1271 } 1272 1273 /* 1274 * bforget() is like brelse(), except it discards any 1275 * potentially dirty data. 1276 */ 1277 void __bforget(struct buffer_head *bh) 1278 { 1279 clear_buffer_dirty(bh); 1280 if (!list_empty(&bh->b_assoc_buffers)) { 1281 struct address_space *buffer_mapping = bh->b_page->mapping; 1282 1283 spin_lock(&buffer_mapping->private_lock); 1284 list_del_init(&bh->b_assoc_buffers); 1285 spin_unlock(&buffer_mapping->private_lock); 1286 } 1287 __brelse(bh); 1288 } 1289 1290 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1291 { 1292 lock_buffer(bh); 1293 if (buffer_uptodate(bh)) { 1294 unlock_buffer(bh); 1295 return bh; 1296 } else { 1297 get_bh(bh); 1298 bh->b_end_io = end_buffer_read_sync; 1299 submit_bh(READ, bh); 1300 wait_on_buffer(bh); 1301 if (buffer_uptodate(bh)) 1302 return bh; 1303 } 1304 brelse(bh); 1305 return NULL; 1306 } 1307 1308 /* 1309 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1310 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1311 * refcount elevated by one when they're in an LRU. A buffer can only appear 1312 * once in a particular CPU's LRU. A single buffer can be present in multiple 1313 * CPU's LRUs at the same time. 1314 * 1315 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1316 * sb_find_get_block(). 1317 * 1318 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1319 * a local interrupt disable for that. 1320 */ 1321 1322 #define BH_LRU_SIZE 8 1323 1324 struct bh_lru { 1325 struct buffer_head *bhs[BH_LRU_SIZE]; 1326 }; 1327 1328 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1329 1330 #ifdef CONFIG_SMP 1331 #define bh_lru_lock() local_irq_disable() 1332 #define bh_lru_unlock() local_irq_enable() 1333 #else 1334 #define bh_lru_lock() preempt_disable() 1335 #define bh_lru_unlock() preempt_enable() 1336 #endif 1337 1338 static inline void check_irqs_on(void) 1339 { 1340 #ifdef irqs_disabled 1341 BUG_ON(irqs_disabled()); 1342 #endif 1343 } 1344 1345 /* 1346 * The LRU management algorithm is dopey-but-simple. Sorry. 1347 */ 1348 static void bh_lru_install(struct buffer_head *bh) 1349 { 1350 struct buffer_head *evictee = NULL; 1351 struct bh_lru *lru; 1352 1353 check_irqs_on(); 1354 bh_lru_lock(); 1355 lru = &__get_cpu_var(bh_lrus); 1356 if (lru->bhs[0] != bh) { 1357 struct buffer_head *bhs[BH_LRU_SIZE]; 1358 int in; 1359 int out = 0; 1360 1361 get_bh(bh); 1362 bhs[out++] = bh; 1363 for (in = 0; in < BH_LRU_SIZE; in++) { 1364 struct buffer_head *bh2 = lru->bhs[in]; 1365 1366 if (bh2 == bh) { 1367 __brelse(bh2); 1368 } else { 1369 if (out >= BH_LRU_SIZE) { 1370 BUG_ON(evictee != NULL); 1371 evictee = bh2; 1372 } else { 1373 bhs[out++] = bh2; 1374 } 1375 } 1376 } 1377 while (out < BH_LRU_SIZE) 1378 bhs[out++] = NULL; 1379 memcpy(lru->bhs, bhs, sizeof(bhs)); 1380 } 1381 bh_lru_unlock(); 1382 1383 if (evictee) 1384 __brelse(evictee); 1385 } 1386 1387 /* 1388 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1389 */ 1390 static struct buffer_head * 1391 lookup_bh_lru(struct block_device *bdev, sector_t block, int size) 1392 { 1393 struct buffer_head *ret = NULL; 1394 struct bh_lru *lru; 1395 int i; 1396 1397 check_irqs_on(); 1398 bh_lru_lock(); 1399 lru = &__get_cpu_var(bh_lrus); 1400 for (i = 0; i < BH_LRU_SIZE; i++) { 1401 struct buffer_head *bh = lru->bhs[i]; 1402 1403 if (bh && bh->b_bdev == bdev && 1404 bh->b_blocknr == block && bh->b_size == size) { 1405 if (i) { 1406 while (i) { 1407 lru->bhs[i] = lru->bhs[i - 1]; 1408 i--; 1409 } 1410 lru->bhs[0] = bh; 1411 } 1412 get_bh(bh); 1413 ret = bh; 1414 break; 1415 } 1416 } 1417 bh_lru_unlock(); 1418 return ret; 1419 } 1420 1421 /* 1422 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1423 * it in the LRU and mark it as accessed. If it is not present then return 1424 * NULL 1425 */ 1426 struct buffer_head * 1427 __find_get_block(struct block_device *bdev, sector_t block, int size) 1428 { 1429 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1430 1431 if (bh == NULL) { 1432 bh = __find_get_block_slow(bdev, block); 1433 if (bh) 1434 bh_lru_install(bh); 1435 } 1436 if (bh) 1437 touch_buffer(bh); 1438 return bh; 1439 } 1440 EXPORT_SYMBOL(__find_get_block); 1441 1442 /* 1443 * __getblk will locate (and, if necessary, create) the buffer_head 1444 * which corresponds to the passed block_device, block and size. The 1445 * returned buffer has its reference count incremented. 1446 * 1447 * __getblk() cannot fail - it just keeps trying. If you pass it an 1448 * illegal block number, __getblk() will happily return a buffer_head 1449 * which represents the non-existent block. Very weird. 1450 * 1451 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1452 * attempt is failing. FIXME, perhaps? 1453 */ 1454 struct buffer_head * 1455 __getblk(struct block_device *bdev, sector_t block, int size) 1456 { 1457 struct buffer_head *bh = __find_get_block(bdev, block, size); 1458 1459 might_sleep(); 1460 if (bh == NULL) 1461 bh = __getblk_slow(bdev, block, size); 1462 return bh; 1463 } 1464 EXPORT_SYMBOL(__getblk); 1465 1466 /* 1467 * Do async read-ahead on a buffer.. 1468 */ 1469 void __breadahead(struct block_device *bdev, sector_t block, int size) 1470 { 1471 struct buffer_head *bh = __getblk(bdev, block, size); 1472 if (likely(bh)) { 1473 ll_rw_block(READA, 1, &bh); 1474 brelse(bh); 1475 } 1476 } 1477 EXPORT_SYMBOL(__breadahead); 1478 1479 /** 1480 * __bread() - reads a specified block and returns the bh 1481 * @bdev: the block_device to read from 1482 * @block: number of block 1483 * @size: size (in bytes) to read 1484 * 1485 * Reads a specified block, and returns buffer head that contains it. 1486 * It returns NULL if the block was unreadable. 1487 */ 1488 struct buffer_head * 1489 __bread(struct block_device *bdev, sector_t block, int size) 1490 { 1491 struct buffer_head *bh = __getblk(bdev, block, size); 1492 1493 if (likely(bh) && !buffer_uptodate(bh)) 1494 bh = __bread_slow(bh); 1495 return bh; 1496 } 1497 EXPORT_SYMBOL(__bread); 1498 1499 /* 1500 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1501 * This doesn't race because it runs in each cpu either in irq 1502 * or with preempt disabled. 1503 */ 1504 static void invalidate_bh_lru(void *arg) 1505 { 1506 struct bh_lru *b = &get_cpu_var(bh_lrus); 1507 int i; 1508 1509 for (i = 0; i < BH_LRU_SIZE; i++) { 1510 brelse(b->bhs[i]); 1511 b->bhs[i] = NULL; 1512 } 1513 put_cpu_var(bh_lrus); 1514 } 1515 1516 static void invalidate_bh_lrus(void) 1517 { 1518 on_each_cpu(invalidate_bh_lru, NULL, 1, 1); 1519 } 1520 1521 void set_bh_page(struct buffer_head *bh, 1522 struct page *page, unsigned long offset) 1523 { 1524 bh->b_page = page; 1525 BUG_ON(offset >= PAGE_SIZE); 1526 if (PageHighMem(page)) 1527 /* 1528 * This catches illegal uses and preserves the offset: 1529 */ 1530 bh->b_data = (char *)(0 + offset); 1531 else 1532 bh->b_data = page_address(page) + offset; 1533 } 1534 EXPORT_SYMBOL(set_bh_page); 1535 1536 /* 1537 * Called when truncating a buffer on a page completely. 