xref: /linux/fs/buffer.c (revision ee665ecca6d6775f65b1a4154c34f551f62cec52)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 
56 static int sync_buffer(void *word)
57 {
58 	struct block_device *bd;
59 	struct buffer_head *bh
60 		= container_of(word, struct buffer_head, b_state);
61 
62 	smp_mb();
63 	bd = bh->b_bdev;
64 	if (bd)
65 		blk_run_address_space(bd->bd_inode->i_mapping);
66 	io_schedule();
67 	return 0;
68 }
69 
70 void __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void unlock_buffer(struct buffer_head *bh)
78 {
79 	clear_bit_unlock(BH_Lock, &bh->b_state);
80 	smp_mb__after_clear_bit();
81 	wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 
84 /*
85  * Block until a buffer comes unlocked.  This doesn't stop it
86  * from becoming locked again - you have to lock it yourself
87  * if you want to preserve its state.
88  */
89 void __wait_on_buffer(struct buffer_head * bh)
90 {
91 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92 }
93 
94 static void
95 __clear_page_buffers(struct page *page)
96 {
97 	ClearPagePrivate(page);
98 	set_page_private(page, 0);
99 	page_cache_release(page);
100 }
101 
102 
103 static int quiet_error(struct buffer_head *bh)
104 {
105 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106 		return 0;
107 	return 1;
108 }
109 
110 
111 static void buffer_io_error(struct buffer_head *bh)
112 {
113 	char b[BDEVNAME_SIZE];
114 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115 			bdevname(bh->b_bdev, b),
116 			(unsigned long long)bh->b_blocknr);
117 }
118 
119 /*
120  * End-of-IO handler helper function which does not touch the bh after
121  * unlocking it.
122  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123  * a race there is benign: unlock_buffer() only use the bh's address for
124  * hashing after unlocking the buffer, so it doesn't actually touch the bh
125  * itself.
126  */
127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
128 {
129 	if (uptodate) {
130 		set_buffer_uptodate(bh);
131 	} else {
132 		/* This happens, due to failed READA attempts. */
133 		clear_buffer_uptodate(bh);
134 	}
135 	unlock_buffer(bh);
136 }
137 
138 /*
139  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
140  * unlock the buffer. This is what ll_rw_block uses too.
141  */
142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
143 {
144 	__end_buffer_read_notouch(bh, uptodate);
145 	put_bh(bh);
146 }
147 
148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
149 {
150 	char b[BDEVNAME_SIZE];
151 
152 	if (uptodate) {
153 		set_buffer_uptodate(bh);
154 	} else {
155 		if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
156 			buffer_io_error(bh);
157 			printk(KERN_WARNING "lost page write due to "
158 					"I/O error on %s\n",
159 				       bdevname(bh->b_bdev, b));
160 		}
161 		set_buffer_write_io_error(bh);
162 		clear_buffer_uptodate(bh);
163 	}
164 	unlock_buffer(bh);
165 	put_bh(bh);
166 }
167 
168 /*
169  * Various filesystems appear to want __find_get_block to be non-blocking.
170  * But it's the page lock which protects the buffers.  To get around this,
171  * we get exclusion from try_to_free_buffers with the blockdev mapping's
172  * private_lock.
173  *
174  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
175  * may be quite high.  This code could TryLock the page, and if that
176  * succeeds, there is no need to take private_lock. (But if
177  * private_lock is contended then so is mapping->tree_lock).
178  */
179 static struct buffer_head *
180 __find_get_block_slow(struct block_device *bdev, sector_t block)
181 {
182 	struct inode *bd_inode = bdev->bd_inode;
183 	struct address_space *bd_mapping = bd_inode->i_mapping;
184 	struct buffer_head *ret = NULL;
185 	pgoff_t index;
186 	struct buffer_head *bh;
187 	struct buffer_head *head;
188 	struct page *page;
189 	int all_mapped = 1;
190 
191 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
192 	page = find_get_page(bd_mapping, index);
193 	if (!page)
194 		goto out;
195 
196 	spin_lock(&bd_mapping->private_lock);
197 	if (!page_has_buffers(page))
198 		goto out_unlock;
199 	head = page_buffers(page);
200 	bh = head;
201 	do {
202 		if (bh->b_blocknr == block) {
203 			ret = bh;
204 			get_bh(bh);
205 			goto out_unlock;
206 		}
207 		if (!buffer_mapped(bh))
208 			all_mapped = 0;
209 		bh = bh->b_this_page;
210 	} while (bh != head);
211 
212 	/* we might be here because some of the buffers on this page are
213 	 * not mapped.  This is due to various races between
214 	 * file io on the block device and getblk.  It gets dealt with
215 	 * elsewhere, don't buffer_error if we had some unmapped buffers
216 	 */
217 	if (all_mapped) {
218 		printk("__find_get_block_slow() failed. "
219 			"block=%llu, b_blocknr=%llu\n",
220 			(unsigned long long)block,
221 			(unsigned long long)bh->b_blocknr);
222 		printk("b_state=0x%08lx, b_size=%zu\n",
223 			bh->b_state, bh->b_size);
224 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
225 	}
226 out_unlock:
227 	spin_unlock(&bd_mapping->private_lock);
228 	page_cache_release(page);
229 out:
230 	return ret;
231 }
232 
233 /* If invalidate_buffers() will trash dirty buffers, it means some kind
234    of fs corruption is going on. Trashing dirty data always imply losing
235    information that was supposed to be just stored on the physical layer
236    by the user.
237 
238    Thus invalidate_buffers in general usage is not allwowed to trash
239    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
240    be preserved.  These buffers are simply skipped.
241 
242    We also skip buffers which are still in use.  For example this can
243    happen if a userspace program is reading the block device.
244 
245    NOTE: In the case where the user removed a removable-media-disk even if
246    there's still dirty data not synced on disk (due a bug in the device driver
247    or due an error of the user), by not destroying the dirty buffers we could
248    generate corruption also on the next media inserted, thus a parameter is
249    necessary to handle this case in the most safe way possible (trying
250    to not corrupt also the new disk inserted with the data belonging to
251    the old now corrupted disk). Also for the ramdisk the natural thing
252    to do in order to release the ramdisk memory is to destroy dirty buffers.
253 
254    These are two special cases. Normal usage imply the device driver
255    to issue a sync on the device (without waiting I/O completion) and
256    then an invalidate_buffers call that doesn't trash dirty buffers.
257 
258    For handling cache coherency with the blkdev pagecache the 'update' case
259    is been introduced. It is needed to re-read from disk any pinned
260    buffer. NOTE: re-reading from disk is destructive so we can do it only
261    when we assume nobody is changing the buffercache under our I/O and when
262    we think the disk contains more recent information than the buffercache.
263    The update == 1 pass marks the buffers we need to update, the update == 2
264    pass does the actual I/O. */
265 void invalidate_bdev(struct block_device *bdev)
266 {
267 	struct address_space *mapping = bdev->bd_inode->i_mapping;
268 
269 	if (mapping->nrpages == 0)
270 		return;
271 
272 	invalidate_bh_lrus();
273 	invalidate_mapping_pages(mapping, 0, -1);
274 }
275 
276 /*
277  * Kick pdflush then try to free up some ZONE_NORMAL memory.
278  */
279 static void free_more_memory(void)
280 {
281 	struct zone *zone;
282 	int nid;
283 
284 	wakeup_pdflush(1024);
285 	yield();
286 
287 	for_each_online_node(nid) {
288 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
289 						gfp_zone(GFP_NOFS), NULL,
290 						&zone);
291 		if (zone)
292 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
293 						GFP_NOFS);
294 	}
295 }
296 
297 /*
298  * I/O completion handler for block_read_full_page() - pages
299  * which come unlocked at the end of I/O.
300  */
301 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
302 {
303 	unsigned long flags;
304 	struct buffer_head *first;
305 	struct buffer_head *tmp;
306 	struct page *page;
307 	int page_uptodate = 1;
308 
309 	BUG_ON(!buffer_async_read(bh));
310 
311 	page = bh->b_page;
312 	if (uptodate) {
313 		set_buffer_uptodate(bh);
314 	} else {
315 		clear_buffer_uptodate(bh);
316 		if (!quiet_error(bh))
317 			buffer_io_error(bh);
318 		SetPageError(page);
319 	}
320 
321 	/*
322 	 * Be _very_ careful from here on. Bad things can happen if
323 	 * two buffer heads end IO at almost the same time and both
324 	 * decide that the page is now completely done.
325 	 */
326 	first = page_buffers(page);
327 	local_irq_save(flags);
328 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
329 	clear_buffer_async_read(bh);
330 	unlock_buffer(bh);
331 	tmp = bh;
332 	do {
333 		if (!buffer_uptodate(tmp))
334 			page_uptodate = 0;
335 		if (buffer_async_read(tmp)) {
336 			BUG_ON(!buffer_locked(tmp));
337 			goto still_busy;
338 		}
339 		tmp = tmp->b_this_page;
340 	} while (tmp != bh);
341 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
342 	local_irq_restore(flags);
343 
344 	/*
345 	 * If none of the buffers had errors and they are all
346 	 * uptodate then we can set the page uptodate.
347 	 */
348 	if (page_uptodate && !PageError(page))
349 		SetPageUptodate(page);
350 	unlock_page(page);
351 	return;
352 
353 still_busy:
354 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
355 	local_irq_restore(flags);
356 	return;
357 }
358 
359 /*
360  * Completion handler for block_write_full_page() - pages which are unlocked
361  * during I/O, and which have PageWriteback cleared upon I/O completion.
362  */
363 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
364 {
365 	char b[BDEVNAME_SIZE];
366 	unsigned long flags;
367 	struct buffer_head *first;
368 	struct buffer_head *tmp;
369 	struct page *page;
370 
371 	BUG_ON(!buffer_async_write(bh));
372 
373 	page = bh->b_page;
374 	if (uptodate) {
375 		set_buffer_uptodate(bh);
376 	} else {
377 		if (!quiet_error(bh)) {
378 			buffer_io_error(bh);
379 			printk(KERN_WARNING "lost page write due to "
380 					"I/O error on %s\n",
381 			       bdevname(bh->b_bdev, b));
382 		}
383 		set_bit(AS_EIO, &page->mapping->flags);
384 		set_buffer_write_io_error(bh);
385 		clear_buffer_uptodate(bh);
386 		SetPageError(page);
387 	}
388 
389 	first = page_buffers(page);
390 	local_irq_save(flags);
391 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
392 
393 	clear_buffer_async_write(bh);
394 	unlock_buffer(bh);
395 	tmp = bh->b_this_page;
396 	while (tmp != bh) {
397 		if (buffer_async_write(tmp)) {
398 			BUG_ON(!buffer_locked(tmp));
399 			goto still_busy;
400 		}
401 		tmp = tmp->b_this_page;
402 	}
403 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
404 	local_irq_restore(flags);
405 	end_page_writeback(page);
406 	return;
407 
408 still_busy:
409 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 	local_irq_restore(flags);
411 	return;
412 }
413 
414 /*
415  * If a page's buffers are under async readin (end_buffer_async_read
416  * completion) then there is a possibility that another thread of
417  * control could lock one of the buffers after it has completed
418  * but while some of the other buffers have not completed.  This
419  * locked buffer would confuse end_buffer_async_read() into not unlocking
420  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
421  * that this buffer is not under async I/O.
422  *
423  * The page comes unlocked when it has no locked buffer_async buffers
424  * left.
425  *
426  * PageLocked prevents anyone starting new async I/O reads any of
427  * the buffers.
428  *
429  * PageWriteback is used to prevent simultaneous writeout of the same
430  * page.
431  *
432  * PageLocked prevents anyone from starting writeback of a page which is
433  * under read I/O (PageWriteback is only ever set against a locked page).
434  */
435 static void mark_buffer_async_read(struct buffer_head *bh)
436 {
437 	bh->b_end_io = end_buffer_async_read;
438 	set_buffer_async_read(bh);
439 }
440 
441 void mark_buffer_async_write(struct buffer_head *bh)
442 {
443 	bh->b_end_io = end_buffer_async_write;
444 	set_buffer_async_write(bh);
445 }
446 EXPORT_SYMBOL(mark_buffer_async_write);
447 
448 
449 /*
450  * fs/buffer.c contains helper functions for buffer-backed address space's
451  * fsync functions.  A common requirement for buffer-based filesystems is
452  * that certain data from the backing blockdev needs to be written out for
453  * a successful fsync().  For example, ext2 indirect blocks need to be
454  * written back and waited upon before fsync() returns.
455  *
456  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
457  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
458  * management of a list of dependent buffers at ->i_mapping->private_list.
459  *
460  * Locking is a little subtle: try_to_free_buffers() will remove buffers
461  * from their controlling inode's queue when they are being freed.  But
462  * try_to_free_buffers() will be operating against the *blockdev* mapping
463  * at the time, not against the S_ISREG file which depends on those buffers.
464  * So the locking for private_list is via the private_lock in the address_space
465  * which backs the buffers.  Which is different from the address_space
466  * against which the buffers are listed.  So for a particular address_space,
467  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
468  * mapping->private_list will always be protected by the backing blockdev's
469  * ->private_lock.
470  *
471  * Which introduces a requirement: all buffers on an address_space's
472  * ->private_list must be from the same address_space: the blockdev's.
473  *
474  * address_spaces which do not place buffers at ->private_list via these
475  * utility functions are free to use private_lock and private_list for
476  * whatever they want.  The only requirement is that list_empty(private_list)
477  * be true at clear_inode() time.
