1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/module.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 #include <linux/cleancache.h> 45 46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 47 48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 49 50 inline void 51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 52 { 53 bh->b_end_io = handler; 54 bh->b_private = private; 55 } 56 EXPORT_SYMBOL(init_buffer); 57 58 static int sleep_on_buffer(void *word) 59 { 60 io_schedule(); 61 return 0; 62 } 63 64 void __lock_buffer(struct buffer_head *bh) 65 { 66 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer, 67 TASK_UNINTERRUPTIBLE); 68 } 69 EXPORT_SYMBOL(__lock_buffer); 70 71 void unlock_buffer(struct buffer_head *bh) 72 { 73 clear_bit_unlock(BH_Lock, &bh->b_state); 74 smp_mb__after_clear_bit(); 75 wake_up_bit(&bh->b_state, BH_Lock); 76 } 77 EXPORT_SYMBOL(unlock_buffer); 78 79 /* 80 * Block until a buffer comes unlocked. This doesn't stop it 81 * from becoming locked again - you have to lock it yourself 82 * if you want to preserve its state. 83 */ 84 void __wait_on_buffer(struct buffer_head * bh) 85 { 86 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE); 87 } 88 EXPORT_SYMBOL(__wait_on_buffer); 89 90 static void 91 __clear_page_buffers(struct page *page) 92 { 93 ClearPagePrivate(page); 94 set_page_private(page, 0); 95 page_cache_release(page); 96 } 97 98 99 static int quiet_error(struct buffer_head *bh) 100 { 101 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 102 return 0; 103 return 1; 104 } 105 106 107 static void buffer_io_error(struct buffer_head *bh) 108 { 109 char b[BDEVNAME_SIZE]; 110 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 111 bdevname(bh->b_bdev, b), 112 (unsigned long long)bh->b_blocknr); 113 } 114 115 /* 116 * End-of-IO handler helper function which does not touch the bh after 117 * unlocking it. 118 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 119 * a race there is benign: unlock_buffer() only use the bh's address for 120 * hashing after unlocking the buffer, so it doesn't actually touch the bh 121 * itself. 122 */ 123 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 124 { 125 if (uptodate) { 126 set_buffer_uptodate(bh); 127 } else { 128 /* This happens, due to failed READA attempts. */ 129 clear_buffer_uptodate(bh); 130 } 131 unlock_buffer(bh); 132 } 133 134 /* 135 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 136 * unlock the buffer. This is what ll_rw_block uses too. 137 */ 138 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 139 { 140 __end_buffer_read_notouch(bh, uptodate); 141 put_bh(bh); 142 } 143 EXPORT_SYMBOL(end_buffer_read_sync); 144 145 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 146 { 147 char b[BDEVNAME_SIZE]; 148 149 if (uptodate) { 150 set_buffer_uptodate(bh); 151 } else { 152 if (!quiet_error(bh)) { 153 buffer_io_error(bh); 154 printk(KERN_WARNING "lost page write due to " 155 "I/O error on %s\n", 156 bdevname(bh->b_bdev, b)); 157 } 158 set_buffer_write_io_error(bh); 159 clear_buffer_uptodate(bh); 160 } 161 unlock_buffer(bh); 162 put_bh(bh); 163 } 164 EXPORT_SYMBOL(end_buffer_write_sync); 165 166 /* 167 * Various filesystems appear to want __find_get_block to be non-blocking. 168 * But it's the page lock which protects the buffers. To get around this, 169 * we get exclusion from try_to_free_buffers with the blockdev mapping's 170 * private_lock. 171 * 172 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 173 * may be quite high. This code could TryLock the page, and if that 174 * succeeds, there is no need to take private_lock. (But if 175 * private_lock is contended then so is mapping->tree_lock). 176 */ 177 static struct buffer_head * 178 __find_get_block_slow(struct block_device *bdev, sector_t block) 179 { 180 struct inode *bd_inode = bdev->bd_inode; 181 struct address_space *bd_mapping = bd_inode->i_mapping; 182 struct buffer_head *ret = NULL; 183 pgoff_t index; 184 struct buffer_head *bh; 185 struct buffer_head *head; 186 struct page *page; 187 int all_mapped = 1; 188 189 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 190 page = find_get_page(bd_mapping, index); 191 if (!page) 192 goto out; 193 194 spin_lock(&bd_mapping->private_lock); 195 if (!page_has_buffers(page)) 196 goto out_unlock; 197 head = page_buffers(page); 198 bh = head; 199 do { 200 if (!buffer_mapped(bh)) 201 all_mapped = 0; 202 else if (bh->b_blocknr == block) { 203 ret = bh; 204 get_bh(bh); 205 goto out_unlock; 206 } 207 bh = bh->b_this_page; 208 } while (bh != head); 209 210 /* we might be here because some of the buffers on this page are 211 * not mapped. This is due to various races between 212 * file io on the block device and getblk. It gets dealt with 213 * elsewhere, don't buffer_error if we had some unmapped buffers 214 */ 215 if (all_mapped) { 216 char b[BDEVNAME_SIZE]; 217 218 printk("__find_get_block_slow() failed. " 219 "block=%llu, b_blocknr=%llu\n", 220 (unsigned long long)block, 221 (unsigned long long)bh->b_blocknr); 222 printk("b_state=0x%08lx, b_size=%zu\n", 223 bh->b_state, bh->b_size); 224 printk("device %s blocksize: %d\n", bdevname(bdev, b), 225 1 << bd_inode->i_blkbits); 226 } 227 out_unlock: 228 spin_unlock(&bd_mapping->private_lock); 229 page_cache_release(page); 230 out: 231 return ret; 232 } 233 234 /* If invalidate_buffers() will trash dirty buffers, it means some kind 235 of fs corruption is going on. Trashing dirty data always imply losing 236 information that was supposed to be just stored on the physical layer 237 by the user. 238 239 Thus invalidate_buffers in general usage is not allwowed to trash 240 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 241 be preserved. These buffers are simply skipped. 242 243 We also skip buffers which are still in use. For example this can 244 happen if a userspace program is reading the block device. 245 246 NOTE: In the case where the user removed a removable-media-disk even if 247 there's still dirty data not synced on disk (due a bug in the device driver 248 or due an error of the user), by not destroying the dirty buffers we could 249 generate corruption also on the next media inserted, thus a parameter is 250 necessary to handle this case in the most safe way possible (trying 251 to not corrupt also the new disk inserted with the data belonging to 252 the old now corrupted disk). Also for the ramdisk the natural thing 253 to do in order to release the ramdisk memory is to destroy dirty buffers. 254 255 These are two special cases. Normal usage imply the device driver 256 to issue a sync on the device (without waiting I/O completion) and 257 then an invalidate_buffers call that doesn't trash dirty buffers. 258 259 For handling cache coherency with the blkdev pagecache the 'update' case 260 is been introduced. It is needed to re-read from disk any pinned 261 buffer. NOTE: re-reading from disk is destructive so we can do it only 262 when we assume nobody is changing the buffercache under our I/O and when 263 we think the disk contains more recent information than the buffercache. 264 The update == 1 pass marks the buffers we need to update, the update == 2 265 pass does the actual I/O. */ 266 void invalidate_bdev(struct block_device *bdev) 267 { 268 struct address_space *mapping = bdev->bd_inode->i_mapping; 269 270 if (mapping->nrpages == 0) 271 return; 272 273 invalidate_bh_lrus(); 274 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 275 invalidate_mapping_pages(mapping, 0, -1); 276 /* 99% of the time, we don't need to flush the cleancache on the bdev. 277 * But, for the strange corners, lets be cautious 278 */ 279 cleancache_flush_inode(mapping); 280 } 281 EXPORT_SYMBOL(invalidate_bdev); 282 283 /* 284 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 285 */ 286 static void free_more_memory(void) 287 { 288 struct zone *zone; 289 int nid; 290 291 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 292 yield(); 293 294 for_each_online_node(nid) { 295 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 296 gfp_zone(GFP_NOFS), NULL, 297 &zone); 298 if (zone) 299 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 300 GFP_NOFS, NULL); 301 } 302 } 303 304 /* 305 * I/O completion handler for block_read_full_page() - pages 306 * which come unlocked at the end of I/O. 307 */ 308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 309 { 310 unsigned long flags; 311 struct buffer_head *first; 312 struct buffer_head *tmp; 313 struct page *page; 314 int page_uptodate = 1; 315 316 BUG_ON(!buffer_async_read(bh)); 317 318 page = bh->b_page; 319 if (uptodate) { 320 set_buffer_uptodate(bh); 321 } else { 322 clear_buffer_uptodate(bh); 323 if (!quiet_error(bh)) 324 buffer_io_error(bh); 325 SetPageError(page); 326 } 327 328 /* 329 * Be _very_ careful from here on. Bad things can happen if 330 * two buffer heads end IO at almost the same time and both 331 * decide that the page is now completely done. 332 */ 333 first = page_buffers(page); 334 local_irq_save(flags); 335 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 336 clear_buffer_async_read(bh); 337 unlock_buffer(bh); 338 tmp = bh; 339 do { 340 if (!buffer_uptodate(tmp)) 341 page_uptodate = 0; 342 if (buffer_async_read(tmp)) { 343 BUG_ON(!buffer_locked(tmp)); 344 goto still_busy; 345 } 346 tmp = tmp->b_this_page; 347 } while (tmp != bh); 348 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 349 local_irq_restore(flags); 350 351 /* 352 * If none of the buffers had errors and they are all 353 * uptodate then we can set the page uptodate. 354 */ 355 if (page_uptodate && !PageError(page)) 356 SetPageUptodate(page); 357 unlock_page(page); 358 return; 359 360 still_busy: 361 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 362 local_irq_restore(flags); 363 return; 364 } 365 366 /* 367 * Completion handler for block_write_full_page() - pages which are unlocked 368 * during I/O, and which have PageWriteback cleared upon I/O completion. 369 */ 370 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 371 { 372 char b[BDEVNAME_SIZE]; 373 unsigned long flags; 374 struct buffer_head *first; 375 struct buffer_head *tmp; 376 struct page *page; 377 378 BUG_ON(!buffer_async_write(bh)); 379 380 page = bh->b_page; 381 if (uptodate) { 382 set_buffer_uptodate(bh); 383 } else { 384 if (!quiet_error(bh)) { 385 buffer_io_error(bh); 386 printk(KERN_WARNING "lost page write due to " 387 "I/O error on %s\n", 388 bdevname(bh->b_bdev, b)); 389 } 390 set_bit(AS_EIO, &page->mapping->flags); 391 set_buffer_write_io_error(bh); 392 clear_buffer_uptodate(bh); 393 SetPageError(page); 394 } 395 396 first = page_buffers(page); 397 local_irq_save(flags); 398 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 399 400 clear_buffer_async_write(bh); 401 unlock_buffer(bh); 402 tmp = bh->b_this_page; 403 while (tmp != bh) { 404 if (buffer_async_write(tmp)) { 405 BUG_ON(!buffer_locked(tmp)); 406 goto still_busy; 407 } 408 tmp = tmp->b_this_page; 409 } 410 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 411 local_irq_restore(flags); 412 end_page_writeback(page); 413 return; 414 415 still_busy: 416 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 417 local_irq_restore(flags); 418 return; 419 } 420 EXPORT_SYMBOL(end_buffer_async_write); 421 422 /* 423 * If a page's buffers are under async readin (end_buffer_async_read 424 * completion) then there is a possibility that another thread of 425 * control could lock one of the buffers after it has completed 426 * but while some of the other buffers have not completed. This 427 * locked buffer would confuse end_buffer_async_read() into not unlocking 428 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 429 * that this buffer is not under async I/O. 430 * 431 * The page comes unlocked when it has no locked buffer_async buffers 432 * left. 433 * 434 * PageLocked prevents anyone starting new async I/O reads any of 435 * the buffers. 436 * 437 * PageWriteback is used to prevent simultaneous writeout of the same 438 * page. 439 * 440 * PageLocked prevents anyone from starting writeback of a page which is 441 * under read I/O (PageWriteback is only ever set against a locked page). 