1538 */ 1539 static void discard_buffer(struct buffer_head * bh) 1540 { 1541 lock_buffer(bh); 1542 clear_buffer_dirty(bh); 1543 bh->b_bdev = NULL; 1544 clear_buffer_mapped(bh); 1545 clear_buffer_req(bh); 1546 clear_buffer_new(bh); 1547 clear_buffer_delay(bh); 1548 unlock_buffer(bh); 1549 } 1550 1551 /** 1552 * try_to_release_page() - release old fs-specific metadata on a page 1553 * 1554 * @page: the page which the kernel is trying to free 1555 * @gfp_mask: memory allocation flags (and I/O mode) 1556 * 1557 * The address_space is to try to release any data against the page 1558 * (presumably at page->private). If the release was successful, return `1'. 1559 * Otherwise return zero. 1560 * 1561 * The @gfp_mask argument specifies whether I/O may be performed to release 1562 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). 1563 * 1564 * NOTE: @gfp_mask may go away, and this function may become non-blocking. 1565 */ 1566 int try_to_release_page(struct page *page, gfp_t gfp_mask) 1567 { 1568 struct address_space * const mapping = page->mapping; 1569 1570 BUG_ON(!PageLocked(page)); 1571 if (PageWriteback(page)) 1572 return 0; 1573 1574 if (mapping && mapping->a_ops->releasepage) 1575 return mapping->a_ops->releasepage(page, gfp_mask); 1576 return try_to_free_buffers(page); 1577 } 1578 EXPORT_SYMBOL(try_to_release_page); 1579 1580 /** 1581 * block_invalidatepage - invalidate part of all of a buffer-backed page 1582 * 1583 * @page: the page which is affected 1584 * @offset: the index of the truncation point 1585 * 1586 * block_invalidatepage() is called when all or part of the page has become 1587 * invalidatedby a truncate operation. 1588 * 1589 * block_invalidatepage() does not have to release all buffers, but it must 1590 * ensure that no dirty buffer is left outside @offset and that no I/O 1591 * is underway against any of the blocks which are outside the truncation 1592 * point. Because the caller is about to free (and possibly reuse) those 1593 * blocks on-disk. 1594 */ 1595 void block_invalidatepage(struct page *page, unsigned long offset) 1596 { 1597 struct buffer_head *head, *bh, *next; 1598 unsigned int curr_off = 0; 1599 1600 BUG_ON(!PageLocked(page)); 1601 if (!page_has_buffers(page)) 1602 goto out; 1603 1604 head = page_buffers(page); 1605 bh = head; 1606 do { 1607 unsigned int next_off = curr_off + bh->b_size; 1608 next = bh->b_this_page; 1609 1610 /* 1611 * is this block fully invalidated? 1612 */ 1613 if (offset <= curr_off) 1614 discard_buffer(bh); 1615 curr_off = next_off; 1616 bh = next; 1617 } while (bh != head); 1618 1619 /* 1620 * We release buffers only if the entire page is being invalidated. 1621 * The get_block cached value has been unconditionally invalidated, 1622 * so real IO is not possible anymore. 1623 */ 1624 if (offset == 0) 1625 try_to_release_page(page, 0); 1626 out: 1627 return; 1628 } 1629 EXPORT_SYMBOL(block_invalidatepage); 1630 1631 void do_invalidatepage(struct page *page, unsigned long offset) 1632 { 1633 void (*invalidatepage)(struct page *, unsigned long); 1634 invalidatepage = page->mapping->a_ops->invalidatepage ? : 1635 block_invalidatepage; 1636 (*invalidatepage)(page, offset); 1637 } 1638 1639 /* 1640 * We attach and possibly dirty the buffers atomically wrt 1641 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1642 * is already excluded via the page lock. 1643 */ 1644 void create_empty_buffers(struct page *page, 1645 unsigned long blocksize, unsigned long b_state) 1646 { 1647 struct buffer_head *bh, *head, *tail; 1648 1649 head = alloc_page_buffers(page, blocksize, 1); 1650 bh = head; 1651 do { 1652 bh->b_state |= b_state; 1653 tail = bh; 1654 bh = bh->b_this_page; 1655 } while (bh); 1656 tail->b_this_page = head; 1657 1658 spin_lock(&page->mapping->private_lock); 1659 if (PageUptodate(page) || PageDirty(page)) { 1660 bh = head; 1661 do { 1662 if (PageDirty(page)) 1663 set_buffer_dirty(bh); 1664 if (PageUptodate(page)) 1665 set_buffer_uptodate(bh); 1666 bh = bh->b_this_page; 1667 } while (bh != head); 1668 } 1669 attach_page_buffers(page, head); 1670 spin_unlock(&page->mapping->private_lock); 1671 } 1672 EXPORT_SYMBOL(create_empty_buffers); 1673 1674 /* 1675 * We are taking a block for data and we don't want any output from any 1676 * buffer-cache aliases starting from return from that function and 1677 * until the moment when something will explicitly mark the buffer 1678 * dirty (hopefully that will not happen until we will free that block ;-) 1679 * We don't even need to mark it not-uptodate - nobody can expect 1680 * anything from a newly allocated buffer anyway. We used to used 1681 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1682 * don't want to mark the alias unmapped, for example - it would confuse 1683 * anyone who might pick it with bread() afterwards... 1684 * 1685 * Also.. Note that bforget() doesn't lock the buffer. So there can 1686 * be writeout I/O going on against recently-freed buffers. We don't 1687 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1688 * only if we really need to. That happens here. 1689 */ 1690 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1691 { 1692 struct buffer_head *old_bh; 1693 1694 might_sleep(); 1695 1696 old_bh = __find_get_block_slow(bdev, block); 1697 if (old_bh) { 1698 clear_buffer_dirty(old_bh); 1699 wait_on_buffer(old_bh); 1700 clear_buffer_req(old_bh); 1701 __brelse(old_bh); 1702 } 1703 } 1704 EXPORT_SYMBOL(unmap_underlying_metadata); 1705 1706 /* 1707 * NOTE! All mapped/uptodate combinations are valid: 1708 * 1709 * Mapped Uptodate Meaning 1710 * 1711 * No No "unknown" - must do get_block() 1712 * No Yes "hole" - zero-filled 1713 * Yes No "allocated" - allocated on disk, not read in 1714 * Yes Yes "valid" - allocated and up-to-date in memory. 1715 * 1716 * "Dirty" is valid only with the last case (mapped+uptodate). 1717 */ 1718 1719 /* 1720 * While block_write_full_page is writing back the dirty buffers under 1721 * the page lock, whoever dirtied the buffers may decide to clean them 1722 * again at any time. We handle that by only looking at the buffer 1723 * state inside lock_buffer(). 1724 * 1725 * If block_write_full_page() is called for regular writeback 1726 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1727 * locked buffer. This only can happen if someone has written the buffer 1728 * directly, with submit_bh(). At the address_space level PageWriteback 1729 * prevents this contention from occurring. 1730 */ 1731 static int __block_write_full_page(struct inode *inode, struct page *page, 1732 get_block_t *get_block, struct writeback_control *wbc) 1733 { 1734 int err; 1735 sector_t block; 1736 sector_t last_block; 1737 struct buffer_head *bh, *head; 1738 const unsigned blocksize = 1 << inode->i_blkbits; 1739 int nr_underway = 0; 1740 1741 BUG_ON(!PageLocked(page)); 1742 1743 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1744 1745 if (!page_has_buffers(page)) { 1746 create_empty_buffers(page, blocksize, 1747 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1748 } 1749 1750 /* 1751 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1752 * here, and the (potentially unmapped) buffers may become dirty at 1753 * any time. If a buffer becomes dirty here after we've inspected it 1754 * then we just miss that fact, and the page stays dirty. 