1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/module.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 56 static int sync_buffer(void *word) 57 { 58 struct block_device *bd; 59 struct buffer_head *bh 60 = container_of(word, struct buffer_head, b_state); 61 62 smp_mb(); 63 bd = bh->b_bdev; 64 if (bd) 65 blk_run_address_space(bd->bd_inode->i_mapping); 66 io_schedule(); 67 return 0; 68 } 69 70 void __lock_buffer(struct buffer_head *bh) 71 { 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 73 TASK_UNINTERRUPTIBLE); 74 } 75 EXPORT_SYMBOL(__lock_buffer); 76 77 void unlock_buffer(struct buffer_head *bh) 78 { 79 clear_bit_unlock(BH_Lock, &bh->b_state); 80 smp_mb__after_clear_bit(); 81 wake_up_bit(&bh->b_state, BH_Lock); 82 } 83 84 /* 85 * Block until a buffer comes unlocked. This doesn't stop it 86 * from becoming locked again - you have to lock it yourself 87 * if you want to preserve its state. 88 */ 89 void __wait_on_buffer(struct buffer_head * bh) 90 { 91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 92 } 93 94 static void 95 __clear_page_buffers(struct page *page) 96 { 97 ClearPagePrivate(page); 98 set_page_private(page, 0); 99 page_cache_release(page); 100 } 101 102 103 static int quiet_error(struct buffer_head *bh) 104 { 105 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 106 return 0; 107 return 1; 108 } 109 110 111 static void buffer_io_error(struct buffer_head *bh) 112 { 113 char b[BDEVNAME_SIZE]; 114 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 115 bdevname(bh->b_bdev, b), 116 (unsigned long long)bh->b_blocknr); 117 } 118 119 /* 120 * End-of-IO handler helper function which does not touch the bh after 121 * unlocking it. 122 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 123 * a race there is benign: unlock_buffer() only use the bh's address for 124 * hashing after unlocking the buffer, so it doesn't actually touch the bh 125 * itself. 126 */ 127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 128 { 129 if (uptodate) { 130 set_buffer_uptodate(bh); 131 } else { 132 /* This happens, due to failed READA attempts. */ 133 clear_buffer_uptodate(bh); 134 } 135 unlock_buffer(bh); 136 } 137 138 /* 139 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 140 * unlock the buffer. This is what ll_rw_block uses too. 141 */ 142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 143 { 144 __end_buffer_read_notouch(bh, uptodate); 145 put_bh(bh); 146 } 147 148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 149 { 150 char b[BDEVNAME_SIZE]; 151 152 if (uptodate) { 153 set_buffer_uptodate(bh); 154 } else { 155 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) { 156 buffer_io_error(bh); 157 printk(KERN_WARNING "lost page write due to " 158 "I/O error on %s\n", 159 bdevname(bh->b_bdev, b)); 160 } 161 set_buffer_write_io_error(bh); 162 clear_buffer_uptodate(bh); 163 } 164 unlock_buffer(bh); 165 put_bh(bh); 166 } 167 168 /* 169 * Various filesystems appear to want __find_get_block to be non-blocking. 170 * But it's the page lock which protects the buffers. To get around this, 171 * we get exclusion from try_to_free_buffers with the blockdev mapping's 172 * private_lock. 173 * 174 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 175 * may be quite high. This code could TryLock the page, and if that 176 * succeeds, there is no need to take private_lock. (But if 177 * private_lock is contended then so is mapping->tree_lock). 178 */ 179 static struct buffer_head * 180 __find_get_block_slow(struct block_device *bdev, sector_t block) 181 { 182 struct inode *bd_inode = bdev->bd_inode; 183 struct address_space *bd_mapping = bd_inode->i_mapping; 184 struct buffer_head *ret = NULL; 185 pgoff_t index; 186 struct buffer_head *bh; 187 struct buffer_head *head; 188 struct page *page; 189 int all_mapped = 1; 190 191 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 192 page = find_get_page(bd_mapping, index); 193 if (!page) 194 goto out; 195 196 spin_lock(&bd_mapping->private_lock); 197 if (!page_has_buffers(page)) 198 goto out_unlock; 199 head = page_buffers(page); 200 bh = head; 201 do { 202 if (bh->b_blocknr == block) { 203 ret = bh; 204 get_bh(bh); 205 goto out_unlock; 206 } 207 if (!buffer_mapped(bh)) 208 all_mapped = 0; 209 bh = bh->b_this_page; 210 } while (bh != head); 211 212 /* we might be here because some of the buffers on this page are 213 * not mapped. This is due to various races between 214 * file io on the block device and getblk. It gets dealt with 215 * elsewhere, don't buffer_error if we had some unmapped buffers 216 */ 217 if (all_mapped) { 218 printk("__find_get_block_slow() failed. " 219 "block=%llu, b_blocknr=%llu\n", 220 (unsigned long long)block, 221 (unsigned long long)bh->b_blocknr); 222 printk("b_state=0x%08lx, b_size=%zu\n", 223 bh->b_state, bh->b_size); 224 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 225 } 226 out_unlock: 227 spin_unlock(&bd_mapping->private_lock); 228 page_cache_release(page); 229 out: 230 return ret; 231 } 232 233 /* If invalidate_buffers() will trash dirty buffers, it means some kind 234 of fs corruption is going on. Trashing dirty data always imply losing 235 information that was supposed to be just stored on the physical layer 236 by the user. 237 238 Thus invalidate_buffers in general usage is not allwowed to trash 239 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 240 be preserved. These buffers are simply skipped. 241 242 We also skip buffers which are still in use. For example this can 243 happen if a userspace program is reading the block device. 244 245 NOTE: In the case where the user removed a removable-media-disk even if 246 there's still dirty data not synced on disk (due a bug in the device driver 247 or due an error of the user), by not destroying the dirty buffers we could 248 generate corruption also on the next media inserted, thus a parameter is 249 necessary to handle this case in the most safe way possible (trying 250 to not corrupt also the new disk inserted with the data belonging to 251 the old now corrupted disk). Also for the ramdisk the natural thing 252 to do in order to release the ramdisk memory is to destroy dirty buffers. 253 254 These are two special cases. Normal usage imply the device driver 255 to issue a sync on the device (without waiting I/O completion) and 256 then an invalidate_buffers call that doesn't trash dirty buffers. 257 258 For handling cache coherency with the blkdev pagecache the 'update' case 259 is been introduced. It is needed to re-read from disk any pinned 260 buffer. NOTE: re-reading from disk is destructive so we can do it only 261 when we assume nobody is changing the buffercache under our I/O and when 262 we think the disk contains more recent information than the buffercache. 263 The update == 1 pass marks the buffers we need to update, the update == 2 264 pass does the actual I/O. */ 265 void invalidate_bdev(struct block_device *bdev) 266 { 267 struct address_space *mapping = bdev->bd_inode->i_mapping; 268 269 if (mapping->nrpages == 0) 270 return; 271 272 invalidate_bh_lrus(); 273 invalidate_mapping_pages(mapping, 0, -1); 274 } 275 276 /* 277 * Kick pdflush then try to free up some ZONE_NORMAL memory. 278 */ 279 static void free_more_memory(void) 280 { 281 struct zone *zone; 282 int nid; 283 284 wakeup_pdflush(1024); 285 yield(); 286 287 for_each_online_node(nid) { 288 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 289 gfp_zone(GFP_NOFS), NULL, 290 &zone); 291 if (zone) 292 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 293 GFP_NOFS); 294 } 295 } 296 297 /* 298 * I/O completion handler for block_read_full_page() - pages 299 * which come unlocked at the end of I/O. 300 */ 301 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 302 { 303 unsigned long flags; 304 struct buffer_head *first; 305 struct buffer_head *tmp; 306 struct page *page; 307 int page_uptodate = 1; 308 309 BUG_ON(!buffer_async_read(bh)); 310 311 page = bh->b_page; 312 if (uptodate) { 313 set_buffer_uptodate(bh); 314 } else { 315 clear_buffer_uptodate(bh); 316 if (!quiet_error(bh)) 317 buffer_io_error(bh); 318 SetPageError(page); 319 } 320 321 /* 322 * Be _very_ careful from here on. Bad things can happen if 323 * two buffer heads end IO at almost the same time and both 324 * decide that the page is now completely done. 325 */ 326 first = page_buffers(page); 327 local_irq_save(flags); 328 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 329 clear_buffer_async_read(bh); 330 unlock_buffer(bh); 331 tmp = bh; 332 do { 333 if (!buffer_uptodate(tmp)) 334 page_uptodate = 0; 335 if (buffer_async_read(tmp)) { 336 BUG_ON(!buffer_locked(tmp)); 337 goto still_busy; 338 } 339 tmp = tmp->b_this_page; 340 } while (tmp != bh); 341 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 342 local_irq_restore(flags); 343 344 /* 345 * If none of the buffers had errors and they are all 346 * uptodate then we can set the page uptodate. 347 */ 348 if (page_uptodate && !PageError(page)) 349 SetPageUptodate(page); 350 unlock_page(page); 351 return; 352 353 still_busy: 354 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 355 local_irq_restore(flags); 356 return; 357 } 358 359 /* 360 * Completion handler for block_write_full_page() - pages which are unlocked 361 * during I/O, and which have PageWriteback cleared upon I/O completion. 362 */ 363 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 364 { 365 char b[BDEVNAME_SIZE]; 366 unsigned long flags; 367 struct buffer_head *first; 368 struct buffer_head *tmp; 369 struct page *page; 370 371 BUG_ON(!buffer_async_write(bh)); 372 373 page = bh->b_page; 374 if (uptodate) { 375 set_buffer_uptodate(bh); 376 } else { 377 if (!quiet_error(bh)) { 378 buffer_io_error(bh); 379 printk(KERN_WARNING "lost page write due to " 380 "I/O error on %s\n", 381 bdevname(bh->b_bdev, b)); 382 } 383 set_bit(AS_EIO, &page->mapping->flags); 384 set_buffer_write_io_error(bh); 385 clear_buffer_uptodate(bh); 386 SetPageError(page); 387 } 388 389 first = page_buffers(page); 390 local_irq_save(flags); 391 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 392 393 clear_buffer_async_write(bh); 394 unlock_buffer(bh); 395 tmp = bh->b_this_page; 396 while (tmp != bh) { 397 if (buffer_async_write(tmp)) { 398 BUG_ON(!buffer_locked(tmp)); 399 goto still_busy; 400 } 401 tmp = tmp->b_this_page; 402 } 403 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 404 local_irq_restore(flags); 405 end_page_writeback(page); 406 return; 407 408 still_busy: 409 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 410 local_irq_restore(flags); 411 return; 412 } 413 414 /* 415 * If a page's buffers are under async readin (end_buffer_async_read 416 * completion) then there is a possibility that another thread of 417 * control could lock one of the buffers after it has completed 418 * but while some of the other buffers have not completed. This 419 * locked buffer would confuse end_buffer_async_read() into not unlocking 420 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 421 * that this buffer is not under async I/O. 422 * 423 * The page comes unlocked when it has no locked buffer_async buffers 424 * left. 425 * 426 * PageLocked prevents anyone starting new async I/O reads any of 427 * the buffers. 428 * 429 * PageWriteback is used to prevent simultaneous writeout of the same 430 * page. 431 * 432 * PageLocked prevents anyone from starting writeback of a page which is 433 * under read I/O (PageWriteback is only ever set against a locked page). 434 */ 435 static void mark_buffer_async_read(struct buffer_head *bh) 436 { 437 bh->b_end_io = end_buffer_async_read; 438 set_buffer_async_read(bh); 439 } 440 441 void mark_buffer_async_write(struct buffer_head *bh) 442 { 443 bh->b_end_io = end_buffer_async_write; 444 set_buffer_async_write(bh); 445 } 446 EXPORT_SYMBOL(mark_buffer_async_write); 447 448 449 /* 450 * fs/buffer.c contains helper functions for buffer-backed address space's 451 * fsync functions. A common requirement for buffer-based filesystems is 452 * that certain data from the backing blockdev needs to be written out for 453 * a successful fsync(). For example, ext2 indirect blocks need to be 454 * written back and waited upon before fsync() returns. 