xref: /linux/fs/buffer.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 static int sync_buffer(void *word)
58 {
59 	struct block_device *bd;
60 	struct buffer_head *bh
61 		= container_of(word, struct buffer_head, b_state);
62 
63 	smp_mb();
64 	bd = bh->b_bdev;
65 	if (bd)
66 		blk_run_address_space(bd->bd_inode->i_mapping);
67 	io_schedule();
68 	return 0;
69 }
70 
71 void __lock_buffer(struct buffer_head *bh)
72 {
73 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 							TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77 
78 void unlock_buffer(struct buffer_head *bh)
79 {
80 	clear_bit_unlock(BH_Lock, &bh->b_state);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 EXPORT_SYMBOL(unlock_buffer);
85 
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95 EXPORT_SYMBOL(__wait_on_buffer);
96 
97 static void
98 __clear_page_buffers(struct page *page)
99 {
100 	ClearPagePrivate(page);
101 	set_page_private(page, 0);
102 	page_cache_release(page);
103 }
104 
105 
106 static int quiet_error(struct buffer_head *bh)
107 {
108 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109 		return 0;
110 	return 1;
111 }
112 
113 
114 static void buffer_io_error(struct buffer_head *bh)
115 {
116 	char b[BDEVNAME_SIZE];
117 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118 			bdevname(bh->b_bdev, b),
119 			(unsigned long long)bh->b_blocknr);
120 }
121 
122 /*
123  * End-of-IO handler helper function which does not touch the bh after
124  * unlocking it.
125  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126  * a race there is benign: unlock_buffer() only use the bh's address for
127  * hashing after unlocking the buffer, so it doesn't actually touch the bh
128  * itself.
129  */
130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
131 {
132 	if (uptodate) {
133 		set_buffer_uptodate(bh);
134 	} else {
135 		/* This happens, due to failed READA attempts. */
136 		clear_buffer_uptodate(bh);
137 	}
138 	unlock_buffer(bh);
139 }
140 
141 /*
142  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
143  * unlock the buffer. This is what ll_rw_block uses too.
144  */
145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146 {
147 	__end_buffer_read_notouch(bh, uptodate);
148 	put_bh(bh);
149 }
150 EXPORT_SYMBOL(end_buffer_read_sync);
151 
152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153 {
154 	char b[BDEVNAME_SIZE];
155 
156 	if (uptodate) {
157 		set_buffer_uptodate(bh);
158 	} else {
159 		if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
160 			buffer_io_error(bh);
161 			printk(KERN_WARNING "lost page write due to "
162 					"I/O error on %s\n",
163 				       bdevname(bh->b_bdev, b));
164 		}
165 		set_buffer_write_io_error(bh);
166 		clear_buffer_uptodate(bh);
167 	}
168 	unlock_buffer(bh);
169 	put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_write_sync);
172 
173 /*
174  * Various filesystems appear to want __find_get_block to be non-blocking.
175  * But it's the page lock which protects the buffers.  To get around this,
176  * we get exclusion from try_to_free_buffers with the blockdev mapping's
177  * private_lock.
178  *
179  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180  * may be quite high.  This code could TryLock the page, and if that
181  * succeeds, there is no need to take private_lock. (But if
182  * private_lock is contended then so is mapping->tree_lock).
