1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/module.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 static int sync_buffer(void *word) 58 { 59 struct block_device *bd; 60 struct buffer_head *bh 61 = container_of(word, struct buffer_head, b_state); 62 63 smp_mb(); 64 bd = bh->b_bdev; 65 if (bd) 66 blk_run_address_space(bd->bd_inode->i_mapping); 67 io_schedule(); 68 return 0; 69 } 70 71 void __lock_buffer(struct buffer_head *bh) 72 { 73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 74 TASK_UNINTERRUPTIBLE); 75 } 76 EXPORT_SYMBOL(__lock_buffer); 77 78 void unlock_buffer(struct buffer_head *bh) 79 { 80 clear_bit_unlock(BH_Lock, &bh->b_state); 81 smp_mb__after_clear_bit(); 82 wake_up_bit(&bh->b_state, BH_Lock); 83 } 84 EXPORT_SYMBOL(unlock_buffer); 85 86 /* 87 * Block until a buffer comes unlocked. This doesn't stop it 88 * from becoming locked again - you have to lock it yourself 89 * if you want to preserve its state. 90 */ 91 void __wait_on_buffer(struct buffer_head * bh) 92 { 93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 94 } 95 EXPORT_SYMBOL(__wait_on_buffer); 96 97 static void 98 __clear_page_buffers(struct page *page) 99 { 100 ClearPagePrivate(page); 101 set_page_private(page, 0); 102 page_cache_release(page); 103 } 104 105 106 static int quiet_error(struct buffer_head *bh) 107 { 108 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 109 return 0; 110 return 1; 111 } 112 113 114 static void buffer_io_error(struct buffer_head *bh) 115 { 116 char b[BDEVNAME_SIZE]; 117 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 118 bdevname(bh->b_bdev, b), 119 (unsigned long long)bh->b_blocknr); 120 } 121 122 /* 123 * End-of-IO handler helper function which does not touch the bh after 124 * unlocking it. 125 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 126 * a race there is benign: unlock_buffer() only use the bh's address for 127 * hashing after unlocking the buffer, so it doesn't actually touch the bh 128 * itself. 129 */ 130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 131 { 132 if (uptodate) { 133 set_buffer_uptodate(bh); 134 } else { 135 /* This happens, due to failed READA attempts. */ 136 clear_buffer_uptodate(bh); 137 } 138 unlock_buffer(bh); 139 } 140 141 /* 142 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 143 * unlock the buffer. This is what ll_rw_block uses too. 144 */ 145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 146 { 147 __end_buffer_read_notouch(bh, uptodate); 148 put_bh(bh); 149 } 150 EXPORT_SYMBOL(end_buffer_read_sync); 151 152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 153 { 154 char b[BDEVNAME_SIZE]; 155 156 if (uptodate) { 157 set_buffer_uptodate(bh); 158 } else { 159 if (!quiet_error(bh)) { 160 buffer_io_error(bh); 161 printk(KERN_WARNING "lost page write due to " 162 "I/O error on %s\n", 163 bdevname(bh->b_bdev, b)); 164 } 165 set_buffer_write_io_error(bh); 166 clear_buffer_uptodate(bh); 167 } 168 unlock_buffer(bh); 169 put_bh(bh); 170 } 171 EXPORT_SYMBOL(end_buffer_write_sync); 172 173 /* 174 * Various filesystems appear to want __find_get_block to be non-blocking. 175 * But it's the page lock which protects the buffers. To get around this, 176 * we get exclusion from try_to_free_buffers with the blockdev mapping's 177 * private_lock. 178 * 179 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 180 * may be quite high. This code could TryLock the page, and if that 181 * succeeds, there is no need to take private_lock. (But if 182 * private_lock is contended then so is mapping->tree_lock). 183 */ 184 static struct buffer_head * 185 __find_get_block_slow(struct block_device *bdev, sector_t block) 186 { 187 struct inode *bd_inode = bdev->bd_inode; 188 struct address_space *bd_mapping = bd_inode->i_mapping; 189 struct buffer_head *ret = NULL; 190 pgoff_t index; 191 struct buffer_head *bh; 192 struct buffer_head *head; 193 struct page *page; 194 int all_mapped = 1; 195 196 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 197 page = find_get_page(bd_mapping, index); 198 if (!page) 199 goto out; 200 201 spin_lock(&bd_mapping->private_lock); 202 if (!page_has_buffers(page)) 203 goto out_unlock; 204 head = page_buffers(page); 205 bh = head; 206 do { 207 if (!buffer_mapped(bh)) 208 all_mapped = 0; 209 else if (bh->b_blocknr == block) { 210 ret = bh; 211 get_bh(bh); 212 goto out_unlock; 213 } 214 bh = bh->b_this_page; 215 } while (bh != head); 216 217 /* we might be here because some of the buffers on this page are 218 * not mapped. This is due to various races between 219 * file io on the block device and getblk. It gets dealt with 220 * elsewhere, don't buffer_error if we had some unmapped buffers 221 */ 222 if (all_mapped) { 223 printk("__find_get_block_slow() failed. " 224 "block=%llu, b_blocknr=%llu\n", 225 (unsigned long long)block, 226 (unsigned long long)bh->b_blocknr); 227 printk("b_state=0x%08lx, b_size=%zu\n", 228 bh->b_state, bh->b_size); 229 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 230 } 231 out_unlock: 232 spin_unlock(&bd_mapping->private_lock); 233 page_cache_release(page); 234 out: 235 return ret; 236 } 237 238 /* If invalidate_buffers() will trash dirty buffers, it means some kind 239 of fs corruption is going on. Trashing dirty data always imply losing 240 information that was supposed to be just stored on the physical layer 241 by the user. 242 243 Thus invalidate_buffers in general usage is not allwowed to trash 244 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 245 be preserved. These buffers are simply skipped. 246 247 We also skip buffers which are still in use. For example this can 248 happen if a userspace program is reading the block device. 249 250 NOTE: In the case where the user removed a removable-media-disk even if 251 there's still dirty data not synced on disk (due a bug in the device driver 252 or due an error of the user), by not destroying the dirty buffers we could 253 generate corruption also on the next media inserted, thus a parameter is 254 necessary to handle this case in the most safe way possible (trying 255 to not corrupt also the new disk inserted with the data belonging to 256 the old now corrupted disk). Also for the ramdisk the natural thing 257 to do in order to release the ramdisk memory is to destroy dirty buffers. 258 259 These are two special cases. Normal usage imply the device driver 260 to issue a sync on the device (without waiting I/O completion) and 261 then an invalidate_buffers call that doesn't trash dirty buffers. 262 263 For handling cache coherency with the blkdev pagecache the 'update' case 264 is been introduced. It is needed to re-read from disk any pinned 265 buffer. NOTE: re-reading from disk is destructive so we can do it only 266 when we assume nobody is changing the buffercache under our I/O and when 267 we think the disk contains more recent information than the buffercache. 268 The update == 1 pass marks the buffers we need to update, the update == 2 269 pass does the actual I/O. */ 270 void invalidate_bdev(struct block_device *bdev) 271 { 272 struct address_space *mapping = bdev->bd_inode->i_mapping; 273 274 if (mapping->nrpages == 0) 275 return; 276 277 invalidate_bh_lrus(); 278 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 279 invalidate_mapping_pages(mapping, 0, -1); 280 } 281 EXPORT_SYMBOL(invalidate_bdev); 282 283 /* 284 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 285 */ 286 static void free_more_memory(void) 287 { 288 struct zone *zone; 289 int nid; 290 291 wakeup_flusher_threads(1024); 292 yield(); 293 294 for_each_online_node(nid) { 295 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 296 gfp_zone(GFP_NOFS), NULL, 297 &zone); 298 if (zone) 299 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 300 GFP_NOFS, NULL); 301 } 302 } 303 304 /* 305 * I/O completion handler for block_read_full_page() - pages 306 * which come unlocked at the end of I/O. 307 */ 308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 309 { 310 unsigned long flags; 311 struct buffer_head *first; 312 struct buffer_head *tmp; 313 struct page *page; 314 int page_uptodate = 1; 315 316 BUG_ON(!buffer_async_read(bh)); 317 318 page = bh->b_page; 319 if (uptodate) { 320 set_buffer_uptodate(bh); 321 } else { 322 clear_buffer_uptodate(bh); 323 if (!quiet_error(bh)) 324 buffer_io_error(bh); 325 SetPageError(page); 326 } 327 328 /* 329 * Be _very_ careful from here on. Bad things can happen if 330 * two buffer heads end IO at almost the same time and both 331 * decide that the page is now completely done. 332 */ 333 first = page_buffers(page); 334 local_irq_save(flags); 335 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 336 clear_buffer_async_read(bh); 337 unlock_buffer(bh); 338 tmp = bh; 339 do { 340 if (!buffer_uptodate(tmp)) 341 page_uptodate = 0; 342 if (buffer_async_read(tmp)) { 343 BUG_ON(!buffer_locked(tmp)); 344 goto still_busy; 345 } 346 tmp = tmp->b_this_page; 347 } while (tmp != bh); 348 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 349 local_irq_restore(flags); 350 351 /* 352 * If none of the buffers had errors and they are all 353 * uptodate then we can set the page uptodate. 354 */ 355 if (page_uptodate && !PageError(page)) 356 SetPageUptodate(page); 357 unlock_page(page); 358 return; 359 360 still_busy: 361 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 362 local_irq_restore(flags); 363 return; 364 } 365 366 /* 367 * Completion handler for block_write_full_page() - pages which are unlocked 368 * during I/O, and which have PageWriteback cleared upon I/O completion. 369 */ 370 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 371 { 372 char b[BDEVNAME_SIZE]; 373 unsigned long flags; 374 struct buffer_head *first; 375 struct buffer_head *tmp; 376 struct page *page; 377 378 BUG_ON(!buffer_async_write(bh)); 379 380 page = bh->b_page; 381 if (uptodate) { 382 set_buffer_uptodate(bh); 383 } else { 384 if (!quiet_error(bh)) { 385 buffer_io_error(bh); 386 printk(KERN_WARNING "lost page write due to " 387 "I/O error on %s\n", 388 bdevname(bh->b_bdev, b)); 389 } 390 set_bit(AS_EIO, &page->mapping->flags); 391 set_buffer_write_io_error(bh); 392 clear_buffer_uptodate(bh); 393 SetPageError(page); 394 } 395 396 first = page_buffers(page); 397 local_irq_save(flags); 398 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 399 400 clear_buffer_async_write(bh); 401 unlock_buffer(bh); 402 tmp = bh->b_this_page; 403 while (tmp != bh) { 404 if (buffer_async_write(tmp)) { 405 BUG_ON(!buffer_locked(tmp)); 406 goto still_busy; 407 } 408 tmp = tmp->b_this_page; 409 } 410 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 411 local_irq_restore(flags); 412 end_page_writeback(page); 413 return; 414 415 still_busy: 416 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 417 local_irq_restore(flags); 418 return; 419 } 420 EXPORT_SYMBOL(end_buffer_async_write); 421 422 /* 423 * If a page's buffers are under async readin (end_buffer_async_read 424 * completion) then there is a possibility that another thread of 425 * control could lock one of the buffers after it has completed 426 * but while some of the other buffers have not completed. This 427 * locked buffer would confuse end_buffer_async_read() into not unlocking 428 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 429 * that this buffer is not under async I/O. 430 * 431 * The page comes unlocked when it has no locked buffer_async buffers 432 * left. 433 * 434 * PageLocked prevents anyone starting new async I/O reads any of 435 * the buffers. 436 * 437 * PageWriteback is used to prevent simultaneous writeout of the same 438 * page. 439 * 440 * PageLocked prevents anyone from starting writeback of a page which is 441 * under read I/O (PageWriteback is only ever set against a locked page). 