455 * 456 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 457 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 458 * management of a list of dependent buffers at ->i_mapping->private_list. 459 * 460 * Locking is a little subtle: try_to_free_buffers() will remove buffers 461 * from their controlling inode's queue when they are being freed. But 462 * try_to_free_buffers() will be operating against the *blockdev* mapping 463 * at the time, not against the S_ISREG file which depends on those buffers. 464 * So the locking for private_list is via the private_lock in the address_space 465 * which backs the buffers. Which is different from the address_space 466 * against which the buffers are listed. So for a particular address_space, 467 * mapping->private_lock does *not* protect mapping->private_list! In fact, 468 * mapping->private_list will always be protected by the backing blockdev's 469 * ->private_lock. 470 * 471 * Which introduces a requirement: all buffers on an address_space's 472 * ->private_list must be from the same address_space: the blockdev's. 473 * 474 * address_spaces which do not place buffers at ->private_list via these 475 * utility functions are free to use private_lock and private_list for 476 * whatever they want. The only requirement is that list_empty(private_list) 477 * be true at clear_inode() time. 478 * 479 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 480 * filesystems should do that. invalidate_inode_buffers() should just go 481 * BUG_ON(!list_empty). 482 * 483 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 484 * take an address_space, not an inode. And it should be called 485 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 486 * queued up. 487 * 488 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 489 * list if it is already on a list. Because if the buffer is on a list, 490 * it *must* already be on the right one. If not, the filesystem is being 491 * silly. This will save a ton of locking. But first we have to ensure 492 * that buffers are taken *off* the old inode's list when they are freed 493 * (presumably in truncate). That requires careful auditing of all 494 * filesystems (do it inside bforget()). It could also be done by bringing 495 * b_inode back. 496 */ 497 498 /* 499 * The buffer's backing address_space's private_lock must be held 500 */ 501 static void __remove_assoc_queue(struct buffer_head *bh) 502 { 503 list_del_init(&bh->b_assoc_buffers); 504 WARN_ON(!bh->b_assoc_map); 505 if (buffer_write_io_error(bh)) 506 set_bit(AS_EIO, &bh->b_assoc_map->flags); 507 bh->b_assoc_map = NULL; 508 } 509 510 int inode_has_buffers(struct inode *inode) 511 { 512 return !list_empty(&inode->i_data.private_list); 513 } 514 515 /* 516 * osync is designed to support O_SYNC io. It waits synchronously for 517 * all already-submitted IO to complete, but does not queue any new 518 * writes to the disk. 519 * 520 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 521 * you dirty the buffers, and then use osync_inode_buffers to wait for 522 * completion. Any other dirty buffers which are not yet queued for 523 * write will not be flushed to disk by the osync. 524 */ 525 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 526 { 527 struct buffer_head *bh; 528 struct list_head *p; 529 int err = 0; 530 531 spin_lock(lock); 532 repeat: 533 list_for_each_prev(p, list) { 534 bh = BH_ENTRY(p); 535 if (buffer_locked(bh)) { 536 get_bh(bh); 537 spin_unlock(lock); 538 wait_on_buffer(bh); 539 if (!buffer_uptodate(bh)) 540 err = -EIO; 541 brelse(bh); 542 spin_lock(lock); 543 goto repeat; 544 } 545 } 546 spin_unlock(lock); 547 return err; 548 } 549 550 /** 551 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 552 * @mapping: the mapping which wants those buffers written 553 * 554 * Starts I/O against the buffers at mapping->private_list, and waits upon 555 * that I/O. 556 * 557 * Basically, this is a convenience function for fsync(). 558 * @mapping is a file or directory which needs those buffers to be written for 559 * a successful fsync(). 560 */ 561 int sync_mapping_buffers(struct address_space *mapping) 562 { 563 struct address_space *buffer_mapping = mapping->assoc_mapping; 564 565 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 566 return 0; 567 568 return fsync_buffers_list(&buffer_mapping->private_lock, 569 &mapping->private_list); 570 } 571 EXPORT_SYMBOL(sync_mapping_buffers); 572 573 /* 574 * Called when we've recently written block `bblock', and it is known that 575 * `bblock' was for a buffer_boundary() buffer. This means that the block at 576 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 577 * dirty, schedule it for IO. So that indirects merge nicely with their data. 578 */ 579 void write_boundary_block(struct block_device *bdev, 580 sector_t bblock, unsigned blocksize) 581 { 582 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 583 if (bh) { 584 if (buffer_dirty(bh)) 585 ll_rw_block(WRITE, 1, &bh); 586 put_bh(bh); 587 } 588 } 589 590 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 591 { 592 struct address_space *mapping = inode->i_mapping; 593 struct address_space *buffer_mapping = bh->b_page->mapping; 594 595 mark_buffer_dirty(bh); 596 if (!mapping->assoc_mapping) { 597 mapping->assoc_mapping = buffer_mapping; 598 } else { 599 BUG_ON(mapping->assoc_mapping != buffer_mapping); 600 } 601 if (!bh->b_assoc_map) { 602 spin_lock(&buffer_mapping->private_lock); 603 list_move_tail(&bh->b_assoc_buffers, 604 &mapping->private_list); 605 bh->b_assoc_map = mapping; 606 spin_unlock(&buffer_mapping->private_lock); 607 } 608 } 609 EXPORT_SYMBOL(mark_buffer_dirty_inode); 610 611 /* 612 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 613 * dirty. 614 * 615 * If warn is true, then emit a warning if the page is not uptodate and has 616 * not been truncated. 617 */ 618 static void __set_page_dirty(struct page *page, 619 struct address_space *mapping, int warn) 620 { 621 spin_lock_irq(&mapping->tree_lock); 622 if (page->mapping) { /* Race with truncate? */ 623 WARN_ON_ONCE(warn && !PageUptodate(page)); 624 625 if (mapping_cap_account_dirty(mapping)) { 626 __inc_zone_page_state(page, NR_FILE_DIRTY); 627 __inc_bdi_stat(mapping->backing_dev_info, 628 BDI_RECLAIMABLE); 629 task_dirty_inc(current); 630 task_io_account_write(PAGE_CACHE_SIZE); 631 } 632 radix_tree_tag_set(&mapping->page_tree, 633 page_index(page), PAGECACHE_TAG_DIRTY); 634 } 635 spin_unlock_irq(&mapping->tree_lock); 636 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 637 } 638 639 /* 640 * Add a page to the dirty page list. 641 * 642 * It is a sad fact of life that this function is called from several places 643 * deeply under spinlocking. It may not sleep. 644 * 645 * If the page has buffers, the uptodate buffers are set dirty, to preserve 646 * dirty-state coherency between the page and the buffers. It the page does 647 * not have buffers then when they are later attached they will all be set 648 * dirty. 649 * 650 * The buffers are dirtied before the page is dirtied. There's a small race 651 * window in which a writepage caller may see the page cleanness but not the 652 * buffer dirtiness. That's fine. If this code were to set the page dirty 653 * before the buffers, a concurrent writepage caller could clear the page dirty 654 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 655 * page on the dirty page list. 656 * 657 * We use private_lock to lock against try_to_free_buffers while using the 658 * page's buffer list. Also use this to protect against clean buffers being 659 * added to the page after it was set dirty. 660 * 661 * FIXME: may need to call ->reservepage here as well. That's rather up to the 662 * address_space though. 663 */ 664 int __set_page_dirty_buffers(struct page *page) 665 { 666 int newly_dirty; 667 struct address_space *mapping = page_mapping(page); 668 669 if (unlikely(!mapping)) 670 return !TestSetPageDirty(page); 671 672 spin_lock(&mapping->private_lock); 673 if (page_has_buffers(page)) { 674 struct buffer_head *head = page_buffers(page); 675 struct buffer_head *bh = head; 676 677 do { 678 set_buffer_dirty(bh); 679 bh = bh->b_this_page; 680 } while (bh != head); 681 } 682 newly_dirty = !TestSetPageDirty(page); 683 spin_unlock(&mapping->private_lock); 684 685 if (newly_dirty) 686 __set_page_dirty(page, mapping, 1); 687 return newly_dirty; 688 } 689 EXPORT_SYMBOL(__set_page_dirty_buffers); 690 691 /* 692 * Write out and wait upon a list of buffers. 693 * 694 * We have conflicting pressures: we want to make sure that all 695 * initially dirty buffers get waited on, but that any subsequently 696 * dirtied buffers don't. After all, we don't want fsync to last 697 * forever if somebody is actively writing to the file. 698 * 699 * Do this in two main stages: first we copy dirty buffers to a 700 * temporary inode list, queueing the writes as we go. Then we clean 701 * up, waiting for those writes to complete. 702 * 703 * During this second stage, any subsequent updates to the file may end 704 * up refiling the buffer on the original inode's dirty list again, so 705 * there is a chance we will end up with a buffer queued for write but 706 * not yet completed on that list. So, as a final cleanup we go through 707 * the osync code to catch these locked, dirty buffers without requeuing 708 * any newly dirty buffers for write. 709 */ 710 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 711 { 712 struct buffer_head *bh; 713 struct list_head tmp; 714 struct address_space *mapping; 715 int err = 0, err2; 716 717 INIT_LIST_HEAD(&tmp); 718 719 spin_lock(lock); 720 while (!list_empty(list)) { 721 bh = BH_ENTRY(list->next); 722 mapping = bh->b_assoc_map; 723 __remove_assoc_queue(bh); 724 /* Avoid race with mark_buffer_dirty_inode() which does 725 * a lockless check and we rely on seeing the dirty bit */ 726 smp_mb(); 727 if (buffer_dirty(bh) || buffer_locked(bh)) { 728 list_add(&bh->b_assoc_buffers, &tmp); 729 bh->b_assoc_map = mapping; 730 if (buffer_dirty(bh)) { 731 get_bh(bh); 732 spin_unlock(lock); 733 /* 734 * Ensure any pending I/O completes so that 735 * ll_rw_block() actually writes the current 736 * contents - it is a noop if I/O is still in 737 * flight on potentially older contents. 738 */ 739 ll_rw_block(SWRITE_SYNC, 1, &bh); 740 brelse(bh); 741 spin_lock(lock); 742 } 743 } 744 } 745 746 while (!list_empty(&tmp)) { 747 bh = BH_ENTRY(tmp.prev); 748 get_bh(bh); 749 mapping = bh->b_assoc_map; 750 __remove_assoc_queue(bh); 751 /* Avoid race with mark_buffer_dirty_inode() which does 752 * a lockless check and we rely on seeing the dirty bit */ 753 smp_mb(); 754 if (buffer_dirty(bh)) { 755 list_add(&bh->b_assoc_buffers, 756 &mapping->private_list); 757 bh->b_assoc_map = mapping; 758 } 759 spin_unlock(lock); 760 wait_on_buffer(bh); 761 if (!buffer_uptodate(bh)) 762 err = -EIO; 763 brelse(bh); 764 spin_lock(lock); 765 } 766 767 spin_unlock(lock); 768 err2 = osync_buffers_list(lock, list); 769 if (err) 770 return err; 771 else 772 return err2; 773 } 774 775 /* 776 * Invalidate any and all dirty buffers on a given inode. We are 777 * probably unmounting the fs, but that doesn't mean we have already 778 * done a sync(). Just drop the buffers from the inode list. 779 * 780 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 781 * assumes that all the buffers are against the blockdev. Not true 782 * for reiserfs. 