xref: /linux/fs/buffer.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45 
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 static void invalidate_bh_lrus(void);
48 
49 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 
51 inline void
52 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 {
54 	bh->b_end_io = handler;
55 	bh->b_private = private;
56 }
57 
58 static int sync_buffer(void *word)
59 {
60 	struct block_device *bd;
61 	struct buffer_head *bh
62 		= container_of(word, struct buffer_head, b_state);
63 
64 	smp_mb();
65 	bd = bh->b_bdev;
66 	if (bd)
67 		blk_run_address_space(bd->bd_inode->i_mapping);
68 	io_schedule();
69 	return 0;
70 }
71 
72 void fastcall __lock_buffer(struct buffer_head *bh)
73 {
74 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75 							TASK_UNINTERRUPTIBLE);
76 }
77 EXPORT_SYMBOL(__lock_buffer);
78 
79 void fastcall unlock_buffer(struct buffer_head *bh)
80 {
81 	clear_buffer_locked(bh);
82 	smp_mb__after_clear_bit();
83 	wake_up_bit(&bh->b_state, BH_Lock);
84 }
85 
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95 
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99 	ClearPagePrivate(page);
100 	set_page_private(page, 0);
101 	page_cache_release(page);
102 }
103 
104 static void buffer_io_error(struct buffer_head *bh)
105 {
106 	char b[BDEVNAME_SIZE];
107 
108 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109 			bdevname(bh->b_bdev, b),
110 			(unsigned long long)bh->b_blocknr);
111 }
112 
113 /*
114  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
115  * unlock the buffer. This is what ll_rw_block uses too.
116  */
117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118 {
119 	if (uptodate) {
120 		set_buffer_uptodate(bh);
121 	} else {
122 		/* This happens, due to failed READA attempts. */
123 		clear_buffer_uptodate(bh);
124 	}
125 	unlock_buffer(bh);
126 	put_bh(bh);
127 }
128 
129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 {
131 	char b[BDEVNAME_SIZE];
132 
133 	if (uptodate) {
134 		set_buffer_uptodate(bh);
135 	} else {
136 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137 			buffer_io_error(bh);
138 			printk(KERN_WARNING "lost page write due to "
139 					"I/O error on %s\n",
140 				       bdevname(bh->b_bdev, b));
141 		}
142 		set_buffer_write_io_error(bh);
143 		clear_buffer_uptodate(bh);
144 	}
145 	unlock_buffer(bh);
146 	put_bh(bh);
147 }
148 
149 /*
150  * Write out and wait upon all the dirty data associated with a block
151  * device via its mapping.  Does not take the superblock lock.
152  */
153 int sync_blockdev(struct block_device *bdev)
154 {
155 	int ret = 0;
156 
157 	if (bdev)
158 		ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
159 	return ret;
160 }
161 EXPORT_SYMBOL(sync_blockdev);
162 
163 static void __fsync_super(struct super_block *sb)
164 {
165 	sync_inodes_sb(sb, 0);
166 	DQUOT_SYNC(sb);
167 	lock_super(sb);
168 	if (sb->s_dirt && sb->s_op->write_super)
169 		sb->s_op->write_super(sb);
170 	unlock_super(sb);
171 	if (sb->s_op->sync_fs)
172 		sb->s_op->sync_fs(sb, 1);
173 	sync_blockdev(sb->s_bdev);
174 	sync_inodes_sb(sb, 1);
175 }
176 
177 /*
178  * Write out and wait upon all dirty data associated with this
179  * superblock.  Filesystem data as well as the underlying block
180  * device.  Takes the superblock lock.
181  */
182 int fsync_super(struct super_block *sb)
183 {
184 	__fsync_super(sb);
185 	return sync_blockdev(sb->s_bdev);
186 }
187 
188 /*
189  * Write out and wait upon all dirty data associated with this
190  * device.   Filesystem data as well as the underlying block
191  * device.  Takes the superblock lock.
192  */
193 int fsync_bdev(struct block_device *bdev)
194 {
195 	struct super_block *sb = get_super(bdev);
196 	if (sb) {
197 		int res = fsync_super(sb);
198 		drop_super(sb);
199 		return res;
200 	}
201 	return sync_blockdev(bdev);
202 }
203 
204 /**
205  * freeze_bdev  --  lock a filesystem and force it into a consistent state
206  * @bdev:	blockdevice to lock
207  *
208  * This takes the block device bd_mount_mutex to make sure no new mounts
209  * happen on bdev until thaw_bdev() is called.
210  * If a superblock is found on this device, we take the s_umount semaphore
211  * on it to make sure nobody unmounts until the snapshot creation is done.
212  */
213 struct super_block *freeze_bdev(struct block_device *bdev)
214 {
215 	struct super_block *sb;
216 
217 	mutex_lock(&bdev->bd_mount_mutex);
218 	sb = get_super(bdev);
219 	if (sb && !(sb->s_flags & MS_RDONLY)) {
220 		sb->s_frozen = SB_FREEZE_WRITE;
221 		smp_wmb();
222 
223 		__fsync_super(sb);
224 
225 		sb->s_frozen = SB_FREEZE_TRANS;
226 		smp_wmb();
227 
228 		sync_blockdev(sb->s_bdev);
229 
230 		if (sb->s_op->write_super_lockfs)
231 			sb->s_op->write_super_lockfs(sb);
232 	}
233 
234 	sync_blockdev(bdev);
235 	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
236 }
237 EXPORT_SYMBOL(freeze_bdev);
238 
239 /**
240  * thaw_bdev  -- unlock filesystem
241  * @bdev:	blockdevice to unlock
242  * @sb:		associated superblock
243  *
244  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
245  */
246 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
247 {
248 	if (sb) {
249 		BUG_ON(sb->s_bdev != bdev);
250 
251 		if (sb->s_op->unlockfs)
252 			sb->s_op->unlockfs(sb);
253 		sb->s_frozen = SB_UNFROZEN;
254 		smp_wmb();
255 		wake_up(&sb->s_wait_unfrozen);
256 		drop_super(sb);
257 	}
258 
259 	mutex_unlock(&bdev->bd_mount_mutex);
260 }
261 EXPORT_SYMBOL(thaw_bdev);
262 
263 /*
264  * sync everything.  Start out by waking pdflush, because that writes back
265  * all queues in parallel.
266  */
267 static void do_sync(unsigned long wait)
268 {
269 	wakeup_pdflush(0);
270 	sync_inodes(0);		/* All mappings, inodes and their blockdevs */
271 	DQUOT_SYNC(NULL);
272 	sync_supers();		/* Write the superblocks */
273 	sync_filesystems(0);	/* Start syncing the filesystems */
274 	sync_filesystems(wait);	/* Waitingly sync the filesystems */
275 	sync_inodes(wait);	/* Mappings, inodes and blockdevs, again. */
276 	if (!wait)
277 		printk("Emergency Sync complete\n");
278 	if (unlikely(laptop_mode))
279 		laptop_sync_completion();
280 }
281 
282 asmlinkage long sys_sync(void)
283 {
284 	do_sync(1);
285 	return 0;
286 }
287 
288 void emergency_sync(void)
289 {
290 	pdflush_operation(do_sync, 0);
291 }
292 
293 /*
294  * Generic function to fsync a file.
295  *
296  * filp may be NULL if called via the msync of a vma.
297  */
298 
299 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
300 {
301 	struct inode * inode = dentry->d_inode;
302 	struct super_block * sb;
303 	int ret, err;
304 
305 	/* sync the inode to buffers */
306 	ret = write_inode_now(inode, 0);
307 
308 	/* sync the superblock to buffers */
309 	sb = inode->i_sb;
310 	lock_super(sb);
311 	if (sb->s_op->write_super)
312 		sb->s_op->write_super(sb);
313 	unlock_super(sb);
314 
315 	/* .. finally sync the buffers to disk */
316 	err = sync_blockdev(sb->s_bdev);
317 	if (!ret)
318 		ret = err;
319 	return ret;
320 }
321 
322 long do_fsync(struct file *file, int datasync)
323 {
324 	int ret;
325 	int err;
326 	struct address_space *mapping = file->f_mapping;
327 
328 	if (!file->f_op || !file->f_op->fsync) {
329 		/* Why?  We can still call filemap_fdatawrite */
330 		ret = -EINVAL;
331 		goto out;
332 	}
333 
334 	current->flags |= PF_SYNCWRITE;
335 	ret = filemap_fdatawrite(mapping);
336 
337 	/*
338 	 * We need to protect against concurrent writers, which could cause
339 	 * livelocks in fsync_buffers_list().
340 	 */
341 	mutex_lock(&mapping->host->i_mutex);
342 	err = file->f_op->fsync(file, file->f_dentry, datasync);
343 	if (!ret)
344 		ret = err;
345 	mutex_unlock(&mapping->host->i_mutex);
346 	err = filemap_fdatawait(mapping);
347 	if (!ret)
348 		ret = err;
349 	current->flags &= ~PF_SYNCWRITE;
350 out:
351 	return ret;
352 }
353 
354 static long __do_fsync(unsigned int fd, int datasync)
355 {
356 	struct file *file;
357 	int ret = -EBADF;
358 
359 	file = fget(fd);
360 	if (file) {
361 		ret = do_fsync(file, datasync);
362 		fput(file);
363 	}
364 	return ret;
365 }
366 
367 asmlinkage long sys_fsync(unsigned int fd)
368 {
369 	return __do_fsync(fd, 0);
370 }
371 
372 asmlinkage long sys_fdatasync(unsigned int fd)
373 {
374 	return __do_fsync(fd, 1);
375 }
376 
377 /*
378  * Various filesystems appear to want __find_get_block to be non-blocking.
379  * But it's the page lock which protects the buffers.  To get around this,
380  * we get exclusion from try_to_free_buffers with the blockdev mapping's
381  * private_lock.
382  *
383  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
384  * may be quite high.  This code could TryLock the page, and if that
385  * succeeds, there is no need to take private_lock. (But if
386  * private_lock is contended then so is mapping->tree_lock).
387  */
388 static struct buffer_head *
389 __find_get_block_slow(struct block_device *bdev, sector_t block)
390 {
391 	struct inode *bd_inode = bdev->bd_inode;
392 	struct address_space *bd_mapping = bd_inode->i_mapping;
393 	struct buffer_head *ret = NULL;
394 	pgoff_t index;
395 	struct buffer_head *bh;
396 	struct buffer_head *head;
397 	struct page *page;
398 	int all_mapped = 1;
399 
400 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
401 	page = find_get_page(bd_mapping, index);
402 	if (!page)
403 		goto out;
404 
405 	spin_lock(&bd_mapping->private_lock);
406 	if (!page_has_buffers(page))
407 		goto out_unlock;
408 	head = page_buffers(page);
409 	bh = head;
410 	do {
411 		if (bh->b_blocknr == block) {
412 			ret = bh;
413 			get_bh(bh);
414 			goto out_unlock;
415 		}
416 		if (!buffer_mapped(bh))
417 			all_mapped = 0;
418 		bh = bh->b_this_page;
419 	} while (bh != head);
420 
421 	/* we might be here because some of the buffers on this page are
422 	 * not mapped.  This is due to various races between
423 	 * file io on the block device and getblk.  It gets dealt with
424 	 * elsewhere, don't buffer_error if we had some unmapped buffers
425 	 */
426 	if (all_mapped) {
427 		printk("__find_get_block_slow() failed. "
428 			"block=%llu, b_blocknr=%llu\n",
429 			(unsigned long long)block,
430 			(unsigned long long)bh->b_blocknr);
431 		printk("b_state=0x%08lx, b_size=%zu\n",
432 			bh->b_state, bh->b_size);
433 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
434 	}
435 out_unlock:
436 	spin_unlock(&bd_mapping->private_lock);
437 	page_cache_release(page);
438 out:
439 	return ret;
440 }
441 
442 /* If invalidate_buffers() will trash dirty buffers, it means some kind
443    of fs corruption is going on. Trashing dirty data always imply losing
444    information that was supposed to be just stored on the physical layer
445    by the user.
446 
447    Thus invalidate_buffers in general usage is not allwowed to trash
448    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
449    be preserved.  These buffers are simply skipped.
450 
451    We also skip buffers which are still in use.  For example this can
452    happen if a userspace program is reading the block device.
453 
454    NOTE: In the case where the user removed a removable-media-disk even if
455    there's still dirty data not synced on disk (due a bug in the device driver
456    or due an error of the user), by not destroying the dirty buffers we could
457    generate corruption also on the next media inserted, thus a parameter is
458    necessary to handle this case in the most safe way possible (trying
459    to not corrupt also the new disk inserted with the data belonging to
460    the old now corrupted disk). Also for the ramdisk the natural thing
461    to do in order to release the ramdisk memory is to destroy dirty buffers.
462 
463    These are two special cases. Normal usage imply the device driver
464    to issue a sync on the device (without waiting I/O completion) and
465    then an invalidate_buffers call that doesn't trash dirty buffers.