442 */ 443 static void mark_buffer_async_read(struct buffer_head *bh) 444 { 445 bh->b_end_io = end_buffer_async_read; 446 set_buffer_async_read(bh); 447 } 448 449 static void mark_buffer_async_write_endio(struct buffer_head *bh, 450 bh_end_io_t *handler) 451 { 452 bh->b_end_io = handler; 453 set_buffer_async_write(bh); 454 } 455 456 void mark_buffer_async_write(struct buffer_head *bh) 457 { 458 mark_buffer_async_write_endio(bh, end_buffer_async_write); 459 } 460 EXPORT_SYMBOL(mark_buffer_async_write); 461 462 463 /* 464 * fs/buffer.c contains helper functions for buffer-backed address space's 465 * fsync functions. A common requirement for buffer-based filesystems is 466 * that certain data from the backing blockdev needs to be written out for 467 * a successful fsync(). For example, ext2 indirect blocks need to be 468 * written back and waited upon before fsync() returns. 469 * 470 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 471 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 472 * management of a list of dependent buffers at ->i_mapping->private_list. 473 * 474 * Locking is a little subtle: try_to_free_buffers() will remove buffers 475 * from their controlling inode's queue when they are being freed. But 476 * try_to_free_buffers() will be operating against the *blockdev* mapping 477 * at the time, not against the S_ISREG file which depends on those buffers. 478 * So the locking for private_list is via the private_lock in the address_space 479 * which backs the buffers. Which is different from the address_space 480 * against which the buffers are listed. So for a particular address_space, 481 * mapping->private_lock does *not* protect mapping->private_list! In fact, 482 * mapping->private_list will always be protected by the backing blockdev's 483 * ->private_lock. 484 * 485 * Which introduces a requirement: all buffers on an address_space's 486 * ->private_list must be from the same address_space: the blockdev's. 487 * 488 * address_spaces which do not place buffers at ->private_list via these 489 * utility functions are free to use private_lock and private_list for 490 * whatever they want. The only requirement is that list_empty(private_list) 491 * be true at clear_inode() time. 492 * 493 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 494 * filesystems should do that. invalidate_inode_buffers() should just go 495 * BUG_ON(!list_empty). 496 * 497 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 498 * take an address_space, not an inode. And it should be called 499 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 500 * queued up. 501 * 502 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 503 * list if it is already on a list. Because if the buffer is on a list, 504 * it *must* already be on the right one. If not, the filesystem is being 505 * silly. This will save a ton of locking. But first we have to ensure 506 * that buffers are taken *off* the old inode's list when they are freed 507 * (presumably in truncate). That requires careful auditing of all 508 * filesystems (do it inside bforget()). It could also be done by bringing 509 * b_inode back. 510 */ 511 512 /* 513 * The buffer's backing address_space's private_lock must be held 514 */ 515 static void __remove_assoc_queue(struct buffer_head *bh) 516 { 517 list_del_init(&bh->b_assoc_buffers); 518 WARN_ON(!bh->b_assoc_map); 519 if (buffer_write_io_error(bh)) 520 set_bit(AS_EIO, &bh->b_assoc_map->flags); 521 bh->b_assoc_map = NULL; 522 } 523 524 int inode_has_buffers(struct inode *inode) 525 { 526 return !list_empty(&inode->i_data.private_list); 527 } 528 529 /* 530 * osync is designed to support O_SYNC io. It waits synchronously for 531 * all already-submitted IO to complete, but does not queue any new 532 * writes to the disk. 533 * 534 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 535 * you dirty the buffers, and then use osync_inode_buffers to wait for 536 * completion. Any other dirty buffers which are not yet queued for 537 * write will not be flushed to disk by the osync. 538 */ 539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 540 { 541 struct buffer_head *bh; 542 struct list_head *p; 543 int err = 0; 544 545 spin_lock(lock); 546 repeat: 547 list_for_each_prev(p, list) { 548 bh = BH_ENTRY(p); 549 if (buffer_locked(bh)) { 550 get_bh(bh); 551 spin_unlock(lock); 552 wait_on_buffer(bh); 553 if (!buffer_uptodate(bh)) 554 err = -EIO; 555 brelse(bh); 556 spin_lock(lock); 557 goto repeat; 558 } 559 } 560 spin_unlock(lock); 561 return err; 562 } 563 564 static void do_thaw_one(struct super_block *sb, void *unused) 565 { 566 char b[BDEVNAME_SIZE]; 567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 568 printk(KERN_WARNING "Emergency Thaw on %s\n", 569 bdevname(sb->s_bdev, b)); 570 } 571 572 static void do_thaw_all(struct work_struct *work) 573 { 574 iterate_supers(do_thaw_one, NULL); 575 kfree(work); 576 printk(KERN_WARNING "Emergency Thaw complete\n"); 577 } 578 579 /** 580 * emergency_thaw_all -- forcibly thaw every frozen filesystem 581 * 582 * Used for emergency unfreeze of all filesystems via SysRq 583 */ 584 void emergency_thaw_all(void) 585 { 586 struct work_struct *work; 587 588 work = kmalloc(sizeof(*work), GFP_ATOMIC); 589 if (work) { 590 INIT_WORK(work, do_thaw_all); 591 schedule_work(work); 592 } 593 } 594 595 /** 596 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 597 * @mapping: the mapping which wants those buffers written 598 * 599 * Starts I/O against the buffers at mapping->private_list, and waits upon 600 * that I/O. 601 * 602 * Basically, this is a convenience function for fsync(). 603 * @mapping is a file or directory which needs those buffers to be written for 604 * a successful fsync(). 605 */ 606 int sync_mapping_buffers(struct address_space *mapping) 607 { 608 struct address_space *buffer_mapping = mapping->assoc_mapping; 609 610 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 611 return 0; 612 613 return fsync_buffers_list(&buffer_mapping->private_lock, 614 &mapping->private_list); 615 } 616 EXPORT_SYMBOL(sync_mapping_buffers); 617 618 /* 619 * Called when we've recently written block `bblock', and it is known that 620 * `bblock' was for a buffer_boundary() buffer. This means that the block at 621 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 622 * dirty, schedule it for IO. So that indirects merge nicely with their data. 623 */ 624 void write_boundary_block(struct block_device *bdev, 625 sector_t bblock, unsigned blocksize) 626 { 627 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 628 if (bh) { 629 if (buffer_dirty(bh)) 630 ll_rw_block(WRITE, 1, &bh); 631 put_bh(bh); 632 } 633 } 634 635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 636 { 637 struct address_space *mapping = inode->i_mapping; 638 struct address_space *buffer_mapping = bh->b_page->mapping; 639 640 mark_buffer_dirty(bh); 641 if (!mapping->assoc_mapping) { 642 mapping->assoc_mapping = buffer_mapping; 643 } else { 644 BUG_ON(mapping->assoc_mapping != buffer_mapping); 645 } 646 if (!bh->b_assoc_map) { 647 spin_lock(&buffer_mapping->private_lock); 648 list_move_tail(&bh->b_assoc_buffers, 649 &mapping->private_list); 650 bh->b_assoc_map = mapping; 651 spin_unlock(&buffer_mapping->private_lock); 652 } 653 } 654 EXPORT_SYMBOL(mark_buffer_dirty_inode); 655 656 /* 657 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 658 * dirty. 659 * 660 * If warn is true, then emit a warning if the page is not uptodate and has 661 * not been truncated. 662 */ 663 static void __set_page_dirty(struct page *page, 664 struct address_space *mapping, int warn) 665 { 666 spin_lock_irq(&mapping->tree_lock); 667 if (page->mapping) { /* Race with truncate? */ 668 WARN_ON_ONCE(warn && !PageUptodate(page)); 669 account_page_dirtied(page, mapping); 670 radix_tree_tag_set(&mapping->page_tree, 671 page_index(page), PAGECACHE_TAG_DIRTY); 672 } 673 spin_unlock_irq(&mapping->tree_lock); 674 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 675 } 676 677 /* 678 * Add a page to the dirty page list. 679 * 680 * It is a sad fact of life that this function is called from several places 681 * deeply under spinlocking. It may not sleep. 682 * 683 * If the page has buffers, the uptodate buffers are set dirty, to preserve 684 * dirty-state coherency between the page and the buffers. It the page does 685 * not have buffers then when they are later attached they will all be set 686 * dirty. 687 * 688 * The buffers are dirtied before the page is dirtied. There's a small race 689 * window in which a writepage caller may see the page cleanness but not the 690 * buffer dirtiness. That's fine. If this code were to set the page dirty 691 * before the buffers, a concurrent writepage caller could clear the page dirty 692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 693 * page on the dirty page list. 694 * 695 * We use private_lock to lock against try_to_free_buffers while using the 696 * page's buffer list. Also use this to protect against clean buffers being 697 * added to the page after it was set dirty. 698 * 699 * FIXME: may need to call ->reservepage here as well. That's rather up to the 700 * address_space though. 701 */ 702 int __set_page_dirty_buffers(struct page *page) 703 { 704 int newly_dirty; 705 struct address_space *mapping = page_mapping(page); 706 707 if (unlikely(!mapping)) 708 return !TestSetPageDirty(page); 709 710 spin_lock(&mapping->private_lock); 711 if (page_has_buffers(page)) { 712 struct buffer_head *head = page_buffers(page); 713 struct buffer_head *bh = head; 714 715 do { 716 set_buffer_dirty(bh); 717 bh = bh->b_this_page; 718 } while (bh != head); 719 } 720 newly_dirty = !TestSetPageDirty(page); 721 spin_unlock(&mapping->private_lock); 722 723 if (newly_dirty) 724 __set_page_dirty(page, mapping, 1); 725 return newly_dirty; 726 } 727 EXPORT_SYMBOL(__set_page_dirty_buffers); 728 729 /* 730 * Write out and wait upon a list of buffers. 731 * 732 * We have conflicting pressures: we want to make sure that all 733 * initially dirty buffers get waited on, but that any subsequently 734 * dirtied buffers don't. After all, we don't want fsync to last 735 * forever if somebody is actively writing to the file. 736 * 737 * Do this in two main stages: first we copy dirty buffers to a 738 * temporary inode list, queueing the writes as we go. Then we clean 739 * up, waiting for those writes to complete. 740 * 741 * During this second stage, any subsequent updates to the file may end 742 * up refiling the buffer on the original inode's dirty list again, so 743 * there is a chance we will end up with a buffer queued for write but 744 * not yet completed on that list. So, as a final cleanup we go through 745 * the osync code to catch these locked, dirty buffers without requeuing 746 * any newly dirty buffers for write. 747 */ 748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 749 { 750 struct buffer_head *bh; 751 struct list_head tmp; 752 struct address_space *mapping; 753 int err = 0, err2; 754 struct blk_plug plug; 755 756 INIT_LIST_HEAD(&tmp); 757 blk_start_plug(&plug); 758 759 spin_lock(lock); 760 while (!list_empty(list)) { 761 bh = BH_ENTRY(list->next); 762 mapping = bh->b_assoc_map; 763 __remove_assoc_queue(bh); 764 /* Avoid race with mark_buffer_dirty_inode() which does 765 * a lockless check and we rely on seeing the dirty bit */ 766 smp_mb(); 767 if (buffer_dirty(bh) || buffer_locked(bh)) { 768 list_add(&bh->b_assoc_buffers, &tmp); 769 bh->b_assoc_map = mapping; 770 if (buffer_dirty(bh)) { 771 get_bh(bh); 772 spin_unlock(lock); 773 /* 774 * Ensure any pending I/O completes so that 775 * write_dirty_buffer() actually writes the 776 * current contents - it is a noop if I/O is 777 * still in flight on potentially older 778 * contents. 779 */ 780 write_dirty_buffer(bh, WRITE_SYNC); 781 782 /* 783 * Kick off IO for the previous mapping. Note 784 * that we will not run the very last mapping, 785 * wait_on_buffer() will do that for us 786 * through sync_buffer(). 