183  */
184 static struct buffer_head *
185 __find_get_block_slow(struct block_device *bdev, sector_t block)
186 {
187 	struct inode *bd_inode = bdev->bd_inode;
188 	struct address_space *bd_mapping = bd_inode->i_mapping;
189 	struct buffer_head *ret = NULL;
190 	pgoff_t index;
191 	struct buffer_head *bh;
192 	struct buffer_head *head;
193 	struct page *page;
194 	int all_mapped = 1;
195 
196 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197 	page = find_get_page(bd_mapping, index);
198 	if (!page)
199 		goto out;
200 
201 	spin_lock(&bd_mapping->private_lock);
202 	if (!page_has_buffers(page))
203 		goto out_unlock;
204 	head = page_buffers(page);
205 	bh = head;
206 	do {
207 		if (!buffer_mapped(bh))
208 			all_mapped = 0;
209 		else if (bh->b_blocknr == block) {
210 			ret = bh;
211 			get_bh(bh);
212 			goto out_unlock;
213 		}
214 		bh = bh->b_this_page;
215 	} while (bh != head);
216 
217 	/* we might be here because some of the buffers on this page are
218 	 * not mapped.  This is due to various races between
219 	 * file io on the block device and getblk.  It gets dealt with
220 	 * elsewhere, don't buffer_error if we had some unmapped buffers
221 	 */
222 	if (all_mapped) {
223 		printk("__find_get_block_slow() failed. "
224 			"block=%llu, b_blocknr=%llu\n",
225 			(unsigned long long)block,
226 			(unsigned long long)bh->b_blocknr);
227 		printk("b_state=0x%08lx, b_size=%zu\n",
228 			bh->b_state, bh->b_size);
229 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230 	}
231 out_unlock:
232 	spin_unlock(&bd_mapping->private_lock);
233 	page_cache_release(page);
234 out:
235 	return ret;
236 }
237 
238 /* If invalidate_buffers() will trash dirty buffers, it means some kind
239    of fs corruption is going on. Trashing dirty data always imply losing
240    information that was supposed to be just stored on the physical layer
241    by the user.
242 
243    Thus invalidate_buffers in general usage is not allwowed to trash
244    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245    be preserved.  These buffers are simply skipped.
246 
247    We also skip buffers which are still in use.  For example this can
248    happen if a userspace program is reading the block device.
249 
250    NOTE: In the case where the user removed a removable-media-disk even if
251    there's still dirty data not synced on disk (due a bug in the device driver
252    or due an error of the user), by not destroying the dirty buffers we could
253    generate corruption also on the next media inserted, thus a parameter is
254    necessary to handle this case in the most safe way possible (trying
255    to not corrupt also the new disk inserted with the data belonging to
256    the old now corrupted disk). Also for the ramdisk the natural thing
257    to do in order to release the ramdisk memory is to destroy dirty buffers.
258 
259    These are two special cases. Normal usage imply the device driver
260    to issue a sync on the device (without waiting I/O completion) and
261    then an invalidate_buffers call that doesn't trash dirty buffers.
262 
263    For handling cache coherency with the blkdev pagecache the 'update' case
264    is been introduced. It is needed to re-read from disk any pinned
265    buffer. NOTE: re-reading from disk is destructive so we can do it only
266    when we assume nobody is changing the buffercache under our I/O and when
267    we think the disk contains more recent information than the buffercache.
268    The update == 1 pass marks the buffers we need to update, the update == 2
269    pass does the actual I/O. */
270 void invalidate_bdev(struct block_device *bdev)
271 {
272 	struct address_space *mapping = bdev->bd_inode->i_mapping;
273 
274 	if (mapping->nrpages == 0)
275 		return;
276 
277 	invalidate_bh_lrus();
278 	lru_add_drain_all();	/* make sure all lru add caches are flushed */
279 	invalidate_mapping_pages(mapping, 0, -1);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282 
283 /*
284  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285  */
286 static void free_more_memory(void)
287 {
288 	struct zone *zone;
289 	int nid;
290 
291 	wakeup_flusher_threads(1024);
292 	yield();
293 
294 	for_each_online_node(nid) {
295 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296 						gfp_zone(GFP_NOFS), NULL,
297 						&zone);
298 		if (zone)
299 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300 						GFP_NOFS, NULL);
301 	}
302 }
303 
304 /*
305  * I/O completion handler for block_read_full_page() - pages
306  * which come unlocked at the end of I/O.
