1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 53 #include "internal.h" 54 55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 57 struct writeback_control *wbc); 58 59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 60 61 inline void touch_buffer(struct buffer_head *bh) 62 { 63 trace_block_touch_buffer(bh); 64 folio_mark_accessed(bh->b_folio); 65 } 66 EXPORT_SYMBOL(touch_buffer); 67 68 void __lock_buffer(struct buffer_head *bh) 69 { 70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 71 } 72 EXPORT_SYMBOL(__lock_buffer); 73 74 void unlock_buffer(struct buffer_head *bh) 75 { 76 clear_bit_unlock(BH_Lock, &bh->b_state); 77 smp_mb__after_atomic(); 78 wake_up_bit(&bh->b_state, BH_Lock); 79 } 80 EXPORT_SYMBOL(unlock_buffer); 81 82 /* 83 * Returns if the folio has dirty or writeback buffers. If all the buffers 84 * are unlocked and clean then the folio_test_dirty information is stale. If 85 * any of the buffers are locked, it is assumed they are locked for IO. 86 */ 87 void buffer_check_dirty_writeback(struct folio *folio, 88 bool *dirty, bool *writeback) 89 { 90 struct buffer_head *head, *bh; 91 *dirty = false; 92 *writeback = false; 93 94 BUG_ON(!folio_test_locked(folio)); 95 96 head = folio_buffers(folio); 97 if (!head) 98 return; 99 100 if (folio_test_writeback(folio)) 101 *writeback = true; 102 103 bh = head; 104 do { 105 if (buffer_locked(bh)) 106 *writeback = true; 107 108 if (buffer_dirty(bh)) 109 *dirty = true; 110 111 bh = bh->b_this_page; 112 } while (bh != head); 113 } 114 EXPORT_SYMBOL(buffer_check_dirty_writeback); 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 __end_buffer_read_notouch(bh, uptodate); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 /* 180 * Various filesystems appear to want __find_get_block to be non-blocking. 181 * But it's the page lock which protects the buffers. To get around this, 182 * we get exclusion from try_to_free_buffers with the blockdev mapping's 183 * private_lock. 184 * 185 * Hack idea: for the blockdev mapping, private_lock contention 186 * may be quite high. This code could TryLock the page, and if that 187 * succeeds, there is no need to take private_lock. 188 */ 189 static struct buffer_head * 190 __find_get_block_slow(struct block_device *bdev, sector_t block) 191 { 192 struct inode *bd_inode = bdev->bd_inode; 193 struct address_space *bd_mapping = bd_inode->i_mapping; 194 struct buffer_head *ret = NULL; 195 pgoff_t index; 196 struct buffer_head *bh; 197 struct buffer_head *head; 198 struct page *page; 199 int all_mapped = 1; 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 201 202 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 203 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 204 if (!page) 205 goto out; 206 207 spin_lock(&bd_mapping->private_lock); 208 if (!page_has_buffers(page)) 209 goto out_unlock; 210 head = page_buffers(page); 211 bh = head; 212 do { 213 if (!buffer_mapped(bh)) 214 all_mapped = 0; 215 else if (bh->b_blocknr == block) { 216 ret = bh; 217 get_bh(bh); 218 goto out_unlock; 219 } 220 bh = bh->b_this_page; 221 } while (bh != head); 222 223 /* we might be here because some of the buffers on this page are 224 * not mapped. This is due to various races between 225 * file io on the block device and getblk. It gets dealt with 226 * elsewhere, don't buffer_error if we had some unmapped buffers 227 */ 228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 229 if (all_mapped && __ratelimit(&last_warned)) { 230 printk("__find_get_block_slow() failed. block=%llu, " 231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 232 "device %pg blocksize: %d\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr, 235 bh->b_state, bh->b_size, bdev, 236 1 << bd_inode->i_blkbits); 237 } 238 out_unlock: 239 spin_unlock(&bd_mapping->private_lock); 240 put_page(page); 241 out: 242 return ret; 243 } 244 245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 246 { 247 unsigned long flags; 248 struct buffer_head *first; 249 struct buffer_head *tmp; 250 struct folio *folio; 251 int folio_uptodate = 1; 252 253 BUG_ON(!buffer_async_read(bh)); 254 255 folio = bh->b_folio; 256 if (uptodate) { 257 set_buffer_uptodate(bh); 258 } else { 259 clear_buffer_uptodate(bh); 260 buffer_io_error(bh, ", async page read"); 261 folio_set_error(folio); 262 } 263 264 /* 265 * Be _very_ careful from here on. Bad things can happen if 266 * two buffer heads end IO at almost the same time and both 267 * decide that the page is now completely done. 268 */ 269 first = folio_buffers(folio); 270 spin_lock_irqsave(&first->b_uptodate_lock, flags); 271 clear_buffer_async_read(bh); 272 unlock_buffer(bh); 273 tmp = bh; 274 do { 275 if (!buffer_uptodate(tmp)) 276 folio_uptodate = 0; 277 if (buffer_async_read(tmp)) { 278 BUG_ON(!buffer_locked(tmp)); 279 goto still_busy; 280 } 281 tmp = tmp->b_this_page; 282 } while (tmp != bh); 283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 284 285 /* 286 * If all of the buffers are uptodate then we can set the page 287 * uptodate. 288 */ 289 if (folio_uptodate) 290 folio_mark_uptodate(folio); 291 folio_unlock(folio); 292 return; 293 294 still_busy: 295 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 296 return; 297 } 298 299 struct postprocess_bh_ctx { 300 struct work_struct work; 301 struct buffer_head *bh; 302 }; 303 304 static void verify_bh(struct work_struct *work) 305 { 306 struct postprocess_bh_ctx *ctx = 307 container_of(work, struct postprocess_bh_ctx, work); 308 struct buffer_head *bh = ctx->bh; 309 bool valid; 310 311 valid = fsverity_verify_blocks(page_folio(bh->b_page), bh->b_size, 312 bh_offset(bh)); 313 end_buffer_async_read(bh, valid); 314 kfree(ctx); 315 } 316 317 static bool need_fsverity(struct buffer_head *bh) 318 { 319 struct page *page = bh->b_page; 320 struct inode *inode = page->mapping->host; 321 322 return fsverity_active(inode) && 323 /* needed by ext4 */ 324 page->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 325 } 326 327 static void decrypt_bh(struct work_struct *work) 328 { 329 struct postprocess_bh_ctx *ctx = 330 container_of(work, struct postprocess_bh_ctx, work); 331 struct buffer_head *bh = ctx->bh; 332 int err; 333 334 err = fscrypt_decrypt_pagecache_blocks(page_folio(bh->b_page), 335 bh->b_size, bh_offset(bh)); 336 if (err == 0 && need_fsverity(bh)) { 337 /* 338 * We use different work queues for decryption and for verity 339 * because verity may require reading metadata pages that need 340 * decryption, and we shouldn't recurse to the same workqueue. 341 */ 342 INIT_WORK(&ctx->work, verify_bh); 343 fsverity_enqueue_verify_work(&ctx->work); 344 return; 345 } 346 end_buffer_async_read(bh, err == 0); 347 kfree(ctx); 348 } 349 350 /* 351 * I/O completion handler for block_read_full_folio() - pages 352 * which come unlocked at the end of I/O. 353 */ 354 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 355 { 356 struct inode *inode = bh->b_folio->mapping->host; 357 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 358 bool verify = need_fsverity(bh); 359 360 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 361 if (uptodate && (decrypt || verify)) { 362 struct postprocess_bh_ctx *ctx = 363 kmalloc(sizeof(*ctx), GFP_ATOMIC); 364 365 if (ctx) { 366 ctx->bh = bh; 367 if (decrypt) { 368 INIT_WORK(&ctx->work, decrypt_bh); 369 fscrypt_enqueue_decrypt_work(&ctx->work); 370 } else { 371 INIT_WORK(&ctx->work, verify_bh); 372 fsverity_enqueue_verify_work(&ctx->work); 373 } 374 return; 375 } 376 uptodate = 0; 377 } 378 end_buffer_async_read(bh, uptodate); 379 } 380 381 /* 382 * Completion handler for block_write_full_page() - pages which are unlocked 383 * during I/O, and which have PageWriteback cleared upon I/O completion. 384 */ 385 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 386 { 387 unsigned long flags; 388 struct buffer_head *first; 389 struct buffer_head *tmp; 390 struct folio *folio; 391 392 BUG_ON(!buffer_async_write(bh)); 393 394 folio = bh->b_folio; 395 if (uptodate) { 396 set_buffer_uptodate(bh); 397 } else { 398 buffer_io_error(bh, ", lost async page write"); 399 mark_buffer_write_io_error(bh); 400 clear_buffer_uptodate(bh); 401 folio_set_error(folio); 402 } 403 404 first = folio_buffers(folio); 405 spin_lock_irqsave(&first->b_uptodate_lock, flags); 406 407 clear_buffer_async_write(bh); 408 unlock_buffer(bh); 409 tmp = bh->b_this_page; 410 while (tmp != bh) { 411 if (buffer_async_write(tmp)) { 412 BUG_ON(!buffer_locked(tmp)); 413 goto still_busy; 414 } 415 tmp = tmp->b_this_page; 416 } 417 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 418 folio_end_writeback(folio); 419 return; 420 421 still_busy: 422 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 423 return; 424 } 425 EXPORT_SYMBOL(end_buffer_async_write); 426 427 /* 428 * If a page's buffers are under async readin (end_buffer_async_read 429 * completion) then there is a possibility that another thread of 430 * control could lock one of the buffers after it has completed 431 * but while some of the other buffers have not completed. This 432 * locked buffer would confuse end_buffer_async_read() into not unlocking 433 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 434 * that this buffer is not under async I/O. 435 * 436 * The page comes unlocked when it has no locked buffer_async buffers 437 * left. 438 * 439 * PageLocked prevents anyone starting new async I/O reads any of 440 * the buffers. 441 * 442 * PageWriteback is used to prevent simultaneous writeout of the same 443 * page. 444 * 445 * PageLocked prevents anyone from starting writeback of a page which is 446 * under read I/O (PageWriteback is only ever set against a locked page). 447 */ 448 static void mark_buffer_async_read(struct buffer_head *bh) 449 { 450 bh->b_end_io = end_buffer_async_read_io; 451 set_buffer_async_read(bh); 452 } 453 454 static void mark_buffer_async_write_endio(struct buffer_head *bh, 455 bh_end_io_t *handler) 456 { 457 bh->b_end_io = handler; 458 set_buffer_async_write(bh); 459 } 460 461 void mark_buffer_async_write(struct buffer_head *bh) 462 { 463 mark_buffer_async_write_endio(bh, end_buffer_async_write); 464 } 465 EXPORT_SYMBOL(mark_buffer_async_write); 466 467 468 /* 469 * fs/buffer.c contains helper functions for buffer-backed address space's 470 * fsync functions. A common requirement for buffer-based filesystems is 471 * that certain data from the backing blockdev needs to be written out for 472 * a successful fsync(). For example, ext2 indirect blocks need to be 473 * written back and waited upon before fsync() returns. 474 * 475 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 476 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 477 * management of a list of dependent buffers at ->i_mapping->private_list. 478 * 479 * Locking is a little subtle: try_to_free_buffers() will remove buffers 480 * from their controlling inode's queue when they are being freed. But 481 * try_to_free_buffers() will be operating against the *blockdev* mapping 482 * at the time, not against the S_ISREG file which depends on those buffers. 