1755 * 1756 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1757 * handle that here by just cleaning them. 1758 */ 1759 1760 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1761 head = page_buffers(page); 1762 bh = head; 1763 1764 /* 1765 * Get all the dirty buffers mapped to disk addresses and 1766 * handle any aliases from the underlying blockdev's mapping. 1767 */ 1768 do { 1769 if (block > last_block) { 1770 /* 1771 * mapped buffers outside i_size will occur, because 1772 * this page can be outside i_size when there is a 1773 * truncate in progress. 1774 */ 1775 /* 1776 * The buffer was zeroed by block_write_full_page() 1777 */ 1778 clear_buffer_dirty(bh); 1779 set_buffer_uptodate(bh); 1780 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { 1781 WARN_ON(bh->b_size != blocksize); 1782 err = get_block(inode, block, bh, 1); 1783 if (err) 1784 goto recover; 1785 if (buffer_new(bh)) { 1786 /* blockdev mappings never come here */ 1787 clear_buffer_new(bh); 1788 unmap_underlying_metadata(bh->b_bdev, 1789 bh->b_blocknr); 1790 } 1791 } 1792 bh = bh->b_this_page; 1793 block++; 1794 } while (bh != head); 1795 1796 do { 1797 if (!buffer_mapped(bh)) 1798 continue; 1799 /* 1800 * If it's a fully non-blocking write attempt and we cannot 1801 * lock the buffer then redirty the page. Note that this can 1802 * potentially cause a busy-wait loop from pdflush and kswapd 1803 * activity, but those code paths have their own higher-level 1804 * throttling. 1805 */ 1806 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1807 lock_buffer(bh); 1808 } else if (test_set_buffer_locked(bh)) { 1809 redirty_page_for_writepage(wbc, page); 1810 continue; 1811 } 1812 if (test_clear_buffer_dirty(bh)) { 1813 mark_buffer_async_write(bh); 1814 } else { 1815 unlock_buffer(bh); 1816 } 1817 } while ((bh = bh->b_this_page) != head); 1818 1819 /* 1820 * The page and its buffers are protected by PageWriteback(), so we can 1821 * drop the bh refcounts early. 1822 */ 1823 BUG_ON(PageWriteback(page)); 1824 set_page_writeback(page); 1825 1826 do { 1827 struct buffer_head *next = bh->b_this_page; 1828 if (buffer_async_write(bh)) { 1829 submit_bh(WRITE, bh); 1830 nr_underway++; 1831 } 1832 bh = next; 1833 } while (bh != head); 1834 unlock_page(page); 1835 1836 err = 0; 1837 done: 1838 if (nr_underway == 0) { 1839 /* 1840 * The page was marked dirty, but the buffers were 1841 * clean. Someone wrote them back by hand with 1842 * ll_rw_block/submit_bh. A rare case. 1843 */ 1844 int uptodate = 1; 1845 do { 1846 if (!buffer_uptodate(bh)) { 1847 uptodate = 0; 1848 break; 1849 } 1850 bh = bh->b_this_page; 1851 } while (bh != head); 1852 if (uptodate) 1853 SetPageUptodate(page); 1854 end_page_writeback(page); 1855 /* 1856 * The page and buffer_heads can be released at any time from 1857 * here on. 1858 */ 1859 wbc->pages_skipped++; /* We didn't write this page */ 1860 } 1861 return err; 1862 1863 recover: 1864 /* 1865 * ENOSPC, or some other error. We may already have added some 1866 * blocks to the file, so we need to write these out to avoid 1867 * exposing stale data. 1868 * The page is currently locked and not marked for writeback 1869 */ 1870 bh = head; 1871 /* Recovery: lock and submit the mapped buffers */ 1872 do { 1873 if (buffer_mapped(bh) && buffer_dirty(bh)) { 1874 lock_buffer(bh); 1875 mark_buffer_async_write(bh); 1876 } else { 1877 /* 1878 * The buffer may have been set dirty during 1879 * attachment to a dirty page. 1880 */ 1881 clear_buffer_dirty(bh); 1882 } 1883 } while ((bh = bh->b_this_page) != head); 1884 SetPageError(page); 1885 BUG_ON(PageWriteback(page)); 1886 set_page_writeback(page); 1887 unlock_page(page); 1888 do { 1889 struct buffer_head *next = bh->b_this_page; 1890 if (buffer_async_write(bh)) { 1891 clear_buffer_dirty(bh); 1892 submit_bh(WRITE, bh); 1893 nr_underway++; 1894 } 1895 bh = next; 1896 } while (bh != head); 1897 goto done; 1898 } 1899 1900 static int __block_prepare_write(struct inode *inode, struct page *page, 1901 unsigned from, unsigned to, get_block_t *get_block) 1902 { 1903 unsigned block_start, block_end; 1904 sector_t block; 1905 int err = 0; 1906 unsigned blocksize, bbits; 1907 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1908 1909 BUG_ON(!PageLocked(page)); 1910 BUG_ON(from > PAGE_CACHE_SIZE); 1911 BUG_ON(to > PAGE_CACHE_SIZE); 1912 BUG_ON(from > to); 1913 1914 blocksize = 1 << inode->i_blkbits; 1915 if (!page_has_buffers(page)) 1916 create_empty_buffers(page, blocksize, 0); 1917 head = page_buffers(page); 1918 1919 bbits = inode->i_blkbits; 1920 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1921 1922 for(bh = head, block_start = 0; bh != head || !block_start; 1923 block++, block_start=block_end, bh = bh->b_this_page) { 1924 block_end = block_start + blocksize; 1925 if (block_end <= from || block_start >= to) { 1926 if (PageUptodate(page)) { 1927 if (!buffer_uptodate(bh)) 1928 set_buffer_uptodate(bh); 1929 } 1930 continue; 1931 } 1932 if (buffer_new(bh)) 1933 clear_buffer_new(bh); 1934 if (!buffer_mapped(bh)) { 1935 WARN_ON(bh->b_size != blocksize); 1936 err = get_block(inode, block, bh, 1); 1937 if (err) 1938 break; 1939 if (buffer_new(bh)) { 1940 unmap_underlying_metadata(bh->b_bdev, 1941 bh->b_blocknr); 1942 if (PageUptodate(page)) { 1943 set_buffer_uptodate(bh); 1944 continue; 1945 } 1946 if (block_end > to || block_start < from) { 1947 void *kaddr; 1948 1949 kaddr = kmap_atomic(page, KM_USER0); 1950 if (block_end > to) 1951 memset(kaddr+to, 0, 1952 block_end-to); 1953 if (block_start < from) 1954 memset(kaddr+block_start, 1955 0, from-block_start); 1956 flush_dcache_page(page); 1957 kunmap_atomic(kaddr, KM_USER0); 1958 } 1959 continue; 1960 } 1961 } 1962 if (PageUptodate(page)) { 1963 if (!buffer_uptodate(bh)) 1964 set_buffer_uptodate(bh); 1965 continue; 1966 } 1967 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1968 (block_start < from || block_end > to)) { 1969 ll_rw_block(READ, 1, &bh); 1970 *wait_bh++=bh; 1971 } 1972 } 1973 /* 1974 * If we issued read requests - let them complete. 