442 */ 443 static void mark_buffer_async_read(struct buffer_head *bh) 444 { 445 bh->b_end_io = end_buffer_async_read; 446 set_buffer_async_read(bh); 447 } 448 449 static void mark_buffer_async_write_endio(struct buffer_head *bh, 450 bh_end_io_t *handler) 451 { 452 bh->b_end_io = handler; 453 set_buffer_async_write(bh); 454 } 455 456 void mark_buffer_async_write(struct buffer_head *bh) 457 { 458 mark_buffer_async_write_endio(bh, end_buffer_async_write); 459 } 460 EXPORT_SYMBOL(mark_buffer_async_write); 461 462 463 /* 464 * fs/buffer.c contains helper functions for buffer-backed address space's 465 * fsync functions. A common requirement for buffer-based filesystems is 466 * that certain data from the backing blockdev needs to be written out for 467 * a successful fsync(). For example, ext2 indirect blocks need to be 468 * written back and waited upon before fsync() returns. 469 * 470 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 471 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 472 * management of a list of dependent buffers at ->i_mapping->private_list. 473 * 474 * Locking is a little subtle: try_to_free_buffers() will remove buffers 475 * from their controlling inode's queue when they are being freed. But 476 * try_to_free_buffers() will be operating against the *blockdev* mapping 477 * at the time, not against the S_ISREG file which depends on those buffers. 478 * So the locking for private_list is via the private_lock in the address_space 479 * which backs the buffers. Which is different from the address_space 480 * against which the buffers are listed. So for a particular address_space, 481 * mapping->private_lock does *not* protect mapping->private_list! In fact, 482 * mapping->private_list will always be protected by the backing blockdev's 483 * ->private_lock. 484 * 485 * Which introduces a requirement: all buffers on an address_space's 486 * ->private_list must be from the same address_space: the blockdev's. 487 * 488 * address_spaces which do not place buffers at ->private_list via these 489 * utility functions are free to use private_lock and private_list for 490 * whatever they want. The only requirement is that list_empty(private_list) 491 * be true at clear_inode() time. 492 * 493 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 494 * filesystems should do that. invalidate_inode_buffers() should just go 495 * BUG_ON(!list_empty). 496 * 497 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 498 * take an address_space, not an inode. And it should be called 499 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 500 * queued up. 501 * 502 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 503 * list if it is already on a list. Because if the buffer is on a list, 504 * it *must* already be on the right one. If not, the filesystem is being 505 * silly. This will save a ton of locking. But first we have to ensure 506 * that buffers are taken *off* the old inode's list when they are freed 507 * (presumably in truncate). That requires careful auditing of all 508 * filesystems (do it inside bforget()). It could also be done by bringing 509 * b_inode back. 510 */ 511 512 /* 513 * The buffer's backing address_space's private_lock must be held 514 */ 515 static void __remove_assoc_queue(struct buffer_head *bh) 516 { 517 list_del_init(&bh->b_assoc_buffers); 518 WARN_ON(!bh->b_assoc_map); 519 if (buffer_write_io_error(bh)) 520 set_bit(AS_EIO, &bh->b_assoc_map->flags); 521 bh->b_assoc_map = NULL; 522 } 523 524 int inode_has_buffers(struct inode *inode) 525 { 526 return !list_empty(&inode->i_data.private_list); 527 } 528 529 /* 530 * osync is designed to support O_SYNC io. It waits synchronously for 531 * all already-submitted IO to complete, but does not queue any new 532 * writes to the disk. 533 * 534 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 535 * you dirty the buffers, and then use osync_inode_buffers to wait for 536 * completion. Any other dirty buffers which are not yet queued for 537 * write will not be flushed to disk by the osync. 538 */ 539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 540 { 541 struct buffer_head *bh; 542 struct list_head *p; 543 int err = 0; 544 545 spin_lock(lock); 546 repeat: 547 list_for_each_prev(p, list) { 548 bh = BH_ENTRY(p); 549 if (buffer_locked(bh)) { 550 get_bh(bh); 551 spin_unlock(lock); 552 wait_on_buffer(bh); 553 if (!buffer_uptodate(bh)) 554 err = -EIO; 555 brelse(bh); 556 spin_lock(lock); 557 goto repeat; 558 } 559 } 560 spin_unlock(lock); 561 return err; 562 } 563 564 static void do_thaw_one(struct super_block *sb, void *unused) 565 { 566 char b[BDEVNAME_SIZE]; 567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 568 printk(KERN_WARNING "Emergency Thaw on %s\n", 569 bdevname(sb->s_bdev, b)); 570 } 571 572 static void do_thaw_all(struct work_struct *work) 573 { 574 iterate_supers(do_thaw_one, NULL); 575 kfree(work); 576 printk(KERN_WARNING "Emergency Thaw complete\n"); 577 } 578 579 /** 580 * emergency_thaw_all -- forcibly thaw every frozen filesystem 581 * 582 * Used for emergency unfreeze of all filesystems via SysRq 583 */ 584 void emergency_thaw_all(void) 585 { 586 struct work_struct *work; 587 588 work = kmalloc(sizeof(*work), GFP_ATOMIC); 589 if (work) { 590 INIT_WORK(work, do_thaw_all); 591 schedule_work(work); 592 } 593 } 594 595 /** 596 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 597 * @mapping: the mapping which wants those buffers written 598 * 599 * Starts I/O against the buffers at mapping->private_list, and waits upon 600 * that I/O. 601 * 602 * Basically, this is a convenience function for fsync(). 603 * @mapping is a file or directory which needs those buffers to be written for 604 * a successful fsync(). 605 */ 606 int sync_mapping_buffers(struct address_space *mapping) 607 { 608 struct address_space *buffer_mapping = mapping->assoc_mapping; 609 610 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 611 return 0; 612 613 return fsync_buffers_list(&buffer_mapping->private_lock, 614 &mapping->private_list); 615 } 616 EXPORT_SYMBOL(sync_mapping_buffers); 617 618 /* 619 * Called when we've recently written block `bblock', and it is known that 620 * `bblock' was for a buffer_boundary() buffer. This means that the block at 621 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 622 * dirty, schedule it for IO. So that indirects merge nicely with their data. 623 */ 624 void write_boundary_block(struct block_device *bdev, 625 sector_t bblock, unsigned blocksize) 626 { 627 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 628 if (bh) { 629 if (buffer_dirty(bh)) 630 ll_rw_block(WRITE, 1, &bh); 631 put_bh(bh); 632 } 633 } 634 635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 636 { 637 struct address_space *mapping = inode->i_mapping; 638 struct address_space *buffer_mapping = bh->b_page->mapping; 639 640 mark_buffer_dirty(bh); 641 if (!mapping->assoc_mapping) { 642 mapping->assoc_mapping = buffer_mapping; 643 } else { 644 BUG_ON(mapping->assoc_mapping != buffer_mapping); 645 } 646 if (!bh->b_assoc_map) { 647 spin_lock(&buffer_mapping->private_lock); 648 list_move_tail(&bh->b_assoc_buffers, 649 &mapping->private_list); 650 bh->b_assoc_map = mapping; 651 spin_unlock(&buffer_mapping->private_lock); 652 } 653 } 654 EXPORT_SYMBOL(mark_buffer_dirty_inode); 655 656 /* 657 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 658 * dirty. 659 * 660 * If warn is true, then emit a warning if the page is not uptodate and has 661 * not been truncated. 662 */ 663 static void __set_page_dirty(struct page *page, 664 struct address_space *mapping, int warn) 665 { 666 spin_lock_irq(&mapping->tree_lock); 667 if (page->mapping) { /* Race with truncate? */ 668 WARN_ON_ONCE(warn && !PageUptodate(page)); 669 account_page_dirtied(page, mapping); 670 radix_tree_tag_set(&mapping->page_tree, 671 page_index(page), PAGECACHE_TAG_DIRTY); 672 } 673 spin_unlock_irq(&mapping->tree_lock); 674 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 675 } 676 677 /* 678 * Add a page to the dirty page list. 679 * 680 * It is a sad fact of life that this function is called from several places 681 * deeply under spinlocking. It may not sleep. 682 * 683 * If the page has buffers, the uptodate buffers are set dirty, to preserve 684 * dirty-state coherency between the page and the buffers. It the page does 685 * not have buffers then when they are later attached they will all be set 686 * dirty. 687 * 688 * The buffers are dirtied before the page is dirtied. There's a small race 689 * window in which a writepage caller may see the page cleanness but not the 690 * buffer dirtiness. That's fine. If this code were to set the page dirty 691 * before the buffers, a concurrent writepage caller could clear the page dirty 692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 693 * page on the dirty page list. 694 * 695 * We use private_lock to lock against try_to_free_buffers while using the 696 * page's buffer list. Also use this to protect against clean buffers being 697 * added to the page after it was set dirty. 698 * 699 * FIXME: may need to call ->reservepage here as well. That's rather up to the 700 * address_space though. 701 */ 702 int __set_page_dirty_buffers(struct page *page) 703 { 704 int newly_dirty; 705 struct address_space *mapping = page_mapping(page); 706 707 if (unlikely(!mapping)) 708 return !TestSetPageDirty(page); 709 710 spin_lock(&mapping->private_lock); 711 if (page_has_buffers(page)) { 712 struct buffer_head *head = page_buffers(page); 713 struct buffer_head *bh = head; 714 715 do { 716 set_buffer_dirty(bh); 717 bh = bh->b_this_page; 718 } while (bh != head); 719 } 720 newly_dirty = !TestSetPageDirty(page); 721 spin_unlock(&mapping->private_lock); 722 723 if (newly_dirty) 724 __set_page_dirty(page, mapping, 1); 725 return newly_dirty; 726 } 727 EXPORT_SYMBOL(__set_page_dirty_buffers); 728 729 /* 730 * Write out and wait upon a list of buffers. 731 * 732 * We have conflicting pressures: we want to make sure that all 733 * initially dirty buffers get waited on, but that any subsequently 734 * dirtied buffers don't. After all, we don't want fsync to last 735 * forever if somebody is actively writing to the file. 736 * 737 * Do this in two main stages: first we copy dirty buffers to a 738 * temporary inode list, queueing the writes as we go. Then we clean 739 * up, waiting for those writes to complete. 740 * 741 * During this second stage, any subsequent updates to the file may end 742 * up refiling the buffer on the original inode's dirty list again, so 743 * there is a chance we will end up with a buffer queued for write but 744 * not yet completed on that list. So, as a final cleanup we go through 745 * the osync code to catch these locked, dirty buffers without requeuing 746 * any newly dirty buffers for write. 747 */ 748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 749 { 750 struct buffer_head *bh; 751 struct list_head tmp; 752 struct address_space *mapping, *prev_mapping = NULL; 753 int err = 0, err2; 754 755 INIT_LIST_HEAD(&tmp); 756 757 spin_lock(lock); 758 while (!list_empty(list)) { 759 bh = BH_ENTRY(list->next); 760 mapping = bh->b_assoc_map; 761 __remove_assoc_queue(bh); 762 /* Avoid race with mark_buffer_dirty_inode() which does 763 * a lockless check and we rely on seeing the dirty bit */ 764 smp_mb(); 765 if (buffer_dirty(bh) || buffer_locked(bh)) { 766 list_add(&bh->b_assoc_buffers, &tmp); 767 bh->b_assoc_map = mapping; 768 if (buffer_dirty(bh)) { 769 get_bh(bh); 770 spin_unlock(lock); 771 /* 772 * Ensure any pending I/O completes so that 773 * write_dirty_buffer() actually writes the 774 * current contents - it is a noop if I/O is 775 * still in flight on potentially older 776 * contents. 777 */ 778 write_dirty_buffer(bh, WRITE_SYNC_PLUG); 779 780 /* 781 * Kick off IO for the previous mapping. Note 782 * that we will not run the very last mapping, 783 * wait_on_buffer() will do that for us 784 * through sync_buffer(). 