466 
467    For handling cache coherency with the blkdev pagecache the 'update' case
468    is been introduced. It is needed to re-read from disk any pinned
469    buffer. NOTE: re-reading from disk is destructive so we can do it only
470    when we assume nobody is changing the buffercache under our I/O and when
471    we think the disk contains more recent information than the buffercache.
472    The update == 1 pass marks the buffers we need to update, the update == 2
473    pass does the actual I/O. */
474 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
475 {
476 	invalidate_bh_lrus();
477 	/*
478 	 * FIXME: what about destroy_dirty_buffers?
479 	 * We really want to use invalidate_inode_pages2() for
480 	 * that, but not until that's cleaned up.
481 	 */
482 	invalidate_inode_pages(bdev->bd_inode->i_mapping);
483 }
484 
485 /*
486  * Kick pdflush then try to free up some ZONE_NORMAL memory.
487  */
488 static void free_more_memory(void)
489 {
490 	struct zone **zones;
491 	pg_data_t *pgdat;
492 
493 	wakeup_pdflush(1024);
494 	yield();
495 
496 	for_each_online_pgdat(pgdat) {
497 		zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
498 		if (*zones)
499 			try_to_free_pages(zones, GFP_NOFS);
500 	}
501 }
502 
503 /*
504  * I/O completion handler for block_read_full_page() - pages
505  * which come unlocked at the end of I/O.
506  */
507 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
508 {
509 	unsigned long flags;
510 	struct buffer_head *first;
511 	struct buffer_head *tmp;
512 	struct page *page;
513 	int page_uptodate = 1;
514 
515 	BUG_ON(!buffer_async_read(bh));
516 
517 	page = bh->b_page;
518 	if (uptodate) {
519 		set_buffer_uptodate(bh);
520 	} else {
521 		clear_buffer_uptodate(bh);
522 		if (printk_ratelimit())
523 			buffer_io_error(bh);
524 		SetPageError(page);
525 	}
526 
527 	/*
528 	 * Be _very_ careful from here on. Bad things can happen if
529 	 * two buffer heads end IO at almost the same time and both
530 	 * decide that the page is now completely done.
531 	 */
532 	first = page_buffers(page);
533 	local_irq_save(flags);
534 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
535 	clear_buffer_async_read(bh);
536 	unlock_buffer(bh);
537 	tmp = bh;
538 	do {
539 		if (!buffer_uptodate(tmp))
540 			page_uptodate = 0;
541 		if (buffer_async_read(tmp)) {
542 			BUG_ON(!buffer_locked(tmp));
543 			goto still_busy;
544 		}
545 		tmp = tmp->b_this_page;
546 	} while (tmp != bh);
547 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
548 	local_irq_restore(flags);
549 
550 	/*
551 	 * If none of the buffers had errors and they are all
552 	 * uptodate then we can set the page uptodate.
553 	 */
554 	if (page_uptodate && !PageError(page))
555 		SetPageUptodate(page);
556 	unlock_page(page);
557 	return;
558 
559 still_busy:
560 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
561 	local_irq_restore(flags);
562 	return;
563 }
564 
565 /*
566  * Completion handler for block_write_full_page() - pages which are unlocked
567  * during I/O, and which have PageWriteback cleared upon I/O completion.
568  */
569 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
570 {
571 	char b[BDEVNAME_SIZE];
572 	unsigned long flags;
573 	struct buffer_head *first;
574 	struct buffer_head *tmp;
575 	struct page *page;
576 
577 	BUG_ON(!buffer_async_write(bh));
578 
579 	page = bh->b_page;
580 	if (uptodate) {
581 		set_buffer_uptodate(bh);
582 	} else {
583 		if (printk_ratelimit()) {
584 			buffer_io_error(bh);
585 			printk(KERN_WARNING "lost page write due to "
586 					"I/O error on %s\n",
587 			       bdevname(bh->b_bdev, b));
588 		}
589 		set_bit(AS_EIO, &page->mapping->flags);
590 		clear_buffer_uptodate(bh);
591 		SetPageError(page);
592 	}
593 
594 	first = page_buffers(page);
595 	local_irq_save(flags);
596 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
597 
598 	clear_buffer_async_write(bh);
599 	unlock_buffer(bh);
600 	tmp = bh->b_this_page;
601 	while (tmp != bh) {
602 		if (buffer_async_write(tmp)) {
603 			BUG_ON(!buffer_locked(tmp));
604 			goto still_busy;
605 		}
606 		tmp = tmp->b_this_page;
607 	}
608 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
609 	local_irq_restore(flags);
610 	end_page_writeback(page);
611 	return;
612 
613 still_busy:
614 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
615 	local_irq_restore(flags);
616 	return;
617 }
618 
619 /*
620  * If a page's buffers are under async readin (end_buffer_async_read
621  * completion) then there is a possibility that another thread of
622  * control could lock one of the buffers after it has completed
623  * but while some of the other buffers have not completed.  This
624  * locked buffer would confuse end_buffer_async_read() into not unlocking
625  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
626  * that this buffer is not under async I/O.
627  *
628  * The page comes unlocked when it has no locked buffer_async buffers
629  * left.
630  *
631  * PageLocked prevents anyone starting new async I/O reads any of
632  * the buffers.
633  *
634  * PageWriteback is used to prevent simultaneous writeout of the same
635  * page.
636  *
637  * PageLocked prevents anyone from starting writeback of a page which is
638  * under read I/O (PageWriteback is only ever set against a locked page).
639  */
640 static void mark_buffer_async_read(struct buffer_head *bh)
641 {
642 	bh->b_end_io = end_buffer_async_read;
643 	set_buffer_async_read(bh);
644 }
645 
646 void mark_buffer_async_write(struct buffer_head *bh)
647 {
648 	bh->b_end_io = end_buffer_async_write;
649 	set_buffer_async_write(bh);
650 }
651 EXPORT_SYMBOL(mark_buffer_async_write);
652 
653 
654 /*
655  * fs/buffer.c contains helper functions for buffer-backed address space's
656  * fsync functions.  A common requirement for buffer-based filesystems is
657  * that certain data from the backing blockdev needs to be written out for
658  * a successful fsync().  For example, ext2 indirect blocks need to be
659  * written back and waited upon before fsync() returns.
660  *
661  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
662  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
663  * management of a list of dependent buffers at ->i_mapping->private_list.
664  *
665  * Locking is a little subtle: try_to_free_buffers() will remove buffers
666  * from their controlling inode's queue when they are being freed.  But
667  * try_to_free_buffers() will be operating against the *blockdev* mapping
668  * at the time, not against the S_ISREG file which depends on those buffers.
669  * So the locking for private_list is via the private_lock in the address_space
670  * which backs the buffers.  Which is different from the address_space
671  * against which the buffers are listed.  So for a particular address_space,
672  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
673  * mapping->private_list will always be protected by the backing blockdev's
674  * ->private_lock.
675  *
676  * Which introduces a requirement: all buffers on an address_space's
677  * ->private_list must be from the same address_space: the blockdev's.
678  *
679  * address_spaces which do not place buffers at ->private_list via these
680  * utility functions are free to use private_lock and private_list for
681  * whatever they want.  The only requirement is that list_empty(private_list)
682  * be true at clear_inode() time.
683  *
684  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
685  * filesystems should do that.  invalidate_inode_buffers() should just go
686  * BUG_ON(!list_empty).
687  *
688  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
689  * take an address_space, not an inode.  And it should be called
690  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
691  * queued up.
692  *
693  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
694  * list if it is already on a list.  Because if the buffer is on a list,
695  * it *must* already be on the right one.  If not, the filesystem is being
696  * silly.  This will save a ton of locking.  But first we have to ensure
697  * that buffers are taken *off* the old inode's list when they are freed
698  * (presumably in truncate).  That requires careful auditing of all
699  * filesystems (do it inside bforget()).  It could also be done by bringing
700  * b_inode back.
701  */
702 
703 /*
704  * The buffer's backing address_space's private_lock must be held
705  */
706 static inline void __remove_assoc_queue(struct buffer_head *bh)
707 {
708 	list_del_init(&bh->b_assoc_buffers);
709 }
710 
711 int inode_has_buffers(struct inode *inode)
712 {
713 	return !list_empty(&inode->i_data.private_list);
714 }
715 
716 /*
717  * osync is designed to support O_SYNC io.  It waits synchronously for
718  * all already-submitted IO to complete, but does not queue any new
719  * writes to the disk.
720  *
721  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
722  * you dirty the buffers, and then use osync_inode_buffers to wait for
723  * completion.  Any other dirty buffers which are not yet queued for
724  * write will not be flushed to disk by the osync.
725  */
726 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
727 {
728 	struct buffer_head *bh;
729 	struct list_head *p;
730 	int err = 0;
731 
732 	spin_lock(lock);
733 repeat:
734 	list_for_each_prev(p, list) {
735 		bh = BH_ENTRY(p);
736 		if (buffer_locked(bh)) {
737 			get_bh(bh);
738 			spin_unlock(lock);
739 			wait_on_buffer(bh);
740 			if (!buffer_uptodate(bh))
741 				err = -EIO;
742 			brelse(bh);
743 			spin_lock(lock);
744 			goto repeat;
745 		}
746 	}
747 	spin_unlock(lock);
748 	return err;
749 }
750 
751 /**
752  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
753  *                        buffers
754  * @mapping: the mapping which wants those buffers written
755  *
756  * Starts I/O against the buffers at mapping->private_list, and waits upon
757  * that I/O.
758  *
759  * Basically, this is a convenience function for fsync().
760  * @mapping is a file or directory which needs those buffers to be written for
761  * a successful fsync().
762  */
763 int sync_mapping_buffers(struct address_space *mapping)
764 {
765 	struct address_space *buffer_mapping = mapping->assoc_mapping;
766 
767 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
768 		return 0;
769 
770 	return fsync_buffers_list(&buffer_mapping->private_lock,
771 					&mapping->private_list);
772 }
773 EXPORT_SYMBOL(sync_mapping_buffers);
774 
775 /*
776  * Called when we've recently written block `bblock', and it is known that
777  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
778  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
779  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
780  */
781 void write_boundary_block(struct block_device *bdev,
782 			sector_t bblock, unsigned blocksize)
783 {
784 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
785 	if (bh) {
786 		if (buffer_dirty(bh))
787 			ll_rw_block(WRITE, 1, &bh);
788 		put_bh(bh);
789 	}
790 }
791 
792 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
793 {
794 	struct address_space *mapping = inode->i_mapping;
795 	struct address_space *buffer_mapping = bh->b_page->mapping;
796 
797 	mark_buffer_dirty(bh);
798 	if (!mapping->assoc_mapping) {
799 		mapping->assoc_mapping = buffer_mapping;
800 	} else {
801 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
802 	}
803 	if (list_empty(&bh->b_assoc_buffers)) {
804 		spin_lock(&buffer_mapping->private_lock);
805 		list_move_tail(&bh->b_assoc_buffers,
806 				&mapping->private_list);
807 		spin_unlock(&buffer_mapping->private_lock);
808 	}
809 }
810 EXPORT_SYMBOL(mark_buffer_dirty_inode);
811 
812 /*
813  * Add a page to the dirty page list.
814  *
815  * It is a sad fact of life that this function is called from several places
816  * deeply under spinlocking.  It may not sleep.
817  *
818  * If the page has buffers, the uptodate buffers are set dirty, to preserve
819  * dirty-state coherency between the page and the buffers.  It the page does
820  * not have buffers then when they are later attached they will all be set
821  * dirty.
822  *
823  * The buffers are dirtied before the page is dirtied.  There's a small race
824  * window in which a writepage caller may see the page cleanness but not the
825  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
826  * before the buffers, a concurrent writepage caller could clear the page dirty
827  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
828  * page on the dirty page list.
829  *
830  * We use private_lock to lock against try_to_free_buffers while using the
831  * page's buffer list.  Also use this to protect against clean buffers being
832  * added to the page after it was set dirty.
833  *
834  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
835  * address_space though.
836  */
837 int __set_page_dirty_buffers(struct page *page)
838 {
839 	struct address_space * const mapping = page->mapping;
840 
841 	spin_lock(&mapping->private_lock);
842 	if (page_has_buffers(page)) {
843 		struct buffer_head *head = page_buffers(page);
844 		struct buffer_head *bh = head;
845 
846 		do {
847 			set_buffer_dirty(bh);
848 			bh = bh->b_this_page;
849 		} while (bh != head);
850 	}
851 	spin_unlock(&mapping->private_lock);
852 
853 	if (!TestSetPageDirty(page)) {
854 		write_lock_irq(&mapping->tree_lock);
855 		if (page->mapping) {	/* Race with truncate? */
856 			if (mapping_cap_account_dirty(mapping))
857 				inc_page_state(nr_dirty);
858 			radix_tree_tag_set(&mapping->page_tree,
859 						page_index(page),
860 						PAGECACHE_TAG_DIRTY);
861 		}
862 		write_unlock_irq(&mapping->tree_lock);
863 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
864 		return 1;
865 	}
866 	return 0;
867 }
868 EXPORT_SYMBOL(__set_page_dirty_buffers);
869 
870 /*
871  * Write out and wait upon a list of buffers.
