1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/smp_lock.h> 28 #include <linux/capability.h> 29 #include <linux/blkdev.h> 30 #include <linux/file.h> 31 #include <linux/quotaops.h> 32 #include <linux/highmem.h> 33 #include <linux/module.h> 34 #include <linux/writeback.h> 35 #include <linux/hash.h> 36 #include <linux/suspend.h> 37 #include <linux/buffer_head.h> 38 #include <linux/task_io_accounting_ops.h> 39 #include <linux/bio.h> 40 #include <linux/notifier.h> 41 #include <linux/cpu.h> 42 #include <linux/bitops.h> 43 #include <linux/mpage.h> 44 #include <linux/bit_spinlock.h> 45 46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 47 48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 49 50 inline void 51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 52 { 53 bh->b_end_io = handler; 54 bh->b_private = private; 55 } 56 57 static int sync_buffer(void *word) 58 { 59 struct block_device *bd; 60 struct buffer_head *bh 61 = container_of(word, struct buffer_head, b_state); 62 63 smp_mb(); 64 bd = bh->b_bdev; 65 if (bd) 66 blk_run_address_space(bd->bd_inode->i_mapping); 67 io_schedule(); 68 return 0; 69 } 70 71 void fastcall __lock_buffer(struct buffer_head *bh) 72 { 73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 74 TASK_UNINTERRUPTIBLE); 75 } 76 EXPORT_SYMBOL(__lock_buffer); 77 78 void fastcall unlock_buffer(struct buffer_head *bh) 79 { 80 smp_mb__before_clear_bit(); 81 clear_buffer_locked(bh); 82 smp_mb__after_clear_bit(); 83 wake_up_bit(&bh->b_state, BH_Lock); 84 } 85 86 /* 87 * Block until a buffer comes unlocked. This doesn't stop it 88 * from becoming locked again - you have to lock it yourself 89 * if you want to preserve its state. 90 */ 91 void __wait_on_buffer(struct buffer_head * bh) 92 { 93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 94 } 95 96 static void 97 __clear_page_buffers(struct page *page) 98 { 99 ClearPagePrivate(page); 100 set_page_private(page, 0); 101 page_cache_release(page); 102 } 103 104 static void buffer_io_error(struct buffer_head *bh) 105 { 106 char b[BDEVNAME_SIZE]; 107 108 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 109 bdevname(bh->b_bdev, b), 110 (unsigned long long)bh->b_blocknr); 111 } 112 113 /* 114 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 115 * unlock the buffer. This is what ll_rw_block uses too. 116 */ 117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 118 { 119 if (uptodate) { 120 set_buffer_uptodate(bh); 121 } else { 122 /* This happens, due to failed READA attempts. */ 123 clear_buffer_uptodate(bh); 124 } 125 unlock_buffer(bh); 126 put_bh(bh); 127 } 128 129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 130 { 131 char b[BDEVNAME_SIZE]; 132 133 if (uptodate) { 134 set_buffer_uptodate(bh); 135 } else { 136 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 137 buffer_io_error(bh); 138 printk(KERN_WARNING "lost page write due to " 139 "I/O error on %s\n", 140 bdevname(bh->b_bdev, b)); 141 } 142 set_buffer_write_io_error(bh); 143 clear_buffer_uptodate(bh); 144 } 145 unlock_buffer(bh); 146 put_bh(bh); 147 } 148 149 /* 150 * Write out and wait upon all the dirty data associated with a block 151 * device via its mapping. Does not take the superblock lock. 152 */ 153 int sync_blockdev(struct block_device *bdev) 154 { 155 int ret = 0; 156 157 if (bdev) 158 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); 159 return ret; 160 } 161 EXPORT_SYMBOL(sync_blockdev); 162 163 /* 164 * Write out and wait upon all dirty data associated with this 165 * device. Filesystem data as well as the underlying block 166 * device. Takes the superblock lock. 167 */ 168 int fsync_bdev(struct block_device *bdev) 169 { 170 struct super_block *sb = get_super(bdev); 171 if (sb) { 172 int res = fsync_super(sb); 173 drop_super(sb); 174 return res; 175 } 176 return sync_blockdev(bdev); 177 } 178 179 /** 180 * freeze_bdev -- lock a filesystem and force it into a consistent state 181 * @bdev: blockdevice to lock 182 * 183 * This takes the block device bd_mount_sem to make sure no new mounts 184 * happen on bdev until thaw_bdev() is called. 185 * If a superblock is found on this device, we take the s_umount semaphore 186 * on it to make sure nobody unmounts until the snapshot creation is done. 187 */ 188 struct super_block *freeze_bdev(struct block_device *bdev) 189 { 190 struct super_block *sb; 191 192 down(&bdev->bd_mount_sem); 193 sb = get_super(bdev); 194 if (sb && !(sb->s_flags & MS_RDONLY)) { 195 sb->s_frozen = SB_FREEZE_WRITE; 196 smp_wmb(); 197 198 __fsync_super(sb); 199 200 sb->s_frozen = SB_FREEZE_TRANS; 201 smp_wmb(); 202 203 sync_blockdev(sb->s_bdev); 204 205 if (sb->s_op->write_super_lockfs) 206 sb->s_op->write_super_lockfs(sb); 207 } 208 209 sync_blockdev(bdev); 210 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ 211 } 212 EXPORT_SYMBOL(freeze_bdev); 213 214 /** 215 * thaw_bdev -- unlock filesystem 216 * @bdev: blockdevice to unlock 217 * @sb: associated superblock 218 * 219 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 220 */ 221 void thaw_bdev(struct block_device *bdev, struct super_block *sb) 222 { 223 if (sb) { 224 BUG_ON(sb->s_bdev != bdev); 225 226 if (sb->s_op->unlockfs) 227 sb->s_op->unlockfs(sb); 228 sb->s_frozen = SB_UNFROZEN; 229 smp_wmb(); 230 wake_up(&sb->s_wait_unfrozen); 231 drop_super(sb); 232 } 233 234 up(&bdev->bd_mount_sem); 235 } 236 EXPORT_SYMBOL(thaw_bdev); 237 238 /* 239 * Various filesystems appear to want __find_get_block to be non-blocking. 240 * But it's the page lock which protects the buffers. To get around this, 241 * we get exclusion from try_to_free_buffers with the blockdev mapping's 242 * private_lock. 243 * 244 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 245 * may be quite high. This code could TryLock the page, and if that 246 * succeeds, there is no need to take private_lock. (But if 247 * private_lock is contended then so is mapping->tree_lock). 248 */ 249 static struct buffer_head * 250 __find_get_block_slow(struct block_device *bdev, sector_t block) 251 { 252 struct inode *bd_inode = bdev->bd_inode; 253 struct address_space *bd_mapping = bd_inode->i_mapping; 254 struct buffer_head *ret = NULL; 255 pgoff_t index; 256 struct buffer_head *bh; 257 struct buffer_head *head; 258 struct page *page; 259 int all_mapped = 1; 260 261 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 262 page = find_get_page(bd_mapping, index); 263 if (!page) 264 goto out; 265 266 spin_lock(&bd_mapping->private_lock); 267 if (!page_has_buffers(page)) 268 goto out_unlock; 269 head = page_buffers(page); 270 bh = head; 271 do { 272 if (bh->b_blocknr == block) { 273 ret = bh; 274 get_bh(bh); 275 goto out_unlock; 276 } 277 if (!buffer_mapped(bh)) 278 all_mapped = 0; 279 bh = bh->b_this_page; 280 } while (bh != head); 281 282 /* we might be here because some of the buffers on this page are 283 * not mapped. This is due to various races between 284 * file io on the block device and getblk. It gets dealt with 285 * elsewhere, don't buffer_error if we had some unmapped buffers 286 */ 287 if (all_mapped) { 288 printk("__find_get_block_slow() failed. " 289 "block=%llu, b_blocknr=%llu\n", 290 (unsigned long long)block, 291 (unsigned long long)bh->b_blocknr); 292 printk("b_state=0x%08lx, b_size=%zu\n", 293 bh->b_state, bh->b_size); 294 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 295 } 296 out_unlock: 297 spin_unlock(&bd_mapping->private_lock); 298 page_cache_release(page); 299 out: 300 return ret; 301 } 302 303 /* If invalidate_buffers() will trash dirty buffers, it means some kind 304 of fs corruption is going on. Trashing dirty data always imply losing 305 information that was supposed to be just stored on the physical layer 306 by the user. 307 308 Thus invalidate_buffers in general usage is not allwowed to trash 309 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 310 be preserved. These buffers are simply skipped. 311 312 We also skip buffers which are still in use. For example this can 313 happen if a userspace program is reading the block device. 314 315 NOTE: In the case where the user removed a removable-media-disk even if 316 there's still dirty data not synced on disk (due a bug in the device driver 317 or due an error of the user), by not destroying the dirty buffers we could 318 generate corruption also on the next media inserted, thus a parameter is 319 necessary to handle this case in the most safe way possible (trying 320 to not corrupt also the new disk inserted with the data belonging to 321 the old now corrupted disk). Also for the ramdisk the natural thing 322 to do in order to release the ramdisk memory is to destroy dirty buffers. 323 324 These are two special cases. Normal usage imply the device driver 325 to issue a sync on the device (without waiting I/O completion) and 326 then an invalidate_buffers call that doesn't trash dirty buffers. 327 328 For handling cache coherency with the blkdev pagecache the 'update' case 329 is been introduced. It is needed to re-read from disk any pinned 330 buffer. NOTE: re-reading from disk is destructive so we can do it only 331 when we assume nobody is changing the buffercache under our I/O and when 332 we think the disk contains more recent information than the buffercache. 333 The update == 1 pass marks the buffers we need to update, the update == 2 334 pass does the actual I/O. */ 335 void invalidate_bdev(struct block_device *bdev) 336 { 337 struct address_space *mapping = bdev->bd_inode->i_mapping; 338 339 if (mapping->nrpages == 0) 340 return; 341 342 invalidate_bh_lrus(); 343 invalidate_mapping_pages(mapping, 0, -1); 344 } 345 346 /* 347 * Kick pdflush then try to free up some ZONE_NORMAL memory. 348 */ 349 static void free_more_memory(void) 350 { 351 struct zone **zones; 352 pg_data_t *pgdat; 353 354 wakeup_pdflush(1024); 355 yield(); 356 357 for_each_online_pgdat(pgdat) { 358 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones; 359 if (*zones) 360 try_to_free_pages(zones, GFP_NOFS); 361 } 362 } 363 364 /* 365 * I/O completion handler for block_read_full_page() - pages 366 * which come unlocked at the end of I/O. 367 */ 368 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 369 { 370 unsigned long flags; 371 struct buffer_head *first; 372 struct buffer_head *tmp; 373 struct page *page; 374 int page_uptodate = 1; 375 376 BUG_ON(!buffer_async_read(bh)); 377 378 page = bh->b_page; 379 if (uptodate) { 380 set_buffer_uptodate(bh); 381 } else { 382 clear_buffer_uptodate(bh); 383 if (printk_ratelimit()) 384 buffer_io_error(bh); 385 SetPageError(page); 386 } 387 388 /* 389 * Be _very_ careful from here on. Bad things can happen if 390 * two buffer heads end IO at almost the same time and both 391 * decide that the page is now completely done. 392 */ 393 first = page_buffers(page); 394 local_irq_save(flags); 395 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 396 clear_buffer_async_read(bh); 397 unlock_buffer(bh); 398 tmp = bh; 399 do { 400 if (!buffer_uptodate(tmp)) 401 page_uptodate = 0; 402 if (buffer_async_read(tmp)) { 403 BUG_ON(!buffer_locked(tmp)); 404 goto still_busy; 405 } 406 tmp = tmp->b_this_page; 407 } while (tmp != bh); 408 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 409 local_irq_restore(flags); 410 411 /* 412 * If none of the buffers had errors and they are all 413 * uptodate then we can set the page uptodate. 