483 * So the locking for private_list is via the private_lock in the address_space 484 * which backs the buffers. Which is different from the address_space 485 * against which the buffers are listed. So for a particular address_space, 486 * mapping->private_lock does *not* protect mapping->private_list! In fact, 487 * mapping->private_list will always be protected by the backing blockdev's 488 * ->private_lock. 489 * 490 * Which introduces a requirement: all buffers on an address_space's 491 * ->private_list must be from the same address_space: the blockdev's. 492 * 493 * address_spaces which do not place buffers at ->private_list via these 494 * utility functions are free to use private_lock and private_list for 495 * whatever they want. The only requirement is that list_empty(private_list) 496 * be true at clear_inode() time. 497 * 498 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 499 * filesystems should do that. invalidate_inode_buffers() should just go 500 * BUG_ON(!list_empty). 501 * 502 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 503 * take an address_space, not an inode. And it should be called 504 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 505 * queued up. 506 * 507 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 508 * list if it is already on a list. Because if the buffer is on a list, 509 * it *must* already be on the right one. If not, the filesystem is being 510 * silly. This will save a ton of locking. But first we have to ensure 511 * that buffers are taken *off* the old inode's list when they are freed 512 * (presumably in truncate). That requires careful auditing of all 513 * filesystems (do it inside bforget()). It could also be done by bringing 514 * b_inode back. 515 */ 516 517 /* 518 * The buffer's backing address_space's private_lock must be held 519 */ 520 static void __remove_assoc_queue(struct buffer_head *bh) 521 { 522 list_del_init(&bh->b_assoc_buffers); 523 WARN_ON(!bh->b_assoc_map); 524 bh->b_assoc_map = NULL; 525 } 526 527 int inode_has_buffers(struct inode *inode) 528 { 529 return !list_empty(&inode->i_data.private_list); 530 } 531 532 /* 533 * osync is designed to support O_SYNC io. It waits synchronously for 534 * all already-submitted IO to complete, but does not queue any new 535 * writes to the disk. 536 * 537 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 538 * as you dirty the buffers, and then use osync_inode_buffers to wait for 539 * completion. Any other dirty buffers which are not yet queued for 540 * write will not be flushed to disk by the osync. 541 */ 542 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 543 { 544 struct buffer_head *bh; 545 struct list_head *p; 546 int err = 0; 547 548 spin_lock(lock); 549 repeat: 550 list_for_each_prev(p, list) { 551 bh = BH_ENTRY(p); 552 if (buffer_locked(bh)) { 553 get_bh(bh); 554 spin_unlock(lock); 555 wait_on_buffer(bh); 556 if (!buffer_uptodate(bh)) 557 err = -EIO; 558 brelse(bh); 559 spin_lock(lock); 560 goto repeat; 561 } 562 } 563 spin_unlock(lock); 564 return err; 565 } 566 567 void emergency_thaw_bdev(struct super_block *sb) 568 { 569 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 570 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 571 } 572 573 /** 574 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 575 * @mapping: the mapping which wants those buffers written 576 * 577 * Starts I/O against the buffers at mapping->private_list, and waits upon 578 * that I/O. 579 * 580 * Basically, this is a convenience function for fsync(). 581 * @mapping is a file or directory which needs those buffers to be written for 582 * a successful fsync(). 583 */ 584 int sync_mapping_buffers(struct address_space *mapping) 585 { 586 struct address_space *buffer_mapping = mapping->private_data; 587 588 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 589 return 0; 590 591 return fsync_buffers_list(&buffer_mapping->private_lock, 592 &mapping->private_list); 593 } 594 EXPORT_SYMBOL(sync_mapping_buffers); 595 596 /* 597 * Called when we've recently written block `bblock', and it is known that 598 * `bblock' was for a buffer_boundary() buffer. This means that the block at 599 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 600 * dirty, schedule it for IO. So that indirects merge nicely with their data. 601 */ 602 void write_boundary_block(struct block_device *bdev, 603 sector_t bblock, unsigned blocksize) 604 { 605 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 606 if (bh) { 607 if (buffer_dirty(bh)) 608 write_dirty_buffer(bh, 0); 609 put_bh(bh); 610 } 611 } 612 613 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 614 { 615 struct address_space *mapping = inode->i_mapping; 616 struct address_space *buffer_mapping = bh->b_folio->mapping; 617 618 mark_buffer_dirty(bh); 619 if (!mapping->private_data) { 620 mapping->private_data = buffer_mapping; 621 } else { 622 BUG_ON(mapping->private_data != buffer_mapping); 623 } 624 if (!bh->b_assoc_map) { 625 spin_lock(&buffer_mapping->private_lock); 626 list_move_tail(&bh->b_assoc_buffers, 627 &mapping->private_list); 628 bh->b_assoc_map = mapping; 629 spin_unlock(&buffer_mapping->private_lock); 630 } 631 } 632 EXPORT_SYMBOL(mark_buffer_dirty_inode); 633 634 /* 635 * Add a page to the dirty page list. 636 * 637 * It is a sad fact of life that this function is called from several places 638 * deeply under spinlocking. It may not sleep. 639 * 640 * If the page has buffers, the uptodate buffers are set dirty, to preserve 641 * dirty-state coherency between the page and the buffers. It the page does 642 * not have buffers then when they are later attached they will all be set 643 * dirty. 644 * 645 * The buffers are dirtied before the page is dirtied. There's a small race 646 * window in which a writepage caller may see the page cleanness but not the 647 * buffer dirtiness. That's fine. If this code were to set the page dirty 648 * before the buffers, a concurrent writepage caller could clear the page dirty 649 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 650 * page on the dirty page list. 651 * 652 * We use private_lock to lock against try_to_free_buffers while using the 653 * page's buffer list. Also use this to protect against clean buffers being 654 * added to the page after it was set dirty. 655 * 656 * FIXME: may need to call ->reservepage here as well. That's rather up to the 657 * address_space though. 658 */ 659 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 660 { 661 struct buffer_head *head; 662 bool newly_dirty; 663 664 spin_lock(&mapping->private_lock); 665 head = folio_buffers(folio); 666 if (head) { 667 struct buffer_head *bh = head; 668 669 do { 670 set_buffer_dirty(bh); 671 bh = bh->b_this_page; 672 } while (bh != head); 673 } 674 /* 675 * Lock out page's memcg migration to keep PageDirty 676 * synchronized with per-memcg dirty page counters. 677 */ 678 folio_memcg_lock(folio); 679 newly_dirty = !folio_test_set_dirty(folio); 680 spin_unlock(&mapping->private_lock); 681 682 if (newly_dirty) 683 __folio_mark_dirty(folio, mapping, 1); 684 685 folio_memcg_unlock(folio); 686 687 if (newly_dirty) 688 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 689 690 return newly_dirty; 691 } 692 EXPORT_SYMBOL(block_dirty_folio); 693 694 /* 695 * Write out and wait upon a list of buffers. 696 * 697 * We have conflicting pressures: we want to make sure that all 698 * initially dirty buffers get waited on, but that any subsequently 699 * dirtied buffers don't. After all, we don't want fsync to last 700 * forever if somebody is actively writing to the file. 701 * 702 * Do this in two main stages: first we copy dirty buffers to a 703 * temporary inode list, queueing the writes as we go. Then we clean 704 * up, waiting for those writes to complete. 705 * 706 * During this second stage, any subsequent updates to the file may end 707 * up refiling the buffer on the original inode's dirty list again, so 708 * there is a chance we will end up with a buffer queued for write but 709 * not yet completed on that list. So, as a final cleanup we go through 710 * the osync code to catch these locked, dirty buffers without requeuing 711 * any newly dirty buffers for write. 712 */ 713 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 714 { 715 struct buffer_head *bh; 716 struct list_head tmp; 717 struct address_space *mapping; 718 int err = 0, err2; 719 struct blk_plug plug; 720 721 INIT_LIST_HEAD(&tmp); 722 blk_start_plug(&plug); 723 724 spin_lock(lock); 725 while (!list_empty(list)) { 726 bh = BH_ENTRY(list->next); 727 mapping = bh->b_assoc_map; 728 __remove_assoc_queue(bh); 729 /* Avoid race with mark_buffer_dirty_inode() which does 730 * a lockless check and we rely on seeing the dirty bit */ 731 smp_mb(); 732 if (buffer_dirty(bh) || buffer_locked(bh)) { 733 list_add(&bh->b_assoc_buffers, &tmp); 734 bh->b_assoc_map = mapping; 735 if (buffer_dirty(bh)) { 736 get_bh(bh); 737 spin_unlock(lock); 738 /* 739 * Ensure any pending I/O completes so that 740 * write_dirty_buffer() actually writes the 741 * current contents - it is a noop if I/O is 742 * still in flight on potentially older 743 * contents. 744 */ 745 write_dirty_buffer(bh, REQ_SYNC); 746 747 /* 748 * Kick off IO for the previous mapping. Note 749 * that we will not run the very last mapping, 750 * wait_on_buffer() will do that for us 751 * through sync_buffer(). 752 */ 753 brelse(bh); 754 spin_lock(lock); 755 } 756 } 757 } 758 759 spin_unlock(lock); 760 blk_finish_plug(&plug); 761 spin_lock(lock); 762 763 while (!list_empty(&tmp)) { 764 bh = BH_ENTRY(tmp.prev); 765 get_bh(bh); 766 mapping = bh->b_assoc_map; 767 __remove_assoc_queue(bh); 768 /* Avoid race with mark_buffer_dirty_inode() which does 769 * a lockless check and we rely on seeing the dirty bit */ 770 smp_mb(); 771 if (buffer_dirty(bh)) { 772 list_add(&bh->b_assoc_buffers, 773 &mapping->private_list); 774 bh->b_assoc_map = mapping; 775 } 776 spin_unlock(lock); 777 wait_on_buffer(bh); 778 if (!buffer_uptodate(bh)) 779 err = -EIO; 780 brelse(bh); 781 spin_lock(lock); 782 } 783 784 spin_unlock(lock); 785 err2 = osync_buffers_list(lock, list); 786 if (err) 787 return err; 788 else 789 return err2; 790 } 791 792 /* 793 * Invalidate any and all dirty buffers on a given inode. We are 794 * probably unmounting the fs, but that doesn't mean we have already 795 * done a sync(). Just drop the buffers from the inode list. 796 * 797 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 798 * assumes that all the buffers are against the blockdev. Not true 799 * for reiserfs. 