478  *
479  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
480  * filesystems should do that.  invalidate_inode_buffers() should just go
481  * BUG_ON(!list_empty).
482  *
483  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
484  * take an address_space, not an inode.  And it should be called
485  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
486  * queued up.
487  *
488  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
489  * list if it is already on a list.  Because if the buffer is on a list,
490  * it *must* already be on the right one.  If not, the filesystem is being
491  * silly.  This will save a ton of locking.  But first we have to ensure
492  * that buffers are taken *off* the old inode's list when they are freed
493  * (presumably in truncate).  That requires careful auditing of all
494  * filesystems (do it inside bforget()).  It could also be done by bringing
495  * b_inode back.
496  */
497 
498 /*
499  * The buffer's backing address_space's private_lock must be held
500  */
501 static void __remove_assoc_queue(struct buffer_head *bh)
502 {
503 	list_del_init(&bh->b_assoc_buffers);
504 	WARN_ON(!bh->b_assoc_map);
505 	if (buffer_write_io_error(bh))
506 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
507 	bh->b_assoc_map = NULL;
508 }
509 
510 int inode_has_buffers(struct inode *inode)
511 {
512 	return !list_empty(&inode->i_data.private_list);
513 }
514 
515 /*
516  * osync is designed to support O_SYNC io.  It waits synchronously for
517  * all already-submitted IO to complete, but does not queue any new
518  * writes to the disk.
519  *
520  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
521  * you dirty the buffers, and then use osync_inode_buffers to wait for
522  * completion.  Any other dirty buffers which are not yet queued for
523  * write will not be flushed to disk by the osync.
524  */
525 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
526 {
527 	struct buffer_head *bh;
528 	struct list_head *p;
529 	int err = 0;
530 
531 	spin_lock(lock);
532 repeat:
533 	list_for_each_prev(p, list) {
534 		bh = BH_ENTRY(p);
535 		if (buffer_locked(bh)) {
536 			get_bh(bh);
537 			spin_unlock(lock);
538 			wait_on_buffer(bh);
539 			if (!buffer_uptodate(bh))
540 				err = -EIO;
541 			brelse(bh);
542 			spin_lock(lock);
543 			goto repeat;
544 		}
545 	}
546 	spin_unlock(lock);
547 	return err;
548 }
549 
550 /**
551  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
552  * @mapping: the mapping which wants those buffers written
553  *
554  * Starts I/O against the buffers at mapping->private_list, and waits upon
555  * that I/O.
556  *
557  * Basically, this is a convenience function for fsync().
558  * @mapping is a file or directory which needs those buffers to be written for
559  * a successful fsync().
560  */
561 int sync_mapping_buffers(struct address_space *mapping)
562 {
563 	struct address_space *buffer_mapping = mapping->assoc_mapping;
564 
565 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
566 		return 0;
567 
568 	return fsync_buffers_list(&buffer_mapping->private_lock,
569 					&mapping->private_list);
570 }
571 EXPORT_SYMBOL(sync_mapping_buffers);
572 
573 /*
574  * Called when we've recently written block `bblock', and it is known that
575  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
576  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
577  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
578  */
579 void write_boundary_block(struct block_device *bdev,
580 			sector_t bblock, unsigned blocksize)
581 {
582 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
583 	if (bh) {
584 		if (buffer_dirty(bh))
585 			ll_rw_block(WRITE, 1, &bh);
586 		put_bh(bh);
587 	}
588 }
589 
590 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
591 {
592 	struct address_space *mapping = inode->i_mapping;
593 	struct address_space *buffer_mapping = bh->b_page->mapping;
594 
595 	mark_buffer_dirty(bh);
596 	if (!mapping->assoc_mapping) {
597 		mapping->assoc_mapping = buffer_mapping;
598 	} else {
599 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
600 	}
601 	if (!bh->b_assoc_map) {
602 		spin_lock(&buffer_mapping->private_lock);
603 		list_move_tail(&bh->b_assoc_buffers,
604 				&mapping->private_list);
605 		bh->b_assoc_map = mapping;
606 		spin_unlock(&buffer_mapping->private_lock);
607 	}
608 }
609 EXPORT_SYMBOL(mark_buffer_dirty_inode);
610 
611 /*
612  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
613  * dirty.
614  *
615  * If warn is true, then emit a warning if the page is not uptodate and has
616  * not been truncated.
617  */
618 static void __set_page_dirty(struct page *page,
619 		struct address_space *mapping, int warn)
620 {
621 	spin_lock_irq(&mapping->tree_lock);
622 	if (page->mapping) {	/* Race with truncate? */
623 		WARN_ON_ONCE(warn && !PageUptodate(page));
624 
625 		if (mapping_cap_account_dirty(mapping)) {
626 			__inc_zone_page_state(page, NR_FILE_DIRTY);
627 			__inc_bdi_stat(mapping->backing_dev_info,
628 					BDI_RECLAIMABLE);
629 			task_dirty_inc(current);
630 			task_io_account_write(PAGE_CACHE_SIZE);
631 		}
632 		radix_tree_tag_set(&mapping->page_tree,
633 				page_index(page), PAGECACHE_TAG_DIRTY);
634 	}
635 	spin_unlock_irq(&mapping->tree_lock);
636 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
637 }
638 
639 /*
640  * Add a page to the dirty page list.
641  *
642  * It is a sad fact of life that this function is called from several places
643  * deeply under spinlocking.  It may not sleep.
644  *
645  * If the page has buffers, the uptodate buffers are set dirty, to preserve
646  * dirty-state coherency between the page and the buffers.  It the page does
647  * not have buffers then when they are later attached they will all be set
648  * dirty.
649  *
650  * The buffers are dirtied before the page is dirtied.  There's a small race
651  * window in which a writepage caller may see the page cleanness but not the
652  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
653  * before the buffers, a concurrent writepage caller could clear the page dirty
654  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
655  * page on the dirty page list.
656  *
657  * We use private_lock to lock against try_to_free_buffers while using the
658  * page's buffer list.  Also use this to protect against clean buffers being
659  * added to the page after it was set dirty.
660  *
661  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
662  * address_space though.
663  */
664 int __set_page_dirty_buffers(struct page *page)
665 {
666 	int newly_dirty;
667 	struct address_space *mapping = page_mapping(page);
668 
669 	if (unlikely(!mapping))
670 		return !TestSetPageDirty(page);
671 
672 	spin_lock(&mapping->private_lock);
673 	if (page_has_buffers(page)) {
674 		struct buffer_head *head = page_buffers(page);
675 		struct buffer_head *bh = head;
676 
677 		do {
678 			set_buffer_dirty(bh);
679 			bh = bh->b_this_page;
680 		} while (bh != head);
681 	}
682 	newly_dirty = !TestSetPageDirty(page);
683 	spin_unlock(&mapping->private_lock);
684 
685 	if (newly_dirty)
686 		__set_page_dirty(page, mapping, 1);
687 	return newly_dirty;
688 }
689 EXPORT_SYMBOL(__set_page_dirty_buffers);
690 
691 /*
692  * Write out and wait upon a list of buffers.
693  *
694  * We have conflicting pressures: we want to make sure that all
695  * initially dirty buffers get waited on, but that any subsequently
696  * dirtied buffers don't.  After all, we don't want fsync to last
697  * forever if somebody is actively writing to the file.
698  *
699  * Do this in two main stages: first we copy dirty buffers to a
700  * temporary inode list, queueing the writes as we go.  Then we clean
701  * up, waiting for those writes to complete.
702  *
703  * During this second stage, any subsequent updates to the file may end
704  * up refiling the buffer on the original inode's dirty list again, so
705  * there is a chance we will end up with a buffer queued for write but
706  * not yet completed on that list.  So, as a final cleanup we go through
707  * the osync code to catch these locked, dirty buffers without requeuing
708  * any newly dirty buffers for write.
709  */
710 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
711 {
712 	struct buffer_head *bh;
713 	struct list_head tmp;
714 	struct address_space *mapping;
715 	int err = 0, err2;
716 
717 	INIT_LIST_HEAD(&tmp);
718 
719 	spin_lock(lock);
720 	while (!list_empty(list)) {
721 		bh = BH_ENTRY(list->next);
722 		mapping = bh->b_assoc_map;
723 		__remove_assoc_queue(bh);
724 		/* Avoid race with mark_buffer_dirty_inode() which does
725 		 * a lockless check and we rely on seeing the dirty bit */
726 		smp_mb();
727 		if (buffer_dirty(bh) || buffer_locked(bh)) {
728 			list_add(&bh->b_assoc_buffers, &tmp);
729 			bh->b_assoc_map = mapping;
730 			if (buffer_dirty(bh)) {
731 				get_bh(bh);
732 				spin_unlock(lock);
733 				/*
734 				 * Ensure any pending I/O completes so that
735 				 * ll_rw_block() actually writes the current
736 				 * contents - it is a noop if I/O is still in
737 				 * flight on potentially older contents.
738 				 */
739 				ll_rw_block(SWRITE_SYNC, 1, &bh);
740 				brelse(bh);
741 				spin_lock(lock);
742 			}
743 		}
744 	}
745 
746 	while (!list_empty(&tmp)) {
747 		bh = BH_ENTRY(tmp.prev);
748 		get_bh(bh);
749 		mapping = bh->b_assoc_map;
750 		__remove_assoc_queue(bh);
751 		/* Avoid race with mark_buffer_dirty_inode() which does
752 		 * a lockless check and we rely on seeing the dirty bit */
753 		smp_mb();
754 		if (buffer_dirty(bh)) {
755 			list_add(&bh->b_assoc_buffers,
756 				 &mapping->private_list);
757 			bh->b_assoc_map = mapping;
758 		}
759 		spin_unlock(lock);
760 		wait_on_buffer(bh);
761 		if (!buffer_uptodate(bh))
762 			err = -EIO;
763 		brelse(bh);
764 		spin_lock(lock);
765 	}
766 
767 	spin_unlock(lock);
768 	err2 = osync_buffers_list(lock, list);
769 	if (err)
770 		return err;
771 	else
772 		return err2;
773 }
774 
775 /*
776  * Invalidate any and all dirty buffers on a given inode.  We are
777  * probably unmounting the fs, but that doesn't mean we have already
778  * done a sync().  Just drop the buffers from the inode list.
779  *
780  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
781  * assumes that all the buffers are against the blockdev.  Not true
782  * for reiserfs.
783  */
784 void invalidate_inode_buffers(struct inode *inode)
785 {
786 	if (inode_has_buffers(inode)) {
787 		struct address_space *mapping = &inode->i_data;
788 		struct list_head *list = &mapping->private_list;
789 		struct address_space *buffer_mapping = mapping->assoc_mapping;
790 
791 		spin_lock(&buffer_mapping->private_lock);
792 		while (!list_empty(list))
793 			__remove_assoc_queue(BH_ENTRY(list->next));
794 		spin_unlock(&buffer_mapping->private_lock);
795 	}
796 }
797 EXPORT_SYMBOL(invalidate_inode_buffers);
798 
799 /*
800  * Remove any clean buffers from the inode's buffer list.  This is called
801  * when we're trying to free the inode itself.  Those buffers can pin it.
802  *
803  * Returns true if all buffers were removed.
804  */
805 int remove_inode_buffers(struct inode *inode)
806 {
807 	int ret = 1;
808 
809 	if (inode_has_buffers(inode)) {
810 		struct address_space *mapping = &inode->i_data;
811 		struct list_head *list = &mapping->private_list;
812 		struct address_space *buffer_mapping = mapping->assoc_mapping;
813 
814 		spin_lock(&buffer_mapping->private_lock);
815 		while (!list_empty(list)) {
816 			struct buffer_head *bh = BH_ENTRY(list->next);
817 			if (buffer_dirty(bh)) {
818 				ret = 0;
819 				break;
820 			}
821 			__remove_assoc_queue(bh);
822 		}
823 		spin_unlock(&buffer_mapping->private_lock);
824 	}
825 	return ret;
826 }
827 
828 /*
829  * Create the appropriate buffers when given a page for data area and
830  * the size of each buffer.. Use the bh->b_this_page linked list to
831  * follow the buffers created.  Return NULL if unable to create more
832  * buffers.
833  *
834  * The retry flag is used to differentiate async IO (paging, swapping)
835  * which may not fail from ordinary buffer allocations.
836  */
837 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
838 		int retry)
839 {
840 	struct buffer_head *bh, *head;
841 	long offset;
842 
843 try_again:
844 	head = NULL;
845 	offset = PAGE_SIZE;
846 	while ((offset -= size) >= 0) {
847 		bh = alloc_buffer_head(GFP_NOFS);
848 		if (!bh)
849 			goto no_grow;
850 
851 		bh->b_bdev = NULL;
852 		bh->b_this_page = head;
853 		bh->b_blocknr = -1;
854 		head = bh;
855 
856 		bh->b_state = 0;
857 		atomic_set(&bh->b_count, 0);
858 		bh->b_private = NULL;
859 		bh->b_size = size;
860 
861 		/* Link the buffer to its page */
862 		set_bh_page(bh, page, offset);
863 
864 		init_buffer(bh, NULL, NULL);
865 	}
866 	return head;
867 /*
868  * In case anything failed, we just free everything we got.