785 */ 786 if (prev_mapping && prev_mapping != mapping) 787 blk_run_address_space(prev_mapping); 788 prev_mapping = mapping; 789 790 brelse(bh); 791 spin_lock(lock); 792 } 793 } 794 } 795 796 while (!list_empty(&tmp)) { 797 bh = BH_ENTRY(tmp.prev); 798 get_bh(bh); 799 mapping = bh->b_assoc_map; 800 __remove_assoc_queue(bh); 801 /* Avoid race with mark_buffer_dirty_inode() which does 802 * a lockless check and we rely on seeing the dirty bit */ 803 smp_mb(); 804 if (buffer_dirty(bh)) { 805 list_add(&bh->b_assoc_buffers, 806 &mapping->private_list); 807 bh->b_assoc_map = mapping; 808 } 809 spin_unlock(lock); 810 wait_on_buffer(bh); 811 if (!buffer_uptodate(bh)) 812 err = -EIO; 813 brelse(bh); 814 spin_lock(lock); 815 } 816 817 spin_unlock(lock); 818 err2 = osync_buffers_list(lock, list); 819 if (err) 820 return err; 821 else 822 return err2; 823 } 824 825 /* 826 * Invalidate any and all dirty buffers on a given inode. We are 827 * probably unmounting the fs, but that doesn't mean we have already 828 * done a sync(). Just drop the buffers from the inode list. 829 * 830 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 831 * assumes that all the buffers are against the blockdev. Not true 832 * for reiserfs. 833 */ 834 void invalidate_inode_buffers(struct inode *inode) 835 { 836 if (inode_has_buffers(inode)) { 837 struct address_space *mapping = &inode->i_data; 838 struct list_head *list = &mapping->private_list; 839 struct address_space *buffer_mapping = mapping->assoc_mapping; 840 841 spin_lock(&buffer_mapping->private_lock); 842 while (!list_empty(list)) 843 __remove_assoc_queue(BH_ENTRY(list->next)); 844 spin_unlock(&buffer_mapping->private_lock); 845 } 846 } 847 EXPORT_SYMBOL(invalidate_inode_buffers); 848 849 /* 850 * Remove any clean buffers from the inode's buffer list. This is called 851 * when we're trying to free the inode itself. Those buffers can pin it. 852 * 853 * Returns true if all buffers were removed. 854 */ 855 int remove_inode_buffers(struct inode *inode) 856 { 857 int ret = 1; 858 859 if (inode_has_buffers(inode)) { 860 struct address_space *mapping = &inode->i_data; 861 struct list_head *list = &mapping->private_list; 862 struct address_space *buffer_mapping = mapping->assoc_mapping; 863 864 spin_lock(&buffer_mapping->private_lock); 865 while (!list_empty(list)) { 866 struct buffer_head *bh = BH_ENTRY(list->next); 867 if (buffer_dirty(bh)) { 868 ret = 0; 869 break; 870 } 871 __remove_assoc_queue(bh); 872 } 873 spin_unlock(&buffer_mapping->private_lock); 874 } 875 return ret; 876 } 877 878 /* 879 * Create the appropriate buffers when given a page for data area and 880 * the size of each buffer.. Use the bh->b_this_page linked list to 881 * follow the buffers created. Return NULL if unable to create more 882 * buffers. 883 * 884 * The retry flag is used to differentiate async IO (paging, swapping) 885 * which may not fail from ordinary buffer allocations. 886 */ 887 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 888 int retry) 889 { 890 struct buffer_head *bh, *head; 891 long offset; 892 893 try_again: 894 head = NULL; 895 offset = PAGE_SIZE; 896 while ((offset -= size) >= 0) { 897 bh = alloc_buffer_head(GFP_NOFS); 898 if (!bh) 899 goto no_grow; 900 901 bh->b_bdev = NULL; 902 bh->b_this_page = head; 903 bh->b_blocknr = -1; 904 head = bh; 905 906 bh->b_state = 0; 907 atomic_set(&bh->b_count, 0); 908 bh->b_size = size; 909 910 /* Link the buffer to its page */ 911 set_bh_page(bh, page, offset); 912 913 init_buffer(bh, NULL, NULL); 914 } 915 return head; 916 /* 917 * In case anything failed, we just free everything we got. 918 */ 919 no_grow: 920 if (head) { 921 do { 922 bh = head; 923 head = head->b_this_page; 924 free_buffer_head(bh); 925 } while (head); 926 } 927 928 /* 929 * Return failure for non-async IO requests. Async IO requests 930 * are not allowed to fail, so we have to wait until buffer heads 931 * become available. But we don't want tasks sleeping with 932 * partially complete buffers, so all were released above. 933 */ 934 if (!retry) 935 return NULL; 936 937 /* We're _really_ low on memory. Now we just 938 * wait for old buffer heads to become free due to 939 * finishing IO. Since this is an async request and 940 * the reserve list is empty, we're sure there are 941 * async buffer heads in use. 942 */ 943 free_more_memory(); 944 goto try_again; 945 } 946 EXPORT_SYMBOL_GPL(alloc_page_buffers); 947 948 static inline void 949 link_dev_buffers(struct page *page, struct buffer_head *head) 950 { 951 struct buffer_head *bh, *tail; 952 953 bh = head; 954 do { 955 tail = bh; 956 bh = bh->b_this_page; 957 } while (bh); 958 tail->b_this_page = head; 959 attach_page_buffers(page, head); 960 } 961 962 /* 963 * Initialise the state of a blockdev page's buffers. 964 */ 965 static void 966 init_page_buffers(struct page *page, struct block_device *bdev, 967 sector_t block, int size) 968 { 969 struct buffer_head *head = page_buffers(page); 970 struct buffer_head *bh = head; 971 int uptodate = PageUptodate(page); 972 973 do { 974 if (!buffer_mapped(bh)) { 975 init_buffer(bh, NULL, NULL); 976 bh->b_bdev = bdev; 977 bh->b_blocknr = block; 978 if (uptodate) 979 set_buffer_uptodate(bh); 980 set_buffer_mapped(bh); 981 } 982 block++; 983 bh = bh->b_this_page; 984 } while (bh != head); 985 } 986 987 /* 988 * Create the page-cache page that contains the requested block. 989 * 990 * This is user purely for blockdev mappings. 991 */ 992 static struct page * 993 grow_dev_page(struct block_device *bdev, sector_t block, 994 pgoff_t index, int size) 995 { 996 struct inode *inode = bdev->bd_inode; 997 struct page *page; 998 struct buffer_head *bh; 999 1000 page = find_or_create_page(inode->i_mapping, index, 1001 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 1002 if (!page) 1003 return NULL; 1004 1005 BUG_ON(!PageLocked(page)); 1006 1007 if (page_has_buffers(page)) { 1008 bh = page_buffers(page); 1009 if (bh->b_size == size) { 1010 init_page_buffers(page, bdev, block, size); 1011 return page; 1012 } 1013 if (!try_to_free_buffers(page)) 1014 goto failed; 1015 } 1016 1017 /* 1018 * Allocate some buffers for this page 1019 */ 1020 bh = alloc_page_buffers(page, size, 0); 1021 if (!bh) 1022 goto failed; 1023 1024 /* 1025 * Link the page to the buffers and initialise them. Take the 1026 * lock to be atomic wrt __find_get_block(), which does not 1027 * run under the page lock. 1028 */ 1029 spin_lock(&inode->i_mapping->private_lock); 1030 link_dev_buffers(page, bh); 1031 init_page_buffers(page, bdev, block, size); 1032 spin_unlock(&inode->i_mapping->private_lock); 1033 return page; 1034 1035 failed: 1036 BUG(); 1037 unlock_page(page); 1038 page_cache_release(page); 1039 return NULL; 1040 } 1041 1042 /* 1043 * Create buffers for the specified block device block's page. If 1044 * that page was dirty, the buffers are set dirty also. 1045 */ 1046 static int 1047 grow_buffers(struct block_device *bdev, sector_t block, int size) 1048 { 1049 struct page *page; 1050 pgoff_t index; 1051 int sizebits; 1052 1053 sizebits = -1; 1054 do { 1055 sizebits++; 1056 } while ((size << sizebits) < PAGE_SIZE); 1057 1058 index = block >> sizebits; 1059 1060 /* 1061 * Check for a block which wants to lie outside our maximum possible 1062 * pagecache index. (this comparison is done using sector_t types). 1063 */ 1064 if (unlikely(index != block >> sizebits)) { 1065 char b[BDEVNAME_SIZE]; 1066 1067 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1068 "device %s\n", 1069 __func__, (unsigned long long)block, 1070 bdevname(bdev, b)); 1071 return -EIO; 1072 } 1073 block = index << sizebits; 1074 /* Create a page with the proper size buffers.. */ 1075 page = grow_dev_page(bdev, block, index, size); 1076 if (!page) 1077 return 0; 1078 unlock_page(page); 1079 page_cache_release(page); 1080 return 1; 1081 } 1082 1083 static struct buffer_head * 1084 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1085 { 1086 /* Size must be multiple of hard sectorsize */ 1087 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1088 (size < 512 || size > PAGE_SIZE))) { 1089 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1090 size); 1091 printk(KERN_ERR "logical block size: %d\n", 1092 bdev_logical_block_size(bdev)); 1093 1094 dump_stack(); 1095 return NULL; 1096 } 1097 1098 for (;;) { 1099 struct buffer_head * bh; 1100 int ret; 1101 1102 bh = __find_get_block(bdev, block, size); 1103 if (bh) 1104 return bh; 1105 1106 ret = grow_buffers(bdev, block, size); 1107 if (ret < 0) 1108 return NULL; 1109 if (ret == 0) 1110 free_more_memory(); 1111 } 1112 } 1113 1114 /* 1115 * The relationship between dirty buffers and dirty pages: 1116 * 1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1118 * the page is tagged dirty in its radix tree. 1119 * 1120 * At all times, the dirtiness of the buffers represents the dirtiness of 1121 * subsections of the page. If the page has buffers, the page dirty bit is 1122 * merely a hint about the true dirty state. 1123 * 1124 * When a page is set dirty in its entirety, all its buffers are marked dirty 1125 * (if the page has buffers). 1126 * 1127 * When a buffer is marked dirty, its page is dirtied, but the page's other 1128 * buffers are not. 1129 * 1130 * Also. When blockdev buffers are explicitly read with bread(), they 1131 * individually become uptodate. But their backing page remains not 1132 * uptodate - even if all of its buffers are uptodate. A subsequent 1133 * block_read_full_page() against that page will discover all the uptodate 1134 * buffers, will set the page uptodate and will perform no I/O. 1135 */ 1136 1137 /** 1138 * mark_buffer_dirty - mark a buffer_head as needing writeout 1139 * @bh: the buffer_head to mark dirty 1140 * 1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1142 * backing page dirty, then tag the page as dirty in its address_space's radix 1143 * tree and then attach the address_space's inode to its superblock's dirty 1144 * inode list. 1145 * 1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1147 * mapping->tree_lock and the global inode_lock. 1148 */ 1149 void mark_buffer_dirty(struct buffer_head *bh) 1150 { 1151 WARN_ON_ONCE(!buffer_uptodate(bh)); 1152 1153 /* 1154 * Very *carefully* optimize the it-is-already-dirty case. 1155 * 1156 * Don't let the final "is it dirty" escape to before we 1157 * perhaps modified the buffer. 1158 */ 1159 if (buffer_dirty(bh)) { 1160 smp_mb(); 1161 if (buffer_dirty(bh)) 1162 return; 1163 } 1164 1165 if (!test_set_buffer_dirty(bh)) { 1166 struct page *page = bh->b_page; 1167 if (!TestSetPageDirty(page)) { 1168 struct address_space *mapping = page_mapping(page); 1169 if (mapping) 1170 __set_page_dirty(page, mapping, 0); 1171 } 1172 } 1173 } 1174 EXPORT_SYMBOL(mark_buffer_dirty); 1175 1176 /* 1177 * Decrement a buffer_head's reference count. If all buffers against a page 1178 * have zero reference count, are clean and unlocked, and if the page is clean 1179 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1180 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1181 * a page but it ends up not being freed, and buffers may later be reattached). 1182 */ 1183 void __brelse(struct buffer_head * buf) 1184 { 1185 if (atomic_read(&buf->b_count)) { 1186 put_bh(buf); 1187 return; 1188 } 1189 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1190 } 1191 EXPORT_SYMBOL(__brelse); 1192 1193 /* 1194 * bforget() is like brelse(), except it discards any 1195 * potentially dirty data. 1196 */ 1197 void __bforget(struct buffer_head *bh) 1198 { 1199 clear_buffer_dirty(bh); 1200 if (bh->b_assoc_map) { 1201 struct address_space *buffer_mapping = bh->b_page->mapping; 1202 1203 spin_lock(&buffer_mapping->private_lock); 1204 list_del_init(&bh->b_assoc_buffers); 1205 bh->b_assoc_map = NULL; 1206 spin_unlock(&buffer_mapping->private_lock); 1207 } 1208 __brelse(bh); 1209 } 1210 EXPORT_SYMBOL(__bforget); 1211 1212 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1213 { 1214 lock_buffer(bh); 1215 if (buffer_uptodate(bh)) { 1216 unlock_buffer(bh); 1217 return bh; 1218 } else { 1219 get_bh(bh); 1220 bh->b_end_io = end_buffer_read_sync; 1221 submit_bh(READ, bh); 1222 wait_on_buffer(bh); 1223 if (buffer_uptodate(bh)) 1224 return bh; 1225 } 1226 brelse(bh); 1227 return NULL; 1228 } 1229 1230 /* 1231 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1232 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1233 * refcount elevated by one when they're in an LRU. A buffer can only appear 1234 * once in a particular CPU's LRU. A single buffer can be present in multiple 1235 * CPU's LRUs at the same time. 1236 * 1237 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1238 * sb_find_get_block(). 