872  *
873  * We have conflicting pressures: we want to make sure that all
874  * initially dirty buffers get waited on, but that any subsequently
875  * dirtied buffers don't.  After all, we don't want fsync to last
876  * forever if somebody is actively writing to the file.
877  *
878  * Do this in two main stages: first we copy dirty buffers to a
879  * temporary inode list, queueing the writes as we go.  Then we clean
880  * up, waiting for those writes to complete.
881  *
882  * During this second stage, any subsequent updates to the file may end
883  * up refiling the buffer on the original inode's dirty list again, so
884  * there is a chance we will end up with a buffer queued for write but
885  * not yet completed on that list.  So, as a final cleanup we go through
886  * the osync code to catch these locked, dirty buffers without requeuing
887  * any newly dirty buffers for write.
888  */
889 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
890 {
891 	struct buffer_head *bh;
892 	struct list_head tmp;
893 	int err = 0, err2;
894 
895 	INIT_LIST_HEAD(&tmp);
896 
897 	spin_lock(lock);
898 	while (!list_empty(list)) {
899 		bh = BH_ENTRY(list->next);
900 		list_del_init(&bh->b_assoc_buffers);
901 		if (buffer_dirty(bh) || buffer_locked(bh)) {
902 			list_add(&bh->b_assoc_buffers, &tmp);
903 			if (buffer_dirty(bh)) {
904 				get_bh(bh);
905 				spin_unlock(lock);
906 				/*
907 				 * Ensure any pending I/O completes so that
908 				 * ll_rw_block() actually writes the current
909 				 * contents - it is a noop if I/O is still in
910 				 * flight on potentially older contents.
911 				 */
912 				ll_rw_block(SWRITE, 1, &bh);
913 				brelse(bh);
914 				spin_lock(lock);
915 			}
916 		}
917 	}
918 
919 	while (!list_empty(&tmp)) {
920 		bh = BH_ENTRY(tmp.prev);
921 		__remove_assoc_queue(bh);
922 		get_bh(bh);
923 		spin_unlock(lock);
924 		wait_on_buffer(bh);
925 		if (!buffer_uptodate(bh))
926 			err = -EIO;
927 		brelse(bh);
928 		spin_lock(lock);
929 	}
930 
931 	spin_unlock(lock);
932 	err2 = osync_buffers_list(lock, list);
933 	if (err)
934 		return err;
935 	else
936 		return err2;
937 }
938 
939 /*
940  * Invalidate any and all dirty buffers on a given inode.  We are
941  * probably unmounting the fs, but that doesn't mean we have already
942  * done a sync().  Just drop the buffers from the inode list.
943  *
944  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
945  * assumes that all the buffers are against the blockdev.  Not true
946  * for reiserfs.
947  */
948 void invalidate_inode_buffers(struct inode *inode)
949 {
950 	if (inode_has_buffers(inode)) {
951 		struct address_space *mapping = &inode->i_data;
952 		struct list_head *list = &mapping->private_list;
953 		struct address_space *buffer_mapping = mapping->assoc_mapping;
954 
955 		spin_lock(&buffer_mapping->private_lock);
956 		while (!list_empty(list))
957 			__remove_assoc_queue(BH_ENTRY(list->next));
958 		spin_unlock(&buffer_mapping->private_lock);
959 	}
960 }
961 
962 /*
963  * Remove any clean buffers from the inode's buffer list.  This is called
964  * when we're trying to free the inode itself.  Those buffers can pin it.
965  *
966  * Returns true if all buffers were removed.
967  */
968 int remove_inode_buffers(struct inode *inode)
969 {
970 	int ret = 1;
971 
972 	if (inode_has_buffers(inode)) {
973 		struct address_space *mapping = &inode->i_data;
974 		struct list_head *list = &mapping->private_list;
975 		struct address_space *buffer_mapping = mapping->assoc_mapping;
976 
977 		spin_lock(&buffer_mapping->private_lock);
978 		while (!list_empty(list)) {
979 			struct buffer_head *bh = BH_ENTRY(list->next);
980 			if (buffer_dirty(bh)) {
981 				ret = 0;
982 				break;
983 			}
984 			__remove_assoc_queue(bh);
985 		}
986 		spin_unlock(&buffer_mapping->private_lock);
987 	}
988 	return ret;
989 }
990 
991 /*
992  * Create the appropriate buffers when given a page for data area and
993  * the size of each buffer.. Use the bh->b_this_page linked list to
994  * follow the buffers created.  Return NULL if unable to create more
995  * buffers.
996  *
997  * The retry flag is used to differentiate async IO (paging, swapping)
998  * which may not fail from ordinary buffer allocations.
999  */
1000 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1001 		int retry)
1002 {
1003 	struct buffer_head *bh, *head;
1004 	long offset;
1005 
1006 try_again:
1007 	head = NULL;
1008 	offset = PAGE_SIZE;
1009 	while ((offset -= size) >= 0) {
1010 		bh = alloc_buffer_head(GFP_NOFS);
1011 		if (!bh)
1012 			goto no_grow;
1013 
1014 		bh->b_bdev = NULL;
1015 		bh->b_this_page = head;
1016 		bh->b_blocknr = -1;
1017 		head = bh;
1018 
1019 		bh->b_state = 0;
1020 		atomic_set(&bh->b_count, 0);
1021 		bh->b_private = NULL;
1022 		bh->b_size = size;
1023 
1024 		/* Link the buffer to its page */
1025 		set_bh_page(bh, page, offset);
1026 
1027 		init_buffer(bh, NULL, NULL);
1028 	}
1029 	return head;
1030 /*
1031  * In case anything failed, we just free everything we got.
1032  */
1033 no_grow:
1034 	if (head) {
1035 		do {
1036 			bh = head;
1037 			head = head->b_this_page;
1038 			free_buffer_head(bh);
1039 		} while (head);
1040 	}
1041 
1042 	/*
1043 	 * Return failure for non-async IO requests.  Async IO requests
1044 	 * are not allowed to fail, so we have to wait until buffer heads
1045 	 * become available.  But we don't want tasks sleeping with
1046 	 * partially complete buffers, so all were released above.
1047 	 */
1048 	if (!retry)
1049 		return NULL;
1050 
1051 	/* We're _really_ low on memory. Now we just
1052 	 * wait for old buffer heads to become free due to
1053 	 * finishing IO.  Since this is an async request and
1054 	 * the reserve list is empty, we're sure there are
1055 	 * async buffer heads in use.
1056 	 */
1057 	free_more_memory();
1058 	goto try_again;
1059 }
1060 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1061 
1062 static inline void
1063 link_dev_buffers(struct page *page, struct buffer_head *head)
1064 {
1065 	struct buffer_head *bh, *tail;
1066 
1067 	bh = head;
1068 	do {
1069 		tail = bh;
1070 		bh = bh->b_this_page;
1071 	} while (bh);
1072 	tail->b_this_page = head;
1073 	attach_page_buffers(page, head);
1074 }
1075 
1076 /*
1077  * Initialise the state of a blockdev page's buffers.
1078  */
1079 static void
1080 init_page_buffers(struct page *page, struct block_device *bdev,
1081 			sector_t block, int size)
1082 {
1083 	struct buffer_head *head = page_buffers(page);
1084 	struct buffer_head *bh = head;
1085 	int uptodate = PageUptodate(page);
1086 
1087 	do {
1088 		if (!buffer_mapped(bh)) {
1089 			init_buffer(bh, NULL, NULL);
1090 			bh->b_bdev = bdev;
1091 			bh->b_blocknr = block;
1092 			if (uptodate)
1093 				set_buffer_uptodate(bh);
1094 			set_buffer_mapped(bh);
1095 		}
1096 		block++;
1097 		bh = bh->b_this_page;
1098 	} while (bh != head);
1099 }
1100 
1101 /*
1102  * Create the page-cache page that contains the requested block.
1103  *
1104  * This is user purely for blockdev mappings.
1105  */
1106 static struct page *
1107 grow_dev_page(struct block_device *bdev, sector_t block,
1108 		pgoff_t index, int size)
1109 {
1110 	struct inode *inode = bdev->bd_inode;
1111 	struct page *page;
1112 	struct buffer_head *bh;
1113 
1114 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1115 	if (!page)
1116 		return NULL;
1117 
1118 	BUG_ON(!PageLocked(page));
1119 
1120 	if (page_has_buffers(page)) {
1121 		bh = page_buffers(page);
1122 		if (bh->b_size == size) {
1123 			init_page_buffers(page, bdev, block, size);
1124 			return page;
1125 		}
1126 		if (!try_to_free_buffers(page))
1127 			goto failed;
1128 	}
1129 
1130 	/*
1131 	 * Allocate some buffers for this page
1132 	 */
1133 	bh = alloc_page_buffers(page, size, 0);
1134 	if (!bh)
1135 		goto failed;
1136 
1137 	/*
1138 	 * Link the page to the buffers and initialise them.  Take the
1139 	 * lock to be atomic wrt __find_get_block(), which does not
1140 	 * run under the page lock.
1141 	 */
1142 	spin_lock(&inode->i_mapping->private_lock);
1143 	link_dev_buffers(page, bh);
1144 	init_page_buffers(page, bdev, block, size);
1145 	spin_unlock(&inode->i_mapping->private_lock);
1146 	return page;
1147 
1148 failed:
1149 	BUG();
1150 	unlock_page(page);
1151 	page_cache_release(page);
1152 	return NULL;
1153 }
1154 
1155 /*
1156  * Create buffers for the specified block device block's page.  If
1157  * that page was dirty, the buffers are set dirty also.
1158  *
1159  * Except that's a bug.  Attaching dirty buffers to a dirty
1160  * blockdev's page can result in filesystem corruption, because
1161  * some of those buffers may be aliases of filesystem data.
1162  * grow_dev_page() will go BUG() if this happens.
1163  */
1164 static int
1165 grow_buffers(struct block_device *bdev, sector_t block, int size)
1166 {
1167 	struct page *page;
1168 	pgoff_t index;
1169 	int sizebits;
1170 
1171 	sizebits = -1;
1172 	do {
1173 		sizebits++;
1174 	} while ((size << sizebits) < PAGE_SIZE);
1175 
1176 	index = block >> sizebits;
1177 	block = index << sizebits;
1178 
1179 	/* Create a page with the proper size buffers.. */
1180 	page = grow_dev_page(bdev, block, index, size);
1181 	if (!page)
1182 		return 0;
1183 	unlock_page(page);
1184 	page_cache_release(page);
1185 	return 1;
1186 }
1187 
1188 static struct buffer_head *
1189 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1190 {
1191 	/* Size must be multiple of hard sectorsize */
1192 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1193 			(size < 512 || size > PAGE_SIZE))) {
1194 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1195 					size);
1196 		printk(KERN_ERR "hardsect size: %d\n",
1197 					bdev_hardsect_size(bdev));
1198 
1199 		dump_stack();
1200 		return NULL;
1201 	}
1202 
1203 	for (;;) {
1204 		struct buffer_head * bh;
1205 
1206 		bh = __find_get_block(bdev, block, size);
1207 		if (bh)
1208 			return bh;
1209 
1210 		if (!grow_buffers(bdev, block, size))
1211 			free_more_memory();
1212 	}
1213 }
1214 
1215 /*
1216  * The relationship between dirty buffers and dirty pages:
1217  *
1218  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1219  * the page is tagged dirty in its radix tree.
1220  *
1221  * At all times, the dirtiness of the buffers represents the dirtiness of
1222  * subsections of the page.  If the page has buffers, the page dirty bit is
1223  * merely a hint about the true dirty state.
1224  *
1225  * When a page is set dirty in its entirety, all its buffers are marked dirty
1226  * (if the page has buffers).
1227  *
1228  * When a buffer is marked dirty, its page is dirtied, but the page's other
1229  * buffers are not.
1230  *
1231  * Also.  When blockdev buffers are explicitly read with bread(), they
1232  * individually become uptodate.  But their backing page remains not
1233  * uptodate - even if all of its buffers are uptodate.  A subsequent
1234  * block_read_full_page() against that page will discover all the uptodate
1235  * buffers, will set the page uptodate and will perform no I/O.
1236  */
1237 
1238 /**
1239  * mark_buffer_dirty - mark a buffer_head as needing writeout
1240  * @bh: the buffer_head to mark dirty
1241  *
1242  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1243  * backing page dirty, then tag the page as dirty in its address_space's radix
1244  * tree and then attach the address_space's inode to its superblock's dirty
1245  * inode list.
1246  *
1247  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1248  * mapping->tree_lock and the global inode_lock.
1249  */
1250 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1251 {
1252 	if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1253 		__set_page_dirty_nobuffers(bh->b_page);
1254 }
1255 
1256 /*
1257  * Decrement a buffer_head's reference count.  If all buffers against a page
1258  * have zero reference count, are clean and unlocked, and if the page is clean
1259  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1260  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1261  * a page but it ends up not being freed, and buffers may later be reattached).