869  */
870 no_grow:
871 	if (head) {
872 		do {
873 			bh = head;
874 			head = head->b_this_page;
875 			free_buffer_head(bh);
876 		} while (head);
877 	}
878 
879 	/*
880 	 * Return failure for non-async IO requests.  Async IO requests
881 	 * are not allowed to fail, so we have to wait until buffer heads
882 	 * become available.  But we don't want tasks sleeping with
883 	 * partially complete buffers, so all were released above.
884 	 */
885 	if (!retry)
886 		return NULL;
887 
888 	/* We're _really_ low on memory. Now we just
889 	 * wait for old buffer heads to become free due to
890 	 * finishing IO.  Since this is an async request and
891 	 * the reserve list is empty, we're sure there are
892 	 * async buffer heads in use.
893 	 */
894 	free_more_memory();
895 	goto try_again;
896 }
897 EXPORT_SYMBOL_GPL(alloc_page_buffers);
898 
899 static inline void
900 link_dev_buffers(struct page *page, struct buffer_head *head)
901 {
902 	struct buffer_head *bh, *tail;
903 
904 	bh = head;
905 	do {
906 		tail = bh;
907 		bh = bh->b_this_page;
908 	} while (bh);
909 	tail->b_this_page = head;
910 	attach_page_buffers(page, head);
911 }
912 
913 /*
914  * Initialise the state of a blockdev page's buffers.
915  */
916 static void
917 init_page_buffers(struct page *page, struct block_device *bdev,
918 			sector_t block, int size)
919 {
920 	struct buffer_head *head = page_buffers(page);
921 	struct buffer_head *bh = head;
922 	int uptodate = PageUptodate(page);
923 
924 	do {
925 		if (!buffer_mapped(bh)) {
926 			init_buffer(bh, NULL, NULL);
927 			bh->b_bdev = bdev;
928 			bh->b_blocknr = block;
929 			if (uptodate)
930 				set_buffer_uptodate(bh);
931 			set_buffer_mapped(bh);
932 		}
933 		block++;
934 		bh = bh->b_this_page;
935 	} while (bh != head);
936 }
937 
938 /*
939  * Create the page-cache page that contains the requested block.
940  *
941  * This is user purely for blockdev mappings.
942  */
943 static struct page *
944 grow_dev_page(struct block_device *bdev, sector_t block,
945 		pgoff_t index, int size)
946 {
947 	struct inode *inode = bdev->bd_inode;
948 	struct page *page;
949 	struct buffer_head *bh;
950 
951 	page = find_or_create_page(inode->i_mapping, index,
952 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
953 	if (!page)
954 		return NULL;
955 
956 	BUG_ON(!PageLocked(page));
957 
958 	if (page_has_buffers(page)) {
959 		bh = page_buffers(page);
960 		if (bh->b_size == size) {
961 			init_page_buffers(page, bdev, block, size);
962 			return page;
963 		}
964 		if (!try_to_free_buffers(page))
965 			goto failed;
966 	}
967 
968 	/*
969 	 * Allocate some buffers for this page
970 	 */
971 	bh = alloc_page_buffers(page, size, 0);
972 	if (!bh)
973 		goto failed;
974 
975 	/*
976 	 * Link the page to the buffers and initialise them.  Take the
977 	 * lock to be atomic wrt __find_get_block(), which does not
978 	 * run under the page lock.
979 	 */
980 	spin_lock(&inode->i_mapping->private_lock);
981 	link_dev_buffers(page, bh);
982 	init_page_buffers(page, bdev, block, size);
983 	spin_unlock(&inode->i_mapping->private_lock);
984 	return page;
985 
986 failed:
987 	BUG();
988 	unlock_page(page);
989 	page_cache_release(page);
990 	return NULL;
991 }
992 
993 /*
994  * Create buffers for the specified block device block's page.  If
995  * that page was dirty, the buffers are set dirty also.
996  */
997 static int
998 grow_buffers(struct block_device *bdev, sector_t block, int size)
999 {
1000 	struct page *page;
1001 	pgoff_t index;
1002 	int sizebits;
1003 
1004 	sizebits = -1;
1005 	do {
1006 		sizebits++;
1007 	} while ((size << sizebits) < PAGE_SIZE);
1008 
1009 	index = block >> sizebits;
1010 
1011 	/*
1012 	 * Check for a block which wants to lie outside our maximum possible
1013 	 * pagecache index.  (this comparison is done using sector_t types).
1014 	 */
1015 	if (unlikely(index != block >> sizebits)) {
1016 		char b[BDEVNAME_SIZE];
1017 
1018 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1019 			"device %s\n",
1020 			__func__, (unsigned long long)block,
1021 			bdevname(bdev, b));
1022 		return -EIO;
1023 	}
1024 	block = index << sizebits;
1025 	/* Create a page with the proper size buffers.. */
1026 	page = grow_dev_page(bdev, block, index, size);
1027 	if (!page)
1028 		return 0;
1029 	unlock_page(page);
1030 	page_cache_release(page);
1031 	return 1;
1032 }
1033 
1034 static struct buffer_head *
1035 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1036 {
1037 	/* Size must be multiple of hard sectorsize */
1038 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1039 			(size < 512 || size > PAGE_SIZE))) {
1040 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1041 					size);
1042 		printk(KERN_ERR "hardsect size: %d\n",
1043 					bdev_hardsect_size(bdev));
1044 
1045 		dump_stack();
1046 		return NULL;
1047 	}
1048 
1049 	for (;;) {
1050 		struct buffer_head * bh;
1051 		int ret;
1052 
1053 		bh = __find_get_block(bdev, block, size);
1054 		if (bh)
1055 			return bh;
1056 
1057 		ret = grow_buffers(bdev, block, size);
1058 		if (ret < 0)
1059 			return NULL;
1060 		if (ret == 0)
1061 			free_more_memory();
1062 	}
1063 }
1064 
1065 /*
1066  * The relationship between dirty buffers and dirty pages:
1067  *
1068  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1069  * the page is tagged dirty in its radix tree.
1070  *
1071  * At all times, the dirtiness of the buffers represents the dirtiness of
1072  * subsections of the page.  If the page has buffers, the page dirty bit is
1073  * merely a hint about the true dirty state.
1074  *
1075  * When a page is set dirty in its entirety, all its buffers are marked dirty
1076  * (if the page has buffers).
1077  *
1078  * When a buffer is marked dirty, its page is dirtied, but the page's other
1079  * buffers are not.
1080  *
1081  * Also.  When blockdev buffers are explicitly read with bread(), they
1082  * individually become uptodate.  But their backing page remains not
1083  * uptodate - even if all of its buffers are uptodate.  A subsequent
1084  * block_read_full_page() against that page will discover all the uptodate
1085  * buffers, will set the page uptodate and will perform no I/O.
1086  */
1087 
1088 /**
1089  * mark_buffer_dirty - mark a buffer_head as needing writeout
1090  * @bh: the buffer_head to mark dirty
1091  *
1092  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1093  * backing page dirty, then tag the page as dirty in its address_space's radix
1094  * tree and then attach the address_space's inode to its superblock's dirty
1095  * inode list.
1096  *
1097  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1098  * mapping->tree_lock and the global inode_lock.
1099  */
1100 void mark_buffer_dirty(struct buffer_head *bh)
1101 {
1102 	WARN_ON_ONCE(!buffer_uptodate(bh));
1103 
1104 	/*
1105 	 * Very *carefully* optimize the it-is-already-dirty case.
1106 	 *
1107 	 * Don't let the final "is it dirty" escape to before we
1108 	 * perhaps modified the buffer.
1109 	 */
1110 	if (buffer_dirty(bh)) {
1111 		smp_mb();
1112 		if (buffer_dirty(bh))
1113 			return;
1114 	}
1115 
1116 	if (!test_set_buffer_dirty(bh)) {
1117 		struct page *page = bh->b_page;
1118 		if (!TestSetPageDirty(page))
1119 			__set_page_dirty(page, page_mapping(page), 0);
1120 	}
1121 }
1122 
1123 /*
1124  * Decrement a buffer_head's reference count.  If all buffers against a page
1125  * have zero reference count, are clean and unlocked, and if the page is clean
1126  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1127  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1128  * a page but it ends up not being freed, and buffers may later be reattached).
1129  */
1130 void __brelse(struct buffer_head * buf)
1131 {
1132 	if (atomic_read(&buf->b_count)) {
1133 		put_bh(buf);
1134 		return;
1135 	}
1136 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1137 }
1138 
1139 /*
1140  * bforget() is like brelse(), except it discards any
1141  * potentially dirty data.
1142  */
1143 void __bforget(struct buffer_head *bh)
1144 {
1145 	clear_buffer_dirty(bh);
1146 	if (bh->b_assoc_map) {
1147 		struct address_space *buffer_mapping = bh->b_page->mapping;
1148 
1149 		spin_lock(&buffer_mapping->private_lock);
1150 		list_del_init(&bh->b_assoc_buffers);
1151 		bh->b_assoc_map = NULL;
1152 		spin_unlock(&buffer_mapping->private_lock);
1153 	}
1154 	__brelse(bh);
1155 }
1156 
1157 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1158 {
1159 	lock_buffer(bh);
1160 	if (buffer_uptodate(bh)) {
1161 		unlock_buffer(bh);
1162 		return bh;
1163 	} else {
1164 		get_bh(bh);
1165 		bh->b_end_io = end_buffer_read_sync;
1166 		submit_bh(READ, bh);
1167 		wait_on_buffer(bh);
1168 		if (buffer_uptodate(bh))
1169 			return bh;
1170 	}
1171 	brelse(bh);
1172 	return NULL;
1173 }
1174 
1175 /*
1176  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1177  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1178  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1179  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1180  * CPU's LRUs at the same time.
1181  *
1182  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1183  * sb_find_get_block().
1184  *
1185  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1186  * a local interrupt disable for that.
1187  */
1188 
1189 #define BH_LRU_SIZE	8
1190 
1191 struct bh_lru {
1192 	struct buffer_head *bhs[BH_LRU_SIZE];
1193 };
1194 
1195 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1196 
1197 #ifdef CONFIG_SMP
1198 #define bh_lru_lock()	local_irq_disable()
1199 #define bh_lru_unlock()	local_irq_enable()
1200 #else
1201 #define bh_lru_lock()	preempt_disable()
1202 #define bh_lru_unlock()	preempt_enable()
1203 #endif
1204 
1205 static inline void check_irqs_on(void)
1206 {
1207 #ifdef irqs_disabled
1208 	BUG_ON(irqs_disabled());
1209 #endif
1210 }
1211 
1212 /*
1213  * The LRU management algorithm is dopey-but-simple.  Sorry.
1214  */
1215 static void bh_lru_install(struct buffer_head *bh)
1216 {
1217 	struct buffer_head *evictee = NULL;
1218 	struct bh_lru *lru;
1219 
1220 	check_irqs_on();
1221 	bh_lru_lock();
1222 	lru = &__get_cpu_var(bh_lrus);
1223 	if (lru->bhs[0] != bh) {
1224 		struct buffer_head *bhs[BH_LRU_SIZE];
1225 		int in;
1226 		int out = 0;
1227 
1228 		get_bh(bh);
1229 		bhs[out++] = bh;
1230 		for (in = 0; in < BH_LRU_SIZE; in++) {
1231 			struct buffer_head *bh2 = lru->bhs[in];
1232 
1233 			if (bh2 == bh) {
1234 				__brelse(bh2);
1235 			} else {
1236 				if (out >= BH_LRU_SIZE) {
1237 					BUG_ON(evictee != NULL);
1238 					evictee = bh2;
1239 				} else {
1240 					bhs[out++] = bh2;
1241 				}
1242 			}
1243 		}
1244 		while (out < BH_LRU_SIZE)
1245 			bhs[out++] = NULL;
1246 		memcpy(lru->bhs, bhs, sizeof(bhs));
1247 	}
1248 	bh_lru_unlock();
1249 
1250 	if (evictee)
1251 		__brelse(evictee);
1252 }
1253 
1254 /*
1255  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1256  */
1257 static struct buffer_head *
1258 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1259 {
1260 	struct buffer_head *ret = NULL;
1261 	struct bh_lru *lru;
1262 	unsigned int i;
1263 
1264 	check_irqs_on();
1265 	bh_lru_lock();
1266 	lru = &__get_cpu_var(bh_lrus);
1267 	for (i = 0; i < BH_LRU_SIZE; i++) {
1268 		struct buffer_head *bh = lru->bhs[i];
1269 
1270 		if (bh && bh->b_bdev == bdev &&
1271 				bh->b_blocknr == block && bh->b_size == size) {
1272 			if (i) {
1273 				while (i) {
1274 					lru->bhs[i] = lru->bhs[i - 1];
1275 					i--;
1276 				}
1277 				lru->bhs[0] = bh;
1278 			}
1279 			get_bh(bh);
1280 			ret = bh;
1281 			break;
1282 		}
1283 	}
1284 	bh_lru_unlock();
1285 	return ret;
1286 }
1287 
1288 /*
1289  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1290  * it in the LRU and mark it as accessed.  If it is not present then return
1291  * NULL
1292  */
1293 struct buffer_head *
1294 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1295 {
1296 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1297 
1298 	if (bh == NULL) {
1299 		bh = __find_get_block_slow(bdev, block);
1300 		if (bh)
1301 			bh_lru_install(bh);
1302 	}
1303 	if (bh)
1304 		touch_buffer(bh);
1305 	return bh;
1306 }
1307 EXPORT_SYMBOL(__find_get_block);
1308 
1309 /*
1310  * __getblk will locate (and, if necessary, create) the buffer_head
1311  * which corresponds to the passed block_device, block and size. The
1312  * returned buffer has its reference count incremented.