800 */ 801 void invalidate_inode_buffers(struct inode *inode) 802 { 803 if (inode_has_buffers(inode)) { 804 struct address_space *mapping = &inode->i_data; 805 struct list_head *list = &mapping->private_list; 806 struct address_space *buffer_mapping = mapping->private_data; 807 808 spin_lock(&buffer_mapping->private_lock); 809 while (!list_empty(list)) 810 __remove_assoc_queue(BH_ENTRY(list->next)); 811 spin_unlock(&buffer_mapping->private_lock); 812 } 813 } 814 EXPORT_SYMBOL(invalidate_inode_buffers); 815 816 /* 817 * Remove any clean buffers from the inode's buffer list. This is called 818 * when we're trying to free the inode itself. Those buffers can pin it. 819 * 820 * Returns true if all buffers were removed. 821 */ 822 int remove_inode_buffers(struct inode *inode) 823 { 824 int ret = 1; 825 826 if (inode_has_buffers(inode)) { 827 struct address_space *mapping = &inode->i_data; 828 struct list_head *list = &mapping->private_list; 829 struct address_space *buffer_mapping = mapping->private_data; 830 831 spin_lock(&buffer_mapping->private_lock); 832 while (!list_empty(list)) { 833 struct buffer_head *bh = BH_ENTRY(list->next); 834 if (buffer_dirty(bh)) { 835 ret = 0; 836 break; 837 } 838 __remove_assoc_queue(bh); 839 } 840 spin_unlock(&buffer_mapping->private_lock); 841 } 842 return ret; 843 } 844 845 /* 846 * Create the appropriate buffers when given a page for data area and 847 * the size of each buffer.. Use the bh->b_this_page linked list to 848 * follow the buffers created. Return NULL if unable to create more 849 * buffers. 850 * 851 * The retry flag is used to differentiate async IO (paging, swapping) 852 * which may not fail from ordinary buffer allocations. 853 */ 854 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 855 bool retry) 856 { 857 struct buffer_head *bh, *head; 858 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 859 long offset; 860 struct mem_cgroup *memcg, *old_memcg; 861 862 if (retry) 863 gfp |= __GFP_NOFAIL; 864 865 /* The page lock pins the memcg */ 866 memcg = page_memcg(page); 867 old_memcg = set_active_memcg(memcg); 868 869 head = NULL; 870 offset = PAGE_SIZE; 871 while ((offset -= size) >= 0) { 872 bh = alloc_buffer_head(gfp); 873 if (!bh) 874 goto no_grow; 875 876 bh->b_this_page = head; 877 bh->b_blocknr = -1; 878 head = bh; 879 880 bh->b_size = size; 881 882 /* Link the buffer to its page */ 883 set_bh_page(bh, page, offset); 884 } 885 out: 886 set_active_memcg(old_memcg); 887 return head; 888 /* 889 * In case anything failed, we just free everything we got. 890 */ 891 no_grow: 892 if (head) { 893 do { 894 bh = head; 895 head = head->b_this_page; 896 free_buffer_head(bh); 897 } while (head); 898 } 899 900 goto out; 901 } 902 EXPORT_SYMBOL_GPL(alloc_page_buffers); 903 904 static inline void 905 link_dev_buffers(struct page *page, struct buffer_head *head) 906 { 907 struct buffer_head *bh, *tail; 908 909 bh = head; 910 do { 911 tail = bh; 912 bh = bh->b_this_page; 913 } while (bh); 914 tail->b_this_page = head; 915 attach_page_private(page, head); 916 } 917 918 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 919 { 920 sector_t retval = ~((sector_t)0); 921 loff_t sz = bdev_nr_bytes(bdev); 922 923 if (sz) { 924 unsigned int sizebits = blksize_bits(size); 925 retval = (sz >> sizebits); 926 } 927 return retval; 928 } 929 930 /* 931 * Initialise the state of a blockdev page's buffers. 932 */ 933 static sector_t 934 init_page_buffers(struct page *page, struct block_device *bdev, 935 sector_t block, int size) 936 { 937 struct buffer_head *head = page_buffers(page); 938 struct buffer_head *bh = head; 939 int uptodate = PageUptodate(page); 940 sector_t end_block = blkdev_max_block(bdev, size); 941 942 do { 943 if (!buffer_mapped(bh)) { 944 bh->b_end_io = NULL; 945 bh->b_private = NULL; 946 bh->b_bdev = bdev; 947 bh->b_blocknr = block; 948 if (uptodate) 949 set_buffer_uptodate(bh); 950 if (block < end_block) 951 set_buffer_mapped(bh); 952 } 953 block++; 954 bh = bh->b_this_page; 955 } while (bh != head); 956 957 /* 958 * Caller needs to validate requested block against end of device. 959 */ 960 return end_block; 961 } 962 963 /* 964 * Create the page-cache page that contains the requested block. 965 * 966 * This is used purely for blockdev mappings. 967 */ 968 static int 969 grow_dev_page(struct block_device *bdev, sector_t block, 970 pgoff_t index, int size, int sizebits, gfp_t gfp) 971 { 972 struct inode *inode = bdev->bd_inode; 973 struct page *page; 974 struct buffer_head *bh; 975 sector_t end_block; 976 int ret = 0; 977 gfp_t gfp_mask; 978 979 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 980 981 /* 982 * XXX: __getblk_slow() can not really deal with failure and 983 * will endlessly loop on improvised global reclaim. Prefer 984 * looping in the allocator rather than here, at least that 985 * code knows what it's doing. 986 */ 987 gfp_mask |= __GFP_NOFAIL; 988 989 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 990 991 BUG_ON(!PageLocked(page)); 992 993 if (page_has_buffers(page)) { 994 bh = page_buffers(page); 995 if (bh->b_size == size) { 996 end_block = init_page_buffers(page, bdev, 997 (sector_t)index << sizebits, 998 size); 999 goto done; 1000 } 1001 if (!try_to_free_buffers(page_folio(page))) 1002 goto failed; 1003 } 1004 1005 /* 1006 * Allocate some buffers for this page 1007 */ 1008 bh = alloc_page_buffers(page, size, true); 1009 1010 /* 1011 * Link the page to the buffers and initialise them. Take the 1012 * lock to be atomic wrt __find_get_block(), which does not 1013 * run under the page lock. 1014 */ 1015 spin_lock(&inode->i_mapping->private_lock); 1016 link_dev_buffers(page, bh); 1017 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1018 size); 1019 spin_unlock(&inode->i_mapping->private_lock); 1020 done: 1021 ret = (block < end_block) ? 1 : -ENXIO; 1022 failed: 1023 unlock_page(page); 1024 put_page(page); 1025 return ret; 1026 } 1027 1028 /* 1029 * Create buffers for the specified block device block's page. If 1030 * that page was dirty, the buffers are set dirty also. 1031 */ 1032 static int 1033 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1034 { 1035 pgoff_t index; 1036 int sizebits; 1037 1038 sizebits = PAGE_SHIFT - __ffs(size); 1039 index = block >> sizebits; 1040 1041 /* 1042 * Check for a block which wants to lie outside our maximum possible 1043 * pagecache index. (this comparison is done using sector_t types). 1044 */ 1045 if (unlikely(index != block >> sizebits)) { 1046 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1047 "device %pg\n", 1048 __func__, (unsigned long long)block, 1049 bdev); 1050 return -EIO; 1051 } 1052 1053 /* Create a page with the proper size buffers.. */ 1054 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1055 } 1056 1057 static struct buffer_head * 1058 __getblk_slow(struct block_device *bdev, sector_t block, 1059 unsigned size, gfp_t gfp) 1060 { 1061 /* Size must be multiple of hard sectorsize */ 1062 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1063 (size < 512 || size > PAGE_SIZE))) { 1064 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1065 size); 1066 printk(KERN_ERR "logical block size: %d\n", 1067 bdev_logical_block_size(bdev)); 1068 1069 dump_stack(); 1070 return NULL; 1071 } 1072 1073 for (;;) { 1074 struct buffer_head *bh; 1075 int ret; 1076 1077 bh = __find_get_block(bdev, block, size); 1078 if (bh) 1079 return bh; 1080 1081 ret = grow_buffers(bdev, block, size, gfp); 1082 if (ret < 0) 1083 return NULL; 1084 } 1085 } 1086 1087 /* 1088 * The relationship between dirty buffers and dirty pages: 1089 * 1090 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1091 * the page is tagged dirty in the page cache. 1092 * 1093 * At all times, the dirtiness of the buffers represents the dirtiness of 1094 * subsections of the page. If the page has buffers, the page dirty bit is 1095 * merely a hint about the true dirty state. 1096 * 1097 * When a page is set dirty in its entirety, all its buffers are marked dirty 1098 * (if the page has buffers). 1099 * 1100 * When a buffer is marked dirty, its page is dirtied, but the page's other 1101 * buffers are not. 1102 * 1103 * Also. When blockdev buffers are explicitly read with bread(), they 1104 * individually become uptodate. But their backing page remains not 1105 * uptodate - even if all of its buffers are uptodate. A subsequent 1106 * block_read_full_folio() against that folio will discover all the uptodate 1107 * buffers, will set the folio uptodate and will perform no I/O. 1108 */ 1109 1110 /** 1111 * mark_buffer_dirty - mark a buffer_head as needing writeout 1112 * @bh: the buffer_head to mark dirty 1113 * 1114 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1115 * its backing page dirty, then tag the page as dirty in the page cache 1116 * and then attach the address_space's inode to its superblock's dirty 1117 * inode list. 1118 * 1119 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock, 1120 * i_pages lock and mapping->host->i_lock. 1121 */ 1122 void mark_buffer_dirty(struct buffer_head *bh) 1123 { 1124 WARN_ON_ONCE(!buffer_uptodate(bh)); 1125 1126 trace_block_dirty_buffer(bh); 1127 1128 /* 1129 * Very *carefully* optimize the it-is-already-dirty case. 1130 * 1131 * Don't let the final "is it dirty" escape to before we 1132 * perhaps modified the buffer. 1133 */ 1134 if (buffer_dirty(bh)) { 1135 smp_mb(); 1136 if (buffer_dirty(bh)) 1137 return; 1138 } 1139 1140 if (!test_set_buffer_dirty(bh)) { 1141 struct folio *folio = bh->b_folio; 1142 struct address_space *mapping = NULL; 1143 1144 folio_memcg_lock(folio); 1145 if (!folio_test_set_dirty(folio)) { 1146 mapping = folio->mapping; 1147 if (mapping) 1148 __folio_mark_dirty(folio, mapping, 0); 1149 } 1150 folio_memcg_unlock(folio); 1151 if (mapping) 1152 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1153 } 1154 } 1155 EXPORT_SYMBOL(mark_buffer_dirty); 1156 1157 void mark_buffer_write_io_error(struct buffer_head *bh) 1158 { 1159 struct super_block *sb; 1160 1161 set_buffer_write_io_error(bh); 1162 /* FIXME: do we need to set this in both places? */ 1163 if (bh->b_folio && bh->b_folio->mapping) 1164 mapping_set_error(bh->b_folio->mapping, -EIO); 1165 if (bh->b_assoc_map) 1166 mapping_set_error(bh->b_assoc_map, -EIO); 1167 rcu_read_lock(); 1168 sb = READ_ONCE(bh->b_bdev->bd_super); 1169 if (sb) 1170 errseq_set(&sb->s_wb_err, -EIO); 1171 rcu_read_unlock(); 1172 } 1173 EXPORT_SYMBOL(mark_buffer_write_io_error); 1174 1175 /* 1176 * Decrement a buffer_head's reference count. If all buffers against a page 1177 * have zero reference count, are clean and unlocked, and if the page is clean 1178 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1179 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1180 * a page but it ends up not being freed, and buffers may later be reattached). 