787 */ 788 brelse(bh); 789 spin_lock(lock); 790 } 791 } 792 } 793 794 spin_unlock(lock); 795 blk_finish_plug(&plug); 796 spin_lock(lock); 797 798 while (!list_empty(&tmp)) { 799 bh = BH_ENTRY(tmp.prev); 800 get_bh(bh); 801 mapping = bh->b_assoc_map; 802 __remove_assoc_queue(bh); 803 /* Avoid race with mark_buffer_dirty_inode() which does 804 * a lockless check and we rely on seeing the dirty bit */ 805 smp_mb(); 806 if (buffer_dirty(bh)) { 807 list_add(&bh->b_assoc_buffers, 808 &mapping->private_list); 809 bh->b_assoc_map = mapping; 810 } 811 spin_unlock(lock); 812 wait_on_buffer(bh); 813 if (!buffer_uptodate(bh)) 814 err = -EIO; 815 brelse(bh); 816 spin_lock(lock); 817 } 818 819 spin_unlock(lock); 820 err2 = osync_buffers_list(lock, list); 821 if (err) 822 return err; 823 else 824 return err2; 825 } 826 827 /* 828 * Invalidate any and all dirty buffers on a given inode. We are 829 * probably unmounting the fs, but that doesn't mean we have already 830 * done a sync(). Just drop the buffers from the inode list. 831 * 832 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 833 * assumes that all the buffers are against the blockdev. Not true 834 * for reiserfs. 835 */ 836 void invalidate_inode_buffers(struct inode *inode) 837 { 838 if (inode_has_buffers(inode)) { 839 struct address_space *mapping = &inode->i_data; 840 struct list_head *list = &mapping->private_list; 841 struct address_space *buffer_mapping = mapping->assoc_mapping; 842 843 spin_lock(&buffer_mapping->private_lock); 844 while (!list_empty(list)) 845 __remove_assoc_queue(BH_ENTRY(list->next)); 846 spin_unlock(&buffer_mapping->private_lock); 847 } 848 } 849 EXPORT_SYMBOL(invalidate_inode_buffers); 850 851 /* 852 * Remove any clean buffers from the inode's buffer list. This is called 853 * when we're trying to free the inode itself. Those buffers can pin it. 854 * 855 * Returns true if all buffers were removed. 856 */ 857 int remove_inode_buffers(struct inode *inode) 858 { 859 int ret = 1; 860 861 if (inode_has_buffers(inode)) { 862 struct address_space *mapping = &inode->i_data; 863 struct list_head *list = &mapping->private_list; 864 struct address_space *buffer_mapping = mapping->assoc_mapping; 865 866 spin_lock(&buffer_mapping->private_lock); 867 while (!list_empty(list)) { 868 struct buffer_head *bh = BH_ENTRY(list->next); 869 if (buffer_dirty(bh)) { 870 ret = 0; 871 break; 872 } 873 __remove_assoc_queue(bh); 874 } 875 spin_unlock(&buffer_mapping->private_lock); 876 } 877 return ret; 878 } 879 880 /* 881 * Create the appropriate buffers when given a page for data area and 882 * the size of each buffer.. Use the bh->b_this_page linked list to 883 * follow the buffers created. Return NULL if unable to create more 884 * buffers. 885 * 886 * The retry flag is used to differentiate async IO (paging, swapping) 887 * which may not fail from ordinary buffer allocations. 888 */ 889 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 890 int retry) 891 { 892 struct buffer_head *bh, *head; 893 long offset; 894 895 try_again: 896 head = NULL; 897 offset = PAGE_SIZE; 898 while ((offset -= size) >= 0) { 899 bh = alloc_buffer_head(GFP_NOFS); 900 if (!bh) 901 goto no_grow; 902 903 bh->b_bdev = NULL; 904 bh->b_this_page = head; 905 bh->b_blocknr = -1; 906 head = bh; 907 908 bh->b_state = 0; 909 atomic_set(&bh->b_count, 0); 910 bh->b_size = size; 911 912 /* Link the buffer to its page */ 913 set_bh_page(bh, page, offset); 914 915 init_buffer(bh, NULL, NULL); 916 } 917 return head; 918 /* 919 * In case anything failed, we just free everything we got. 920 */ 921 no_grow: 922 if (head) { 923 do { 924 bh = head; 925 head = head->b_this_page; 926 free_buffer_head(bh); 927 } while (head); 928 } 929 930 /* 931 * Return failure for non-async IO requests. Async IO requests 932 * are not allowed to fail, so we have to wait until buffer heads 933 * become available. But we don't want tasks sleeping with 934 * partially complete buffers, so all were released above. 935 */ 936 if (!retry) 937 return NULL; 938 939 /* We're _really_ low on memory. Now we just 940 * wait for old buffer heads to become free due to 941 * finishing IO. Since this is an async request and 942 * the reserve list is empty, we're sure there are 943 * async buffer heads in use. 944 */ 945 free_more_memory(); 946 goto try_again; 947 } 948 EXPORT_SYMBOL_GPL(alloc_page_buffers); 949 950 static inline void 951 link_dev_buffers(struct page *page, struct buffer_head *head) 952 { 953 struct buffer_head *bh, *tail; 954 955 bh = head; 956 do { 957 tail = bh; 958 bh = bh->b_this_page; 959 } while (bh); 960 tail->b_this_page = head; 961 attach_page_buffers(page, head); 962 } 963 964 /* 965 * Initialise the state of a blockdev page's buffers. 966 */ 967 static void 968 init_page_buffers(struct page *page, struct block_device *bdev, 969 sector_t block, int size) 970 { 971 struct buffer_head *head = page_buffers(page); 972 struct buffer_head *bh = head; 973 int uptodate = PageUptodate(page); 974 975 do { 976 if (!buffer_mapped(bh)) { 977 init_buffer(bh, NULL, NULL); 978 bh->b_bdev = bdev; 979 bh->b_blocknr = block; 980 if (uptodate) 981 set_buffer_uptodate(bh); 982 set_buffer_mapped(bh); 983 } 984 block++; 985 bh = bh->b_this_page; 986 } while (bh != head); 987 } 988 989 /* 990 * Create the page-cache page that contains the requested block. 991 * 992 * This is user purely for blockdev mappings. 993 */ 994 static struct page * 995 grow_dev_page(struct block_device *bdev, sector_t block, 996 pgoff_t index, int size) 997 { 998 struct inode *inode = bdev->bd_inode; 999 struct page *page; 1000 struct buffer_head *bh; 1001 1002 page = find_or_create_page(inode->i_mapping, index, 1003 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 1004 if (!page) 1005 return NULL; 1006 1007 BUG_ON(!PageLocked(page)); 1008 1009 if (page_has_buffers(page)) { 1010 bh = page_buffers(page); 1011 if (bh->b_size == size) { 1012 init_page_buffers(page, bdev, block, size); 1013 return page; 1014 } 1015 if (!try_to_free_buffers(page)) 1016 goto failed; 1017 } 1018 1019 /* 1020 * Allocate some buffers for this page 1021 */ 1022 bh = alloc_page_buffers(page, size, 0); 1023 if (!bh) 1024 goto failed; 1025 1026 /* 1027 * Link the page to the buffers and initialise them. Take the 1028 * lock to be atomic wrt __find_get_block(), which does not 1029 * run under the page lock. 1030 */ 1031 spin_lock(&inode->i_mapping->private_lock); 1032 link_dev_buffers(page, bh); 1033 init_page_buffers(page, bdev, block, size); 1034 spin_unlock(&inode->i_mapping->private_lock); 1035 return page; 1036 1037 failed: 1038 BUG(); 1039 unlock_page(page); 1040 page_cache_release(page); 1041 return NULL; 1042 } 1043 1044 /* 1045 * Create buffers for the specified block device block's page. If 1046 * that page was dirty, the buffers are set dirty also. 1047 */ 1048 static int 1049 grow_buffers(struct block_device *bdev, sector_t block, int size) 1050 { 1051 struct page *page; 1052 pgoff_t index; 1053 int sizebits; 1054 1055 sizebits = -1; 1056 do { 1057 sizebits++; 1058 } while ((size << sizebits) < PAGE_SIZE); 1059 1060 index = block >> sizebits; 1061 1062 /* 1063 * Check for a block which wants to lie outside our maximum possible 1064 * pagecache index. (this comparison is done using sector_t types). 1065 */ 1066 if (unlikely(index != block >> sizebits)) { 1067 char b[BDEVNAME_SIZE]; 1068 1069 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1070 "device %s\n", 1071 __func__, (unsigned long long)block, 1072 bdevname(bdev, b)); 1073 return -EIO; 1074 } 1075 block = index << sizebits; 1076 /* Create a page with the proper size buffers.. */ 1077 page = grow_dev_page(bdev, block, index, size); 1078 if (!page) 1079 return 0; 1080 unlock_page(page); 1081 page_cache_release(page); 1082 return 1; 1083 } 1084 1085 static struct buffer_head * 1086 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1087 { 1088 /* Size must be multiple of hard sectorsize */ 1089 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1090 (size < 512 || size > PAGE_SIZE))) { 1091 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1092 size); 1093 printk(KERN_ERR "logical block size: %d\n", 1094 bdev_logical_block_size(bdev)); 1095 1096 dump_stack(); 1097 return NULL; 1098 } 1099 1100 for (;;) { 1101 struct buffer_head * bh; 1102 int ret; 1103 1104 bh = __find_get_block(bdev, block, size); 1105 if (bh) 1106 return bh; 1107 1108 ret = grow_buffers(bdev, block, size); 1109 if (ret < 0) 1110 return NULL; 1111 if (ret == 0) 1112 free_more_memory(); 1113 } 1114 } 1115 1116 /* 1117 * The relationship between dirty buffers and dirty pages: 1118 * 1119 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1120 * the page is tagged dirty in its radix tree. 1121 * 1122 * At all times, the dirtiness of the buffers represents the dirtiness of 1123 * subsections of the page. If the page has buffers, the page dirty bit is 1124 * merely a hint about the true dirty state. 1125 * 1126 * When a page is set dirty in its entirety, all its buffers are marked dirty 1127 * (if the page has buffers). 1128 * 1129 * When a buffer is marked dirty, its page is dirtied, but the page's other 1130 * buffers are not. 1131 * 1132 * Also. When blockdev buffers are explicitly read with bread(), they 1133 * individually become uptodate. But their backing page remains not 1134 * uptodate - even if all of its buffers are uptodate. A subsequent 1135 * block_read_full_page() against that page will discover all the uptodate 1136 * buffers, will set the page uptodate and will perform no I/O. 1137 */ 1138 1139 /** 1140 * mark_buffer_dirty - mark a buffer_head as needing writeout 1141 * @bh: the buffer_head to mark dirty 1142 * 1143 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1144 * backing page dirty, then tag the page as dirty in its address_space's radix 1145 * tree and then attach the address_space's inode to its superblock's dirty 1146 * inode list. 1147 * 1148 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1149 * mapping->tree_lock and mapping->host->i_lock. 1150 */ 1151 void mark_buffer_dirty(struct buffer_head *bh) 1152 { 1153 WARN_ON_ONCE(!buffer_uptodate(bh)); 1154 1155 /* 1156 * Very *carefully* optimize the it-is-already-dirty case. 1157 * 1158 * Don't let the final "is it dirty" escape to before we 1159 * perhaps modified the buffer. 1160 */ 1161 if (buffer_dirty(bh)) { 1162 smp_mb(); 1163 if (buffer_dirty(bh)) 1164 return; 1165 } 1166 1167 if (!test_set_buffer_dirty(bh)) { 1168 struct page *page = bh->b_page; 1169 if (!TestSetPageDirty(page)) { 1170 struct address_space *mapping = page_mapping(page); 1171 if (mapping) 1172 __set_page_dirty(page, mapping, 0); 1173 } 1174 } 1175 } 1176 EXPORT_SYMBOL(mark_buffer_dirty); 1177 1178 /* 1179 * Decrement a buffer_head's reference count. If all buffers against a page 1180 * have zero reference count, are clean and unlocked, and if the page is clean 1181 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1182 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1183 * a page but it ends up not being freed, and buffers may later be reattached). 1184 */ 1185 void __brelse(struct buffer_head * buf) 1186 { 1187 if (atomic_read(&buf->b_count)) { 1188 put_bh(buf); 1189 return; 1190 } 1191 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1192 } 1193 EXPORT_SYMBOL(__brelse); 1194 1195 /* 1196 * bforget() is like brelse(), except it discards any 1197 * potentially dirty data. 1198 */ 1199 void __bforget(struct buffer_head *bh) 1200 { 1201 clear_buffer_dirty(bh); 1202 if (bh->b_assoc_map) { 1203 struct address_space *buffer_mapping = bh->b_page->mapping; 1204 1205 spin_lock(&buffer_mapping->private_lock); 1206 list_del_init(&bh->b_assoc_buffers); 1207 bh->b_assoc_map = NULL; 1208 spin_unlock(&buffer_mapping->private_lock); 1209 } 1210 __brelse(bh); 1211 } 1212 EXPORT_SYMBOL(__bforget); 1213 1214 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1215 { 1216 lock_buffer(bh); 1217 if (buffer_uptodate(bh)) { 1218 unlock_buffer(bh); 1219 return bh; 1220 } else { 1221 get_bh(bh); 1222 bh->b_end_io = end_buffer_read_sync; 1223 submit_bh(READ, bh); 1224 wait_on_buffer(bh); 1225 if (buffer_uptodate(bh)) 1226 return bh; 1227 } 1228 brelse(bh); 1229 return NULL; 1230 } 1231 1232 /* 1233 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1234 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1235 * refcount elevated by one when they're in an LRU. A buffer can only appear 1236 * once in a particular CPU's LRU. A single buffer can be present in multiple 1237 * CPU's LRUs at the same time. 1238 * 1239 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1240 * sb_find_get_block(). 