307  */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310 	unsigned long flags;
311 	struct buffer_head *first;
312 	struct buffer_head *tmp;
313 	struct page *page;
314 	int page_uptodate = 1;
315 
316 	BUG_ON(!buffer_async_read(bh));
317 
318 	page = bh->b_page;
319 	if (uptodate) {
320 		set_buffer_uptodate(bh);
321 	} else {
322 		clear_buffer_uptodate(bh);
323 		if (!quiet_error(bh))
324 			buffer_io_error(bh);
325 		SetPageError(page);
326 	}
327 
328 	/*
329 	 * Be _very_ careful from here on. Bad things can happen if
330 	 * two buffer heads end IO at almost the same time and both
331 	 * decide that the page is now completely done.
332 	 */
333 	first = page_buffers(page);
334 	local_irq_save(flags);
335 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336 	clear_buffer_async_read(bh);
337 	unlock_buffer(bh);
338 	tmp = bh;
339 	do {
340 		if (!buffer_uptodate(tmp))
341 			page_uptodate = 0;
342 		if (buffer_async_read(tmp)) {
343 			BUG_ON(!buffer_locked(tmp));
344 			goto still_busy;
345 		}
346 		tmp = tmp->b_this_page;
347 	} while (tmp != bh);
348 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349 	local_irq_restore(flags);
350 
351 	/*
352 	 * If none of the buffers had errors and they are all
353 	 * uptodate then we can set the page uptodate.
354 	 */
355 	if (page_uptodate && !PageError(page))
356 		SetPageUptodate(page);
357 	unlock_page(page);
358 	return;
359 
360 still_busy:
361 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362 	local_irq_restore(flags);
363 	return;
364 }
365 
366 /*
367  * Completion handler for block_write_full_page() - pages which are unlocked
368  * during I/O, and which have PageWriteback cleared upon I/O completion.
369  */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372 	char b[BDEVNAME_SIZE];
373 	unsigned long flags;
374 	struct buffer_head *first;
375 	struct buffer_head *tmp;
376 	struct page *page;
377 
378 	BUG_ON(!buffer_async_write(bh));
379 
380 	page = bh->b_page;
381 	if (uptodate) {
382 		set_buffer_uptodate(bh);
383 	} else {
384 		if (!quiet_error(bh)) {
385 			buffer_io_error(bh);
386 			printk(KERN_WARNING "lost page write due to "
387 					"I/O error on %s\n",
388 			       bdevname(bh->b_bdev, b));
389 		}
390 		set_bit(AS_EIO, &page->mapping->flags);
391 		set_buffer_write_io_error(bh);
392 		clear_buffer_uptodate(bh);
393 		SetPageError(page);
394 	}
395 
396 	first = page_buffers(page);
397 	local_irq_save(flags);
398 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399 
400 	clear_buffer_async_write(bh);
401 	unlock_buffer(bh);
402 	tmp = bh->b_this_page;
403 	while (tmp != bh) {
404 		if (buffer_async_write(tmp)) {
405 			BUG_ON(!buffer_locked(tmp));
406 			goto still_busy;
407 		}
408 		tmp = tmp->b_this_page;
409 	}
410 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411 	local_irq_restore(flags);
412 	end_page_writeback(page);
413 	return;
414 
415 still_busy:
416 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417 	local_irq_restore(flags);
418 	return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421 
422 /*
423  * If a page's buffers are under async readin (end_buffer_async_read
424  * completion) then there is a possibility that another thread of
425  * control could lock one of the buffers after it has completed
426  * but while some of the other buffers have not completed.  This
427  * locked buffer would confuse end_buffer_async_read() into not unlocking
428  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
429  * that this buffer is not under async I/O.
430  *
431  * The page comes unlocked when it has no locked buffer_async buffers
432  * left.
433  *
434  * PageLocked prevents anyone starting new async I/O reads any of
435  * the buffers.
436  *
437  * PageWriteback is used to prevent simultaneous writeout of the same
438  * page.
439  *
440  * PageLocked prevents anyone from starting writeback of a page which is
441  * under read I/O (PageWriteback is only ever set against a locked page).