1181 */ 1182 void __brelse(struct buffer_head * buf) 1183 { 1184 if (atomic_read(&buf->b_count)) { 1185 put_bh(buf); 1186 return; 1187 } 1188 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1189 } 1190 EXPORT_SYMBOL(__brelse); 1191 1192 /* 1193 * bforget() is like brelse(), except it discards any 1194 * potentially dirty data. 1195 */ 1196 void __bforget(struct buffer_head *bh) 1197 { 1198 clear_buffer_dirty(bh); 1199 if (bh->b_assoc_map) { 1200 struct address_space *buffer_mapping = bh->b_folio->mapping; 1201 1202 spin_lock(&buffer_mapping->private_lock); 1203 list_del_init(&bh->b_assoc_buffers); 1204 bh->b_assoc_map = NULL; 1205 spin_unlock(&buffer_mapping->private_lock); 1206 } 1207 __brelse(bh); 1208 } 1209 EXPORT_SYMBOL(__bforget); 1210 1211 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1212 { 1213 lock_buffer(bh); 1214 if (buffer_uptodate(bh)) { 1215 unlock_buffer(bh); 1216 return bh; 1217 } else { 1218 get_bh(bh); 1219 bh->b_end_io = end_buffer_read_sync; 1220 submit_bh(REQ_OP_READ, bh); 1221 wait_on_buffer(bh); 1222 if (buffer_uptodate(bh)) 1223 return bh; 1224 } 1225 brelse(bh); 1226 return NULL; 1227 } 1228 1229 /* 1230 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1231 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1232 * refcount elevated by one when they're in an LRU. A buffer can only appear 1233 * once in a particular CPU's LRU. A single buffer can be present in multiple 1234 * CPU's LRUs at the same time. 1235 * 1236 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1237 * sb_find_get_block(). 1238 * 1239 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1240 * a local interrupt disable for that. 1241 */ 1242 1243 #define BH_LRU_SIZE 16 1244 1245 struct bh_lru { 1246 struct buffer_head *bhs[BH_LRU_SIZE]; 1247 }; 1248 1249 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1250 1251 #ifdef CONFIG_SMP 1252 #define bh_lru_lock() local_irq_disable() 1253 #define bh_lru_unlock() local_irq_enable() 1254 #else 1255 #define bh_lru_lock() preempt_disable() 1256 #define bh_lru_unlock() preempt_enable() 1257 #endif 1258 1259 static inline void check_irqs_on(void) 1260 { 1261 #ifdef irqs_disabled 1262 BUG_ON(irqs_disabled()); 1263 #endif 1264 } 1265 1266 /* 1267 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1268 * inserted at the front, and the buffer_head at the back if any is evicted. 1269 * Or, if already in the LRU it is moved to the front. 1270 */ 1271 static void bh_lru_install(struct buffer_head *bh) 1272 { 1273 struct buffer_head *evictee = bh; 1274 struct bh_lru *b; 1275 int i; 1276 1277 check_irqs_on(); 1278 bh_lru_lock(); 1279 1280 /* 1281 * the refcount of buffer_head in bh_lru prevents dropping the 1282 * attached page(i.e., try_to_free_buffers) so it could cause 1283 * failing page migration. 1284 * Skip putting upcoming bh into bh_lru until migration is done. 1285 */ 1286 if (lru_cache_disabled()) { 1287 bh_lru_unlock(); 1288 return; 1289 } 1290 1291 b = this_cpu_ptr(&bh_lrus); 1292 for (i = 0; i < BH_LRU_SIZE; i++) { 1293 swap(evictee, b->bhs[i]); 1294 if (evictee == bh) { 1295 bh_lru_unlock(); 1296 return; 1297 } 1298 } 1299 1300 get_bh(bh); 1301 bh_lru_unlock(); 1302 brelse(evictee); 1303 } 1304 1305 /* 1306 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1307 */ 1308 static struct buffer_head * 1309 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1310 { 1311 struct buffer_head *ret = NULL; 1312 unsigned int i; 1313 1314 check_irqs_on(); 1315 bh_lru_lock(); 1316 for (i = 0; i < BH_LRU_SIZE; i++) { 1317 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1318 1319 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1320 bh->b_size == size) { 1321 if (i) { 1322 while (i) { 1323 __this_cpu_write(bh_lrus.bhs[i], 1324 __this_cpu_read(bh_lrus.bhs[i - 1])); 1325 i--; 1326 } 1327 __this_cpu_write(bh_lrus.bhs[0], bh); 1328 } 1329 get_bh(bh); 1330 ret = bh; 1331 break; 1332 } 1333 } 1334 bh_lru_unlock(); 1335 return ret; 1336 } 1337 1338 /* 1339 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1340 * it in the LRU and mark it as accessed. If it is not present then return 1341 * NULL 1342 */ 1343 struct buffer_head * 1344 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1345 { 1346 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1347 1348 if (bh == NULL) { 1349 /* __find_get_block_slow will mark the page accessed */ 1350 bh = __find_get_block_slow(bdev, block); 1351 if (bh) 1352 bh_lru_install(bh); 1353 } else 1354 touch_buffer(bh); 1355 1356 return bh; 1357 } 1358 EXPORT_SYMBOL(__find_get_block); 1359 1360 /* 1361 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1362 * which corresponds to the passed block_device, block and size. The 1363 * returned buffer has its reference count incremented. 1364 * 1365 * __getblk_gfp() will lock up the machine if grow_dev_page's 1366 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1367 */ 1368 struct buffer_head * 1369 __getblk_gfp(struct block_device *bdev, sector_t block, 1370 unsigned size, gfp_t gfp) 1371 { 1372 struct buffer_head *bh = __find_get_block(bdev, block, size); 1373 1374 might_sleep(); 1375 if (bh == NULL) 1376 bh = __getblk_slow(bdev, block, size, gfp); 1377 return bh; 1378 } 1379 EXPORT_SYMBOL(__getblk_gfp); 1380 1381 /* 1382 * Do async read-ahead on a buffer.. 1383 */ 1384 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1385 { 1386 struct buffer_head *bh = __getblk(bdev, block, size); 1387 if (likely(bh)) { 1388 bh_readahead(bh, REQ_RAHEAD); 1389 brelse(bh); 1390 } 1391 } 1392 EXPORT_SYMBOL(__breadahead); 1393 1394 /** 1395 * __bread_gfp() - reads a specified block and returns the bh 1396 * @bdev: the block_device to read from 1397 * @block: number of block 1398 * @size: size (in bytes) to read 1399 * @gfp: page allocation flag 1400 * 1401 * Reads a specified block, and returns buffer head that contains it. 1402 * The page cache can be allocated from non-movable area 1403 * not to prevent page migration if you set gfp to zero. 1404 * It returns NULL if the block was unreadable. 1405 */ 1406 struct buffer_head * 1407 __bread_gfp(struct block_device *bdev, sector_t block, 1408 unsigned size, gfp_t gfp) 1409 { 1410 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1411 1412 if (likely(bh) && !buffer_uptodate(bh)) 1413 bh = __bread_slow(bh); 1414 return bh; 1415 } 1416 EXPORT_SYMBOL(__bread_gfp); 1417 1418 static void __invalidate_bh_lrus(struct bh_lru *b) 1419 { 1420 int i; 1421 1422 for (i = 0; i < BH_LRU_SIZE; i++) { 1423 brelse(b->bhs[i]); 1424 b->bhs[i] = NULL; 1425 } 1426 } 1427 /* 1428 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1429 * This doesn't race because it runs in each cpu either in irq 1430 * or with preempt disabled. 1431 */ 1432 static void invalidate_bh_lru(void *arg) 1433 { 1434 struct bh_lru *b = &get_cpu_var(bh_lrus); 1435 1436 __invalidate_bh_lrus(b); 1437 put_cpu_var(bh_lrus); 1438 } 1439 1440 bool has_bh_in_lru(int cpu, void *dummy) 1441 { 1442 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1443 int i; 1444 1445 for (i = 0; i < BH_LRU_SIZE; i++) { 1446 if (b->bhs[i]) 1447 return true; 1448 } 1449 1450 return false; 1451 } 1452 1453 void invalidate_bh_lrus(void) 1454 { 1455 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1456 } 1457 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1458 1459 /* 1460 * It's called from workqueue context so we need a bh_lru_lock to close 1461 * the race with preemption/irq. 1462 */ 1463 void invalidate_bh_lrus_cpu(void) 1464 { 1465 struct bh_lru *b; 1466 1467 bh_lru_lock(); 1468 b = this_cpu_ptr(&bh_lrus); 1469 __invalidate_bh_lrus(b); 1470 bh_lru_unlock(); 1471 } 1472 1473 void set_bh_page(struct buffer_head *bh, 1474 struct page *page, unsigned long offset) 1475 { 1476 bh->b_page = page; 1477 BUG_ON(offset >= PAGE_SIZE); 1478 if (PageHighMem(page)) 1479 /* 1480 * This catches illegal uses and preserves the offset: 1481 */ 1482 bh->b_data = (char *)(0 + offset); 1483 else 1484 bh->b_data = page_address(page) + offset; 1485 } 1486 EXPORT_SYMBOL(set_bh_page); 1487 1488 /* 1489 * Called when truncating a buffer on a page completely. 1490 */ 1491 1492 /* Bits that are cleared during an invalidate */ 1493 #define BUFFER_FLAGS_DISCARD \ 1494 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1495 1 << BH_Delay | 1 << BH_Unwritten) 1496 1497 static void discard_buffer(struct buffer_head * bh) 1498 { 1499 unsigned long b_state; 1500 1501 lock_buffer(bh); 1502 clear_buffer_dirty(bh); 1503 bh->b_bdev = NULL; 1504 b_state = READ_ONCE(bh->b_state); 1505 do { 1506 } while (!try_cmpxchg(&bh->b_state, &b_state, 1507 b_state & ~BUFFER_FLAGS_DISCARD)); 1508 unlock_buffer(bh); 1509 } 1510 1511 /** 1512 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1513 * @folio: The folio which is affected. 1514 * @offset: start of the range to invalidate 1515 * @length: length of the range to invalidate 1516 * 1517 * block_invalidate_folio() is called when all or part of the folio has been 1518 * invalidated by a truncate operation. 1519 * 1520 * block_invalidate_folio() does not have to release all buffers, but it must 1521 * ensure that no dirty buffer is left outside @offset and that no I/O 1522 * is underway against any of the blocks which are outside the truncation 1523 * point. Because the caller is about to free (and possibly reuse) those 1524 * blocks on-disk. 1525 */ 1526 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1527 { 1528 struct buffer_head *head, *bh, *next; 1529 size_t curr_off = 0; 1530 size_t stop = length + offset; 1531 1532 BUG_ON(!folio_test_locked(folio)); 1533 1534 /* 1535 * Check for overflow 1536 */ 1537 BUG_ON(stop > folio_size(folio) || stop < length); 1538 1539 head = folio_buffers(folio); 1540 if (!head) 1541 return; 1542 1543 bh = head; 1544 do { 1545 size_t next_off = curr_off + bh->b_size; 1546 next = bh->b_this_page; 1547 1548 /* 1549 * Are we still fully in range ? 1550 */ 1551 if (next_off > stop) 1552 goto out; 1553 1554 /* 1555 * is this block fully invalidated? 1556 */ 1557 if (offset <= curr_off) 1558 discard_buffer(bh); 1559 curr_off = next_off; 1560 bh = next; 1561 } while (bh != head); 1562 1563 /* 1564 * We release buffers only if the entire folio is being invalidated. 1565 * The get_block cached value has been unconditionally invalidated, 1566 * so real IO is not possible anymore. 