414 */ 415 if (page_uptodate && !PageError(page)) 416 SetPageUptodate(page); 417 unlock_page(page); 418 return; 419 420 still_busy: 421 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 422 local_irq_restore(flags); 423 return; 424 } 425 426 /* 427 * Completion handler for block_write_full_page() - pages which are unlocked 428 * during I/O, and which have PageWriteback cleared upon I/O completion. 429 */ 430 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 431 { 432 char b[BDEVNAME_SIZE]; 433 unsigned long flags; 434 struct buffer_head *first; 435 struct buffer_head *tmp; 436 struct page *page; 437 438 BUG_ON(!buffer_async_write(bh)); 439 440 page = bh->b_page; 441 if (uptodate) { 442 set_buffer_uptodate(bh); 443 } else { 444 if (printk_ratelimit()) { 445 buffer_io_error(bh); 446 printk(KERN_WARNING "lost page write due to " 447 "I/O error on %s\n", 448 bdevname(bh->b_bdev, b)); 449 } 450 set_bit(AS_EIO, &page->mapping->flags); 451 set_buffer_write_io_error(bh); 452 clear_buffer_uptodate(bh); 453 SetPageError(page); 454 } 455 456 first = page_buffers(page); 457 local_irq_save(flags); 458 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 459 460 clear_buffer_async_write(bh); 461 unlock_buffer(bh); 462 tmp = bh->b_this_page; 463 while (tmp != bh) { 464 if (buffer_async_write(tmp)) { 465 BUG_ON(!buffer_locked(tmp)); 466 goto still_busy; 467 } 468 tmp = tmp->b_this_page; 469 } 470 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 471 local_irq_restore(flags); 472 end_page_writeback(page); 473 return; 474 475 still_busy: 476 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 477 local_irq_restore(flags); 478 return; 479 } 480 481 /* 482 * If a page's buffers are under async readin (end_buffer_async_read 483 * completion) then there is a possibility that another thread of 484 * control could lock one of the buffers after it has completed 485 * but while some of the other buffers have not completed. This 486 * locked buffer would confuse end_buffer_async_read() into not unlocking 487 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 488 * that this buffer is not under async I/O. 489 * 490 * The page comes unlocked when it has no locked buffer_async buffers 491 * left. 492 * 493 * PageLocked prevents anyone starting new async I/O reads any of 494 * the buffers. 495 * 496 * PageWriteback is used to prevent simultaneous writeout of the same 497 * page. 498 * 499 * PageLocked prevents anyone from starting writeback of a page which is 500 * under read I/O (PageWriteback is only ever set against a locked page). 501 */ 502 static void mark_buffer_async_read(struct buffer_head *bh) 503 { 504 bh->b_end_io = end_buffer_async_read; 505 set_buffer_async_read(bh); 506 } 507 508 void mark_buffer_async_write(struct buffer_head *bh) 509 { 510 bh->b_end_io = end_buffer_async_write; 511 set_buffer_async_write(bh); 512 } 513 EXPORT_SYMBOL(mark_buffer_async_write); 514 515 516 /* 517 * fs/buffer.c contains helper functions for buffer-backed address space's 518 * fsync functions. A common requirement for buffer-based filesystems is 519 * that certain data from the backing blockdev needs to be written out for 520 * a successful fsync(). For example, ext2 indirect blocks need to be 521 * written back and waited upon before fsync() returns. 522 * 523 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 524 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 525 * management of a list of dependent buffers at ->i_mapping->private_list. 526 * 527 * Locking is a little subtle: try_to_free_buffers() will remove buffers 528 * from their controlling inode's queue when they are being freed. But 529 * try_to_free_buffers() will be operating against the *blockdev* mapping 530 * at the time, not against the S_ISREG file which depends on those buffers. 531 * So the locking for private_list is via the private_lock in the address_space 532 * which backs the buffers. Which is different from the address_space 533 * against which the buffers are listed. So for a particular address_space, 534 * mapping->private_lock does *not* protect mapping->private_list! In fact, 535 * mapping->private_list will always be protected by the backing blockdev's 536 * ->private_lock. 537 * 538 * Which introduces a requirement: all buffers on an address_space's 539 * ->private_list must be from the same address_space: the blockdev's. 540 * 541 * address_spaces which do not place buffers at ->private_list via these 542 * utility functions are free to use private_lock and private_list for 543 * whatever they want. The only requirement is that list_empty(private_list) 544 * be true at clear_inode() time. 545 * 546 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 547 * filesystems should do that. invalidate_inode_buffers() should just go 548 * BUG_ON(!list_empty). 549 * 550 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 551 * take an address_space, not an inode. And it should be called 552 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 553 * queued up. 554 * 555 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 556 * list if it is already on a list. Because if the buffer is on a list, 557 * it *must* already be on the right one. If not, the filesystem is being 558 * silly. This will save a ton of locking. But first we have to ensure 559 * that buffers are taken *off* the old inode's list when they are freed 560 * (presumably in truncate). That requires careful auditing of all 561 * filesystems (do it inside bforget()). It could also be done by bringing 562 * b_inode back. 563 */ 564 565 /* 566 * The buffer's backing address_space's private_lock must be held 567 */ 568 static inline void __remove_assoc_queue(struct buffer_head *bh) 569 { 570 list_del_init(&bh->b_assoc_buffers); 571 WARN_ON(!bh->b_assoc_map); 572 if (buffer_write_io_error(bh)) 573 set_bit(AS_EIO, &bh->b_assoc_map->flags); 574 bh->b_assoc_map = NULL; 575 } 576 577 int inode_has_buffers(struct inode *inode) 578 { 579 return !list_empty(&inode->i_data.private_list); 580 } 581 582 /* 583 * osync is designed to support O_SYNC io. It waits synchronously for 584 * all already-submitted IO to complete, but does not queue any new 585 * writes to the disk. 586 * 587 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 588 * you dirty the buffers, and then use osync_inode_buffers to wait for 589 * completion. Any other dirty buffers which are not yet queued for 590 * write will not be flushed to disk by the osync. 591 */ 592 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 593 { 594 struct buffer_head *bh; 595 struct list_head *p; 596 int err = 0; 597 598 spin_lock(lock); 599 repeat: 600 list_for_each_prev(p, list) { 601 bh = BH_ENTRY(p); 602 if (buffer_locked(bh)) { 603 get_bh(bh); 604 spin_unlock(lock); 605 wait_on_buffer(bh); 606 if (!buffer_uptodate(bh)) 607 err = -EIO; 608 brelse(bh); 609 spin_lock(lock); 610 goto repeat; 611 } 612 } 613 spin_unlock(lock); 614 return err; 615 } 616 617 /** 618 * sync_mapping_buffers - write out and wait upon a mapping's "associated" 619 * buffers 620 * @mapping: the mapping which wants those buffers written 621 * 622 * Starts I/O against the buffers at mapping->private_list, and waits upon 623 * that I/O. 624 * 625 * Basically, this is a convenience function for fsync(). 626 * @mapping is a file or directory which needs those buffers to be written for 627 * a successful fsync(). 628 */ 629 int sync_mapping_buffers(struct address_space *mapping) 630 { 631 struct address_space *buffer_mapping = mapping->assoc_mapping; 632 633 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 634 return 0; 635 636 return fsync_buffers_list(&buffer_mapping->private_lock, 637 &mapping->private_list); 638 } 639 EXPORT_SYMBOL(sync_mapping_buffers); 640 641 /* 642 * Called when we've recently written block `bblock', and it is known that 643 * `bblock' was for a buffer_boundary() buffer. This means that the block at 644 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 645 * dirty, schedule it for IO. So that indirects merge nicely with their data. 646 */ 647 void write_boundary_block(struct block_device *bdev, 648 sector_t bblock, unsigned blocksize) 649 { 650 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 651 if (bh) { 652 if (buffer_dirty(bh)) 653 ll_rw_block(WRITE, 1, &bh); 654 put_bh(bh); 655 } 656 } 657 658 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 659 { 660 struct address_space *mapping = inode->i_mapping; 661 struct address_space *buffer_mapping = bh->b_page->mapping; 662 663 mark_buffer_dirty(bh); 664 if (!mapping->assoc_mapping) { 665 mapping->assoc_mapping = buffer_mapping; 666 } else { 667 BUG_ON(mapping->assoc_mapping != buffer_mapping); 668 } 669 if (list_empty(&bh->b_assoc_buffers)) { 670 spin_lock(&buffer_mapping->private_lock); 671 list_move_tail(&bh->b_assoc_buffers, 672 &mapping->private_list); 673 bh->b_assoc_map = mapping; 674 spin_unlock(&buffer_mapping->private_lock); 675 } 676 } 677 EXPORT_SYMBOL(mark_buffer_dirty_inode); 678 679 /* 680 * Add a page to the dirty page list. 681 * 682 * It is a sad fact of life that this function is called from several places 683 * deeply under spinlocking. It may not sleep. 684 * 685 * If the page has buffers, the uptodate buffers are set dirty, to preserve 686 * dirty-state coherency between the page and the buffers. It the page does 687 * not have buffers then when they are later attached they will all be set 688 * dirty. 689 * 690 * The buffers are dirtied before the page is dirtied. There's a small race 691 * window in which a writepage caller may see the page cleanness but not the 692 * buffer dirtiness. That's fine. If this code were to set the page dirty 693 * before the buffers, a concurrent writepage caller could clear the page dirty 694 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 695 * page on the dirty page list. 696 * 697 * We use private_lock to lock against try_to_free_buffers while using the 698 * page's buffer list. Also use this to protect against clean buffers being 699 * added to the page after it was set dirty. 700 * 701 * FIXME: may need to call ->reservepage here as well. That's rather up to the 702 * address_space though. 703 */ 704 int __set_page_dirty_buffers(struct page *page) 705 { 706 struct address_space * const mapping = page_mapping(page); 707 708 if (unlikely(!mapping)) 709 return !TestSetPageDirty(page); 710 711 spin_lock(&mapping->private_lock); 712 if (page_has_buffers(page)) { 713 struct buffer_head *head = page_buffers(page); 714 struct buffer_head *bh = head; 715 716 do { 717 set_buffer_dirty(bh); 718 bh = bh->b_this_page; 719 } while (bh != head); 720 } 721 spin_unlock(&mapping->private_lock); 722 723 if (TestSetPageDirty(page)) 724 return 0; 725 726 write_lock_irq(&mapping->tree_lock); 727 if (page->mapping) { /* Race with truncate? */ 728 if (mapping_cap_account_dirty(mapping)) { 729 __inc_zone_page_state(page, NR_FILE_DIRTY); 730 task_io_account_write(PAGE_CACHE_SIZE); 731 } 732 radix_tree_tag_set(&mapping->page_tree, 733 page_index(page), PAGECACHE_TAG_DIRTY); 734 } 735 write_unlock_irq(&mapping->tree_lock); 736 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 737 return 1; 738 } 739 EXPORT_SYMBOL(__set_page_dirty_buffers); 740 741 /* 742 * Write out and wait upon a list of buffers. 