442  */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445 	bh->b_end_io = end_buffer_async_read;
446 	set_buffer_async_read(bh);
447 }
448 
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450 					  bh_end_io_t *handler)
451 {
452 	bh->b_end_io = handler;
453 	set_buffer_async_write(bh);
454 }
455 
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461 
462 
463 /*
464  * fs/buffer.c contains helper functions for buffer-backed address space's
465  * fsync functions.  A common requirement for buffer-based filesystems is
466  * that certain data from the backing blockdev needs to be written out for
467  * a successful fsync().  For example, ext2 indirect blocks need to be
468  * written back and waited upon before fsync() returns.
469  *
470  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472  * management of a list of dependent buffers at ->i_mapping->private_list.
473  *
474  * Locking is a little subtle: try_to_free_buffers() will remove buffers
475  * from their controlling inode's queue when they are being freed.  But
476  * try_to_free_buffers() will be operating against the *blockdev* mapping
477  * at the time, not against the S_ISREG file which depends on those buffers.
478  * So the locking for private_list is via the private_lock in the address_space
479  * which backs the buffers.  Which is different from the address_space
480  * against which the buffers are listed.  So for a particular address_space,
481  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
482  * mapping->private_list will always be protected by the backing blockdev's
483  * ->private_lock.
484  *
485  * Which introduces a requirement: all buffers on an address_space's
486  * ->private_list must be from the same address_space: the blockdev's.
487  *
488  * address_spaces which do not place buffers at ->private_list via these
489  * utility functions are free to use private_lock and private_list for
490  * whatever they want.  The only requirement is that list_empty(private_list)
491  * be true at clear_inode() time.
492  *
493  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
494  * filesystems should do that.  invalidate_inode_buffers() should just go
495  * BUG_ON(!list_empty).
496  *
497  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
498  * take an address_space, not an inode.  And it should be called
499  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500  * queued up.
501  *
502  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503  * list if it is already on a list.  Because if the buffer is on a list,
504  * it *must* already be on the right one.  If not, the filesystem is being
505  * silly.  This will save a ton of locking.  But first we have to ensure
506  * that buffers are taken *off* the old inode's list when they are freed
507  * (presumably in truncate).  That requires careful auditing of all
508  * filesystems (do it inside bforget()).  It could also be done by bringing
509  * b_inode back.
510  */
511 
512 /*
513  * The buffer's backing address_space's private_lock must be held
514  */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517 	list_del_init(&bh->b_assoc_buffers);
518 	WARN_ON(!bh->b_assoc_map);
519 	if (buffer_write_io_error(bh))
520 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
521 	bh->b_assoc_map = NULL;
522 }
523 
524 int inode_has_buffers(struct inode *inode)
525 {
526 	return !list_empty(&inode->i_data.private_list);
527 }
528 
529 /*
530  * osync is designed to support O_SYNC io.  It waits synchronously for
531  * all already-submitted IO to complete, but does not queue any new
532  * writes to the disk.
533  *
534  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535  * you dirty the buffers, and then use osync_inode_buffers to wait for
536  * completion.  Any other dirty buffers which are not yet queued for
537  * write will not be flushed to disk by the osync.
538  */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541 	struct buffer_head *bh;
542 	struct list_head *p;
543 	int err = 0;
544 
545 	spin_lock(lock);
546 repeat:
547 	list_for_each_prev(p, list) {
548 		bh = BH_ENTRY(p);
549 		if (buffer_locked(bh)) {
550 			get_bh(bh);
551 			spin_unlock(lock);
552 			wait_on_buffer(bh);
553 			if (!buffer_uptodate(bh))
554 				err = -EIO;
555 			brelse(bh);
556 			spin_lock(lock);
557 			goto repeat;
558 		}
559 	}
560 	spin_unlock(lock);
561 	return err;
562 }
563 
564 static void do_thaw_one(struct super_block *sb, void *unused)
565 {
566 	char b[BDEVNAME_SIZE];
567 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 		printk(KERN_WARNING "Emergency Thaw on %s\n",
569 		       bdevname(sb->s_bdev, b));
570 }
571 
572 static void do_thaw_all(struct work_struct *work)
573 {
574 	iterate_supers(do_thaw_one, NULL);
575 	kfree(work);
576 	printk(KERN_WARNING "Emergency Thaw complete\n");
577 }
578 
579 /**
580  * emergency_thaw_all -- forcibly thaw every frozen filesystem
581  *
582  * Used for emergency unfreeze of all filesystems via SysRq
583  */
584 void emergency_thaw_all(void)
585 {
586 	struct work_struct *work;
587 
588 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
589 	if (work) {
590 		INIT_WORK(work, do_thaw_all);
591 		schedule_work(work);
592 	}
593 }
594 
595 /**
596  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597  * @mapping: the mapping which wants those buffers written
598  *
599  * Starts I/O against the buffers at mapping->private_list, and waits upon
600  * that I/O.