783 */ 784 void invalidate_inode_buffers(struct inode *inode) 785 { 786 if (inode_has_buffers(inode)) { 787 struct address_space *mapping = &inode->i_data; 788 struct list_head *list = &mapping->private_list; 789 struct address_space *buffer_mapping = mapping->assoc_mapping; 790 791 spin_lock(&buffer_mapping->private_lock); 792 while (!list_empty(list)) 793 __remove_assoc_queue(BH_ENTRY(list->next)); 794 spin_unlock(&buffer_mapping->private_lock); 795 } 796 } 797 EXPORT_SYMBOL(invalidate_inode_buffers); 798 799 /* 800 * Remove any clean buffers from the inode's buffer list. This is called 801 * when we're trying to free the inode itself. Those buffers can pin it. 802 * 803 * Returns true if all buffers were removed. 804 */ 805 int remove_inode_buffers(struct inode *inode) 806 { 807 int ret = 1; 808 809 if (inode_has_buffers(inode)) { 810 struct address_space *mapping = &inode->i_data; 811 struct list_head *list = &mapping->private_list; 812 struct address_space *buffer_mapping = mapping->assoc_mapping; 813 814 spin_lock(&buffer_mapping->private_lock); 815 while (!list_empty(list)) { 816 struct buffer_head *bh = BH_ENTRY(list->next); 817 if (buffer_dirty(bh)) { 818 ret = 0; 819 break; 820 } 821 __remove_assoc_queue(bh); 822 } 823 spin_unlock(&buffer_mapping->private_lock); 824 } 825 return ret; 826 } 827 828 /* 829 * Create the appropriate buffers when given a page for data area and 830 * the size of each buffer.. Use the bh->b_this_page linked list to 831 * follow the buffers created. Return NULL if unable to create more 832 * buffers. 833 * 834 * The retry flag is used to differentiate async IO (paging, swapping) 835 * which may not fail from ordinary buffer allocations. 836 */ 837 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 838 int retry) 839 { 840 struct buffer_head *bh, *head; 841 long offset; 842 843 try_again: 844 head = NULL; 845 offset = PAGE_SIZE; 846 while ((offset -= size) >= 0) { 847 bh = alloc_buffer_head(GFP_NOFS); 848 if (!bh) 849 goto no_grow; 850 851 bh->b_bdev = NULL; 852 bh->b_this_page = head; 853 bh->b_blocknr = -1; 854 head = bh; 855 856 bh->b_state = 0; 857 atomic_set(&bh->b_count, 0); 858 bh->b_private = NULL; 859 bh->b_size = size; 860 861 /* Link the buffer to its page */ 862 set_bh_page(bh, page, offset); 863 864 init_buffer(bh, NULL, NULL); 865 } 866 return head; 867 /* 868 * In case anything failed, we just free everything we got. 869 */ 870 no_grow: 871 if (head) { 872 do { 873 bh = head; 874 head = head->b_this_page; 875 free_buffer_head(bh); 876 } while (head); 877 } 878 879 /* 880 * Return failure for non-async IO requests. Async IO requests 881 * are not allowed to fail, so we have to wait until buffer heads 882 * become available. But we don't want tasks sleeping with 883 * partially complete buffers, so all were released above. 884 */ 885 if (!retry) 886 return NULL; 887 888 /* We're _really_ low on memory. Now we just 889 * wait for old buffer heads to become free due to 890 * finishing IO. Since this is an async request and 891 * the reserve list is empty, we're sure there are 892 * async buffer heads in use. 893 */ 894 free_more_memory(); 895 goto try_again; 896 } 897 EXPORT_SYMBOL_GPL(alloc_page_buffers); 898 899 static inline void 900 link_dev_buffers(struct page *page, struct buffer_head *head) 901 { 902 struct buffer_head *bh, *tail; 903 904 bh = head; 905 do { 906 tail = bh; 907 bh = bh->b_this_page; 908 } while (bh); 909 tail->b_this_page = head; 910 attach_page_buffers(page, head); 911 } 912 913 /* 914 * Initialise the state of a blockdev page's buffers. 915 */ 916 static void 917 init_page_buffers(struct page *page, struct block_device *bdev, 918 sector_t block, int size) 919 { 920 struct buffer_head *head = page_buffers(page); 921 struct buffer_head *bh = head; 922 int uptodate = PageUptodate(page); 923 924 do { 925 if (!buffer_mapped(bh)) { 926 init_buffer(bh, NULL, NULL); 927 bh->b_bdev = bdev; 928 bh->b_blocknr = block; 929 if (uptodate) 930 set_buffer_uptodate(bh); 931 set_buffer_mapped(bh); 932 } 933 block++; 934 bh = bh->b_this_page; 935 } while (bh != head); 936 } 937 938 /* 939 * Create the page-cache page that contains the requested block. 940 * 941 * This is user purely for blockdev mappings. 942 */ 943 static struct page * 944 grow_dev_page(struct block_device *bdev, sector_t block, 945 pgoff_t index, int size) 946 { 947 struct inode *inode = bdev->bd_inode; 948 struct page *page; 949 struct buffer_head *bh; 950 951 page = find_or_create_page(inode->i_mapping, index, 952 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 953 if (!page) 954 return NULL; 955 956 BUG_ON(!PageLocked(page)); 957 958 if (page_has_buffers(page)) { 959 bh = page_buffers(page); 960 if (bh->b_size == size) { 961 init_page_buffers(page, bdev, block, size); 962 return page; 963 } 964 if (!try_to_free_buffers(page)) 965 goto failed; 966 } 967 968 /* 969 * Allocate some buffers for this page 970 */ 971 bh = alloc_page_buffers(page, size, 0); 972 if (!bh) 973 goto failed; 974 975 /* 976 * Link the page to the buffers and initialise them. Take the 977 * lock to be atomic wrt __find_get_block(), which does not 978 * run under the page lock. 979 */ 980 spin_lock(&inode->i_mapping->private_lock); 981 link_dev_buffers(page, bh); 982 init_page_buffers(page, bdev, block, size); 983 spin_unlock(&inode->i_mapping->private_lock); 984 return page; 985 986 failed: 987 BUG(); 988 unlock_page(page); 989 page_cache_release(page); 990 return NULL; 991 } 992 993 /* 994 * Create buffers for the specified block device block's page. If 995 * that page was dirty, the buffers are set dirty also. 996 */ 997 static int 998 grow_buffers(struct block_device *bdev, sector_t block, int size) 999 { 1000 struct page *page; 1001 pgoff_t index; 1002 int sizebits; 1003 1004 sizebits = -1; 1005 do { 1006 sizebits++; 1007 } while ((size << sizebits) < PAGE_SIZE); 1008 1009 index = block >> sizebits; 1010 1011 /* 1012 * Check for a block which wants to lie outside our maximum possible 1013 * pagecache index. (this comparison is done using sector_t types). 1014 */ 1015 if (unlikely(index != block >> sizebits)) { 1016 char b[BDEVNAME_SIZE]; 1017 1018 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1019 "device %s\n", 1020 __func__, (unsigned long long)block, 1021 bdevname(bdev, b)); 1022 return -EIO; 1023 } 1024 block = index << sizebits; 1025 /* Create a page with the proper size buffers.. */ 1026 page = grow_dev_page(bdev, block, index, size); 1027 if (!page) 1028 return 0; 1029 unlock_page(page); 1030 page_cache_release(page); 1031 return 1; 1032 } 1033 1034 static struct buffer_head * 1035 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1036 { 1037 /* Size must be multiple of hard sectorsize */ 1038 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1039 (size < 512 || size > PAGE_SIZE))) { 1040 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1041 size); 1042 printk(KERN_ERR "hardsect size: %d\n", 1043 bdev_hardsect_size(bdev)); 1044 1045 dump_stack(); 1046 return NULL; 1047 } 1048 1049 for (;;) { 1050 struct buffer_head * bh; 1051 int ret; 1052 1053 bh = __find_get_block(bdev, block, size); 1054 if (bh) 1055 return bh; 1056 1057 ret = grow_buffers(bdev, block, size); 1058 if (ret < 0) 1059 return NULL; 1060 if (ret == 0) 1061 free_more_memory(); 1062 } 1063 } 1064 1065 /* 1066 * The relationship between dirty buffers and dirty pages: 1067 * 1068 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1069 * the page is tagged dirty in its radix tree. 1070 * 1071 * At all times, the dirtiness of the buffers represents the dirtiness of 1072 * subsections of the page. If the page has buffers, the page dirty bit is 1073 * merely a hint about the true dirty state. 1074 * 1075 * When a page is set dirty in its entirety, all its buffers are marked dirty 1076 * (if the page has buffers). 1077 * 1078 * When a buffer is marked dirty, its page is dirtied, but the page's other 1079 * buffers are not. 1080 * 1081 * Also. When blockdev buffers are explicitly read with bread(), they 1082 * individually become uptodate. But their backing page remains not 1083 * uptodate - even if all of its buffers are uptodate. A subsequent 1084 * block_read_full_page() against that page will discover all the uptodate 1085 * buffers, will set the page uptodate and will perform no I/O. 1086 */ 1087 1088 /** 1089 * mark_buffer_dirty - mark a buffer_head as needing writeout 1090 * @bh: the buffer_head to mark dirty 1091 * 1092 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1093 * backing page dirty, then tag the page as dirty in its address_space's radix 1094 * tree and then attach the address_space's inode to its superblock's dirty 1095 * inode list. 1096 * 1097 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1098 * mapping->tree_lock and the global inode_lock. 1099 */ 1100 void mark_buffer_dirty(struct buffer_head *bh) 1101 { 1102 WARN_ON_ONCE(!buffer_uptodate(bh)); 1103 1104 /* 1105 * Very *carefully* optimize the it-is-already-dirty case. 1106 * 1107 * Don't let the final "is it dirty" escape to before we 1108 * perhaps modified the buffer. 1109 */ 1110 if (buffer_dirty(bh)) { 1111 smp_mb(); 1112 if (buffer_dirty(bh)) 1113 return; 1114 } 1115 1116 if (!test_set_buffer_dirty(bh)) { 1117 struct page *page = bh->b_page; 1118 if (!TestSetPageDirty(page)) 1119 __set_page_dirty(page, page_mapping(page), 0); 1120 } 1121 } 1122 1123 /* 1124 * Decrement a buffer_head's reference count. If all buffers against a page 1125 * have zero reference count, are clean and unlocked, and if the page is clean 1126 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1127 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1128 * a page but it ends up not being freed, and buffers may later be reattached). 1129 */ 1130 void __brelse(struct buffer_head * buf) 1131 { 1132 if (atomic_read(&buf->b_count)) { 1133 put_bh(buf); 1134 return; 1135 } 1136 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1137 } 1138 1139 /* 1140 * bforget() is like brelse(), except it discards any 1141 * potentially dirty data. 1142 */ 1143 void __bforget(struct buffer_head *bh) 1144 { 1145 clear_buffer_dirty(bh); 1146 if (bh->b_assoc_map) { 1147 struct address_space *buffer_mapping = bh->b_page->mapping; 1148 1149 spin_lock(&buffer_mapping->private_lock); 1150 list_del_init(&bh->b_assoc_buffers); 1151 bh->b_assoc_map = NULL; 1152 spin_unlock(&buffer_mapping->private_lock); 1153 } 1154 __brelse(bh); 1155 } 1156 1157 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1158 { 1159 lock_buffer(bh); 1160 if (buffer_uptodate(bh)) { 1161 unlock_buffer(bh); 1162 return bh; 1163 } else { 1164 get_bh(bh); 1165 bh->b_end_io = end_buffer_read_sync; 1166 submit_bh(READ, bh); 1167 wait_on_buffer(bh); 1168 if (buffer_uptodate(bh)) 1169 return bh; 1170 } 1171 brelse(bh); 1172 return NULL; 1173 } 1174 1175 /* 1176 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1177 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1178 * refcount elevated by one when they're in an LRU. A buffer can only appear 1179 * once in a particular CPU's LRU. A single buffer can be present in multiple 1180 * CPU's LRUs at the same time. 1181 * 1182 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1183 * sb_find_get_block(). 1184 * 1185 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1186 * a local interrupt disable for that. 1187 */ 1188 1189 #define BH_LRU_SIZE 8 1190 1191 struct bh_lru { 1192 struct buffer_head *bhs[BH_LRU_SIZE]; 1193 }; 1194 1195 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1196 1197 #ifdef CONFIG_SMP 1198 #define bh_lru_lock() local_irq_disable() 1199 #define bh_lru_unlock() local_irq_enable() 1200 #else 1201 #define bh_lru_lock() preempt_disable() 1202 #define bh_lru_unlock() preempt_enable() 1203 #endif 1204 1205 static inline void check_irqs_on(void) 1206 { 1207 #ifdef irqs_disabled 1208 BUG_ON(irqs_disabled()); 1209 #endif 1210 } 1211 1212 /* 1213 * The LRU management algorithm is dopey-but-simple. Sorry. 