1567 */ 1568 if (length == folio_size(folio)) 1569 filemap_release_folio(folio, 0); 1570 out: 1571 return; 1572 } 1573 EXPORT_SYMBOL(block_invalidate_folio); 1574 1575 1576 /* 1577 * We attach and possibly dirty the buffers atomically wrt 1578 * block_dirty_folio() via private_lock. try_to_free_buffers 1579 * is already excluded via the page lock. 1580 */ 1581 void create_empty_buffers(struct page *page, 1582 unsigned long blocksize, unsigned long b_state) 1583 { 1584 struct buffer_head *bh, *head, *tail; 1585 1586 head = alloc_page_buffers(page, blocksize, true); 1587 bh = head; 1588 do { 1589 bh->b_state |= b_state; 1590 tail = bh; 1591 bh = bh->b_this_page; 1592 } while (bh); 1593 tail->b_this_page = head; 1594 1595 spin_lock(&page->mapping->private_lock); 1596 if (PageUptodate(page) || PageDirty(page)) { 1597 bh = head; 1598 do { 1599 if (PageDirty(page)) 1600 set_buffer_dirty(bh); 1601 if (PageUptodate(page)) 1602 set_buffer_uptodate(bh); 1603 bh = bh->b_this_page; 1604 } while (bh != head); 1605 } 1606 attach_page_private(page, head); 1607 spin_unlock(&page->mapping->private_lock); 1608 } 1609 EXPORT_SYMBOL(create_empty_buffers); 1610 1611 /** 1612 * clean_bdev_aliases: clean a range of buffers in block device 1613 * @bdev: Block device to clean buffers in 1614 * @block: Start of a range of blocks to clean 1615 * @len: Number of blocks to clean 1616 * 1617 * We are taking a range of blocks for data and we don't want writeback of any 1618 * buffer-cache aliases starting from return from this function and until the 1619 * moment when something will explicitly mark the buffer dirty (hopefully that 1620 * will not happen until we will free that block ;-) We don't even need to mark 1621 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1622 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1623 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1624 * would confuse anyone who might pick it with bread() afterwards... 1625 * 1626 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1627 * writeout I/O going on against recently-freed buffers. We don't wait on that 1628 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1629 * need to. That happens here. 1630 */ 1631 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1632 { 1633 struct inode *bd_inode = bdev->bd_inode; 1634 struct address_space *bd_mapping = bd_inode->i_mapping; 1635 struct folio_batch fbatch; 1636 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1637 pgoff_t end; 1638 int i, count; 1639 struct buffer_head *bh; 1640 struct buffer_head *head; 1641 1642 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1643 folio_batch_init(&fbatch); 1644 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1645 count = folio_batch_count(&fbatch); 1646 for (i = 0; i < count; i++) { 1647 struct folio *folio = fbatch.folios[i]; 1648 1649 if (!folio_buffers(folio)) 1650 continue; 1651 /* 1652 * We use folio lock instead of bd_mapping->private_lock 1653 * to pin buffers here since we can afford to sleep and 1654 * it scales better than a global spinlock lock. 1655 */ 1656 folio_lock(folio); 1657 /* Recheck when the folio is locked which pins bhs */ 1658 head = folio_buffers(folio); 1659 if (!head) 1660 goto unlock_page; 1661 bh = head; 1662 do { 1663 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1664 goto next; 1665 if (bh->b_blocknr >= block + len) 1666 break; 1667 clear_buffer_dirty(bh); 1668 wait_on_buffer(bh); 1669 clear_buffer_req(bh); 1670 next: 1671 bh = bh->b_this_page; 1672 } while (bh != head); 1673 unlock_page: 1674 folio_unlock(folio); 1675 } 1676 folio_batch_release(&fbatch); 1677 cond_resched(); 1678 /* End of range already reached? */ 1679 if (index > end || !index) 1680 break; 1681 } 1682 } 1683 EXPORT_SYMBOL(clean_bdev_aliases); 1684 1685 /* 1686 * Size is a power-of-two in the range 512..PAGE_SIZE, 1687 * and the case we care about most is PAGE_SIZE. 1688 * 1689 * So this *could* possibly be written with those 1690 * constraints in mind (relevant mostly if some 1691 * architecture has a slow bit-scan instruction) 1692 */ 1693 static inline int block_size_bits(unsigned int blocksize) 1694 { 1695 return ilog2(blocksize); 1696 } 1697 1698 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1699 { 1700 BUG_ON(!PageLocked(page)); 1701 1702 if (!page_has_buffers(page)) 1703 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1704 b_state); 1705 return page_buffers(page); 1706 } 1707 1708 /* 1709 * NOTE! All mapped/uptodate combinations are valid: 1710 * 1711 * Mapped Uptodate Meaning 1712 * 1713 * No No "unknown" - must do get_block() 1714 * No Yes "hole" - zero-filled 1715 * Yes No "allocated" - allocated on disk, not read in 1716 * Yes Yes "valid" - allocated and up-to-date in memory. 1717 * 1718 * "Dirty" is valid only with the last case (mapped+uptodate). 1719 */ 1720 1721 /* 1722 * While block_write_full_page is writing back the dirty buffers under 1723 * the page lock, whoever dirtied the buffers may decide to clean them 1724 * again at any time. We handle that by only looking at the buffer 1725 * state inside lock_buffer(). 1726 * 1727 * If block_write_full_page() is called for regular writeback 1728 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1729 * locked buffer. This only can happen if someone has written the buffer 1730 * directly, with submit_bh(). At the address_space level PageWriteback 1731 * prevents this contention from occurring. 1732 * 1733 * If block_write_full_page() is called with wbc->sync_mode == 1734 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1735 * causes the writes to be flagged as synchronous writes. 1736 */ 1737 int __block_write_full_page(struct inode *inode, struct page *page, 1738 get_block_t *get_block, struct writeback_control *wbc, 1739 bh_end_io_t *handler) 1740 { 1741 int err; 1742 sector_t block; 1743 sector_t last_block; 1744 struct buffer_head *bh, *head; 1745 unsigned int blocksize, bbits; 1746 int nr_underway = 0; 1747 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1748 1749 head = create_page_buffers(page, inode, 1750 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1751 1752 /* 1753 * Be very careful. We have no exclusion from block_dirty_folio 1754 * here, and the (potentially unmapped) buffers may become dirty at 1755 * any time. If a buffer becomes dirty here after we've inspected it 1756 * then we just miss that fact, and the page stays dirty. 1757 * 1758 * Buffers outside i_size may be dirtied by block_dirty_folio; 1759 * handle that here by just cleaning them. 1760 */ 1761 1762 bh = head; 1763 blocksize = bh->b_size; 1764 bbits = block_size_bits(blocksize); 1765 1766 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1767 last_block = (i_size_read(inode) - 1) >> bbits; 1768 1769 /* 1770 * Get all the dirty buffers mapped to disk addresses and 1771 * handle any aliases from the underlying blockdev's mapping. 1772 */ 1773 do { 1774 if (block > last_block) { 1775 /* 1776 * mapped buffers outside i_size will occur, because 1777 * this page can be outside i_size when there is a 1778 * truncate in progress. 1779 */ 1780 /* 1781 * The buffer was zeroed by block_write_full_page() 1782 */ 1783 clear_buffer_dirty(bh); 1784 set_buffer_uptodate(bh); 1785 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1786 buffer_dirty(bh)) { 1787 WARN_ON(bh->b_size != blocksize); 1788 err = get_block(inode, block, bh, 1); 1789 if (err) 1790 goto recover; 1791 clear_buffer_delay(bh); 1792 if (buffer_new(bh)) { 1793 /* blockdev mappings never come here */ 1794 clear_buffer_new(bh); 1795 clean_bdev_bh_alias(bh); 1796 } 1797 } 1798 bh = bh->b_this_page; 1799 block++; 1800 } while (bh != head); 1801 1802 do { 1803 if (!buffer_mapped(bh)) 1804 continue; 1805 /* 1806 * If it's a fully non-blocking write attempt and we cannot 1807 * lock the buffer then redirty the page. Note that this can 1808 * potentially cause a busy-wait loop from writeback threads 1809 * and kswapd activity, but those code paths have their own 1810 * higher-level throttling. 1811 */ 1812 if (wbc->sync_mode != WB_SYNC_NONE) { 1813 lock_buffer(bh); 1814 } else if (!trylock_buffer(bh)) { 1815 redirty_page_for_writepage(wbc, page); 1816 continue; 1817 } 1818 if (test_clear_buffer_dirty(bh)) { 1819 mark_buffer_async_write_endio(bh, handler); 1820 } else { 1821 unlock_buffer(bh); 1822 } 1823 } while ((bh = bh->b_this_page) != head); 1824 1825 /* 1826 * The page and its buffers are protected by PageWriteback(), so we can 1827 * drop the bh refcounts early. 1828 */ 1829 BUG_ON(PageWriteback(page)); 1830 set_page_writeback(page); 1831 1832 do { 1833 struct buffer_head *next = bh->b_this_page; 1834 if (buffer_async_write(bh)) { 1835 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1836 nr_underway++; 1837 } 1838 bh = next; 1839 } while (bh != head); 1840 unlock_page(page); 1841 1842 err = 0; 1843 done: 1844 if (nr_underway == 0) { 1845 /* 1846 * The page was marked dirty, but the buffers were 1847 * clean. Someone wrote them back by hand with 1848 * write_dirty_buffer/submit_bh. A rare case. 1849 */ 1850 end_page_writeback(page); 1851 1852 /* 1853 * The page and buffer_heads can be released at any time from 1854 * here on. 1855 */ 1856 } 1857 return err; 1858 1859 recover: 1860 /* 1861 * ENOSPC, or some other error. We may already have added some 1862 * blocks to the file, so we need to write these out to avoid 1863 * exposing stale data. 1864 * The page is currently locked and not marked for writeback 1865 */ 1866 bh = head; 1867 /* Recovery: lock and submit the mapped buffers */ 1868 do { 1869 if (buffer_mapped(bh) && buffer_dirty(bh) && 1870 !buffer_delay(bh)) { 1871 lock_buffer(bh); 1872 mark_buffer_async_write_endio(bh, handler); 1873 } else { 1874 /* 1875 * The buffer may have been set dirty during 1876 * attachment to a dirty page. 1877 */ 1878 clear_buffer_dirty(bh); 1879 } 1880 } while ((bh = bh->b_this_page) != head); 1881 SetPageError(page); 1882 BUG_ON(PageWriteback(page)); 1883 mapping_set_error(page->mapping, err); 1884 set_page_writeback(page); 1885 do { 1886 struct buffer_head *next = bh->b_this_page; 1887 if (buffer_async_write(bh)) { 1888 clear_buffer_dirty(bh); 1889 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1890 nr_underway++; 1891 } 1892 bh = next; 1893 } while (bh != head); 1894 unlock_page(page); 1895 goto done; 1896 } 1897 EXPORT_SYMBOL(__block_write_full_page); 1898 1899 /* 1900 * If a page has any new buffers, zero them out here, and mark them uptodate 1901 * and dirty so they'll be written out (in order to prevent uninitialised 1902 * block data from leaking). And clear the new bit. 1903 */ 1904 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1905 { 1906 unsigned int block_start, block_end; 1907 struct buffer_head *head, *bh; 1908 1909 BUG_ON(!PageLocked(page)); 1910 if (!page_has_buffers(page)) 1911 return; 1912 1913 bh = head = page_buffers(page); 1914 block_start = 0; 1915 do { 1916 block_end = block_start + bh->b_size; 1917 1918 if (buffer_new(bh)) { 1919 if (block_end > from && block_start < to) { 1920 if (!PageUptodate(page)) { 1921 unsigned start, size; 1922 1923 start = max(from, block_start); 1924 size = min(to, block_end) - start; 1925 1926 zero_user(page, start, size); 1927 set_buffer_uptodate(bh); 1928 } 1929 1930 clear_buffer_new(bh); 1931 mark_buffer_dirty(bh); 1932 } 1933 } 1934 1935 block_start = block_end; 1936 bh = bh->b_this_page; 1937 } while (bh != head); 1938 } 1939 EXPORT_SYMBOL(page_zero_new_buffers); 1940 1941 static void 1942 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1943 const struct iomap *iomap) 1944 { 1945 loff_t offset = block << inode->i_blkbits; 1946 1947 bh->b_bdev = iomap->bdev; 1948 1949 /* 1950 * Block points to offset in file we need to map, iomap contains 1951 * the offset at which the map starts. If the map ends before the 1952 * current block, then do not map the buffer and let the caller 1953 * handle it. 1954 */ 1955 BUG_ON(offset >= iomap->offset + iomap->length); 1956 1957 switch (iomap->type) { 1958 case IOMAP_HOLE: 1959 /* 1960 * If the buffer is not up to date or beyond the current EOF, 1961 * we need to mark it as new to ensure sub-block zeroing is 1962 * executed if necessary. 