1239 * 1240 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1241 * a local interrupt disable for that. 1242 */ 1243 1244 #define BH_LRU_SIZE 8 1245 1246 struct bh_lru { 1247 struct buffer_head *bhs[BH_LRU_SIZE]; 1248 }; 1249 1250 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1251 1252 #ifdef CONFIG_SMP 1253 #define bh_lru_lock() local_irq_disable() 1254 #define bh_lru_unlock() local_irq_enable() 1255 #else 1256 #define bh_lru_lock() preempt_disable() 1257 #define bh_lru_unlock() preempt_enable() 1258 #endif 1259 1260 static inline void check_irqs_on(void) 1261 { 1262 #ifdef irqs_disabled 1263 BUG_ON(irqs_disabled()); 1264 #endif 1265 } 1266 1267 /* 1268 * The LRU management algorithm is dopey-but-simple. Sorry. 1269 */ 1270 static void bh_lru_install(struct buffer_head *bh) 1271 { 1272 struct buffer_head *evictee = NULL; 1273 1274 check_irqs_on(); 1275 bh_lru_lock(); 1276 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1277 struct buffer_head *bhs[BH_LRU_SIZE]; 1278 int in; 1279 int out = 0; 1280 1281 get_bh(bh); 1282 bhs[out++] = bh; 1283 for (in = 0; in < BH_LRU_SIZE; in++) { 1284 struct buffer_head *bh2 = 1285 __this_cpu_read(bh_lrus.bhs[in]); 1286 1287 if (bh2 == bh) { 1288 __brelse(bh2); 1289 } else { 1290 if (out >= BH_LRU_SIZE) { 1291 BUG_ON(evictee != NULL); 1292 evictee = bh2; 1293 } else { 1294 bhs[out++] = bh2; 1295 } 1296 } 1297 } 1298 while (out < BH_LRU_SIZE) 1299 bhs[out++] = NULL; 1300 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1301 } 1302 bh_lru_unlock(); 1303 1304 if (evictee) 1305 __brelse(evictee); 1306 } 1307 1308 /* 1309 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1310 */ 1311 static struct buffer_head * 1312 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1313 { 1314 struct buffer_head *ret = NULL; 1315 unsigned int i; 1316 1317 check_irqs_on(); 1318 bh_lru_lock(); 1319 for (i = 0; i < BH_LRU_SIZE; i++) { 1320 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1321 1322 if (bh && bh->b_bdev == bdev && 1323 bh->b_blocknr == block && bh->b_size == size) { 1324 if (i) { 1325 while (i) { 1326 __this_cpu_write(bh_lrus.bhs[i], 1327 __this_cpu_read(bh_lrus.bhs[i - 1])); 1328 i--; 1329 } 1330 __this_cpu_write(bh_lrus.bhs[0], bh); 1331 } 1332 get_bh(bh); 1333 ret = bh; 1334 break; 1335 } 1336 } 1337 bh_lru_unlock(); 1338 return ret; 1339 } 1340 1341 /* 1342 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1343 * it in the LRU and mark it as accessed. If it is not present then return 1344 * NULL 1345 */ 1346 struct buffer_head * 1347 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1348 { 1349 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1350 1351 if (bh == NULL) { 1352 bh = __find_get_block_slow(bdev, block); 1353 if (bh) 1354 bh_lru_install(bh); 1355 } 1356 if (bh) 1357 touch_buffer(bh); 1358 return bh; 1359 } 1360 EXPORT_SYMBOL(__find_get_block); 1361 1362 /* 1363 * __getblk will locate (and, if necessary, create) the buffer_head 1364 * which corresponds to the passed block_device, block and size. The 1365 * returned buffer has its reference count incremented. 1366 * 1367 * __getblk() cannot fail - it just keeps trying. If you pass it an 1368 * illegal block number, __getblk() will happily return a buffer_head 1369 * which represents the non-existent block. Very weird. 1370 * 1371 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1372 * attempt is failing. FIXME, perhaps? 1373 */ 1374 struct buffer_head * 1375 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1376 { 1377 struct buffer_head *bh = __find_get_block(bdev, block, size); 1378 1379 might_sleep(); 1380 if (bh == NULL) 1381 bh = __getblk_slow(bdev, block, size); 1382 return bh; 1383 } 1384 EXPORT_SYMBOL(__getblk); 1385 1386 /* 1387 * Do async read-ahead on a buffer.. 1388 */ 1389 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1390 { 1391 struct buffer_head *bh = __getblk(bdev, block, size); 1392 if (likely(bh)) { 1393 ll_rw_block(READA, 1, &bh); 1394 brelse(bh); 1395 } 1396 } 1397 EXPORT_SYMBOL(__breadahead); 1398 1399 /** 1400 * __bread() - reads a specified block and returns the bh 1401 * @bdev: the block_device to read from 1402 * @block: number of block 1403 * @size: size (in bytes) to read 1404 * 1405 * Reads a specified block, and returns buffer head that contains it. 1406 * It returns NULL if the block was unreadable. 1407 */ 1408 struct buffer_head * 1409 __bread(struct block_device *bdev, sector_t block, unsigned size) 1410 { 1411 struct buffer_head *bh = __getblk(bdev, block, size); 1412 1413 if (likely(bh) && !buffer_uptodate(bh)) 1414 bh = __bread_slow(bh); 1415 return bh; 1416 } 1417 EXPORT_SYMBOL(__bread); 1418 1419 /* 1420 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1421 * This doesn't race because it runs in each cpu either in irq 1422 * or with preempt disabled. 1423 */ 1424 static void invalidate_bh_lru(void *arg) 1425 { 1426 struct bh_lru *b = &get_cpu_var(bh_lrus); 1427 int i; 1428 1429 for (i = 0; i < BH_LRU_SIZE; i++) { 1430 brelse(b->bhs[i]); 1431 b->bhs[i] = NULL; 1432 } 1433 put_cpu_var(bh_lrus); 1434 } 1435 1436 void invalidate_bh_lrus(void) 1437 { 1438 on_each_cpu(invalidate_bh_lru, NULL, 1); 1439 } 1440 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1441 1442 void set_bh_page(struct buffer_head *bh, 1443 struct page *page, unsigned long offset) 1444 { 1445 bh->b_page = page; 1446 BUG_ON(offset >= PAGE_SIZE); 1447 if (PageHighMem(page)) 1448 /* 1449 * This catches illegal uses and preserves the offset: 1450 */ 1451 bh->b_data = (char *)(0 + offset); 1452 else 1453 bh->b_data = page_address(page) + offset; 1454 } 1455 EXPORT_SYMBOL(set_bh_page); 1456 1457 /* 1458 * Called when truncating a buffer on a page completely. 1459 */ 1460 static void discard_buffer(struct buffer_head * bh) 1461 { 1462 lock_buffer(bh); 1463 clear_buffer_dirty(bh); 1464 bh->b_bdev = NULL; 1465 clear_buffer_mapped(bh); 1466 clear_buffer_req(bh); 1467 clear_buffer_new(bh); 1468 clear_buffer_delay(bh); 1469 clear_buffer_unwritten(bh); 1470 unlock_buffer(bh); 1471 } 1472 1473 /** 1474 * block_invalidatepage - invalidate part of all of a buffer-backed page 1475 * 1476 * @page: the page which is affected 1477 * @offset: the index of the truncation point 1478 * 1479 * block_invalidatepage() is called when all or part of the page has become 1480 * invalidatedby a truncate operation. 1481 * 1482 * block_invalidatepage() does not have to release all buffers, but it must 1483 * ensure that no dirty buffer is left outside @offset and that no I/O 1484 * is underway against any of the blocks which are outside the truncation 1485 * point. Because the caller is about to free (and possibly reuse) those 1486 * blocks on-disk. 1487 */ 1488 void block_invalidatepage(struct page *page, unsigned long offset) 1489 { 1490 struct buffer_head *head, *bh, *next; 1491 unsigned int curr_off = 0; 1492 1493 BUG_ON(!PageLocked(page)); 1494 if (!page_has_buffers(page)) 1495 goto out; 1496 1497 head = page_buffers(page); 1498 bh = head; 1499 do { 1500 unsigned int next_off = curr_off + bh->b_size; 1501 next = bh->b_this_page; 1502 1503 /* 1504 * is this block fully invalidated? 1505 */ 1506 if (offset <= curr_off) 1507 discard_buffer(bh); 1508 curr_off = next_off; 1509 bh = next; 1510 } while (bh != head); 1511 1512 /* 1513 * We release buffers only if the entire page is being invalidated. 1514 * The get_block cached value has been unconditionally invalidated, 1515 * so real IO is not possible anymore. 1516 */ 1517 if (offset == 0) 1518 try_to_release_page(page, 0); 1519 out: 1520 return; 1521 } 1522 EXPORT_SYMBOL(block_invalidatepage); 1523 1524 /* 1525 * We attach and possibly dirty the buffers atomically wrt 1526 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1527 * is already excluded via the page lock. 1528 */ 1529 void create_empty_buffers(struct page *page, 1530 unsigned long blocksize, unsigned long b_state) 1531 { 1532 struct buffer_head *bh, *head, *tail; 1533 1534 head = alloc_page_buffers(page, blocksize, 1); 1535 bh = head; 1536 do { 1537 bh->b_state |= b_state; 1538 tail = bh; 1539 bh = bh->b_this_page; 1540 } while (bh); 1541 tail->b_this_page = head; 1542 1543 spin_lock(&page->mapping->private_lock); 1544 if (PageUptodate(page) || PageDirty(page)) { 1545 bh = head; 1546 do { 1547 if (PageDirty(page)) 1548 set_buffer_dirty(bh); 1549 if (PageUptodate(page)) 1550 set_buffer_uptodate(bh); 1551 bh = bh->b_this_page; 1552 } while (bh != head); 1553 } 1554 attach_page_buffers(page, head); 1555 spin_unlock(&page->mapping->private_lock); 1556 } 1557 EXPORT_SYMBOL(create_empty_buffers); 1558 1559 /* 1560 * We are taking a block for data and we don't want any output from any 1561 * buffer-cache aliases starting from return from that function and 1562 * until the moment when something will explicitly mark the buffer 1563 * dirty (hopefully that will not happen until we will free that block ;-) 1564 * We don't even need to mark it not-uptodate - nobody can expect 1565 * anything from a newly allocated buffer anyway. We used to used 1566 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1567 * don't want to mark the alias unmapped, for example - it would confuse 1568 * anyone who might pick it with bread() afterwards... 1569 * 1570 * Also.. Note that bforget() doesn't lock the buffer. So there can 1571 * be writeout I/O going on against recently-freed buffers. We don't 1572 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1573 * only if we really need to. That happens here. 1574 */ 1575 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1576 { 1577 struct buffer_head *old_bh; 1578 1579 might_sleep(); 1580 1581 old_bh = __find_get_block_slow(bdev, block); 1582 if (old_bh) { 1583 clear_buffer_dirty(old_bh); 1584 wait_on_buffer(old_bh); 1585 clear_buffer_req(old_bh); 1586 __brelse(old_bh); 1587 } 1588 } 1589 EXPORT_SYMBOL(unmap_underlying_metadata); 1590 1591 /* 1592 * NOTE! All mapped/uptodate combinations are valid: 1593 * 1594 * Mapped Uptodate Meaning 1595 * 1596 * No No "unknown" - must do get_block() 1597 * No Yes "hole" - zero-filled 1598 * Yes No "allocated" - allocated on disk, not read in 1599 * Yes Yes "valid" - allocated and up-to-date in memory. 1600 * 1601 * "Dirty" is valid only with the last case (mapped+uptodate). 1602 */ 1603 1604 /* 1605 * While block_write_full_page is writing back the dirty buffers under 1606 * the page lock, whoever dirtied the buffers may decide to clean them 1607 * again at any time. We handle that by only looking at the buffer 1608 * state inside lock_buffer(). 1609 * 1610 * If block_write_full_page() is called for regular writeback 1611 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1612 * locked buffer. This only can happen if someone has written the buffer 1613 * directly, with submit_bh(). At the address_space level PageWriteback 1614 * prevents this contention from occurring. 1615 * 1616 * If block_write_full_page() is called with wbc->sync_mode == 1617 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this 1618 * causes the writes to be flagged as synchronous writes, but the 1619 * block device queue will NOT be unplugged, since usually many pages 1620 * will be pushed to the out before the higher-level caller actually 1621 * waits for the writes to be completed. The various wait functions, 1622 * such as wait_on_writeback_range() will ultimately call sync_page() 1623 * which will ultimately call blk_run_backing_dev(), which will end up 1624 * unplugging the device queue. 