1214 */ 1215 static void bh_lru_install(struct buffer_head *bh) 1216 { 1217 struct buffer_head *evictee = NULL; 1218 struct bh_lru *lru; 1219 1220 check_irqs_on(); 1221 bh_lru_lock(); 1222 lru = &__get_cpu_var(bh_lrus); 1223 if (lru->bhs[0] != bh) { 1224 struct buffer_head *bhs[BH_LRU_SIZE]; 1225 int in; 1226 int out = 0; 1227 1228 get_bh(bh); 1229 bhs[out++] = bh; 1230 for (in = 0; in < BH_LRU_SIZE; in++) { 1231 struct buffer_head *bh2 = lru->bhs[in]; 1232 1233 if (bh2 == bh) { 1234 __brelse(bh2); 1235 } else { 1236 if (out >= BH_LRU_SIZE) { 1237 BUG_ON(evictee != NULL); 1238 evictee = bh2; 1239 } else { 1240 bhs[out++] = bh2; 1241 } 1242 } 1243 } 1244 while (out < BH_LRU_SIZE) 1245 bhs[out++] = NULL; 1246 memcpy(lru->bhs, bhs, sizeof(bhs)); 1247 } 1248 bh_lru_unlock(); 1249 1250 if (evictee) 1251 __brelse(evictee); 1252 } 1253 1254 /* 1255 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1256 */ 1257 static struct buffer_head * 1258 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1259 { 1260 struct buffer_head *ret = NULL; 1261 struct bh_lru *lru; 1262 unsigned int i; 1263 1264 check_irqs_on(); 1265 bh_lru_lock(); 1266 lru = &__get_cpu_var(bh_lrus); 1267 for (i = 0; i < BH_LRU_SIZE; i++) { 1268 struct buffer_head *bh = lru->bhs[i]; 1269 1270 if (bh && bh->b_bdev == bdev && 1271 bh->b_blocknr == block && bh->b_size == size) { 1272 if (i) { 1273 while (i) { 1274 lru->bhs[i] = lru->bhs[i - 1]; 1275 i--; 1276 } 1277 lru->bhs[0] = bh; 1278 } 1279 get_bh(bh); 1280 ret = bh; 1281 break; 1282 } 1283 } 1284 bh_lru_unlock(); 1285 return ret; 1286 } 1287 1288 /* 1289 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1290 * it in the LRU and mark it as accessed. If it is not present then return 1291 * NULL 1292 */ 1293 struct buffer_head * 1294 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1295 { 1296 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1297 1298 if (bh == NULL) { 1299 bh = __find_get_block_slow(bdev, block); 1300 if (bh) 1301 bh_lru_install(bh); 1302 } 1303 if (bh) 1304 touch_buffer(bh); 1305 return bh; 1306 } 1307 EXPORT_SYMBOL(__find_get_block); 1308 1309 /* 1310 * __getblk will locate (and, if necessary, create) the buffer_head 1311 * which corresponds to the passed block_device, block and size. The 1312 * returned buffer has its reference count incremented. 1313 * 1314 * __getblk() cannot fail - it just keeps trying. If you pass it an 1315 * illegal block number, __getblk() will happily return a buffer_head 1316 * which represents the non-existent block. Very weird. 1317 * 1318 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1319 * attempt is failing. FIXME, perhaps? 1320 */ 1321 struct buffer_head * 1322 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1323 { 1324 struct buffer_head *bh = __find_get_block(bdev, block, size); 1325 1326 might_sleep(); 1327 if (bh == NULL) 1328 bh = __getblk_slow(bdev, block, size); 1329 return bh; 1330 } 1331 EXPORT_SYMBOL(__getblk); 1332 1333 /* 1334 * Do async read-ahead on a buffer.. 1335 */ 1336 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1337 { 1338 struct buffer_head *bh = __getblk(bdev, block, size); 1339 if (likely(bh)) { 1340 ll_rw_block(READA, 1, &bh); 1341 brelse(bh); 1342 } 1343 } 1344 EXPORT_SYMBOL(__breadahead); 1345 1346 /** 1347 * __bread() - reads a specified block and returns the bh 1348 * @bdev: the block_device to read from 1349 * @block: number of block 1350 * @size: size (in bytes) to read 1351 * 1352 * Reads a specified block, and returns buffer head that contains it. 1353 * It returns NULL if the block was unreadable. 1354 */ 1355 struct buffer_head * 1356 __bread(struct block_device *bdev, sector_t block, unsigned size) 1357 { 1358 struct buffer_head *bh = __getblk(bdev, block, size); 1359 1360 if (likely(bh) && !buffer_uptodate(bh)) 1361 bh = __bread_slow(bh); 1362 return bh; 1363 } 1364 EXPORT_SYMBOL(__bread); 1365 1366 /* 1367 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1368 * This doesn't race because it runs in each cpu either in irq 1369 * or with preempt disabled. 1370 */ 1371 static void invalidate_bh_lru(void *arg) 1372 { 1373 struct bh_lru *b = &get_cpu_var(bh_lrus); 1374 int i; 1375 1376 for (i = 0; i < BH_LRU_SIZE; i++) { 1377 brelse(b->bhs[i]); 1378 b->bhs[i] = NULL; 1379 } 1380 put_cpu_var(bh_lrus); 1381 } 1382 1383 void invalidate_bh_lrus(void) 1384 { 1385 on_each_cpu(invalidate_bh_lru, NULL, 1); 1386 } 1387 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1388 1389 void set_bh_page(struct buffer_head *bh, 1390 struct page *page, unsigned long offset) 1391 { 1392 bh->b_page = page; 1393 BUG_ON(offset >= PAGE_SIZE); 1394 if (PageHighMem(page)) 1395 /* 1396 * This catches illegal uses and preserves the offset: 1397 */ 1398 bh->b_data = (char *)(0 + offset); 1399 else 1400 bh->b_data = page_address(page) + offset; 1401 } 1402 EXPORT_SYMBOL(set_bh_page); 1403 1404 /* 1405 * Called when truncating a buffer on a page completely. 1406 */ 1407 static void discard_buffer(struct buffer_head * bh) 1408 { 1409 lock_buffer(bh); 1410 clear_buffer_dirty(bh); 1411 bh->b_bdev = NULL; 1412 clear_buffer_mapped(bh); 1413 clear_buffer_req(bh); 1414 clear_buffer_new(bh); 1415 clear_buffer_delay(bh); 1416 clear_buffer_unwritten(bh); 1417 unlock_buffer(bh); 1418 } 1419 1420 /** 1421 * block_invalidatepage - invalidate part of all of a buffer-backed page 1422 * 1423 * @page: the page which is affected 1424 * @offset: the index of the truncation point 1425 * 1426 * block_invalidatepage() is called when all or part of the page has become 1427 * invalidatedby a truncate operation. 1428 * 1429 * block_invalidatepage() does not have to release all buffers, but it must 1430 * ensure that no dirty buffer is left outside @offset and that no I/O 1431 * is underway against any of the blocks which are outside the truncation 1432 * point. Because the caller is about to free (and possibly reuse) those 1433 * blocks on-disk. 1434 */ 1435 void block_invalidatepage(struct page *page, unsigned long offset) 1436 { 1437 struct buffer_head *head, *bh, *next; 1438 unsigned int curr_off = 0; 1439 1440 BUG_ON(!PageLocked(page)); 1441 if (!page_has_buffers(page)) 1442 goto out; 1443 1444 head = page_buffers(page); 1445 bh = head; 1446 do { 1447 unsigned int next_off = curr_off + bh->b_size; 1448 next = bh->b_this_page; 1449 1450 /* 1451 * is this block fully invalidated? 1452 */ 1453 if (offset <= curr_off) 1454 discard_buffer(bh); 1455 curr_off = next_off; 1456 bh = next; 1457 } while (bh != head); 1458 1459 /* 1460 * We release buffers only if the entire page is being invalidated. 1461 * The get_block cached value has been unconditionally invalidated, 1462 * so real IO is not possible anymore. 1463 */ 1464 if (offset == 0) 1465 try_to_release_page(page, 0); 1466 out: 1467 return; 1468 } 1469 EXPORT_SYMBOL(block_invalidatepage); 1470 1471 /* 1472 * We attach and possibly dirty the buffers atomically wrt 1473 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1474 * is already excluded via the page lock. 1475 */ 1476 void create_empty_buffers(struct page *page, 1477 unsigned long blocksize, unsigned long b_state) 1478 { 1479 struct buffer_head *bh, *head, *tail; 1480 1481 head = alloc_page_buffers(page, blocksize, 1); 1482 bh = head; 1483 do { 1484 bh->b_state |= b_state; 1485 tail = bh; 1486 bh = bh->b_this_page; 1487 } while (bh); 1488 tail->b_this_page = head; 1489 1490 spin_lock(&page->mapping->private_lock); 1491 if (PageUptodate(page) || PageDirty(page)) { 1492 bh = head; 1493 do { 1494 if (PageDirty(page)) 1495 set_buffer_dirty(bh); 1496 if (PageUptodate(page)) 1497 set_buffer_uptodate(bh); 1498 bh = bh->b_this_page; 1499 } while (bh != head); 1500 } 1501 attach_page_buffers(page, head); 1502 spin_unlock(&page->mapping->private_lock); 1503 } 1504 EXPORT_SYMBOL(create_empty_buffers); 1505 1506 /* 1507 * We are taking a block for data and we don't want any output from any 1508 * buffer-cache aliases starting from return from that function and 1509 * until the moment when something will explicitly mark the buffer 1510 * dirty (hopefully that will not happen until we will free that block ;-) 1511 * We don't even need to mark it not-uptodate - nobody can expect 1512 * anything from a newly allocated buffer anyway. We used to used 1513 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1514 * don't want to mark the alias unmapped, for example - it would confuse 1515 * anyone who might pick it with bread() afterwards... 1516 * 1517 * Also.. Note that bforget() doesn't lock the buffer. So there can 1518 * be writeout I/O going on against recently-freed buffers. We don't 1519 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1520 * only if we really need to. That happens here. 1521 */ 1522 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1523 { 1524 struct buffer_head *old_bh; 1525 1526 might_sleep(); 1527 1528 old_bh = __find_get_block_slow(bdev, block); 1529 if (old_bh) { 1530 clear_buffer_dirty(old_bh); 1531 wait_on_buffer(old_bh); 1532 clear_buffer_req(old_bh); 1533 __brelse(old_bh); 1534 } 1535 } 1536 EXPORT_SYMBOL(unmap_underlying_metadata); 1537 1538 /* 1539 * NOTE! All mapped/uptodate combinations are valid: 1540 * 1541 * Mapped Uptodate Meaning 1542 * 1543 * No No "unknown" - must do get_block() 1544 * No Yes "hole" - zero-filled 1545 * Yes No "allocated" - allocated on disk, not read in 1546 * Yes Yes "valid" - allocated and up-to-date in memory. 1547 * 1548 * "Dirty" is valid only with the last case (mapped+uptodate). 1549 */ 1550 1551 /* 1552 * While block_write_full_page is writing back the dirty buffers under 1553 * the page lock, whoever dirtied the buffers may decide to clean them 1554 * again at any time. We handle that by only looking at the buffer 1555 * state inside lock_buffer(). 1556 * 1557 * If block_write_full_page() is called for regular writeback 1558 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1559 * locked buffer. This only can happen if someone has written the buffer 1560 * directly, with submit_bh(). At the address_space level PageWriteback 1561 * prevents this contention from occurring. 1562 */ 1563 static int __block_write_full_page(struct inode *inode, struct page *page, 1564 get_block_t *get_block, struct writeback_control *wbc) 1565 { 1566 int err; 1567 sector_t block; 1568 sector_t last_block; 1569 struct buffer_head *bh, *head; 1570 const unsigned blocksize = 1 << inode->i_blkbits; 1571 int nr_underway = 0; 1572 1573 BUG_ON(!PageLocked(page)); 1574 1575 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1576 1577 if (!page_has_buffers(page)) { 1578 create_empty_buffers(page, blocksize, 1579 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1580 } 1581 1582 /* 1583 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1584 * here, and the (potentially unmapped) buffers may become dirty at 1585 * any time. If a buffer becomes dirty here after we've inspected it 1586 * then we just miss that fact, and the page stays dirty. 1587 * 1588 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1589 * handle that here by just cleaning them. 1590 */ 1591 1592 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1593 head = page_buffers(page); 1594 bh = head; 1595 1596 /* 1597 * Get all the dirty buffers mapped to disk addresses and 1598 * handle any aliases from the underlying blockdev's mapping. 1599 */ 1600 do { 1601 if (block > last_block) { 1602 /* 1603 * mapped buffers outside i_size will occur, because 1604 * this page can be outside i_size when there is a 1605 * truncate in progress. 1606 */ 1607 /* 1608 * The buffer was zeroed by block_write_full_page() 1609 */ 1610 clear_buffer_dirty(bh); 1611 set_buffer_uptodate(bh); 1612 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1613 buffer_dirty(bh)) { 1614 WARN_ON(bh->b_size != blocksize); 1615 err = get_block(inode, block, bh, 1); 1616 if (err) 1617 goto recover; 1618 clear_buffer_delay(bh); 1619 if (buffer_new(bh)) { 1620 /* blockdev mappings never come here */ 1621 clear_buffer_new(bh); 1622 unmap_underlying_metadata(bh->b_bdev, 1623 bh->b_blocknr); 1624 } 1625 } 1626 bh = bh->b_this_page; 1627 block++; 1628 } while (bh != head); 1629 1630 do { 1631 if (!buffer_mapped(bh)) 1632 continue; 1633 /* 1634 * If it's a fully non-blocking write attempt and we cannot 1635 * lock the buffer then redirty the page. Note that this can 1636 * potentially cause a busy-wait loop from pdflush and kswapd 1637 * activity, but those code paths have their own higher-level 1638 * throttling. 