601  *
602  * Basically, this is a convenience function for fsync().
603  * @mapping is a file or directory which needs those buffers to be written for
604  * a successful fsync().
605  */
606 int sync_mapping_buffers(struct address_space *mapping)
607 {
608 	struct address_space *buffer_mapping = mapping->assoc_mapping;
609 
610 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611 		return 0;
612 
613 	return fsync_buffers_list(&buffer_mapping->private_lock,
614 					&mapping->private_list);
615 }
616 EXPORT_SYMBOL(sync_mapping_buffers);
617 
618 /*
619  * Called when we've recently written block `bblock', and it is known that
620  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
621  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
622  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
623  */
624 void write_boundary_block(struct block_device *bdev,
625 			sector_t bblock, unsigned blocksize)
626 {
627 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628 	if (bh) {
629 		if (buffer_dirty(bh))
630 			ll_rw_block(WRITE, 1, &bh);
631 		put_bh(bh);
632 	}
633 }
634 
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 {
637 	struct address_space *mapping = inode->i_mapping;
638 	struct address_space *buffer_mapping = bh->b_page->mapping;
639 
640 	mark_buffer_dirty(bh);
641 	if (!mapping->assoc_mapping) {
642 		mapping->assoc_mapping = buffer_mapping;
643 	} else {
644 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
645 	}
646 	if (!bh->b_assoc_map) {
647 		spin_lock(&buffer_mapping->private_lock);
648 		list_move_tail(&bh->b_assoc_buffers,
649 				&mapping->private_list);
650 		bh->b_assoc_map = mapping;
651 		spin_unlock(&buffer_mapping->private_lock);
652 	}
653 }
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
655 
656 /*
657  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658  * dirty.
659  *
660  * If warn is true, then emit a warning if the page is not uptodate and has
661  * not been truncated.
662  */
663 static void __set_page_dirty(struct page *page,
664 		struct address_space *mapping, int warn)
665 {
666 	spin_lock_irq(&mapping->tree_lock);
667 	if (page->mapping) {	/* Race with truncate? */
668 		WARN_ON_ONCE(warn && !PageUptodate(page));
669 		account_page_dirtied(page, mapping);
670 		radix_tree_tag_set(&mapping->page_tree,
671 				page_index(page), PAGECACHE_TAG_DIRTY);
672 	}
673 	spin_unlock_irq(&mapping->tree_lock);
674 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675 }
676 
677 /*
678  * Add a page to the dirty page list.
679  *
680  * It is a sad fact of life that this function is called from several places
681  * deeply under spinlocking.  It may not sleep.
682  *
683  * If the page has buffers, the uptodate buffers are set dirty, to preserve
684  * dirty-state coherency between the page and the buffers.  It the page does
685  * not have buffers then when they are later attached they will all be set
686  * dirty.
687  *
688  * The buffers are dirtied before the page is dirtied.  There's a small race
689  * window in which a writepage caller may see the page cleanness but not the
690  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
691  * before the buffers, a concurrent writepage caller could clear the page dirty
692  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693  * page on the dirty page list.
694  *
695  * We use private_lock to lock against try_to_free_buffers while using the
696  * page's buffer list.  Also use this to protect against clean buffers being
697  * added to the page after it was set dirty.