1241 * 1242 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1243 * a local interrupt disable for that. 1244 */ 1245 1246 #define BH_LRU_SIZE 8 1247 1248 struct bh_lru { 1249 struct buffer_head *bhs[BH_LRU_SIZE]; 1250 }; 1251 1252 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1253 1254 #ifdef CONFIG_SMP 1255 #define bh_lru_lock() local_irq_disable() 1256 #define bh_lru_unlock() local_irq_enable() 1257 #else 1258 #define bh_lru_lock() preempt_disable() 1259 #define bh_lru_unlock() preempt_enable() 1260 #endif 1261 1262 static inline void check_irqs_on(void) 1263 { 1264 #ifdef irqs_disabled 1265 BUG_ON(irqs_disabled()); 1266 #endif 1267 } 1268 1269 /* 1270 * The LRU management algorithm is dopey-but-simple. Sorry. 1271 */ 1272 static void bh_lru_install(struct buffer_head *bh) 1273 { 1274 struct buffer_head *evictee = NULL; 1275 1276 check_irqs_on(); 1277 bh_lru_lock(); 1278 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1279 struct buffer_head *bhs[BH_LRU_SIZE]; 1280 int in; 1281 int out = 0; 1282 1283 get_bh(bh); 1284 bhs[out++] = bh; 1285 for (in = 0; in < BH_LRU_SIZE; in++) { 1286 struct buffer_head *bh2 = 1287 __this_cpu_read(bh_lrus.bhs[in]); 1288 1289 if (bh2 == bh) { 1290 __brelse(bh2); 1291 } else { 1292 if (out >= BH_LRU_SIZE) { 1293 BUG_ON(evictee != NULL); 1294 evictee = bh2; 1295 } else { 1296 bhs[out++] = bh2; 1297 } 1298 } 1299 } 1300 while (out < BH_LRU_SIZE) 1301 bhs[out++] = NULL; 1302 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1303 } 1304 bh_lru_unlock(); 1305 1306 if (evictee) 1307 __brelse(evictee); 1308 } 1309 1310 /* 1311 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1312 */ 1313 static struct buffer_head * 1314 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1315 { 1316 struct buffer_head *ret = NULL; 1317 unsigned int i; 1318 1319 check_irqs_on(); 1320 bh_lru_lock(); 1321 for (i = 0; i < BH_LRU_SIZE; i++) { 1322 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1323 1324 if (bh && bh->b_bdev == bdev && 1325 bh->b_blocknr == block && bh->b_size == size) { 1326 if (i) { 1327 while (i) { 1328 __this_cpu_write(bh_lrus.bhs[i], 1329 __this_cpu_read(bh_lrus.bhs[i - 1])); 1330 i--; 1331 } 1332 __this_cpu_write(bh_lrus.bhs[0], bh); 1333 } 1334 get_bh(bh); 1335 ret = bh; 1336 break; 1337 } 1338 } 1339 bh_lru_unlock(); 1340 return ret; 1341 } 1342 1343 /* 1344 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1345 * it in the LRU and mark it as accessed. If it is not present then return 1346 * NULL 1347 */ 1348 struct buffer_head * 1349 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1350 { 1351 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1352 1353 if (bh == NULL) { 1354 bh = __find_get_block_slow(bdev, block); 1355 if (bh) 1356 bh_lru_install(bh); 1357 } 1358 if (bh) 1359 touch_buffer(bh); 1360 return bh; 1361 } 1362 EXPORT_SYMBOL(__find_get_block); 1363 1364 /* 1365 * __getblk will locate (and, if necessary, create) the buffer_head 1366 * which corresponds to the passed block_device, block and size. The 1367 * returned buffer has its reference count incremented. 1368 * 1369 * __getblk() cannot fail - it just keeps trying. If you pass it an 1370 * illegal block number, __getblk() will happily return a buffer_head 1371 * which represents the non-existent block. Very weird. 1372 * 1373 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1374 * attempt is failing. FIXME, perhaps? 1375 */ 1376 struct buffer_head * 1377 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1378 { 1379 struct buffer_head *bh = __find_get_block(bdev, block, size); 1380 1381 might_sleep(); 1382 if (bh == NULL) 1383 bh = __getblk_slow(bdev, block, size); 1384 return bh; 1385 } 1386 EXPORT_SYMBOL(__getblk); 1387 1388 /* 1389 * Do async read-ahead on a buffer.. 1390 */ 1391 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1392 { 1393 struct buffer_head *bh = __getblk(bdev, block, size); 1394 if (likely(bh)) { 1395 ll_rw_block(READA, 1, &bh); 1396 brelse(bh); 1397 } 1398 } 1399 EXPORT_SYMBOL(__breadahead); 1400 1401 /** 1402 * __bread() - reads a specified block and returns the bh 1403 * @bdev: the block_device to read from 1404 * @block: number of block 1405 * @size: size (in bytes) to read 1406 * 1407 * Reads a specified block, and returns buffer head that contains it. 1408 * It returns NULL if the block was unreadable. 1409 */ 1410 struct buffer_head * 1411 __bread(struct block_device *bdev, sector_t block, unsigned size) 1412 { 1413 struct buffer_head *bh = __getblk(bdev, block, size); 1414 1415 if (likely(bh) && !buffer_uptodate(bh)) 1416 bh = __bread_slow(bh); 1417 return bh; 1418 } 1419 EXPORT_SYMBOL(__bread); 1420 1421 /* 1422 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1423 * This doesn't race because it runs in each cpu either in irq 1424 * or with preempt disabled. 1425 */ 1426 static void invalidate_bh_lru(void *arg) 1427 { 1428 struct bh_lru *b = &get_cpu_var(bh_lrus); 1429 int i; 1430 1431 for (i = 0; i < BH_LRU_SIZE; i++) { 1432 brelse(b->bhs[i]); 1433 b->bhs[i] = NULL; 1434 } 1435 put_cpu_var(bh_lrus); 1436 } 1437 1438 void invalidate_bh_lrus(void) 1439 { 1440 on_each_cpu(invalidate_bh_lru, NULL, 1); 1441 } 1442 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1443 1444 void set_bh_page(struct buffer_head *bh, 1445 struct page *page, unsigned long offset) 1446 { 1447 bh->b_page = page; 1448 BUG_ON(offset >= PAGE_SIZE); 1449 if (PageHighMem(page)) 1450 /* 1451 * This catches illegal uses and preserves the offset: 1452 */ 1453 bh->b_data = (char *)(0 + offset); 1454 else 1455 bh->b_data = page_address(page) + offset; 1456 } 1457 EXPORT_SYMBOL(set_bh_page); 1458 1459 /* 1460 * Called when truncating a buffer on a page completely. 1461 */ 1462 static void discard_buffer(struct buffer_head * bh) 1463 { 1464 lock_buffer(bh); 1465 clear_buffer_dirty(bh); 1466 bh->b_bdev = NULL; 1467 clear_buffer_mapped(bh); 1468 clear_buffer_req(bh); 1469 clear_buffer_new(bh); 1470 clear_buffer_delay(bh); 1471 clear_buffer_unwritten(bh); 1472 unlock_buffer(bh); 1473 } 1474 1475 /** 1476 * block_invalidatepage - invalidate part or all of a buffer-backed page 1477 * 1478 * @page: the page which is affected 1479 * @offset: the index of the truncation point 1480 * 1481 * block_invalidatepage() is called when all or part of the page has become 1482 * invalidated by a truncate operation. 1483 * 1484 * block_invalidatepage() does not have to release all buffers, but it must 1485 * ensure that no dirty buffer is left outside @offset and that no I/O 1486 * is underway against any of the blocks which are outside the truncation 1487 * point. Because the caller is about to free (and possibly reuse) those 1488 * blocks on-disk. 1489 */ 1490 void block_invalidatepage(struct page *page, unsigned long offset) 1491 { 1492 struct buffer_head *head, *bh, *next; 1493 unsigned int curr_off = 0; 1494 1495 BUG_ON(!PageLocked(page)); 1496 if (!page_has_buffers(page)) 1497 goto out; 1498 1499 head = page_buffers(page); 1500 bh = head; 1501 do { 1502 unsigned int next_off = curr_off + bh->b_size; 1503 next = bh->b_this_page; 1504 1505 /* 1506 * is this block fully invalidated? 1507 */ 1508 if (offset <= curr_off) 1509 discard_buffer(bh); 1510 curr_off = next_off; 1511 bh = next; 1512 } while (bh != head); 1513 1514 /* 1515 * We release buffers only if the entire page is being invalidated. 1516 * The get_block cached value has been unconditionally invalidated, 1517 * so real IO is not possible anymore. 1518 */ 1519 if (offset == 0) 1520 try_to_release_page(page, 0); 1521 out: 1522 return; 1523 } 1524 EXPORT_SYMBOL(block_invalidatepage); 1525 1526 /* 1527 * We attach and possibly dirty the buffers atomically wrt 1528 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1529 * is already excluded via the page lock. 1530 */ 1531 void create_empty_buffers(struct page *page, 1532 unsigned long blocksize, unsigned long b_state) 1533 { 1534 struct buffer_head *bh, *head, *tail; 1535 1536 head = alloc_page_buffers(page, blocksize, 1); 1537 bh = head; 1538 do { 1539 bh->b_state |= b_state; 1540 tail = bh; 1541 bh = bh->b_this_page; 1542 } while (bh); 1543 tail->b_this_page = head; 1544 1545 spin_lock(&page->mapping->private_lock); 1546 if (PageUptodate(page) || PageDirty(page)) { 1547 bh = head; 1548 do { 1549 if (PageDirty(page)) 1550 set_buffer_dirty(bh); 1551 if (PageUptodate(page)) 1552 set_buffer_uptodate(bh); 1553 bh = bh->b_this_page; 1554 } while (bh != head); 1555 } 1556 attach_page_buffers(page, head); 1557 spin_unlock(&page->mapping->private_lock); 1558 } 1559 EXPORT_SYMBOL(create_empty_buffers); 1560 1561 /* 1562 * We are taking a block for data and we don't want any output from any 1563 * buffer-cache aliases starting from return from that function and 1564 * until the moment when something will explicitly mark the buffer 1565 * dirty (hopefully that will not happen until we will free that block ;-) 1566 * We don't even need to mark it not-uptodate - nobody can expect 1567 * anything from a newly allocated buffer anyway. We used to used 1568 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1569 * don't want to mark the alias unmapped, for example - it would confuse 1570 * anyone who might pick it with bread() afterwards... 1571 * 1572 * Also.. Note that bforget() doesn't lock the buffer. So there can 1573 * be writeout I/O going on against recently-freed buffers. We don't 1574 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1575 * only if we really need to. That happens here. 1576 */ 1577 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1578 { 1579 struct buffer_head *old_bh; 1580 1581 might_sleep(); 1582 1583 old_bh = __find_get_block_slow(bdev, block); 1584 if (old_bh) { 1585 clear_buffer_dirty(old_bh); 1586 wait_on_buffer(old_bh); 1587 clear_buffer_req(old_bh); 1588 __brelse(old_bh); 1589 } 1590 } 1591 EXPORT_SYMBOL(unmap_underlying_metadata); 1592 1593 /* 1594 * NOTE! All mapped/uptodate combinations are valid: 1595 * 1596 * Mapped Uptodate Meaning 1597 * 1598 * No No "unknown" - must do get_block() 1599 * No Yes "hole" - zero-filled 1600 * Yes No "allocated" - allocated on disk, not read in 1601 * Yes Yes "valid" - allocated and up-to-date in memory. 1602 * 1603 * "Dirty" is valid only with the last case (mapped+uptodate). 1604 */ 1605 1606 /* 1607 * While block_write_full_page is writing back the dirty buffers under 1608 * the page lock, whoever dirtied the buffers may decide to clean them 1609 * again at any time. We handle that by only looking at the buffer 1610 * state inside lock_buffer(). 1611 * 1612 * If block_write_full_page() is called for regular writeback 1613 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1614 * locked buffer. This only can happen if someone has written the buffer 1615 * directly, with submit_bh(). At the address_space level PageWriteback 1616 * prevents this contention from occurring. 1617 * 1618 * If block_write_full_page() is called with wbc->sync_mode == 1619 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1620 * causes the writes to be flagged as synchronous writes. 1621 */ 1622 static int __block_write_full_page(struct inode *inode, struct page *page, 1623 get_block_t *get_block, struct writeback_control *wbc, 1624 bh_end_io_t *handler) 1625 { 1626 int err; 1627 sector_t block; 1628 sector_t last_block; 1629 struct buffer_head *bh, *head; 1630 const unsigned blocksize = 1 << inode->i_blkbits; 1631 int nr_underway = 0; 1632 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1633 WRITE_SYNC : WRITE); 1634 1635 BUG_ON(!PageLocked(page)); 1636 1637 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1638 1639 if (!page_has_buffers(page)) { 1640 create_empty_buffers(page, blocksize, 1641 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1642 } 1643 1644 /* 1645 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1646 * here, and the (potentially unmapped) buffers may become dirty at 1647 * any time. If a buffer becomes dirty here after we've inspected it 1648 * then we just miss that fact, and the page stays dirty. 