1313  *
1314  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1315  * illegal block number, __getblk() will happily return a buffer_head
1316  * which represents the non-existent block.  Very weird.
1317  *
1318  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1319  * attempt is failing.  FIXME, perhaps?
1320  */
1321 struct buffer_head *
1322 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1323 {
1324 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1325 
1326 	might_sleep();
1327 	if (bh == NULL)
1328 		bh = __getblk_slow(bdev, block, size);
1329 	return bh;
1330 }
1331 EXPORT_SYMBOL(__getblk);
1332 
1333 /*
1334  * Do async read-ahead on a buffer..
1335  */
1336 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1337 {
1338 	struct buffer_head *bh = __getblk(bdev, block, size);
1339 	if (likely(bh)) {
1340 		ll_rw_block(READA, 1, &bh);
1341 		brelse(bh);
1342 	}
1343 }
1344 EXPORT_SYMBOL(__breadahead);
1345 
1346 /**
1347  *  __bread() - reads a specified block and returns the bh
1348  *  @bdev: the block_device to read from
1349  *  @block: number of block
1350  *  @size: size (in bytes) to read
1351  *
1352  *  Reads a specified block, and returns buffer head that contains it.
1353  *  It returns NULL if the block was unreadable.
1354  */
1355 struct buffer_head *
1356 __bread(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358 	struct buffer_head *bh = __getblk(bdev, block, size);
1359 
1360 	if (likely(bh) && !buffer_uptodate(bh))
1361 		bh = __bread_slow(bh);
1362 	return bh;
1363 }
1364 EXPORT_SYMBOL(__bread);
1365 
1366 /*
1367  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1368  * This doesn't race because it runs in each cpu either in irq
1369  * or with preempt disabled.
1370  */
1371 static void invalidate_bh_lru(void *arg)
1372 {
1373 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1374 	int i;
1375 
1376 	for (i = 0; i < BH_LRU_SIZE; i++) {
1377 		brelse(b->bhs[i]);
1378 		b->bhs[i] = NULL;
1379 	}
1380 	put_cpu_var(bh_lrus);
1381 }
1382 
1383 void invalidate_bh_lrus(void)
1384 {
1385 	on_each_cpu(invalidate_bh_lru, NULL, 1);
1386 }
1387 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1388 
1389 void set_bh_page(struct buffer_head *bh,
1390 		struct page *page, unsigned long offset)
1391 {
1392 	bh->b_page = page;
1393 	BUG_ON(offset >= PAGE_SIZE);
1394 	if (PageHighMem(page))
1395 		/*
1396 		 * This catches illegal uses and preserves the offset:
1397 		 */
1398 		bh->b_data = (char *)(0 + offset);
1399 	else
1400 		bh->b_data = page_address(page) + offset;
1401 }
1402 EXPORT_SYMBOL(set_bh_page);
1403 
1404 /*
1405  * Called when truncating a buffer on a page completely.
1406  */
1407 static void discard_buffer(struct buffer_head * bh)
1408 {
1409 	lock_buffer(bh);
1410 	clear_buffer_dirty(bh);
1411 	bh->b_bdev = NULL;
1412 	clear_buffer_mapped(bh);
1413 	clear_buffer_req(bh);
1414 	clear_buffer_new(bh);
1415 	clear_buffer_delay(bh);
1416 	clear_buffer_unwritten(bh);
1417 	unlock_buffer(bh);
1418 }
1419 
1420 /**
1421  * block_invalidatepage - invalidate part of all of a buffer-backed page
1422  *
1423  * @page: the page which is affected
1424  * @offset: the index of the truncation point
1425  *
1426  * block_invalidatepage() is called when all or part of the page has become
1427  * invalidatedby a truncate operation.
1428  *
1429  * block_invalidatepage() does not have to release all buffers, but it must
1430  * ensure that no dirty buffer is left outside @offset and that no I/O
1431  * is underway against any of the blocks which are outside the truncation
1432  * point.  Because the caller is about to free (and possibly reuse) those
1433  * blocks on-disk.
1434  */
1435 void block_invalidatepage(struct page *page, unsigned long offset)
1436 {
1437 	struct buffer_head *head, *bh, *next;
1438 	unsigned int curr_off = 0;
1439 
1440 	BUG_ON(!PageLocked(page));
1441 	if (!page_has_buffers(page))
1442 		goto out;
1443 
1444 	head = page_buffers(page);
1445 	bh = head;
1446 	do {
1447 		unsigned int next_off = curr_off + bh->b_size;
1448 		next = bh->b_this_page;
1449 
1450 		/*
1451 		 * is this block fully invalidated?
1452 		 */
1453 		if (offset <= curr_off)
1454 			discard_buffer(bh);
1455 		curr_off = next_off;
1456 		bh = next;
1457 	} while (bh != head);
1458 
1459 	/*
1460 	 * We release buffers only if the entire page is being invalidated.
1461 	 * The get_block cached value has been unconditionally invalidated,
1462 	 * so real IO is not possible anymore.
1463 	 */
1464 	if (offset == 0)
1465 		try_to_release_page(page, 0);
1466 out:
1467 	return;
1468 }
1469 EXPORT_SYMBOL(block_invalidatepage);
1470 
1471 /*
1472  * We attach and possibly dirty the buffers atomically wrt
1473  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1474  * is already excluded via the page lock.
1475  */
1476 void create_empty_buffers(struct page *page,
1477 			unsigned long blocksize, unsigned long b_state)
1478 {
1479 	struct buffer_head *bh, *head, *tail;
1480 
1481 	head = alloc_page_buffers(page, blocksize, 1);
1482 	bh = head;
1483 	do {
1484 		bh->b_state |= b_state;
1485 		tail = bh;
1486 		bh = bh->b_this_page;
1487 	} while (bh);
1488 	tail->b_this_page = head;
1489 
1490 	spin_lock(&page->mapping->private_lock);
1491 	if (PageUptodate(page) || PageDirty(page)) {
1492 		bh = head;
1493 		do {
1494 			if (PageDirty(page))
1495 				set_buffer_dirty(bh);
1496 			if (PageUptodate(page))
1497 				set_buffer_uptodate(bh);
1498 			bh = bh->b_this_page;
1499 		} while (bh != head);
1500 	}
1501 	attach_page_buffers(page, head);
1502 	spin_unlock(&page->mapping->private_lock);
1503 }
1504 EXPORT_SYMBOL(create_empty_buffers);
1505 
1506 /*
1507  * We are taking a block for data and we don't want any output from any
1508  * buffer-cache aliases starting from return from that function and
1509  * until the moment when something will explicitly mark the buffer
1510  * dirty (hopefully that will not happen until we will free that block ;-)
1511  * We don't even need to mark it not-uptodate - nobody can expect
1512  * anything from a newly allocated buffer anyway. We used to used
1513  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1514  * don't want to mark the alias unmapped, for example - it would confuse
1515  * anyone who might pick it with bread() afterwards...
1516  *
1517  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1518  * be writeout I/O going on against recently-freed buffers.  We don't
1519  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1520  * only if we really need to.  That happens here.
1521  */
1522 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1523 {
1524 	struct buffer_head *old_bh;
1525 
1526 	might_sleep();
1527 
1528 	old_bh = __find_get_block_slow(bdev, block);
1529 	if (old_bh) {
1530 		clear_buffer_dirty(old_bh);
1531 		wait_on_buffer(old_bh);
1532 		clear_buffer_req(old_bh);
1533 		__brelse(old_bh);
1534 	}
1535 }
1536 EXPORT_SYMBOL(unmap_underlying_metadata);
1537 
1538 /*
1539  * NOTE! All mapped/uptodate combinations are valid:
1540  *
1541  *	Mapped	Uptodate	Meaning
1542  *
1543  *	No	No		"unknown" - must do get_block()
1544  *	No	Yes		"hole" - zero-filled
1545  *	Yes	No		"allocated" - allocated on disk, not read in
1546  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1547  *
1548  * "Dirty" is valid only with the last case (mapped+uptodate).
1549  */
1550 
1551 /*
1552  * While block_write_full_page is writing back the dirty buffers under
1553  * the page lock, whoever dirtied the buffers may decide to clean them
1554  * again at any time.  We handle that by only looking at the buffer
1555  * state inside lock_buffer().
1556  *
1557  * If block_write_full_page() is called for regular writeback
1558  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1559  * locked buffer.   This only can happen if someone has written the buffer
1560  * directly, with submit_bh().  At the address_space level PageWriteback
1561  * prevents this contention from occurring.
1562  */
1563 static int __block_write_full_page(struct inode *inode, struct page *page,
1564 			get_block_t *get_block, struct writeback_control *wbc)
1565 {
1566 	int err;
1567 	sector_t block;
1568 	sector_t last_block;
1569 	struct buffer_head *bh, *head;
1570 	const unsigned blocksize = 1 << inode->i_blkbits;
1571 	int nr_underway = 0;
1572 
1573 	BUG_ON(!PageLocked(page));
1574 
1575 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1576 
1577 	if (!page_has_buffers(page)) {
1578 		create_empty_buffers(page, blocksize,
1579 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1580 	}
1581 
1582 	/*
1583 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1584 	 * here, and the (potentially unmapped) buffers may become dirty at
1585 	 * any time.  If a buffer becomes dirty here after we've inspected it
1586 	 * then we just miss that fact, and the page stays dirty.
1587 	 *
1588 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1589 	 * handle that here by just cleaning them.
1590 	 */
1591 
1592 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1593 	head = page_buffers(page);
1594 	bh = head;
1595 
1596 	/*
1597 	 * Get all the dirty buffers mapped to disk addresses and
1598 	 * handle any aliases from the underlying blockdev's mapping.
1599 	 */
1600 	do {
1601 		if (block > last_block) {
1602 			/*
1603 			 * mapped buffers outside i_size will occur, because
1604 			 * this page can be outside i_size when there is a
1605 			 * truncate in progress.
1606 			 */
1607 			/*
1608 			 * The buffer was zeroed by block_write_full_page()
1609 			 */
1610 			clear_buffer_dirty(bh);
1611 			set_buffer_uptodate(bh);
1612 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1613 			   buffer_dirty(bh)) {
1614 			WARN_ON(bh->b_size != blocksize);
1615 			err = get_block(inode, block, bh, 1);
1616 			if (err)
1617 				goto recover;
1618 			clear_buffer_delay(bh);
1619 			if (buffer_new(bh)) {
1620 				/* blockdev mappings never come here */
1621 				clear_buffer_new(bh);
1622 				unmap_underlying_metadata(bh->b_bdev,
1623 							bh->b_blocknr);
1624 			}
1625 		}
1626 		bh = bh->b_this_page;
1627 		block++;
1628 	} while (bh != head);
1629 
1630 	do {
1631 		if (!buffer_mapped(bh))
1632 			continue;
1633 		/*
1634 		 * If it's a fully non-blocking write attempt and we cannot
1635 		 * lock the buffer then redirty the page.  Note that this can
1636 		 * potentially cause a busy-wait loop from pdflush and kswapd
1637 		 * activity, but those code paths have their own higher-level
1638 		 * throttling.
1639 		 */
1640 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1641 			lock_buffer(bh);
1642 		} else if (!trylock_buffer(bh)) {
1643 			redirty_page_for_writepage(wbc, page);
1644 			continue;
1645 		}
1646 		if (test_clear_buffer_dirty(bh)) {
1647 			mark_buffer_async_write(bh);
1648 		} else {
1649 			unlock_buffer(bh);
1650 		}
1651 	} while ((bh = bh->b_this_page) != head);
1652 
1653 	/*
1654 	 * The page and its buffers are protected by PageWriteback(), so we can
1655 	 * drop the bh refcounts early.
1656 	 */
1657 	BUG_ON(PageWriteback(page));
1658 	set_page_writeback(page);
1659 
1660 	do {
1661 		struct buffer_head *next = bh->b_this_page;
1662 		if (buffer_async_write(bh)) {
1663 			submit_bh(WRITE, bh);
1664 			nr_underway++;
1665 		}
1666 		bh = next;
1667 	} while (bh != head);
1668 	unlock_page(page);
1669 
1670 	err = 0;
1671 done:
1672 	if (nr_underway == 0) {
1673 		/*
1674 		 * The page was marked dirty, but the buffers were
1675 		 * clean.  Someone wrote them back by hand with
1676 		 * ll_rw_block/submit_bh.  A rare case.
1677 		 */
1678 		end_page_writeback(page);
1679 
1680 		/*
1681 		 * The page and buffer_heads can be released at any time from
1682 		 * here on.
1683 		 */
1684 	}
1685 	return err;
1686 
1687 recover:
1688 	/*
1689 	 * ENOSPC, or some other error.  We may already have added some
1690 	 * blocks to the file, so we need to write these out to avoid
1691 	 * exposing stale data.
1692 	 * The page is currently locked and not marked for writeback
1693 	 */
1694 	bh = head;
1695 	/* Recovery: lock and submit the mapped buffers */
1696 	do {
1697 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1698 		    !buffer_delay(bh)) {
1699 			lock_buffer(bh);
1700 			mark_buffer_async_write(bh);
1701 		} else {
1702 			/*
1703 			 * The buffer may have been set dirty during
1704 			 * attachment to a dirty page.