1262  */
1263 void __brelse(struct buffer_head * buf)
1264 {
1265 	if (atomic_read(&buf->b_count)) {
1266 		put_bh(buf);
1267 		return;
1268 	}
1269 	printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1270 	WARN_ON(1);
1271 }
1272 
1273 /*
1274  * bforget() is like brelse(), except it discards any
1275  * potentially dirty data.
1276  */
1277 void __bforget(struct buffer_head *bh)
1278 {
1279 	clear_buffer_dirty(bh);
1280 	if (!list_empty(&bh->b_assoc_buffers)) {
1281 		struct address_space *buffer_mapping = bh->b_page->mapping;
1282 
1283 		spin_lock(&buffer_mapping->private_lock);
1284 		list_del_init(&bh->b_assoc_buffers);
1285 		spin_unlock(&buffer_mapping->private_lock);
1286 	}
1287 	__brelse(bh);
1288 }
1289 
1290 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1291 {
1292 	lock_buffer(bh);
1293 	if (buffer_uptodate(bh)) {
1294 		unlock_buffer(bh);
1295 		return bh;
1296 	} else {
1297 		get_bh(bh);
1298 		bh->b_end_io = end_buffer_read_sync;
1299 		submit_bh(READ, bh);
1300 		wait_on_buffer(bh);
1301 		if (buffer_uptodate(bh))
1302 			return bh;
1303 	}
1304 	brelse(bh);
1305 	return NULL;
1306 }
1307 
1308 /*
1309  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1310  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1311  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1312  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1313  * CPU's LRUs at the same time.
1314  *
1315  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1316  * sb_find_get_block().
1317  *
1318  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1319  * a local interrupt disable for that.
1320  */
1321 
1322 #define BH_LRU_SIZE	8
1323 
1324 struct bh_lru {
1325 	struct buffer_head *bhs[BH_LRU_SIZE];
1326 };
1327 
1328 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1329 
1330 #ifdef CONFIG_SMP
1331 #define bh_lru_lock()	local_irq_disable()
1332 #define bh_lru_unlock()	local_irq_enable()
1333 #else
1334 #define bh_lru_lock()	preempt_disable()
1335 #define bh_lru_unlock()	preempt_enable()
1336 #endif
1337 
1338 static inline void check_irqs_on(void)
1339 {
1340 #ifdef irqs_disabled
1341 	BUG_ON(irqs_disabled());
1342 #endif
1343 }
1344 
1345 /*
1346  * The LRU management algorithm is dopey-but-simple.  Sorry.
1347  */
1348 static void bh_lru_install(struct buffer_head *bh)
1349 {
1350 	struct buffer_head *evictee = NULL;
1351 	struct bh_lru *lru;
1352 
1353 	check_irqs_on();
1354 	bh_lru_lock();
1355 	lru = &__get_cpu_var(bh_lrus);
1356 	if (lru->bhs[0] != bh) {
1357 		struct buffer_head *bhs[BH_LRU_SIZE];
1358 		int in;
1359 		int out = 0;
1360 
1361 		get_bh(bh);
1362 		bhs[out++] = bh;
1363 		for (in = 0; in < BH_LRU_SIZE; in++) {
1364 			struct buffer_head *bh2 = lru->bhs[in];
1365 
1366 			if (bh2 == bh) {
1367 				__brelse(bh2);
1368 			} else {
1369 				if (out >= BH_LRU_SIZE) {
1370 					BUG_ON(evictee != NULL);
1371 					evictee = bh2;
1372 				} else {
1373 					bhs[out++] = bh2;
1374 				}
1375 			}
1376 		}
1377 		while (out < BH_LRU_SIZE)
1378 			bhs[out++] = NULL;
1379 		memcpy(lru->bhs, bhs, sizeof(bhs));
1380 	}
1381 	bh_lru_unlock();
1382 
1383 	if (evictee)
1384 		__brelse(evictee);
1385 }
1386 
1387 /*
1388  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1389  */
1390 static struct buffer_head *
1391 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1392 {
1393 	struct buffer_head *ret = NULL;
1394 	struct bh_lru *lru;
1395 	int i;
1396 
1397 	check_irqs_on();
1398 	bh_lru_lock();
1399 	lru = &__get_cpu_var(bh_lrus);
1400 	for (i = 0; i < BH_LRU_SIZE; i++) {
1401 		struct buffer_head *bh = lru->bhs[i];
1402 
1403 		if (bh && bh->b_bdev == bdev &&
1404 				bh->b_blocknr == block && bh->b_size == size) {
1405 			if (i) {
1406 				while (i) {
1407 					lru->bhs[i] = lru->bhs[i - 1];
1408 					i--;
1409 				}
1410 				lru->bhs[0] = bh;
1411 			}
1412 			get_bh(bh);
1413 			ret = bh;
1414 			break;
1415 		}
1416 	}
1417 	bh_lru_unlock();
1418 	return ret;
1419 }
1420 
1421 /*
1422  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1423  * it in the LRU and mark it as accessed.  If it is not present then return
1424  * NULL
1425  */
1426 struct buffer_head *
1427 __find_get_block(struct block_device *bdev, sector_t block, int size)
1428 {
1429 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1430 
1431 	if (bh == NULL) {
1432 		bh = __find_get_block_slow(bdev, block);
1433 		if (bh)
1434 			bh_lru_install(bh);
1435 	}
1436 	if (bh)
1437 		touch_buffer(bh);
1438 	return bh;
1439 }
1440 EXPORT_SYMBOL(__find_get_block);
1441 
1442 /*
1443  * __getblk will locate (and, if necessary, create) the buffer_head
1444  * which corresponds to the passed block_device, block and size. The
1445  * returned buffer has its reference count incremented.
1446  *
1447  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1448  * illegal block number, __getblk() will happily return a buffer_head
1449  * which represents the non-existent block.  Very weird.
1450  *
1451  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1452  * attempt is failing.  FIXME, perhaps?
1453  */
1454 struct buffer_head *
1455 __getblk(struct block_device *bdev, sector_t block, int size)
1456 {
1457 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1458 
1459 	might_sleep();
1460 	if (bh == NULL)
1461 		bh = __getblk_slow(bdev, block, size);
1462 	return bh;
1463 }
1464 EXPORT_SYMBOL(__getblk);
1465 
1466 /*
1467  * Do async read-ahead on a buffer..
1468  */
1469 void __breadahead(struct block_device *bdev, sector_t block, int size)
1470 {
1471 	struct buffer_head *bh = __getblk(bdev, block, size);
1472 	if (likely(bh)) {
1473 		ll_rw_block(READA, 1, &bh);
1474 		brelse(bh);
1475 	}
1476 }
1477 EXPORT_SYMBOL(__breadahead);
1478 
1479 /**
1480  *  __bread() - reads a specified block and returns the bh
1481  *  @bdev: the block_device to read from
1482  *  @block: number of block
1483  *  @size: size (in bytes) to read
1484  *
1485  *  Reads a specified block, and returns buffer head that contains it.
1486  *  It returns NULL if the block was unreadable.
1487  */
1488 struct buffer_head *
1489 __bread(struct block_device *bdev, sector_t block, int size)
1490 {
1491 	struct buffer_head *bh = __getblk(bdev, block, size);
1492 
1493 	if (likely(bh) && !buffer_uptodate(bh))
1494 		bh = __bread_slow(bh);
1495 	return bh;
1496 }
1497 EXPORT_SYMBOL(__bread);
1498 
1499 /*
1500  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1501  * This doesn't race because it runs in each cpu either in irq
1502  * or with preempt disabled.
1503  */
1504 static void invalidate_bh_lru(void *arg)
1505 {
1506 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1507 	int i;
1508 
1509 	for (i = 0; i < BH_LRU_SIZE; i++) {
1510 		brelse(b->bhs[i]);
1511 		b->bhs[i] = NULL;
1512 	}
1513 	put_cpu_var(bh_lrus);
1514 }
1515 
1516 static void invalidate_bh_lrus(void)
1517 {
1518 	on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1519 }
1520 
1521 void set_bh_page(struct buffer_head *bh,
1522 		struct page *page, unsigned long offset)
1523 {
1524 	bh->b_page = page;
1525 	BUG_ON(offset >= PAGE_SIZE);
1526 	if (PageHighMem(page))
1527 		/*
1528 		 * This catches illegal uses and preserves the offset:
1529 		 */
1530 		bh->b_data = (char *)(0 + offset);
1531 	else
1532 		bh->b_data = page_address(page) + offset;
1533 }
1534 EXPORT_SYMBOL(set_bh_page);
1535 
1536 /*
1537  * Called when truncating a buffer on a page completely.
1538  */
1539 static void discard_buffer(struct buffer_head * bh)
1540 {
1541 	lock_buffer(bh);
1542 	clear_buffer_dirty(bh);
1543 	bh->b_bdev = NULL;
1544 	clear_buffer_mapped(bh);
1545 	clear_buffer_req(bh);
1546 	clear_buffer_new(bh);
1547 	clear_buffer_delay(bh);
1548 	unlock_buffer(bh);
1549 }
1550 
1551 /**
1552  * try_to_release_page() - release old fs-specific metadata on a page
1553  *
1554  * @page: the page which the kernel is trying to free
1555  * @gfp_mask: memory allocation flags (and I/O mode)
1556  *
1557  * The address_space is to try to release any data against the page
1558  * (presumably at page->private).  If the release was successful, return `1'.
1559  * Otherwise return zero.
1560  *
1561  * The @gfp_mask argument specifies whether I/O may be performed to release
1562  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1563  *
1564  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1565  */
1566 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1567 {
1568 	struct address_space * const mapping = page->mapping;
1569 
1570 	BUG_ON(!PageLocked(page));
1571 	if (PageWriteback(page))
1572 		return 0;
1573 
1574 	if (mapping && mapping->a_ops->releasepage)
1575 		return mapping->a_ops->releasepage(page, gfp_mask);
1576 	return try_to_free_buffers(page);
1577 }
1578 EXPORT_SYMBOL(try_to_release_page);
1579 
1580 /**
1581  * block_invalidatepage - invalidate part of all of a buffer-backed page
1582  *
1583  * @page: the page which is affected
1584  * @offset: the index of the truncation point
1585  *
1586  * block_invalidatepage() is called when all or part of the page has become
1587  * invalidatedby a truncate operation.
1588  *
1589  * block_invalidatepage() does not have to release all buffers, but it must
1590  * ensure that no dirty buffer is left outside @offset and that no I/O
1591  * is underway against any of the blocks which are outside the truncation
1592  * point.  Because the caller is about to free (and possibly reuse) those
1593  * blocks on-disk.
1594  */
1595 void block_invalidatepage(struct page *page, unsigned long offset)
1596 {
1597 	struct buffer_head *head, *bh, *next;
1598 	unsigned int curr_off = 0;
1599 
1600 	BUG_ON(!PageLocked(page));
1601 	if (!page_has_buffers(page))
1602 		goto out;
1603 
1604 	head = page_buffers(page);
1605 	bh = head;
1606 	do {
1607 		unsigned int next_off = curr_off + bh->b_size;
1608 		next = bh->b_this_page;
1609 
1610 		/*
1611 		 * is this block fully invalidated?
1612 		 */
1613 		if (offset <= curr_off)
1614 			discard_buffer(bh);
1615 		curr_off = next_off;
1616 		bh = next;
1617 	} while (bh != head);
1618 
1619 	/*
1620 	 * We release buffers only if the entire page is being invalidated.
1621 	 * The get_block cached value has been unconditionally invalidated,
1622 	 * so real IO is not possible anymore.
1623 	 */
1624 	if (offset == 0)
1625 		try_to_release_page(page, 0);
1626 out:
1627 	return;
1628 }
1629 EXPORT_SYMBOL(block_invalidatepage);
1630 
1631 void do_invalidatepage(struct page *page, unsigned long offset)
1632 {
1633 	void (*invalidatepage)(struct page *, unsigned long);
1634 	invalidatepage = page->mapping->a_ops->invalidatepage ? :
1635 		block_invalidatepage;
1636 	(*invalidatepage)(page, offset);
1637 }
1638 
1639 /*
1640  * We attach and possibly dirty the buffers atomically wrt
1641  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1642  * is already excluded via the page lock.
1643  */
1644 void create_empty_buffers(struct page *page,
1645 			unsigned long blocksize, unsigned long b_state)
1646 {
1647 	struct buffer_head *bh, *head, *tail;
1648 
1649 	head = alloc_page_buffers(page, blocksize, 1);
1650 	bh = head;
1651 	do {
1652 		bh->b_state |= b_state;
1653 		tail = bh;
1654 		bh = bh->b_this_page;
1655 	} while (bh);
1656 	tail->b_this_page = head;
1657 
1658 	spin_lock(&page->mapping->private_lock);
1659 	if (PageUptodate(page) || PageDirty(page)) {
1660 		bh = head;
1661 		do {
1662 			if (PageDirty(page))
1663 				set_buffer_dirty(bh);
1664 			if (PageUptodate(page))
1665 				set_buffer_uptodate(bh);
1666 			bh = bh->b_this_page;
1667 		} while (bh != head);
1668 	}
1669 	attach_page_buffers(page, head);
1670 	spin_unlock(&page->mapping->private_lock);
1671 }
1672 EXPORT_SYMBOL(create_empty_buffers);
1673 
1674 /*
1675  * We are taking a block for data and we don't want any output from any
1676  * buffer-cache aliases starting from return from that function and
1677  * until the moment when something will explicitly mark the buffer
1678  * dirty (hopefully that will not happen until we will free that block ;-)
1679  * We don't even need to mark it not-uptodate - nobody can expect
1680  * anything from a newly allocated buffer anyway. We used to used
1681  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1682  * don't want to mark the alias unmapped, for example - it would confuse
1683  * anyone who might pick it with bread() afterwards...