1649 * 1650 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1651 * handle that here by just cleaning them. 1652 */ 1653 1654 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1655 head = page_buffers(page); 1656 bh = head; 1657 1658 /* 1659 * Get all the dirty buffers mapped to disk addresses and 1660 * handle any aliases from the underlying blockdev's mapping. 1661 */ 1662 do { 1663 if (block > last_block) { 1664 /* 1665 * mapped buffers outside i_size will occur, because 1666 * this page can be outside i_size when there is a 1667 * truncate in progress. 1668 */ 1669 /* 1670 * The buffer was zeroed by block_write_full_page() 1671 */ 1672 clear_buffer_dirty(bh); 1673 set_buffer_uptodate(bh); 1674 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1675 buffer_dirty(bh)) { 1676 WARN_ON(bh->b_size != blocksize); 1677 err = get_block(inode, block, bh, 1); 1678 if (err) 1679 goto recover; 1680 clear_buffer_delay(bh); 1681 if (buffer_new(bh)) { 1682 /* blockdev mappings never come here */ 1683 clear_buffer_new(bh); 1684 unmap_underlying_metadata(bh->b_bdev, 1685 bh->b_blocknr); 1686 } 1687 } 1688 bh = bh->b_this_page; 1689 block++; 1690 } while (bh != head); 1691 1692 do { 1693 if (!buffer_mapped(bh)) 1694 continue; 1695 /* 1696 * If it's a fully non-blocking write attempt and we cannot 1697 * lock the buffer then redirty the page. Note that this can 1698 * potentially cause a busy-wait loop from writeback threads 1699 * and kswapd activity, but those code paths have their own 1700 * higher-level throttling. 1701 */ 1702 if (wbc->sync_mode != WB_SYNC_NONE) { 1703 lock_buffer(bh); 1704 } else if (!trylock_buffer(bh)) { 1705 redirty_page_for_writepage(wbc, page); 1706 continue; 1707 } 1708 if (test_clear_buffer_dirty(bh)) { 1709 mark_buffer_async_write_endio(bh, handler); 1710 } else { 1711 unlock_buffer(bh); 1712 } 1713 } while ((bh = bh->b_this_page) != head); 1714 1715 /* 1716 * The page and its buffers are protected by PageWriteback(), so we can 1717 * drop the bh refcounts early. 1718 */ 1719 BUG_ON(PageWriteback(page)); 1720 set_page_writeback(page); 1721 1722 do { 1723 struct buffer_head *next = bh->b_this_page; 1724 if (buffer_async_write(bh)) { 1725 submit_bh(write_op, bh); 1726 nr_underway++; 1727 } 1728 bh = next; 1729 } while (bh != head); 1730 unlock_page(page); 1731 1732 err = 0; 1733 done: 1734 if (nr_underway == 0) { 1735 /* 1736 * The page was marked dirty, but the buffers were 1737 * clean. Someone wrote them back by hand with 1738 * ll_rw_block/submit_bh. A rare case. 1739 */ 1740 end_page_writeback(page); 1741 1742 /* 1743 * The page and buffer_heads can be released at any time from 1744 * here on. 1745 */ 1746 } 1747 return err; 1748 1749 recover: 1750 /* 1751 * ENOSPC, or some other error. We may already have added some 1752 * blocks to the file, so we need to write these out to avoid 1753 * exposing stale data. 1754 * The page is currently locked and not marked for writeback 1755 */ 1756 bh = head; 1757 /* Recovery: lock and submit the mapped buffers */ 1758 do { 1759 if (buffer_mapped(bh) && buffer_dirty(bh) && 1760 !buffer_delay(bh)) { 1761 lock_buffer(bh); 1762 mark_buffer_async_write_endio(bh, handler); 1763 } else { 1764 /* 1765 * The buffer may have been set dirty during 1766 * attachment to a dirty page. 1767 */ 1768 clear_buffer_dirty(bh); 1769 } 1770 } while ((bh = bh->b_this_page) != head); 1771 SetPageError(page); 1772 BUG_ON(PageWriteback(page)); 1773 mapping_set_error(page->mapping, err); 1774 set_page_writeback(page); 1775 do { 1776 struct buffer_head *next = bh->b_this_page; 1777 if (buffer_async_write(bh)) { 1778 clear_buffer_dirty(bh); 1779 submit_bh(write_op, bh); 1780 nr_underway++; 1781 } 1782 bh = next; 1783 } while (bh != head); 1784 unlock_page(page); 1785 goto done; 1786 } 1787 1788 /* 1789 * If a page has any new buffers, zero them out here, and mark them uptodate 1790 * and dirty so they'll be written out (in order to prevent uninitialised 1791 * block data from leaking). And clear the new bit. 1792 */ 1793 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1794 { 1795 unsigned int block_start, block_end; 1796 struct buffer_head *head, *bh; 1797 1798 BUG_ON(!PageLocked(page)); 1799 if (!page_has_buffers(page)) 1800 return; 1801 1802 bh = head = page_buffers(page); 1803 block_start = 0; 1804 do { 1805 block_end = block_start + bh->b_size; 1806 1807 if (buffer_new(bh)) { 1808 if (block_end > from && block_start < to) { 1809 if (!PageUptodate(page)) { 1810 unsigned start, size; 1811 1812 start = max(from, block_start); 1813 size = min(to, block_end) - start; 1814 1815 zero_user(page, start, size); 1816 set_buffer_uptodate(bh); 1817 } 1818 1819 clear_buffer_new(bh); 1820 mark_buffer_dirty(bh); 1821 } 1822 } 1823 1824 block_start = block_end; 1825 bh = bh->b_this_page; 1826 } while (bh != head); 1827 } 1828 EXPORT_SYMBOL(page_zero_new_buffers); 1829 1830 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1831 get_block_t *get_block) 1832 { 1833 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1834 unsigned to = from + len; 1835 struct inode *inode = page->mapping->host; 1836 unsigned block_start, block_end; 1837 sector_t block; 1838 int err = 0; 1839 unsigned blocksize, bbits; 1840 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1841 1842 BUG_ON(!PageLocked(page)); 1843 BUG_ON(from > PAGE_CACHE_SIZE); 1844 BUG_ON(to > PAGE_CACHE_SIZE); 1845 BUG_ON(from > to); 1846 1847 blocksize = 1 << inode->i_blkbits; 1848 if (!page_has_buffers(page)) 1849 create_empty_buffers(page, blocksize, 0); 1850 head = page_buffers(page); 1851 1852 bbits = inode->i_blkbits; 1853 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1854 1855 for(bh = head, block_start = 0; bh != head || !block_start; 1856 block++, block_start=block_end, bh = bh->b_this_page) { 1857 block_end = block_start + blocksize; 1858 if (block_end <= from || block_start >= to) { 1859 if (PageUptodate(page)) { 1860 if (!buffer_uptodate(bh)) 1861 set_buffer_uptodate(bh); 1862 } 1863 continue; 1864 } 1865 if (buffer_new(bh)) 1866 clear_buffer_new(bh); 1867 if (!buffer_mapped(bh)) { 1868 WARN_ON(bh->b_size != blocksize); 1869 err = get_block(inode, block, bh, 1); 1870 if (err) 1871 break; 1872 if (buffer_new(bh)) { 1873 unmap_underlying_metadata(bh->b_bdev, 1874 bh->b_blocknr); 1875 if (PageUptodate(page)) { 1876 clear_buffer_new(bh); 1877 set_buffer_uptodate(bh); 1878 mark_buffer_dirty(bh); 1879 continue; 1880 } 1881 if (block_end > to || block_start < from) 1882 zero_user_segments(page, 1883 to, block_end, 1884 block_start, from); 1885 continue; 1886 } 1887 } 1888 if (PageUptodate(page)) { 1889 if (!buffer_uptodate(bh)) 1890 set_buffer_uptodate(bh); 1891 continue; 1892 } 1893 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1894 !buffer_unwritten(bh) && 1895 (block_start < from || block_end > to)) { 1896 ll_rw_block(READ, 1, &bh); 1897 *wait_bh++=bh; 1898 } 1899 } 1900 /* 1901 * If we issued read requests - let them complete. 1902 */ 1903 while(wait_bh > wait) { 1904 wait_on_buffer(*--wait_bh); 1905 if (!buffer_uptodate(*wait_bh)) 1906 err = -EIO; 1907 } 1908 if (unlikely(err)) 1909 page_zero_new_buffers(page, from, to); 1910 return err; 1911 } 1912 EXPORT_SYMBOL(__block_write_begin); 1913 1914 static int __block_commit_write(struct inode *inode, struct page *page, 1915 unsigned from, unsigned to) 1916 { 1917 unsigned block_start, block_end; 1918 int partial = 0; 1919 unsigned blocksize; 1920 struct buffer_head *bh, *head; 1921 1922 blocksize = 1 << inode->i_blkbits; 1923 1924 for(bh = head = page_buffers(page), block_start = 0; 1925 bh != head || !block_start; 1926 block_start=block_end, bh = bh->b_this_page) { 1927 block_end = block_start + blocksize; 1928 if (block_end <= from || block_start >= to) { 1929 if (!buffer_uptodate(bh)) 1930 partial = 1; 1931 } else { 1932 set_buffer_uptodate(bh); 1933 mark_buffer_dirty(bh); 1934 } 1935 clear_buffer_new(bh); 1936 } 1937 1938 /* 1939 * If this is a partial write which happened to make all buffers 1940 * uptodate then we can optimize away a bogus readpage() for 1941 * the next read(). Here we 'discover' whether the page went 1942 * uptodate as a result of this (potentially partial) write. 1943 */ 1944 if (!partial) 1945 SetPageUptodate(page); 1946 return 0; 1947 } 1948 1949 /* 1950 * block_write_begin takes care of the basic task of block allocation and 1951 * bringing partial write blocks uptodate first. 1952 * 1953 * The filesystem needs to handle block truncation upon failure. 1954 */ 1955 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 1956 unsigned flags, struct page **pagep, get_block_t *get_block) 1957 { 1958 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1959 struct page *page; 1960 int status; 1961 1962 page = grab_cache_page_write_begin(mapping, index, flags); 1963 if (!page) 1964 return -ENOMEM; 1965 1966 status = __block_write_begin(page, pos, len, get_block); 1967 if (unlikely(status)) { 1968 unlock_page(page); 1969 page_cache_release(page); 1970 page = NULL; 1971 } 1972 1973 *pagep = page; 1974 return status; 1975 } 1976 EXPORT_SYMBOL(block_write_begin); 1977 1978 int block_write_end(struct file *file, struct address_space *mapping, 1979 loff_t pos, unsigned len, unsigned copied, 1980 struct page *page, void *fsdata) 1981 { 1982 struct inode *inode = mapping->host; 1983 unsigned start; 1984 1985 start = pos & (PAGE_CACHE_SIZE - 1); 1986 1987 if (unlikely(copied < len)) { 1988 /* 1989 * The buffers that were written will now be uptodate, so we 1990 * don't have to worry about a readpage reading them and 1991 * overwriting a partial write. However if we have encountered 1992 * a short write and only partially written into a buffer, it 1993 * will not be marked uptodate, so a readpage might come in and 1994 * destroy our partial write. 1995 * 1996 * Do the simplest thing, and just treat any short write to a 1997 * non uptodate page as a zero-length write, and force the 1998 * caller to redo the whole thing. 1999 */ 2000 if (!PageUptodate(page)) 2001 copied = 0; 2002 2003 page_zero_new_buffers(page, start+copied, start+len); 2004 } 2005 flush_dcache_page(page); 2006 2007 /* This could be a short (even 0-length) commit */ 2008 __block_commit_write(inode, page, start, start+copied); 2009 2010 return copied; 2011 } 2012 EXPORT_SYMBOL(block_write_end); 2013 2014 int generic_write_end(struct file *file, struct address_space *mapping, 2015 loff_t pos, unsigned len, unsigned copied, 2016 struct page *page, void *fsdata) 2017 { 2018 struct inode *inode = mapping->host; 2019 int i_size_changed = 0; 2020 2021 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2022 2023 /* 2024 * No need to use i_size_read() here, the i_size 2025 * cannot change under us because we hold i_mutex. 2026 * 2027 * But it's important to update i_size while still holding page lock: 2028 * page writeout could otherwise come in and zero beyond i_size. 2029 */ 2030 if (pos+copied > inode->i_size) { 2031 i_size_write(inode, pos+copied); 2032 i_size_changed = 1; 2033 } 2034 2035 unlock_page(page); 2036 page_cache_release(page); 2037 2038 /* 2039 * Don't mark the inode dirty under page lock. First, it unnecessarily 2040 * makes the holding time of page lock longer. Second, it forces lock 2041 * ordering of page lock and transaction start for journaling 2042 * filesystems. 2043 */ 2044 if (i_size_changed) 2045 mark_inode_dirty(inode); 2046 2047 return copied; 2048 } 2049 EXPORT_SYMBOL(generic_write_end); 2050 2051 /* 2052 * block_is_partially_uptodate checks whether buffers within a page are 2053 * uptodate or not. 2054 * 2055 * Returns true if all buffers which correspond to a file portion 2056 * we want to read are uptodate. 