698  *
699  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
700  * address_space though.
701  */
702 int __set_page_dirty_buffers(struct page *page)
703 {
704 	int newly_dirty;
705 	struct address_space *mapping = page_mapping(page);
706 
707 	if (unlikely(!mapping))
708 		return !TestSetPageDirty(page);
709 
710 	spin_lock(&mapping->private_lock);
711 	if (page_has_buffers(page)) {
712 		struct buffer_head *head = page_buffers(page);
713 		struct buffer_head *bh = head;
714 
715 		do {
716 			set_buffer_dirty(bh);
717 			bh = bh->b_this_page;
718 		} while (bh != head);
719 	}
720 	newly_dirty = !TestSetPageDirty(page);
721 	spin_unlock(&mapping->private_lock);
722 
723 	if (newly_dirty)
724 		__set_page_dirty(page, mapping, 1);
725 	return newly_dirty;
726 }
727 EXPORT_SYMBOL(__set_page_dirty_buffers);
728 
729 /*
730  * Write out and wait upon a list of buffers.
731  *
732  * We have conflicting pressures: we want to make sure that all
733  * initially dirty buffers get waited on, but that any subsequently
734  * dirtied buffers don't.  After all, we don't want fsync to last
735  * forever if somebody is actively writing to the file.
736  *
737  * Do this in two main stages: first we copy dirty buffers to a
738  * temporary inode list, queueing the writes as we go.  Then we clean
739  * up, waiting for those writes to complete.
740  *
741  * During this second stage, any subsequent updates to the file may end
742  * up refiling the buffer on the original inode's dirty list again, so
743  * there is a chance we will end up with a buffer queued for write but
744  * not yet completed on that list.  So, as a final cleanup we go through
745  * the osync code to catch these locked, dirty buffers without requeuing
746  * any newly dirty buffers for write.
747  */
748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749 {
750 	struct buffer_head *bh;
751 	struct list_head tmp;
752 	struct address_space *mapping, *prev_mapping = NULL;
753 	int err = 0, err2;
754 
755 	INIT_LIST_HEAD(&tmp);
756 
757 	spin_lock(lock);
758 	while (!list_empty(list)) {
759 		bh = BH_ENTRY(list->next);
760 		mapping = bh->b_assoc_map;
761 		__remove_assoc_queue(bh);
762 		/* Avoid race with mark_buffer_dirty_inode() which does
763 		 * a lockless check and we rely on seeing the dirty bit */
764 		smp_mb();
765 		if (buffer_dirty(bh) || buffer_locked(bh)) {
766 			list_add(&bh->b_assoc_buffers, &tmp);
767 			bh->b_assoc_map = mapping;
768 			if (buffer_dirty(bh)) {
769 				get_bh(bh);
770 				spin_unlock(lock);
771 				/*
772 				 * Ensure any pending I/O completes so that
773 				 * write_dirty_buffer() actually writes the
774 				 * current contents - it is a noop if I/O is
775 				 * still in flight on potentially older
776 				 * contents.
777 				 */
778 				write_dirty_buffer(bh, WRITE_SYNC_PLUG);
779 
780 				/*
781 				 * Kick off IO for the previous mapping. Note
782 				 * that we will not run the very last mapping,
783 				 * wait_on_buffer() will do that for us
784 				 * through sync_buffer().