743 * 744 * We have conflicting pressures: we want to make sure that all 745 * initially dirty buffers get waited on, but that any subsequently 746 * dirtied buffers don't. After all, we don't want fsync to last 747 * forever if somebody is actively writing to the file. 748 * 749 * Do this in two main stages: first we copy dirty buffers to a 750 * temporary inode list, queueing the writes as we go. Then we clean 751 * up, waiting for those writes to complete. 752 * 753 * During this second stage, any subsequent updates to the file may end 754 * up refiling the buffer on the original inode's dirty list again, so 755 * there is a chance we will end up with a buffer queued for write but 756 * not yet completed on that list. So, as a final cleanup we go through 757 * the osync code to catch these locked, dirty buffers without requeuing 758 * any newly dirty buffers for write. 759 */ 760 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 761 { 762 struct buffer_head *bh; 763 struct list_head tmp; 764 int err = 0, err2; 765 766 INIT_LIST_HEAD(&tmp); 767 768 spin_lock(lock); 769 while (!list_empty(list)) { 770 bh = BH_ENTRY(list->next); 771 __remove_assoc_queue(bh); 772 if (buffer_dirty(bh) || buffer_locked(bh)) { 773 list_add(&bh->b_assoc_buffers, &tmp); 774 if (buffer_dirty(bh)) { 775 get_bh(bh); 776 spin_unlock(lock); 777 /* 778 * Ensure any pending I/O completes so that 779 * ll_rw_block() actually writes the current 780 * contents - it is a noop if I/O is still in 781 * flight on potentially older contents. 782 */ 783 ll_rw_block(SWRITE, 1, &bh); 784 brelse(bh); 785 spin_lock(lock); 786 } 787 } 788 } 789 790 while (!list_empty(&tmp)) { 791 bh = BH_ENTRY(tmp.prev); 792 list_del_init(&bh->b_assoc_buffers); 793 get_bh(bh); 794 spin_unlock(lock); 795 wait_on_buffer(bh); 796 if (!buffer_uptodate(bh)) 797 err = -EIO; 798 brelse(bh); 799 spin_lock(lock); 800 } 801 802 spin_unlock(lock); 803 err2 = osync_buffers_list(lock, list); 804 if (err) 805 return err; 806 else 807 return err2; 808 } 809 810 /* 811 * Invalidate any and all dirty buffers on a given inode. We are 812 * probably unmounting the fs, but that doesn't mean we have already 813 * done a sync(). Just drop the buffers from the inode list. 814 * 815 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 816 * assumes that all the buffers are against the blockdev. Not true 817 * for reiserfs. 818 */ 819 void invalidate_inode_buffers(struct inode *inode) 820 { 821 if (inode_has_buffers(inode)) { 822 struct address_space *mapping = &inode->i_data; 823 struct list_head *list = &mapping->private_list; 824 struct address_space *buffer_mapping = mapping->assoc_mapping; 825 826 spin_lock(&buffer_mapping->private_lock); 827 while (!list_empty(list)) 828 __remove_assoc_queue(BH_ENTRY(list->next)); 829 spin_unlock(&buffer_mapping->private_lock); 830 } 831 } 832 833 /* 834 * Remove any clean buffers from the inode's buffer list. This is called 835 * when we're trying to free the inode itself. Those buffers can pin it. 836 * 837 * Returns true if all buffers were removed. 838 */ 839 int remove_inode_buffers(struct inode *inode) 840 { 841 int ret = 1; 842 843 if (inode_has_buffers(inode)) { 844 struct address_space *mapping = &inode->i_data; 845 struct list_head *list = &mapping->private_list; 846 struct address_space *buffer_mapping = mapping->assoc_mapping; 847 848 spin_lock(&buffer_mapping->private_lock); 849 while (!list_empty(list)) { 850 struct buffer_head *bh = BH_ENTRY(list->next); 851 if (buffer_dirty(bh)) { 852 ret = 0; 853 break; 854 } 855 __remove_assoc_queue(bh); 856 } 857 spin_unlock(&buffer_mapping->private_lock); 858 } 859 return ret; 860 } 861 862 /* 863 * Create the appropriate buffers when given a page for data area and 864 * the size of each buffer.. Use the bh->b_this_page linked list to 865 * follow the buffers created. Return NULL if unable to create more 866 * buffers. 867 * 868 * The retry flag is used to differentiate async IO (paging, swapping) 869 * which may not fail from ordinary buffer allocations. 870 */ 871 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 872 int retry) 873 { 874 struct buffer_head *bh, *head; 875 long offset; 876 877 try_again: 878 head = NULL; 879 offset = PAGE_SIZE; 880 while ((offset -= size) >= 0) { 881 bh = alloc_buffer_head(GFP_NOFS); 882 if (!bh) 883 goto no_grow; 884 885 bh->b_bdev = NULL; 886 bh->b_this_page = head; 887 bh->b_blocknr = -1; 888 head = bh; 889 890 bh->b_state = 0; 891 atomic_set(&bh->b_count, 0); 892 bh->b_private = NULL; 893 bh->b_size = size; 894 895 /* Link the buffer to its page */ 896 set_bh_page(bh, page, offset); 897 898 init_buffer(bh, NULL, NULL); 899 } 900 return head; 901 /* 902 * In case anything failed, we just free everything we got. 903 */ 904 no_grow: 905 if (head) { 906 do { 907 bh = head; 908 head = head->b_this_page; 909 free_buffer_head(bh); 910 } while (head); 911 } 912 913 /* 914 * Return failure for non-async IO requests. Async IO requests 915 * are not allowed to fail, so we have to wait until buffer heads 916 * become available. But we don't want tasks sleeping with 917 * partially complete buffers, so all were released above. 918 */ 919 if (!retry) 920 return NULL; 921 922 /* We're _really_ low on memory. Now we just 923 * wait for old buffer heads to become free due to 924 * finishing IO. Since this is an async request and 925 * the reserve list is empty, we're sure there are 926 * async buffer heads in use. 927 */ 928 free_more_memory(); 929 goto try_again; 930 } 931 EXPORT_SYMBOL_GPL(alloc_page_buffers); 932 933 static inline void 934 link_dev_buffers(struct page *page, struct buffer_head *head) 935 { 936 struct buffer_head *bh, *tail; 937 938 bh = head; 939 do { 940 tail = bh; 941 bh = bh->b_this_page; 942 } while (bh); 943 tail->b_this_page = head; 944 attach_page_buffers(page, head); 945 } 946 947 /* 948 * Initialise the state of a blockdev page's buffers. 949 */ 950 static void 951 init_page_buffers(struct page *page, struct block_device *bdev, 952 sector_t block, int size) 953 { 954 struct buffer_head *head = page_buffers(page); 955 struct buffer_head *bh = head; 956 int uptodate = PageUptodate(page); 957 958 do { 959 if (!buffer_mapped(bh)) { 960 init_buffer(bh, NULL, NULL); 961 bh->b_bdev = bdev; 962 bh->b_blocknr = block; 963 if (uptodate) 964 set_buffer_uptodate(bh); 965 set_buffer_mapped(bh); 966 } 967 block++; 968 bh = bh->b_this_page; 969 } while (bh != head); 970 } 971 972 /* 973 * Create the page-cache page that contains the requested block. 974 * 975 * This is user purely for blockdev mappings. 976 */ 977 static struct page * 978 grow_dev_page(struct block_device *bdev, sector_t block, 979 pgoff_t index, int size) 980 { 981 struct inode *inode = bdev->bd_inode; 982 struct page *page; 983 struct buffer_head *bh; 984 985 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 986 if (!page) 987 return NULL; 988 989 BUG_ON(!PageLocked(page)); 990 991 if (page_has_buffers(page)) { 992 bh = page_buffers(page); 993 if (bh->b_size == size) { 994 init_page_buffers(page, bdev, block, size); 995 return page; 996 } 997 if (!try_to_free_buffers(page)) 998 goto failed; 999 } 1000 1001 /* 1002 * Allocate some buffers for this page 1003 */ 1004 bh = alloc_page_buffers(page, size, 0); 1005 if (!bh) 1006 goto failed; 1007 1008 /* 1009 * Link the page to the buffers and initialise them. Take the 1010 * lock to be atomic wrt __find_get_block(), which does not 1011 * run under the page lock. 1012 */ 1013 spin_lock(&inode->i_mapping->private_lock); 1014 link_dev_buffers(page, bh); 1015 init_page_buffers(page, bdev, block, size); 1016 spin_unlock(&inode->i_mapping->private_lock); 1017 return page; 1018 1019 failed: 1020 BUG(); 1021 unlock_page(page); 1022 page_cache_release(page); 1023 return NULL; 1024 } 1025 1026 /* 1027 * Create buffers for the specified block device block's page. If 1028 * that page was dirty, the buffers are set dirty also. 1029 * 1030 * Except that's a bug. Attaching dirty buffers to a dirty 1031 * blockdev's page can result in filesystem corruption, because 1032 * some of those buffers may be aliases of filesystem data. 1033 * grow_dev_page() will go BUG() if this happens. 1034 */ 1035 static int 1036 grow_buffers(struct block_device *bdev, sector_t block, int size) 1037 { 1038 struct page *page; 1039 pgoff_t index; 1040 int sizebits; 1041 1042 sizebits = -1; 1043 do { 1044 sizebits++; 1045 } while ((size << sizebits) < PAGE_SIZE); 1046 1047 index = block >> sizebits; 1048 1049 /* 1050 * Check for a block which wants to lie outside our maximum possible 1051 * pagecache index. (this comparison is done using sector_t types). 1052 */ 1053 if (unlikely(index != block >> sizebits)) { 1054 char b[BDEVNAME_SIZE]; 1055 1056 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1057 "device %s\n", 1058 __FUNCTION__, (unsigned long long)block, 1059 bdevname(bdev, b)); 1060 return -EIO; 1061 } 1062 block = index << sizebits; 1063 /* Create a page with the proper size buffers.. */ 1064 page = grow_dev_page(bdev, block, index, size); 1065 if (!page) 1066 return 0; 1067 unlock_page(page); 1068 page_cache_release(page); 1069 return 1; 1070 } 1071 1072 static struct buffer_head * 1073 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1074 { 1075 /* Size must be multiple of hard sectorsize */ 1076 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1077 (size < 512 || size > PAGE_SIZE))) { 1078 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1079 size); 1080 printk(KERN_ERR "hardsect size: %d\n", 1081 bdev_hardsect_size(bdev)); 1082 1083 dump_stack(); 1084 return NULL; 1085 } 1086 1087 for (;;) { 1088 struct buffer_head * bh; 1089 int ret; 1090 1091 bh = __find_get_block(bdev, block, size); 1092 if (bh) 1093 return bh; 1094 1095 ret = grow_buffers(bdev, block, size); 1096 if (ret < 0) 1097 return NULL; 1098 if (ret == 0) 1099 free_more_memory(); 1100 } 1101 } 1102 1103 /* 1104 * The relationship between dirty buffers and dirty pages: 1105 * 1106 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1107 * the page is tagged dirty in its radix tree. 1108 * 1109 * At all times, the dirtiness of the buffers represents the dirtiness of 1110 * subsections of the page. If the page has buffers, the page dirty bit is 1111 * merely a hint about the true dirty state. 1112 * 1113 * When a page is set dirty in its entirety, all its buffers are marked dirty 1114 * (if the page has buffers). 