2057 */ 2058 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2059 unsigned long from) 2060 { 2061 struct inode *inode = page->mapping->host; 2062 unsigned block_start, block_end, blocksize; 2063 unsigned to; 2064 struct buffer_head *bh, *head; 2065 int ret = 1; 2066 2067 if (!page_has_buffers(page)) 2068 return 0; 2069 2070 blocksize = 1 << inode->i_blkbits; 2071 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2072 to = from + to; 2073 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2074 return 0; 2075 2076 head = page_buffers(page); 2077 bh = head; 2078 block_start = 0; 2079 do { 2080 block_end = block_start + blocksize; 2081 if (block_end > from && block_start < to) { 2082 if (!buffer_uptodate(bh)) { 2083 ret = 0; 2084 break; 2085 } 2086 if (block_end >= to) 2087 break; 2088 } 2089 block_start = block_end; 2090 bh = bh->b_this_page; 2091 } while (bh != head); 2092 2093 return ret; 2094 } 2095 EXPORT_SYMBOL(block_is_partially_uptodate); 2096 2097 /* 2098 * Generic "read page" function for block devices that have the normal 2099 * get_block functionality. This is most of the block device filesystems. 2100 * Reads the page asynchronously --- the unlock_buffer() and 2101 * set/clear_buffer_uptodate() functions propagate buffer state into the 2102 * page struct once IO has completed. 2103 */ 2104 int block_read_full_page(struct page *page, get_block_t *get_block) 2105 { 2106 struct inode *inode = page->mapping->host; 2107 sector_t iblock, lblock; 2108 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2109 unsigned int blocksize; 2110 int nr, i; 2111 int fully_mapped = 1; 2112 2113 BUG_ON(!PageLocked(page)); 2114 blocksize = 1 << inode->i_blkbits; 2115 if (!page_has_buffers(page)) 2116 create_empty_buffers(page, blocksize, 0); 2117 head = page_buffers(page); 2118 2119 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2120 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2121 bh = head; 2122 nr = 0; 2123 i = 0; 2124 2125 do { 2126 if (buffer_uptodate(bh)) 2127 continue; 2128 2129 if (!buffer_mapped(bh)) { 2130 int err = 0; 2131 2132 fully_mapped = 0; 2133 if (iblock < lblock) { 2134 WARN_ON(bh->b_size != blocksize); 2135 err = get_block(inode, iblock, bh, 0); 2136 if (err) 2137 SetPageError(page); 2138 } 2139 if (!buffer_mapped(bh)) { 2140 zero_user(page, i * blocksize, blocksize); 2141 if (!err) 2142 set_buffer_uptodate(bh); 2143 continue; 2144 } 2145 /* 2146 * get_block() might have updated the buffer 2147 * synchronously 2148 */ 2149 if (buffer_uptodate(bh)) 2150 continue; 2151 } 2152 arr[nr++] = bh; 2153 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2154 2155 if (fully_mapped) 2156 SetPageMappedToDisk(page); 2157 2158 if (!nr) { 2159 /* 2160 * All buffers are uptodate - we can set the page uptodate 2161 * as well. But not if get_block() returned an error. 2162 */ 2163 if (!PageError(page)) 2164 SetPageUptodate(page); 2165 unlock_page(page); 2166 return 0; 2167 } 2168 2169 /* Stage two: lock the buffers */ 2170 for (i = 0; i < nr; i++) { 2171 bh = arr[i]; 2172 lock_buffer(bh); 2173 mark_buffer_async_read(bh); 2174 } 2175 2176 /* 2177 * Stage 3: start the IO. Check for uptodateness 2178 * inside the buffer lock in case another process reading 2179 * the underlying blockdev brought it uptodate (the sct fix). 2180 */ 2181 for (i = 0; i < nr; i++) { 2182 bh = arr[i]; 2183 if (buffer_uptodate(bh)) 2184 end_buffer_async_read(bh, 1); 2185 else 2186 submit_bh(READ, bh); 2187 } 2188 return 0; 2189 } 2190 EXPORT_SYMBOL(block_read_full_page); 2191 2192 /* utility function for filesystems that need to do work on expanding 2193 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2194 * deal with the hole. 2195 */ 2196 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2197 { 2198 struct address_space *mapping = inode->i_mapping; 2199 struct page *page; 2200 void *fsdata; 2201 int err; 2202 2203 err = inode_newsize_ok(inode, size); 2204 if (err) 2205 goto out; 2206 2207 err = pagecache_write_begin(NULL, mapping, size, 0, 2208 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2209 &page, &fsdata); 2210 if (err) 2211 goto out; 2212 2213 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2214 BUG_ON(err > 0); 2215 2216 out: 2217 return err; 2218 } 2219 EXPORT_SYMBOL(generic_cont_expand_simple); 2220 2221 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2222 loff_t pos, loff_t *bytes) 2223 { 2224 struct inode *inode = mapping->host; 2225 unsigned blocksize = 1 << inode->i_blkbits; 2226 struct page *page; 2227 void *fsdata; 2228 pgoff_t index, curidx; 2229 loff_t curpos; 2230 unsigned zerofrom, offset, len; 2231 int err = 0; 2232 2233 index = pos >> PAGE_CACHE_SHIFT; 2234 offset = pos & ~PAGE_CACHE_MASK; 2235 2236 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2237 zerofrom = curpos & ~PAGE_CACHE_MASK; 2238 if (zerofrom & (blocksize-1)) { 2239 *bytes |= (blocksize-1); 2240 (*bytes)++; 2241 } 2242 len = PAGE_CACHE_SIZE - zerofrom; 2243 2244 err = pagecache_write_begin(file, mapping, curpos, len, 2245 AOP_FLAG_UNINTERRUPTIBLE, 2246 &page, &fsdata); 2247 if (err) 2248 goto out; 2249 zero_user(page, zerofrom, len); 2250 err = pagecache_write_end(file, mapping, curpos, len, len, 2251 page, fsdata); 2252 if (err < 0) 2253 goto out; 2254 BUG_ON(err != len); 2255 err = 0; 2256 2257 balance_dirty_pages_ratelimited(mapping); 2258 } 2259 2260 /* page covers the boundary, find the boundary offset */ 2261 if (index == curidx) { 2262 zerofrom = curpos & ~PAGE_CACHE_MASK; 2263 /* if we will expand the thing last block will be filled */ 2264 if (offset <= zerofrom) { 2265 goto out; 2266 } 2267 if (zerofrom & (blocksize-1)) { 2268 *bytes |= (blocksize-1); 2269 (*bytes)++; 2270 } 2271 len = offset - zerofrom; 2272 2273 err = pagecache_write_begin(file, mapping, curpos, len, 2274 AOP_FLAG_UNINTERRUPTIBLE, 2275 &page, &fsdata); 2276 if (err) 2277 goto out; 2278 zero_user(page, zerofrom, len); 2279 err = pagecache_write_end(file, mapping, curpos, len, len, 2280 page, fsdata); 2281 if (err < 0) 2282 goto out; 2283 BUG_ON(err != len); 2284 err = 0; 2285 } 2286 out: 2287 return err; 2288 } 2289 2290 /* 2291 * For moronic filesystems that do not allow holes in file. 2292 * We may have to extend the file. 2293 */ 2294 int cont_write_begin(struct file *file, struct address_space *mapping, 2295 loff_t pos, unsigned len, unsigned flags, 2296 struct page **pagep, void **fsdata, 2297 get_block_t *get_block, loff_t *bytes) 2298 { 2299 struct inode *inode = mapping->host; 2300 unsigned blocksize = 1 << inode->i_blkbits; 2301 unsigned zerofrom; 2302 int err; 2303 2304 err = cont_expand_zero(file, mapping, pos, bytes); 2305 if (err) 2306 return err; 2307 2308 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2309 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2310 *bytes |= (blocksize-1); 2311 (*bytes)++; 2312 } 2313 2314 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2315 } 2316 EXPORT_SYMBOL(cont_write_begin); 2317 2318 int block_commit_write(struct page *page, unsigned from, unsigned to) 2319 { 2320 struct inode *inode = page->mapping->host; 2321 __block_commit_write(inode,page,from,to); 2322 return 0; 2323 } 2324 EXPORT_SYMBOL(block_commit_write); 2325 2326 /* 2327 * block_page_mkwrite() is not allowed to change the file size as it gets 2328 * called from a page fault handler when a page is first dirtied. Hence we must 2329 * be careful to check for EOF conditions here. We set the page up correctly 2330 * for a written page which means we get ENOSPC checking when writing into 2331 * holes and correct delalloc and unwritten extent mapping on filesystems that 2332 * support these features. 2333 * 2334 * We are not allowed to take the i_mutex here so we have to play games to 2335 * protect against truncate races as the page could now be beyond EOF. Because 2336 * truncate writes the inode size before removing pages, once we have the 2337 * page lock we can determine safely if the page is beyond EOF. If it is not 2338 * beyond EOF, then the page is guaranteed safe against truncation until we 2339 * unlock the page. 2340 * 2341 * Direct callers of this function should call vfs_check_frozen() so that page 2342 * fault does not busyloop until the fs is thawed. 2343 */ 2344 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2345 get_block_t get_block) 2346 { 2347 struct page *page = vmf->page; 2348 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2349 unsigned long end; 2350 loff_t size; 2351 int ret; 2352 2353 lock_page(page); 2354 size = i_size_read(inode); 2355 if ((page->mapping != inode->i_mapping) || 2356 (page_offset(page) > size)) { 2357 /* We overload EFAULT to mean page got truncated */ 2358 ret = -EFAULT; 2359 goto out_unlock; 2360 } 2361 2362 /* page is wholly or partially inside EOF */ 2363 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2364 end = size & ~PAGE_CACHE_MASK; 2365 else 2366 end = PAGE_CACHE_SIZE; 2367 2368 ret = __block_write_begin(page, 0, end, get_block); 2369 if (!ret) 2370 ret = block_commit_write(page, 0, end); 2371 2372 if (unlikely(ret < 0)) 2373 goto out_unlock; 2374 /* 2375 * Freezing in progress? We check after the page is marked dirty and 2376 * with page lock held so if the test here fails, we are sure freezing 2377 * code will wait during syncing until the page fault is done - at that 2378 * point page will be dirty and unlocked so freezing code will write it 2379 * and writeprotect it again. 2380 */ 2381 set_page_dirty(page); 2382 if (inode->i_sb->s_frozen != SB_UNFROZEN) { 2383 ret = -EAGAIN; 2384 goto out_unlock; 2385 } 2386 wait_on_page_writeback(page); 2387 return 0; 2388 out_unlock: 2389 unlock_page(page); 2390 return ret; 2391 } 2392 EXPORT_SYMBOL(__block_page_mkwrite); 2393 2394 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2395 get_block_t get_block) 2396 { 2397 int ret; 2398 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb; 2399 2400 /* 2401 * This check is racy but catches the common case. The check in 2402 * __block_page_mkwrite() is reliable. 2403 */ 2404 vfs_check_frozen(sb, SB_FREEZE_WRITE); 2405 ret = __block_page_mkwrite(vma, vmf, get_block); 2406 return block_page_mkwrite_return(ret); 2407 } 2408 EXPORT_SYMBOL(block_page_mkwrite); 2409 2410 /* 2411 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2412 * immediately, while under the page lock. So it needs a special end_io 2413 * handler which does not touch the bh after unlocking it. 2414 */ 2415 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2416 { 2417 __end_buffer_read_notouch(bh, uptodate); 2418 } 2419 2420 /* 2421 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2422 * the page (converting it to circular linked list and taking care of page 2423 * dirty races). 2424 */ 2425 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2426 { 2427 struct buffer_head *bh; 2428 2429 BUG_ON(!PageLocked(page)); 2430 2431 spin_lock(&page->mapping->private_lock); 2432 bh = head; 2433 do { 2434 if (PageDirty(page)) 2435 set_buffer_dirty(bh); 2436 if (!bh->b_this_page) 2437 bh->b_this_page = head; 2438 bh = bh->b_this_page; 2439 } while (bh != head); 2440 attach_page_buffers(page, head); 2441 spin_unlock(&page->mapping->private_lock); 2442 } 2443 2444 /* 2445 * On entry, the page is fully not uptodate. 2446 * On exit the page is fully uptodate in the areas outside (from,to) 2447 * The filesystem needs to handle block truncation upon failure. 2448 */ 2449 int nobh_write_begin(struct address_space *mapping, 2450 loff_t pos, unsigned len, unsigned flags, 2451 struct page **pagep, void **fsdata, 2452 get_block_t *get_block) 2453 { 2454 struct inode *inode = mapping->host; 2455 const unsigned blkbits = inode->i_blkbits; 2456 const unsigned blocksize = 1 << blkbits; 2457 struct buffer_head *head, *bh; 2458 struct page *page; 2459 pgoff_t index; 2460 unsigned from, to; 2461 unsigned block_in_page; 2462 unsigned block_start, block_end; 2463 sector_t block_in_file; 2464 int nr_reads = 0; 2465 int ret = 0; 2466 int is_mapped_to_disk = 1; 2467 2468 index = pos >> PAGE_CACHE_SHIFT; 2469 from = pos & (PAGE_CACHE_SIZE - 1); 2470 to = from + len; 2471 2472 page = grab_cache_page_write_begin(mapping, index, flags); 2473 if (!page) 2474 return -ENOMEM; 2475 *pagep = page; 2476 *fsdata = NULL; 2477 2478 if (page_has_buffers(page)) { 2479 ret = __block_write_begin(page, pos, len, get_block); 2480 if (unlikely(ret)) 2481 goto out_release; 2482 return ret; 2483 } 2484 2485 if (PageMappedToDisk(page)) 2486 return 0; 2487 2488 /* 2489 * Allocate buffers so that we can keep track of state, and potentially 2490 * attach them to the page if an error occurs. In the common case of 2491 * no error, they will just be freed again without ever being attached 2492 * to the page (which is all OK, because we're under the page lock). 