1639 */ 1640 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1641 lock_buffer(bh); 1642 } else if (!trylock_buffer(bh)) { 1643 redirty_page_for_writepage(wbc, page); 1644 continue; 1645 } 1646 if (test_clear_buffer_dirty(bh)) { 1647 mark_buffer_async_write(bh); 1648 } else { 1649 unlock_buffer(bh); 1650 } 1651 } while ((bh = bh->b_this_page) != head); 1652 1653 /* 1654 * The page and its buffers are protected by PageWriteback(), so we can 1655 * drop the bh refcounts early. 1656 */ 1657 BUG_ON(PageWriteback(page)); 1658 set_page_writeback(page); 1659 1660 do { 1661 struct buffer_head *next = bh->b_this_page; 1662 if (buffer_async_write(bh)) { 1663 submit_bh(WRITE, bh); 1664 nr_underway++; 1665 } 1666 bh = next; 1667 } while (bh != head); 1668 unlock_page(page); 1669 1670 err = 0; 1671 done: 1672 if (nr_underway == 0) { 1673 /* 1674 * The page was marked dirty, but the buffers were 1675 * clean. Someone wrote them back by hand with 1676 * ll_rw_block/submit_bh. A rare case. 1677 */ 1678 end_page_writeback(page); 1679 1680 /* 1681 * The page and buffer_heads can be released at any time from 1682 * here on. 1683 */ 1684 } 1685 return err; 1686 1687 recover: 1688 /* 1689 * ENOSPC, or some other error. We may already have added some 1690 * blocks to the file, so we need to write these out to avoid 1691 * exposing stale data. 1692 * The page is currently locked and not marked for writeback 1693 */ 1694 bh = head; 1695 /* Recovery: lock and submit the mapped buffers */ 1696 do { 1697 if (buffer_mapped(bh) && buffer_dirty(bh) && 1698 !buffer_delay(bh)) { 1699 lock_buffer(bh); 1700 mark_buffer_async_write(bh); 1701 } else { 1702 /* 1703 * The buffer may have been set dirty during 1704 * attachment to a dirty page. 1705 */ 1706 clear_buffer_dirty(bh); 1707 } 1708 } while ((bh = bh->b_this_page) != head); 1709 SetPageError(page); 1710 BUG_ON(PageWriteback(page)); 1711 mapping_set_error(page->mapping, err); 1712 set_page_writeback(page); 1713 do { 1714 struct buffer_head *next = bh->b_this_page; 1715 if (buffer_async_write(bh)) { 1716 clear_buffer_dirty(bh); 1717 submit_bh(WRITE, bh); 1718 nr_underway++; 1719 } 1720 bh = next; 1721 } while (bh != head); 1722 unlock_page(page); 1723 goto done; 1724 } 1725 1726 /* 1727 * If a page has any new buffers, zero them out here, and mark them uptodate 1728 * and dirty so they'll be written out (in order to prevent uninitialised 1729 * block data from leaking). And clear the new bit. 1730 */ 1731 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1732 { 1733 unsigned int block_start, block_end; 1734 struct buffer_head *head, *bh; 1735 1736 BUG_ON(!PageLocked(page)); 1737 if (!page_has_buffers(page)) 1738 return; 1739 1740 bh = head = page_buffers(page); 1741 block_start = 0; 1742 do { 1743 block_end = block_start + bh->b_size; 1744 1745 if (buffer_new(bh)) { 1746 if (block_end > from && block_start < to) { 1747 if (!PageUptodate(page)) { 1748 unsigned start, size; 1749 1750 start = max(from, block_start); 1751 size = min(to, block_end) - start; 1752 1753 zero_user(page, start, size); 1754 set_buffer_uptodate(bh); 1755 } 1756 1757 clear_buffer_new(bh); 1758 mark_buffer_dirty(bh); 1759 } 1760 } 1761 1762 block_start = block_end; 1763 bh = bh->b_this_page; 1764 } while (bh != head); 1765 } 1766 EXPORT_SYMBOL(page_zero_new_buffers); 1767 1768 static int __block_prepare_write(struct inode *inode, struct page *page, 1769 unsigned from, unsigned to, get_block_t *get_block) 1770 { 1771 unsigned block_start, block_end; 1772 sector_t block; 1773 int err = 0; 1774 unsigned blocksize, bbits; 1775 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1776 1777 BUG_ON(!PageLocked(page)); 1778 BUG_ON(from > PAGE_CACHE_SIZE); 1779 BUG_ON(to > PAGE_CACHE_SIZE); 1780 BUG_ON(from > to); 1781 1782 blocksize = 1 << inode->i_blkbits; 1783 if (!page_has_buffers(page)) 1784 create_empty_buffers(page, blocksize, 0); 1785 head = page_buffers(page); 1786 1787 bbits = inode->i_blkbits; 1788 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1789 1790 for(bh = head, block_start = 0; bh != head || !block_start; 1791 block++, block_start=block_end, bh = bh->b_this_page) { 1792 block_end = block_start + blocksize; 1793 if (block_end <= from || block_start >= to) { 1794 if (PageUptodate(page)) { 1795 if (!buffer_uptodate(bh)) 1796 set_buffer_uptodate(bh); 1797 } 1798 continue; 1799 } 1800 if (buffer_new(bh)) 1801 clear_buffer_new(bh); 1802 if (!buffer_mapped(bh)) { 1803 WARN_ON(bh->b_size != blocksize); 1804 err = get_block(inode, block, bh, 1); 1805 if (err) 1806 break; 1807 if (buffer_new(bh)) { 1808 unmap_underlying_metadata(bh->b_bdev, 1809 bh->b_blocknr); 1810 if (PageUptodate(page)) { 1811 clear_buffer_new(bh); 1812 set_buffer_uptodate(bh); 1813 mark_buffer_dirty(bh); 1814 continue; 1815 } 1816 if (block_end > to || block_start < from) 1817 zero_user_segments(page, 1818 to, block_end, 1819 block_start, from); 1820 continue; 1821 } 1822 } 1823 if (PageUptodate(page)) { 1824 if (!buffer_uptodate(bh)) 1825 set_buffer_uptodate(bh); 1826 continue; 1827 } 1828 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1829 !buffer_unwritten(bh) && 1830 (block_start < from || block_end > to)) { 1831 ll_rw_block(READ, 1, &bh); 1832 *wait_bh++=bh; 1833 } 1834 } 1835 /* 1836 * If we issued read requests - let them complete. 1837 */ 1838 while(wait_bh > wait) { 1839 wait_on_buffer(*--wait_bh); 1840 if (!buffer_uptodate(*wait_bh)) 1841 err = -EIO; 1842 } 1843 if (unlikely(err)) 1844 page_zero_new_buffers(page, from, to); 1845 return err; 1846 } 1847 1848 static int __block_commit_write(struct inode *inode, struct page *page, 1849 unsigned from, unsigned to) 1850 { 1851 unsigned block_start, block_end; 1852 int partial = 0; 1853 unsigned blocksize; 1854 struct buffer_head *bh, *head; 1855 1856 blocksize = 1 << inode->i_blkbits; 1857 1858 for(bh = head = page_buffers(page), block_start = 0; 1859 bh != head || !block_start; 1860 block_start=block_end, bh = bh->b_this_page) { 1861 block_end = block_start + blocksize; 1862 if (block_end <= from || block_start >= to) { 1863 if (!buffer_uptodate(bh)) 1864 partial = 1; 1865 } else { 1866 set_buffer_uptodate(bh); 1867 mark_buffer_dirty(bh); 1868 } 1869 clear_buffer_new(bh); 1870 } 1871 1872 /* 1873 * If this is a partial write which happened to make all buffers 1874 * uptodate then we can optimize away a bogus readpage() for 1875 * the next read(). Here we 'discover' whether the page went 1876 * uptodate as a result of this (potentially partial) write. 1877 */ 1878 if (!partial) 1879 SetPageUptodate(page); 1880 return 0; 1881 } 1882 1883 /* 1884 * block_write_begin takes care of the basic task of block allocation and 1885 * bringing partial write blocks uptodate first. 1886 * 1887 * If *pagep is not NULL, then block_write_begin uses the locked page 1888 * at *pagep rather than allocating its own. In this case, the page will 1889 * not be unlocked or deallocated on failure. 1890 */ 1891 int block_write_begin(struct file *file, struct address_space *mapping, 1892 loff_t pos, unsigned len, unsigned flags, 1893 struct page **pagep, void **fsdata, 1894 get_block_t *get_block) 1895 { 1896 struct inode *inode = mapping->host; 1897 int status = 0; 1898 struct page *page; 1899 pgoff_t index; 1900 unsigned start, end; 1901 int ownpage = 0; 1902 1903 index = pos >> PAGE_CACHE_SHIFT; 1904 start = pos & (PAGE_CACHE_SIZE - 1); 1905 end = start + len; 1906 1907 page = *pagep; 1908 if (page == NULL) { 1909 ownpage = 1; 1910 page = grab_cache_page_write_begin(mapping, index, flags); 1911 if (!page) { 1912 status = -ENOMEM; 1913 goto out; 1914 } 1915 *pagep = page; 1916 } else 1917 BUG_ON(!PageLocked(page)); 1918 1919 status = __block_prepare_write(inode, page, start, end, get_block); 1920 if (unlikely(status)) { 1921 ClearPageUptodate(page); 1922 1923 if (ownpage) { 1924 unlock_page(page); 1925 page_cache_release(page); 1926 *pagep = NULL; 1927 1928 /* 1929 * prepare_write() may have instantiated a few blocks 1930 * outside i_size. Trim these off again. Don't need 1931 * i_size_read because we hold i_mutex. 1932 */ 1933 if (pos + len > inode->i_size) 1934 vmtruncate(inode, inode->i_size); 1935 } 1936 } 1937 1938 out: 1939 return status; 1940 } 1941 EXPORT_SYMBOL(block_write_begin); 1942 1943 int block_write_end(struct file *file, struct address_space *mapping, 1944 loff_t pos, unsigned len, unsigned copied, 1945 struct page *page, void *fsdata) 1946 { 1947 struct inode *inode = mapping->host; 1948 unsigned start; 1949 1950 start = pos & (PAGE_CACHE_SIZE - 1); 1951 1952 if (unlikely(copied < len)) { 1953 /* 1954 * The buffers that were written will now be uptodate, so we 1955 * don't have to worry about a readpage reading them and 1956 * overwriting a partial write. However if we have encountered 1957 * a short write and only partially written into a buffer, it 1958 * will not be marked uptodate, so a readpage might come in and 1959 * destroy our partial write. 1960 * 1961 * Do the simplest thing, and just treat any short write to a 1962 * non uptodate page as a zero-length write, and force the 1963 * caller to redo the whole thing. 1964 */ 1965 if (!PageUptodate(page)) 1966 copied = 0; 1967 1968 page_zero_new_buffers(page, start+copied, start+len); 1969 } 1970 flush_dcache_page(page); 1971 1972 /* This could be a short (even 0-length) commit */ 1973 __block_commit_write(inode, page, start, start+copied); 1974 1975 return copied; 1976 } 1977 EXPORT_SYMBOL(block_write_end); 1978 1979 int generic_write_end(struct file *file, struct address_space *mapping, 1980 loff_t pos, unsigned len, unsigned copied, 1981 struct page *page, void *fsdata) 1982 { 1983 struct inode *inode = mapping->host; 1984 int i_size_changed = 0; 1985 1986 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1987 1988 /* 1989 * No need to use i_size_read() here, the i_size 1990 * cannot change under us because we hold i_mutex. 1991 * 1992 * But it's important to update i_size while still holding page lock: 1993 * page writeout could otherwise come in and zero beyond i_size. 1994 */ 1995 if (pos+copied > inode->i_size) { 1996 i_size_write(inode, pos+copied); 1997 i_size_changed = 1; 1998 } 1999 2000 unlock_page(page); 2001 page_cache_release(page); 2002 2003 /* 2004 * Don't mark the inode dirty under page lock. First, it unnecessarily 2005 * makes the holding time of page lock longer. Second, it forces lock 2006 * ordering of page lock and transaction start for journaling 2007 * filesystems. 2008 */ 2009 if (i_size_changed) 2010 mark_inode_dirty(inode); 2011 2012 return copied; 2013 } 2014 EXPORT_SYMBOL(generic_write_end); 2015 2016 /* 2017 * block_is_partially_uptodate checks whether buffers within a page are 2018 * uptodate or not. 2019 * 2020 * Returns true if all buffers which correspond to a file portion 2021 * we want to read are uptodate. 2022 */ 2023 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2024 unsigned long from) 2025 { 2026 struct inode *inode = page->mapping->host; 2027 unsigned block_start, block_end, blocksize; 2028 unsigned to; 2029 struct buffer_head *bh, *head; 2030 int ret = 1; 2031 2032 if (!page_has_buffers(page)) 2033 return 0; 2034 2035 blocksize = 1 << inode->i_blkbits; 2036 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2037 to = from + to; 2038 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2039 return 0; 2040 2041 head = page_buffers(page); 2042 bh = head; 2043 block_start = 0; 2044 do { 2045 block_end = block_start + blocksize; 2046 if (block_end > from && block_start < to) { 2047 if (!buffer_uptodate(bh)) { 2048 ret = 0; 2049 break; 2050 } 2051 if (block_end >= to) 2052 break; 2053 } 2054 block_start = block_end; 2055 bh = bh->b_this_page; 2056 } while (bh != head); 2057 2058 return ret; 2059 } 2060 EXPORT_SYMBOL(block_is_partially_uptodate); 2061 2062 /* 2063 * Generic "read page" function for block devices that have the normal 2064 * get_block functionality. This is most of the block device filesystems. 