1115 * 1116 * When a buffer is marked dirty, its page is dirtied, but the page's other 1117 * buffers are not. 1118 * 1119 * Also. When blockdev buffers are explicitly read with bread(), they 1120 * individually become uptodate. But their backing page remains not 1121 * uptodate - even if all of its buffers are uptodate. A subsequent 1122 * block_read_full_page() against that page will discover all the uptodate 1123 * buffers, will set the page uptodate and will perform no I/O. 1124 */ 1125 1126 /** 1127 * mark_buffer_dirty - mark a buffer_head as needing writeout 1128 * @bh: the buffer_head to mark dirty 1129 * 1130 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1131 * backing page dirty, then tag the page as dirty in its address_space's radix 1132 * tree and then attach the address_space's inode to its superblock's dirty 1133 * inode list. 1134 * 1135 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1136 * mapping->tree_lock and the global inode_lock. 1137 */ 1138 void fastcall mark_buffer_dirty(struct buffer_head *bh) 1139 { 1140 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) 1141 __set_page_dirty_nobuffers(bh->b_page); 1142 } 1143 1144 /* 1145 * Decrement a buffer_head's reference count. If all buffers against a page 1146 * have zero reference count, are clean and unlocked, and if the page is clean 1147 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1148 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1149 * a page but it ends up not being freed, and buffers may later be reattached). 1150 */ 1151 void __brelse(struct buffer_head * buf) 1152 { 1153 if (atomic_read(&buf->b_count)) { 1154 put_bh(buf); 1155 return; 1156 } 1157 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1158 WARN_ON(1); 1159 } 1160 1161 /* 1162 * bforget() is like brelse(), except it discards any 1163 * potentially dirty data. 1164 */ 1165 void __bforget(struct buffer_head *bh) 1166 { 1167 clear_buffer_dirty(bh); 1168 if (!list_empty(&bh->b_assoc_buffers)) { 1169 struct address_space *buffer_mapping = bh->b_page->mapping; 1170 1171 spin_lock(&buffer_mapping->private_lock); 1172 list_del_init(&bh->b_assoc_buffers); 1173 bh->b_assoc_map = NULL; 1174 spin_unlock(&buffer_mapping->private_lock); 1175 } 1176 __brelse(bh); 1177 } 1178 1179 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1180 { 1181 lock_buffer(bh); 1182 if (buffer_uptodate(bh)) { 1183 unlock_buffer(bh); 1184 return bh; 1185 } else { 1186 get_bh(bh); 1187 bh->b_end_io = end_buffer_read_sync; 1188 submit_bh(READ, bh); 1189 wait_on_buffer(bh); 1190 if (buffer_uptodate(bh)) 1191 return bh; 1192 } 1193 brelse(bh); 1194 return NULL; 1195 } 1196 1197 /* 1198 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1199 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1200 * refcount elevated by one when they're in an LRU. A buffer can only appear 1201 * once in a particular CPU's LRU. A single buffer can be present in multiple 1202 * CPU's LRUs at the same time. 1203 * 1204 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1205 * sb_find_get_block(). 1206 * 1207 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1208 * a local interrupt disable for that. 1209 */ 1210 1211 #define BH_LRU_SIZE 8 1212 1213 struct bh_lru { 1214 struct buffer_head *bhs[BH_LRU_SIZE]; 1215 }; 1216 1217 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1218 1219 #ifdef CONFIG_SMP 1220 #define bh_lru_lock() local_irq_disable() 1221 #define bh_lru_unlock() local_irq_enable() 1222 #else 1223 #define bh_lru_lock() preempt_disable() 1224 #define bh_lru_unlock() preempt_enable() 1225 #endif 1226 1227 static inline void check_irqs_on(void) 1228 { 1229 #ifdef irqs_disabled 1230 BUG_ON(irqs_disabled()); 1231 #endif 1232 } 1233 1234 /* 1235 * The LRU management algorithm is dopey-but-simple. Sorry. 1236 */ 1237 static void bh_lru_install(struct buffer_head *bh) 1238 { 1239 struct buffer_head *evictee = NULL; 1240 struct bh_lru *lru; 1241 1242 check_irqs_on(); 1243 bh_lru_lock(); 1244 lru = &__get_cpu_var(bh_lrus); 1245 if (lru->bhs[0] != bh) { 1246 struct buffer_head *bhs[BH_LRU_SIZE]; 1247 int in; 1248 int out = 0; 1249 1250 get_bh(bh); 1251 bhs[out++] = bh; 1252 for (in = 0; in < BH_LRU_SIZE; in++) { 1253 struct buffer_head *bh2 = lru->bhs[in]; 1254 1255 if (bh2 == bh) { 1256 __brelse(bh2); 1257 } else { 1258 if (out >= BH_LRU_SIZE) { 1259 BUG_ON(evictee != NULL); 1260 evictee = bh2; 1261 } else { 1262 bhs[out++] = bh2; 1263 } 1264 } 1265 } 1266 while (out < BH_LRU_SIZE) 1267 bhs[out++] = NULL; 1268 memcpy(lru->bhs, bhs, sizeof(bhs)); 1269 } 1270 bh_lru_unlock(); 1271 1272 if (evictee) 1273 __brelse(evictee); 1274 } 1275 1276 /* 1277 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1278 */ 1279 static struct buffer_head * 1280 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1281 { 1282 struct buffer_head *ret = NULL; 1283 struct bh_lru *lru; 1284 unsigned int i; 1285 1286 check_irqs_on(); 1287 bh_lru_lock(); 1288 lru = &__get_cpu_var(bh_lrus); 1289 for (i = 0; i < BH_LRU_SIZE; i++) { 1290 struct buffer_head *bh = lru->bhs[i]; 1291 1292 if (bh && bh->b_bdev == bdev && 1293 bh->b_blocknr == block && bh->b_size == size) { 1294 if (i) { 1295 while (i) { 1296 lru->bhs[i] = lru->bhs[i - 1]; 1297 i--; 1298 } 1299 lru->bhs[0] = bh; 1300 } 1301 get_bh(bh); 1302 ret = bh; 1303 break; 1304 } 1305 } 1306 bh_lru_unlock(); 1307 return ret; 1308 } 1309 1310 /* 1311 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1312 * it in the LRU and mark it as accessed. If it is not present then return 1313 * NULL 1314 */ 1315 struct buffer_head * 1316 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1317 { 1318 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1319 1320 if (bh == NULL) { 1321 bh = __find_get_block_slow(bdev, block); 1322 if (bh) 1323 bh_lru_install(bh); 1324 } 1325 if (bh) 1326 touch_buffer(bh); 1327 return bh; 1328 } 1329 EXPORT_SYMBOL(__find_get_block); 1330 1331 /* 1332 * __getblk will locate (and, if necessary, create) the buffer_head 1333 * which corresponds to the passed block_device, block and size. The 1334 * returned buffer has its reference count incremented. 1335 * 1336 * __getblk() cannot fail - it just keeps trying. If you pass it an 1337 * illegal block number, __getblk() will happily return a buffer_head 1338 * which represents the non-existent block. Very weird. 1339 * 1340 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1341 * attempt is failing. FIXME, perhaps? 1342 */ 1343 struct buffer_head * 1344 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1345 { 1346 struct buffer_head *bh = __find_get_block(bdev, block, size); 1347 1348 might_sleep(); 1349 if (bh == NULL) 1350 bh = __getblk_slow(bdev, block, size); 1351 return bh; 1352 } 1353 EXPORT_SYMBOL(__getblk); 1354 1355 /* 1356 * Do async read-ahead on a buffer.. 1357 */ 1358 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1359 { 1360 struct buffer_head *bh = __getblk(bdev, block, size); 1361 if (likely(bh)) { 1362 ll_rw_block(READA, 1, &bh); 1363 brelse(bh); 1364 } 1365 } 1366 EXPORT_SYMBOL(__breadahead); 1367 1368 /** 1369 * __bread() - reads a specified block and returns the bh 1370 * @bdev: the block_device to read from 1371 * @block: number of block 1372 * @size: size (in bytes) to read 1373 * 1374 * Reads a specified block, and returns buffer head that contains it. 1375 * It returns NULL if the block was unreadable. 1376 */ 1377 struct buffer_head * 1378 __bread(struct block_device *bdev, sector_t block, unsigned size) 1379 { 1380 struct buffer_head *bh = __getblk(bdev, block, size); 1381 1382 if (likely(bh) && !buffer_uptodate(bh)) 1383 bh = __bread_slow(bh); 1384 return bh; 1385 } 1386 EXPORT_SYMBOL(__bread); 1387 1388 /* 1389 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1390 * This doesn't race because it runs in each cpu either in irq 1391 * or with preempt disabled. 1392 */ 1393 static void invalidate_bh_lru(void *arg) 1394 { 1395 struct bh_lru *b = &get_cpu_var(bh_lrus); 1396 int i; 1397 1398 for (i = 0; i < BH_LRU_SIZE; i++) { 1399 brelse(b->bhs[i]); 1400 b->bhs[i] = NULL; 1401 } 1402 put_cpu_var(bh_lrus); 1403 } 1404 1405 void invalidate_bh_lrus(void) 1406 { 1407 on_each_cpu(invalidate_bh_lru, NULL, 1, 1); 1408 } 1409 1410 void set_bh_page(struct buffer_head *bh, 1411 struct page *page, unsigned long offset) 1412 { 1413 bh->b_page = page; 1414 BUG_ON(offset >= PAGE_SIZE); 1415 if (PageHighMem(page)) 1416 /* 1417 * This catches illegal uses and preserves the offset: 1418 */ 1419 bh->b_data = (char *)(0 + offset); 1420 else 1421 bh->b_data = page_address(page) + offset; 1422 } 1423 EXPORT_SYMBOL(set_bh_page); 1424 1425 /* 1426 * Called when truncating a buffer on a page completely. 1427 */ 1428 static void discard_buffer(struct buffer_head * bh) 1429 { 1430 lock_buffer(bh); 1431 clear_buffer_dirty(bh); 1432 bh->b_bdev = NULL; 1433 clear_buffer_mapped(bh); 1434 clear_buffer_req(bh); 1435 clear_buffer_new(bh); 1436 clear_buffer_delay(bh); 1437 clear_buffer_unwritten(bh); 1438 unlock_buffer(bh); 1439 } 1440 1441 /** 1442 * block_invalidatepage - invalidate part of all of a buffer-backed page 1443 * 1444 * @page: the page which is affected 1445 * @offset: the index of the truncation point 1446 * 1447 * block_invalidatepage() is called when all or part of the page has become 1448 * invalidatedby a truncate operation. 1449 * 1450 * block_invalidatepage() does not have to release all buffers, but it must 1451 * ensure that no dirty buffer is left outside @offset and that no I/O 1452 * is underway against any of the blocks which are outside the truncation 1453 * point. Because the caller is about to free (and possibly reuse) those 1454 * blocks on-disk. 1455 */ 1456 void block_invalidatepage(struct page *page, unsigned long offset) 1457 { 1458 struct buffer_head *head, *bh, *next; 1459 unsigned int curr_off = 0; 1460 1461 BUG_ON(!PageLocked(page)); 1462 if (!page_has_buffers(page)) 1463 goto out; 1464 1465 head = page_buffers(page); 1466 bh = head; 1467 do { 1468 unsigned int next_off = curr_off + bh->b_size; 1469 next = bh->b_this_page; 1470 1471 /* 1472 * is this block fully invalidated? 1473 */ 1474 if (offset <= curr_off) 1475 discard_buffer(bh); 1476 curr_off = next_off; 1477 bh = next; 1478 } while (bh != head); 1479 1480 /* 1481 * We release buffers only if the entire page is being invalidated. 1482 * The get_block cached value has been unconditionally invalidated, 1483 * so real IO is not possible anymore. 1484 */ 1485 if (offset == 0) 1486 try_to_release_page(page, 0); 1487 out: 1488 return; 1489 } 1490 EXPORT_SYMBOL(block_invalidatepage); 1491 1492 /* 1493 * We attach and possibly dirty the buffers atomically wrt 1494 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1495 * is already excluded via the page lock. 1496 */ 1497 void create_empty_buffers(struct page *page, 1498 unsigned long blocksize, unsigned long b_state) 1499 { 1500 struct buffer_head *bh, *head, *tail; 1501 1502 head = alloc_page_buffers(page, blocksize, 1); 1503 bh = head; 1504 do { 1505 bh->b_state |= b_state; 1506 tail = bh; 1507 bh = bh->b_this_page; 1508 } while (bh); 1509 tail->b_this_page = head; 1510 1511 spin_lock(&page->mapping->private_lock); 1512 if (PageUptodate(page) || PageDirty(page)) { 1513 bh = head; 1514 do { 1515 if (PageDirty(page)) 1516 set_buffer_dirty(bh); 1517 if (PageUptodate(page)) 1518 set_buffer_uptodate(bh); 1519 bh = bh->b_this_page; 1520 } while (bh != head); 1521 } 1522 attach_page_buffers(page, head); 1523 spin_unlock(&page->mapping->private_lock); 1524 } 1525 EXPORT_SYMBOL(create_empty_buffers); 1526 1527 /* 1528 * We are taking a block for data and we don't want any output from any 1529 * buffer-cache aliases starting from return from that function and 1530 * until the moment when something will explicitly mark the buffer 1531 * dirty (hopefully that will not happen until we will free that block ;-) 1532 * We don't even need to mark it not-uptodate - nobody can expect 1533 * anything from a newly allocated buffer anyway. We used to used 1534 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1535 * don't want to mark the alias unmapped, for example - it would confuse 1536 * anyone who might pick it with bread() afterwards... 