1625 */ 1626 static int __block_write_full_page(struct inode *inode, struct page *page, 1627 get_block_t *get_block, struct writeback_control *wbc, 1628 bh_end_io_t *handler) 1629 { 1630 int err; 1631 sector_t block; 1632 sector_t last_block; 1633 struct buffer_head *bh, *head; 1634 const unsigned blocksize = 1 << inode->i_blkbits; 1635 int nr_underway = 0; 1636 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1637 WRITE_SYNC_PLUG : WRITE); 1638 1639 BUG_ON(!PageLocked(page)); 1640 1641 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1642 1643 if (!page_has_buffers(page)) { 1644 create_empty_buffers(page, blocksize, 1645 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1646 } 1647 1648 /* 1649 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1650 * here, and the (potentially unmapped) buffers may become dirty at 1651 * any time. If a buffer becomes dirty here after we've inspected it 1652 * then we just miss that fact, and the page stays dirty. 1653 * 1654 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1655 * handle that here by just cleaning them. 1656 */ 1657 1658 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1659 head = page_buffers(page); 1660 bh = head; 1661 1662 /* 1663 * Get all the dirty buffers mapped to disk addresses and 1664 * handle any aliases from the underlying blockdev's mapping. 1665 */ 1666 do { 1667 if (block > last_block) { 1668 /* 1669 * mapped buffers outside i_size will occur, because 1670 * this page can be outside i_size when there is a 1671 * truncate in progress. 1672 */ 1673 /* 1674 * The buffer was zeroed by block_write_full_page() 1675 */ 1676 clear_buffer_dirty(bh); 1677 set_buffer_uptodate(bh); 1678 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1679 buffer_dirty(bh)) { 1680 WARN_ON(bh->b_size != blocksize); 1681 err = get_block(inode, block, bh, 1); 1682 if (err) 1683 goto recover; 1684 clear_buffer_delay(bh); 1685 if (buffer_new(bh)) { 1686 /* blockdev mappings never come here */ 1687 clear_buffer_new(bh); 1688 unmap_underlying_metadata(bh->b_bdev, 1689 bh->b_blocknr); 1690 } 1691 } 1692 bh = bh->b_this_page; 1693 block++; 1694 } while (bh != head); 1695 1696 do { 1697 if (!buffer_mapped(bh)) 1698 continue; 1699 /* 1700 * If it's a fully non-blocking write attempt and we cannot 1701 * lock the buffer then redirty the page. Note that this can 1702 * potentially cause a busy-wait loop from writeback threads 1703 * and kswapd activity, but those code paths have their own 1704 * higher-level throttling. 1705 */ 1706 if (wbc->sync_mode != WB_SYNC_NONE) { 1707 lock_buffer(bh); 1708 } else if (!trylock_buffer(bh)) { 1709 redirty_page_for_writepage(wbc, page); 1710 continue; 1711 } 1712 if (test_clear_buffer_dirty(bh)) { 1713 mark_buffer_async_write_endio(bh, handler); 1714 } else { 1715 unlock_buffer(bh); 1716 } 1717 } while ((bh = bh->b_this_page) != head); 1718 1719 /* 1720 * The page and its buffers are protected by PageWriteback(), so we can 1721 * drop the bh refcounts early. 1722 */ 1723 BUG_ON(PageWriteback(page)); 1724 set_page_writeback(page); 1725 1726 do { 1727 struct buffer_head *next = bh->b_this_page; 1728 if (buffer_async_write(bh)) { 1729 submit_bh(write_op, bh); 1730 nr_underway++; 1731 } 1732 bh = next; 1733 } while (bh != head); 1734 unlock_page(page); 1735 1736 err = 0; 1737 done: 1738 if (nr_underway == 0) { 1739 /* 1740 * The page was marked dirty, but the buffers were 1741 * clean. Someone wrote them back by hand with 1742 * ll_rw_block/submit_bh. A rare case. 1743 */ 1744 end_page_writeback(page); 1745 1746 /* 1747 * The page and buffer_heads can be released at any time from 1748 * here on. 1749 */ 1750 } 1751 return err; 1752 1753 recover: 1754 /* 1755 * ENOSPC, or some other error. We may already have added some 1756 * blocks to the file, so we need to write these out to avoid 1757 * exposing stale data. 1758 * The page is currently locked and not marked for writeback 1759 */ 1760 bh = head; 1761 /* Recovery: lock and submit the mapped buffers */ 1762 do { 1763 if (buffer_mapped(bh) && buffer_dirty(bh) && 1764 !buffer_delay(bh)) { 1765 lock_buffer(bh); 1766 mark_buffer_async_write_endio(bh, handler); 1767 } else { 1768 /* 1769 * The buffer may have been set dirty during 1770 * attachment to a dirty page. 1771 */ 1772 clear_buffer_dirty(bh); 1773 } 1774 } while ((bh = bh->b_this_page) != head); 1775 SetPageError(page); 1776 BUG_ON(PageWriteback(page)); 1777 mapping_set_error(page->mapping, err); 1778 set_page_writeback(page); 1779 do { 1780 struct buffer_head *next = bh->b_this_page; 1781 if (buffer_async_write(bh)) { 1782 clear_buffer_dirty(bh); 1783 submit_bh(write_op, bh); 1784 nr_underway++; 1785 } 1786 bh = next; 1787 } while (bh != head); 1788 unlock_page(page); 1789 goto done; 1790 } 1791 1792 /* 1793 * If a page has any new buffers, zero them out here, and mark them uptodate 1794 * and dirty so they'll be written out (in order to prevent uninitialised 1795 * block data from leaking). And clear the new bit. 1796 */ 1797 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1798 { 1799 unsigned int block_start, block_end; 1800 struct buffer_head *head, *bh; 1801 1802 BUG_ON(!PageLocked(page)); 1803 if (!page_has_buffers(page)) 1804 return; 1805 1806 bh = head = page_buffers(page); 1807 block_start = 0; 1808 do { 1809 block_end = block_start + bh->b_size; 1810 1811 if (buffer_new(bh)) { 1812 if (block_end > from && block_start < to) { 1813 if (!PageUptodate(page)) { 1814 unsigned start, size; 1815 1816 start = max(from, block_start); 1817 size = min(to, block_end) - start; 1818 1819 zero_user(page, start, size); 1820 set_buffer_uptodate(bh); 1821 } 1822 1823 clear_buffer_new(bh); 1824 mark_buffer_dirty(bh); 1825 } 1826 } 1827 1828 block_start = block_end; 1829 bh = bh->b_this_page; 1830 } while (bh != head); 1831 } 1832 EXPORT_SYMBOL(page_zero_new_buffers); 1833 1834 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1835 get_block_t *get_block) 1836 { 1837 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1838 unsigned to = from + len; 1839 struct inode *inode = page->mapping->host; 1840 unsigned block_start, block_end; 1841 sector_t block; 1842 int err = 0; 1843 unsigned blocksize, bbits; 1844 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1845 1846 BUG_ON(!PageLocked(page)); 1847 BUG_ON(from > PAGE_CACHE_SIZE); 1848 BUG_ON(to > PAGE_CACHE_SIZE); 1849 BUG_ON(from > to); 1850 1851 blocksize = 1 << inode->i_blkbits; 1852 if (!page_has_buffers(page)) 1853 create_empty_buffers(page, blocksize, 0); 1854 head = page_buffers(page); 1855 1856 bbits = inode->i_blkbits; 1857 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1858 1859 for(bh = head, block_start = 0; bh != head || !block_start; 1860 block++, block_start=block_end, bh = bh->b_this_page) { 1861 block_end = block_start + blocksize; 1862 if (block_end <= from || block_start >= to) { 1863 if (PageUptodate(page)) { 1864 if (!buffer_uptodate(bh)) 1865 set_buffer_uptodate(bh); 1866 } 1867 continue; 1868 } 1869 if (buffer_new(bh)) 1870 clear_buffer_new(bh); 1871 if (!buffer_mapped(bh)) { 1872 WARN_ON(bh->b_size != blocksize); 1873 err = get_block(inode, block, bh, 1); 1874 if (err) 1875 break; 1876 if (buffer_new(bh)) { 1877 unmap_underlying_metadata(bh->b_bdev, 1878 bh->b_blocknr); 1879 if (PageUptodate(page)) { 1880 clear_buffer_new(bh); 1881 set_buffer_uptodate(bh); 1882 mark_buffer_dirty(bh); 1883 continue; 1884 } 1885 if (block_end > to || block_start < from) 1886 zero_user_segments(page, 1887 to, block_end, 1888 block_start, from); 1889 continue; 1890 } 1891 } 1892 if (PageUptodate(page)) { 1893 if (!buffer_uptodate(bh)) 1894 set_buffer_uptodate(bh); 1895 continue; 1896 } 1897 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1898 !buffer_unwritten(bh) && 1899 (block_start < from || block_end > to)) { 1900 ll_rw_block(READ, 1, &bh); 1901 *wait_bh++=bh; 1902 } 1903 } 1904 /* 1905 * If we issued read requests - let them complete. 1906 */ 1907 while(wait_bh > wait) { 1908 wait_on_buffer(*--wait_bh); 1909 if (!buffer_uptodate(*wait_bh)) 1910 err = -EIO; 1911 } 1912 if (unlikely(err)) { 1913 page_zero_new_buffers(page, from, to); 1914 ClearPageUptodate(page); 1915 } 1916 return err; 1917 } 1918 EXPORT_SYMBOL(__block_write_begin); 1919 1920 static int __block_commit_write(struct inode *inode, struct page *page, 1921 unsigned from, unsigned to) 1922 { 1923 unsigned block_start, block_end; 1924 int partial = 0; 1925 unsigned blocksize; 1926 struct buffer_head *bh, *head; 1927 1928 blocksize = 1 << inode->i_blkbits; 1929 1930 for(bh = head = page_buffers(page), block_start = 0; 1931 bh != head || !block_start; 1932 block_start=block_end, bh = bh->b_this_page) { 1933 block_end = block_start + blocksize; 1934 if (block_end <= from || block_start >= to) { 1935 if (!buffer_uptodate(bh)) 1936 partial = 1; 1937 } else { 1938 set_buffer_uptodate(bh); 1939 mark_buffer_dirty(bh); 1940 } 1941 clear_buffer_new(bh); 1942 } 1943 1944 /* 1945 * If this is a partial write which happened to make all buffers 1946 * uptodate then we can optimize away a bogus readpage() for 1947 * the next read(). Here we 'discover' whether the page went 1948 * uptodate as a result of this (potentially partial) write. 1949 */ 1950 if (!partial) 1951 SetPageUptodate(page); 1952 return 0; 1953 } 1954 1955 /* 1956 * block_write_begin takes care of the basic task of block allocation and 1957 * bringing partial write blocks uptodate first. 1958 * 1959 * The filesystem needs to handle block truncation upon failure. 1960 */ 1961 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 1962 unsigned flags, struct page **pagep, get_block_t *get_block) 1963 { 1964 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1965 struct page *page; 1966 int status; 1967 1968 page = grab_cache_page_write_begin(mapping, index, flags); 1969 if (!page) 1970 return -ENOMEM; 1971 1972 status = __block_write_begin(page, pos, len, get_block); 1973 if (unlikely(status)) { 1974 unlock_page(page); 1975 page_cache_release(page); 1976 page = NULL; 1977 } 1978 1979 *pagep = page; 1980 return status; 1981 } 1982 EXPORT_SYMBOL(block_write_begin); 1983 1984 int block_write_end(struct file *file, struct address_space *mapping, 1985 loff_t pos, unsigned len, unsigned copied, 1986 struct page *page, void *fsdata) 1987 { 1988 struct inode *inode = mapping->host; 1989 unsigned start; 1990 1991 start = pos & (PAGE_CACHE_SIZE - 1); 1992 1993 if (unlikely(copied < len)) { 1994 /* 1995 * The buffers that were written will now be uptodate, so we 1996 * don't have to worry about a readpage reading them and 1997 * overwriting a partial write. However if we have encountered 1998 * a short write and only partially written into a buffer, it 1999 * will not be marked uptodate, so a readpage might come in and 2000 * destroy our partial write. 2001 * 2002 * Do the simplest thing, and just treat any short write to a 2003 * non uptodate page as a zero-length write, and force the 2004 * caller to redo the whole thing. 2005 */ 2006 if (!PageUptodate(page)) 2007 copied = 0; 2008 2009 page_zero_new_buffers(page, start+copied, start+len); 2010 } 2011 flush_dcache_page(page); 2012 2013 /* This could be a short (even 0-length) commit */ 2014 __block_commit_write(inode, page, start, start+copied); 2015 2016 return copied; 2017 } 2018 EXPORT_SYMBOL(block_write_end); 2019 2020 int generic_write_end(struct file *file, struct address_space *mapping, 2021 loff_t pos, unsigned len, unsigned copied, 2022 struct page *page, void *fsdata) 2023 { 2024 struct inode *inode = mapping->host; 2025 int i_size_changed = 0; 2026 2027 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2028 2029 /* 2030 * No need to use i_size_read() here, the i_size 2031 * cannot change under us because we hold i_mutex. 2032 * 2033 * But it's important to update i_size while still holding page lock: 2034 * page writeout could otherwise come in and zero beyond i_size. 2035 */ 2036 if (pos+copied > inode->i_size) { 2037 i_size_write(inode, pos+copied); 2038 i_size_changed = 1; 2039 } 2040 2041 unlock_page(page); 2042 page_cache_release(page); 2043 2044 /* 2045 * Don't mark the inode dirty under page lock. First, it unnecessarily 2046 * makes the holding time of page lock longer. Second, it forces lock 2047 * ordering of page lock and transaction start for journaling 2048 * filesystems. 