1975 */ 1976 while(wait_bh > wait) { 1977 wait_on_buffer(*--wait_bh); 1978 if (!buffer_uptodate(*wait_bh)) 1979 err = -EIO; 1980 } 1981 if (!err) { 1982 bh = head; 1983 do { 1984 if (buffer_new(bh)) 1985 clear_buffer_new(bh); 1986 } while ((bh = bh->b_this_page) != head); 1987 return 0; 1988 } 1989 /* Error case: */ 1990 /* 1991 * Zero out any newly allocated blocks to avoid exposing stale 1992 * data. If BH_New is set, we know that the block was newly 1993 * allocated in the above loop. 1994 */ 1995 bh = head; 1996 block_start = 0; 1997 do { 1998 block_end = block_start+blocksize; 1999 if (block_end <= from) 2000 goto next_bh; 2001 if (block_start >= to) 2002 break; 2003 if (buffer_new(bh)) { 2004 void *kaddr; 2005 2006 clear_buffer_new(bh); 2007 kaddr = kmap_atomic(page, KM_USER0); 2008 memset(kaddr+block_start, 0, bh->b_size); 2009 kunmap_atomic(kaddr, KM_USER0); 2010 set_buffer_uptodate(bh); 2011 mark_buffer_dirty(bh); 2012 } 2013 next_bh: 2014 block_start = block_end; 2015 bh = bh->b_this_page; 2016 } while (bh != head); 2017 return err; 2018 } 2019 2020 static int __block_commit_write(struct inode *inode, struct page *page, 2021 unsigned from, unsigned to) 2022 { 2023 unsigned block_start, block_end; 2024 int partial = 0; 2025 unsigned blocksize; 2026 struct buffer_head *bh, *head; 2027 2028 blocksize = 1 << inode->i_blkbits; 2029 2030 for(bh = head = page_buffers(page), block_start = 0; 2031 bh != head || !block_start; 2032 block_start=block_end, bh = bh->b_this_page) { 2033 block_end = block_start + blocksize; 2034 if (block_end <= from || block_start >= to) { 2035 if (!buffer_uptodate(bh)) 2036 partial = 1; 2037 } else { 2038 set_buffer_uptodate(bh); 2039 mark_buffer_dirty(bh); 2040 } 2041 } 2042 2043 /* 2044 * If this is a partial write which happened to make all buffers 2045 * uptodate then we can optimize away a bogus readpage() for 2046 * the next read(). Here we 'discover' whether the page went 2047 * uptodate as a result of this (potentially partial) write. 2048 */ 2049 if (!partial) 2050 SetPageUptodate(page); 2051 return 0; 2052 } 2053 2054 /* 2055 * Generic "read page" function for block devices that have the normal 2056 * get_block functionality. This is most of the block device filesystems. 2057 * Reads the page asynchronously --- the unlock_buffer() and 2058 * set/clear_buffer_uptodate() functions propagate buffer state into the 2059 * page struct once IO has completed. 2060 */ 2061 int block_read_full_page(struct page *page, get_block_t *get_block) 2062 { 2063 struct inode *inode = page->mapping->host; 2064 sector_t iblock, lblock; 2065 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2066 unsigned int blocksize; 2067 int nr, i; 2068 int fully_mapped = 1; 2069 2070 BUG_ON(!PageLocked(page)); 2071 blocksize = 1 << inode->i_blkbits; 2072 if (!page_has_buffers(page)) 2073 create_empty_buffers(page, blocksize, 0); 2074 head = page_buffers(page); 2075 2076 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2077 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2078 bh = head; 2079 nr = 0; 2080 i = 0; 2081 2082 do { 2083 if (buffer_uptodate(bh)) 2084 continue; 2085 2086 if (!buffer_mapped(bh)) { 2087 int err = 0; 2088 2089 fully_mapped = 0; 2090 if (iblock < lblock) { 2091 WARN_ON(bh->b_size != blocksize); 2092 err = get_block(inode, iblock, bh, 0); 2093 if (err) 2094 SetPageError(page); 2095 } 2096 if (!buffer_mapped(bh)) { 2097 void *kaddr = kmap_atomic(page, KM_USER0); 2098 memset(kaddr + i * blocksize, 0, blocksize); 2099 flush_dcache_page(page); 2100 kunmap_atomic(kaddr, KM_USER0); 2101 if (!err) 2102 set_buffer_uptodate(bh); 2103 continue; 2104 } 2105 /* 2106 * get_block() might have updated the buffer 2107 * synchronously 2108 */ 2109 if (buffer_uptodate(bh)) 2110 continue; 2111 } 2112 arr[nr++] = bh; 2113 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2114 2115 if (fully_mapped) 2116 SetPageMappedToDisk(page); 2117 2118 if (!nr) { 2119 /* 2120 * All buffers are uptodate - we can set the page uptodate 2121 * as well. But not if get_block() returned an error. 2122 */ 2123 if (!PageError(page)) 2124 SetPageUptodate(page); 2125 unlock_page(page); 2126 return 0; 2127 } 2128 2129 /* Stage two: lock the buffers */ 2130 for (i = 0; i < nr; i++) { 2131 bh = arr[i]; 2132 lock_buffer(bh); 2133 mark_buffer_async_read(bh); 2134 } 2135 2136 /* 2137 * Stage 3: start the IO. Check for uptodateness 2138 * inside the buffer lock in case another process reading 2139 * the underlying blockdev brought it uptodate (the sct fix). 2140 */ 2141 for (i = 0; i < nr; i++) { 2142 bh = arr[i]; 2143 if (buffer_uptodate(bh)) 2144 end_buffer_async_read(bh, 1); 2145 else 2146 submit_bh(READ, bh); 2147 } 2148 return 0; 2149 } 2150 2151 /* utility function for filesystems that need to do work on expanding 2152 * truncates. Uses prepare/commit_write to allow the filesystem to 2153 * deal with the hole. 2154 */ 2155 static int __generic_cont_expand(struct inode *inode, loff_t size, 2156 pgoff_t index, unsigned int offset) 2157 { 2158 struct address_space *mapping = inode->i_mapping; 2159 struct page *page; 2160 unsigned long limit; 2161 int err; 2162 2163 err = -EFBIG; 2164 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2165 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2166 send_sig(SIGXFSZ, current, 0); 2167 goto out; 2168 } 2169 if (size > inode->i_sb->s_maxbytes) 2170 goto out; 2171 2172 err = -ENOMEM; 2173 page = grab_cache_page(mapping, index); 2174 if (!page) 2175 goto out; 2176 err = mapping->a_ops->prepare_write(NULL, page, offset, offset); 2177 if (err) { 2178 /* 2179 * ->prepare_write() may have instantiated a few blocks 2180 * outside i_size. Trim these off again. 2181 */ 2182 unlock_page(page); 2183 page_cache_release(page); 2184 vmtruncate(inode, inode->i_size); 2185 goto out; 2186 } 2187 2188 err = mapping->a_ops->commit_write(NULL, page, offset, offset); 2189 2190 unlock_page(page); 2191 page_cache_release(page); 2192 if (err > 0) 2193 err = 0; 2194 out: 2195 return err; 2196 } 2197 2198 int generic_cont_expand(struct inode *inode, loff_t size) 2199 { 2200 pgoff_t index; 2201 unsigned int offset; 2202 2203 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */ 2204 2205 /* ugh. in prepare/commit_write, if from==to==start of block, we 2206 ** skip the prepare. make sure we never send an offset for the start 2207 ** of a block 2208 */ 2209 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) { 2210 /* caller must handle this extra byte. */ 2211 offset++; 2212 } 2213 index = size >> PAGE_CACHE_SHIFT; 2214 2215 return __generic_cont_expand(inode, size, index, offset); 2216 } 2217 2218 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2219 { 2220 loff_t pos = size - 1; 2221 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2222 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1; 2223 2224 /* prepare/commit_write can handle even if from==to==start of block. */ 2225 return __generic_cont_expand(inode, size, index, offset); 2226 } 2227 2228 /* 2229 * For moronic filesystems that do not allow holes in file. 2230 * We may have to extend the file. 2231 */ 2232 2233 int cont_prepare_write(struct page *page, unsigned offset, 2234 unsigned to, get_block_t *get_block, loff_t *bytes) 2235 { 2236 struct address_space *mapping = page->mapping; 2237 struct inode *inode = mapping->host; 2238 struct page *new_page; 2239 pgoff_t pgpos; 2240 long status; 2241 unsigned zerofrom; 2242 unsigned blocksize = 1 << inode->i_blkbits; 2243 void *kaddr; 2244 2245 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) { 2246 status = -ENOMEM; 2247 new_page = grab_cache_page(mapping, pgpos); 2248 if (!new_page) 2249 goto out; 2250 /* we might sleep */ 2251 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) { 2252 unlock_page(new_page); 2253 page_cache_release(new_page); 2254 continue; 2255 } 2256 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2257 if (zerofrom & (blocksize-1)) { 2258 *bytes |= (blocksize-1); 2259 (*bytes)++; 2260 } 2261 status = __block_prepare_write(inode, new_page, zerofrom, 2262 PAGE_CACHE_SIZE, get_block); 2263 if (status) 2264 goto out_unmap; 2265 kaddr = kmap_atomic(new_page, KM_USER0); 2266 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom); 2267 flush_dcache_page(new_page); 2268 kunmap_atomic(kaddr, KM_USER0); 2269 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE); 2270 unlock_page(new_page); 2271 page_cache_release(new_page); 2272 } 2273 2274 if (page->index < pgpos) { 2275 /* completely inside the area */ 2276 zerofrom = offset; 2277 } else { 2278 /* page covers the boundary, find the boundary offset */ 2279 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2280 2281 /* if we will expand the thing last block will be filled */ 2282 if (to > zerofrom && (zerofrom & (blocksize-1))) { 2283 *bytes |= (blocksize-1); 2284 (*bytes)++; 2285 } 2286 2287 /* starting below the boundary? Nothing to zero out */ 2288 if (offset <= zerofrom) 2289 zerofrom = offset; 2290 } 2291 status = __block_prepare_write(inode, page, zerofrom, to, get_block); 2292 if (status) 2293 goto out1; 2294 if (zerofrom < offset) { 2295 kaddr = kmap_atomic(page, KM_USER0); 2296 memset(kaddr+zerofrom, 0, offset-zerofrom); 2297 flush_dcache_page(page); 2298 kunmap_atomic(kaddr, KM_USER0); 2299 __block_commit_write(inode, page, zerofrom, offset); 2300 } 2301 return 0; 2302 out1: 2303 ClearPageUptodate(page); 2304 return status; 2305 2306 out_unmap: 2307 ClearPageUptodate(new_page); 2308 unlock_page(new_page); 2309 page_cache_release(new_page); 2310 out: 2311 return status; 2312 } 2313 2314 int block_prepare_write(struct page *page, unsigned from, unsigned to, 2315 get_block_t *get_block) 2316 { 2317 struct inode *inode = page->mapping->host; 2318 int err = __block_prepare_write(inode, page, from, to, get_block); 2319 if (err) 2320 ClearPageUptodate(page); 2321 return err; 2322 } 2323 2324 int block_commit_write(struct page *page, unsigned from, unsigned to) 2325 { 2326 struct inode *inode = page->mapping->host; 2327 __block_commit_write(inode,page,from,to); 2328 return 0; 2329 } 2330 2331 int generic_commit_write(struct file *file, struct page *page, 2332 unsigned from, unsigned to) 2333 { 2334 struct inode *inode = page->mapping->host; 2335 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2336 __block_commit_write(inode,page,from,to); 2337 /* 2338 * No need to use i_size_read() here, the i_size 2339 * cannot change under us because we hold i_mutex. 2340 */ 2341 if (pos > inode->i_size) { 2342 i_size_write(inode, pos); 2343 mark_inode_dirty(inode); 2344 } 2345 return 0; 2346 } 2347 2348 2349 /* 2350 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed 2351 * immediately, while under the page lock. So it needs a special end_io 2352 * handler which does not touch the bh after unlocking it. 2353 * 2354 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 2355 * a race there is benign: unlock_buffer() only use the bh's address for 2356 * hashing after unlocking the buffer, so it doesn't actually touch the bh 2357 * itself. 2358 */ 2359 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2360 { 2361 if (uptodate) { 2362 set_buffer_uptodate(bh); 2363 } else { 2364 /* This happens, due to failed READA attempts. */ 2365 clear_buffer_uptodate(bh); 2366 } 2367 unlock_buffer(bh); 2368 } 2369 2370 /* 2371 * On entry, the page is fully not uptodate. 2372 * On exit the page is fully uptodate in the areas outside (from,to) 2373 */ 2374 int nobh_prepare_write(struct page *page, unsigned from, unsigned to, 2375 get_block_t *get_block) 2376 { 2377 struct inode *inode = page->mapping->host; 2378 const unsigned blkbits = inode->i_blkbits; 2379 const unsigned blocksize = 1 << blkbits; 2380 struct buffer_head map_bh; 2381 struct buffer_head *read_bh[MAX_BUF_PER_PAGE]; 2382 unsigned block_in_page; 2383 unsigned block_start; 2384 sector_t block_in_file; 2385 char *kaddr; 2386 int nr_reads = 0; 2387 int i; 2388 int ret = 0; 2389 int is_mapped_to_disk = 1; 2390 int dirtied_it = 0; 2391 2392 if (PageMappedToDisk(page)) 2393 return 0; 2394 2395 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2396 map_bh.b_page = page; 2397 2398 /* 2399 * We loop across all blocks in the page, whether or not they are 2400 * part of the affected region. This is so we can discover if the 2401 * page is fully mapped-to-disk. 2402 */ 2403 for (block_start = 0, block_in_page = 0; 2404 block_start < PAGE_CACHE_SIZE; 2405 block_in_page++, block_start += blocksize) { 2406 unsigned block_end = block_start + blocksize; 2407 int create; 2408 2409 map_bh.b_state = 0; 2410 create = 1; 2411 if (block_start >= to) 2412 create = 0; 2413 map_bh.b_size = blocksize; 2414 ret = get_block(inode, block_in_file + block_in_page, 2415 &map_bh, create); 2416 if (ret) 2417 goto failed; 2418 if (!buffer_mapped(&map_bh)) 2419 is_mapped_to_disk = 0; 2420 if (buffer_new(&map_bh)) 2421 unmap_underlying_metadata(map_bh.b_bdev, 2422 map_bh.b_blocknr); 2423 if (PageUptodate(page)) 2424 continue; 2425 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) { 2426 kaddr = kmap_atomic(page, KM_USER0); 2427 if (block_start < from) { 2428 memset(kaddr+block_start, 0, from-block_start); 2429 dirtied_it = 1; 2430 } 2431 if (block_end > to) { 2432 memset(kaddr + to, 0, block_end - to); 2433 dirtied_it = 1; 2434 } 2435 flush_dcache_page(page); 2436 kunmap_atomic(kaddr, KM_USER0); 2437 continue; 2438 } 2439 if (buffer_uptodate(&map_bh)) 2440 continue; /* reiserfs does this */ 2441 if (block_start < from || block_end > to) { 2442 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS); 2443 2444 if (!bh) { 2445 ret = -ENOMEM; 2446 goto failed; 2447 } 2448 bh->b_state = map_bh.b_state; 2449 atomic_set(&bh->b_count, 0); 2450 bh->b_this_page = NULL; 2451 bh->b_page = page; 2452 bh->b_blocknr = map_bh.b_blocknr; 2453 bh->b_size = blocksize; 2454 bh->b_data = (char *)(long)block_start; 2455 bh->b_bdev = map_bh.b_bdev; 2456 bh->b_private = NULL; 2457 read_bh[nr_reads++] = bh; 2458 } 2459 } 2460 2461 if (nr_reads) { 2462 struct buffer_head *bh; 2463 2464 /* 2465 * The page is locked, so these buffers are protected from 2466 * any VM or truncate activity. Hence we don't need to care 2467 * for the buffer_head refcounts. 