1684  *
1685  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1686  * be writeout I/O going on against recently-freed buffers.  We don't
1687  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1688  * only if we really need to.  That happens here.
1689  */
1690 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1691 {
1692 	struct buffer_head *old_bh;
1693 
1694 	might_sleep();
1695 
1696 	old_bh = __find_get_block_slow(bdev, block);
1697 	if (old_bh) {
1698 		clear_buffer_dirty(old_bh);
1699 		wait_on_buffer(old_bh);
1700 		clear_buffer_req(old_bh);
1701 		__brelse(old_bh);
1702 	}
1703 }
1704 EXPORT_SYMBOL(unmap_underlying_metadata);
1705 
1706 /*
1707  * NOTE! All mapped/uptodate combinations are valid:
1708  *
1709  *	Mapped	Uptodate	Meaning
1710  *
1711  *	No	No		"unknown" - must do get_block()
1712  *	No	Yes		"hole" - zero-filled
1713  *	Yes	No		"allocated" - allocated on disk, not read in
1714  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1715  *
1716  * "Dirty" is valid only with the last case (mapped+uptodate).
1717  */
1718 
1719 /*
1720  * While block_write_full_page is writing back the dirty buffers under
1721  * the page lock, whoever dirtied the buffers may decide to clean them
1722  * again at any time.  We handle that by only looking at the buffer
1723  * state inside lock_buffer().
1724  *
1725  * If block_write_full_page() is called for regular writeback
1726  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1727  * locked buffer.   This only can happen if someone has written the buffer
1728  * directly, with submit_bh().  At the address_space level PageWriteback
1729  * prevents this contention from occurring.
1730  */
1731 static int __block_write_full_page(struct inode *inode, struct page *page,
1732 			get_block_t *get_block, struct writeback_control *wbc)
1733 {
1734 	int err;
1735 	sector_t block;
1736 	sector_t last_block;
1737 	struct buffer_head *bh, *head;
1738 	const unsigned blocksize = 1 << inode->i_blkbits;
1739 	int nr_underway = 0;
1740 
1741 	BUG_ON(!PageLocked(page));
1742 
1743 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1744 
1745 	if (!page_has_buffers(page)) {
1746 		create_empty_buffers(page, blocksize,
1747 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1748 	}
1749 
1750 	/*
1751 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1752 	 * here, and the (potentially unmapped) buffers may become dirty at
1753 	 * any time.  If a buffer becomes dirty here after we've inspected it
1754 	 * then we just miss that fact, and the page stays dirty.
1755 	 *
1756 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1757 	 * handle that here by just cleaning them.
1758 	 */
1759 
1760 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1761 	head = page_buffers(page);
1762 	bh = head;
1763 
1764 	/*
1765 	 * Get all the dirty buffers mapped to disk addresses and
1766 	 * handle any aliases from the underlying blockdev's mapping.
1767 	 */
1768 	do {
1769 		if (block > last_block) {
1770 			/*
1771 			 * mapped buffers outside i_size will occur, because
1772 			 * this page can be outside i_size when there is a
1773 			 * truncate in progress.
1774 			 */
1775 			/*
1776 			 * The buffer was zeroed by block_write_full_page()
1777 			 */
1778 			clear_buffer_dirty(bh);
1779 			set_buffer_uptodate(bh);
1780 		} else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1781 			WARN_ON(bh->b_size != blocksize);
1782 			err = get_block(inode, block, bh, 1);
1783 			if (err)
1784 				goto recover;
1785 			if (buffer_new(bh)) {
1786 				/* blockdev mappings never come here */
1787 				clear_buffer_new(bh);
1788 				unmap_underlying_metadata(bh->b_bdev,
1789 							bh->b_blocknr);
1790 			}
1791 		}
1792 		bh = bh->b_this_page;
1793 		block++;
1794 	} while (bh != head);
1795 
1796 	do {
1797 		if (!buffer_mapped(bh))
1798 			continue;
1799 		/*
1800 		 * If it's a fully non-blocking write attempt and we cannot
1801 		 * lock the buffer then redirty the page.  Note that this can
1802 		 * potentially cause a busy-wait loop from pdflush and kswapd
1803 		 * activity, but those code paths have their own higher-level
1804 		 * throttling.
1805 		 */
1806 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1807 			lock_buffer(bh);
1808 		} else if (test_set_buffer_locked(bh)) {
1809 			redirty_page_for_writepage(wbc, page);
1810 			continue;
1811 		}
1812 		if (test_clear_buffer_dirty(bh)) {
1813 			mark_buffer_async_write(bh);
1814 		} else {
1815 			unlock_buffer(bh);
1816 		}
1817 	} while ((bh = bh->b_this_page) != head);
1818 
1819 	/*
1820 	 * The page and its buffers are protected by PageWriteback(), so we can
1821 	 * drop the bh refcounts early.
1822 	 */
1823 	BUG_ON(PageWriteback(page));
1824 	set_page_writeback(page);
1825 
1826 	do {
1827 		struct buffer_head *next = bh->b_this_page;
1828 		if (buffer_async_write(bh)) {
1829 			submit_bh(WRITE, bh);
1830 			nr_underway++;
1831 		}
1832 		bh = next;
1833 	} while (bh != head);
1834 	unlock_page(page);
1835 
1836 	err = 0;
1837 done:
1838 	if (nr_underway == 0) {
1839 		/*
1840 		 * The page was marked dirty, but the buffers were
1841 		 * clean.  Someone wrote them back by hand with
1842 		 * ll_rw_block/submit_bh.  A rare case.
1843 		 */
1844 		int uptodate = 1;
1845 		do {
1846 			if (!buffer_uptodate(bh)) {
1847 				uptodate = 0;
1848 				break;
1849 			}
1850 			bh = bh->b_this_page;
1851 		} while (bh != head);
1852 		if (uptodate)
1853 			SetPageUptodate(page);
1854 		end_page_writeback(page);
1855 		/*
1856 		 * The page and buffer_heads can be released at any time from
1857 		 * here on.
1858 		 */
1859 		wbc->pages_skipped++;	/* We didn't write this page */
1860 	}
1861 	return err;
1862 
1863 recover:
1864 	/*
1865 	 * ENOSPC, or some other error.  We may already have added some
1866 	 * blocks to the file, so we need to write these out to avoid
1867 	 * exposing stale data.
1868 	 * The page is currently locked and not marked for writeback
1869 	 */
1870 	bh = head;
1871 	/* Recovery: lock and submit the mapped buffers */
1872 	do {
1873 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
1874 			lock_buffer(bh);
1875 			mark_buffer_async_write(bh);
1876 		} else {
1877 			/*
1878 			 * The buffer may have been set dirty during
1879 			 * attachment to a dirty page.
1880 			 */
1881 			clear_buffer_dirty(bh);
1882 		}
1883 	} while ((bh = bh->b_this_page) != head);
1884 	SetPageError(page);
1885 	BUG_ON(PageWriteback(page));
1886 	set_page_writeback(page);
1887 	unlock_page(page);
1888 	do {
1889 		struct buffer_head *next = bh->b_this_page;
1890 		if (buffer_async_write(bh)) {
1891 			clear_buffer_dirty(bh);
1892 			submit_bh(WRITE, bh);
1893 			nr_underway++;
1894 		}
1895 		bh = next;
1896 	} while (bh != head);
1897 	goto done;
1898 }
1899 
1900 static int __block_prepare_write(struct inode *inode, struct page *page,
1901 		unsigned from, unsigned to, get_block_t *get_block)
1902 {
1903 	unsigned block_start, block_end;
1904 	sector_t block;
1905 	int err = 0;
1906 	unsigned blocksize, bbits;
1907 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1908 
1909 	BUG_ON(!PageLocked(page));
1910 	BUG_ON(from > PAGE_CACHE_SIZE);
1911 	BUG_ON(to > PAGE_CACHE_SIZE);
1912 	BUG_ON(from > to);
1913 
1914 	blocksize = 1 << inode->i_blkbits;
1915 	if (!page_has_buffers(page))
1916 		create_empty_buffers(page, blocksize, 0);
1917 	head = page_buffers(page);
1918 
1919 	bbits = inode->i_blkbits;
1920 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1921 
1922 	for(bh = head, block_start = 0; bh != head || !block_start;
1923 	    block++, block_start=block_end, bh = bh->b_this_page) {
1924 		block_end = block_start + blocksize;
1925 		if (block_end <= from || block_start >= to) {
1926 			if (PageUptodate(page)) {
1927 				if (!buffer_uptodate(bh))
1928 					set_buffer_uptodate(bh);
1929 			}
1930 			continue;
1931 		}
1932 		if (buffer_new(bh))
1933 			clear_buffer_new(bh);
1934 		if (!buffer_mapped(bh)) {
1935 			WARN_ON(bh->b_size != blocksize);
1936 			err = get_block(inode, block, bh, 1);
1937 			if (err)
1938 				break;
1939 			if (buffer_new(bh)) {
1940 				unmap_underlying_metadata(bh->b_bdev,
1941 							bh->b_blocknr);
1942 				if (PageUptodate(page)) {
1943 					set_buffer_uptodate(bh);
1944 					continue;
1945 				}
1946 				if (block_end > to || block_start < from) {
1947 					void *kaddr;
1948 
1949 					kaddr = kmap_atomic(page, KM_USER0);
1950 					if (block_end > to)
1951 						memset(kaddr+to, 0,
1952 							block_end-to);
1953 					if (block_start < from)
1954 						memset(kaddr+block_start,
1955 							0, from-block_start);
1956 					flush_dcache_page(page);
1957 					kunmap_atomic(kaddr, KM_USER0);
1958 				}
1959 				continue;
1960 			}
1961 		}
1962 		if (PageUptodate(page)) {
1963 			if (!buffer_uptodate(bh))
1964 				set_buffer_uptodate(bh);
1965 			continue;
1966 		}
1967 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1968 		     (block_start < from || block_end > to)) {
1969 			ll_rw_block(READ, 1, &bh);
1970 			*wait_bh++=bh;
1971 		}
1972 	}
1973 	/*
1974 	 * If we issued read requests - let them complete.
1975 	 */
1976 	while(wait_bh > wait) {
1977 		wait_on_buffer(*--wait_bh);
1978 		if (!buffer_uptodate(*wait_bh))
1979 			err = -EIO;
1980 	}
1981 	if (!err) {
1982 		bh = head;
1983 		do {
1984 			if (buffer_new(bh))
1985 				clear_buffer_new(bh);
1986 		} while ((bh = bh->b_this_page) != head);
1987 		return 0;
1988 	}
1989 	/* Error case: */
1990 	/*
1991 	 * Zero out any newly allocated blocks to avoid exposing stale
1992 	 * data.  If BH_New is set, we know that the block was newly
1993 	 * allocated in the above loop.
1994 	 */
1995 	bh = head;
1996 	block_start = 0;
1997 	do {
1998 		block_end = block_start+blocksize;
1999 		if (block_end <= from)
2000 			goto next_bh;
2001 		if (block_start >= to)
2002 			break;
2003 		if (buffer_new(bh)) {
2004 			void *kaddr;
2005 
2006 			clear_buffer_new(bh);
2007 			kaddr = kmap_atomic(page, KM_USER0);
2008 			memset(kaddr+block_start, 0, bh->b_size);
2009 			kunmap_atomic(kaddr, KM_USER0);
2010 			set_buffer_uptodate(bh);
2011 			mark_buffer_dirty(bh);
2012 		}
2013 next_bh:
2014 		block_start = block_end;
2015 		bh = bh->b_this_page;
2016 	} while (bh != head);
2017 	return err;
2018 }
2019 
2020 static int __block_commit_write(struct inode *inode, struct page *page,
2021 		unsigned from, unsigned to)
2022 {
2023 	unsigned block_start, block_end;
2024 	int partial = 0;
2025 	unsigned blocksize;
2026 	struct buffer_head *bh, *head;
2027 
2028 	blocksize = 1 << inode->i_blkbits;
2029 
2030 	for(bh = head = page_buffers(page), block_start = 0;
2031 	    bh != head || !block_start;
2032 	    block_start=block_end, bh = bh->b_this_page) {
2033 		block_end = block_start + blocksize;
2034 		if (block_end <= from || block_start >= to) {
2035 			if (!buffer_uptodate(bh))
2036 				partial = 1;
2037 		} else {
2038 			set_buffer_uptodate(bh);
2039 			mark_buffer_dirty(bh);
2040 		}
2041 	}
2042 
2043 	/*
2044 	 * If this is a partial write which happened to make all buffers
2045 	 * uptodate then we can optimize away a bogus readpage() for
2046 	 * the next read(). Here we 'discover' whether the page went
2047 	 * uptodate as a result of this (potentially partial) write.