2065 * Reads the page asynchronously --- the unlock_buffer() and 2066 * set/clear_buffer_uptodate() functions propagate buffer state into the 2067 * page struct once IO has completed. 2068 */ 2069 int block_read_full_page(struct page *page, get_block_t *get_block) 2070 { 2071 struct inode *inode = page->mapping->host; 2072 sector_t iblock, lblock; 2073 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2074 unsigned int blocksize; 2075 int nr, i; 2076 int fully_mapped = 1; 2077 2078 BUG_ON(!PageLocked(page)); 2079 blocksize = 1 << inode->i_blkbits; 2080 if (!page_has_buffers(page)) 2081 create_empty_buffers(page, blocksize, 0); 2082 head = page_buffers(page); 2083 2084 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2085 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2086 bh = head; 2087 nr = 0; 2088 i = 0; 2089 2090 do { 2091 if (buffer_uptodate(bh)) 2092 continue; 2093 2094 if (!buffer_mapped(bh)) { 2095 int err = 0; 2096 2097 fully_mapped = 0; 2098 if (iblock < lblock) { 2099 WARN_ON(bh->b_size != blocksize); 2100 err = get_block(inode, iblock, bh, 0); 2101 if (err) 2102 SetPageError(page); 2103 } 2104 if (!buffer_mapped(bh)) { 2105 zero_user(page, i * blocksize, blocksize); 2106 if (!err) 2107 set_buffer_uptodate(bh); 2108 continue; 2109 } 2110 /* 2111 * get_block() might have updated the buffer 2112 * synchronously 2113 */ 2114 if (buffer_uptodate(bh)) 2115 continue; 2116 } 2117 arr[nr++] = bh; 2118 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2119 2120 if (fully_mapped) 2121 SetPageMappedToDisk(page); 2122 2123 if (!nr) { 2124 /* 2125 * All buffers are uptodate - we can set the page uptodate 2126 * as well. But not if get_block() returned an error. 2127 */ 2128 if (!PageError(page)) 2129 SetPageUptodate(page); 2130 unlock_page(page); 2131 return 0; 2132 } 2133 2134 /* Stage two: lock the buffers */ 2135 for (i = 0; i < nr; i++) { 2136 bh = arr[i]; 2137 lock_buffer(bh); 2138 mark_buffer_async_read(bh); 2139 } 2140 2141 /* 2142 * Stage 3: start the IO. Check for uptodateness 2143 * inside the buffer lock in case another process reading 2144 * the underlying blockdev brought it uptodate (the sct fix). 2145 */ 2146 for (i = 0; i < nr; i++) { 2147 bh = arr[i]; 2148 if (buffer_uptodate(bh)) 2149 end_buffer_async_read(bh, 1); 2150 else 2151 submit_bh(READ, bh); 2152 } 2153 return 0; 2154 } 2155 2156 /* utility function for filesystems that need to do work on expanding 2157 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2158 * deal with the hole. 2159 */ 2160 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2161 { 2162 struct address_space *mapping = inode->i_mapping; 2163 struct page *page; 2164 void *fsdata; 2165 unsigned long limit; 2166 int err; 2167 2168 err = -EFBIG; 2169 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2170 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2171 send_sig(SIGXFSZ, current, 0); 2172 goto out; 2173 } 2174 if (size > inode->i_sb->s_maxbytes) 2175 goto out; 2176 2177 err = pagecache_write_begin(NULL, mapping, size, 0, 2178 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2179 &page, &fsdata); 2180 if (err) 2181 goto out; 2182 2183 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2184 BUG_ON(err > 0); 2185 2186 out: 2187 return err; 2188 } 2189 2190 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2191 loff_t pos, loff_t *bytes) 2192 { 2193 struct inode *inode = mapping->host; 2194 unsigned blocksize = 1 << inode->i_blkbits; 2195 struct page *page; 2196 void *fsdata; 2197 pgoff_t index, curidx; 2198 loff_t curpos; 2199 unsigned zerofrom, offset, len; 2200 int err = 0; 2201 2202 index = pos >> PAGE_CACHE_SHIFT; 2203 offset = pos & ~PAGE_CACHE_MASK; 2204 2205 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2206 zerofrom = curpos & ~PAGE_CACHE_MASK; 2207 if (zerofrom & (blocksize-1)) { 2208 *bytes |= (blocksize-1); 2209 (*bytes)++; 2210 } 2211 len = PAGE_CACHE_SIZE - zerofrom; 2212 2213 err = pagecache_write_begin(file, mapping, curpos, len, 2214 AOP_FLAG_UNINTERRUPTIBLE, 2215 &page, &fsdata); 2216 if (err) 2217 goto out; 2218 zero_user(page, zerofrom, len); 2219 err = pagecache_write_end(file, mapping, curpos, len, len, 2220 page, fsdata); 2221 if (err < 0) 2222 goto out; 2223 BUG_ON(err != len); 2224 err = 0; 2225 2226 balance_dirty_pages_ratelimited(mapping); 2227 } 2228 2229 /* page covers the boundary, find the boundary offset */ 2230 if (index == curidx) { 2231 zerofrom = curpos & ~PAGE_CACHE_MASK; 2232 /* if we will expand the thing last block will be filled */ 2233 if (offset <= zerofrom) { 2234 goto out; 2235 } 2236 if (zerofrom & (blocksize-1)) { 2237 *bytes |= (blocksize-1); 2238 (*bytes)++; 2239 } 2240 len = offset - zerofrom; 2241 2242 err = pagecache_write_begin(file, mapping, curpos, len, 2243 AOP_FLAG_UNINTERRUPTIBLE, 2244 &page, &fsdata); 2245 if (err) 2246 goto out; 2247 zero_user(page, zerofrom, len); 2248 err = pagecache_write_end(file, mapping, curpos, len, len, 2249 page, fsdata); 2250 if (err < 0) 2251 goto out; 2252 BUG_ON(err != len); 2253 err = 0; 2254 } 2255 out: 2256 return err; 2257 } 2258 2259 /* 2260 * For moronic filesystems that do not allow holes in file. 2261 * We may have to extend the file. 2262 */ 2263 int cont_write_begin(struct file *file, struct address_space *mapping, 2264 loff_t pos, unsigned len, unsigned flags, 2265 struct page **pagep, void **fsdata, 2266 get_block_t *get_block, loff_t *bytes) 2267 { 2268 struct inode *inode = mapping->host; 2269 unsigned blocksize = 1 << inode->i_blkbits; 2270 unsigned zerofrom; 2271 int err; 2272 2273 err = cont_expand_zero(file, mapping, pos, bytes); 2274 if (err) 2275 goto out; 2276 2277 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2278 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2279 *bytes |= (blocksize-1); 2280 (*bytes)++; 2281 } 2282 2283 *pagep = NULL; 2284 err = block_write_begin(file, mapping, pos, len, 2285 flags, pagep, fsdata, get_block); 2286 out: 2287 return err; 2288 } 2289 2290 int block_prepare_write(struct page *page, unsigned from, unsigned to, 2291 get_block_t *get_block) 2292 { 2293 struct inode *inode = page->mapping->host; 2294 int err = __block_prepare_write(inode, page, from, to, get_block); 2295 if (err) 2296 ClearPageUptodate(page); 2297 return err; 2298 } 2299 2300 int block_commit_write(struct page *page, unsigned from, unsigned to) 2301 { 2302 struct inode *inode = page->mapping->host; 2303 __block_commit_write(inode,page,from,to); 2304 return 0; 2305 } 2306 2307 /* 2308 * block_page_mkwrite() is not allowed to change the file size as it gets 2309 * called from a page fault handler when a page is first dirtied. Hence we must 2310 * be careful to check for EOF conditions here. We set the page up correctly 2311 * for a written page which means we get ENOSPC checking when writing into 2312 * holes and correct delalloc and unwritten extent mapping on filesystems that 2313 * support these features. 2314 * 2315 * We are not allowed to take the i_mutex here so we have to play games to 2316 * protect against truncate races as the page could now be beyond EOF. Because 2317 * vmtruncate() writes the inode size before removing pages, once we have the 2318 * page lock we can determine safely if the page is beyond EOF. If it is not 2319 * beyond EOF, then the page is guaranteed safe against truncation until we 2320 * unlock the page. 2321 */ 2322 int 2323 block_page_mkwrite(struct vm_area_struct *vma, struct page *page, 2324 get_block_t get_block) 2325 { 2326 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2327 unsigned long end; 2328 loff_t size; 2329 int ret = -EINVAL; 2330 2331 lock_page(page); 2332 size = i_size_read(inode); 2333 if ((page->mapping != inode->i_mapping) || 2334 (page_offset(page) > size)) { 2335 /* page got truncated out from underneath us */ 2336 goto out_unlock; 2337 } 2338 2339 /* page is wholly or partially inside EOF */ 2340 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2341 end = size & ~PAGE_CACHE_MASK; 2342 else 2343 end = PAGE_CACHE_SIZE; 2344 2345 ret = block_prepare_write(page, 0, end, get_block); 2346 if (!ret) 2347 ret = block_commit_write(page, 0, end); 2348 2349 out_unlock: 2350 unlock_page(page); 2351 return ret; 2352 } 2353 2354 /* 2355 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2356 * immediately, while under the page lock. So it needs a special end_io 2357 * handler which does not touch the bh after unlocking it. 2358 */ 2359 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2360 { 2361 __end_buffer_read_notouch(bh, uptodate); 2362 } 2363 2364 /* 2365 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2366 * the page (converting it to circular linked list and taking care of page 2367 * dirty races). 2368 */ 2369 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2370 { 2371 struct buffer_head *bh; 2372 2373 BUG_ON(!PageLocked(page)); 2374 2375 spin_lock(&page->mapping->private_lock); 2376 bh = head; 2377 do { 2378 if (PageDirty(page)) 2379 set_buffer_dirty(bh); 2380 if (!bh->b_this_page) 2381 bh->b_this_page = head; 2382 bh = bh->b_this_page; 2383 } while (bh != head); 2384 attach_page_buffers(page, head); 2385 spin_unlock(&page->mapping->private_lock); 2386 } 2387 2388 /* 2389 * On entry, the page is fully not uptodate. 2390 * On exit the page is fully uptodate in the areas outside (from,to) 2391 */ 2392 int nobh_write_begin(struct file *file, struct address_space *mapping, 2393 loff_t pos, unsigned len, unsigned flags, 2394 struct page **pagep, void **fsdata, 2395 get_block_t *get_block) 2396 { 2397 struct inode *inode = mapping->host; 2398 const unsigned blkbits = inode->i_blkbits; 2399 const unsigned blocksize = 1 << blkbits; 2400 struct buffer_head *head, *bh; 2401 struct page *page; 2402 pgoff_t index; 2403 unsigned from, to; 2404 unsigned block_in_page; 2405 unsigned block_start, block_end; 2406 sector_t block_in_file; 2407 int nr_reads = 0; 2408 int ret = 0; 2409 int is_mapped_to_disk = 1; 2410 2411 index = pos >> PAGE_CACHE_SHIFT; 2412 from = pos & (PAGE_CACHE_SIZE - 1); 2413 to = from + len; 2414 2415 page = grab_cache_page_write_begin(mapping, index, flags); 2416 if (!page) 2417 return -ENOMEM; 2418 *pagep = page; 2419 *fsdata = NULL; 2420 2421 if (page_has_buffers(page)) { 2422 unlock_page(page); 2423 page_cache_release(page); 2424 *pagep = NULL; 2425 return block_write_begin(file, mapping, pos, len, flags, pagep, 2426 fsdata, get_block); 2427 } 2428 2429 if (PageMappedToDisk(page)) 2430 return 0; 2431 2432 /* 2433 * Allocate buffers so that we can keep track of state, and potentially 2434 * attach them to the page if an error occurs. In the common case of 2435 * no error, they will just be freed again without ever being attached 2436 * to the page (which is all OK, because we're under the page lock). 