1963 */ 1964 if (!buffer_uptodate(bh) || 1965 (offset >= i_size_read(inode))) 1966 set_buffer_new(bh); 1967 break; 1968 case IOMAP_DELALLOC: 1969 if (!buffer_uptodate(bh) || 1970 (offset >= i_size_read(inode))) 1971 set_buffer_new(bh); 1972 set_buffer_uptodate(bh); 1973 set_buffer_mapped(bh); 1974 set_buffer_delay(bh); 1975 break; 1976 case IOMAP_UNWRITTEN: 1977 /* 1978 * For unwritten regions, we always need to ensure that regions 1979 * in the block we are not writing to are zeroed. Mark the 1980 * buffer as new to ensure this. 1981 */ 1982 set_buffer_new(bh); 1983 set_buffer_unwritten(bh); 1984 fallthrough; 1985 case IOMAP_MAPPED: 1986 if ((iomap->flags & IOMAP_F_NEW) || 1987 offset >= i_size_read(inode)) 1988 set_buffer_new(bh); 1989 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1990 inode->i_blkbits; 1991 set_buffer_mapped(bh); 1992 break; 1993 } 1994 } 1995 1996 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 1997 get_block_t *get_block, const struct iomap *iomap) 1998 { 1999 unsigned from = pos & (PAGE_SIZE - 1); 2000 unsigned to = from + len; 2001 struct inode *inode = folio->mapping->host; 2002 unsigned block_start, block_end; 2003 sector_t block; 2004 int err = 0; 2005 unsigned blocksize, bbits; 2006 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2007 2008 BUG_ON(!folio_test_locked(folio)); 2009 BUG_ON(from > PAGE_SIZE); 2010 BUG_ON(to > PAGE_SIZE); 2011 BUG_ON(from > to); 2012 2013 head = create_page_buffers(&folio->page, inode, 0); 2014 blocksize = head->b_size; 2015 bbits = block_size_bits(blocksize); 2016 2017 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2018 2019 for(bh = head, block_start = 0; bh != head || !block_start; 2020 block++, block_start=block_end, bh = bh->b_this_page) { 2021 block_end = block_start + blocksize; 2022 if (block_end <= from || block_start >= to) { 2023 if (folio_test_uptodate(folio)) { 2024 if (!buffer_uptodate(bh)) 2025 set_buffer_uptodate(bh); 2026 } 2027 continue; 2028 } 2029 if (buffer_new(bh)) 2030 clear_buffer_new(bh); 2031 if (!buffer_mapped(bh)) { 2032 WARN_ON(bh->b_size != blocksize); 2033 if (get_block) { 2034 err = get_block(inode, block, bh, 1); 2035 if (err) 2036 break; 2037 } else { 2038 iomap_to_bh(inode, block, bh, iomap); 2039 } 2040 2041 if (buffer_new(bh)) { 2042 clean_bdev_bh_alias(bh); 2043 if (folio_test_uptodate(folio)) { 2044 clear_buffer_new(bh); 2045 set_buffer_uptodate(bh); 2046 mark_buffer_dirty(bh); 2047 continue; 2048 } 2049 if (block_end > to || block_start < from) 2050 folio_zero_segments(folio, 2051 to, block_end, 2052 block_start, from); 2053 continue; 2054 } 2055 } 2056 if (folio_test_uptodate(folio)) { 2057 if (!buffer_uptodate(bh)) 2058 set_buffer_uptodate(bh); 2059 continue; 2060 } 2061 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2062 !buffer_unwritten(bh) && 2063 (block_start < from || block_end > to)) { 2064 bh_read_nowait(bh, 0); 2065 *wait_bh++=bh; 2066 } 2067 } 2068 /* 2069 * If we issued read requests - let them complete. 2070 */ 2071 while(wait_bh > wait) { 2072 wait_on_buffer(*--wait_bh); 2073 if (!buffer_uptodate(*wait_bh)) 2074 err = -EIO; 2075 } 2076 if (unlikely(err)) 2077 page_zero_new_buffers(&folio->page, from, to); 2078 return err; 2079 } 2080 2081 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2082 get_block_t *get_block) 2083 { 2084 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2085 NULL); 2086 } 2087 EXPORT_SYMBOL(__block_write_begin); 2088 2089 static int __block_commit_write(struct inode *inode, struct page *page, 2090 unsigned from, unsigned to) 2091 { 2092 unsigned block_start, block_end; 2093 int partial = 0; 2094 unsigned blocksize; 2095 struct buffer_head *bh, *head; 2096 2097 bh = head = page_buffers(page); 2098 blocksize = bh->b_size; 2099 2100 block_start = 0; 2101 do { 2102 block_end = block_start + blocksize; 2103 if (block_end <= from || block_start >= to) { 2104 if (!buffer_uptodate(bh)) 2105 partial = 1; 2106 } else { 2107 set_buffer_uptodate(bh); 2108 mark_buffer_dirty(bh); 2109 } 2110 if (buffer_new(bh)) 2111 clear_buffer_new(bh); 2112 2113 block_start = block_end; 2114 bh = bh->b_this_page; 2115 } while (bh != head); 2116 2117 /* 2118 * If this is a partial write which happened to make all buffers 2119 * uptodate then we can optimize away a bogus read_folio() for 2120 * the next read(). Here we 'discover' whether the page went 2121 * uptodate as a result of this (potentially partial) write. 2122 */ 2123 if (!partial) 2124 SetPageUptodate(page); 2125 return 0; 2126 } 2127 2128 /* 2129 * block_write_begin takes care of the basic task of block allocation and 2130 * bringing partial write blocks uptodate first. 2131 * 2132 * The filesystem needs to handle block truncation upon failure. 2133 */ 2134 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2135 struct page **pagep, get_block_t *get_block) 2136 { 2137 pgoff_t index = pos >> PAGE_SHIFT; 2138 struct page *page; 2139 int status; 2140 2141 page = grab_cache_page_write_begin(mapping, index); 2142 if (!page) 2143 return -ENOMEM; 2144 2145 status = __block_write_begin(page, pos, len, get_block); 2146 if (unlikely(status)) { 2147 unlock_page(page); 2148 put_page(page); 2149 page = NULL; 2150 } 2151 2152 *pagep = page; 2153 return status; 2154 } 2155 EXPORT_SYMBOL(block_write_begin); 2156 2157 int block_write_end(struct file *file, struct address_space *mapping, 2158 loff_t pos, unsigned len, unsigned copied, 2159 struct page *page, void *fsdata) 2160 { 2161 struct inode *inode = mapping->host; 2162 unsigned start; 2163 2164 start = pos & (PAGE_SIZE - 1); 2165 2166 if (unlikely(copied < len)) { 2167 /* 2168 * The buffers that were written will now be uptodate, so 2169 * we don't have to worry about a read_folio reading them 2170 * and overwriting a partial write. However if we have 2171 * encountered a short write and only partially written 2172 * into a buffer, it will not be marked uptodate, so a 2173 * read_folio might come in and destroy our partial write. 2174 * 2175 * Do the simplest thing, and just treat any short write to a 2176 * non uptodate page as a zero-length write, and force the 2177 * caller to redo the whole thing. 2178 */ 2179 if (!PageUptodate(page)) 2180 copied = 0; 2181 2182 page_zero_new_buffers(page, start+copied, start+len); 2183 } 2184 flush_dcache_page(page); 2185 2186 /* This could be a short (even 0-length) commit */ 2187 __block_commit_write(inode, page, start, start+copied); 2188 2189 return copied; 2190 } 2191 EXPORT_SYMBOL(block_write_end); 2192 2193 int generic_write_end(struct file *file, struct address_space *mapping, 2194 loff_t pos, unsigned len, unsigned copied, 2195 struct page *page, void *fsdata) 2196 { 2197 struct inode *inode = mapping->host; 2198 loff_t old_size = inode->i_size; 2199 bool i_size_changed = false; 2200 2201 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2202 2203 /* 2204 * No need to use i_size_read() here, the i_size cannot change under us 2205 * because we hold i_rwsem. 2206 * 2207 * But it's important to update i_size while still holding page lock: 2208 * page writeout could otherwise come in and zero beyond i_size. 2209 */ 2210 if (pos + copied > inode->i_size) { 2211 i_size_write(inode, pos + copied); 2212 i_size_changed = true; 2213 } 2214 2215 unlock_page(page); 2216 put_page(page); 2217 2218 if (old_size < pos) 2219 pagecache_isize_extended(inode, old_size, pos); 2220 /* 2221 * Don't mark the inode dirty under page lock. First, it unnecessarily 2222 * makes the holding time of page lock longer. Second, it forces lock 2223 * ordering of page lock and transaction start for journaling 2224 * filesystems. 2225 */ 2226 if (i_size_changed) 2227 mark_inode_dirty(inode); 2228 return copied; 2229 } 2230 EXPORT_SYMBOL(generic_write_end); 2231 2232 /* 2233 * block_is_partially_uptodate checks whether buffers within a folio are 2234 * uptodate or not. 2235 * 2236 * Returns true if all buffers which correspond to the specified part 2237 * of the folio are uptodate. 2238 */ 2239 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2240 { 2241 unsigned block_start, block_end, blocksize; 2242 unsigned to; 2243 struct buffer_head *bh, *head; 2244 bool ret = true; 2245 2246 head = folio_buffers(folio); 2247 if (!head) 2248 return false; 2249 blocksize = head->b_size; 2250 to = min_t(unsigned, folio_size(folio) - from, count); 2251 to = from + to; 2252 if (from < blocksize && to > folio_size(folio) - blocksize) 2253 return false; 2254 2255 bh = head; 2256 block_start = 0; 2257 do { 2258 block_end = block_start + blocksize; 2259 if (block_end > from && block_start < to) { 2260 if (!buffer_uptodate(bh)) { 2261 ret = false; 2262 break; 2263 } 2264 if (block_end >= to) 2265 break; 2266 } 2267 block_start = block_end; 2268 bh = bh->b_this_page; 2269 } while (bh != head); 2270 2271 return ret; 2272 } 2273 EXPORT_SYMBOL(block_is_partially_uptodate); 2274 2275 /* 2276 * Generic "read_folio" function for block devices that have the normal 2277 * get_block functionality. This is most of the block device filesystems. 2278 * Reads the folio asynchronously --- the unlock_buffer() and 2279 * set/clear_buffer_uptodate() functions propagate buffer state into the 2280 * folio once IO has completed. 2281 */ 2282 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2283 { 2284 struct inode *inode = folio->mapping->host; 2285 sector_t iblock, lblock; 2286 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2287 unsigned int blocksize, bbits; 2288 int nr, i; 2289 int fully_mapped = 1; 2290 bool page_error = false; 2291 loff_t limit = i_size_read(inode); 2292 2293 /* This is needed for ext4. */ 2294 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2295 limit = inode->i_sb->s_maxbytes; 2296 2297 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2298 2299 head = create_page_buffers(&folio->page, inode, 0); 2300 blocksize = head->b_size; 2301 bbits = block_size_bits(blocksize); 2302 2303 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2304 lblock = (limit+blocksize-1) >> bbits; 2305 bh = head; 2306 nr = 0; 2307 i = 0; 2308 2309 do { 2310 if (buffer_uptodate(bh)) 2311 continue; 2312 2313 if (!buffer_mapped(bh)) { 2314 int err = 0; 2315 2316 fully_mapped = 0; 2317 if (iblock < lblock) { 2318 WARN_ON(bh->b_size != blocksize); 2319 err = get_block(inode, iblock, bh, 0); 2320 if (err) { 2321 folio_set_error(folio); 2322 page_error = true; 2323 } 2324 } 2325 if (!buffer_mapped(bh)) { 2326 folio_zero_range(folio, i * blocksize, 2327 blocksize); 2328 if (!err) 2329 set_buffer_uptodate(bh); 2330 continue; 2331 } 2332 /* 2333 * get_block() might have updated the buffer 2334 * synchronously 2335 */ 2336 if (buffer_uptodate(bh)) 2337 continue; 2338 } 2339 arr[nr++] = bh; 2340 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2341 2342 if (fully_mapped) 2343 folio_set_mappedtodisk(folio); 2344 2345 if (!nr) { 2346 /* 2347 * All buffers are uptodate - we can set the folio uptodate 2348 * as well. But not if get_block() returned an error. 