1537 * 1538 * Also.. Note that bforget() doesn't lock the buffer. So there can 1539 * be writeout I/O going on against recently-freed buffers. We don't 1540 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1541 * only if we really need to. That happens here. 1542 */ 1543 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1544 { 1545 struct buffer_head *old_bh; 1546 1547 might_sleep(); 1548 1549 old_bh = __find_get_block_slow(bdev, block); 1550 if (old_bh) { 1551 clear_buffer_dirty(old_bh); 1552 wait_on_buffer(old_bh); 1553 clear_buffer_req(old_bh); 1554 __brelse(old_bh); 1555 } 1556 } 1557 EXPORT_SYMBOL(unmap_underlying_metadata); 1558 1559 /* 1560 * NOTE! All mapped/uptodate combinations are valid: 1561 * 1562 * Mapped Uptodate Meaning 1563 * 1564 * No No "unknown" - must do get_block() 1565 * No Yes "hole" - zero-filled 1566 * Yes No "allocated" - allocated on disk, not read in 1567 * Yes Yes "valid" - allocated and up-to-date in memory. 1568 * 1569 * "Dirty" is valid only with the last case (mapped+uptodate). 1570 */ 1571 1572 /* 1573 * While block_write_full_page is writing back the dirty buffers under 1574 * the page lock, whoever dirtied the buffers may decide to clean them 1575 * again at any time. We handle that by only looking at the buffer 1576 * state inside lock_buffer(). 1577 * 1578 * If block_write_full_page() is called for regular writeback 1579 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1580 * locked buffer. This only can happen if someone has written the buffer 1581 * directly, with submit_bh(). At the address_space level PageWriteback 1582 * prevents this contention from occurring. 1583 */ 1584 static int __block_write_full_page(struct inode *inode, struct page *page, 1585 get_block_t *get_block, struct writeback_control *wbc) 1586 { 1587 int err; 1588 sector_t block; 1589 sector_t last_block; 1590 struct buffer_head *bh, *head; 1591 const unsigned blocksize = 1 << inode->i_blkbits; 1592 int nr_underway = 0; 1593 1594 BUG_ON(!PageLocked(page)); 1595 1596 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1597 1598 if (!page_has_buffers(page)) { 1599 create_empty_buffers(page, blocksize, 1600 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1601 } 1602 1603 /* 1604 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1605 * here, and the (potentially unmapped) buffers may become dirty at 1606 * any time. If a buffer becomes dirty here after we've inspected it 1607 * then we just miss that fact, and the page stays dirty. 1608 * 1609 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1610 * handle that here by just cleaning them. 1611 */ 1612 1613 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1614 head = page_buffers(page); 1615 bh = head; 1616 1617 /* 1618 * Get all the dirty buffers mapped to disk addresses and 1619 * handle any aliases from the underlying blockdev's mapping. 1620 */ 1621 do { 1622 if (block > last_block) { 1623 /* 1624 * mapped buffers outside i_size will occur, because 1625 * this page can be outside i_size when there is a 1626 * truncate in progress. 1627 */ 1628 /* 1629 * The buffer was zeroed by block_write_full_page() 1630 */ 1631 clear_buffer_dirty(bh); 1632 set_buffer_uptodate(bh); 1633 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { 1634 WARN_ON(bh->b_size != blocksize); 1635 err = get_block(inode, block, bh, 1); 1636 if (err) 1637 goto recover; 1638 if (buffer_new(bh)) { 1639 /* blockdev mappings never come here */ 1640 clear_buffer_new(bh); 1641 unmap_underlying_metadata(bh->b_bdev, 1642 bh->b_blocknr); 1643 } 1644 } 1645 bh = bh->b_this_page; 1646 block++; 1647 } while (bh != head); 1648 1649 do { 1650 if (!buffer_mapped(bh)) 1651 continue; 1652 /* 1653 * If it's a fully non-blocking write attempt and we cannot 1654 * lock the buffer then redirty the page. Note that this can 1655 * potentially cause a busy-wait loop from pdflush and kswapd 1656 * activity, but those code paths have their own higher-level 1657 * throttling. 1658 */ 1659 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1660 lock_buffer(bh); 1661 } else if (test_set_buffer_locked(bh)) { 1662 redirty_page_for_writepage(wbc, page); 1663 continue; 1664 } 1665 if (test_clear_buffer_dirty(bh)) { 1666 mark_buffer_async_write(bh); 1667 } else { 1668 unlock_buffer(bh); 1669 } 1670 } while ((bh = bh->b_this_page) != head); 1671 1672 /* 1673 * The page and its buffers are protected by PageWriteback(), so we can 1674 * drop the bh refcounts early. 1675 */ 1676 BUG_ON(PageWriteback(page)); 1677 set_page_writeback(page); 1678 1679 do { 1680 struct buffer_head *next = bh->b_this_page; 1681 if (buffer_async_write(bh)) { 1682 submit_bh(WRITE, bh); 1683 nr_underway++; 1684 } 1685 bh = next; 1686 } while (bh != head); 1687 unlock_page(page); 1688 1689 err = 0; 1690 done: 1691 if (nr_underway == 0) { 1692 /* 1693 * The page was marked dirty, but the buffers were 1694 * clean. Someone wrote them back by hand with 1695 * ll_rw_block/submit_bh. A rare case. 1696 */ 1697 end_page_writeback(page); 1698 1699 /* 1700 * The page and buffer_heads can be released at any time from 1701 * here on. 1702 */ 1703 wbc->pages_skipped++; /* We didn't write this page */ 1704 } 1705 return err; 1706 1707 recover: 1708 /* 1709 * ENOSPC, or some other error. We may already have added some 1710 * blocks to the file, so we need to write these out to avoid 1711 * exposing stale data. 1712 * The page is currently locked and not marked for writeback 1713 */ 1714 bh = head; 1715 /* Recovery: lock and submit the mapped buffers */ 1716 do { 1717 if (buffer_mapped(bh) && buffer_dirty(bh)) { 1718 lock_buffer(bh); 1719 mark_buffer_async_write(bh); 1720 } else { 1721 /* 1722 * The buffer may have been set dirty during 1723 * attachment to a dirty page. 1724 */ 1725 clear_buffer_dirty(bh); 1726 } 1727 } while ((bh = bh->b_this_page) != head); 1728 SetPageError(page); 1729 BUG_ON(PageWriteback(page)); 1730 set_page_writeback(page); 1731 do { 1732 struct buffer_head *next = bh->b_this_page; 1733 if (buffer_async_write(bh)) { 1734 clear_buffer_dirty(bh); 1735 submit_bh(WRITE, bh); 1736 nr_underway++; 1737 } 1738 bh = next; 1739 } while (bh != head); 1740 unlock_page(page); 1741 goto done; 1742 } 1743 1744 static int __block_prepare_write(struct inode *inode, struct page *page, 1745 unsigned from, unsigned to, get_block_t *get_block) 1746 { 1747 unsigned block_start, block_end; 1748 sector_t block; 1749 int err = 0; 1750 unsigned blocksize, bbits; 1751 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1752 1753 BUG_ON(!PageLocked(page)); 1754 BUG_ON(from > PAGE_CACHE_SIZE); 1755 BUG_ON(to > PAGE_CACHE_SIZE); 1756 BUG_ON(from > to); 1757 1758 blocksize = 1 << inode->i_blkbits; 1759 if (!page_has_buffers(page)) 1760 create_empty_buffers(page, blocksize, 0); 1761 head = page_buffers(page); 1762 1763 bbits = inode->i_blkbits; 1764 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1765 1766 for(bh = head, block_start = 0; bh != head || !block_start; 1767 block++, block_start=block_end, bh = bh->b_this_page) { 1768 block_end = block_start + blocksize; 1769 if (block_end <= from || block_start >= to) { 1770 if (PageUptodate(page)) { 1771 if (!buffer_uptodate(bh)) 1772 set_buffer_uptodate(bh); 1773 } 1774 continue; 1775 } 1776 if (buffer_new(bh)) 1777 clear_buffer_new(bh); 1778 if (!buffer_mapped(bh)) { 1779 WARN_ON(bh->b_size != blocksize); 1780 err = get_block(inode, block, bh, 1); 1781 if (err) 1782 break; 1783 if (buffer_new(bh)) { 1784 unmap_underlying_metadata(bh->b_bdev, 1785 bh->b_blocknr); 1786 if (PageUptodate(page)) { 1787 set_buffer_uptodate(bh); 1788 continue; 1789 } 1790 if (block_end > to || block_start < from) { 1791 void *kaddr; 1792 1793 kaddr = kmap_atomic(page, KM_USER0); 1794 if (block_end > to) 1795 memset(kaddr+to, 0, 1796 block_end-to); 1797 if (block_start < from) 1798 memset(kaddr+block_start, 1799 0, from-block_start); 1800 flush_dcache_page(page); 1801 kunmap_atomic(kaddr, KM_USER0); 1802 } 1803 continue; 1804 } 1805 } 1806 if (PageUptodate(page)) { 1807 if (!buffer_uptodate(bh)) 1808 set_buffer_uptodate(bh); 1809 continue; 1810 } 1811 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1812 !buffer_unwritten(bh) && 1813 (block_start < from || block_end > to)) { 1814 ll_rw_block(READ, 1, &bh); 1815 *wait_bh++=bh; 1816 } 1817 } 1818 /* 1819 * If we issued read requests - let them complete. 1820 */ 1821 while(wait_bh > wait) { 1822 wait_on_buffer(*--wait_bh); 1823 if (!buffer_uptodate(*wait_bh)) 1824 err = -EIO; 1825 } 1826 if (!err) { 1827 bh = head; 1828 do { 1829 if (buffer_new(bh)) 1830 clear_buffer_new(bh); 1831 } while ((bh = bh->b_this_page) != head); 1832 return 0; 1833 } 1834 /* Error case: */ 1835 /* 1836 * Zero out any newly allocated blocks to avoid exposing stale 1837 * data. If BH_New is set, we know that the block was newly 1838 * allocated in the above loop. 1839 */ 1840 bh = head; 1841 block_start = 0; 1842 do { 1843 block_end = block_start+blocksize; 1844 if (block_end <= from) 1845 goto next_bh; 1846 if (block_start >= to) 1847 break; 1848 if (buffer_new(bh)) { 1849 void *kaddr; 1850 1851 clear_buffer_new(bh); 1852 kaddr = kmap_atomic(page, KM_USER0); 1853 memset(kaddr+block_start, 0, bh->b_size); 1854 flush_dcache_page(page); 1855 kunmap_atomic(kaddr, KM_USER0); 1856 set_buffer_uptodate(bh); 1857 mark_buffer_dirty(bh); 1858 } 1859 next_bh: 1860 block_start = block_end; 1861 bh = bh->b_this_page; 1862 } while (bh != head); 1863 return err; 1864 } 1865 1866 static int __block_commit_write(struct inode *inode, struct page *page, 1867 unsigned from, unsigned to) 1868 { 1869 unsigned block_start, block_end; 1870 int partial = 0; 1871 unsigned blocksize; 1872 struct buffer_head *bh, *head; 1873 1874 blocksize = 1 << inode->i_blkbits; 1875 1876 for(bh = head = page_buffers(page), block_start = 0; 1877 bh != head || !block_start; 1878 block_start=block_end, bh = bh->b_this_page) { 1879 block_end = block_start + blocksize; 1880 if (block_end <= from || block_start >= to) { 1881 if (!buffer_uptodate(bh)) 1882 partial = 1; 1883 } else { 1884 set_buffer_uptodate(bh); 1885 mark_buffer_dirty(bh); 1886 } 1887 } 1888 1889 /* 1890 * If this is a partial write which happened to make all buffers 1891 * uptodate then we can optimize away a bogus readpage() for 1892 * the next read(). Here we 'discover' whether the page went 1893 * uptodate as a result of this (potentially partial) write. 