2049 */ 2050 if (i_size_changed) 2051 mark_inode_dirty(inode); 2052 2053 return copied; 2054 } 2055 EXPORT_SYMBOL(generic_write_end); 2056 2057 /* 2058 * block_is_partially_uptodate checks whether buffers within a page are 2059 * uptodate or not. 2060 * 2061 * Returns true if all buffers which correspond to a file portion 2062 * we want to read are uptodate. 2063 */ 2064 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2065 unsigned long from) 2066 { 2067 struct inode *inode = page->mapping->host; 2068 unsigned block_start, block_end, blocksize; 2069 unsigned to; 2070 struct buffer_head *bh, *head; 2071 int ret = 1; 2072 2073 if (!page_has_buffers(page)) 2074 return 0; 2075 2076 blocksize = 1 << inode->i_blkbits; 2077 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2078 to = from + to; 2079 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2080 return 0; 2081 2082 head = page_buffers(page); 2083 bh = head; 2084 block_start = 0; 2085 do { 2086 block_end = block_start + blocksize; 2087 if (block_end > from && block_start < to) { 2088 if (!buffer_uptodate(bh)) { 2089 ret = 0; 2090 break; 2091 } 2092 if (block_end >= to) 2093 break; 2094 } 2095 block_start = block_end; 2096 bh = bh->b_this_page; 2097 } while (bh != head); 2098 2099 return ret; 2100 } 2101 EXPORT_SYMBOL(block_is_partially_uptodate); 2102 2103 /* 2104 * Generic "read page" function for block devices that have the normal 2105 * get_block functionality. This is most of the block device filesystems. 2106 * Reads the page asynchronously --- the unlock_buffer() and 2107 * set/clear_buffer_uptodate() functions propagate buffer state into the 2108 * page struct once IO has completed. 2109 */ 2110 int block_read_full_page(struct page *page, get_block_t *get_block) 2111 { 2112 struct inode *inode = page->mapping->host; 2113 sector_t iblock, lblock; 2114 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2115 unsigned int blocksize; 2116 int nr, i; 2117 int fully_mapped = 1; 2118 2119 BUG_ON(!PageLocked(page)); 2120 blocksize = 1 << inode->i_blkbits; 2121 if (!page_has_buffers(page)) 2122 create_empty_buffers(page, blocksize, 0); 2123 head = page_buffers(page); 2124 2125 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2126 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2127 bh = head; 2128 nr = 0; 2129 i = 0; 2130 2131 do { 2132 if (buffer_uptodate(bh)) 2133 continue; 2134 2135 if (!buffer_mapped(bh)) { 2136 int err = 0; 2137 2138 fully_mapped = 0; 2139 if (iblock < lblock) { 2140 WARN_ON(bh->b_size != blocksize); 2141 err = get_block(inode, iblock, bh, 0); 2142 if (err) 2143 SetPageError(page); 2144 } 2145 if (!buffer_mapped(bh)) { 2146 zero_user(page, i * blocksize, blocksize); 2147 if (!err) 2148 set_buffer_uptodate(bh); 2149 continue; 2150 } 2151 /* 2152 * get_block() might have updated the buffer 2153 * synchronously 2154 */ 2155 if (buffer_uptodate(bh)) 2156 continue; 2157 } 2158 arr[nr++] = bh; 2159 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2160 2161 if (fully_mapped) 2162 SetPageMappedToDisk(page); 2163 2164 if (!nr) { 2165 /* 2166 * All buffers are uptodate - we can set the page uptodate 2167 * as well. But not if get_block() returned an error. 2168 */ 2169 if (!PageError(page)) 2170 SetPageUptodate(page); 2171 unlock_page(page); 2172 return 0; 2173 } 2174 2175 /* Stage two: lock the buffers */ 2176 for (i = 0; i < nr; i++) { 2177 bh = arr[i]; 2178 lock_buffer(bh); 2179 mark_buffer_async_read(bh); 2180 } 2181 2182 /* 2183 * Stage 3: start the IO. Check for uptodateness 2184 * inside the buffer lock in case another process reading 2185 * the underlying blockdev brought it uptodate (the sct fix). 2186 */ 2187 for (i = 0; i < nr; i++) { 2188 bh = arr[i]; 2189 if (buffer_uptodate(bh)) 2190 end_buffer_async_read(bh, 1); 2191 else 2192 submit_bh(READ, bh); 2193 } 2194 return 0; 2195 } 2196 EXPORT_SYMBOL(block_read_full_page); 2197 2198 /* utility function for filesystems that need to do work on expanding 2199 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2200 * deal with the hole. 2201 */ 2202 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2203 { 2204 struct address_space *mapping = inode->i_mapping; 2205 struct page *page; 2206 void *fsdata; 2207 int err; 2208 2209 err = inode_newsize_ok(inode, size); 2210 if (err) 2211 goto out; 2212 2213 err = pagecache_write_begin(NULL, mapping, size, 0, 2214 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2215 &page, &fsdata); 2216 if (err) 2217 goto out; 2218 2219 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2220 BUG_ON(err > 0); 2221 2222 out: 2223 return err; 2224 } 2225 EXPORT_SYMBOL(generic_cont_expand_simple); 2226 2227 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2228 loff_t pos, loff_t *bytes) 2229 { 2230 struct inode *inode = mapping->host; 2231 unsigned blocksize = 1 << inode->i_blkbits; 2232 struct page *page; 2233 void *fsdata; 2234 pgoff_t index, curidx; 2235 loff_t curpos; 2236 unsigned zerofrom, offset, len; 2237 int err = 0; 2238 2239 index = pos >> PAGE_CACHE_SHIFT; 2240 offset = pos & ~PAGE_CACHE_MASK; 2241 2242 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2243 zerofrom = curpos & ~PAGE_CACHE_MASK; 2244 if (zerofrom & (blocksize-1)) { 2245 *bytes |= (blocksize-1); 2246 (*bytes)++; 2247 } 2248 len = PAGE_CACHE_SIZE - zerofrom; 2249 2250 err = pagecache_write_begin(file, mapping, curpos, len, 2251 AOP_FLAG_UNINTERRUPTIBLE, 2252 &page, &fsdata); 2253 if (err) 2254 goto out; 2255 zero_user(page, zerofrom, len); 2256 err = pagecache_write_end(file, mapping, curpos, len, len, 2257 page, fsdata); 2258 if (err < 0) 2259 goto out; 2260 BUG_ON(err != len); 2261 err = 0; 2262 2263 balance_dirty_pages_ratelimited(mapping); 2264 } 2265 2266 /* page covers the boundary, find the boundary offset */ 2267 if (index == curidx) { 2268 zerofrom = curpos & ~PAGE_CACHE_MASK; 2269 /* if we will expand the thing last block will be filled */ 2270 if (offset <= zerofrom) { 2271 goto out; 2272 } 2273 if (zerofrom & (blocksize-1)) { 2274 *bytes |= (blocksize-1); 2275 (*bytes)++; 2276 } 2277 len = offset - zerofrom; 2278 2279 err = pagecache_write_begin(file, mapping, curpos, len, 2280 AOP_FLAG_UNINTERRUPTIBLE, 2281 &page, &fsdata); 2282 if (err) 2283 goto out; 2284 zero_user(page, zerofrom, len); 2285 err = pagecache_write_end(file, mapping, curpos, len, len, 2286 page, fsdata); 2287 if (err < 0) 2288 goto out; 2289 BUG_ON(err != len); 2290 err = 0; 2291 } 2292 out: 2293 return err; 2294 } 2295 2296 /* 2297 * For moronic filesystems that do not allow holes in file. 2298 * We may have to extend the file. 2299 */ 2300 int cont_write_begin(struct file *file, struct address_space *mapping, 2301 loff_t pos, unsigned len, unsigned flags, 2302 struct page **pagep, void **fsdata, 2303 get_block_t *get_block, loff_t *bytes) 2304 { 2305 struct inode *inode = mapping->host; 2306 unsigned blocksize = 1 << inode->i_blkbits; 2307 unsigned zerofrom; 2308 int err; 2309 2310 err = cont_expand_zero(file, mapping, pos, bytes); 2311 if (err) 2312 return err; 2313 2314 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2315 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2316 *bytes |= (blocksize-1); 2317 (*bytes)++; 2318 } 2319 2320 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2321 } 2322 EXPORT_SYMBOL(cont_write_begin); 2323 2324 int block_commit_write(struct page *page, unsigned from, unsigned to) 2325 { 2326 struct inode *inode = page->mapping->host; 2327 __block_commit_write(inode,page,from,to); 2328 return 0; 2329 } 2330 EXPORT_SYMBOL(block_commit_write); 2331 2332 /* 2333 * block_page_mkwrite() is not allowed to change the file size as it gets 2334 * called from a page fault handler when a page is first dirtied. Hence we must 2335 * be careful to check for EOF conditions here. We set the page up correctly 2336 * for a written page which means we get ENOSPC checking when writing into 2337 * holes and correct delalloc and unwritten extent mapping on filesystems that 2338 * support these features. 2339 * 2340 * We are not allowed to take the i_mutex here so we have to play games to 2341 * protect against truncate races as the page could now be beyond EOF. Because 2342 * truncate writes the inode size before removing pages, once we have the 2343 * page lock we can determine safely if the page is beyond EOF. If it is not 2344 * beyond EOF, then the page is guaranteed safe against truncation until we 2345 * unlock the page. 2346 */ 2347 int 2348 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2349 get_block_t get_block) 2350 { 2351 struct page *page = vmf->page; 2352 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2353 unsigned long end; 2354 loff_t size; 2355 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 2356 2357 lock_page(page); 2358 size = i_size_read(inode); 2359 if ((page->mapping != inode->i_mapping) || 2360 (page_offset(page) > size)) { 2361 /* page got truncated out from underneath us */ 2362 unlock_page(page); 2363 goto out; 2364 } 2365 2366 /* page is wholly or partially inside EOF */ 2367 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2368 end = size & ~PAGE_CACHE_MASK; 2369 else 2370 end = PAGE_CACHE_SIZE; 2371 2372 ret = __block_write_begin(page, 0, end, get_block); 2373 if (!ret) 2374 ret = block_commit_write(page, 0, end); 2375 2376 if (unlikely(ret)) { 2377 unlock_page(page); 2378 if (ret == -ENOMEM) 2379 ret = VM_FAULT_OOM; 2380 else /* -ENOSPC, -EIO, etc */ 2381 ret = VM_FAULT_SIGBUS; 2382 } else 2383 ret = VM_FAULT_LOCKED; 2384 2385 out: 2386 return ret; 2387 } 2388 EXPORT_SYMBOL(block_page_mkwrite); 2389 2390 /* 2391 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2392 * immediately, while under the page lock. So it needs a special end_io 2393 * handler which does not touch the bh after unlocking it. 2394 */ 2395 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2396 { 2397 __end_buffer_read_notouch(bh, uptodate); 2398 } 2399 2400 /* 2401 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2402 * the page (converting it to circular linked list and taking care of page 2403 * dirty races). 2404 */ 2405 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2406 { 2407 struct buffer_head *bh; 2408 2409 BUG_ON(!PageLocked(page)); 2410 2411 spin_lock(&page->mapping->private_lock); 2412 bh = head; 2413 do { 2414 if (PageDirty(page)) 2415 set_buffer_dirty(bh); 2416 if (!bh->b_this_page) 2417 bh->b_this_page = head; 2418 bh = bh->b_this_page; 2419 } while (bh != head); 2420 attach_page_buffers(page, head); 2421 spin_unlock(&page->mapping->private_lock); 2422 } 2423 2424 /* 2425 * On entry, the page is fully not uptodate. 2426 * On exit the page is fully uptodate in the areas outside (from,to) 2427 * The filesystem needs to handle block truncation upon failure. 2428 */ 2429 int nobh_write_begin(struct address_space *mapping, 2430 loff_t pos, unsigned len, unsigned flags, 2431 struct page **pagep, void **fsdata, 2432 get_block_t *get_block) 2433 { 2434 struct inode *inode = mapping->host; 2435 const unsigned blkbits = inode->i_blkbits; 2436 const unsigned blocksize = 1 << blkbits; 2437 struct buffer_head *head, *bh; 2438 struct page *page; 2439 pgoff_t index; 2440 unsigned from, to; 2441 unsigned block_in_page; 2442 unsigned block_start, block_end; 2443 sector_t block_in_file; 2444 int nr_reads = 0; 2445 int ret = 0; 2446 int is_mapped_to_disk = 1; 2447 2448 index = pos >> PAGE_CACHE_SHIFT; 2449 from = pos & (PAGE_CACHE_SIZE - 1); 2450 to = from + len; 2451 2452 page = grab_cache_page_write_begin(mapping, index, flags); 2453 if (!page) 2454 return -ENOMEM; 2455 *pagep = page; 2456 *fsdata = NULL; 2457 2458 if (page_has_buffers(page)) { 2459 ret = __block_write_begin(page, pos, len, get_block); 2460 if (unlikely(ret)) 2461 goto out_release; 2462 return ret; 2463 } 2464 2465 if (PageMappedToDisk(page)) 2466 return 0; 2467 2468 /* 2469 * Allocate buffers so that we can keep track of state, and potentially 2470 * attach them to the page if an error occurs. In the common case of 2471 * no error, they will just be freed again without ever being attached 2472 * to the page (which is all OK, because we're under the page lock). 