2468 */ 2469 for (i = 0; i < nr_reads; i++) { 2470 bh = read_bh[i]; 2471 lock_buffer(bh); 2472 bh->b_end_io = end_buffer_read_nobh; 2473 submit_bh(READ, bh); 2474 } 2475 for (i = 0; i < nr_reads; i++) { 2476 bh = read_bh[i]; 2477 wait_on_buffer(bh); 2478 if (!buffer_uptodate(bh)) 2479 ret = -EIO; 2480 free_buffer_head(bh); 2481 read_bh[i] = NULL; 2482 } 2483 if (ret) 2484 goto failed; 2485 } 2486 2487 if (is_mapped_to_disk) 2488 SetPageMappedToDisk(page); 2489 SetPageUptodate(page); 2490 2491 /* 2492 * Setting the page dirty here isn't necessary for the prepare_write 2493 * function - commit_write will do that. But if/when this function is 2494 * used within the pagefault handler to ensure that all mmapped pages 2495 * have backing space in the filesystem, we will need to dirty the page 2496 * if its contents were altered. 2497 */ 2498 if (dirtied_it) 2499 set_page_dirty(page); 2500 2501 return 0; 2502 2503 failed: 2504 for (i = 0; i < nr_reads; i++) { 2505 if (read_bh[i]) 2506 free_buffer_head(read_bh[i]); 2507 } 2508 2509 /* 2510 * Error recovery is pretty slack. Clear the page and mark it dirty 2511 * so we'll later zero out any blocks which _were_ allocated. 2512 */ 2513 kaddr = kmap_atomic(page, KM_USER0); 2514 memset(kaddr, 0, PAGE_CACHE_SIZE); 2515 kunmap_atomic(kaddr, KM_USER0); 2516 SetPageUptodate(page); 2517 set_page_dirty(page); 2518 return ret; 2519 } 2520 EXPORT_SYMBOL(nobh_prepare_write); 2521 2522 int nobh_commit_write(struct file *file, struct page *page, 2523 unsigned from, unsigned to) 2524 { 2525 struct inode *inode = page->mapping->host; 2526 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2527 2528 set_page_dirty(page); 2529 if (pos > inode->i_size) { 2530 i_size_write(inode, pos); 2531 mark_inode_dirty(inode); 2532 } 2533 return 0; 2534 } 2535 EXPORT_SYMBOL(nobh_commit_write); 2536 2537 /* 2538 * nobh_writepage() - based on block_full_write_page() except 2539 * that it tries to operate without attaching bufferheads to 2540 * the page. 2541 */ 2542 int nobh_writepage(struct page *page, get_block_t *get_block, 2543 struct writeback_control *wbc) 2544 { 2545 struct inode * const inode = page->mapping->host; 2546 loff_t i_size = i_size_read(inode); 2547 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2548 unsigned offset; 2549 void *kaddr; 2550 int ret; 2551 2552 /* Is the page fully inside i_size? */ 2553 if (page->index < end_index) 2554 goto out; 2555 2556 /* Is the page fully outside i_size? (truncate in progress) */ 2557 offset = i_size & (PAGE_CACHE_SIZE-1); 2558 if (page->index >= end_index+1 || !offset) { 2559 /* 2560 * The page may have dirty, unmapped buffers. For example, 2561 * they may have been added in ext3_writepage(). Make them 2562 * freeable here, so the page does not leak. 2563 */ 2564 #if 0 2565 /* Not really sure about this - do we need this ? */ 2566 if (page->mapping->a_ops->invalidatepage) 2567 page->mapping->a_ops->invalidatepage(page, offset); 2568 #endif 2569 unlock_page(page); 2570 return 0; /* don't care */ 2571 } 2572 2573 /* 2574 * The page straddles i_size. It must be zeroed out on each and every 2575 * writepage invocation because it may be mmapped. "A file is mapped 2576 * in multiples of the page size. For a file that is not a multiple of 2577 * the page size, the remaining memory is zeroed when mapped, and 2578 * writes to that region are not written out to the file." 2579 */ 2580 kaddr = kmap_atomic(page, KM_USER0); 2581 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2582 flush_dcache_page(page); 2583 kunmap_atomic(kaddr, KM_USER0); 2584 out: 2585 ret = mpage_writepage(page, get_block, wbc); 2586 if (ret == -EAGAIN) 2587 ret = __block_write_full_page(inode, page, get_block, wbc); 2588 return ret; 2589 } 2590 EXPORT_SYMBOL(nobh_writepage); 2591 2592 /* 2593 * This function assumes that ->prepare_write() uses nobh_prepare_write(). 2594 */ 2595 int nobh_truncate_page(struct address_space *mapping, loff_t from) 2596 { 2597 struct inode *inode = mapping->host; 2598 unsigned blocksize = 1 << inode->i_blkbits; 2599 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2600 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2601 unsigned to; 2602 struct page *page; 2603 struct address_space_operations *a_ops = mapping->a_ops; 2604 char *kaddr; 2605 int ret = 0; 2606 2607 if ((offset & (blocksize - 1)) == 0) 2608 goto out; 2609 2610 ret = -ENOMEM; 2611 page = grab_cache_page(mapping, index); 2612 if (!page) 2613 goto out; 2614 2615 to = (offset + blocksize) & ~(blocksize - 1); 2616 ret = a_ops->prepare_write(NULL, page, offset, to); 2617 if (ret == 0) { 2618 kaddr = kmap_atomic(page, KM_USER0); 2619 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2620 flush_dcache_page(page); 2621 kunmap_atomic(kaddr, KM_USER0); 2622 set_page_dirty(page); 2623 } 2624 unlock_page(page); 2625 page_cache_release(page); 2626 out: 2627 return ret; 2628 } 2629 EXPORT_SYMBOL(nobh_truncate_page); 2630 2631 int block_truncate_page(struct address_space *mapping, 2632 loff_t from, get_block_t *get_block) 2633 { 2634 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2635 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2636 unsigned blocksize; 2637 sector_t iblock; 2638 unsigned length, pos; 2639 struct inode *inode = mapping->host; 2640 struct page *page; 2641 struct buffer_head *bh; 2642 void *kaddr; 2643 int err; 2644 2645 blocksize = 1 << inode->i_blkbits; 2646 length = offset & (blocksize - 1); 2647 2648 /* Block boundary? Nothing to do */ 2649 if (!length) 2650 return 0; 2651 2652 length = blocksize - length; 2653 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2654 2655 page = grab_cache_page(mapping, index); 2656 err = -ENOMEM; 2657 if (!page) 2658 goto out; 2659 2660 if (!page_has_buffers(page)) 2661 create_empty_buffers(page, blocksize, 0); 2662 2663 /* Find the buffer that contains "offset" */ 2664 bh = page_buffers(page); 2665 pos = blocksize; 2666 while (offset >= pos) { 2667 bh = bh->b_this_page; 2668 iblock++; 2669 pos += blocksize; 2670 } 2671 2672 err = 0; 2673 if (!buffer_mapped(bh)) { 2674 WARN_ON(bh->b_size != blocksize); 2675 err = get_block(inode, iblock, bh, 0); 2676 if (err) 2677 goto unlock; 2678 /* unmapped? It's a hole - nothing to do */ 2679 if (!buffer_mapped(bh)) 2680 goto unlock; 2681 } 2682 2683 /* Ok, it's mapped. Make sure it's up-to-date */ 2684 if (PageUptodate(page)) 2685 set_buffer_uptodate(bh); 2686 2687 if (!buffer_uptodate(bh) && !buffer_delay(bh)) { 2688 err = -EIO; 2689 ll_rw_block(READ, 1, &bh); 2690 wait_on_buffer(bh); 2691 /* Uhhuh. Read error. Complain and punt. */ 2692 if (!buffer_uptodate(bh)) 2693 goto unlock; 2694 } 2695 2696 kaddr = kmap_atomic(page, KM_USER0); 2697 memset(kaddr + offset, 0, length); 2698 flush_dcache_page(page); 2699 kunmap_atomic(kaddr, KM_USER0); 2700 2701 mark_buffer_dirty(bh); 2702 err = 0; 2703 2704 unlock: 2705 unlock_page(page); 2706 page_cache_release(page); 2707 out: 2708 return err; 2709 } 2710 2711 /* 2712 * The generic ->writepage function for buffer-backed address_spaces 2713 */ 2714 int block_write_full_page(struct page *page, get_block_t *get_block, 2715 struct writeback_control *wbc) 2716 { 2717 struct inode * const inode = page->mapping->host; 2718 loff_t i_size = i_size_read(inode); 2719 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2720 