2048 	 */
2049 	if (!partial)
2050 		SetPageUptodate(page);
2051 	return 0;
2052 }
2053 
2054 /*
2055  * Generic "read page" function for block devices that have the normal
2056  * get_block functionality. This is most of the block device filesystems.
2057  * Reads the page asynchronously --- the unlock_buffer() and
2058  * set/clear_buffer_uptodate() functions propagate buffer state into the
2059  * page struct once IO has completed.
2060  */
2061 int block_read_full_page(struct page *page, get_block_t *get_block)
2062 {
2063 	struct inode *inode = page->mapping->host;
2064 	sector_t iblock, lblock;
2065 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2066 	unsigned int blocksize;
2067 	int nr, i;
2068 	int fully_mapped = 1;
2069 
2070 	BUG_ON(!PageLocked(page));
2071 	blocksize = 1 << inode->i_blkbits;
2072 	if (!page_has_buffers(page))
2073 		create_empty_buffers(page, blocksize, 0);
2074 	head = page_buffers(page);
2075 
2076 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2077 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2078 	bh = head;
2079 	nr = 0;
2080 	i = 0;
2081 
2082 	do {
2083 		if (buffer_uptodate(bh))
2084 			continue;
2085 
2086 		if (!buffer_mapped(bh)) {
2087 			int err = 0;
2088 
2089 			fully_mapped = 0;
2090 			if (iblock < lblock) {
2091 				WARN_ON(bh->b_size != blocksize);
2092 				err = get_block(inode, iblock, bh, 0);
2093 				if (err)
2094 					SetPageError(page);
2095 			}
2096 			if (!buffer_mapped(bh)) {
2097 				void *kaddr = kmap_atomic(page, KM_USER0);
2098 				memset(kaddr + i * blocksize, 0, blocksize);
2099 				flush_dcache_page(page);
2100 				kunmap_atomic(kaddr, KM_USER0);
2101 				if (!err)
2102 					set_buffer_uptodate(bh);
2103 				continue;
2104 			}
2105 			/*
2106 			 * get_block() might have updated the buffer
2107 			 * synchronously
2108 			 */
2109 			if (buffer_uptodate(bh))
2110 				continue;
2111 		}
2112 		arr[nr++] = bh;
2113 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2114 
2115 	if (fully_mapped)
2116 		SetPageMappedToDisk(page);
2117 
2118 	if (!nr) {
2119 		/*
2120 		 * All buffers are uptodate - we can set the page uptodate
2121 		 * as well. But not if get_block() returned an error.
2122 		 */
2123 		if (!PageError(page))
2124 			SetPageUptodate(page);
2125 		unlock_page(page);
2126 		return 0;
2127 	}
2128 
2129 	/* Stage two: lock the buffers */
2130 	for (i = 0; i < nr; i++) {
2131 		bh = arr[i];
2132 		lock_buffer(bh);
2133 		mark_buffer_async_read(bh);
2134 	}
2135 
2136 	/*
2137 	 * Stage 3: start the IO.  Check for uptodateness
2138 	 * inside the buffer lock in case another process reading
2139 	 * the underlying blockdev brought it uptodate (the sct fix).
2140 	 */
2141 	for (i = 0; i < nr; i++) {
2142 		bh = arr[i];
2143 		if (buffer_uptodate(bh))
2144 			end_buffer_async_read(bh, 1);
2145 		else
2146 			submit_bh(READ, bh);
2147 	}
2148 	return 0;
2149 }
2150 
2151 /* utility function for filesystems that need to do work on expanding
2152  * truncates.  Uses prepare/commit_write to allow the filesystem to
2153  * deal with the hole.
2154  */
2155 static int __generic_cont_expand(struct inode *inode, loff_t size,
2156 				 pgoff_t index, unsigned int offset)
2157 {
2158 	struct address_space *mapping = inode->i_mapping;
2159 	struct page *page;
2160 	unsigned long limit;
2161 	int err;
2162 
2163 	err = -EFBIG;
2164         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2165 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2166 		send_sig(SIGXFSZ, current, 0);
2167 		goto out;
2168 	}
2169 	if (size > inode->i_sb->s_maxbytes)
2170 		goto out;
2171 
2172 	err = -ENOMEM;
2173 	page = grab_cache_page(mapping, index);
2174 	if (!page)
2175 		goto out;
2176 	err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2177 	if (err) {
2178 		/*
2179 		 * ->prepare_write() may have instantiated a few blocks
2180 		 * outside i_size.  Trim these off again.
2181 		 */
2182 		unlock_page(page);
2183 		page_cache_release(page);
2184 		vmtruncate(inode, inode->i_size);
2185 		goto out;
2186 	}
2187 
2188 	err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2189 
2190 	unlock_page(page);
2191 	page_cache_release(page);
2192 	if (err > 0)
2193 		err = 0;
2194 out:
2195 	return err;
2196 }
2197 
2198 int generic_cont_expand(struct inode *inode, loff_t size)
2199 {
2200 	pgoff_t index;
2201 	unsigned int offset;
2202 
2203 	offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2204 
2205 	/* ugh.  in prepare/commit_write, if from==to==start of block, we
2206 	** skip the prepare.  make sure we never send an offset for the start
2207 	** of a block
2208 	*/
2209 	if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2210 		/* caller must handle this extra byte. */
2211 		offset++;
2212 	}
2213 	index = size >> PAGE_CACHE_SHIFT;
2214 
2215 	return __generic_cont_expand(inode, size, index, offset);
2216 }
2217 
2218 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2219 {
2220 	loff_t pos = size - 1;
2221 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2222 	unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2223 
2224 	/* prepare/commit_write can handle even if from==to==start of block. */
2225 	return __generic_cont_expand(inode, size, index, offset);
2226 }
2227 
2228 /*
2229  * For moronic filesystems that do not allow holes in file.
2230  * We may have to extend the file.
2231  */
2232 
2233 int cont_prepare_write(struct page *page, unsigned offset,
2234 		unsigned to, get_block_t *get_block, loff_t *bytes)
2235 {
2236 	struct address_space *mapping = page->mapping;
2237 	struct inode *inode = mapping->host;
2238 	struct page *new_page;
2239 	pgoff_t pgpos;
2240 	long status;
2241 	unsigned zerofrom;
2242 	unsigned blocksize = 1 << inode->i_blkbits;
2243 	void *kaddr;
2244 
2245 	while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2246 		status = -ENOMEM;
2247 		new_page = grab_cache_page(mapping, pgpos);
2248 		if (!new_page)
2249 			goto out;
2250 		/* we might sleep */
2251 		if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2252 			unlock_page(new_page);
2253 			page_cache_release(new_page);
2254 			continue;
2255 		}
2256 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2257 		if (zerofrom & (blocksize-1)) {
2258 			*bytes |= (blocksize-1);
2259 			(*bytes)++;
2260 		}
2261 		status = __block_prepare_write(inode, new_page, zerofrom,
2262 						PAGE_CACHE_SIZE, get_block);
2263 		if (status)
2264 			goto out_unmap;
2265 		kaddr = kmap_atomic(new_page, KM_USER0);
2266 		memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2267 		flush_dcache_page(new_page);
2268 		kunmap_atomic(kaddr, KM_USER0);
2269 		generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2270 		unlock_page(new_page);
2271 		page_cache_release(new_page);
2272 	}
2273 
2274 	if (page->index < pgpos) {
2275 		/* completely inside the area */
2276 		zerofrom = offset;
2277 	} else {
2278 		/* page covers the boundary, find the boundary offset */
2279 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2280 
2281 		/* if we will expand the thing last block will be filled */
2282 		if (to > zerofrom && (zerofrom & (blocksize-1))) {
2283 			*bytes |= (blocksize-1);
2284 			(*bytes)++;
2285 		}
2286 
2287 		/* starting below the boundary? Nothing to zero out */
2288 		if (offset <= zerofrom)
2289 			zerofrom = offset;
2290 	}
2291 	status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2292 	if (status)
2293 		goto out1;
2294 	if (zerofrom < offset) {
2295 		kaddr = kmap_atomic(page, KM_USER0);
2296 		memset(kaddr+zerofrom, 0, offset-zerofrom);
2297 		flush_dcache_page(page);
2298 		kunmap_atomic(kaddr, KM_USER0);
2299 		__block_commit_write(inode, page, zerofrom, offset);
2300 	}
2301 	return 0;
2302 out1:
2303 	ClearPageUptodate(page);
2304 	return status;
2305 
2306 out_unmap:
2307 	ClearPageUptodate(new_page);
2308 	unlock_page(new_page);
2309 	page_cache_release(new_page);
2310 out:
2311 	return status;
2312 }
2313 
2314 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2315 			get_block_t *get_block)
2316 {
2317 	struct inode *inode = page->mapping->host;
2318 	int err = __block_prepare_write(inode, page, from, to, get_block);
2319 	if (err)
2320 		ClearPageUptodate(page);
2321 	return err;
2322 }
2323 
2324 int block_commit_write(struct page *page, unsigned from, unsigned to)
2325 {
2326 	struct inode *inode = page->mapping->host;
2327 	__block_commit_write(inode,page,from,to);
2328 	return 0;
2329 }
2330 
2331 int generic_commit_write(struct file *file, struct page *page,
2332 		unsigned from, unsigned to)
2333 {
2334 	struct inode *inode = page->mapping->host;
2335 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2336 	__block_commit_write(inode,page,from,to);
2337 	/*
2338 	 * No need to use i_size_read() here, the i_size
2339 	 * cannot change under us because we hold i_mutex.
2340 	 */
2341 	if (pos > inode->i_size) {
2342 		i_size_write(inode, pos);
2343 		mark_inode_dirty(inode);
2344 	}
2345 	return 0;
2346 }
2347 
2348 
2349 /*
2350  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2351  * immediately, while under the page lock.  So it needs a special end_io
2352  * handler which does not touch the bh after unlocking it.
2353  *
2354  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2355  * a race there is benign: unlock_buffer() only use the bh's address for
2356  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2357  * itself.
2358  */
2359 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2360 {
2361 	if (uptodate) {
2362 		set_buffer_uptodate(bh);
2363 	} else {
2364 		/* This happens, due to failed READA attempts. */
2365 		clear_buffer_uptodate(bh);
2366 	}
2367 	unlock_buffer(bh);
2368 }
2369 
2370 /*
2371  * On entry, the page is fully not uptodate.
2372  * On exit the page is fully uptodate in the areas outside (from,to)
2373  */
2374 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2375 			get_block_t *get_block)
2376 {
2377 	struct inode *inode = page->mapping->host;
2378 	const unsigned blkbits = inode->i_blkbits;
2379 	const unsigned blocksize = 1 << blkbits;
2380 	struct buffer_head map_bh;
2381 	struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2382 	unsigned block_in_page;
2383 	unsigned block_start;
2384 	sector_t block_in_file;
2385 	char *kaddr;
2386 	int nr_reads = 0;
2387 	int i;
2388 	int ret = 0;
2389 	int is_mapped_to_disk = 1;
2390 	int dirtied_it = 0;
2391 
2392 	if (PageMappedToDisk(page))
2393 		return 0;
2394 
2395 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2396 	map_bh.b_page = page;
2397 
2398 	/*
2399 	 * We loop across all blocks in the page, whether or not they are
2400 	 * part of the affected region.  This is so we can discover if the
2401 	 * page is fully mapped-to-disk.
2402 	 */
2403 	for (block_start = 0, block_in_page = 0;
2404 		  block_start < PAGE_CACHE_SIZE;
2405 		  block_in_page++, block_start += blocksize) {
2406 		unsigned block_end = block_start + blocksize;
2407 		int create;
2408 
2409 		map_bh.b_state = 0;
2410 		create = 1;
2411 		if (block_start >= to)
2412 			create = 0;
2413 		map_bh.b_size = blocksize;
2414 		ret = get_block(inode, block_in_file + block_in_page,
2415 					&map_bh, create);
2416 		if (ret)
2417 			goto failed;
2418 		if (!buffer_mapped(&map_bh))
2419 			is_mapped_to_disk = 0;
2420 		if (buffer_new(&map_bh))
2421 			unmap_underlying_metadata(map_bh.b_bdev,
2422 							map_bh.b_blocknr);
2423 		if (PageUptodate(page))
2424 			continue;
2425 		if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2426 			kaddr = kmap_atomic(page, KM_USER0);
2427 			if (block_start < from) {
2428 				memset(kaddr+block_start, 0, from-block_start);
2429 				dirtied_it = 1;
2430 			}
2431 			if (block_end > to) {
2432 				memset(kaddr + to, 0, block_end - to);
2433 				dirtied_it = 1;
2434 			}
2435 			flush_dcache_page(page);
2436 			kunmap_atomic(kaddr, KM_USER0);
2437 			continue;
2438 		}
2439 		if (buffer_uptodate(&map_bh))
2440 			continue;	/* reiserfs does this */
2441 		if (block_start < from || block_end > to) {
2442 			struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2443 
2444 			if (!bh) {
2445 				ret = -ENOMEM;
2446 				goto failed;
2447 			}
2448 			bh->b_state = map_bh.b_state;
2449 			atomic_set(&bh->b_count, 0);
2450 			bh->b_this_page = NULL;
2451 			bh->b_page = page;
2452 			bh->b_blocknr = map_bh.b_blocknr;
2453 			bh->b_size = blocksize;
2454 			bh->b_data = (char *)(long)block_start;
2455 			bh->b_bdev = map_bh.b_bdev;
2456 			bh->b_private = NULL;
2457 			read_bh[nr_reads++] = bh;
2458 		}
2459 	}
2460 
2461 	if (nr_reads) {
2462 		struct buffer_head *bh;
2463 
2464 		/*
2465 		 * The page is locked, so these buffers are protected from
2466 		 * any VM or truncate activity.  Hence we don't need to care
2467 		 * for the buffer_head refcounts.