1705 			 */
1706 			clear_buffer_dirty(bh);
1707 		}
1708 	} while ((bh = bh->b_this_page) != head);
1709 	SetPageError(page);
1710 	BUG_ON(PageWriteback(page));
1711 	mapping_set_error(page->mapping, err);
1712 	set_page_writeback(page);
1713 	do {
1714 		struct buffer_head *next = bh->b_this_page;
1715 		if (buffer_async_write(bh)) {
1716 			clear_buffer_dirty(bh);
1717 			submit_bh(WRITE, bh);
1718 			nr_underway++;
1719 		}
1720 		bh = next;
1721 	} while (bh != head);
1722 	unlock_page(page);
1723 	goto done;
1724 }
1725 
1726 /*
1727  * If a page has any new buffers, zero them out here, and mark them uptodate
1728  * and dirty so they'll be written out (in order to prevent uninitialised
1729  * block data from leaking). And clear the new bit.
1730  */
1731 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1732 {
1733 	unsigned int block_start, block_end;
1734 	struct buffer_head *head, *bh;
1735 
1736 	BUG_ON(!PageLocked(page));
1737 	if (!page_has_buffers(page))
1738 		return;
1739 
1740 	bh = head = page_buffers(page);
1741 	block_start = 0;
1742 	do {
1743 		block_end = block_start + bh->b_size;
1744 
1745 		if (buffer_new(bh)) {
1746 			if (block_end > from && block_start < to) {
1747 				if (!PageUptodate(page)) {
1748 					unsigned start, size;
1749 
1750 					start = max(from, block_start);
1751 					size = min(to, block_end) - start;
1752 
1753 					zero_user(page, start, size);
1754 					set_buffer_uptodate(bh);
1755 				}
1756 
1757 				clear_buffer_new(bh);
1758 				mark_buffer_dirty(bh);
1759 			}
1760 		}
1761 
1762 		block_start = block_end;
1763 		bh = bh->b_this_page;
1764 	} while (bh != head);
1765 }
1766 EXPORT_SYMBOL(page_zero_new_buffers);
1767 
1768 static int __block_prepare_write(struct inode *inode, struct page *page,
1769 		unsigned from, unsigned to, get_block_t *get_block)
1770 {
1771 	unsigned block_start, block_end;
1772 	sector_t block;
1773 	int err = 0;
1774 	unsigned blocksize, bbits;
1775 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1776 
1777 	BUG_ON(!PageLocked(page));
1778 	BUG_ON(from > PAGE_CACHE_SIZE);
1779 	BUG_ON(to > PAGE_CACHE_SIZE);
1780 	BUG_ON(from > to);
1781 
1782 	blocksize = 1 << inode->i_blkbits;
1783 	if (!page_has_buffers(page))
1784 		create_empty_buffers(page, blocksize, 0);
1785 	head = page_buffers(page);
1786 
1787 	bbits = inode->i_blkbits;
1788 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1789 
1790 	for(bh = head, block_start = 0; bh != head || !block_start;
1791 	    block++, block_start=block_end, bh = bh->b_this_page) {
1792 		block_end = block_start + blocksize;
1793 		if (block_end <= from || block_start >= to) {
1794 			if (PageUptodate(page)) {
1795 				if (!buffer_uptodate(bh))
1796 					set_buffer_uptodate(bh);
1797 			}
1798 			continue;
1799 		}
1800 		if (buffer_new(bh))
1801 			clear_buffer_new(bh);
1802 		if (!buffer_mapped(bh)) {
1803 			WARN_ON(bh->b_size != blocksize);
1804 			err = get_block(inode, block, bh, 1);
1805 			if (err)
1806 				break;
1807 			if (buffer_new(bh)) {
1808 				unmap_underlying_metadata(bh->b_bdev,
1809 							bh->b_blocknr);
1810 				if (PageUptodate(page)) {
1811 					clear_buffer_new(bh);
1812 					set_buffer_uptodate(bh);
1813 					mark_buffer_dirty(bh);
1814 					continue;
1815 				}
1816 				if (block_end > to || block_start < from)
1817 					zero_user_segments(page,
1818 						to, block_end,
1819 						block_start, from);
1820 				continue;
1821 			}
1822 		}
1823 		if (PageUptodate(page)) {
1824 			if (!buffer_uptodate(bh))
1825 				set_buffer_uptodate(bh);
1826 			continue;
1827 		}
1828 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1829 		    !buffer_unwritten(bh) &&
1830 		     (block_start < from || block_end > to)) {
1831 			ll_rw_block(READ, 1, &bh);
1832 			*wait_bh++=bh;
1833 		}
1834 	}
1835 	/*
1836 	 * If we issued read requests - let them complete.
1837 	 */
1838 	while(wait_bh > wait) {
1839 		wait_on_buffer(*--wait_bh);
1840 		if (!buffer_uptodate(*wait_bh))
1841 			err = -EIO;
1842 	}
1843 	if (unlikely(err))
1844 		page_zero_new_buffers(page, from, to);
1845 	return err;
1846 }
1847 
1848 static int __block_commit_write(struct inode *inode, struct page *page,
1849 		unsigned from, unsigned to)
1850 {
1851 	unsigned block_start, block_end;
1852 	int partial = 0;
1853 	unsigned blocksize;
1854 	struct buffer_head *bh, *head;
1855 
1856 	blocksize = 1 << inode->i_blkbits;
1857 
1858 	for(bh = head = page_buffers(page), block_start = 0;
1859 	    bh != head || !block_start;
1860 	    block_start=block_end, bh = bh->b_this_page) {
1861 		block_end = block_start + blocksize;
1862 		if (block_end <= from || block_start >= to) {
1863 			if (!buffer_uptodate(bh))
1864 				partial = 1;
1865 		} else {
1866 			set_buffer_uptodate(bh);
1867 			mark_buffer_dirty(bh);
1868 		}
1869 		clear_buffer_new(bh);
1870 	}
1871 
1872 	/*
1873 	 * If this is a partial write which happened to make all buffers
1874 	 * uptodate then we can optimize away a bogus readpage() for
1875 	 * the next read(). Here we 'discover' whether the page went
1876 	 * uptodate as a result of this (potentially partial) write.
1877 	 */
1878 	if (!partial)
1879 		SetPageUptodate(page);
1880 	return 0;
1881 }
1882 
1883 /*
1884  * block_write_begin takes care of the basic task of block allocation and
1885  * bringing partial write blocks uptodate first.
1886  *
1887  * If *pagep is not NULL, then block_write_begin uses the locked page
1888  * at *pagep rather than allocating its own. In this case, the page will
1889  * not be unlocked or deallocated on failure.
1890  */
1891 int block_write_begin(struct file *file, struct address_space *mapping,
1892 			loff_t pos, unsigned len, unsigned flags,
1893 			struct page **pagep, void **fsdata,
1894 			get_block_t *get_block)
1895 {
1896 	struct inode *inode = mapping->host;
1897 	int status = 0;
1898 	struct page *page;
1899 	pgoff_t index;
1900 	unsigned start, end;
1901 	int ownpage = 0;
1902 
1903 	index = pos >> PAGE_CACHE_SHIFT;
1904 	start = pos & (PAGE_CACHE_SIZE - 1);
1905 	end = start + len;
1906 
1907 	page = *pagep;
1908 	if (page == NULL) {
1909 		ownpage = 1;
1910 		page = grab_cache_page_write_begin(mapping, index, flags);
1911 		if (!page) {
1912 			status = -ENOMEM;
1913 			goto out;
1914 		}
1915 		*pagep = page;
1916 	} else
1917 		BUG_ON(!PageLocked(page));
1918 
1919 	status = __block_prepare_write(inode, page, start, end, get_block);
1920 	if (unlikely(status)) {
1921 		ClearPageUptodate(page);
1922 
1923 		if (ownpage) {
1924 			unlock_page(page);
1925 			page_cache_release(page);
1926 			*pagep = NULL;
1927 
1928 			/*
1929 			 * prepare_write() may have instantiated a few blocks
1930 			 * outside i_size.  Trim these off again. Don't need
1931 			 * i_size_read because we hold i_mutex.
1932 			 */
1933 			if (pos + len > inode->i_size)
1934 				vmtruncate(inode, inode->i_size);
1935 		}
1936 	}
1937 
1938 out:
1939 	return status;
1940 }
1941 EXPORT_SYMBOL(block_write_begin);
1942 
1943 int block_write_end(struct file *file, struct address_space *mapping,
1944 			loff_t pos, unsigned len, unsigned copied,
1945 			struct page *page, void *fsdata)
1946 {
1947 	struct inode *inode = mapping->host;
1948 	unsigned start;
1949 
1950 	start = pos & (PAGE_CACHE_SIZE - 1);
1951 
1952 	if (unlikely(copied < len)) {
1953 		/*
1954 		 * The buffers that were written will now be uptodate, so we
1955 		 * don't have to worry about a readpage reading them and
1956 		 * overwriting a partial write. However if we have encountered
1957 		 * a short write and only partially written into a buffer, it
1958 		 * will not be marked uptodate, so a readpage might come in and
1959 		 * destroy our partial write.
1960 		 *
1961 		 * Do the simplest thing, and just treat any short write to a
1962 		 * non uptodate page as a zero-length write, and force the
1963 		 * caller to redo the whole thing.
1964 		 */
1965 		if (!PageUptodate(page))
1966 			copied = 0;
1967 
1968 		page_zero_new_buffers(page, start+copied, start+len);
1969 	}
1970 	flush_dcache_page(page);
1971 
1972 	/* This could be a short (even 0-length) commit */
1973 	__block_commit_write(inode, page, start, start+copied);
1974 
1975 	return copied;
1976 }
1977 EXPORT_SYMBOL(block_write_end);
1978 
1979 int generic_write_end(struct file *file, struct address_space *mapping,
1980 			loff_t pos, unsigned len, unsigned copied,
1981 			struct page *page, void *fsdata)
1982 {
1983 	struct inode *inode = mapping->host;
1984 	int i_size_changed = 0;
1985 
1986 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1987 
1988 	/*
1989 	 * No need to use i_size_read() here, the i_size
1990 	 * cannot change under us because we hold i_mutex.
1991 	 *
1992 	 * But it's important to update i_size while still holding page lock:
1993 	 * page writeout could otherwise come in and zero beyond i_size.
1994 	 */
1995 	if (pos+copied > inode->i_size) {
1996 		i_size_write(inode, pos+copied);
1997 		i_size_changed = 1;
1998 	}
1999 
2000 	unlock_page(page);
2001 	page_cache_release(page);
2002 
2003 	/*
2004 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2005 	 * makes the holding time of page lock longer. Second, it forces lock
2006 	 * ordering of page lock and transaction start for journaling
2007 	 * filesystems.
2008 	 */
2009 	if (i_size_changed)
2010 		mark_inode_dirty(inode);
2011 
2012 	return copied;
2013 }
2014 EXPORT_SYMBOL(generic_write_end);
2015 
2016 /*
2017  * block_is_partially_uptodate checks whether buffers within a page are
2018  * uptodate or not.
2019  *
2020  * Returns true if all buffers which correspond to a file portion
2021  * we want to read are uptodate.
2022  */
2023 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2024 					unsigned long from)
2025 {
2026 	struct inode *inode = page->mapping->host;
2027 	unsigned block_start, block_end, blocksize;
2028 	unsigned to;
2029 	struct buffer_head *bh, *head;
2030 	int ret = 1;
2031 
2032 	if (!page_has_buffers(page))
2033 		return 0;
2034 
2035 	blocksize = 1 << inode->i_blkbits;
2036 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2037 	to = from + to;
2038 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2039 		return 0;
2040 
2041 	head = page_buffers(page);
2042 	bh = head;
2043 	block_start = 0;
2044 	do {
2045 		block_end = block_start + blocksize;
2046 		if (block_end > from && block_start < to) {
2047 			if (!buffer_uptodate(bh)) {
2048 				ret = 0;
2049 				break;
2050 			}
2051 			if (block_end >= to)
2052 				break;
2053 		}
2054 		block_start = block_end;
2055 		bh = bh->b_this_page;
2056 	} while (bh != head);
2057 
2058 	return ret;
2059 }
2060 EXPORT_SYMBOL(block_is_partially_uptodate);
2061 
2062 /*
2063  * Generic "read page" function for block devices that have the normal
2064  * get_block functionality. This is most of the block device filesystems.
2065  * Reads the page asynchronously --- the unlock_buffer() and
2066  * set/clear_buffer_uptodate() functions propagate buffer state into the
2067  * page struct once IO has completed.
2068  */
2069 int block_read_full_page(struct page *page, get_block_t *get_block)
2070 {
2071 	struct inode *inode = page->mapping->host;
2072 	sector_t iblock, lblock;
2073 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2074 	unsigned int blocksize;
2075 	int nr, i;
2076 	int fully_mapped = 1;
2077 
2078 	BUG_ON(!PageLocked(page));
2079 	blocksize = 1 << inode->i_blkbits;
2080 	if (!page_has_buffers(page))
2081 		create_empty_buffers(page, blocksize, 0);
2082 	head = page_buffers(page);
2083 
2084 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2085 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2086 	bh = head;
2087 	nr = 0;
2088 	i = 0;
2089 
2090 	do {
2091 		if (buffer_uptodate(bh))
2092 			continue;
2093 
2094 		if (!buffer_mapped(bh)) {
2095 			int err = 0;
2096 
2097 			fully_mapped = 0;
2098 			if (iblock < lblock) {
2099 				WARN_ON(bh->b_size != blocksize);
2100 				err = get_block(inode, iblock, bh, 0);
2101 				if (err)
2102 					SetPageError(page);
2103 			}
2104 			if (!buffer_mapped(bh)) {
2105 				zero_user(page, i * blocksize, blocksize);
2106 				if (!err)
2107 					set_buffer_uptodate(bh);
2108 				continue;
2109 			}
2110 			/*
2111 			 * get_block() might have updated the buffer
2112 			 * synchronously
2113 			 */
2114 			if (buffer_uptodate(bh))
2115 				continue;
2116 		}
2117 		arr[nr++] = bh;
2118 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2119 
2120 	if (fully_mapped)
2121 		SetPageMappedToDisk(page);
2122 
2123 	if (!nr) {
2124 		/*
2125 		 * All buffers are uptodate - we can set the page uptodate
2126 		 * as well. But not if get_block() returned an error.