2437 * 2438 * Be careful: the buffer linked list is a NULL terminated one, rather 2439 * than the circular one we're used to. 2440 */ 2441 head = alloc_page_buffers(page, blocksize, 0); 2442 if (!head) { 2443 ret = -ENOMEM; 2444 goto out_release; 2445 } 2446 2447 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2448 2449 /* 2450 * We loop across all blocks in the page, whether or not they are 2451 * part of the affected region. This is so we can discover if the 2452 * page is fully mapped-to-disk. 2453 */ 2454 for (block_start = 0, block_in_page = 0, bh = head; 2455 block_start < PAGE_CACHE_SIZE; 2456 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2457 int create; 2458 2459 block_end = block_start + blocksize; 2460 bh->b_state = 0; 2461 create = 1; 2462 if (block_start >= to) 2463 create = 0; 2464 ret = get_block(inode, block_in_file + block_in_page, 2465 bh, create); 2466 if (ret) 2467 goto failed; 2468 if (!buffer_mapped(bh)) 2469 is_mapped_to_disk = 0; 2470 if (buffer_new(bh)) 2471 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2472 if (PageUptodate(page)) { 2473 set_buffer_uptodate(bh); 2474 continue; 2475 } 2476 if (buffer_new(bh) || !buffer_mapped(bh)) { 2477 zero_user_segments(page, block_start, from, 2478 to, block_end); 2479 continue; 2480 } 2481 if (buffer_uptodate(bh)) 2482 continue; /* reiserfs does this */ 2483 if (block_start < from || block_end > to) { 2484 lock_buffer(bh); 2485 bh->b_end_io = end_buffer_read_nobh; 2486 submit_bh(READ, bh); 2487 nr_reads++; 2488 } 2489 } 2490 2491 if (nr_reads) { 2492 /* 2493 * The page is locked, so these buffers are protected from 2494 * any VM or truncate activity. Hence we don't need to care 2495 * for the buffer_head refcounts. 2496 */ 2497 for (bh = head; bh; bh = bh->b_this_page) { 2498 wait_on_buffer(bh); 2499 if (!buffer_uptodate(bh)) 2500 ret = -EIO; 2501 } 2502 if (ret) 2503 goto failed; 2504 } 2505 2506 if (is_mapped_to_disk) 2507 SetPageMappedToDisk(page); 2508 2509 *fsdata = head; /* to be released by nobh_write_end */ 2510 2511 return 0; 2512 2513 failed: 2514 BUG_ON(!ret); 2515 /* 2516 * Error recovery is a bit difficult. We need to zero out blocks that 2517 * were newly allocated, and dirty them to ensure they get written out. 2518 * Buffers need to be attached to the page at this point, otherwise 2519 * the handling of potential IO errors during writeout would be hard 2520 * (could try doing synchronous writeout, but what if that fails too?) 2521 */ 2522 attach_nobh_buffers(page, head); 2523 page_zero_new_buffers(page, from, to); 2524 2525 out_release: 2526 unlock_page(page); 2527 page_cache_release(page); 2528 *pagep = NULL; 2529 2530 if (pos + len > inode->i_size) 2531 vmtruncate(inode, inode->i_size); 2532 2533 return ret; 2534 } 2535 EXPORT_SYMBOL(nobh_write_begin); 2536 2537 int nobh_write_end(struct file *file, struct address_space *mapping, 2538 loff_t pos, unsigned len, unsigned copied, 2539 struct page *page, void *fsdata) 2540 { 2541 struct inode *inode = page->mapping->host; 2542 struct buffer_head *head = fsdata; 2543 struct buffer_head *bh; 2544 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2545 2546 if (unlikely(copied < len) && head) 2547 attach_nobh_buffers(page, head); 2548 if (page_has_buffers(page)) 2549 return generic_write_end(file, mapping, pos, len, 2550 copied, page, fsdata); 2551 2552 SetPageUptodate(page); 2553 set_page_dirty(page); 2554 if (pos+copied > inode->i_size) { 2555 i_size_write(inode, pos+copied); 2556 mark_inode_dirty(inode); 2557 } 2558 2559 unlock_page(page); 2560 page_cache_release(page); 2561 2562 while (head) { 2563 bh = head; 2564 head = head->b_this_page; 2565 free_buffer_head(bh); 2566 } 2567 2568 return copied; 2569 } 2570 EXPORT_SYMBOL(nobh_write_end); 2571 2572 /* 2573 * nobh_writepage() - based on block_full_write_page() except 2574 * that it tries to operate without attaching bufferheads to 2575 * the page. 2576 */ 2577 int nobh_writepage(struct page *page, get_block_t *get_block, 2578 struct writeback_control *wbc) 2579 { 2580 struct inode * const inode = page->mapping->host; 2581 loff_t i_size = i_size_read(inode); 2582 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2583 unsigned offset; 2584 int ret; 2585 2586 /* Is the page fully inside i_size? */ 2587 if (page->index < end_index) 2588 goto out; 2589 2590 /* Is the page fully outside i_size? (truncate in progress) */ 2591 offset = i_size & (PAGE_CACHE_SIZE-1); 2592 if (page->index >= end_index+1 || !offset) { 2593 /* 2594 * The page may have dirty, unmapped buffers. For example, 2595 * they may have been added in ext3_writepage(). Make them 2596 * freeable here, so the page does not leak. 2597 */ 2598 #if 0 2599 /* Not really sure about this - do we need this ? */ 2600 if (page->mapping->a_ops->invalidatepage) 2601 page->mapping->a_ops->invalidatepage(page, offset); 2602 #endif 2603 unlock_page(page); 2604 return 0; /* don't care */ 2605 } 2606 2607 /* 2608 * The page straddles i_size. It must be zeroed out on each and every 2609 * writepage invocation because it may be mmapped. "A file is mapped 2610 * in multiples of the page size. For a file that is not a multiple of 2611 * the page size, the remaining memory is zeroed when mapped, and 2612 * writes to that region are not written out to the file." 2613 */ 2614 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2615 out: 2616 ret = mpage_writepage(page, get_block, wbc); 2617 if (ret == -EAGAIN) 2618 ret = __block_write_full_page(inode, page, get_block, wbc); 2619 return ret; 2620 } 2621 EXPORT_SYMBOL(nobh_writepage); 2622 2623 int nobh_truncate_page(struct address_space *mapping, 2624 loff_t from, get_block_t *get_block) 2625 { 2626 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2627 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2628 unsigned blocksize; 2629 sector_t iblock; 2630 unsigned length, pos; 2631 struct inode *inode = mapping->host; 2632 struct page *page; 2633 struct buffer_head map_bh; 2634 int err; 2635 2636 blocksize = 1 << inode->i_blkbits; 2637 length = offset & (blocksize - 1); 2638 2639 /* Block boundary? Nothing to do */ 2640 if (!length) 2641 return 0; 2642 2643 length = blocksize - length; 2644 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2645 2646 page = grab_cache_page(mapping, index); 2647 err = -ENOMEM; 2648 if (!page) 2649 goto out; 2650 2651 if (page_has_buffers(page)) { 2652 has_buffers: 2653 unlock_page(page); 2654 page_cache_release(page); 2655 return block_truncate_page(mapping, from, get_block); 2656 } 2657 2658 /* Find the buffer that contains "offset" */ 2659 pos = blocksize; 2660 while (offset >= pos) { 2661 iblock++; 2662 pos += blocksize; 2663 } 2664 2665 err = get_block(inode, iblock, &map_bh, 0); 2666 if (err) 2667 goto unlock; 2668 /* unmapped? It's a hole - nothing to do */ 2669 if (!buffer_mapped(&map_bh)) 2670 goto unlock; 2671 2672 /* Ok, it's mapped. Make sure it's up-to-date */ 2673 if (!PageUptodate(page)) { 2674 err = mapping->a_ops->readpage(NULL, page); 2675 if (err) { 2676 page_cache_release(page); 2677 goto out; 2678 } 2679 lock_page(page); 2680 if (!PageUptodate(page)) { 2681 err = -EIO; 2682 goto unlock; 2683 } 2684 if (page_has_buffers(page)) 2685 goto has_buffers; 2686 } 2687 zero_user(page, offset, length); 2688 set_page_dirty(page); 2689 err = 0; 2690 2691 unlock: 2692 unlock_page(page); 2693 page_cache_release(page); 2694 out: 2695 return err; 2696 } 2697 EXPORT_SYMBOL(nobh_truncate_page); 2698 2699 int block_truncate_page(struct address_space *mapping, 2700 loff_t from, get_block_t *get_block) 2701 { 2702 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2703 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2704 unsigned blocksize; 2705 sector_t iblock; 2706 unsigned length, pos; 2707 struct inode *inode = mapping->host; 2708 struct page *page; 2709 struct buffer_head *bh; 2710 int err; 2711 2712 blocksize = 1 << inode->i_blkbits; 2713 length = offset & (blocksize - 1); 2714 2715 /* Block boundary? Nothing to do */ 2716 if (!length) 2717 return 0; 2718 2719 length = blocksize - length; 2720 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2721 2722 page = grab_cache_page(mapping, index); 2723 err = -ENOMEM; 2724 if (!page) 2725 goto out; 2726 2727 if (!page_has_buffers(page)) 2728 create_empty_buffers(page, blocksize, 0); 2729 2730 /* Find the buffer that contains "offset" */ 2731 bh = page_buffers(page); 2732 pos = blocksize; 2733 while (offset >= pos) { 2734 bh = bh->b_this_page; 2735 iblock++; 2736 pos += blocksize; 2737 } 2738 2739 err = 0; 2740 if (!buffer_mapped(bh)) { 2741 WARN_ON(bh->b_size != blocksize); 2742 err = get_block(inode, iblock, bh, 0); 2743 if (err) 2744 goto unlock; 2745 /* unmapped? It's a hole - nothing to do */ 2746 if (!buffer_mapped(bh)) 2747 goto unlock; 2748 } 2749 2750 /* Ok, it's mapped. Make sure it's up-to-date */ 2751 if (PageUptodate(page)) 2752 set_buffer_uptodate(bh); 2753 2754 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2755 err = -EIO; 2756 ll_rw_block(READ, 1, &bh); 2757 wait_on_buffer(bh); 2758 /* Uhhuh. Read error. Complain and punt. */ 2759 if (!buffer_uptodate(bh)) 2760 goto unlock; 2761 } 2762 2763 zero_user(page, offset, length); 2764 mark_buffer_dirty(bh); 2765 err = 0; 2766 2767 unlock: 2768 unlock_page(page); 2769 page_cache_release(page); 2770 out: 2771 return err; 2772 } 2773 2774 /* 2775 * The generic ->writepage function for buffer-backed address_spaces 2776 */ 2777 int block_write_full_page(struct page *page, get_block_t *get_block, 2778 struct writeback_control *wbc) 2779 { 2780 struct inode * const inode = page->mapping->host; 2781 loff_t i_size = i_size_read(inode); 2782 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2783 unsigned offset; 2784 2785 /* Is the page fully inside i_size? */ 2786 if (page->index < end_index) 2787 return __block_write_full_page(inode, page, get_block, wbc); 2788 2789 /* Is the page fully outside i_size? (truncate in progress) */ 2790 offset = i_size & (PAGE_CACHE_SIZE-1); 2791 if (page->index >= end_index+1 || !offset) { 2792 /* 2793 * The page may have dirty, unmapped buffers. For example, 2794 * they may have been added in ext3_writepage(). Make them 2795 * freeable here, so the page does not leak. 2796 */ 2797 do_invalidatepage(page, 0); 2798 unlock_page(page); 2799 return 0; /* don't care */ 2800 } 2801 2802 /* 2803 * The page straddles i_size. It must be zeroed out on each and every 2804 * writepage invokation because it may be mmapped. "A file is mapped 2805 * in multiples of the page size. For a file that is not a multiple of 2806 * the page size, the remaining memory is zeroed when mapped, and 2807 * writes to that region are not written out to the file." 2808 */ 2809 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2810 return __block_write_full_page(inode, page, get_block, wbc); 2811 } 2812 2813 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2814 get_block_t *get_block) 2815 { 2816 struct buffer_head tmp; 2817 struct inode *inode = mapping->host; 2818 tmp.b_state = 0; 2819 tmp.b_blocknr = 0; 2820 tmp.b_size = 1 << inode->i_blkbits; 2821 get_block(inode, block, &tmp, 0); 2822 return tmp.b_blocknr; 2823 } 2824 2825 static void end_bio_bh_io_sync(struct bio *bio, int err) 2826 { 2827 struct buffer_head *bh = bio->bi_private; 2828 2829 if (err == -EOPNOTSUPP) { 2830 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2831 set_bit(BH_Eopnotsupp, &bh->b_state); 2832 } 2833 2834 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2835 set_bit(BH_Quiet, &bh->b_state); 2836 2837 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2838 bio_put(bio); 2839 } 2840 2841 int submit_bh(int rw, struct buffer_head * bh) 2842 { 2843 struct bio *bio; 2844 int ret = 0; 2845 2846 BUG_ON(!buffer_locked(bh)); 2847 BUG_ON(!buffer_mapped(bh)); 2848 BUG_ON(!bh->b_end_io); 2849 2850 /* 2851 * Mask in barrier bit for a write (could be either a WRITE or a 2852 * WRITE_SYNC 2853 */ 2854 if (buffer_ordered(bh) && (rw & WRITE)) 2855 rw |= WRITE_BARRIER; 2856 2857 /* 2858 * Only clear out a write error when rewriting 2859 */ 2860 if (test_set_buffer_req(bh) && (rw & WRITE)) 2861 clear_buffer_write_io_error(bh); 2862 2863 /* 2864 * from here on down, it's all bio -- do the initial mapping, 2865 * submit_bio -> generic_make_request may further map this bio around 2866 */ 2867 bio = bio_alloc(GFP_NOIO, 1); 2868 2869 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2870 bio->bi_bdev = bh->b_bdev; 2871 bio->bi_io_vec[0].bv_page = bh->b_page; 2872 bio->bi_io_vec[0].bv_len = bh->b_size; 2873 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2874 2875 bio->bi_vcnt = 1; 2876 bio->bi_idx = 0; 2877 bio->bi_size = bh->b_size; 2878 2879 bio->bi_end_io = end_bio_bh_io_sync; 2880 bio->bi_private = bh; 2881 2882 bio_get(bio); 2883 submit_bio(rw, bio); 2884 2885 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2886 ret = -EOPNOTSUPP; 2887 2888 bio_put(bio); 2889 return ret; 2890 } 2891 2892 /** 2893 * ll_rw_block: low-level access to block devices (DEPRECATED) 2894 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 2895 * @nr: number of &struct buffer_heads in the array 2896 * @bhs: array of pointers to &struct buffer_head 2897 * 2898 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2899 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2900 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 2901 * are sent to disk. The fourth %READA option is described in the documentation 2902 * for generic_make_request() which ll_rw_block() calls. 