2473 * 2474 * Be careful: the buffer linked list is a NULL terminated one, rather 2475 * than the circular one we're used to. 2476 */ 2477 head = alloc_page_buffers(page, blocksize, 0); 2478 if (!head) { 2479 ret = -ENOMEM; 2480 goto out_release; 2481 } 2482 2483 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2484 2485 /* 2486 * We loop across all blocks in the page, whether or not they are 2487 * part of the affected region. This is so we can discover if the 2488 * page is fully mapped-to-disk. 2489 */ 2490 for (block_start = 0, block_in_page = 0, bh = head; 2491 block_start < PAGE_CACHE_SIZE; 2492 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2493 int create; 2494 2495 block_end = block_start + blocksize; 2496 bh->b_state = 0; 2497 create = 1; 2498 if (block_start >= to) 2499 create = 0; 2500 ret = get_block(inode, block_in_file + block_in_page, 2501 bh, create); 2502 if (ret) 2503 goto failed; 2504 if (!buffer_mapped(bh)) 2505 is_mapped_to_disk = 0; 2506 if (buffer_new(bh)) 2507 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2508 if (PageUptodate(page)) { 2509 set_buffer_uptodate(bh); 2510 continue; 2511 } 2512 if (buffer_new(bh) || !buffer_mapped(bh)) { 2513 zero_user_segments(page, block_start, from, 2514 to, block_end); 2515 continue; 2516 } 2517 if (buffer_uptodate(bh)) 2518 continue; /* reiserfs does this */ 2519 if (block_start < from || block_end > to) { 2520 lock_buffer(bh); 2521 bh->b_end_io = end_buffer_read_nobh; 2522 submit_bh(READ, bh); 2523 nr_reads++; 2524 } 2525 } 2526 2527 if (nr_reads) { 2528 /* 2529 * The page is locked, so these buffers are protected from 2530 * any VM or truncate activity. Hence we don't need to care 2531 * for the buffer_head refcounts. 2532 */ 2533 for (bh = head; bh; bh = bh->b_this_page) { 2534 wait_on_buffer(bh); 2535 if (!buffer_uptodate(bh)) 2536 ret = -EIO; 2537 } 2538 if (ret) 2539 goto failed; 2540 } 2541 2542 if (is_mapped_to_disk) 2543 SetPageMappedToDisk(page); 2544 2545 *fsdata = head; /* to be released by nobh_write_end */ 2546 2547 return 0; 2548 2549 failed: 2550 BUG_ON(!ret); 2551 /* 2552 * Error recovery is a bit difficult. We need to zero out blocks that 2553 * were newly allocated, and dirty them to ensure they get written out. 2554 * Buffers need to be attached to the page at this point, otherwise 2555 * the handling of potential IO errors during writeout would be hard 2556 * (could try doing synchronous writeout, but what if that fails too?) 2557 */ 2558 attach_nobh_buffers(page, head); 2559 page_zero_new_buffers(page, from, to); 2560 2561 out_release: 2562 unlock_page(page); 2563 page_cache_release(page); 2564 *pagep = NULL; 2565 2566 return ret; 2567 } 2568 EXPORT_SYMBOL(nobh_write_begin); 2569 2570 int nobh_write_end(struct file *file, struct address_space *mapping, 2571 loff_t pos, unsigned len, unsigned copied, 2572 struct page *page, void *fsdata) 2573 { 2574 struct inode *inode = page->mapping->host; 2575 struct buffer_head *head = fsdata; 2576 struct buffer_head *bh; 2577 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2578 2579 if (unlikely(copied < len) && head) 2580 attach_nobh_buffers(page, head); 2581 if (page_has_buffers(page)) 2582 return generic_write_end(file, mapping, pos, len, 2583 copied, page, fsdata); 2584 2585 SetPageUptodate(page); 2586 set_page_dirty(page); 2587 if (pos+copied > inode->i_size) { 2588 i_size_write(inode, pos+copied); 2589 mark_inode_dirty(inode); 2590 } 2591 2592 unlock_page(page); 2593 page_cache_release(page); 2594 2595 while (head) { 2596 bh = head; 2597 head = head->b_this_page; 2598 free_buffer_head(bh); 2599 } 2600 2601 return copied; 2602 } 2603 EXPORT_SYMBOL(nobh_write_end); 2604 2605 /* 2606 * nobh_writepage() - based on block_full_write_page() except 2607 * that it tries to operate without attaching bufferheads to 2608 * the page. 2609 */ 2610 int nobh_writepage(struct page *page, get_block_t *get_block, 2611 struct writeback_control *wbc) 2612 { 2613 struct inode * const inode = page->mapping->host; 2614 loff_t i_size = i_size_read(inode); 2615 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2616 unsigned offset; 2617 int ret; 2618 2619 /* Is the page fully inside i_size? */ 2620 if (page->index < end_index) 2621 goto out; 2622 2623 /* Is the page fully outside i_size? (truncate in progress) */ 2624 offset = i_size & (PAGE_CACHE_SIZE-1); 2625 if (page->index >= end_index+1 || !offset) { 2626 /* 2627 * The page may have dirty, unmapped buffers. For example, 2628 * they may have been added in ext3_writepage(). Make them 2629 * freeable here, so the page does not leak. 2630 */ 2631 #if 0 2632 /* Not really sure about this - do we need this ? */ 2633 if (page->mapping->a_ops->invalidatepage) 2634 page->mapping->a_ops->invalidatepage(page, offset); 2635 #endif 2636 unlock_page(page); 2637 return 0; /* don't care */ 2638 } 2639 2640 /* 2641 * The page straddles i_size. It must be zeroed out on each and every 2642 * writepage invocation because it may be mmapped. "A file is mapped 2643 * in multiples of the page size. For a file that is not a multiple of 2644 * the page size, the remaining memory is zeroed when mapped, and 2645 * writes to that region are not written out to the file." 2646 */ 2647 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2648 out: 2649 ret = mpage_writepage(page, get_block, wbc); 2650 if (ret == -EAGAIN) 2651 ret = __block_write_full_page(inode, page, get_block, wbc, 2652 end_buffer_async_write); 2653 return ret; 2654 } 2655 EXPORT_SYMBOL(nobh_writepage); 2656 2657 int nobh_truncate_page(struct address_space *mapping, 2658 loff_t from, get_block_t *get_block) 2659 { 2660 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2661 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2662 unsigned blocksize; 2663 sector_t iblock; 2664 unsigned length, pos; 2665 struct inode *inode = mapping->host; 2666 struct page *page; 2667 struct buffer_head map_bh; 2668 int err; 2669 2670 blocksize = 1 << inode->i_blkbits; 2671 length = offset & (blocksize - 1); 2672 2673 /* Block boundary? Nothing to do */ 2674 if (!length) 2675 return 0; 2676 2677 length = blocksize - length; 2678 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2679 2680 page = grab_cache_page(mapping, index); 2681 err = -ENOMEM; 2682 if (!page) 2683 goto out; 2684 2685 if (page_has_buffers(page)) { 2686 has_buffers: 2687 unlock_page(page); 2688 page_cache_release(page); 2689 return block_truncate_page(mapping, from, get_block); 2690 } 2691 2692 /* Find the buffer that contains "offset" */ 2693 pos = blocksize; 2694 while (offset >= pos) { 2695 iblock++; 2696 pos += blocksize; 2697 } 2698 2699 map_bh.b_size = blocksize; 2700 map_bh.b_state = 0; 2701 err = get_block(inode, iblock, &map_bh, 0); 2702 if (err) 2703 goto unlock; 2704 /* unmapped? It's a hole - nothing to do */ 2705 if (!buffer_mapped(&map_bh)) 2706 goto unlock; 2707 2708 /* Ok, it's mapped. Make sure it's up-to-date */ 2709 if (!PageUptodate(page)) { 2710 err = mapping->a_ops->readpage(NULL, page); 2711 if (err) { 2712 page_cache_release(page); 2713 goto out; 2714 } 2715 lock_page(page); 2716 if (!PageUptodate(page)) { 2717 err = -EIO; 2718 goto unlock; 2719 } 2720 if (page_has_buffers(page)) 2721 goto has_buffers; 2722 } 2723 zero_user(page, offset, length); 2724 set_page_dirty(page); 2725 err = 0; 2726 2727 unlock: 2728 unlock_page(page); 2729 page_cache_release(page); 2730 out: 2731 return err; 2732 } 2733 EXPORT_SYMBOL(nobh_truncate_page); 2734 2735 int block_truncate_page(struct address_space *mapping, 2736 loff_t from, get_block_t *get_block) 2737 { 2738 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2739 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2740 unsigned blocksize; 2741 sector_t iblock; 2742 unsigned length, pos; 2743 struct inode *inode = mapping->host; 2744 struct page *page; 2745 struct buffer_head *bh; 2746 int err; 2747 2748 blocksize = 1 << inode->i_blkbits; 2749 length = offset & (blocksize - 1); 2750 2751 /* Block boundary? Nothing to do */ 2752 if (!length) 2753 return 0; 2754 2755 length = blocksize - length; 2756 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2757 2758 page = grab_cache_page(mapping, index); 2759 err = -ENOMEM; 2760 if (!page) 2761 goto out; 2762 2763 if (!page_has_buffers(page)) 2764 create_empty_buffers(page, blocksize, 0); 2765 2766 /* Find the buffer that contains "offset" */ 2767 bh = page_buffers(page); 2768 pos = blocksize; 2769 while (offset >= pos) { 2770 bh = bh->b_this_page; 2771 iblock++; 2772 pos += blocksize; 2773 } 2774 2775 err = 0; 2776 if (!buffer_mapped(bh)) { 2777 WARN_ON(bh->b_size != blocksize); 2778 err = get_block(inode, iblock, bh, 0); 2779 if (err) 2780 goto unlock; 2781 /* unmapped? It's a hole - nothing to do */ 2782 if (!buffer_mapped(bh)) 2783 goto unlock; 2784 } 2785 2786 /* Ok, it's mapped. Make sure it's up-to-date */ 2787 if (PageUptodate(page)) 2788 set_buffer_uptodate(bh); 2789 2790 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2791 err = -EIO; 2792 ll_rw_block(READ, 1, &bh); 2793 wait_on_buffer(bh); 2794 /* Uhhuh. Read error. Complain and punt. */ 2795 if (!buffer_uptodate(bh)) 2796 goto unlock; 2797 } 2798 2799 zero_user(page, offset, length); 2800 mark_buffer_dirty(bh); 2801 err = 0; 2802 2803 unlock: 2804 unlock_page(page); 2805 page_cache_release(page); 2806 out: 2807 return err; 2808 } 2809 EXPORT_SYMBOL(block_truncate_page); 2810 2811 /* 2812 * The generic ->writepage function for buffer-backed address_spaces 2813 * this form passes in the end_io handler used to finish the IO. 2814 */ 2815 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2816 struct writeback_control *wbc, bh_end_io_t *handler) 2817 { 2818 struct inode * const inode = page->mapping->host; 2819 loff_t i_size = i_size_read(inode); 2820 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2821 unsigned offset; 2822 2823 /* Is the page fully inside i_size? */ 2824 if (page->index < end_index) 2825 return __block_write_full_page(inode, page, get_block, wbc, 2826 handler); 2827 2828 /* Is the page fully outside i_size? (truncate in progress) */ 2829 offset = i_size & (PAGE_CACHE_SIZE-1); 2830 if (page->index >= end_index+1 || !offset) { 2831 /* 2832 * The page may have dirty, unmapped buffers. For example, 2833 * they may have been added in ext3_writepage(). Make them 2834 * freeable here, so the page does not leak. 2835 */ 2836 do_invalidatepage(page, 0); 2837 unlock_page(page); 2838 return 0; /* don't care */ 2839 } 2840 2841 /* 2842 * The page straddles i_size. It must be zeroed out on each and every 2843 * writepage invocation because it may be mmapped. "A file is mapped 2844 * in multiples of the page size. For a file that is not a multiple of 2845 * the page size, the remaining memory is zeroed when mapped, and 2846 * writes to that region are not written out to the file." 2847 */ 2848 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2849 return __block_write_full_page(inode, page, get_block, wbc, handler); 2850 } 2851 EXPORT_SYMBOL(block_write_full_page_endio); 2852 2853 /* 2854 * The generic ->writepage function for buffer-backed address_spaces 2855 */ 2856 int block_write_full_page(struct page *page, get_block_t *get_block, 2857 struct writeback_control *wbc) 2858 { 2859 return block_write_full_page_endio(page, get_block, wbc, 2860 end_buffer_async_write); 2861 } 2862 EXPORT_SYMBOL(block_write_full_page); 2863 2864 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2865 get_block_t *get_block) 2866 { 2867 struct buffer_head tmp; 2868 struct inode *inode = mapping->host; 2869 tmp.b_state = 0; 2870 tmp.b_blocknr = 0; 2871 tmp.b_size = 1 << inode->i_blkbits; 2872 get_block(inode, block, &tmp, 0); 2873 return tmp.b_blocknr; 2874 } 2875 EXPORT_SYMBOL(generic_block_bmap); 2876 2877 static void end_bio_bh_io_sync(struct bio *bio, int err) 2878 { 2879 struct buffer_head *bh = bio->bi_private; 2880 2881 if (err == -EOPNOTSUPP) { 2882 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2883 } 2884 2885 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2886 set_bit(BH_Quiet, &bh->b_state); 2887 2888 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2889 bio_put(bio); 2890 } 2891 2892 int submit_bh(int rw, struct buffer_head * bh) 2893 { 2894 struct bio *bio; 2895 int ret = 0; 2896 2897 BUG_ON(!buffer_locked(bh)); 2898 BUG_ON(!buffer_mapped(bh)); 2899 BUG_ON(!bh->b_end_io); 2900 BUG_ON(buffer_delay(bh)); 2901 BUG_ON(buffer_unwritten(bh)); 2902 2903 /* 2904 * Only clear out a write error when rewriting 2905 */ 2906 if (test_set_buffer_req(bh) && (rw & WRITE)) 2907 clear_buffer_write_io_error(bh); 2908 2909 /* 2910 * from here on down, it's all bio -- do the initial mapping, 2911 * submit_bio -> generic_make_request may further map this bio around 2912 */ 2913 bio = bio_alloc(GFP_NOIO, 1); 2914 2915 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2916 bio->bi_bdev = bh->b_bdev; 2917 bio->bi_io_vec[0].bv_page = bh->b_page; 2918 bio->bi_io_vec[0].bv_len = bh->b_size; 2919 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2920 2921 bio->bi_vcnt = 1; 2922 bio->bi_idx = 0; 2923 bio->bi_size = bh->b_size; 2924 2925 bio->bi_end_io = end_bio_bh_io_sync; 2926 bio->bi_private = bh; 2927 2928 bio_get(bio); 2929 submit_bio(rw, bio); 2930 2931 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2932 ret = -EOPNOTSUPP; 2933 2934 bio_put(bio); 2935 return ret; 2936 } 2937 EXPORT_SYMBOL(submit_bh); 2938 2939 /** 2940 * ll_rw_block: low-level access to block devices (DEPRECATED) 2941 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 2942 * @nr: number of &struct buffer_heads in the array 2943 * @bhs: array of pointers to &struct buffer_head 2944 * 2945 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2946 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2947 * %READA option is described in the documentation for generic_make_request() 2948 * which ll_rw_block() calls. 