2127 		 */
2128 		if (!PageError(page))
2129 			SetPageUptodate(page);
2130 		unlock_page(page);
2131 		return 0;
2132 	}
2133 
2134 	/* Stage two: lock the buffers */
2135 	for (i = 0; i < nr; i++) {
2136 		bh = arr[i];
2137 		lock_buffer(bh);
2138 		mark_buffer_async_read(bh);
2139 	}
2140 
2141 	/*
2142 	 * Stage 3: start the IO.  Check for uptodateness
2143 	 * inside the buffer lock in case another process reading
2144 	 * the underlying blockdev brought it uptodate (the sct fix).
2145 	 */
2146 	for (i = 0; i < nr; i++) {
2147 		bh = arr[i];
2148 		if (buffer_uptodate(bh))
2149 			end_buffer_async_read(bh, 1);
2150 		else
2151 			submit_bh(READ, bh);
2152 	}
2153 	return 0;
2154 }
2155 
2156 /* utility function for filesystems that need to do work on expanding
2157  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2158  * deal with the hole.
2159  */
2160 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2161 {
2162 	struct address_space *mapping = inode->i_mapping;
2163 	struct page *page;
2164 	void *fsdata;
2165 	unsigned long limit;
2166 	int err;
2167 
2168 	err = -EFBIG;
2169         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2170 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2171 		send_sig(SIGXFSZ, current, 0);
2172 		goto out;
2173 	}
2174 	if (size > inode->i_sb->s_maxbytes)
2175 		goto out;
2176 
2177 	err = pagecache_write_begin(NULL, mapping, size, 0,
2178 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2179 				&page, &fsdata);
2180 	if (err)
2181 		goto out;
2182 
2183 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2184 	BUG_ON(err > 0);
2185 
2186 out:
2187 	return err;
2188 }
2189 
2190 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2191 			    loff_t pos, loff_t *bytes)
2192 {
2193 	struct inode *inode = mapping->host;
2194 	unsigned blocksize = 1 << inode->i_blkbits;
2195 	struct page *page;
2196 	void *fsdata;
2197 	pgoff_t index, curidx;
2198 	loff_t curpos;
2199 	unsigned zerofrom, offset, len;
2200 	int err = 0;
2201 
2202 	index = pos >> PAGE_CACHE_SHIFT;
2203 	offset = pos & ~PAGE_CACHE_MASK;
2204 
2205 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2206 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2207 		if (zerofrom & (blocksize-1)) {
2208 			*bytes |= (blocksize-1);
2209 			(*bytes)++;
2210 		}
2211 		len = PAGE_CACHE_SIZE - zerofrom;
2212 
2213 		err = pagecache_write_begin(file, mapping, curpos, len,
2214 						AOP_FLAG_UNINTERRUPTIBLE,
2215 						&page, &fsdata);
2216 		if (err)
2217 			goto out;
2218 		zero_user(page, zerofrom, len);
2219 		err = pagecache_write_end(file, mapping, curpos, len, len,
2220 						page, fsdata);
2221 		if (err < 0)
2222 			goto out;
2223 		BUG_ON(err != len);
2224 		err = 0;
2225 
2226 		balance_dirty_pages_ratelimited(mapping);
2227 	}
2228 
2229 	/* page covers the boundary, find the boundary offset */
2230 	if (index == curidx) {
2231 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2232 		/* if we will expand the thing last block will be filled */
2233 		if (offset <= zerofrom) {
2234 			goto out;
2235 		}
2236 		if (zerofrom & (blocksize-1)) {
2237 			*bytes |= (blocksize-1);
2238 			(*bytes)++;
2239 		}
2240 		len = offset - zerofrom;
2241 
2242 		err = pagecache_write_begin(file, mapping, curpos, len,
2243 						AOP_FLAG_UNINTERRUPTIBLE,
2244 						&page, &fsdata);
2245 		if (err)
2246 			goto out;
2247 		zero_user(page, zerofrom, len);
2248 		err = pagecache_write_end(file, mapping, curpos, len, len,
2249 						page, fsdata);
2250 		if (err < 0)
2251 			goto out;
2252 		BUG_ON(err != len);
2253 		err = 0;
2254 	}
2255 out:
2256 	return err;
2257 }
2258 
2259 /*
2260  * For moronic filesystems that do not allow holes in file.
2261  * We may have to extend the file.
2262  */
2263 int cont_write_begin(struct file *file, struct address_space *mapping,
2264 			loff_t pos, unsigned len, unsigned flags,
2265 			struct page **pagep, void **fsdata,
2266 			get_block_t *get_block, loff_t *bytes)
2267 {
2268 	struct inode *inode = mapping->host;
2269 	unsigned blocksize = 1 << inode->i_blkbits;
2270 	unsigned zerofrom;
2271 	int err;
2272 
2273 	err = cont_expand_zero(file, mapping, pos, bytes);
2274 	if (err)
2275 		goto out;
2276 
2277 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2278 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2279 		*bytes |= (blocksize-1);
2280 		(*bytes)++;
2281 	}
2282 
2283 	*pagep = NULL;
2284 	err = block_write_begin(file, mapping, pos, len,
2285 				flags, pagep, fsdata, get_block);
2286 out:
2287 	return err;
2288 }
2289 
2290 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2291 			get_block_t *get_block)
2292 {
2293 	struct inode *inode = page->mapping->host;
2294 	int err = __block_prepare_write(inode, page, from, to, get_block);
2295 	if (err)
2296 		ClearPageUptodate(page);
2297 	return err;
2298 }
2299 
2300 int block_commit_write(struct page *page, unsigned from, unsigned to)
2301 {
2302 	struct inode *inode = page->mapping->host;
2303 	__block_commit_write(inode,page,from,to);
2304 	return 0;
2305 }
2306 
2307 /*
2308  * block_page_mkwrite() is not allowed to change the file size as it gets
2309  * called from a page fault handler when a page is first dirtied. Hence we must
2310  * be careful to check for EOF conditions here. We set the page up correctly
2311  * for a written page which means we get ENOSPC checking when writing into
2312  * holes and correct delalloc and unwritten extent mapping on filesystems that
2313  * support these features.
2314  *
2315  * We are not allowed to take the i_mutex here so we have to play games to
2316  * protect against truncate races as the page could now be beyond EOF.  Because
2317  * vmtruncate() writes the inode size before removing pages, once we have the
2318  * page lock we can determine safely if the page is beyond EOF. If it is not
2319  * beyond EOF, then the page is guaranteed safe against truncation until we
2320  * unlock the page.
2321  */
2322 int
2323 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2324 		   get_block_t get_block)
2325 {
2326 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2327 	unsigned long end;
2328 	loff_t size;
2329 	int ret = -EINVAL;
2330 
2331 	lock_page(page);
2332 	size = i_size_read(inode);
2333 	if ((page->mapping != inode->i_mapping) ||
2334 	    (page_offset(page) > size)) {
2335 		/* page got truncated out from underneath us */
2336 		goto out_unlock;
2337 	}
2338 
2339 	/* page is wholly or partially inside EOF */
2340 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2341 		end = size & ~PAGE_CACHE_MASK;
2342 	else
2343 		end = PAGE_CACHE_SIZE;
2344 
2345 	ret = block_prepare_write(page, 0, end, get_block);
2346 	if (!ret)
2347 		ret = block_commit_write(page, 0, end);
2348 
2349 out_unlock:
2350 	unlock_page(page);
2351 	return ret;
2352 }
2353 
2354 /*
2355  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2356  * immediately, while under the page lock.  So it needs a special end_io
2357  * handler which does not touch the bh after unlocking it.
2358  */
2359 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2360 {
2361 	__end_buffer_read_notouch(bh, uptodate);
2362 }
2363 
2364 /*
2365  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2366  * the page (converting it to circular linked list and taking care of page
2367  * dirty races).
2368  */
2369 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2370 {
2371 	struct buffer_head *bh;
2372 
2373 	BUG_ON(!PageLocked(page));
2374 
2375 	spin_lock(&page->mapping->private_lock);
2376 	bh = head;
2377 	do {
2378 		if (PageDirty(page))
2379 			set_buffer_dirty(bh);
2380 		if (!bh->b_this_page)
2381 			bh->b_this_page = head;
2382 		bh = bh->b_this_page;
2383 	} while (bh != head);
2384 	attach_page_buffers(page, head);
2385 	spin_unlock(&page->mapping->private_lock);
2386 }
2387 
2388 /*
2389  * On entry, the page is fully not uptodate.
2390  * On exit the page is fully uptodate in the areas outside (from,to)
2391  */
2392 int nobh_write_begin(struct file *file, struct address_space *mapping,
2393 			loff_t pos, unsigned len, unsigned flags,
2394 			struct page **pagep, void **fsdata,
2395 			get_block_t *get_block)
2396 {
2397 	struct inode *inode = mapping->host;
2398 	const unsigned blkbits = inode->i_blkbits;
2399 	const unsigned blocksize = 1 << blkbits;
2400 	struct buffer_head *head, *bh;
2401 	struct page *page;
2402 	pgoff_t index;
2403 	unsigned from, to;
2404 	unsigned block_in_page;
2405 	unsigned block_start, block_end;
2406 	sector_t block_in_file;
2407 	int nr_reads = 0;
2408 	int ret = 0;
2409 	int is_mapped_to_disk = 1;
2410 
2411 	index = pos >> PAGE_CACHE_SHIFT;
2412 	from = pos & (PAGE_CACHE_SIZE - 1);
2413 	to = from + len;
2414 
2415 	page = grab_cache_page_write_begin(mapping, index, flags);
2416 	if (!page)
2417 		return -ENOMEM;
2418 	*pagep = page;
2419 	*fsdata = NULL;
2420 
2421 	if (page_has_buffers(page)) {
2422 		unlock_page(page);
2423 		page_cache_release(page);
2424 		*pagep = NULL;
2425 		return block_write_begin(file, mapping, pos, len, flags, pagep,
2426 					fsdata, get_block);
2427 	}
2428 
2429 	if (PageMappedToDisk(page))
2430 		return 0;
2431 
2432 	/*
2433 	 * Allocate buffers so that we can keep track of state, and potentially
2434 	 * attach them to the page if an error occurs. In the common case of
2435 	 * no error, they will just be freed again without ever being attached
2436 	 * to the page (which is all OK, because we're under the page lock).
2437 	 *
2438 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2439 	 * than the circular one we're used to.
2440 	 */
2441 	head = alloc_page_buffers(page, blocksize, 0);
2442 	if (!head) {
2443 		ret = -ENOMEM;
2444 		goto out_release;
2445 	}
2446 
2447 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2448 
2449 	/*
2450 	 * We loop across all blocks in the page, whether or not they are
2451 	 * part of the affected region.  This is so we can discover if the
2452 	 * page is fully mapped-to-disk.
2453 	 */
2454 	for (block_start = 0, block_in_page = 0, bh = head;
2455 		  block_start < PAGE_CACHE_SIZE;
2456 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2457 		int create;
2458 
2459 		block_end = block_start + blocksize;
2460 		bh->b_state = 0;
2461 		create = 1;
2462 		if (block_start >= to)
2463 			create = 0;
2464 		ret = get_block(inode, block_in_file + block_in_page,
2465 					bh, create);
2466 		if (ret)
2467 			goto failed;
2468 		if (!buffer_mapped(bh))
2469 			is_mapped_to_disk = 0;
2470 		if (buffer_new(bh))
2471 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2472 		if (PageUptodate(page)) {
2473 			set_buffer_uptodate(bh);
2474 			continue;
2475 		}
2476 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2477 			zero_user_segments(page, block_start, from,
2478 							to, block_end);
2479 			continue;
2480 		}
2481 		if (buffer_uptodate(bh))
2482 			continue;	/* reiserfs does this */
2483 		if (block_start < from || block_end > to) {
2484 			lock_buffer(bh);
2485 			bh->b_end_io = end_buffer_read_nobh;
2486 			submit_bh(READ, bh);
2487 			nr_reads++;
2488 		}
2489 	}
2490 
2491 	if (nr_reads) {
2492 		/*
2493 		 * The page is locked, so these buffers are protected from
2494 		 * any VM or truncate activity.  Hence we don't need to care
2495 		 * for the buffer_head refcounts.