1894 */ 1895 if (!partial) 1896 SetPageUptodate(page); 1897 return 0; 1898 } 1899 1900 /* 1901 * Generic "read page" function for block devices that have the normal 1902 * get_block functionality. This is most of the block device filesystems. 1903 * Reads the page asynchronously --- the unlock_buffer() and 1904 * set/clear_buffer_uptodate() functions propagate buffer state into the 1905 * page struct once IO has completed. 1906 */ 1907 int block_read_full_page(struct page *page, get_block_t *get_block) 1908 { 1909 struct inode *inode = page->mapping->host; 1910 sector_t iblock, lblock; 1911 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 1912 unsigned int blocksize; 1913 int nr, i; 1914 int fully_mapped = 1; 1915 1916 BUG_ON(!PageLocked(page)); 1917 blocksize = 1 << inode->i_blkbits; 1918 if (!page_has_buffers(page)) 1919 create_empty_buffers(page, blocksize, 0); 1920 head = page_buffers(page); 1921 1922 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1923 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 1924 bh = head; 1925 nr = 0; 1926 i = 0; 1927 1928 do { 1929 if (buffer_uptodate(bh)) 1930 continue; 1931 1932 if (!buffer_mapped(bh)) { 1933 int err = 0; 1934 1935 fully_mapped = 0; 1936 if (iblock < lblock) { 1937 WARN_ON(bh->b_size != blocksize); 1938 err = get_block(inode, iblock, bh, 0); 1939 if (err) 1940 SetPageError(page); 1941 } 1942 if (!buffer_mapped(bh)) { 1943 void *kaddr = kmap_atomic(page, KM_USER0); 1944 memset(kaddr + i * blocksize, 0, blocksize); 1945 flush_dcache_page(page); 1946 kunmap_atomic(kaddr, KM_USER0); 1947 if (!err) 1948 set_buffer_uptodate(bh); 1949 continue; 1950 } 1951 /* 1952 * get_block() might have updated the buffer 1953 * synchronously 1954 */ 1955 if (buffer_uptodate(bh)) 1956 continue; 1957 } 1958 arr[nr++] = bh; 1959 } while (i++, iblock++, (bh = bh->b_this_page) != head); 1960 1961 if (fully_mapped) 1962 SetPageMappedToDisk(page); 1963 1964 if (!nr) { 1965 /* 1966 * All buffers are uptodate - we can set the page uptodate 1967 * as well. But not if get_block() returned an error. 1968 */ 1969 if (!PageError(page)) 1970 SetPageUptodate(page); 1971 unlock_page(page); 1972 return 0; 1973 } 1974 1975 /* Stage two: lock the buffers */ 1976 for (i = 0; i < nr; i++) { 1977 bh = arr[i]; 1978 lock_buffer(bh); 1979 mark_buffer_async_read(bh); 1980 } 1981 1982 /* 1983 * Stage 3: start the IO. Check for uptodateness 1984 * inside the buffer lock in case another process reading 1985 * the underlying blockdev brought it uptodate (the sct fix). 1986 */ 1987 for (i = 0; i < nr; i++) { 1988 bh = arr[i]; 1989 if (buffer_uptodate(bh)) 1990 end_buffer_async_read(bh, 1); 1991 else 1992 submit_bh(READ, bh); 1993 } 1994 return 0; 1995 } 1996 1997 /* utility function for filesystems that need to do work on expanding 1998 * truncates. Uses prepare/commit_write to allow the filesystem to 1999 * deal with the hole. 2000 */ 2001 static int __generic_cont_expand(struct inode *inode, loff_t size, 2002 pgoff_t index, unsigned int offset) 2003 { 2004 struct address_space *mapping = inode->i_mapping; 2005 struct page *page; 2006 unsigned long limit; 2007 int err; 2008 2009 err = -EFBIG; 2010 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2011 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2012 send_sig(SIGXFSZ, current, 0); 2013 goto out; 2014 } 2015 if (size > inode->i_sb->s_maxbytes) 2016 goto out; 2017 2018 err = -ENOMEM; 2019 page = grab_cache_page(mapping, index); 2020 if (!page) 2021 goto out; 2022 err = mapping->a_ops->prepare_write(NULL, page, offset, offset); 2023 if (err) { 2024 /* 2025 * ->prepare_write() may have instantiated a few blocks 2026 * outside i_size. Trim these off again. 2027 */ 2028 unlock_page(page); 2029 page_cache_release(page); 2030 vmtruncate(inode, inode->i_size); 2031 goto out; 2032 } 2033 2034 err = mapping->a_ops->commit_write(NULL, page, offset, offset); 2035 2036 unlock_page(page); 2037 page_cache_release(page); 2038 if (err > 0) 2039 err = 0; 2040 out: 2041 return err; 2042 } 2043 2044 int generic_cont_expand(struct inode *inode, loff_t size) 2045 { 2046 pgoff_t index; 2047 unsigned int offset; 2048 2049 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */ 2050 2051 /* ugh. in prepare/commit_write, if from==to==start of block, we 2052 ** skip the prepare. make sure we never send an offset for the start 2053 ** of a block 2054 */ 2055 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) { 2056 /* caller must handle this extra byte. */ 2057 offset++; 2058 } 2059 index = size >> PAGE_CACHE_SHIFT; 2060 2061 return __generic_cont_expand(inode, size, index, offset); 2062 } 2063 2064 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2065 { 2066 loff_t pos = size - 1; 2067 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2068 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1; 2069 2070 /* prepare/commit_write can handle even if from==to==start of block. */ 2071 return __generic_cont_expand(inode, size, index, offset); 2072 } 2073 2074 /* 2075 * For moronic filesystems that do not allow holes in file. 2076 * We may have to extend the file. 2077 */ 2078 2079 int cont_prepare_write(struct page *page, unsigned offset, 2080 unsigned to, get_block_t *get_block, loff_t *bytes) 2081 { 2082 struct address_space *mapping = page->mapping; 2083 struct inode *inode = mapping->host; 2084 struct page *new_page; 2085 pgoff_t pgpos; 2086 long status; 2087 unsigned zerofrom; 2088 unsigned blocksize = 1 << inode->i_blkbits; 2089 void *kaddr; 2090 2091 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) { 2092 status = -ENOMEM; 2093 new_page = grab_cache_page(mapping, pgpos); 2094 if (!new_page) 2095 goto out; 2096 /* we might sleep */ 2097 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) { 2098 unlock_page(new_page); 2099 page_cache_release(new_page); 2100 continue; 2101 } 2102 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2103 if (zerofrom & (blocksize-1)) { 2104 *bytes |= (blocksize-1); 2105 (*bytes)++; 2106 } 2107 status = __block_prepare_write(inode, new_page, zerofrom, 2108 PAGE_CACHE_SIZE, get_block); 2109 if (status) 2110 goto out_unmap; 2111 kaddr = kmap_atomic(new_page, KM_USER0); 2112 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom); 2113 flush_dcache_page(new_page); 2114 kunmap_atomic(kaddr, KM_USER0); 2115 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE); 2116 unlock_page(new_page); 2117 page_cache_release(new_page); 2118 } 2119 2120 if (page->index < pgpos) { 2121 /* completely inside the area */ 2122 zerofrom = offset; 2123 } else { 2124 /* page covers the boundary, find the boundary offset */ 2125 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2126 2127 /* if we will expand the thing last block will be filled */ 2128 if (to > zerofrom && (zerofrom & (blocksize-1))) { 2129 *bytes |= (blocksize-1); 2130 (*bytes)++; 2131 } 2132 2133 /* starting below the boundary? Nothing to zero out */ 2134 if (offset <= zerofrom) 2135 zerofrom = offset; 2136 } 2137 status = __block_prepare_write(inode, page, zerofrom, to, get_block); 2138 if (status) 2139 goto out1; 2140 if (zerofrom < offset) { 2141 kaddr = kmap_atomic(page, KM_USER0); 2142 memset(kaddr+zerofrom, 0, offset-zerofrom); 2143 flush_dcache_page(page); 2144 kunmap_atomic(kaddr, KM_USER0); 2145 __block_commit_write(inode, page, zerofrom, offset); 2146 } 2147 return 0; 2148 out1: 2149 ClearPageUptodate(page); 2150 return status; 2151 2152 out_unmap: 2153 ClearPageUptodate(new_page); 2154 unlock_page(new_page); 2155 page_cache_release(new_page); 2156 out: 2157 return status; 2158 } 2159 2160 int block_prepare_write(struct page *page, unsigned from, unsigned to, 2161 get_block_t *get_block) 2162 { 2163 struct inode *inode = page->mapping->host; 2164 int err = __block_prepare_write(inode, page, from, to, get_block); 2165 if (err) 2166 ClearPageUptodate(page); 2167 return err; 2168 } 2169 2170 int block_commit_write(struct page *page, unsigned from, unsigned to) 2171 { 2172 struct inode *inode = page->mapping->host; 2173 __block_commit_write(inode,page,from,to); 2174 return 0; 2175 } 2176 2177 int generic_commit_write(struct file *file, struct page *page, 2178 unsigned from, unsigned to) 2179 { 2180 struct inode *inode = page->mapping->host; 2181 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2182 __block_commit_write(inode,page,from,to); 2183 /* 2184 * No need to use i_size_read() here, the i_size 2185 * cannot change under us because we hold i_mutex. 2186 */ 2187 if (pos > inode->i_size) { 2188 i_size_write(inode, pos); 2189 mark_inode_dirty(inode); 2190 } 2191 return 0; 2192 } 2193 2194 2195 /* 2196 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed 2197 * immediately, while under the page lock. So it needs a special end_io 2198 * handler which does not touch the bh after unlocking it. 2199 * 2200 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 2201 * a race there is benign: unlock_buffer() only use the bh's address for 2202 * hashing after unlocking the buffer, so it doesn't actually touch the bh 2203 * itself. 2204 */ 2205 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2206 { 2207 if (uptodate) { 2208 set_buffer_uptodate(bh); 2209 } else { 2210 /* This happens, due to failed READA attempts. */ 2211 clear_buffer_uptodate(bh); 2212 } 2213 unlock_buffer(bh); 2214 } 2215 2216 /* 2217 * On entry, the page is fully not uptodate. 2218 * On exit the page is fully uptodate in the areas outside (from,to) 2219 */ 2220 int nobh_prepare_write(struct page *page, unsigned from, unsigned to, 2221 get_block_t *get_block) 2222 { 2223 struct inode *inode = page->mapping->host; 2224 const unsigned blkbits = inode->i_blkbits; 2225 const unsigned blocksize = 1 << blkbits; 2226 struct buffer_head map_bh; 2227 struct buffer_head *read_bh[MAX_BUF_PER_PAGE]; 2228 unsigned block_in_page; 2229 unsigned block_start; 2230 sector_t block_in_file; 2231 char *kaddr; 2232 int nr_reads = 0; 2233 int i; 2234 int ret = 0; 2235 int is_mapped_to_disk = 1; 2236 2237 if (PageMappedToDisk(page)) 2238 return 0; 2239 2240 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2241 map_bh.b_page = page; 2242 2243 /* 2244 * We loop across all blocks in the page, whether or not they are 2245 * part of the affected region. This is so we can discover if the 2246 * page is fully mapped-to-disk. 2247 */ 2248 for (block_start = 0, block_in_page = 0; 2249 block_start < PAGE_CACHE_SIZE; 2250 block_in_page++, block_start += blocksize) { 2251 unsigned block_end = block_start + blocksize; 2252 int create; 2253 2254 map_bh.b_state = 0; 2255 create = 1; 2256 if (block_start >= to) 2257 create = 0; 2258 map_bh.b_size = blocksize; 2259 ret = get_block(inode, block_in_file + block_in_page, 2260 &map_bh, create); 2261 if (ret) 2262 goto failed; 2263 if (!buffer_mapped(&map_bh)) 2264 is_mapped_to_disk = 0; 2265 if (buffer_new(&map_bh)) 2266 unmap_underlying_metadata(map_bh.b_bdev, 2267 map_bh.b_blocknr); 2268 if (PageUptodate(page)) 2269 continue; 2270 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) { 2271 kaddr = kmap_atomic(page, KM_USER0); 2272 if (block_start < from) 2273 memset(kaddr+block_start, 0, from-block_start); 2274 if (block_end > to) 2275 memset(kaddr + to, 0, block_end - to); 2276 flush_dcache_page(page); 2277 kunmap_atomic(kaddr, KM_USER0); 2278 continue; 2279 } 2280 if (buffer_uptodate(&map_bh)) 2281 continue; /* reiserfs does this */ 2282 if (block_start < from || block_end > to) { 2283 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS); 2284 2285 if (!bh) { 2286 ret = -ENOMEM; 2287 goto failed; 2288 } 2289 bh->b_state = map_bh.b_state; 2290 atomic_set(&bh->b_count, 0); 2291 bh->b_this_page = NULL; 2292 bh->b_page = page; 2293 bh->b_blocknr = map_bh.b_blocknr; 2294 bh->b_size = blocksize; 2295 bh->b_data = (char *)(long)block_start; 2296 bh->b_bdev = map_bh.b_bdev; 2297 bh->b_private = NULL; 2298 read_bh[nr_reads++] = bh; 2299 } 2300 } 2301 2302 if (nr_reads) { 2303 struct buffer_head *bh; 2304 2305 /* 2306 * The page is locked, so these buffers are protected from 2307 * any VM or truncate activity. Hence we don't need to care 2308 * for the buffer_head refcounts. 