2349 */ 2350 if (!page_error) 2351 folio_mark_uptodate(folio); 2352 folio_unlock(folio); 2353 return 0; 2354 } 2355 2356 /* Stage two: lock the buffers */ 2357 for (i = 0; i < nr; i++) { 2358 bh = arr[i]; 2359 lock_buffer(bh); 2360 mark_buffer_async_read(bh); 2361 } 2362 2363 /* 2364 * Stage 3: start the IO. Check for uptodateness 2365 * inside the buffer lock in case another process reading 2366 * the underlying blockdev brought it uptodate (the sct fix). 2367 */ 2368 for (i = 0; i < nr; i++) { 2369 bh = arr[i]; 2370 if (buffer_uptodate(bh)) 2371 end_buffer_async_read(bh, 1); 2372 else 2373 submit_bh(REQ_OP_READ, bh); 2374 } 2375 return 0; 2376 } 2377 EXPORT_SYMBOL(block_read_full_folio); 2378 2379 /* utility function for filesystems that need to do work on expanding 2380 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2381 * deal with the hole. 2382 */ 2383 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2384 { 2385 struct address_space *mapping = inode->i_mapping; 2386 const struct address_space_operations *aops = mapping->a_ops; 2387 struct page *page; 2388 void *fsdata = NULL; 2389 int err; 2390 2391 err = inode_newsize_ok(inode, size); 2392 if (err) 2393 goto out; 2394 2395 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata); 2396 if (err) 2397 goto out; 2398 2399 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata); 2400 BUG_ON(err > 0); 2401 2402 out: 2403 return err; 2404 } 2405 EXPORT_SYMBOL(generic_cont_expand_simple); 2406 2407 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2408 loff_t pos, loff_t *bytes) 2409 { 2410 struct inode *inode = mapping->host; 2411 const struct address_space_operations *aops = mapping->a_ops; 2412 unsigned int blocksize = i_blocksize(inode); 2413 struct page *page; 2414 void *fsdata = NULL; 2415 pgoff_t index, curidx; 2416 loff_t curpos; 2417 unsigned zerofrom, offset, len; 2418 int err = 0; 2419 2420 index = pos >> PAGE_SHIFT; 2421 offset = pos & ~PAGE_MASK; 2422 2423 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2424 zerofrom = curpos & ~PAGE_MASK; 2425 if (zerofrom & (blocksize-1)) { 2426 *bytes |= (blocksize-1); 2427 (*bytes)++; 2428 } 2429 len = PAGE_SIZE - zerofrom; 2430 2431 err = aops->write_begin(file, mapping, curpos, len, 2432 &page, &fsdata); 2433 if (err) 2434 goto out; 2435 zero_user(page, zerofrom, len); 2436 err = aops->write_end(file, mapping, curpos, len, len, 2437 page, fsdata); 2438 if (err < 0) 2439 goto out; 2440 BUG_ON(err != len); 2441 err = 0; 2442 2443 balance_dirty_pages_ratelimited(mapping); 2444 2445 if (fatal_signal_pending(current)) { 2446 err = -EINTR; 2447 goto out; 2448 } 2449 } 2450 2451 /* page covers the boundary, find the boundary offset */ 2452 if (index == curidx) { 2453 zerofrom = curpos & ~PAGE_MASK; 2454 /* if we will expand the thing last block will be filled */ 2455 if (offset <= zerofrom) { 2456 goto out; 2457 } 2458 if (zerofrom & (blocksize-1)) { 2459 *bytes |= (blocksize-1); 2460 (*bytes)++; 2461 } 2462 len = offset - zerofrom; 2463 2464 err = aops->write_begin(file, mapping, curpos, len, 2465 &page, &fsdata); 2466 if (err) 2467 goto out; 2468 zero_user(page, zerofrom, len); 2469 err = aops->write_end(file, mapping, curpos, len, len, 2470 page, fsdata); 2471 if (err < 0) 2472 goto out; 2473 BUG_ON(err != len); 2474 err = 0; 2475 } 2476 out: 2477 return err; 2478 } 2479 2480 /* 2481 * For moronic filesystems that do not allow holes in file. 2482 * We may have to extend the file. 2483 */ 2484 int cont_write_begin(struct file *file, struct address_space *mapping, 2485 loff_t pos, unsigned len, 2486 struct page **pagep, void **fsdata, 2487 get_block_t *get_block, loff_t *bytes) 2488 { 2489 struct inode *inode = mapping->host; 2490 unsigned int blocksize = i_blocksize(inode); 2491 unsigned int zerofrom; 2492 int err; 2493 2494 err = cont_expand_zero(file, mapping, pos, bytes); 2495 if (err) 2496 return err; 2497 2498 zerofrom = *bytes & ~PAGE_MASK; 2499 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2500 *bytes |= (blocksize-1); 2501 (*bytes)++; 2502 } 2503 2504 return block_write_begin(mapping, pos, len, pagep, get_block); 2505 } 2506 EXPORT_SYMBOL(cont_write_begin); 2507 2508 int block_commit_write(struct page *page, unsigned from, unsigned to) 2509 { 2510 struct inode *inode = page->mapping->host; 2511 __block_commit_write(inode,page,from,to); 2512 return 0; 2513 } 2514 EXPORT_SYMBOL(block_commit_write); 2515 2516 /* 2517 * block_page_mkwrite() is not allowed to change the file size as it gets 2518 * called from a page fault handler when a page is first dirtied. Hence we must 2519 * be careful to check for EOF conditions here. We set the page up correctly 2520 * for a written page which means we get ENOSPC checking when writing into 2521 * holes and correct delalloc and unwritten extent mapping on filesystems that 2522 * support these features. 2523 * 2524 * We are not allowed to take the i_mutex here so we have to play games to 2525 * protect against truncate races as the page could now be beyond EOF. Because 2526 * truncate writes the inode size before removing pages, once we have the 2527 * page lock we can determine safely if the page is beyond EOF. If it is not 2528 * beyond EOF, then the page is guaranteed safe against truncation until we 2529 * unlock the page. 2530 * 2531 * Direct callers of this function should protect against filesystem freezing 2532 * using sb_start_pagefault() - sb_end_pagefault() functions. 2533 */ 2534 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2535 get_block_t get_block) 2536 { 2537 struct page *page = vmf->page; 2538 struct inode *inode = file_inode(vma->vm_file); 2539 unsigned long end; 2540 loff_t size; 2541 int ret; 2542 2543 lock_page(page); 2544 size = i_size_read(inode); 2545 if ((page->mapping != inode->i_mapping) || 2546 (page_offset(page) > size)) { 2547 /* We overload EFAULT to mean page got truncated */ 2548 ret = -EFAULT; 2549 goto out_unlock; 2550 } 2551 2552 /* page is wholly or partially inside EOF */ 2553 if (((page->index + 1) << PAGE_SHIFT) > size) 2554 end = size & ~PAGE_MASK; 2555 else 2556 end = PAGE_SIZE; 2557 2558 ret = __block_write_begin(page, 0, end, get_block); 2559 if (!ret) 2560 ret = block_commit_write(page, 0, end); 2561 2562 if (unlikely(ret < 0)) 2563 goto out_unlock; 2564 set_page_dirty(page); 2565 wait_for_stable_page(page); 2566 return 0; 2567 out_unlock: 2568 unlock_page(page); 2569 return ret; 2570 } 2571 EXPORT_SYMBOL(block_page_mkwrite); 2572 2573 int block_truncate_page(struct address_space *mapping, 2574 loff_t from, get_block_t *get_block) 2575 { 2576 pgoff_t index = from >> PAGE_SHIFT; 2577 unsigned offset = from & (PAGE_SIZE-1); 2578 unsigned blocksize; 2579 sector_t iblock; 2580 unsigned length, pos; 2581 struct inode *inode = mapping->host; 2582 struct page *page; 2583 struct buffer_head *bh; 2584 int err; 2585 2586 blocksize = i_blocksize(inode); 2587 length = offset & (blocksize - 1); 2588 2589 /* Block boundary? Nothing to do */ 2590 if (!length) 2591 return 0; 2592 2593 length = blocksize - length; 2594 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2595 2596 page = grab_cache_page(mapping, index); 2597 err = -ENOMEM; 2598 if (!page) 2599 goto out; 2600 2601 if (!page_has_buffers(page)) 2602 create_empty_buffers(page, blocksize, 0); 2603 2604 /* Find the buffer that contains "offset" */ 2605 bh = page_buffers(page); 2606 pos = blocksize; 2607 while (offset >= pos) { 2608 bh = bh->b_this_page; 2609 iblock++; 2610 pos += blocksize; 2611 } 2612 2613 err = 0; 2614 if (!buffer_mapped(bh)) { 2615 WARN_ON(bh->b_size != blocksize); 2616 err = get_block(inode, iblock, bh, 0); 2617 if (err) 2618 goto unlock; 2619 /* unmapped? It's a hole - nothing to do */ 2620 if (!buffer_mapped(bh)) 2621 goto unlock; 2622 } 2623 2624 /* Ok, it's mapped. Make sure it's up-to-date */ 2625 if (PageUptodate(page)) 2626 set_buffer_uptodate(bh); 2627 2628 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2629 err = bh_read(bh, 0); 2630 /* Uhhuh. Read error. Complain and punt. */ 2631 if (err < 0) 2632 goto unlock; 2633 } 2634 2635 zero_user(page, offset, length); 2636 mark_buffer_dirty(bh); 2637 err = 0; 2638 2639 unlock: 2640 unlock_page(page); 2641 put_page(page); 2642 out: 2643 return err; 2644 } 2645 EXPORT_SYMBOL(block_truncate_page); 2646 2647 /* 2648 * The generic ->writepage function for buffer-backed address_spaces 2649 */ 2650 int block_write_full_page(struct page *page, get_block_t *get_block, 2651 struct writeback_control *wbc) 2652 { 2653 struct inode * const inode = page->mapping->host; 2654 loff_t i_size = i_size_read(inode); 2655 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2656 unsigned offset; 2657 2658 /* Is the page fully inside i_size? */ 2659 if (page->index < end_index) 2660 return __block_write_full_page(inode, page, get_block, wbc, 2661 end_buffer_async_write); 2662 2663 /* Is the page fully outside i_size? (truncate in progress) */ 2664 offset = i_size & (PAGE_SIZE-1); 2665 if (page->index >= end_index+1 || !offset) { 2666 unlock_page(page); 2667 return 0; /* don't care */ 2668 } 2669 2670 /* 2671 * The page straddles i_size. It must be zeroed out on each and every 2672 * writepage invocation because it may be mmapped. "A file is mapped 2673 * in multiples of the page size. For a file that is not a multiple of 2674 * the page size, the remaining memory is zeroed when mapped, and 2675 * writes to that region are not written out to the file." 2676 */ 2677 zero_user_segment(page, offset, PAGE_SIZE); 2678 return __block_write_full_page(inode, page, get_block, wbc, 2679 end_buffer_async_write); 2680 } 2681 EXPORT_SYMBOL(block_write_full_page); 2682 2683 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2684 get_block_t *get_block) 2685 { 2686 struct inode *inode = mapping->host; 2687 struct buffer_head tmp = { 2688 .b_size = i_blocksize(inode), 2689 }; 2690 2691 get_block(inode, block, &tmp, 0); 2692 return tmp.b_blocknr; 2693 } 2694 EXPORT_SYMBOL(generic_block_bmap); 2695 2696 