2468 		 */
2469 		for (i = 0; i < nr_reads; i++) {
2470 			bh = read_bh[i];
2471 			lock_buffer(bh);
2472 			bh->b_end_io = end_buffer_read_nobh;
2473 			submit_bh(READ, bh);
2474 		}
2475 		for (i = 0; i < nr_reads; i++) {
2476 			bh = read_bh[i];
2477 			wait_on_buffer(bh);
2478 			if (!buffer_uptodate(bh))
2479 				ret = -EIO;
2480 			free_buffer_head(bh);
2481 			read_bh[i] = NULL;
2482 		}
2483 		if (ret)
2484 			goto failed;
2485 	}
2486 
2487 	if (is_mapped_to_disk)
2488 		SetPageMappedToDisk(page);
2489 	SetPageUptodate(page);
2490 
2491 	/*
2492 	 * Setting the page dirty here isn't necessary for the prepare_write
2493 	 * function - commit_write will do that.  But if/when this function is
2494 	 * used within the pagefault handler to ensure that all mmapped pages
2495 	 * have backing space in the filesystem, we will need to dirty the page
2496 	 * if its contents were altered.
2497 	 */
2498 	if (dirtied_it)
2499 		set_page_dirty(page);
2500 
2501 	return 0;
2502 
2503 failed:
2504 	for (i = 0; i < nr_reads; i++) {
2505 		if (read_bh[i])
2506 			free_buffer_head(read_bh[i]);
2507 	}
2508 
2509 	/*
2510 	 * Error recovery is pretty slack.  Clear the page and mark it dirty
2511 	 * so we'll later zero out any blocks which _were_ allocated.
2512 	 */
2513 	kaddr = kmap_atomic(page, KM_USER0);
2514 	memset(kaddr, 0, PAGE_CACHE_SIZE);
2515 	kunmap_atomic(kaddr, KM_USER0);
2516 	SetPageUptodate(page);
2517 	set_page_dirty(page);
2518 	return ret;
2519 }
2520 EXPORT_SYMBOL(nobh_prepare_write);
2521 
2522 int nobh_commit_write(struct file *file, struct page *page,
2523 		unsigned from, unsigned to)
2524 {
2525 	struct inode *inode = page->mapping->host;
2526 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2527 
2528 	set_page_dirty(page);
2529 	if (pos > inode->i_size) {
2530 		i_size_write(inode, pos);
2531 		mark_inode_dirty(inode);
2532 	}
2533 	return 0;
2534 }
2535 EXPORT_SYMBOL(nobh_commit_write);
2536 
2537 /*
2538  * nobh_writepage() - based on block_full_write_page() except
2539  * that it tries to operate without attaching bufferheads to
2540  * the page.
2541  */
2542 int nobh_writepage(struct page *page, get_block_t *get_block,
2543 			struct writeback_control *wbc)
2544 {
2545 	struct inode * const inode = page->mapping->host;
2546 	loff_t i_size = i_size_read(inode);
2547 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2548 	unsigned offset;
2549 	void *kaddr;
2550 	int ret;
2551 
2552 	/* Is the page fully inside i_size? */
2553 	if (page->index < end_index)
2554 		goto out;
2555 
2556 	/* Is the page fully outside i_size? (truncate in progress) */
2557 	offset = i_size & (PAGE_CACHE_SIZE-1);
2558 	if (page->index >= end_index+1 || !offset) {
2559 		/*
2560 		 * The page may have dirty, unmapped buffers.  For example,
2561 		 * they may have been added in ext3_writepage().  Make them
2562 		 * freeable here, so the page does not leak.
2563 		 */
2564 #if 0
2565 		/* Not really sure about this  - do we need this ? */
2566 		if (page->mapping->a_ops->invalidatepage)
2567 			page->mapping->a_ops->invalidatepage(page, offset);
2568 #endif
2569 		unlock_page(page);
2570 		return 0; /* don't care */
2571 	}
2572 
2573 	/*
2574 	 * The page straddles i_size.  It must be zeroed out on each and every
2575 	 * writepage invocation because it may be mmapped.  "A file is mapped
2576 	 * in multiples of the page size.  For a file that is not a multiple of
2577 	 * the  page size, the remaining memory is zeroed when mapped, and
2578 	 * writes to that region are not written out to the file."
2579 	 */
2580 	kaddr = kmap_atomic(page, KM_USER0);
2581 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2582 	flush_dcache_page(page);
2583 	kunmap_atomic(kaddr, KM_USER0);
2584 out:
2585 	ret = mpage_writepage(page, get_block, wbc);
2586 	if (ret == -EAGAIN)
2587 		ret = __block_write_full_page(inode, page, get_block, wbc);
2588 	return ret;
2589 }
2590 EXPORT_SYMBOL(nobh_writepage);
2591 
2592 /*
2593  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2594  */
2595 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2596 {
2597 	struct inode *inode = mapping->host;
2598 	unsigned blocksize = 1 << inode->i_blkbits;
2599 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2600 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2601 	unsigned to;
2602 	struct page *page;
2603 	struct address_space_operations *a_ops = mapping->a_ops;
2604 	char *kaddr;
2605 	int ret = 0;
2606 
2607 	if ((offset & (blocksize - 1)) == 0)
2608 		goto out;
2609 
2610 	ret = -ENOMEM;
2611 	page = grab_cache_page(mapping, index);
2612 	if (!page)
2613 		goto out;
2614 
2615 	to = (offset + blocksize) & ~(blocksize - 1);
2616 	ret = a_ops->prepare_write(NULL, page, offset, to);
2617 	if (ret == 0) {
2618 		kaddr = kmap_atomic(page, KM_USER0);
2619 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2620 		flush_dcache_page(page);
2621 		kunmap_atomic(kaddr, KM_USER0);
2622 		set_page_dirty(page);
2623 	}
2624 	unlock_page(page);
2625 	page_cache_release(page);
2626 out:
2627 	return ret;
2628 }
2629 EXPORT_SYMBOL(nobh_truncate_page);
2630 
2631 int block_truncate_page(struct address_space *mapping,
2632 			loff_t from, get_block_t *get_block)
2633 {
2634 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2635 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2636 	unsigned blocksize;
2637 	sector_t iblock;
2638 	unsigned length, pos;
2639 	struct inode *inode = mapping->host;
2640 	struct page *page;
2641 	struct buffer_head *bh;
2642 	void *kaddr;
2643 	int err;
2644 
2645 	blocksize = 1 << inode->i_blkbits;
2646 	length = offset & (blocksize - 1);
2647 
2648 	/* Block boundary? Nothing to do */
2649 	if (!length)
2650 		return 0;
2651 
2652 	length = blocksize - length;
2653 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2654 
2655 	page = grab_cache_page(mapping, index);
2656 	err = -ENOMEM;
2657 	if (!page)
2658 		goto out;
2659 
2660 	if (!page_has_buffers(page))
2661 		create_empty_buffers(page, blocksize, 0);
2662 
2663 	/* Find the buffer that contains "offset" */
2664 	bh = page_buffers(page);
2665 	pos = blocksize;
2666 	while (offset >= pos) {
2667 		bh = bh->b_this_page;
2668 		iblock++;
2669 		pos += blocksize;
2670 	}
2671 
2672 	err = 0;
2673 	if (!buffer_mapped(bh)) {
2674 		WARN_ON(bh->b_size != blocksize);
2675 		err = get_block(inode, iblock, bh, 0);
2676 		if (err)
2677 			goto unlock;
2678 		/* unmapped? It's a hole - nothing to do */
2679 		if (!buffer_mapped(bh))
2680 			goto unlock;
2681 	}
2682 
2683 	/* Ok, it's mapped. Make sure it's up-to-date */
2684 	if (PageUptodate(page))
2685 		set_buffer_uptodate(bh);
2686 
2687 	if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2688 		err = -EIO;
2689 		ll_rw_block(READ, 1, &bh);
2690 		wait_on_buffer(bh);
2691 		/* Uhhuh. Read error. Complain and punt. */
2692 		if (!buffer_uptodate(bh))
2693 			goto unlock;
2694 	}
2695 
2696 	kaddr = kmap_atomic(page, KM_USER0);
2697 	memset(kaddr + offset, 0, length);
2698 	flush_dcache_page(page);
2699 	kunmap_atomic(kaddr, KM_USER0);
2700 
2701 	mark_buffer_dirty(bh);
2702 	err = 0;
2703 
2704 unlock:
2705 	unlock_page(page);
2706 	page_cache_release(page);
2707 out:
2708 	return err;
2709 }
2710 
2711 /*
2712  * The generic ->writepage function for buffer-backed address_spaces
2713  */
2714 int block_write_full_page(struct page *page, get_block_t *get_block,
2715 			struct writeback_control *wbc)
2716 {
2717 	struct inode * const inode = page->mapping->host;
2718 	loff_t i_size = i_size_read(inode);
2719 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2720 	unsigned offset;
2721 	void *kaddr;
2722 
2723 	/* Is the page fully inside i_size? */
2724 	if (page->index < end_index)
2725 		return __block_write_full_page(inode, page, get_block, wbc);
2726 
2727 	/* Is the page fully outside i_size? (truncate in progress) */
2728 	offset = i_size & (PAGE_CACHE_SIZE-1);
2729 	if (page->index >= end_index+1 || !offset) {
2730 		/*
2731 		 * The page may have dirty, unmapped buffers.  For example,
2732 		 * they may have been added in ext3_writepage().  Make them
2733 		 * freeable here, so the page does not leak.
2734 		 */
2735 		do_invalidatepage(page, 0);
2736 		unlock_page(page);
2737 		return 0; /* don't care */
2738 	}
2739 
2740 	/*
2741 	 * The page straddles i_size.  It must be zeroed out on each and every
2742 	 * writepage invokation because it may be mmapped.  "A file is mapped
2743 	 * in multiples of the page size.  For a file that is not a multiple of
2744 	 * the  page size, the remaining memory is zeroed when mapped, and
2745 	 * writes to that region are not written out to the file."
2746 	 */
2747 	kaddr = kmap_atomic(page, KM_USER0);
2748 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2749 	flush_dcache_page(page);
2750 	kunmap_atomic(kaddr, KM_USER0);
2751 	return __block_write_full_page(inode, page, get_block, wbc);
2752 }
2753 
2754 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2755 			    get_block_t *get_block)
2756 {
2757 	struct buffer_head tmp;
2758 	struct inode *inode = mapping->host;
2759 	tmp.b_state = 0;
2760 	tmp.b_blocknr = 0;
2761 	tmp.b_size = 1 << inode->i_blkbits;
2762 	get_block(inode, block, &tmp, 0);
2763 	return tmp.b_blocknr;
2764 }
2765 
2766 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2767 {
2768 	struct buffer_head *bh = bio->bi_private;
2769 
2770 	if (bio->bi_size)
2771 		return 1;
2772 
2773 	if (err == -EOPNOTSUPP) {
2774 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2775 		set_bit(BH_Eopnotsupp, &bh->b_state);
2776 	}
2777 
2778 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2779 	bio_put(bio);
2780 	return 0;
2781 }
2782 
2783 int submit_bh(int rw, struct buffer_head * bh)
2784 {
2785 	struct bio *bio;
2786 	int ret = 0;
2787 
2788 	BUG_ON(!buffer_locked(bh));
2789 	BUG_ON(!buffer_mapped(bh));
2790 	BUG_ON(!bh->b_end_io);
2791 
2792 	if (buffer_ordered(bh) && (rw == WRITE))
2793 		rw = WRITE_BARRIER;
2794 
2795 	/*
2796 	 * Only clear out a write error when rewriting, should this
2797 	 * include WRITE_SYNC as well?