unsigned offset; 2721 void *kaddr; 2722 2723 /* Is the page fully inside i_size? */ 2724 if (page->index < end_index) 2725 return __block_write_full_page(inode, page, get_block, wbc); 2726 2727 /* Is the page fully outside i_size? (truncate in progress) */ 2728 offset = i_size & (PAGE_CACHE_SIZE-1); 2729 if (page->index >= end_index+1 || !offset) { 2730 /* 2731 * The page may have dirty, unmapped buffers. For example, 2732 * they may have been added in ext3_writepage(). Make them 2733 * freeable here, so the page does not leak. 2734 */ 2735 do_invalidatepage(page, 0); 2736 unlock_page(page); 2737 return 0; /* don't care */ 2738 } 2739 2740 /* 2741 * The page straddles i_size. It must be zeroed out on each and every 2742 * writepage invokation because it may be mmapped. "A file is mapped 2743 * in multiples of the page size. For a file that is not a multiple of 2744 * the page size, the remaining memory is zeroed when mapped, and 2745 * writes to that region are not written out to the file." 2746 */ 2747 kaddr = kmap_atomic(page, KM_USER0); 2748 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2749 flush_dcache_page(page); 2750 kunmap_atomic(kaddr, KM_USER0); 2751 return __block_write_full_page(inode, page, get_block, wbc); 2752 } 2753 2754 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2755 get_block_t *get_block) 2756 { 2757 struct buffer_head tmp; 2758 struct inode *inode = mapping->host; 2759 tmp.b_state = 0; 2760 tmp.b_blocknr = 0; 2761 tmp.b_size = 1 << inode->i_blkbits; 2762 get_block(inode, block, &tmp, 0); 2763 return tmp.b_blocknr; 2764 } 2765 2766 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err) 2767 { 2768 struct buffer_head *bh = bio->bi_private; 2769 2770 if (bio->bi_size) 2771 return 1; 2772 2773 if (err == -EOPNOTSUPP) { 2774 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2775 set_bit(BH_Eopnotsupp, &bh->b_state); 2776 } 2777 2778 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2779 bio_put(bio); 2780 return 0; 2781 } 2782 2783 int submit_bh(int rw, struct buffer_head * bh) 2784 { 2785 struct bio *bio; 2786 int ret = 0; 2787 2788 BUG_ON(!buffer_locked(bh)); 2789 BUG_ON(!buffer_mapped(bh)); 2790 BUG_ON(!bh->b_end_io); 2791 2792 if (buffer_ordered(bh) && (rw == WRITE)) 2793 rw = WRITE_BARRIER; 2794 2795 /* 2796 * Only clear out a write error when rewriting, should this 2797 * include WRITE_SYNC as well? 2798 */ 2799 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) 2800 clear_buffer_write_io_error(bh); 2801 2802 /* 2803 * from here on down, it's all bio -- do the initial mapping, 2804 * submit_bio -> generic_make_request may further map this bio around 2805 */ 2806 bio = bio_alloc(GFP_NOIO, 1); 2807 2808 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2809 bio->bi_bdev = bh->b_bdev; 2810 bio->bi_io_vec[0].bv_page = bh->b_page; 2811 bio->bi_io_vec[0].bv_len = bh->b_size; 2812 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2813 2814 bio->bi_vcnt = 1; 2815 bio->bi_idx = 0; 2816 bio->bi_size = bh->b_size; 2817 2818 bio->bi_end_io = end_bio_bh_io_sync; 2819 bio->bi_private = bh; 2820 2821 bio_get(bio); 2822 submit_bio(rw, bio); 2823 2824 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2825 ret = -EOPNOTSUPP; 2826 2827 bio_put(bio); 2828 return ret; 2829 } 2830 2831 /** 2832 * ll_rw_block: low-level access to block devices (DEPRECATED) 2833 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 2834 * @nr: number of &struct buffer_heads in the array 2835 * @bhs: array of pointers to &struct buffer_head 2836 * 2837 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2838 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2839 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 2840 * are sent to disk. The fourth %READA option is described in the documentation 2841 * for generic_make_request() which ll_rw_block() calls. 2842 * 2843 * This function drops any buffer that it cannot get a lock on (with the 2844 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 2845 * clean when doing a write request, and any buffer that appears to be 2846 * up-to-date when doing read request. Further it marks as clean buffers that 2847 * are processed for writing (the buffer cache won't assume that they are 2848 * actually clean until the buffer gets unlocked). 2849 * 2850 * ll_rw_block sets b_end_io to simple completion handler that marks 2851 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2852 * any waiters. 2853 * 2854 * All of the buffers must be for the same device, and must also be a 2855 * multiple of the current approved size for the device. 2856 */ 2857 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2858 { 2859 int i; 2860 2861 for (i = 0; i < nr; i++) { 2862 struct buffer_head *bh = bhs[i]; 2863 2864 if (rw == SWRITE) 2865 lock_buffer(bh); 2866 else if (test_set_buffer_locked(bh)) 2867 continue; 2868 2869 if (rw == WRITE || rw == SWRITE) { 2870 if (test_clear_buffer_dirty(bh)) { 2871 bh->b_end_io = end_buffer_write_sync; 2872 get_bh(bh); 2873 submit_bh(WRITE, bh); 2874 continue; 2875 } 2876 } else { 2877 if (!buffer_uptodate(bh)) { 2878 bh->b_end_io = end_buffer_read_sync; 2879 get_bh(bh); 2880 submit_bh(rw, bh); 2881 continue; 2882 } 2883 } 2884 unlock_buffer(bh); 2885 } 2886 } 2887 2888 /* 2889 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2890 * and then start new I/O and then wait upon it. The caller must have a ref on 2891 * the buffer_head. 2892 */ 2893 int sync_dirty_buffer(struct buffer_head *bh) 2894 { 2895 int ret = 0; 2896 2897 WARN_ON(atomic_read(&bh->b_count) < 1); 2898 lock_buffer(bh); 2899 if (test_clear_buffer_dirty(bh)) { 2900 get_bh(bh); 2901 bh->b_end_io = end_buffer_write_sync; 2902 ret = submit_bh(WRITE, bh); 2903 wait_on_buffer(bh); 2904 if (buffer_eopnotsupp(bh)) { 2905 clear_buffer_eopnotsupp(bh); 2906 ret = -EOPNOTSUPP; 2907 } 2908 if (!ret && !buffer_uptodate(bh)) 2909 ret = -EIO; 2910 } else { 2911 unlock_buffer(bh); 2912 } 2913 return ret; 2914 } 2915 2916 /* 2917 * try_to_free_buffers() checks if all the buffers on this particular page 2918 * are unused, and releases them if so. 2919 * 2920 * Exclusion against try_to_free_buffers may be obtained by either 2921 * locking the page or by holding its mapping's private_lock. 2922 * 2923 * If the page is dirty but all the buffers are clean then we need to 2924 * be sure to mark the page clean as well. This is because the page 2925 * may be against a block device, and a later reattachment of buffers 2926 * to a dirty page will set *all* buffers dirty. Which would corrupt 2927 * filesystem data on the same device. 2928 * 2929 * The same applies to regular filesystem pages: if all the buffers are 2930 * clean then we set the page clean and proceed. To do that, we require 2931 * total exclusion from __set_page_dirty_buffers(). That is obtained with 2932 * private_lock. 2933 * 2934 * try_to_free_buffers() is non-blocking. 