2309 */ 2310 for (i = 0; i < nr_reads; i++) { 2311 bh = read_bh[i]; 2312 lock_buffer(bh); 2313 bh->b_end_io = end_buffer_read_nobh; 2314 submit_bh(READ, bh); 2315 } 2316 for (i = 0; i < nr_reads; i++) { 2317 bh = read_bh[i]; 2318 wait_on_buffer(bh); 2319 if (!buffer_uptodate(bh)) 2320 ret = -EIO; 2321 free_buffer_head(bh); 2322 read_bh[i] = NULL; 2323 } 2324 if (ret) 2325 goto failed; 2326 } 2327 2328 if (is_mapped_to_disk) 2329 SetPageMappedToDisk(page); 2330 2331 return 0; 2332 2333 failed: 2334 for (i = 0; i < nr_reads; i++) { 2335 if (read_bh[i]) 2336 free_buffer_head(read_bh[i]); 2337 } 2338 2339 /* 2340 * Error recovery is pretty slack. Clear the page and mark it dirty 2341 * so we'll later zero out any blocks which _were_ allocated. 2342 */ 2343 kaddr = kmap_atomic(page, KM_USER0); 2344 memset(kaddr, 0, PAGE_CACHE_SIZE); 2345 flush_dcache_page(page); 2346 kunmap_atomic(kaddr, KM_USER0); 2347 SetPageUptodate(page); 2348 set_page_dirty(page); 2349 return ret; 2350 } 2351 EXPORT_SYMBOL(nobh_prepare_write); 2352 2353 /* 2354 * Make sure any changes to nobh_commit_write() are reflected in 2355 * nobh_truncate_page(), since it doesn't call commit_write(). 2356 */ 2357 int nobh_commit_write(struct file *file, struct page *page, 2358 unsigned from, unsigned to) 2359 { 2360 struct inode *inode = page->mapping->host; 2361 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2362 2363 SetPageUptodate(page); 2364 set_page_dirty(page); 2365 if (pos > inode->i_size) { 2366 i_size_write(inode, pos); 2367 mark_inode_dirty(inode); 2368 } 2369 return 0; 2370 } 2371 EXPORT_SYMBOL(nobh_commit_write); 2372 2373 /* 2374 * nobh_writepage() - based on block_full_write_page() except 2375 * that it tries to operate without attaching bufferheads to 2376 * the page. 2377 */ 2378 int nobh_writepage(struct page *page, get_block_t *get_block, 2379 struct writeback_control *wbc) 2380 { 2381 struct inode * const inode = page->mapping->host; 2382 loff_t i_size = i_size_read(inode); 2383 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2384 unsigned offset; 2385 void *kaddr; 2386 int ret; 2387 2388 /* Is the page fully inside i_size? */ 2389 if (page->index < end_index) 2390 goto out; 2391 2392 /* Is the page fully outside i_size? (truncate in progress) */ 2393 offset = i_size & (PAGE_CACHE_SIZE-1); 2394 if (page->index >= end_index+1 || !offset) { 2395 /* 2396 * The page may have dirty, unmapped buffers. For example, 2397 * they may have been added in ext3_writepage(). Make them 2398 * freeable here, so the page does not leak. 2399 */ 2400 #if 0 2401 /* Not really sure about this - do we need this ? */ 2402 if (page->mapping->a_ops->invalidatepage) 2403 page->mapping->a_ops->invalidatepage(page, offset); 2404 #endif 2405 unlock_page(page); 2406 return 0; /* don't care */ 2407 } 2408 2409 /* 2410 * The page straddles i_size. It must be zeroed out on each and every 2411 * writepage invocation because it may be mmapped. "A file is mapped 2412 * in multiples of the page size. For a file that is not a multiple of 2413 * the page size, the remaining memory is zeroed when mapped, and 2414 * writes to that region are not written out to the file." 2415 */ 2416 kaddr = kmap_atomic(page, KM_USER0); 2417 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2418 flush_dcache_page(page); 2419 kunmap_atomic(kaddr, KM_USER0); 2420 out: 2421 ret = mpage_writepage(page, get_block, wbc); 2422 if (ret == -EAGAIN) 2423 ret = __block_write_full_page(inode, page, get_block, wbc); 2424 return ret; 2425 } 2426 EXPORT_SYMBOL(nobh_writepage); 2427 2428 /* 2429 * This function assumes that ->prepare_write() uses nobh_prepare_write(). 2430 */ 2431 int nobh_truncate_page(struct address_space *mapping, loff_t from) 2432 { 2433 struct inode *inode = mapping->host; 2434 unsigned blocksize = 1 << inode->i_blkbits; 2435 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2436 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2437 unsigned to; 2438 struct page *page; 2439 const struct address_space_operations *a_ops = mapping->a_ops; 2440 char *kaddr; 2441 int ret = 0; 2442 2443 if ((offset & (blocksize - 1)) == 0) 2444 goto out; 2445 2446 ret = -ENOMEM; 2447 page = grab_cache_page(mapping, index); 2448 if (!page) 2449 goto out; 2450 2451 to = (offset + blocksize) & ~(blocksize - 1); 2452 ret = a_ops->prepare_write(NULL, page, offset, to); 2453 if (ret == 0) { 2454 kaddr = kmap_atomic(page, KM_USER0); 2455 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2456 flush_dcache_page(page); 2457 kunmap_atomic(kaddr, KM_USER0); 2458 /* 2459 * It would be more correct to call aops->commit_write() 2460 * here, but this is more efficient. 2461 */ 2462 SetPageUptodate(page); 2463 set_page_dirty(page); 2464 } 2465 unlock_page(page); 2466 page_cache_release(page); 2467 out: 2468 return ret; 2469 } 2470 EXPORT_SYMBOL(nobh_truncate_page); 2471 2472 int block_truncate_page(struct address_space *mapping, 2473 loff_t from, get_block_t *get_block) 2474 { 2475 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2476 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2477 unsigned blocksize; 2478 sector_t iblock; 2479 unsigned length, pos; 2480 struct inode *inode = mapping->host; 2481 struct page *page; 2482 struct buffer_head *bh; 2483 void *kaddr; 2484 int err; 2485 2486 blocksize = 1 << inode->i_blkbits; 2487 length = offset & (blocksize - 1); 2488 2489 /* Block boundary? Nothing to do */ 2490 if (!length) 2491 return 0; 2492 2493 length = blocksize - length; 2494 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2495 2496 page = grab_cache_page(mapping, index); 2497 err = -ENOMEM; 2498 if (!page) 2499 goto out; 2500 2501 if (!page_has_buffers(page)) 2502 create_empty_buffers(page, blocksize, 0); 2503 2504 /* Find the buffer that contains "offset" */ 2505 bh = page_buffers(page); 2506 pos = blocksize; 2507 while (offset >= pos) { 2508 bh = bh->b_this_page; 2509 iblock++; 2510 pos += blocksize; 2511 } 2512 2513 err = 0; 2514 if (!buffer_mapped(bh)) { 2515 WARN_ON(bh->b_size != blocksize); 2516 err = get_block(inode, iblock, bh, 0); 2517 if (err) 2518 goto unlock; 2519 /* unmapped? It's a hole - nothing to do */ 2520 if (!buffer_mapped(bh)) 2521 goto unlock; 2522 } 2523 2524 /* Ok, it's mapped. Make sure it's up-to-date */ 2525 if (PageUptodate(page)) 2526 set_buffer_uptodate(bh); 2527 2528 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2529 err = -EIO; 2530 ll_rw_block(READ, 1, &bh); 2531 wait_on_buffer(bh); 2532 /* Uhhuh. Read error. Complain and punt. */ 2533 if (!buffer_uptodate(bh)) 2534 goto unlock; 2535 } 2536 2537 kaddr = kmap_atomic(page, KM_USER0); 2538 memset(kaddr + offset, 0, length); 2539 flush_dcache_page(page); 2540 kunmap_atomic(kaddr, KM_USER0); 2541 2542 mark_buffer_dirty(bh); 2543 err = 0; 2544 2545 unlock: 2546 unlock_page(page); 2547 page_cache_release(page); 2548 out: 2549 return err; 2550 } 2551 2552 /* 2553 * The generic ->writepage function for buffer-backed address_spaces 2554 */ 2555 int block_write_full_page(struct page *page, get_block_t *get_block, 2556 struct writeback_control *wbc) 2557 { 2558 struct inode * const inode = page->mapping->host; 2559 loff_t i_size = i_size_read(inode); 2560 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2561 unsigned offset; 2562 void *kaddr; 2563 2564 /* Is the page fully inside i_size? */ 2565 if (page->index < end_index) 2566 return __block_write_full_page(inode, page, get_block, wbc); 2567 2568 /* Is the page fully outside i_size? (truncate in progress) */ 2569 offset = i_size & (PAGE_CACHE_SIZE-1); 2570 if (page->index >= end_index+1 || !offset) { 2571 /* 2572 * The page may have dirty, unmapped buffers. For example, 2573 * they may have been added in ext3_writepage(). Make them 2574 * freeable here, so the page does not leak. 2575 */ 2576 do_invalidatepage(page, 0); 2577 unlock_page(page); 2578 return 0; /* don't care */ 2579 } 2580 2581 /* 2582 * The page straddles i_size. It must be zeroed out on each and every 2583 * writepage invokation because it may be mmapped. "A file is mapped 2584 * in multiples of the page size. For a file that is not a multiple of 2585 * the page size, the remaining memory is zeroed when mapped, and 2586 * writes to that region are not written out to the file." 2587 */ 2588 kaddr = kmap_atomic(page, KM_USER0); 2589 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2590 flush_dcache_page(page); 2591 kunmap_atomic(kaddr, KM_USER0); 2592 return __block_write_full_page(inode, page, get_block, wbc); 2593 } 2594 2595 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2596 get_block_t *get_block) 2597 { 2598 struct buffer_head tmp; 2599 struct inode *inode = mapping->host; 2600 tmp.b_state = 0; 2601 tmp.b_blocknr = 0; 2602 tmp.b_size = 1 << inode->i_blkbits; 2603 get_block(inode, block, &tmp, 0); 2604 return tmp.b_blocknr; 2605 } 2606 2607 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err) 2608 { 2609 struct buffer_head *bh = bio->bi_private; 2610 2611 if (bio->bi_size) 2612 return 1; 2613 2614 if (err == -EOPNOTSUPP) { 2615 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2616 set_bit(BH_Eopnotsupp, &bh->b_state); 2617 } 2618 2619 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2620 bio_put(bio); 2621 return 0; 2622 } 2623 2624 int submit_bh(int rw, struct buffer_head * bh) 2625 { 2626 struct bio *bio; 2627 int ret = 0; 2628 2629 BUG_ON(!buffer_locked(bh)); 2630 BUG_ON(!buffer_mapped(bh)); 2631 BUG_ON(!bh->b_end_io); 2632 2633 if (buffer_ordered(bh) && (rw == WRITE)) 2634 rw = WRITE_BARRIER; 2635 2636 /* 2637 * Only clear out a write error when rewriting, should this 2638 * include WRITE_SYNC as well? 2639 */ 2640 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) 2641 clear_buffer_write_io_error(bh); 2642 2643 /* 2644 * from here on down, it's all bio -- do the initial mapping, 2645 * submit_bio -> generic_make_request may further map this bio around 2646 */ 2647 bio = bio_alloc(GFP_NOIO, 1); 2648 2649 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2650 bio->bi_bdev = bh->b_bdev; 2651 bio->bi_io_vec[0].bv_page = bh->b_page; 2652 bio->bi_io_vec[0].bv_len = bh->b_size; 2653 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2654 2655 bio->bi_vcnt = 1; 2656 bio->bi_idx = 0; 2657 bio->bi_size = bh->b_size; 2658 2659 bio->bi_end_io = end_bio_bh_io_sync; 2660 bio->bi_private = bh; 2661 2662 bio_get(bio); 2663 submit_bio(rw, bio); 2664 2665 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2666 ret = -EOPNOTSUPP; 2667 2668 bio_put(bio); 2669 return ret; 2670 } 2671 2672 /** 2673 * ll_rw_block: low-level access to block devices (DEPRECATED) 2674 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 2675 * @nr: number of &struct buffer_heads in the array 2676 * @bhs: array of pointers to &struct buffer_head 2677 * 2678 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2679 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2680 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 2681 * are sent to disk. The fourth %READA option is described in the documentation 2682 * for generic_make_request() which ll_rw_block() calls. 