2798 	 */
2799 	if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2800 		clear_buffer_write_io_error(bh);
2801 
2802 	/*
2803 	 * from here on down, it's all bio -- do the initial mapping,
2804 	 * submit_bio -> generic_make_request may further map this bio around
2805 	 */
2806 	bio = bio_alloc(GFP_NOIO, 1);
2807 
2808 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2809 	bio->bi_bdev = bh->b_bdev;
2810 	bio->bi_io_vec[0].bv_page = bh->b_page;
2811 	bio->bi_io_vec[0].bv_len = bh->b_size;
2812 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2813 
2814 	bio->bi_vcnt = 1;
2815 	bio->bi_idx = 0;
2816 	bio->bi_size = bh->b_size;
2817 
2818 	bio->bi_end_io = end_bio_bh_io_sync;
2819 	bio->bi_private = bh;
2820 
2821 	bio_get(bio);
2822 	submit_bio(rw, bio);
2823 
2824 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2825 		ret = -EOPNOTSUPP;
2826 
2827 	bio_put(bio);
2828 	return ret;
2829 }
2830 
2831 /**
2832  * ll_rw_block: low-level access to block devices (DEPRECATED)
2833  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2834  * @nr: number of &struct buffer_heads in the array
2835  * @bhs: array of pointers to &struct buffer_head
2836  *
2837  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2838  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2839  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2840  * are sent to disk. The fourth %READA option is described in the documentation
2841  * for generic_make_request() which ll_rw_block() calls.
2842  *
2843  * This function drops any buffer that it cannot get a lock on (with the
2844  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2845  * clean when doing a write request, and any buffer that appears to be
2846  * up-to-date when doing read request.  Further it marks as clean buffers that
2847  * are processed for writing (the buffer cache won't assume that they are
2848  * actually clean until the buffer gets unlocked).
2849  *
2850  * ll_rw_block sets b_end_io to simple completion handler that marks
2851  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2852  * any waiters.
2853  *
2854  * All of the buffers must be for the same device, and must also be a
2855  * multiple of the current approved size for the device.
2856  */
2857 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2858 {
2859 	int i;
2860 
2861 	for (i = 0; i < nr; i++) {
2862 		struct buffer_head *bh = bhs[i];
2863 
2864 		if (rw == SWRITE)
2865 			lock_buffer(bh);
2866 		else if (test_set_buffer_locked(bh))
2867 			continue;
2868 
2869 		if (rw == WRITE || rw == SWRITE) {
2870 			if (test_clear_buffer_dirty(bh)) {
2871 				bh->b_end_io = end_buffer_write_sync;
2872 				get_bh(bh);
2873 				submit_bh(WRITE, bh);
2874 				continue;
2875 			}
2876 		} else {
2877 			if (!buffer_uptodate(bh)) {
2878 				bh->b_end_io = end_buffer_read_sync;
2879 				get_bh(bh);
2880 				submit_bh(rw, bh);
2881 				continue;
2882 			}
2883 		}
2884 		unlock_buffer(bh);
2885 	}
2886 }
2887 
2888 /*
2889  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2890  * and then start new I/O and then wait upon it.  The caller must have a ref on
2891  * the buffer_head.
2892  */
2893 int sync_dirty_buffer(struct buffer_head *bh)
2894 {
2895 	int ret = 0;
2896 
2897 	WARN_ON(atomic_read(&bh->b_count) < 1);
2898 	lock_buffer(bh);
2899 	if (test_clear_buffer_dirty(bh)) {
2900 		get_bh(bh);
2901 		bh->b_end_io = end_buffer_write_sync;
2902 		ret = submit_bh(WRITE, bh);
2903 		wait_on_buffer(bh);
2904 		if (buffer_eopnotsupp(bh)) {
2905 			clear_buffer_eopnotsupp(bh);
2906 			ret = -EOPNOTSUPP;
2907 		}
2908 		if (!ret && !buffer_uptodate(bh))
2909 			ret = -EIO;
2910 	} else {
2911 		unlock_buffer(bh);
2912 	}
2913 	return ret;
2914 }
2915 
2916 /*
2917  * try_to_free_buffers() checks if all the buffers on this particular page
2918  * are unused, and releases them if so.
2919  *
2920  * Exclusion against try_to_free_buffers may be obtained by either
2921  * locking the page or by holding its mapping's private_lock.
2922  *
2923  * If the page is dirty but all the buffers are clean then we need to
2924  * be sure to mark the page clean as well.  This is because the page
2925  * may be against a block device, and a later reattachment of buffers
2926  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2927  * filesystem data on the same device.
2928  *
2929  * The same applies to regular filesystem pages: if all the buffers are
2930  * clean then we set the page clean and proceed.  To do that, we require
2931  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2932  * private_lock.
2933  *
2934  * try_to_free_buffers() is non-blocking.
2935  */
2936 static inline int buffer_busy(struct buffer_head *bh)
2937 {
2938 	return atomic_read(&bh->b_count) |
2939 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2940 }
2941 
2942 static int
2943 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2944 {
2945 	struct buffer_head *head = page_buffers(page);
2946 	struct buffer_head *bh;
2947 
2948 	bh = head;
2949 	do {
2950 		if (buffer_write_io_error(bh) && page->mapping)
2951 			set_bit(AS_EIO, &page->mapping->flags);
2952 		if (buffer_busy(bh))
2953 			goto failed;
2954 		bh = bh->b_this_page;
2955 	} while (bh != head);
2956 
2957 	do {
2958 		struct buffer_head *next = bh->b_this_page;
2959 
2960 		if (!list_empty(&bh->b_assoc_buffers))
2961 			__remove_assoc_queue(bh);
2962 		bh = next;
2963 	} while (bh != head);
2964 	*buffers_to_free = head;
2965 	__clear_page_buffers(page);
2966 	return 1;
2967 failed:
2968 	return 0;
2969 }
2970 
2971 int try_to_free_buffers(struct page *page)
2972 {
2973 	struct address_space * const mapping = page->mapping;
2974 	struct buffer_head *buffers_to_free = NULL;
2975 	int ret = 0;
2976 
2977 	BUG_ON(!PageLocked(page));
2978 	if (PageWriteback(page))
2979 		return 0;
2980 
2981 	if (mapping == NULL) {		/* can this still happen? */
2982 		ret = drop_buffers(page, &buffers_to_free);
2983 		goto out;
2984 	}
2985 
2986 	spin_lock(&mapping->private_lock);
2987 	ret = drop_buffers(page, &buffers_to_free);
2988 	if (ret) {
2989 		/*
2990 		 * If the filesystem writes its buffers by hand (eg ext3)
2991 		 * then we can have clean buffers against a dirty page.  We
2992 		 * clean the page here; otherwise later reattachment of buffers
2993 		 * could encounter a non-uptodate page, which is unresolvable.
2994 		 * This only applies in the rare case where try_to_free_buffers
2995 		 * succeeds but the page is not freed.
2996 		 */
2997 		clear_page_dirty(page);
2998 	}
2999 	spin_unlock(&mapping->private_lock);
3000 out:
3001 	if (buffers_to_free) {
3002 		struct buffer_head *bh = buffers_to_free;
3003 
3004 		do {
3005 			struct buffer_head *next = bh->b_this_page;
3006 			free_buffer_head(bh);
3007 			bh = next;
3008 		} while (bh != buffers_to_free);
3009 	}
3010 	return ret;
3011 }
3012 EXPORT_SYMBOL(try_to_free_buffers);
3013 
3014 void block_sync_page(struct page *page)
3015 {
3016 	struct address_space *mapping;
3017 
3018 	smp_mb();
3019 	mapping = page_mapping(page);
3020 	if (mapping)
3021 		blk_run_backing_dev(mapping->backing_dev_info, page);
3022 }
3023 
3024 /*
3025  * There are no bdflush tunables left.  But distributions are
3026  * still running obsolete flush daemons, so we terminate them here.
3027  *
3028  * Use of bdflush() is deprecated and will be removed in a future kernel.
3029  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3030  */
3031 asmlinkage long sys_bdflush(int func, long data)
3032 {
3033 	static int msg_count;
3034 
3035 	if (!capable(CAP_SYS_ADMIN))
3036 		return -EPERM;
3037 
3038 	if (msg_count < 5) {
3039 		msg_count++;
3040 		printk(KERN_INFO
3041 			"warning: process `%s' used the obsolete bdflush"
3042 			" system call\n", current->comm);
3043 		printk(KERN_INFO "Fix your initscripts?\n");
3044 	}
3045 
3046 	if (func == 1)
3047 		do_exit(0);
3048 	return 0;
3049 }
3050 
3051 /*
3052  * Buffer-head allocation
3053  */
3054 static kmem_cache_t *bh_cachep;
3055 
3056 /*
3057  * Once the number of bh's in the machine exceeds this level, we start
3058  * stripping them in writeback.
3059  */
3060 static int max_buffer_heads;
3061 
3062 int buffer_heads_over_limit;
3063 
3064 struct bh_accounting {
3065 	int nr;			/* Number of live bh's */
3066 	int ratelimit;		/* Limit cacheline bouncing */
3067 };
3068 
3069 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3070 
3071 static void recalc_bh_state(void)
3072 {
3073 	int i;
3074 	int tot = 0;
3075 
3076 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3077 		return;
3078 	__get_cpu_var(bh_accounting).ratelimit = 0;
3079 	for_each_online_cpu(i)
3080 		tot += per_cpu(bh_accounting, i).nr;
3081 	buffer_heads_over_limit = (tot > max_buffer_heads);
3082 }
3083 
3084 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3085 {
3086 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3087 	if (ret) {
3088 		get_cpu_var(bh_accounting).nr++;
3089 		recalc_bh_state();
3090 		put_cpu_var(bh_accounting);
3091 	}
3092 	return ret;
3093 }
3094 EXPORT_SYMBOL(alloc_buffer_head);
3095 
3096 void free_buffer_head(struct buffer_head *bh)
3097 {
3098 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3099 	kmem_cache_free(bh_cachep, bh);
3100 	get_cpu_var(bh_accounting).nr--;
3101 	recalc_bh_state();
3102 	put_cpu_var(bh_accounting);
3103 }
3104 EXPORT_SYMBOL(free_buffer_head);
3105 
3106 static void
3107 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3108 {
3109 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3110 			    SLAB_CTOR_CONSTRUCTOR) {
3111 		struct buffer_head * bh = (struct buffer_head *)data;
3112 
3113 		memset(bh, 0, sizeof(*bh));
3114 		INIT_LIST_HEAD(&bh->b_assoc_buffers);
3115 	}
3116 }
3117 
3118 #ifdef CONFIG_HOTPLUG_CPU
3119 static void buffer_exit_cpu(int cpu)
3120 {
3121 	int i;
3122 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3123 
3124 	for (i = 0; i < BH_LRU_SIZE; i++) {
3125 		brelse(b->bhs[i]);
3126 		b->bhs[i] = NULL;
3127 	}
3128 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3129 	per_cpu(bh_accounting, cpu).nr = 0;
3130 	put_cpu_var(bh_accounting);
3131 }
3132 
3133 static int buffer_cpu_notify(struct notifier_block *self,
3134 			      unsigned long action, void *hcpu)
3135 {
3136 	if (action == CPU_DEAD)
3137 		buffer_exit_cpu((unsigned long)hcpu);
3138 	return NOTIFY_OK;
3139 }
3140 #endif /* CONFIG_HOTPLUG_CPU */
3141 
3142 void __init buffer_init(void)
3143 {
3144 	int nrpages;
3145 
3146 	bh_cachep = kmem_cache_create("buffer_head",
3147 					sizeof(struct buffer_head), 0,
3148 					(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3149 					SLAB_MEM_SPREAD),
3150 					init_buffer_head,
3151 					NULL);
3152 
3153 	/*
3154 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3155 	 */
3156 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3157 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3158 	hotcpu_notifier(buffer_cpu_notify, 0);
3159 }
3160 
3161 EXPORT_SYMBOL(__bforget);
3162 EXPORT_SYMBOL(__brelse);
3163 EXPORT_SYMBOL(__wait_on_buffer);
3164 EXPORT_SYMBOL(block_commit_write);
3165 EXPORT_SYMBOL(block_prepare_write);
3166 EXPORT_SYMBOL(block_read_full_page);
3167 EXPORT_SYMBOL(block_sync_page);
3168 EXPORT_SYMBOL(block_truncate_page);
3169 EXPORT_SYMBOL(block_write_full_page);
3170 EXPORT_SYMBOL(cont_prepare_write);
3171 EXPORT_SYMBOL(end_buffer_async_write);
3172 EXPORT_SYMBOL(end_buffer_read_sync);
3173 EXPORT_SYMBOL(end_buffer_write_sync);
3174 EXPORT_SYMBOL(file_fsync);
3175 EXPORT_SYMBOL(fsync_bdev);
3176 EXPORT_SYMBOL(generic_block_bmap);
3177 EXPORT_SYMBOL(generic_commit_write);
3178 EXPORT_SYMBOL(generic_cont_expand);
3179 EXPORT_SYMBOL(generic_cont_expand_simple);
3180 EXPORT_SYMBOL(init_buffer);
3181 EXPORT_SYMBOL(invalidate_bdev);
3182 EXPORT_SYMBOL(ll_rw_block);
3183 EXPORT_SYMBOL(mark_buffer_dirty);
3184 EXPORT_SYMBOL(submit_bh);
3185 EXPORT_SYMBOL(sync_dirty_buffer);
3186 EXPORT_SYMBOL(unlock_buffer);
3187