2493 * 2494 * Be careful: the buffer linked list is a NULL terminated one, rather 2495 * than the circular one we're used to. 2496 */ 2497 head = alloc_page_buffers(page, blocksize, 0); 2498 if (!head) { 2499 ret = -ENOMEM; 2500 goto out_release; 2501 } 2502 2503 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2504 2505 /* 2506 * We loop across all blocks in the page, whether or not they are 2507 * part of the affected region. This is so we can discover if the 2508 * page is fully mapped-to-disk. 2509 */ 2510 for (block_start = 0, block_in_page = 0, bh = head; 2511 block_start < PAGE_CACHE_SIZE; 2512 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2513 int create; 2514 2515 block_end = block_start + blocksize; 2516 bh->b_state = 0; 2517 create = 1; 2518 if (block_start >= to) 2519 create = 0; 2520 ret = get_block(inode, block_in_file + block_in_page, 2521 bh, create); 2522 if (ret) 2523 goto failed; 2524 if (!buffer_mapped(bh)) 2525 is_mapped_to_disk = 0; 2526 if (buffer_new(bh)) 2527 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2528 if (PageUptodate(page)) { 2529 set_buffer_uptodate(bh); 2530 continue; 2531 } 2532 if (buffer_new(bh) || !buffer_mapped(bh)) { 2533 zero_user_segments(page, block_start, from, 2534 to, block_end); 2535 continue; 2536 } 2537 if (buffer_uptodate(bh)) 2538 continue; /* reiserfs does this */ 2539 if (block_start < from || block_end > to) { 2540 lock_buffer(bh); 2541 bh->b_end_io = end_buffer_read_nobh; 2542 submit_bh(READ, bh); 2543 nr_reads++; 2544 } 2545 } 2546 2547 if (nr_reads) { 2548 /* 2549 * The page is locked, so these buffers are protected from 2550 * any VM or truncate activity. Hence we don't need to care 2551 * for the buffer_head refcounts. 2552 */ 2553 for (bh = head; bh; bh = bh->b_this_page) { 2554 wait_on_buffer(bh); 2555 if (!buffer_uptodate(bh)) 2556 ret = -EIO; 2557 } 2558 if (ret) 2559 goto failed; 2560 } 2561 2562 if (is_mapped_to_disk) 2563 SetPageMappedToDisk(page); 2564 2565 *fsdata = head; /* to be released by nobh_write_end */ 2566 2567 return 0; 2568 2569 failed: 2570 BUG_ON(!ret); 2571 /* 2572 * Error recovery is a bit difficult. We need to zero out blocks that 2573 * were newly allocated, and dirty them to ensure they get written out. 2574 * Buffers need to be attached to the page at this point, otherwise 2575 * the handling of potential IO errors during writeout would be hard 2576 * (could try doing synchronous writeout, but what if that fails too?) 2577 */ 2578 attach_nobh_buffers(page, head); 2579 page_zero_new_buffers(page, from, to); 2580 2581 out_release: 2582 unlock_page(page); 2583 page_cache_release(page); 2584 *pagep = NULL; 2585 2586 return ret; 2587 } 2588 EXPORT_SYMBOL(nobh_write_begin); 2589 2590 int nobh_write_end(struct file *file, struct address_space *mapping, 2591 loff_t pos, unsigned len, unsigned copied, 2592 struct page *page, void *fsdata) 2593 { 2594 struct inode *inode = page->mapping->host; 2595 struct buffer_head *head = fsdata; 2596 struct buffer_head *bh; 2597 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2598 2599 if (unlikely(copied < len) && head) 2600 attach_nobh_buffers(page, head); 2601 if (page_has_buffers(page)) 2602 return generic_write_end(file, mapping, pos, len, 2603 copied, page, fsdata); 2604 2605 SetPageUptodate(page); 2606 set_page_dirty(page); 2607 if (pos+copied > inode->i_size) { 2608 i_size_write(inode, pos+copied); 2609 mark_inode_dirty(inode); 2610 } 2611 2612 unlock_page(page); 2613 page_cache_release(page); 2614 2615 while (head) { 2616 bh = head; 2617 head = head->b_this_page; 2618 free_buffer_head(bh); 2619 } 2620 2621 return copied; 2622 } 2623 EXPORT_SYMBOL(nobh_write_end); 2624 2625 /* 2626 * nobh_writepage() - based on block_full_write_page() except 2627 * that it tries to operate without attaching bufferheads to 2628 * the page. 2629 */ 2630 int nobh_writepage(struct page *page, get_block_t *get_block, 2631 struct writeback_control *wbc) 2632 { 2633 struct inode * const inode = page->mapping->host; 2634 loff_t i_size = i_size_read(inode); 2635 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2636 unsigned offset; 2637 int ret; 2638 2639 /* Is the page fully inside i_size? */ 2640 if (page->index < end_index) 2641 goto out; 2642 2643 /* Is the page fully outside i_size? (truncate in progress) */ 2644 offset = i_size & (PAGE_CACHE_SIZE-1); 2645 if (page->index >= end_index+1 || !offset) { 2646 /* 2647 * The page may have dirty, unmapped buffers. For example, 2648 * they may have been added in ext3_writepage(). Make them 2649 * freeable here, so the page does not leak. 2650 */ 2651 #if 0 2652 /* Not really sure about this - do we need this ? */ 2653 if (page->mapping->a_ops->invalidatepage) 2654 page->mapping->a_ops->invalidatepage(page, offset); 2655 #endif 2656 unlock_page(page); 2657 return 0; /* don't care */ 2658 } 2659 2660 /* 2661 * The page straddles i_size. It must be zeroed out on each and every 2662 * writepage invocation because it may be mmapped. "A file is mapped 2663 * in multiples of the page size. For a file that is not a multiple of 2664 * the page size, the remaining memory is zeroed when mapped, and 2665 * writes to that region are not written out to the file." 2666 */ 2667 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2668 out: 2669 ret = mpage_writepage(page, get_block, wbc); 2670 if (ret == -EAGAIN) 2671 ret = __block_write_full_page(inode, page, get_block, wbc, 2672 end_buffer_async_write); 2673 return ret; 2674 } 2675 EXPORT_SYMBOL(nobh_writepage); 2676 2677 int nobh_truncate_page(struct address_space *mapping, 2678 loff_t from, get_block_t *get_block) 2679 { 2680 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2681 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2682 unsigned blocksize; 2683 sector_t iblock; 2684 unsigned length, pos; 2685 struct inode *inode = mapping->host; 2686 struct page *page; 2687 struct buffer_head map_bh; 2688 int err; 2689 2690 blocksize = 1 << inode->i_blkbits; 2691 length = offset & (blocksize - 1); 2692 2693 /* Block boundary? Nothing to do */ 2694 if (!length) 2695 return 0; 2696 2697 length = blocksize - length; 2698 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2699 2700 page = grab_cache_page(mapping, index); 2701 err = -ENOMEM; 2702 if (!page) 2703 goto out; 2704 2705 if (page_has_buffers(page)) { 2706 has_buffers: 2707 unlock_page(page); 2708 page_cache_release(page); 2709 return block_truncate_page(mapping, from, get_block); 2710 } 2711 2712 /* Find the buffer that contains "offset" */ 2713 pos = blocksize; 2714 while (offset >= pos) { 2715 iblock++; 2716 pos += blocksize; 2717 } 2718 2719 map_bh.b_size = blocksize; 2720 map_bh.b_state = 0; 2721 err = get_block(inode, iblock, &map_bh, 0); 2722 if (err) 2723 goto unlock; 2724 /* unmapped? It's a hole - nothing to do */ 2725 if (!buffer_mapped(&map_bh)) 2726 goto unlock; 2727 2728 /* Ok, it's mapped. Make sure it's up-to-date */ 2729 if (!PageUptodate(page)) { 2730 err = mapping->a_ops->readpage(NULL, page); 2731 if (err) { 2732 page_cache_release(page); 2733 goto out; 2734 } 2735 lock_page(page); 2736 if (!PageUptodate(page)) { 2737 err = -EIO; 2738 goto unlock; 2739 } 2740 if (page_has_buffers(page)) 2741 goto has_buffers; 2742 } 2743 zero_user(page, offset, length); 2744 set_page_dirty(page); 2745 err = 0; 2746 2747 unlock: 2748 unlock_page(page); 2749 page_cache_release(page); 2750 out: 2751 return err; 2752 } 2753 EXPORT_SYMBOL(nobh_truncate_page); 2754 2755 int block_truncate_page(struct address_space *mapping, 2756 loff_t from, get_block_t *get_block) 2757 { 2758 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2759 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2760 unsigned blocksize; 2761 sector_t iblock; 2762 unsigned length, pos; 2763 struct inode *inode = mapping->host; 2764 struct page *page; 2765 struct buffer_head *bh; 2766 int err; 2767 2768 blocksize = 1 << inode->i_blkbits; 2769 length = offset & (blocksize - 1); 2770 2771 /* Block boundary? Nothing to do */ 2772 if (!length) 2773 return 0; 2774 2775 length = blocksize - length; 2776 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2777 2778 page = grab_cache_page(mapping, index); 2779 err = -ENOMEM; 2780 if (!page) 2781 goto out; 2782 2783 if (!page_has_buffers(page)) 2784 create_empty_buffers(page, blocksize, 0); 2785 2786 /* Find the buffer that contains "offset" */ 2787 bh = page_buffers(page); 2788 pos = blocksize; 2789 while (offset >= pos) { 2790 bh = bh->b_this_page; 2791 iblock++; 2792 pos += blocksize; 2793 } 2794 2795 err = 0; 2796 if (!buffer_mapped(bh)) { 2797 WARN_ON(bh->b_size != blocksize); 2798 err = get_block(inode, iblock, bh, 0); 2799 if (err) 2800 goto unlock; 2801 /* unmapped? It's a hole - nothing to do */ 2802 if (!buffer_mapped(bh)) 2803 goto unlock; 2804 } 2805 2806 /* Ok, it's mapped. Make sure it's up-to-date */ 2807 if (PageUptodate(page)) 2808 set_buffer_uptodate(bh); 2809 2810 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2811 err = -EIO; 2812 ll_rw_block(READ, 1, &bh); 2813 wait_on_buffer(bh); 2814 /* Uhhuh. Read error. Complain and punt. */ 2815 if (!buffer_uptodate(bh)) 2816 goto unlock; 2817 } 2818 2819 zero_user(page, offset, length); 2820 mark_buffer_dirty(bh); 2821 err = 0; 2822 2823 unlock: 2824 unlock_page(page); 2825 page_cache_release(page); 2826 out: 2827 return err; 2828 } 2829 EXPORT_SYMBOL(block_truncate_page); 2830 2831 /* 2832 * The generic ->writepage function for buffer-backed address_spaces 2833 * this form passes in the end_io handler used to finish the IO. 2834 */ 2835 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2836 struct writeback_control *wbc, bh_end_io_t *handler) 2837 { 2838 struct inode * const inode = page->mapping->host; 2839 loff_t i_size = i_size_read(inode); 2840 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2841 unsigned offset; 2842 2843 /* Is the page fully inside i_size? */ 2844 if (page->index < end_index) 2845 return __block_write_full_page(inode, page, get_block, wbc, 2846 handler); 2847 2848 /* Is the page fully outside i_size? (truncate in progress) */ 2849 offset = i_size & (PAGE_CACHE_SIZE-1); 2850 if (page->index >= end_index+1 || !offset) { 2851 /* 2852 * The page may have dirty, unmapped buffers. For example, 2853 * they may have been added in ext3_writepage(). Make them 2854 * freeable here, so the page does not leak. 2855 */ 2856 do_invalidatepage(page, 0); 2857 unlock_page(page); 2858 return 0; /* don't care */ 2859 } 2860 2861 /* 2862 * The page straddles i_size. It must be zeroed out on each and every 2863 * writepage invocation because it may be mmapped. "A file is mapped 2864 * in multiples of the page size. For a file that is not a multiple of 2865 * the page size, the remaining memory is zeroed when mapped, and 2866 * writes to that region are not written out to the file." 2867 */ 2868 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2869 return __block_write_full_page(inode, page, get_block, wbc, handler); 2870 } 2871 EXPORT_SYMBOL(block_write_full_page_endio); 2872 2873 /* 2874 * The generic ->writepage function for buffer-backed address_spaces 2875 */ 2876 int block_write_full_page(struct page *page, get_block_t *get_block, 2877 struct writeback_control *wbc) 2878 { 2879 return block_write_full_page_endio(page, get_block, wbc, 2880 end_buffer_async_write); 2881 } 2882 EXPORT_SYMBOL(block_write_full_page); 2883 2884 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2885 get_block_t *get_block) 2886 { 2887 struct buffer_head tmp; 2888 struct inode *inode = mapping->host; 2889 tmp.b_state = 0; 2890 tmp.b_blocknr = 0; 2891 tmp.b_size = 1 << inode->i_blkbits; 2892 get_block(inode, block, &tmp, 0); 2893 return tmp.b_blocknr; 2894 } 2895 EXPORT_SYMBOL(generic_block_bmap); 2896 2897 static void end_bio_bh_io_sync(struct bio *bio, int err) 2898 { 2899 struct