2949 * 2950 * This function drops any buffer that it cannot get a lock on (with the 2951 * BH_Lock state bit), any buffer that appears to be clean when doing a write 2952 * request, and any buffer that appears to be up-to-date when doing read 2953 * request. Further it marks as clean buffers that are processed for 2954 * writing (the buffer cache won't assume that they are actually clean 2955 * until the buffer gets unlocked). 2956 * 2957 * ll_rw_block sets b_end_io to simple completion handler that marks 2958 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2959 * any waiters. 2960 * 2961 * All of the buffers must be for the same device, and must also be a 2962 * multiple of the current approved size for the device. 2963 */ 2964 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2965 { 2966 int i; 2967 2968 for (i = 0; i < nr; i++) { 2969 struct buffer_head *bh = bhs[i]; 2970 2971 if (!trylock_buffer(bh)) 2972 continue; 2973 if (rw == WRITE) { 2974 if (test_clear_buffer_dirty(bh)) { 2975 bh->b_end_io = end_buffer_write_sync; 2976 get_bh(bh); 2977 submit_bh(WRITE, bh); 2978 continue; 2979 } 2980 } else { 2981 if (!buffer_uptodate(bh)) { 2982 bh->b_end_io = end_buffer_read_sync; 2983 get_bh(bh); 2984 submit_bh(rw, bh); 2985 continue; 2986 } 2987 } 2988 unlock_buffer(bh); 2989 } 2990 } 2991 EXPORT_SYMBOL(ll_rw_block); 2992 2993 void write_dirty_buffer(struct buffer_head *bh, int rw) 2994 { 2995 lock_buffer(bh); 2996 if (!test_clear_buffer_dirty(bh)) { 2997 unlock_buffer(bh); 2998 return; 2999 } 3000 bh->b_end_io = end_buffer_write_sync; 3001 get_bh(bh); 3002 submit_bh(rw, bh); 3003 } 3004 EXPORT_SYMBOL(write_dirty_buffer); 3005 3006 /* 3007 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3008 * and then start new I/O and then wait upon it. The caller must have a ref on 3009 * the buffer_head. 3010 */ 3011 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3012 { 3013 int ret = 0; 3014 3015 WARN_ON(atomic_read(&bh->b_count) < 1); 3016 lock_buffer(bh); 3017 if (test_clear_buffer_dirty(bh)) { 3018 get_bh(bh); 3019 bh->b_end_io = end_buffer_write_sync; 3020 ret = submit_bh(rw, bh); 3021 wait_on_buffer(bh); 3022 if (!ret && !buffer_uptodate(bh)) 3023 ret = -EIO; 3024 } else { 3025 unlock_buffer(bh); 3026 } 3027 return ret; 3028 } 3029 EXPORT_SYMBOL(__sync_dirty_buffer); 3030 3031 int sync_dirty_buffer(struct buffer_head *bh) 3032 { 3033 return __sync_dirty_buffer(bh, WRITE_SYNC); 3034 } 3035 EXPORT_SYMBOL(sync_dirty_buffer); 3036 3037 /* 3038 * try_to_free_buffers() checks if all the buffers on this particular page 3039 * are unused, and releases them if so. 3040 * 3041 * Exclusion against try_to_free_buffers may be obtained by either 3042 * locking the page or by holding its mapping's private_lock. 3043 * 3044 * If the page is dirty but all the buffers are clean then we need to 3045 * be sure to mark the page clean as well. This is because the page 3046 * may be against a block device, and a later reattachment of buffers 3047 * to a dirty page will set *all* buffers dirty. Which would corrupt 3048 * filesystem data on the same device. 3049 * 3050 * The same applies to regular filesystem pages: if all the buffers are 3051 * clean then we set the page clean and proceed. To do that, we require 3052 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3053 * private_lock. 3054 * 3055 * try_to_free_buffers() is non-blocking. 3056 */ 3057 static inline int buffer_busy(struct buffer_head *bh) 3058 { 3059 return atomic_read(&bh->b_count) | 3060 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3061 } 3062 3063 static int 3064 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3065 { 3066 struct buffer_head *head = page_buffers(page); 3067 struct buffer_head *bh; 3068 3069 bh = head; 3070 do { 3071 if (buffer_write_io_error(bh) && page->mapping) 3072 set_bit(AS_EIO, &page->mapping->flags); 3073 if (buffer_busy(bh)) 3074 goto failed; 3075 bh = bh->b_this_page; 3076 } while (bh != head); 3077 3078 do { 3079 struct buffer_head *next = bh->b_this_page; 3080 3081 if (bh->b_assoc_map) 3082 __remove_assoc_queue(bh); 3083 bh = next; 3084 } while (bh != head); 3085 *buffers_to_free = head; 3086 __clear_page_buffers(page); 3087 return 1; 3088 failed: 3089 return 0; 3090 } 3091 3092 int try_to_free_buffers(struct page *page) 3093 { 3094 struct address_space * const mapping = page->mapping; 3095 struct buffer_head *buffers_to_free = NULL; 3096 int ret = 0; 3097 3098 BUG_ON(!PageLocked(page)); 3099 if (PageWriteback(page)) 3100 return 0; 3101 3102 if (mapping == NULL) { /* can this still happen? */ 3103 ret = drop_buffers(page, &buffers_to_free); 3104 goto out; 3105 } 3106 3107 spin_lock(&mapping->private_lock); 3108 ret = drop_buffers(page, &buffers_to_free); 3109 3110 /* 3111 * If the filesystem writes its buffers by hand (eg ext3) 3112 * then we can have clean buffers against a dirty page. We 3113 * clean the page here; otherwise the VM will never notice 3114 * that the filesystem did any IO at all. 3115 * 3116 * Also, during truncate, discard_buffer will have marked all 3117 * the page's buffers clean. We discover that here and clean 3118 * the page also. 3119 * 3120 * private_lock must be held over this entire operation in order 3121 * to synchronise against __set_page_dirty_buffers and prevent the 3122 * dirty bit from being lost. 3123 */ 3124 if (ret) 3125 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3126 spin_unlock(&mapping->private_lock); 3127 out: 3128 if (buffers_to_free) { 3129 struct buffer_head *bh = buffers_to_free; 3130 3131 do { 3132 struct buffer_head *next = bh->b_this_page; 3133 free_buffer_head(bh); 3134 bh = next; 3135 } while (bh != buffers_to_free); 3136 } 3137 return ret; 3138 } 3139 EXPORT_SYMBOL(try_to_free_buffers); 3140 3141 void block_sync_page(struct page *page) 3142 { 3143 struct address_space *mapping; 3144 3145 smp_mb(); 3146 mapping = page_mapping(page); 3147 if (mapping) 3148 blk_run_backing_dev(mapping->backing_dev_info, page); 3149 } 3150 EXPORT_SYMBOL(block_sync_page); 3151 3152 /* 3153 * There are no bdflush tunables left. But distributions are 3154 * still running obsolete flush daemons, so we terminate them here. 3155 * 3156 * Use of bdflush() is deprecated and will be removed in a future kernel. 3157 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3158 */ 3159 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3160 { 3161 static int msg_count; 3162 3163 if (!capable(CAP_SYS_ADMIN)) 3164 return -EPERM; 3165 3166 if (msg_count < 5) { 3167 msg_count++; 3168 printk(KERN_INFO 3169 "warning: process `%s' used the obsolete bdflush" 3170 " system call\n", current->comm); 3171 printk(KERN_INFO "Fix your initscripts?\n"); 3172 } 3173 3174 if (func == 1) 3175 do_exit(0); 3176 return 0; 3177 } 3178 3179 /* 3180 * Buffer-head allocation 3181 */ 3182 static struct kmem_cache *bh_cachep; 3183 3184 /* 3185 * Once the number of bh's in the machine exceeds this level, we start 3186 * stripping them in writeback. 3187 */ 3188 static int max_buffer_heads; 3189 3190 int buffer_heads_over_limit; 3191 3192 struct bh_accounting { 3193 int nr; /* Number of live bh's */ 3194 int ratelimit; /* Limit cacheline bouncing */ 3195 }; 3196 3197 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3198 3199 static void recalc_bh_state(void) 3200 { 3201 int i; 3202 int tot = 0; 3203 3204 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3205 return; 3206 __this_cpu_write(bh_accounting.ratelimit, 0); 3207 for_each_online_cpu(i) 3208 tot += per_cpu(bh_accounting, i).nr; 3209 buffer_heads_over_limit = (tot > max_buffer_heads); 3210 } 3211 3212 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3213 { 3214 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3215 if (ret) { 3216 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3217 preempt_disable(); 3218 __this_cpu_inc(bh_accounting.nr); 3219 recalc_bh_state(); 3220 preempt_enable(); 3221 } 3222 return ret; 3223 } 3224 EXPORT_SYMBOL(alloc_buffer_head); 3225 3226 void free_buffer_head(struct buffer_head *bh) 3227 { 3228 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3229 kmem_cache_free(bh_cachep, bh); 3230 preempt_disable(); 3231 __this_cpu_dec(bh_accounting.nr); 3232 recalc_bh_state(); 3233 preempt_enable(); 3234 } 3235 EXPORT_SYMBOL(free_buffer_head); 3236 3237 static void buffer_exit_cpu(int cpu) 3238 { 3239 int i; 3240 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3241 3242 for (i = 0; i < BH_LRU_SIZE; i++) { 3243 brelse(b->bhs[i]); 3244 b->bhs[i] = NULL; 3245 } 3246 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3247 per_cpu(bh_accounting, cpu).nr = 0; 3248 } 3249 3250 static int buffer_cpu_notify(struct notifier_block *self, 3251 unsigned long action, void *hcpu) 3252 { 3253 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3254 buffer_exit_cpu((unsigned long)hcpu); 3255 return NOTIFY_OK; 3256 } 3257 3258 /** 3259 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3260 * @bh: struct buffer_head 3261 * 3262 * Return true if the buffer is up-to-date and false, 3263 * with the buffer locked, if not. 3264 */ 3265 int bh_uptodate_or_lock(struct buffer_head *bh) 3266 { 3267 if (!buffer_uptodate(bh)) { 3268 lock_buffer(bh); 3269 if (!buffer_uptodate(bh)) 3270 return 0; 3271 unlock_buffer(bh); 3272 } 3273 return 1; 3274 } 3275 EXPORT_SYMBOL(bh_uptodate_or_lock); 3276 3277 /** 3278 * bh_submit_read - Submit a locked buffer for reading 3279 * @bh: struct buffer_head 3280 * 3281 * Returns zero on success and -EIO on error. 3282 */ 3283 int bh_submit_read(struct buffer_head *bh) 3284 { 3285 BUG_ON(!buffer_locked(bh)); 3286 3287 if (buffer_uptodate(bh)) { 3288 unlock_buffer(bh); 3289 return 0; 3290 } 3291 3292 get_bh(bh); 3293 bh->b_end_io = end_buffer_read_sync; 3294 submit_bh(READ, bh); 3295 wait_on_buffer(bh); 3296 if (buffer_uptodate(bh)) 3297 return 0; 3298 return -EIO; 3299 } 3300 EXPORT_SYMBOL(bh_submit_read); 3301 3302 void __init buffer_init(void) 3303 { 3304 int nrpages; 3305 3306 bh_cachep = kmem_cache_create("buffer_head", 3307 sizeof(struct buffer_head), 0, 3308 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3309 SLAB_MEM_SPREAD), 3310 NULL); 3311 3312 /* 3313 * Limit the bh occupancy to 10% of ZONE_NORMAL 3314 */ 3315 nrpages = (nr_free_buffer_pages() * 10) / 100; 3316 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3317 hotcpu_notifier(buffer_cpu_notify, 0); 3318 } 3319