2903 * 2904 * This function drops any buffer that it cannot get a lock on (with the 2905 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 2906 * clean when doing a write request, and any buffer that appears to be 2907 * up-to-date when doing read request. Further it marks as clean buffers that 2908 * are processed for writing (the buffer cache won't assume that they are 2909 * actually clean until the buffer gets unlocked). 2910 * 2911 * ll_rw_block sets b_end_io to simple completion handler that marks 2912 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2913 * any waiters. 2914 * 2915 * All of the buffers must be for the same device, and must also be a 2916 * multiple of the current approved size for the device. 2917 */ 2918 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2919 { 2920 int i; 2921 2922 for (i = 0; i < nr; i++) { 2923 struct buffer_head *bh = bhs[i]; 2924 2925 if (rw == SWRITE || rw == SWRITE_SYNC) 2926 lock_buffer(bh); 2927 else if (!trylock_buffer(bh)) 2928 continue; 2929 2930 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) { 2931 if (test_clear_buffer_dirty(bh)) { 2932 bh->b_end_io = end_buffer_write_sync; 2933 get_bh(bh); 2934 if (rw == SWRITE_SYNC) 2935 submit_bh(WRITE_SYNC, bh); 2936 else 2937 submit_bh(WRITE, bh); 2938 continue; 2939 } 2940 } else { 2941 if (!buffer_uptodate(bh)) { 2942 bh->b_end_io = end_buffer_read_sync; 2943 get_bh(bh); 2944 submit_bh(rw, bh); 2945 continue; 2946 } 2947 } 2948 unlock_buffer(bh); 2949 } 2950 } 2951 2952 /* 2953 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2954 * and then start new I/O and then wait upon it. The caller must have a ref on 2955 * the buffer_head. 2956 */ 2957 int sync_dirty_buffer(struct buffer_head *bh) 2958 { 2959 int ret = 0; 2960 2961 WARN_ON(atomic_read(&bh->b_count) < 1); 2962 lock_buffer(bh); 2963 if (test_clear_buffer_dirty(bh)) { 2964 get_bh(bh); 2965 bh->b_end_io = end_buffer_write_sync; 2966 ret = submit_bh(WRITE, bh); 2967 wait_on_buffer(bh); 2968 if (buffer_eopnotsupp(bh)) { 2969 clear_buffer_eopnotsupp(bh); 2970 ret = -EOPNOTSUPP; 2971 } 2972 if (!ret && !buffer_uptodate(bh)) 2973 ret = -EIO; 2974 } else { 2975 unlock_buffer(bh); 2976 } 2977 return ret; 2978 } 2979 2980 /* 2981 * try_to_free_buffers() checks if all the buffers on this particular page 2982 * are unused, and releases them if so. 2983 * 2984 * Exclusion against try_to_free_buffers may be obtained by either 2985 * locking the page or by holding its mapping's private_lock. 2986 * 2987 * If the page is dirty but all the buffers are clean then we need to 2988 * be sure to mark the page clean as well. This is because the page 2989 * may be against a block device, and a later reattachment of buffers 2990 * to a dirty page will set *all* buffers dirty. Which would corrupt 2991 * filesystem data on the same device. 2992 * 2993 * The same applies to regular filesystem pages: if all the buffers are 2994 * clean then we set the page clean and proceed. To do that, we require 2995 * total exclusion from __set_page_dirty_buffers(). That is obtained with 2996 * private_lock. 2997 * 2998 * try_to_free_buffers() is non-blocking. 2999 */ 3000 static inline int buffer_busy(struct buffer_head *bh) 3001 { 3002 return atomic_read(&bh->b_count) | 3003 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3004 } 3005 3006 static int 3007 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3008 { 3009 struct buffer_head *head = page_buffers(page); 3010 struct buffer_head *bh; 3011 3012 bh = head; 3013 do { 3014 if (buffer_write_io_error(bh) && page->mapping) 3015 set_bit(AS_EIO, &page->mapping->flags); 3016 if (buffer_busy(bh)) 3017 goto failed; 3018 bh = bh->b_this_page; 3019 } while (bh != head); 3020 3021 do { 3022 struct buffer_head *next = bh->b_this_page; 3023 3024 if (bh->b_assoc_map) 3025 __remove_assoc_queue(bh); 3026 bh = next; 3027 } while (bh != head); 3028 *buffers_to_free = head; 3029 __clear_page_buffers(page); 3030 return 1; 3031 failed: 3032 return 0; 3033 } 3034 3035 int try_to_free_buffers(struct page *page) 3036 { 3037 struct address_space * const mapping = page->mapping; 3038 struct buffer_head *buffers_to_free = NULL; 3039 int ret = 0; 3040 3041 BUG_ON(!PageLocked(page)); 3042 if (PageWriteback(page)) 3043 return 0; 3044 3045 if (mapping == NULL) { /* can this still happen? */ 3046 ret = drop_buffers(page, &buffers_to_free); 3047 goto out; 3048 } 3049 3050 spin_lock(&mapping->private_lock); 3051 ret = drop_buffers(page, &buffers_to_free); 3052 3053 /* 3054 * If the filesystem writes its buffers by hand (eg ext3) 3055 * then we can have clean buffers against a dirty page. We 3056 * clean the page here; otherwise the VM will never notice 3057 * that the filesystem did any IO at all. 3058 * 3059 * Also, during truncate, discard_buffer will have marked all 3060 * the page's buffers clean. We discover that here and clean 3061 * the page also. 3062 * 3063 * private_lock must be held over this entire operation in order 3064 * to synchronise against __set_page_dirty_buffers and prevent the 3065 * dirty bit from being lost. 3066 */ 3067 if (ret) 3068 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3069 spin_unlock(&mapping->private_lock); 3070 out: 3071 if (buffers_to_free) { 3072 struct buffer_head *bh = buffers_to_free; 3073 3074 do { 3075 struct buffer_head *next = bh->b_this_page; 3076 free_buffer_head(bh); 3077 bh = next; 3078 } while (bh != buffers_to_free); 3079 } 3080 return ret; 3081 } 3082 EXPORT_SYMBOL(try_to_free_buffers); 3083 3084 void block_sync_page(struct page *page) 3085 { 3086 struct address_space *mapping; 3087 3088 smp_mb(); 3089 mapping = page_mapping(page); 3090 if (mapping) 3091 blk_run_backing_dev(mapping->backing_dev_info, page); 3092 } 3093 3094 /* 3095 * There are no bdflush tunables left. But distributions are 3096 * still running obsolete flush daemons, so we terminate them here. 3097 * 3098 * Use of bdflush() is deprecated and will be removed in a future kernel. 3099 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 3100 */ 3101 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3102 { 3103 static int msg_count; 3104 3105 if (!capable(CAP_SYS_ADMIN)) 3106 return -EPERM; 3107 3108 if (msg_count < 5) { 3109 msg_count++; 3110 printk(KERN_INFO 3111 "warning: process `%s' used the obsolete bdflush" 3112 " system call\n", current->comm); 3113 printk(KERN_INFO "Fix your initscripts?\n"); 3114 } 3115 3116 if (func == 1) 3117 do_exit(0); 3118 return 0; 3119 } 3120 3121 /* 3122 * Buffer-head allocation 3123 */ 3124 static struct kmem_cache *bh_cachep; 3125 3126 /* 3127 * Once the number of bh's in the machine exceeds this level, we start 3128 * stripping them in writeback. 3129 */ 3130 static int max_buffer_heads; 3131 3132 int buffer_heads_over_limit; 3133 3134 struct bh_accounting { 3135 int nr; /* Number of live bh's */ 3136 int ratelimit; /* Limit cacheline bouncing */ 3137 }; 3138 3139 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3140 3141 static void recalc_bh_state(void) 3142 { 3143 int i; 3144 int tot = 0; 3145 3146 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 3147 return; 3148 __get_cpu_var(bh_accounting).ratelimit = 0; 3149 for_each_online_cpu(i) 3150 tot += per_cpu(bh_accounting, i).nr; 3151 buffer_heads_over_limit = (tot > max_buffer_heads); 3152 } 3153 3154 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3155 { 3156 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); 3157 if (ret) { 3158 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3159 get_cpu_var(bh_accounting).nr++; 3160 recalc_bh_state(); 3161 put_cpu_var(bh_accounting); 3162 } 3163 return ret; 3164 } 3165 EXPORT_SYMBOL(alloc_buffer_head); 3166 3167 void free_buffer_head(struct buffer_head *bh) 3168 { 3169 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3170 kmem_cache_free(bh_cachep, bh); 3171 get_cpu_var(bh_accounting).nr--; 3172 recalc_bh_state(); 3173 put_cpu_var(bh_accounting); 3174 } 3175 EXPORT_SYMBOL(free_buffer_head); 3176 3177 static void buffer_exit_cpu(int cpu) 3178 { 3179 int i; 3180 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3181 3182 for (i = 0; i < BH_LRU_SIZE; i++) { 3183 brelse(b->bhs[i]); 3184 b->bhs[i] = NULL; 3185 } 3186 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 3187 per_cpu(bh_accounting, cpu).nr = 0; 3188 put_cpu_var(bh_accounting); 3189 } 3190 3191 static int buffer_cpu_notify(struct notifier_block *self, 3192 unsigned long action, void *hcpu) 3193 { 3194 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3195 buffer_exit_cpu((unsigned long)hcpu); 3196 return NOTIFY_OK; 3197 } 3198 3199 /** 3200 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3201 * @bh: struct buffer_head 3202 * 3203 * Return true if the buffer is up-to-date and false, 3204 * with the buffer locked, if not. 3205 */ 3206 int bh_uptodate_or_lock(struct buffer_head *bh) 3207 { 3208 if (!buffer_uptodate(bh)) { 3209 lock_buffer(bh); 3210 if (!buffer_uptodate(bh)) 3211 return 0; 3212 unlock_buffer(bh); 3213 } 3214 return 1; 3215 } 3216 EXPORT_SYMBOL(bh_uptodate_or_lock); 3217 3218 /** 3219 * bh_submit_read - Submit a locked buffer for reading 3220 * @bh: struct buffer_head 3221 * 3222 * Returns zero on success and -EIO on error. 3223 */ 3224 int bh_submit_read(struct buffer_head *bh) 3225 { 3226 BUG_ON(!buffer_locked(bh)); 3227 3228 if (buffer_uptodate(bh)) { 3229 unlock_buffer(bh); 3230 return 0; 3231 } 3232 3233 get_bh(bh); 3234 bh->b_end_io = end_buffer_read_sync; 3235 submit_bh(READ, bh); 3236 wait_on_buffer(bh); 3237 if (buffer_uptodate(bh)) 3238 return 0; 3239 return -EIO; 3240 } 3241 EXPORT_SYMBOL(bh_submit_read); 3242 3243 static void 3244 init_buffer_head(void *data) 3245 { 3246 struct buffer_head *bh = data; 3247 3248 memset(bh, 0, sizeof(*bh)); 3249 INIT_LIST_HEAD(&bh->b_assoc_buffers); 3250 } 3251 3252 void __init buffer_init(void) 3253 { 3254 int nrpages; 3255 3256 bh_cachep = kmem_cache_create("buffer_head", 3257 sizeof(struct buffer_head), 0, 3258 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3259 SLAB_MEM_SPREAD), 3260 init_buffer_head); 3261 3262 /* 3263 * Limit the bh occupancy to 10% of ZONE_NORMAL 3264 */ 3265 nrpages = (nr_free_buffer_pages() * 10) / 100; 3266 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3267 hotcpu_notifier(buffer_cpu_notify, 0); 3268 } 3269 3270 EXPORT_SYMBOL(__bforget); 3271 EXPORT_SYMBOL(__brelse); 3272 EXPORT_SYMBOL(__wait_on_buffer); 3273 EXPORT_SYMBOL(block_commit_write); 3274 EXPORT_SYMBOL(block_prepare_write); 3275 EXPORT_SYMBOL(block_page_mkwrite); 3276 EXPORT_SYMBOL(block_read_full_page); 3277 EXPORT_SYMBOL(block_sync_page); 3278 EXPORT_SYMBOL(block_truncate_page); 3279 EXPORT_SYMBOL(block_write_full_page); 3280 EXPORT_SYMBOL(cont_write_begin); 3281 EXPORT_SYMBOL(end_buffer_read_sync); 3282 EXPORT_SYMBOL(end_buffer_write_sync); 3283 EXPORT_SYMBOL(file_fsync); 3284 EXPORT_SYMBOL(fsync_bdev); 3285 EXPORT_SYMBOL(generic_block_bmap); 3286 EXPORT_SYMBOL(generic_cont_expand_simple); 3287 EXPORT_SYMBOL(init_buffer); 3288 EXPORT_SYMBOL(invalidate_bdev); 3289 EXPORT_SYMBOL(ll_rw_block); 3290 EXPORT_SYMBOL(mark_buffer_dirty); 3291 EXPORT_SYMBOL(submit_bh); 3292 EXPORT_SYMBOL(sync_dirty_buffer); 3293 EXPORT_SYMBOL(unlock_buffer); 3294