buffer_head *bh = bio->bi_private; 2900 2901 if (err == -EOPNOTSUPP) { 2902 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2903 } 2904 2905 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2906 set_bit(BH_Quiet, &bh->b_state); 2907 2908 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2909 bio_put(bio); 2910 } 2911 2912 int submit_bh(int rw, struct buffer_head * bh) 2913 { 2914 struct bio *bio; 2915 int ret = 0; 2916 2917 BUG_ON(!buffer_locked(bh)); 2918 BUG_ON(!buffer_mapped(bh)); 2919 BUG_ON(!bh->b_end_io); 2920 BUG_ON(buffer_delay(bh)); 2921 BUG_ON(buffer_unwritten(bh)); 2922 2923 /* 2924 * Only clear out a write error when rewriting 2925 */ 2926 if (test_set_buffer_req(bh) && (rw & WRITE)) 2927 clear_buffer_write_io_error(bh); 2928 2929 /* 2930 * from here on down, it's all bio -- do the initial mapping, 2931 * submit_bio -> generic_make_request may further map this bio around 2932 */ 2933 bio = bio_alloc(GFP_NOIO, 1); 2934 2935 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2936 bio->bi_bdev = bh->b_bdev; 2937 bio->bi_io_vec[0].bv_page = bh->b_page; 2938 bio->bi_io_vec[0].bv_len = bh->b_size; 2939 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2940 2941 bio->bi_vcnt = 1; 2942 bio->bi_idx = 0; 2943 bio->bi_size = bh->b_size; 2944 2945 bio->bi_end_io = end_bio_bh_io_sync; 2946 bio->bi_private = bh; 2947 2948 bio_get(bio); 2949 submit_bio(rw, bio); 2950 2951 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2952 ret = -EOPNOTSUPP; 2953 2954 bio_put(bio); 2955 return ret; 2956 } 2957 EXPORT_SYMBOL(submit_bh); 2958 2959 /** 2960 * ll_rw_block: low-level access to block devices (DEPRECATED) 2961 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 2962 * @nr: number of &struct buffer_heads in the array 2963 * @bhs: array of pointers to &struct buffer_head 2964 * 2965 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2966 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2967 * %READA option is described in the documentation for generic_make_request() 2968 * which ll_rw_block() calls. 2969 * 2970 * This function drops any buffer that it cannot get a lock on (with the 2971 * BH_Lock state bit), any buffer that appears to be clean when doing a write 2972 * request, and any buffer that appears to be up-to-date when doing read 2973 * request. Further it marks as clean buffers that are processed for 2974 * writing (the buffer cache won't assume that they are actually clean 2975 * until the buffer gets unlocked). 2976 * 2977 * ll_rw_block sets b_end_io to simple completion handler that marks 2978 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2979 * any waiters. 2980 * 2981 * All of the buffers must be for the same device, and must also be a 2982 * multiple of the current approved size for the device. 2983 */ 2984 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2985 { 2986 int i; 2987 2988 for (i = 0; i < nr; i++) { 2989 struct buffer_head *bh = bhs[i]; 2990 2991 if (!trylock_buffer(bh)) 2992 continue; 2993 if (rw == WRITE) { 2994 if (test_clear_buffer_dirty(bh)) { 2995 bh->b_end_io = end_buffer_write_sync; 2996 get_bh(bh); 2997 submit_bh(WRITE, bh); 2998 continue; 2999 } 3000 } else { 3001 if (!buffer_uptodate(bh)) { 3002 bh->b_end_io = end_buffer_read_sync; 3003 get_bh(bh); 3004 submit_bh(rw, bh); 3005 continue; 3006 } 3007 } 3008 unlock_buffer(bh); 3009 } 3010 } 3011 EXPORT_SYMBOL(ll_rw_block); 3012 3013 void write_dirty_buffer(struct buffer_head *bh, int rw) 3014 { 3015 lock_buffer(bh); 3016 if (!test_clear_buffer_dirty(bh)) { 3017 unlock_buffer(bh); 3018 return; 3019 } 3020 bh->b_end_io = end_buffer_write_sync; 3021 get_bh(bh); 3022 submit_bh(rw, bh); 3023 } 3024 EXPORT_SYMBOL(write_dirty_buffer); 3025 3026 /* 3027 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3028 * and then start new I/O and then wait upon it. The caller must have a ref on 3029 * the buffer_head. 3030 */ 3031 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3032 { 3033 int ret = 0; 3034 3035 WARN_ON(atomic_read(&bh->b_count) < 1); 3036 lock_buffer(bh); 3037 if (test_clear_buffer_dirty(bh)) { 3038 get_bh(bh); 3039 bh->b_end_io = end_buffer_write_sync; 3040 ret = submit_bh(rw, bh); 3041 wait_on_buffer(bh); 3042 if (!ret && !buffer_uptodate(bh)) 3043 ret = -EIO; 3044 } else { 3045 unlock_buffer(bh); 3046 } 3047 return ret; 3048 } 3049 EXPORT_SYMBOL(__sync_dirty_buffer); 3050 3051 int sync_dirty_buffer(struct buffer_head *bh) 3052 { 3053 return __sync_dirty_buffer(bh, WRITE_SYNC); 3054 } 3055 EXPORT_SYMBOL(sync_dirty_buffer); 3056 3057 /* 3058 * try_to_free_buffers() checks if all the buffers on this particular page 3059 * are unused, and releases them if so. 3060 * 3061 * Exclusion against try_to_free_buffers may be obtained by either 3062 * locking the page or by holding its mapping's private_lock. 3063 * 3064 * If the page is dirty but all the buffers are clean then we need to 3065 * be sure to mark the page clean as well. This is because the page 3066 * may be against a block device, and a later reattachment of buffers 3067 * to a dirty page will set *all* buffers dirty. Which would corrupt 3068 * filesystem data on the same device. 3069 * 3070 * The same applies to regular filesystem pages: if all the buffers are 3071 * clean then we set the page clean and proceed. To do that, we require 3072 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3073 * private_lock. 3074 * 3075 * try_to_free_buffers() is non-blocking. 3076 */ 3077 static inline int buffer_busy(struct buffer_head *bh) 3078 { 3079 return atomic_read(&bh->b_count) | 3080 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3081 } 3082 3083 static int 3084 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3085 { 3086 struct buffer_head *head = page_buffers(page); 3087 struct buffer_head *bh; 3088 3089 bh = head; 3090 do { 3091 if (buffer_write_io_error(bh) && page->mapping) 3092 set_bit(AS_EIO, &page->mapping->flags); 3093 if (buffer_busy(bh)) 3094 goto failed; 3095 bh = bh->b_this_page; 3096 } while (bh != head); 3097 3098 do { 3099 struct buffer_head *next = bh->b_this_page; 3100 3101 if (bh->b_assoc_map) 3102 __remove_assoc_queue(bh); 3103 bh = next; 3104 } while (bh != head); 3105 *buffers_to_free = head; 3106 __clear_page_buffers(page); 3107 return 1; 3108 failed: 3109 return 0; 3110 } 3111 3112 int try_to_free_buffers(struct page *page) 3113 { 3114 struct address_space * const mapping = page->mapping; 3115 struct buffer_head *buffers_to_free = NULL; 3116 int ret = 0; 3117 3118 BUG_ON(!PageLocked(page)); 3119 if (PageWriteback(page)) 3120 return 0; 3121 3122 if (mapping == NULL) { /* can this still happen? */ 3123 ret = drop_buffers(page, &buffers_to_free); 3124 goto out; 3125 } 3126 3127 spin_lock(&mapping->private_lock); 3128 ret = drop_buffers(page, &buffers_to_free); 3129 3130 /* 3131 * If the filesystem writes its buffers by hand (eg ext3) 3132 * then we can have clean buffers against a dirty page. We 3133 * clean the page here; otherwise the VM will never notice 3134 * that the filesystem did any IO at all. 3135 * 3136 * Also, during truncate, discard_buffer will have marked all 3137 * the page's buffers clean. We discover that here and clean 3138 * the page also. 3139 * 3140 * private_lock must be held over this entire operation in order 3141 * to synchronise against __set_page_dirty_buffers and prevent the 3142 * dirty bit from being lost. 3143 */ 3144 if (ret) 3145 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3146 spin_unlock(&mapping->private_lock); 3147 out: 3148 if (buffers_to_free) { 3149 struct buffer_head *bh = buffers_to_free; 3150 3151 do { 3152 struct buffer_head *next = bh->b_this_page; 3153 free_buffer_head(bh); 3154 bh = next; 3155 } while (bh != buffers_to_free); 3156 } 3157 return ret; 3158 } 3159 EXPORT_SYMBOL(try_to_free_buffers); 3160 3161 /* 3162 * There are no bdflush tunables left. But distributions are 3163 * still running obsolete flush daemons, so we terminate them here. 3164 * 3165 * Use of bdflush() is deprecated and will be removed in a future kernel. 3166 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3167 */ 3168 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3169 { 3170 static int msg_count; 3171 3172 if (!capable(CAP_SYS_ADMIN)) 3173 return -EPERM; 3174 3175 if (msg_count < 5) { 3176 msg_count++; 3177 printk(KERN_INFO 3178 "warning: process `%s' used the obsolete bdflush" 3179 " system call\n", current->comm); 3180 printk(KERN_INFO "Fix your initscripts?\n"); 3181 } 3182 3183 if (func == 1) 3184 do_exit(0); 3185 return 0; 3186 } 3187 3188 /* 3189 * Buffer-head allocation 3190 */ 3191 static struct kmem_cache *bh_cachep; 3192 3193 /* 3194 * Once the number of bh's in the machine exceeds this level, we start 3195 * stripping them in writeback. 3196 */ 3197 static int max_buffer_heads; 3198 3199 int buffer_heads_over_limit; 3200 3201 struct bh_accounting { 3202 int nr; /* Number of live bh's */ 3203 int ratelimit; /* Limit cacheline bouncing */ 3204 }; 3205 3206 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3207 3208 static void recalc_bh_state(void) 3209 { 3210 int i; 3211 int tot = 0; 3212 3213 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3214 return; 3215 __this_cpu_write(bh_accounting.ratelimit, 0); 3216 for_each_online_cpu(i) 3217 tot += per_cpu(bh_accounting, i).nr; 3218 buffer_heads_over_limit = (tot > max_buffer_heads); 3219 } 3220 3221 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3222 { 3223 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3224 if (ret) { 3225 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3226 preempt_disable(); 3227 __this_cpu_inc(bh_accounting.nr); 3228 recalc_bh_state(); 3229 preempt_enable(); 3230 } 3231 return ret; 3232 } 3233 EXPORT_SYMBOL(alloc_buffer_head); 3234 3235 void free_buffer_head(struct buffer_head *bh) 3236 { 3237 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3238 kmem_cache_free(bh_cachep, bh); 3239 preempt_disable(); 3240 __this_cpu_dec(bh_accounting.nr); 3241 recalc_bh_state(); 3242 preempt_enable(); 3243 } 3244 EXPORT_SYMBOL(free_buffer_head); 3245 3246 static void buffer_exit_cpu(int cpu) 3247 { 3248 int i; 3249 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3250 3251 for (i = 0; i < BH_LRU_SIZE; i++) { 3252 brelse(b->bhs[i]); 3253 b->bhs[i] = NULL; 3254 } 3255 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3256 per_cpu(bh_accounting, cpu).nr = 0; 3257 } 3258 3259 static int buffer_cpu_notify(struct notifier_block *self, 3260 unsigned long action, void *hcpu) 3261 { 3262 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3263 buffer_exit_cpu((unsigned long)hcpu); 3264 return NOTIFY_OK; 3265 } 3266 3267 /** 3268 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3269 * @bh: struct buffer_head 3270 * 3271 * Return true if the buffer is up-to-date and false, 3272 * with the buffer locked, if not. 3273 */ 3274 int bh_uptodate_or_lock(struct buffer_head *bh) 3275 { 3276 if (!buffer_uptodate(bh)) { 3277 lock_buffer(bh); 3278 if (!buffer_uptodate(bh)) 3279 return 0; 3280 unlock_buffer(bh); 3281 } 3282 return 1; 3283 } 3284 EXPORT_SYMBOL(bh_uptodate_or_lock); 3285 3286 /** 3287 * bh_submit_read - Submit a locked buffer for reading 3288 * @bh: struct buffer_head 3289 * 3290 * Returns zero on success and -EIO on error. 3291 */ 3292 int bh_submit_read(struct buffer_head *bh) 3293 { 3294 BUG_ON(!buffer_locked(bh)); 3295 3296 if (buffer_uptodate(bh)) { 3297 unlock_buffer(bh); 3298 return 0; 3299 } 3300 3301 get_bh(bh); 3302 bh->b_end_io = end_buffer_read_sync; 3303 submit_bh(READ, bh); 3304 wait_on_buffer(bh); 3305 if (buffer_uptodate(bh)) 3306 return 0; 3307 return -EIO; 3308 } 3309 EXPORT_SYMBOL(bh_submit_read); 3310 3311 void __init buffer_init(void) 3312 { 3313 int nrpages; 3314 3315 bh_cachep = kmem_cache_create("buffer_head", 3316 sizeof(struct buffer_head), 0, 3317 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3318 SLAB_MEM_SPREAD), 3319 NULL); 3320 3321 /* 3322 * Limit the bh occupancy to 10% of ZONE_NORMAL 3323 */ 3324 nrpages = (nr_free_buffer_pages() * 10) / 100; 3325 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3326 hotcpu_notifier(buffer_cpu_notify, 0); 3327 } 3328