2935 */ 2936 static inline int buffer_busy(struct buffer_head *bh) 2937 { 2938 return atomic_read(&bh->b_count) | 2939 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2940 } 2941 2942 static int 2943 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 2944 { 2945 struct buffer_head *head = page_buffers(page); 2946 struct buffer_head *bh; 2947 2948 bh = head; 2949 do { 2950 if (buffer_write_io_error(bh) && page->mapping) 2951 set_bit(AS_EIO, &page->mapping->flags); 2952 if (buffer_busy(bh)) 2953 goto failed; 2954 bh = bh->b_this_page; 2955 } while (bh != head); 2956 2957 do { 2958 struct buffer_head *next = bh->b_this_page; 2959 2960 if (!list_empty(&bh->b_assoc_buffers)) 2961 __remove_assoc_queue(bh); 2962 bh = next; 2963 } while (bh != head); 2964 *buffers_to_free = head; 2965 __clear_page_buffers(page); 2966 return 1; 2967 failed: 2968 return 0; 2969 } 2970 2971 int try_to_free_buffers(struct page *page) 2972 { 2973 struct address_space * const mapping = page->mapping; 2974 struct buffer_head *buffers_to_free = NULL; 2975 int ret = 0; 2976 2977 BUG_ON(!PageLocked(page)); 2978 if (PageWriteback(page)) 2979 return 0; 2980 2981 if (mapping == NULL) { /* can this still happen? */ 2982 ret = drop_buffers(page, &buffers_to_free); 2983 goto out; 2984 } 2985 2986 spin_lock(&mapping->private_lock); 2987 ret = drop_buffers(page, &buffers_to_free); 2988 if (ret) { 2989 /* 2990 * If the filesystem writes its buffers by hand (eg ext3) 2991 * then we can have clean buffers against a dirty page. We 2992 * clean the page here; otherwise later reattachment of buffers 2993 * could encounter a non-uptodate page, which is unresolvable. 2994 * This only applies in the rare case where try_to_free_buffers 2995 * succeeds but the page is not freed. 2996 */ 2997 clear_page_dirty(page); 2998 } 2999 spin_unlock(&mapping->private_lock); 3000 out: 3001 if (buffers_to_free) { 3002 struct buffer_head *bh = buffers_to_free; 3003 3004 do { 3005 struct buffer_head *next = bh->b_this_page; 3006 free_buffer_head(bh); 3007 bh = next; 3008 } while (bh != buffers_to_free); 3009 } 3010 return ret; 3011 } 3012 EXPORT_SYMBOL(try_to_free_buffers); 3013 3014 void block_sync_page(struct page *page) 3015 { 3016 struct address_space *mapping; 3017 3018 smp_mb(); 3019 mapping = page_mapping(page); 3020 if (mapping) 3021 blk_run_backing_dev(mapping->backing_dev_info, page); 3022 } 3023 3024 /* 3025 * There are no bdflush tunables left. But distributions are 3026 * still running obsolete flush daemons, so we terminate them here. 3027 * 3028 * Use of bdflush() is deprecated and will be removed in a future kernel. 3029 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 3030 */ 3031 asmlinkage long sys_bdflush(int func, long data) 3032 { 3033 static int msg_count; 3034 3035 if (!capable(CAP_SYS_ADMIN)) 3036 return -EPERM; 3037 3038 if (msg_count < 5) { 3039 msg_count++; 3040 printk(KERN_INFO 3041 "warning: process `%s' used the obsolete bdflush" 3042 " system call\n", current->comm); 3043 printk(KERN_INFO "Fix your initscripts?\n"); 3044 } 3045 3046 if (func == 1) 3047 do_exit(0); 3048 return 0; 3049 } 3050 3051 /* 3052 * Buffer-head allocation 3053 */ 3054 static kmem_cache_t *bh_cachep; 3055 3056 /* 3057 * Once the number of bh's in the machine exceeds this level, we start 3058 * stripping them in writeback. 3059 */ 3060 static int max_buffer_heads; 3061 3062 int buffer_heads_over_limit; 3063 3064 struct bh_accounting { 3065 int nr; /* Number of live bh's */ 3066 int ratelimit; /* Limit cacheline bouncing */ 3067 }; 3068 3069 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3070 3071 static void recalc_bh_state(void) 3072 { 3073 int i; 3074 int tot = 0; 3075 3076 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 3077 return; 3078 __get_cpu_var(bh_accounting).ratelimit = 0; 3079 for_each_online_cpu(i) 3080 tot += per_cpu(bh_accounting, i).nr; 3081 buffer_heads_over_limit = (tot > max_buffer_heads); 3082 } 3083 3084 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3085 { 3086 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); 3087 if (ret) { 3088 get_cpu_var(bh_accounting).nr++; 3089 recalc_bh_state(); 3090 put_cpu_var(bh_accounting); 3091 } 3092 return ret; 3093 } 3094 EXPORT_SYMBOL(alloc_buffer_head); 3095 3096 void free_buffer_head(struct buffer_head *bh) 3097 { 3098 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3099 kmem_cache_free(bh_cachep, bh); 3100 get_cpu_var(bh_accounting).nr--; 3101 recalc_bh_state(); 3102 put_cpu_var(bh_accounting); 3103 } 3104 EXPORT_SYMBOL(free_buffer_head); 3105 3106 static void 3107 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags) 3108 { 3109 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 3110 SLAB_CTOR_CONSTRUCTOR) { 3111 struct buffer_head * bh = (struct buffer_head *)data; 3112 3113 memset(bh, 0, sizeof(*bh)); 3114 INIT_LIST_HEAD(&bh->b_assoc_buffers); 3115 } 3116 } 3117 3118 #ifdef CONFIG_HOTPLUG_CPU 3119 static void buffer_exit_cpu(int cpu) 3120 { 3121 int i; 3122 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3123 3124 for (i = 0; i < BH_LRU_SIZE; i++) { 3125 brelse(b->bhs[i]); 3126 b->bhs[i] = NULL; 3127 } 3128 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 3129 per_cpu(bh_accounting, cpu).nr = 0; 3130 put_cpu_var(bh_accounting); 3131 } 3132 3133 static int buffer_cpu_notify(struct notifier_block *self, 3134 unsigned long action, void *hcpu) 3135 { 3136 if (action == CPU_DEAD) 3137 buffer_exit_cpu((unsigned long)hcpu); 3138 return NOTIFY_OK; 3139 } 3140 #endif /* CONFIG_HOTPLUG_CPU */ 3141 3142 void __init buffer_init(void) 3143 { 3144 int nrpages; 3145 3146 bh_cachep = kmem_cache_create("buffer_head", 3147 sizeof(struct buffer_head), 0, 3148 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3149 SLAB_MEM_SPREAD), 3150 init_buffer_head, 3151 NULL); 3152 3153 /* 3154 * Limit the bh occupancy to 10% of ZONE_NORMAL 3155 */ 3156 nrpages = (nr_free_buffer_pages() * 10) / 100; 3157 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3158 hotcpu_notifier(buffer_cpu_notify, 0); 3159 } 3160 3161 EXPORT_SYMBOL(__bforget); 3162 EXPORT_SYMBOL(__brelse); 3163 EXPORT_SYMBOL(__wait_on_buffer); 3164 EXPORT_SYMBOL(block_commit_write); 3165 EXPORT_SYMBOL(block_prepare_write); 3166 EXPORT_SYMBOL(block_read_full_page); 3167 EXPORT_SYMBOL(block_sync_page); 3168 EXPORT_SYMBOL(block_truncate_page); 3169 EXPORT_SYMBOL(block_write_full_page); 3170 EXPORT_SYMBOL(cont_prepare_write); 3171 EXPORT_SYMBOL(end_buffer_async_write); 3172 EXPORT_SYMBOL(end_buffer_read_sync); 3173 EXPORT_SYMBOL(end_buffer_write_sync); 3174 EXPORT_SYMBOL(file_fsync); 3175 EXPORT_SYMBOL(fsync_bdev); 3176 EXPORT_SYMBOL(generic_block_bmap); 3177 EXPORT_SYMBOL(generic_commit_write); 3178 EXPORT_SYMBOL(generic_cont_expand); 3179 EXPORT_SYMBOL(generic_cont_expand_simple); 3180 EXPORT_SYMBOL(init_buffer); 3181 EXPORT_SYMBOL(invalidate_bdev); 3182 EXPORT_SYMBOL(ll_rw_block); 3183 EXPORT_SYMBOL(mark_buffer_dirty); 3184 EXPORT_SYMBOL(submit_bh); 3185 EXPORT_SYMBOL(sync_dirty_buffer); 3186 EXPORT_SYMBOL(unlock_buffer); 3187