2496 		 */
2497 		for (bh = head; bh; bh = bh->b_this_page) {
2498 			wait_on_buffer(bh);
2499 			if (!buffer_uptodate(bh))
2500 				ret = -EIO;
2501 		}
2502 		if (ret)
2503 			goto failed;
2504 	}
2505 
2506 	if (is_mapped_to_disk)
2507 		SetPageMappedToDisk(page);
2508 
2509 	*fsdata = head; /* to be released by nobh_write_end */
2510 
2511 	return 0;
2512 
2513 failed:
2514 	BUG_ON(!ret);
2515 	/*
2516 	 * Error recovery is a bit difficult. We need to zero out blocks that
2517 	 * were newly allocated, and dirty them to ensure they get written out.
2518 	 * Buffers need to be attached to the page at this point, otherwise
2519 	 * the handling of potential IO errors during writeout would be hard
2520 	 * (could try doing synchronous writeout, but what if that fails too?)
2521 	 */
2522 	attach_nobh_buffers(page, head);
2523 	page_zero_new_buffers(page, from, to);
2524 
2525 out_release:
2526 	unlock_page(page);
2527 	page_cache_release(page);
2528 	*pagep = NULL;
2529 
2530 	if (pos + len > inode->i_size)
2531 		vmtruncate(inode, inode->i_size);
2532 
2533 	return ret;
2534 }
2535 EXPORT_SYMBOL(nobh_write_begin);
2536 
2537 int nobh_write_end(struct file *file, struct address_space *mapping,
2538 			loff_t pos, unsigned len, unsigned copied,
2539 			struct page *page, void *fsdata)
2540 {
2541 	struct inode *inode = page->mapping->host;
2542 	struct buffer_head *head = fsdata;
2543 	struct buffer_head *bh;
2544 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2545 
2546 	if (unlikely(copied < len) && head)
2547 		attach_nobh_buffers(page, head);
2548 	if (page_has_buffers(page))
2549 		return generic_write_end(file, mapping, pos, len,
2550 					copied, page, fsdata);
2551 
2552 	SetPageUptodate(page);
2553 	set_page_dirty(page);
2554 	if (pos+copied > inode->i_size) {
2555 		i_size_write(inode, pos+copied);
2556 		mark_inode_dirty(inode);
2557 	}
2558 
2559 	unlock_page(page);
2560 	page_cache_release(page);
2561 
2562 	while (head) {
2563 		bh = head;
2564 		head = head->b_this_page;
2565 		free_buffer_head(bh);
2566 	}
2567 
2568 	return copied;
2569 }
2570 EXPORT_SYMBOL(nobh_write_end);
2571 
2572 /*
2573  * nobh_writepage() - based on block_full_write_page() except
2574  * that it tries to operate without attaching bufferheads to
2575  * the page.
2576  */
2577 int nobh_writepage(struct page *page, get_block_t *get_block,
2578 			struct writeback_control *wbc)
2579 {
2580 	struct inode * const inode = page->mapping->host;
2581 	loff_t i_size = i_size_read(inode);
2582 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2583 	unsigned offset;
2584 	int ret;
2585 
2586 	/* Is the page fully inside i_size? */
2587 	if (page->index < end_index)
2588 		goto out;
2589 
2590 	/* Is the page fully outside i_size? (truncate in progress) */
2591 	offset = i_size & (PAGE_CACHE_SIZE-1);
2592 	if (page->index >= end_index+1 || !offset) {
2593 		/*
2594 		 * The page may have dirty, unmapped buffers.  For example,
2595 		 * they may have been added in ext3_writepage().  Make them
2596 		 * freeable here, so the page does not leak.
2597 		 */
2598 #if 0
2599 		/* Not really sure about this  - do we need this ? */
2600 		if (page->mapping->a_ops->invalidatepage)
2601 			page->mapping->a_ops->invalidatepage(page, offset);
2602 #endif
2603 		unlock_page(page);
2604 		return 0; /* don't care */
2605 	}
2606 
2607 	/*
2608 	 * The page straddles i_size.  It must be zeroed out on each and every
2609 	 * writepage invocation because it may be mmapped.  "A file is mapped
2610 	 * in multiples of the page size.  For a file that is not a multiple of
2611 	 * the  page size, the remaining memory is zeroed when mapped, and
2612 	 * writes to that region are not written out to the file."
2613 	 */
2614 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2615 out:
2616 	ret = mpage_writepage(page, get_block, wbc);
2617 	if (ret == -EAGAIN)
2618 		ret = __block_write_full_page(inode, page, get_block, wbc);
2619 	return ret;
2620 }
2621 EXPORT_SYMBOL(nobh_writepage);
2622 
2623 int nobh_truncate_page(struct address_space *mapping,
2624 			loff_t from, get_block_t *get_block)
2625 {
2626 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2627 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2628 	unsigned blocksize;
2629 	sector_t iblock;
2630 	unsigned length, pos;
2631 	struct inode *inode = mapping->host;
2632 	struct page *page;
2633 	struct buffer_head map_bh;
2634 	int err;
2635 
2636 	blocksize = 1 << inode->i_blkbits;
2637 	length = offset & (blocksize - 1);
2638 
2639 	/* Block boundary? Nothing to do */
2640 	if (!length)
2641 		return 0;
2642 
2643 	length = blocksize - length;
2644 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2645 
2646 	page = grab_cache_page(mapping, index);
2647 	err = -ENOMEM;
2648 	if (!page)
2649 		goto out;
2650 
2651 	if (page_has_buffers(page)) {
2652 has_buffers:
2653 		unlock_page(page);
2654 		page_cache_release(page);
2655 		return block_truncate_page(mapping, from, get_block);
2656 	}
2657 
2658 	/* Find the buffer that contains "offset" */
2659 	pos = blocksize;
2660 	while (offset >= pos) {
2661 		iblock++;
2662 		pos += blocksize;
2663 	}
2664 
2665 	err = get_block(inode, iblock, &map_bh, 0);
2666 	if (err)
2667 		goto unlock;
2668 	/* unmapped? It's a hole - nothing to do */
2669 	if (!buffer_mapped(&map_bh))
2670 		goto unlock;
2671 
2672 	/* Ok, it's mapped. Make sure it's up-to-date */
2673 	if (!PageUptodate(page)) {
2674 		err = mapping->a_ops->readpage(NULL, page);
2675 		if (err) {
2676 			page_cache_release(page);
2677 			goto out;
2678 		}
2679 		lock_page(page);
2680 		if (!PageUptodate(page)) {
2681 			err = -EIO;
2682 			goto unlock;
2683 		}
2684 		if (page_has_buffers(page))
2685 			goto has_buffers;
2686 	}
2687 	zero_user(page, offset, length);
2688 	set_page_dirty(page);
2689 	err = 0;
2690 
2691 unlock:
2692 	unlock_page(page);
2693 	page_cache_release(page);
2694 out:
2695 	return err;
2696 }
2697 EXPORT_SYMBOL(nobh_truncate_page);
2698 
2699 int block_truncate_page(struct address_space *mapping,
2700 			loff_t from, get_block_t *get_block)
2701 {
2702 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2703 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2704 	unsigned blocksize;
2705 	sector_t iblock;
2706 	unsigned length, pos;
2707 	struct inode *inode = mapping->host;
2708 	struct page *page;
2709 	struct buffer_head *bh;
2710 	int err;
2711 
2712 	blocksize = 1 << inode->i_blkbits;
2713 	length = offset & (blocksize - 1);
2714 
2715 	/* Block boundary? Nothing to do */
2716 	if (!length)
2717 		return 0;
2718 
2719 	length = blocksize - length;
2720 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2721 
2722 	page = grab_cache_page(mapping, index);
2723 	err = -ENOMEM;
2724 	if (!page)
2725 		goto out;
2726 
2727 	if (!page_has_buffers(page))
2728 		create_empty_buffers(page, blocksize, 0);
2729 
2730 	/* Find the buffer that contains "offset" */
2731 	bh = page_buffers(page);
2732 	pos = blocksize;
2733 	while (offset >= pos) {
2734 		bh = bh->b_this_page;
2735 		iblock++;
2736 		pos += blocksize;
2737 	}
2738 
2739 	err = 0;
2740 	if (!buffer_mapped(bh)) {
2741 		WARN_ON(bh->b_size != blocksize);
2742 		err = get_block(inode, iblock, bh, 0);
2743 		if (err)
2744 			goto unlock;
2745 		/* unmapped? It's a hole - nothing to do */
2746 		if (!buffer_mapped(bh))
2747 			goto unlock;
2748 	}
2749 
2750 	/* Ok, it's mapped. Make sure it's up-to-date */
2751 	if (PageUptodate(page))
2752 		set_buffer_uptodate(bh);
2753 
2754 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2755 		err = -EIO;
2756 		ll_rw_block(READ, 1, &bh);
2757 		wait_on_buffer(bh);
2758 		/* Uhhuh. Read error. Complain and punt. */
2759 		if (!buffer_uptodate(bh))
2760 			goto unlock;
2761 	}
2762 
2763 	zero_user(page, offset, length);
2764 	mark_buffer_dirty(bh);
2765 	err = 0;
2766 
2767 unlock:
2768 	unlock_page(page);
2769 	page_cache_release(page);
2770 out:
2771 	return err;
2772 }
2773 
2774 /*
2775  * The generic ->writepage function for buffer-backed address_spaces
2776  */
2777 int block_write_full_page(struct page *page, get_block_t *get_block,
2778 			struct writeback_control *wbc)
2779 {
2780 	struct inode * const inode = page->mapping->host;
2781 	loff_t i_size = i_size_read(inode);
2782 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2783 	unsigned offset;
2784 
2785 	/* Is the page fully inside i_size? */
2786 	if (page->index < end_index)
2787 		return __block_write_full_page(inode, page, get_block, wbc);
2788 
2789 	/* Is the page fully outside i_size? (truncate in progress) */
2790 	offset = i_size & (PAGE_CACHE_SIZE-1);
2791 	if (page->index >= end_index+1 || !offset) {
2792 		/*
2793 		 * The page may have dirty, unmapped buffers.  For example,
2794 		 * they may have been added in ext3_writepage().  Make them
2795 		 * freeable here, so the page does not leak.
2796 		 */
2797 		do_invalidatepage(page, 0);
2798 		unlock_page(page);
2799 		return 0; /* don't care */
2800 	}
2801 
2802 	/*
2803 	 * The page straddles i_size.  It must be zeroed out on each and every
2804 	 * writepage invokation because it may be mmapped.  "A file is mapped
2805 	 * in multiples of the page size.  For a file that is not a multiple of
2806 	 * the  page size, the remaining memory is zeroed when mapped, and
2807 	 * writes to that region are not written out to the file."
2808 	 */
2809 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2810 	return __block_write_full_page(inode, page, get_block, wbc);
2811 }
2812 
2813 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2814 			    get_block_t *get_block)
2815 {
2816 	struct buffer_head tmp;
2817 	struct inode *inode = mapping->host;
2818 	tmp.b_state = 0;
2819 	tmp.b_blocknr = 0;
2820 	tmp.b_size = 1 << inode->i_blkbits;
2821 	get_block(inode, block, &tmp, 0);
2822 	return tmp.b_blocknr;
2823 }
2824 
2825 static void end_bio_bh_io_sync(struct bio *bio, int err)
2826 {
2827 	struct buffer_head *bh = bio->bi_private;
2828 
2829 	if (err == -EOPNOTSUPP) {
2830 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2831 		set_bit(BH_Eopnotsupp, &bh->b_state);
2832 	}
2833 
2834 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2835 		set_bit(BH_Quiet, &bh->b_state);
2836 
2837 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2838 	bio_put(bio);
2839 }
2840 
2841 int submit_bh(int rw, struct buffer_head * bh)
2842 {
2843 	struct bio *bio;
2844 	int ret = 0;
2845 
2846 	BUG_ON(!buffer_locked(bh));
2847 	BUG_ON(!buffer_mapped(bh));
2848 	BUG_ON(!bh->b_end_io);
2849 
2850 	/*
2851 	 * Mask in barrier bit for a write (could be either a WRITE or a
2852 	 * WRITE_SYNC
2853 	 */
2854 	if (buffer_ordered(bh) && (rw & WRITE))
2855 		rw |= WRITE_BARRIER;
2856 
2857 	/*
2858 	 * Only clear out a write error when rewriting
2859 	 */
2860 	if (test_set_buffer_req(bh) && (rw & WRITE))
2861 		clear_buffer_write_io_error(bh);
2862 
2863 	/*
2864 	 * from here on down, it's all bio -- do the initial mapping,
2865 	 * submit_bio -> generic_make_request may further map this bio around
2866 	 */
2867 	bio = bio_alloc(GFP_NOIO, 1);
2868 
2869 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2870 	bio->bi_bdev = bh->b_bdev;
2871 	bio->bi_io_vec[0].bv_page = bh->b_page;
2872 	bio->bi_io_vec[0].bv_len = bh->b_size;
2873 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2874 
2875 	bio->bi_vcnt = 1;
2876 	bio->bi_idx = 0;
2877 	bio->bi_size = bh->b_size;
2878 
2879 	bio->bi_end_io = end_bio_bh_io_sync;
2880 	bio->bi_private = bh;
2881 
2882 	bio_get(bio);
2883 	submit_bio(rw, bio);
2884 
2885 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2886 		ret = -EOPNOTSUPP;
2887 
2888 	bio_put(bio);
2889 	return ret;
2890 }
2891 
2892 /**
2893  * ll_rw_block: low-level access to block devices (DEPRECATED)
2894  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2895  * @nr: number of &struct buffer_heads in the array
2896  * @bhs: array of pointers to &struct buffer_head
2897  *
2898  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2899  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2900  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2901  * are sent to disk. The fourth %READA option is described in the documentation
2902  * for generic_make_request() which ll_rw_block() calls.