2683 * 2684 * This function drops any buffer that it cannot get a lock on (with the 2685 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 2686 * clean when doing a write request, and any buffer that appears to be 2687 * up-to-date when doing read request. Further it marks as clean buffers that 2688 * are processed for writing (the buffer cache won't assume that they are 2689 * actually clean until the buffer gets unlocked). 2690 * 2691 * ll_rw_block sets b_end_io to simple completion handler that marks 2692 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2693 * any waiters. 2694 * 2695 * All of the buffers must be for the same device, and must also be a 2696 * multiple of the current approved size for the device. 2697 */ 2698 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2699 { 2700 int i; 2701 2702 for (i = 0; i < nr; i++) { 2703 struct buffer_head *bh = bhs[i]; 2704 2705 if (rw == SWRITE) 2706 lock_buffer(bh); 2707 else if (test_set_buffer_locked(bh)) 2708 continue; 2709 2710 if (rw == WRITE || rw == SWRITE) { 2711 if (test_clear_buffer_dirty(bh)) { 2712 bh->b_end_io = end_buffer_write_sync; 2713 get_bh(bh); 2714 submit_bh(WRITE, bh); 2715 continue; 2716 } 2717 } else { 2718 if (!buffer_uptodate(bh)) { 2719 bh->b_end_io = end_buffer_read_sync; 2720 get_bh(bh); 2721 submit_bh(rw, bh); 2722 continue; 2723 } 2724 } 2725 unlock_buffer(bh); 2726 } 2727 } 2728 2729 /* 2730 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2731 * and then start new I/O and then wait upon it. The caller must have a ref on 2732 * the buffer_head. 2733 */ 2734 int sync_dirty_buffer(struct buffer_head *bh) 2735 { 2736 int ret = 0; 2737 2738 WARN_ON(atomic_read(&bh->b_count) < 1); 2739 lock_buffer(bh); 2740 if (test_clear_buffer_dirty(bh)) { 2741 get_bh(bh); 2742 bh->b_end_io = end_buffer_write_sync; 2743 ret = submit_bh(WRITE, bh); 2744 wait_on_buffer(bh); 2745 if (buffer_eopnotsupp(bh)) { 2746 clear_buffer_eopnotsupp(bh); 2747 ret = -EOPNOTSUPP; 2748 } 2749 if (!ret && !buffer_uptodate(bh)) 2750 ret = -EIO; 2751 } else { 2752 unlock_buffer(bh); 2753 } 2754 return ret; 2755 } 2756 2757 /* 2758 * try_to_free_buffers() checks if all the buffers on this particular page 2759 * are unused, and releases them if so. 2760 * 2761 * Exclusion against try_to_free_buffers may be obtained by either 2762 * locking the page or by holding its mapping's private_lock. 2763 * 2764 * If the page is dirty but all the buffers are clean then we need to 2765 * be sure to mark the page clean as well. This is because the page 2766 * may be against a block device, and a later reattachment of buffers 2767 * to a dirty page will set *all* buffers dirty. Which would corrupt 2768 * filesystem data on the same device. 2769 * 2770 * The same applies to regular filesystem pages: if all the buffers are 2771 * clean then we set the page clean and proceed. To do that, we require 2772 * total exclusion from __set_page_dirty_buffers(). That is obtained with 2773 * private_lock. 2774 * 2775 * try_to_free_buffers() is non-blocking. 2776 */ 2777 static inline int buffer_busy(struct buffer_head *bh) 2778 { 2779 return atomic_read(&bh->b_count) | 2780 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2781 } 2782 2783 static int 2784 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 2785 { 2786 struct buffer_head *head = page_buffers(page); 2787 struct buffer_head *bh; 2788 2789 bh = head; 2790 do { 2791 if (buffer_write_io_error(bh) && page->mapping) 2792 set_bit(AS_EIO, &page->mapping->flags); 2793 if (buffer_busy(bh)) 2794 goto failed; 2795 bh = bh->b_this_page; 2796 } while (bh != head); 2797 2798 do { 2799 struct buffer_head *next = bh->b_this_page; 2800 2801 if (!list_empty(&bh->b_assoc_buffers)) 2802 __remove_assoc_queue(bh); 2803 bh = next; 2804 } while (bh != head); 2805 *buffers_to_free = head; 2806 __clear_page_buffers(page); 2807 return 1; 2808 failed: 2809 return 0; 2810 } 2811 2812 int try_to_free_buffers(struct page *page) 2813 { 2814 struct address_space * const mapping = page->mapping; 2815 struct buffer_head *buffers_to_free = NULL; 2816 int ret = 0; 2817 2818 BUG_ON(!PageLocked(page)); 2819 if (PageWriteback(page)) 2820 return 0; 2821 2822 if (mapping == NULL) { /* can this still happen? */ 2823 ret = drop_buffers(page, &buffers_to_free); 2824 goto out; 2825 } 2826 2827 spin_lock(&mapping->private_lock); 2828 ret = drop_buffers(page, &buffers_to_free); 2829 2830 /* 2831 * If the filesystem writes its buffers by hand (eg ext3) 2832 * then we can have clean buffers against a dirty page. We 2833 * clean the page here; otherwise the VM will never notice 2834 * that the filesystem did any IO at all. 2835 * 2836 * Also, during truncate, discard_buffer will have marked all 2837 * the page's buffers clean. We discover that here and clean 2838 * the page also. 2839 * 2840 * private_lock must be held over this entire operation in order 2841 * to synchronise against __set_page_dirty_buffers and prevent the 2842 * dirty bit from being lost. 2843 */ 2844 if (ret) 2845 cancel_dirty_page(page, PAGE_CACHE_SIZE); 2846 spin_unlock(&mapping->private_lock); 2847 out: 2848 if (buffers_to_free) { 2849 struct buffer_head *bh = buffers_to_free; 2850 2851 do { 2852 struct buffer_head *next = bh->b_this_page; 2853 free_buffer_head(bh); 2854 bh = next; 2855 } while (bh != buffers_to_free); 2856 } 2857 return ret; 2858 } 2859 EXPORT_SYMBOL(try_to_free_buffers); 2860 2861 void block_sync_page(struct page *page) 2862 { 2863 struct address_space *mapping; 2864 2865 smp_mb(); 2866 mapping = page_mapping(page); 2867 if (mapping) 2868 blk_run_backing_dev(mapping->backing_dev_info, page); 2869 } 2870 2871 /* 2872 * There are no bdflush tunables left. But distributions are 2873 * still running obsolete flush daemons, so we terminate them here. 2874 * 2875 * Use of bdflush() is deprecated and will be removed in a future kernel. 2876 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 2877 */ 2878 asmlinkage long sys_bdflush(int func, long data) 2879 { 2880 static int msg_count; 2881 2882 if (!capable(CAP_SYS_ADMIN)) 2883 return -EPERM; 2884 2885 if (msg_count < 5) { 2886 msg_count++; 2887 printk(KERN_INFO 2888 "warning: process `%s' used the obsolete bdflush" 2889 " system call\n", current->comm); 2890 printk(KERN_INFO "Fix your initscripts?\n"); 2891 } 2892 2893 if (func == 1) 2894 do_exit(0); 2895 return 0; 2896 } 2897 2898 /* 2899 * Buffer-head allocation 2900 */ 2901 static struct kmem_cache *bh_cachep; 2902 2903 /* 2904 * Once the number of bh's in the machine exceeds this level, we start 2905 * stripping them in writeback. 2906 */ 2907 static int max_buffer_heads; 2908 2909 int buffer_heads_over_limit; 2910 2911 struct bh_accounting { 2912 int nr; /* Number of live bh's */ 2913 int ratelimit; /* Limit cacheline bouncing */ 2914 }; 2915 2916 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 2917 2918 static void recalc_bh_state(void) 2919 { 2920 int i; 2921 int tot = 0; 2922 2923 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 2924 return; 2925 __get_cpu_var(bh_accounting).ratelimit = 0; 2926 for_each_online_cpu(i) 2927 tot += per_cpu(bh_accounting, i).nr; 2928 buffer_heads_over_limit = (tot > max_buffer_heads); 2929 } 2930 2931 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 2932 { 2933 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); 2934 if (ret) { 2935 get_cpu_var(bh_accounting).nr++; 2936 recalc_bh_state(); 2937 put_cpu_var(bh_accounting); 2938 } 2939 return ret; 2940 } 2941 EXPORT_SYMBOL(alloc_buffer_head); 2942 2943 void free_buffer_head(struct buffer_head *bh) 2944 { 2945 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 2946 kmem_cache_free(bh_cachep, bh); 2947 get_cpu_var(bh_accounting).nr--; 2948 recalc_bh_state(); 2949 put_cpu_var(bh_accounting); 2950 } 2951 EXPORT_SYMBOL(free_buffer_head); 2952 2953 static void 2954 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags) 2955 { 2956 if (flags & SLAB_CTOR_CONSTRUCTOR) { 2957 struct buffer_head * bh = (struct buffer_head *)data; 2958 2959 memset(bh, 0, sizeof(*bh)); 2960 INIT_LIST_HEAD(&bh->b_assoc_buffers); 2961 } 2962 } 2963 2964 static void buffer_exit_cpu(int cpu) 2965 { 2966 int i; 2967 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 2968 2969 for (i = 0; i < BH_LRU_SIZE; i++) { 2970 brelse(b->bhs[i]); 2971 b->bhs[i] = NULL; 2972 } 2973 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 2974 per_cpu(bh_accounting, cpu).nr = 0; 2975 put_cpu_var(bh_accounting); 2976 } 2977 2978 static int buffer_cpu_notify(struct notifier_block *self, 2979 unsigned long action, void *hcpu) 2980 { 2981 if (action == CPU_DEAD) 2982 buffer_exit_cpu((unsigned long)hcpu); 2983 return NOTIFY_OK; 2984 } 2985 2986 void __init buffer_init(void) 2987 { 2988 int nrpages; 2989 2990 bh_cachep = kmem_cache_create("buffer_head", 2991 sizeof(struct buffer_head), 0, 2992 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2993 SLAB_MEM_SPREAD), 2994 init_buffer_head, 2995 NULL); 2996 2997 /* 2998 * Limit the bh occupancy to 10% of ZONE_NORMAL 2999 */ 3000 nrpages = (nr_free_buffer_pages() * 10) / 100; 3001 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3002 hotcpu_notifier(buffer_cpu_notify, 0); 3003 } 3004 3005 EXPORT_SYMBOL(__bforget); 3006 EXPORT_SYMBOL(__brelse); 3007 EXPORT_SYMBOL(__wait_on_buffer); 3008 EXPORT_SYMBOL(block_commit_write); 3009 EXPORT_SYMBOL(block_prepare_write); 3010 EXPORT_SYMBOL(block_read_full_page); 3011 EXPORT_SYMBOL(block_sync_page); 3012 EXPORT_SYMBOL(block_truncate_page); 3013 EXPORT_SYMBOL(block_write_full_page); 3014 EXPORT_SYMBOL(cont_prepare_write); 3015 EXPORT_SYMBOL(end_buffer_read_sync); 3016 EXPORT_SYMBOL(end_buffer_write_sync); 3017 EXPORT_SYMBOL(file_fsync); 3018 EXPORT_SYMBOL(fsync_bdev); 3019 EXPORT_SYMBOL(generic_block_bmap); 3020 EXPORT_SYMBOL(generic_commit_write); 3021 EXPORT_SYMBOL(generic_cont_expand); 3022 EXPORT_SYMBOL(generic_cont_expand_simple); 3023 EXPORT_SYMBOL(init_buffer); 3024 EXPORT_SYMBOL(invalidate_bdev); 3025 EXPORT_SYMBOL(ll_rw_block); 3026 EXPORT_SYMBOL(mark_buffer_dirty); 3027 EXPORT_SYMBOL(submit_bh); 3028 EXPORT_SYMBOL(sync_dirty_buffer); 3029 EXPORT_SYMBOL(unlock_buffer); 3030