static void end_bio_bh_io_sync(struct bio *bio) 2697 { 2698 struct buffer_head *bh = bio->bi_private; 2699 2700 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2701 set_bit(BH_Quiet, &bh->b_state); 2702 2703 bh->b_end_io(bh, !bio->bi_status); 2704 bio_put(bio); 2705 } 2706 2707 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2708 struct writeback_control *wbc) 2709 { 2710 const enum req_op op = opf & REQ_OP_MASK; 2711 struct bio *bio; 2712 2713 BUG_ON(!buffer_locked(bh)); 2714 BUG_ON(!buffer_mapped(bh)); 2715 BUG_ON(!bh->b_end_io); 2716 BUG_ON(buffer_delay(bh)); 2717 BUG_ON(buffer_unwritten(bh)); 2718 2719 /* 2720 * Only clear out a write error when rewriting 2721 */ 2722 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2723 clear_buffer_write_io_error(bh); 2724 2725 if (buffer_meta(bh)) 2726 opf |= REQ_META; 2727 if (buffer_prio(bh)) 2728 opf |= REQ_PRIO; 2729 2730 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2731 2732 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2733 2734 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2735 2736 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2737 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 2738 2739 bio->bi_end_io = end_bio_bh_io_sync; 2740 bio->bi_private = bh; 2741 2742 /* Take care of bh's that straddle the end of the device */ 2743 guard_bio_eod(bio); 2744 2745 if (wbc) { 2746 wbc_init_bio(wbc, bio); 2747 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2748 } 2749 2750 submit_bio(bio); 2751 } 2752 2753 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2754 { 2755 submit_bh_wbc(opf, bh, NULL); 2756 } 2757 EXPORT_SYMBOL(submit_bh); 2758 2759 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2760 { 2761 lock_buffer(bh); 2762 if (!test_clear_buffer_dirty(bh)) { 2763 unlock_buffer(bh); 2764 return; 2765 } 2766 bh->b_end_io = end_buffer_write_sync; 2767 get_bh(bh); 2768 submit_bh(REQ_OP_WRITE | op_flags, bh); 2769 } 2770 EXPORT_SYMBOL(write_dirty_buffer); 2771 2772 /* 2773 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2774 * and then start new I/O and then wait upon it. The caller must have a ref on 2775 * the buffer_head. 2776 */ 2777 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2778 { 2779 WARN_ON(atomic_read(&bh->b_count) < 1); 2780 lock_buffer(bh); 2781 if (test_clear_buffer_dirty(bh)) { 2782 /* 2783 * The bh should be mapped, but it might not be if the 2784 * device was hot-removed. Not much we can do but fail the I/O. 2785 */ 2786 if (!buffer_mapped(bh)) { 2787 unlock_buffer(bh); 2788 return -EIO; 2789 } 2790 2791 get_bh(bh); 2792 bh->b_end_io = end_buffer_write_sync; 2793 submit_bh(REQ_OP_WRITE | op_flags, bh); 2794 wait_on_buffer(bh); 2795 if (!buffer_uptodate(bh)) 2796 return -EIO; 2797 } else { 2798 unlock_buffer(bh); 2799 } 2800 return 0; 2801 } 2802 EXPORT_SYMBOL(__sync_dirty_buffer); 2803 2804 int sync_dirty_buffer(struct buffer_head *bh) 2805 { 2806 return __sync_dirty_buffer(bh, REQ_SYNC); 2807 } 2808 EXPORT_SYMBOL(sync_dirty_buffer); 2809 2810 /* 2811 * try_to_free_buffers() checks if all the buffers on this particular folio 2812 * are unused, and releases them if so. 2813 * 2814 * Exclusion against try_to_free_buffers may be obtained by either 2815 * locking the folio or by holding its mapping's private_lock. 2816 * 2817 * If the folio is dirty but all the buffers are clean then we need to 2818 * be sure to mark the folio clean as well. This is because the folio 2819 * may be against a block device, and a later reattachment of buffers 2820 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2821 * filesystem data on the same device. 2822 * 2823 * The same applies to regular filesystem folios: if all the buffers are 2824 * clean then we set the folio clean and proceed. To do that, we require 2825 * total exclusion from block_dirty_folio(). That is obtained with 2826 * private_lock. 2827 * 2828 * try_to_free_buffers() is non-blocking. 2829 */ 2830 static inline int buffer_busy(struct buffer_head *bh) 2831 { 2832 return atomic_read(&bh->b_count) | 2833 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2834 } 2835 2836 static bool 2837 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2838 { 2839 struct buffer_head *head = folio_buffers(folio); 2840 struct buffer_head *bh; 2841 2842 bh = head; 2843 do { 2844 if (buffer_busy(bh)) 2845 goto failed; 2846 bh = bh->b_this_page; 2847 } while (bh != head); 2848 2849 do { 2850 struct buffer_head *next = bh->b_this_page; 2851 2852 if (bh->b_assoc_map) 2853 __remove_assoc_queue(bh); 2854 bh = next; 2855 } while (bh != head); 2856 *buffers_to_free = head; 2857 folio_detach_private(folio); 2858 return true; 2859 failed: 2860 return false; 2861 } 2862 2863 bool try_to_free_buffers(struct folio *folio) 2864 { 2865 struct address_space * const mapping = folio->mapping; 2866 struct buffer_head *buffers_to_free = NULL; 2867 bool ret = 0; 2868 2869 BUG_ON(!folio_test_locked(folio)); 2870 if (folio_test_writeback(folio)) 2871 return false; 2872 2873 if (mapping == NULL) { /* can this still happen? */ 2874 ret = drop_buffers(folio, &buffers_to_free); 2875 goto out; 2876 } 2877 2878 spin_lock(&mapping->private_lock); 2879 ret = drop_buffers(folio, &buffers_to_free); 2880 2881 /* 2882 * If the filesystem writes its buffers by hand (eg ext3) 2883 * then we can have clean buffers against a dirty folio. We 2884 * clean the folio here; otherwise the VM will never notice 2885 * that the filesystem did any IO at all. 2886 * 2887 * Also, during truncate, discard_buffer will have marked all 2888 * the folio's buffers clean. We discover that here and clean 2889 * the folio also. 2890 * 2891 * private_lock must be held over this entire operation in order 2892 * to synchronise against block_dirty_folio and prevent the 2893 * dirty bit from being lost. 2894 */ 2895 if (ret) 2896 folio_cancel_dirty(folio); 2897 spin_unlock(&mapping->private_lock); 2898 out: 2899 if (buffers_to_free) { 2900 struct buffer_head *bh = buffers_to_free; 2901 2902 do { 2903 struct buffer_head *next = bh->b_this_page; 2904 free_buffer_head(bh); 2905 bh = next; 2906 } while (bh != buffers_to_free); 2907 } 2908 return ret; 2909 } 2910 EXPORT_SYMBOL(try_to_free_buffers); 2911 2912 /* 2913 * Buffer-head allocation 2914 */ 2915 static struct kmem_cache *bh_cachep __read_mostly; 2916 2917 /* 2918 * Once the number of bh's in the machine exceeds this level, we start 2919 * stripping them in writeback. 2920 */ 2921 static unsigned long max_buffer_heads; 2922 2923 int buffer_heads_over_limit; 2924 2925 struct bh_accounting { 2926 int nr; /* Number of live bh's */ 2927 int ratelimit; /* Limit cacheline bouncing */ 2928 }; 2929 2930 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 2931 2932 static void recalc_bh_state(void) 2933 { 2934 int i; 2935 int tot = 0; 2936 2937 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 2938 return; 2939 __this_cpu_write(bh_accounting.ratelimit, 0); 2940 for_each_online_cpu(i) 2941 tot += per_cpu(bh_accounting, i).nr; 2942 buffer_heads_over_limit = (tot > max_buffer_heads); 2943 } 2944 2945 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 2946 { 2947 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 2948 if (ret) { 2949 INIT_LIST_HEAD(&ret->b_assoc_buffers); 2950 spin_lock_init(&ret->b_uptodate_lock); 2951 preempt_disable(); 2952 __this_cpu_inc(bh_accounting.nr); 2953 recalc_bh_state(); 2954 preempt_enable(); 2955 } 2956 return ret; 2957 } 2958 EXPORT_SYMBOL(alloc_buffer_head); 2959 2960 void free_buffer_head(struct buffer_head *bh) 2961 { 2962 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 2963 kmem_cache_free(bh_cachep, bh); 2964 preempt_disable(); 2965 __this_cpu_dec(bh_accounting.nr); 2966 recalc_bh_state(); 2967 preempt_enable(); 2968 } 2969 EXPORT_SYMBOL(free_buffer_head); 2970 2971 static int buffer_exit_cpu_dead(unsigned int cpu) 2972 { 2973 int i; 2974 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 2975 2976 for (i = 0; i < BH_LRU_SIZE; i++) { 2977 brelse(b->bhs[i]); 2978 b->bhs[i] = NULL; 2979 } 2980 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 2981 per_cpu(bh_accounting, cpu).nr = 0; 2982 return 0; 2983 } 2984 2985 /** 2986 * bh_uptodate_or_lock - Test whether the buffer is uptodate 2987 * @bh: struct buffer_head 2988 * 2989 * Return true if the buffer is up-to-date and false, 2990 * with the buffer locked, if not. 2991 */ 2992 int bh_uptodate_or_lock(struct buffer_head *bh) 2993 { 2994 if (!buffer_uptodate(bh)) { 2995 lock_buffer(bh); 2996 if (!buffer_uptodate(bh)) 2997 return 0; 2998 unlock_buffer(bh); 2999 } 3000 return 1; 3001 } 3002 EXPORT_SYMBOL(bh_uptodate_or_lock); 3003 3004 /** 3005 * __bh_read - Submit read for a locked buffer 3006 * @bh: struct buffer_head 3007 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3008 * @wait: wait until reading finish 3009 * 3010 * Returns zero on success or don't wait, and -EIO on error. 3011 */ 3012 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3013 { 3014 int ret = 0; 3015 3016 BUG_ON(!buffer_locked(bh)); 3017 3018 get_bh(bh); 3019 bh->b_end_io = end_buffer_read_sync; 3020 submit_bh(REQ_OP_READ | op_flags, bh); 3021 if (wait) { 3022 wait_on_buffer(bh); 3023 if (!buffer_uptodate(bh)) 3024 ret = -EIO; 3025 } 3026 return ret; 3027 } 3028 EXPORT_SYMBOL(__bh_read); 3029 3030 /** 3031 * __bh_read_batch - Submit read for a batch of unlocked buffers 3032 * @nr: entry number of the buffer batch 3033 * @bhs: a batch of struct buffer_head 3034 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3035 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3036 * buffer that cannot lock. 3037 * 3038 * Returns zero on success or don't wait, and -EIO on error. 3039 */ 3040 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3041 blk_opf_t op_flags, bool force_lock) 3042 { 3043 int i; 3044 3045 for (i = 0; i < nr; i++) { 3046 struct buffer_head *bh = bhs[i]; 3047 3048 if (buffer_uptodate(bh)) 3049 continue; 3050 3051 if (force_lock) 3052 lock_buffer(bh); 3053 else 3054 if (!trylock_buffer(bh)) 3055 continue; 3056 3057 if (buffer_uptodate(bh)) { 3058 unlock_buffer(bh); 3059 continue; 3060 } 3061 3062 bh->b_end_io = end_buffer_read_sync; 3063 get_bh(bh); 3064 submit_bh(REQ_OP_READ | op_flags, bh); 3065 } 3066 } 3067 EXPORT_SYMBOL(__bh_read_batch); 3068 3069 void __init buffer_init(void) 3070 { 3071 unsigned long nrpages; 3072 int ret; 3073 3074 bh_cachep = kmem_cache_create("buffer_head", 3075 sizeof(struct buffer_head), 0, 3076 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3077 SLAB_MEM_SPREAD), 3078 NULL); 3079 3080 /* 3081 * Limit the bh occupancy to 10% of ZONE_NORMAL 3082 */ 3083 nrpages = (nr_free_buffer_pages() * 10) / 100; 3084 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3085 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3086 NULL, buffer_exit_cpu_dead); 3087 WARN_ON(ret < 0); 3088 } 3089