2903  *
2904  * This function drops any buffer that it cannot get a lock on (with the
2905  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2906  * clean when doing a write request, and any buffer that appears to be
2907  * up-to-date when doing read request.  Further it marks as clean buffers that
2908  * are processed for writing (the buffer cache won't assume that they are
2909  * actually clean until the buffer gets unlocked).
2910  *
2911  * ll_rw_block sets b_end_io to simple completion handler that marks
2912  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2913  * any waiters.
2914  *
2915  * All of the buffers must be for the same device, and must also be a
2916  * multiple of the current approved size for the device.
2917  */
2918 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2919 {
2920 	int i;
2921 
2922 	for (i = 0; i < nr; i++) {
2923 		struct buffer_head *bh = bhs[i];
2924 
2925 		if (rw == SWRITE || rw == SWRITE_SYNC)
2926 			lock_buffer(bh);
2927 		else if (!trylock_buffer(bh))
2928 			continue;
2929 
2930 		if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) {
2931 			if (test_clear_buffer_dirty(bh)) {
2932 				bh->b_end_io = end_buffer_write_sync;
2933 				get_bh(bh);
2934 				if (rw == SWRITE_SYNC)
2935 					submit_bh(WRITE_SYNC, bh);
2936 				else
2937 					submit_bh(WRITE, bh);
2938 				continue;
2939 			}
2940 		} else {
2941 			if (!buffer_uptodate(bh)) {
2942 				bh->b_end_io = end_buffer_read_sync;
2943 				get_bh(bh);
2944 				submit_bh(rw, bh);
2945 				continue;
2946 			}
2947 		}
2948 		unlock_buffer(bh);
2949 	}
2950 }
2951 
2952 /*
2953  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2954  * and then start new I/O and then wait upon it.  The caller must have a ref on
2955  * the buffer_head.
2956  */
2957 int sync_dirty_buffer(struct buffer_head *bh)
2958 {
2959 	int ret = 0;
2960 
2961 	WARN_ON(atomic_read(&bh->b_count) < 1);
2962 	lock_buffer(bh);
2963 	if (test_clear_buffer_dirty(bh)) {
2964 		get_bh(bh);
2965 		bh->b_end_io = end_buffer_write_sync;
2966 		ret = submit_bh(WRITE, bh);
2967 		wait_on_buffer(bh);
2968 		if (buffer_eopnotsupp(bh)) {
2969 			clear_buffer_eopnotsupp(bh);
2970 			ret = -EOPNOTSUPP;
2971 		}
2972 		if (!ret && !buffer_uptodate(bh))
2973 			ret = -EIO;
2974 	} else {
2975 		unlock_buffer(bh);
2976 	}
2977 	return ret;
2978 }
2979 
2980 /*
2981  * try_to_free_buffers() checks if all the buffers on this particular page
2982  * are unused, and releases them if so.
2983  *
2984  * Exclusion against try_to_free_buffers may be obtained by either
2985  * locking the page or by holding its mapping's private_lock.
2986  *
2987  * If the page is dirty but all the buffers are clean then we need to
2988  * be sure to mark the page clean as well.  This is because the page
2989  * may be against a block device, and a later reattachment of buffers
2990  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2991  * filesystem data on the same device.
2992  *
2993  * The same applies to regular filesystem pages: if all the buffers are
2994  * clean then we set the page clean and proceed.  To do that, we require
2995  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2996  * private_lock.
2997  *
2998  * try_to_free_buffers() is non-blocking.
2999  */
3000 static inline int buffer_busy(struct buffer_head *bh)
3001 {
3002 	return atomic_read(&bh->b_count) |
3003 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3004 }
3005 
3006 static int
3007 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3008 {
3009 	struct buffer_head *head = page_buffers(page);
3010 	struct buffer_head *bh;
3011 
3012 	bh = head;
3013 	do {
3014 		if (buffer_write_io_error(bh) && page->mapping)
3015 			set_bit(AS_EIO, &page->mapping->flags);
3016 		if (buffer_busy(bh))
3017 			goto failed;
3018 		bh = bh->b_this_page;
3019 	} while (bh != head);
3020 
3021 	do {
3022 		struct buffer_head *next = bh->b_this_page;
3023 
3024 		if (bh->b_assoc_map)
3025 			__remove_assoc_queue(bh);
3026 		bh = next;
3027 	} while (bh != head);
3028 	*buffers_to_free = head;
3029 	__clear_page_buffers(page);
3030 	return 1;
3031 failed:
3032 	return 0;
3033 }
3034 
3035 int try_to_free_buffers(struct page *page)
3036 {
3037 	struct address_space * const mapping = page->mapping;
3038 	struct buffer_head *buffers_to_free = NULL;
3039 	int ret = 0;
3040 
3041 	BUG_ON(!PageLocked(page));
3042 	if (PageWriteback(page))
3043 		return 0;
3044 
3045 	if (mapping == NULL) {		/* can this still happen? */
3046 		ret = drop_buffers(page, &buffers_to_free);
3047 		goto out;
3048 	}
3049 
3050 	spin_lock(&mapping->private_lock);
3051 	ret = drop_buffers(page, &buffers_to_free);
3052 
3053 	/*
3054 	 * If the filesystem writes its buffers by hand (eg ext3)
3055 	 * then we can have clean buffers against a dirty page.  We
3056 	 * clean the page here; otherwise the VM will never notice
3057 	 * that the filesystem did any IO at all.
3058 	 *
3059 	 * Also, during truncate, discard_buffer will have marked all
3060 	 * the page's buffers clean.  We discover that here and clean
3061 	 * the page also.
3062 	 *
3063 	 * private_lock must be held over this entire operation in order
3064 	 * to synchronise against __set_page_dirty_buffers and prevent the
3065 	 * dirty bit from being lost.
3066 	 */
3067 	if (ret)
3068 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3069 	spin_unlock(&mapping->private_lock);
3070 out:
3071 	if (buffers_to_free) {
3072 		struct buffer_head *bh = buffers_to_free;
3073 
3074 		do {
3075 			struct buffer_head *next = bh->b_this_page;
3076 			free_buffer_head(bh);
3077 			bh = next;
3078 		} while (bh != buffers_to_free);
3079 	}
3080 	return ret;
3081 }
3082 EXPORT_SYMBOL(try_to_free_buffers);
3083 
3084 void block_sync_page(struct page *page)
3085 {
3086 	struct address_space *mapping;
3087 
3088 	smp_mb();
3089 	mapping = page_mapping(page);
3090 	if (mapping)
3091 		blk_run_backing_dev(mapping->backing_dev_info, page);
3092 }
3093 
3094 /*
3095  * There are no bdflush tunables left.  But distributions are
3096  * still running obsolete flush daemons, so we terminate them here.
3097  *
3098  * Use of bdflush() is deprecated and will be removed in a future kernel.
3099  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3100  */
3101 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3102 {
3103 	static int msg_count;
3104 
3105 	if (!capable(CAP_SYS_ADMIN))
3106 		return -EPERM;
3107 
3108 	if (msg_count < 5) {
3109 		msg_count++;
3110 		printk(KERN_INFO
3111 			"warning: process `%s' used the obsolete bdflush"
3112 			" system call\n", current->comm);
3113 		printk(KERN_INFO "Fix your initscripts?\n");
3114 	}
3115 
3116 	if (func == 1)
3117 		do_exit(0);
3118 	return 0;
3119 }
3120 
3121 /*
3122  * Buffer-head allocation
3123  */
3124 static struct kmem_cache *bh_cachep;
3125 
3126 /*
3127  * Once the number of bh's in the machine exceeds this level, we start
3128  * stripping them in writeback.
3129  */
3130 static int max_buffer_heads;
3131 
3132 int buffer_heads_over_limit;
3133 
3134 struct bh_accounting {
3135 	int nr;			/* Number of live bh's */
3136 	int ratelimit;		/* Limit cacheline bouncing */
3137 };
3138 
3139 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3140 
3141 static void recalc_bh_state(void)
3142 {
3143 	int i;
3144 	int tot = 0;
3145 
3146 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3147 		return;
3148 	__get_cpu_var(bh_accounting).ratelimit = 0;
3149 	for_each_online_cpu(i)
3150 		tot += per_cpu(bh_accounting, i).nr;
3151 	buffer_heads_over_limit = (tot > max_buffer_heads);
3152 }
3153 
3154 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3155 {
3156 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3157 	if (ret) {
3158 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3159 		get_cpu_var(bh_accounting).nr++;
3160 		recalc_bh_state();
3161 		put_cpu_var(bh_accounting);
3162 	}
3163 	return ret;
3164 }
3165 EXPORT_SYMBOL(alloc_buffer_head);
3166 
3167 void free_buffer_head(struct buffer_head *bh)
3168 {
3169 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3170 	kmem_cache_free(bh_cachep, bh);
3171 	get_cpu_var(bh_accounting).nr--;
3172 	recalc_bh_state();
3173 	put_cpu_var(bh_accounting);
3174 }
3175 EXPORT_SYMBOL(free_buffer_head);
3176 
3177 static void buffer_exit_cpu(int cpu)
3178 {
3179 	int i;
3180 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3181 
3182 	for (i = 0; i < BH_LRU_SIZE; i++) {
3183 		brelse(b->bhs[i]);
3184 		b->bhs[i] = NULL;
3185 	}
3186 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3187 	per_cpu(bh_accounting, cpu).nr = 0;
3188 	put_cpu_var(bh_accounting);
3189 }
3190 
3191 static int buffer_cpu_notify(struct notifier_block *self,
3192 			      unsigned long action, void *hcpu)
3193 {
3194 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3195 		buffer_exit_cpu((unsigned long)hcpu);
3196 	return NOTIFY_OK;
3197 }
3198 
3199 /**
3200  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3201  * @bh: struct buffer_head
3202  *
3203  * Return true if the buffer is up-to-date and false,
3204  * with the buffer locked, if not.
3205  */
3206 int bh_uptodate_or_lock(struct buffer_head *bh)
3207 {
3208 	if (!buffer_uptodate(bh)) {
3209 		lock_buffer(bh);
3210 		if (!buffer_uptodate(bh))
3211 			return 0;
3212 		unlock_buffer(bh);
3213 	}
3214 	return 1;
3215 }
3216 EXPORT_SYMBOL(bh_uptodate_or_lock);
3217 
3218 /**
3219  * bh_submit_read - Submit a locked buffer for reading
3220  * @bh: struct buffer_head
3221  *
3222  * Returns zero on success and -EIO on error.
3223  */
3224 int bh_submit_read(struct buffer_head *bh)
3225 {
3226 	BUG_ON(!buffer_locked(bh));
3227 
3228 	if (buffer_uptodate(bh)) {
3229 		unlock_buffer(bh);
3230 		return 0;
3231 	}
3232 
3233 	get_bh(bh);
3234 	bh->b_end_io = end_buffer_read_sync;
3235 	submit_bh(READ, bh);
3236 	wait_on_buffer(bh);
3237 	if (buffer_uptodate(bh))
3238 		return 0;
3239 	return -EIO;
3240 }
3241 EXPORT_SYMBOL(bh_submit_read);
3242 
3243 static void
3244 init_buffer_head(void *data)
3245 {
3246 	struct buffer_head *bh = data;
3247 
3248 	memset(bh, 0, sizeof(*bh));
3249 	INIT_LIST_HEAD(&bh->b_assoc_buffers);
3250 }
3251 
3252 void __init buffer_init(void)
3253 {
3254 	int nrpages;
3255 
3256 	bh_cachep = kmem_cache_create("buffer_head",
3257 			sizeof(struct buffer_head), 0,
3258 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3259 				SLAB_MEM_SPREAD),
3260 				init_buffer_head);
3261 
3262 	/*
3263 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3264 	 */
3265 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3266 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3267 	hotcpu_notifier(buffer_cpu_notify, 0);
3268 }
3269 
3270 EXPORT_SYMBOL(__bforget);
3271 EXPORT_SYMBOL(__brelse);
3272 EXPORT_SYMBOL(__wait_on_buffer);
3273 EXPORT_SYMBOL(block_commit_write);
3274 EXPORT_SYMBOL(block_prepare_write);
3275 EXPORT_SYMBOL(block_page_mkwrite);
3276 EXPORT_SYMBOL(block_read_full_page);
3277 EXPORT_SYMBOL(block_sync_page);
3278 EXPORT_SYMBOL(block_truncate_page);
3279 EXPORT_SYMBOL(block_write_full_page);
3280 EXPORT_SYMBOL(cont_write_begin);
3281 EXPORT_SYMBOL(end_buffer_read_sync);
3282 EXPORT_SYMBOL(end_buffer_write_sync);
3283 EXPORT_SYMBOL(file_fsync);
3284 EXPORT_SYMBOL(fsync_bdev);
3285 EXPORT_SYMBOL(generic_block_bmap);
3286 EXPORT_SYMBOL(generic_cont_expand_simple);
3287 EXPORT_SYMBOL(init_buffer);
3288 EXPORT_SYMBOL(invalidate_bdev);
3289 EXPORT_SYMBOL(ll_rw_block);
3290 EXPORT_SYMBOL(mark_buffer_dirty);
3291 EXPORT_SYMBOL(submit_bh);
3292 EXPORT_SYMBOL(sync_dirty_buffer);
3293 EXPORT_SYMBOL(unlock_buffer);
3294