785 				 */
786 				if (prev_mapping && prev_mapping != mapping)
787 					blk_run_address_space(prev_mapping);
788 				prev_mapping = mapping;
789 
790 				brelse(bh);
791 				spin_lock(lock);
792 			}
793 		}
794 	}
795 
796 	while (!list_empty(&tmp)) {
797 		bh = BH_ENTRY(tmp.prev);
798 		get_bh(bh);
799 		mapping = bh->b_assoc_map;
800 		__remove_assoc_queue(bh);
801 		/* Avoid race with mark_buffer_dirty_inode() which does
802 		 * a lockless check and we rely on seeing the dirty bit */
803 		smp_mb();
804 		if (buffer_dirty(bh)) {
805 			list_add(&bh->b_assoc_buffers,
806 				 &mapping->private_list);
807 			bh->b_assoc_map = mapping;
808 		}
809 		spin_unlock(lock);
810 		wait_on_buffer(bh);
811 		if (!buffer_uptodate(bh))
812 			err = -EIO;
813 		brelse(bh);
814 		spin_lock(lock);
815 	}
816 
817 	spin_unlock(lock);
818 	err2 = osync_buffers_list(lock, list);
819 	if (err)
820 		return err;
821 	else
822 		return err2;
823 }
824 
825 /*
826  * Invalidate any and all dirty buffers on a given inode.  We are
827  * probably unmounting the fs, but that doesn't mean we have already
828  * done a sync().  Just drop the buffers from the inode list.
829  *
830  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
831  * assumes that all the buffers are against the blockdev.  Not true
832  * for reiserfs.
833  */
834 void invalidate_inode_buffers(struct inode *inode)
835 {
836 	if (inode_has_buffers(inode)) {
837 		struct address_space *mapping = &inode->i_data;
838 		struct list_head *list = &mapping->private_list;
839 		struct address_space *buffer_mapping = mapping->assoc_mapping;
840 
841 		spin_lock(&buffer_mapping->private_lock);
842 		while (!list_empty(list))
843 			__remove_assoc_queue(BH_ENTRY(list->next));
844 		spin_unlock(&buffer_mapping->private_lock);
845 	}
846 }
847 EXPORT_SYMBOL(invalidate_inode_buffers);
848 
849 /*
850  * Remove any clean buffers from the inode's buffer list.  This is called
851  * when we're trying to free the inode itself.  Those buffers can pin it.
852  *
853  * Returns true if all buffers were removed.
854  */
855 int remove_inode_buffers(struct inode *inode)
856 {
857 	int ret = 1;
858 
859 	if (inode_has_buffers(inode)) {
860 		struct address_space *mapping = &inode->i_data;
861 		struct list_head *list = &mapping->private_list;
862 		struct address_space *buffer_mapping = mapping->assoc_mapping;
863 
864 		spin_lock(&buffer_mapping->private_lock);
865 		while (!list_empty(list)) {
866 			struct buffer_head *bh = BH_ENTRY(list->next);
867 			if (buffer_dirty(bh)) {
868 				ret = 0;
869 				break;
870 			}
871 			__remove_assoc_queue(bh);
872 		}
873 		spin_unlock(&buffer_mapping->private_lock);
874 	}
875 	return ret;
876 }
877 
878 /*
879  * Create the appropriate buffers when given a page for data area and
880  * the size of each buffer.. Use the bh->b_this_page linked list to
881  * follow the buffers created.  Return NULL if unable to create more
882  * buffers.
883  *
884  * The retry flag is used to differentiate async IO (paging, swapping)
885  * which may not fail from ordinary buffer allocations.
886  */
887 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
888 		int retry)
889 {
890 	struct buffer_head *bh, *head;
891 	long offset;
892 
893 try_again:
894 	head = NULL;
895 	offset = PAGE_SIZE;
896 	while ((offset -= size) >= 0) {
897 		bh = alloc_buffer_head(GFP_NOFS);
898 		if (!bh)
899 			goto no_grow;
900 
901 		bh->b_bdev = NULL;
902 		bh->b_this_page = head;
903 		bh->b_blocknr = -1;
904 		head = bh;
905 
906 		bh->b_state = 0;
907 		atomic_set(&bh->b_count, 0);
908 		bh->b_private = NULL;
909 		bh->b_size = size;
910 
911 		/* Link the buffer to its page */
912 		set_bh_page(bh, page, offset);
913 
914 		init_buffer(bh, NULL, NULL);
915 	}
916 	return head;
917 /*
918  * In case anything failed, we just free everything we got.
919  */
920 no_grow:
921 	if (head) {
922 		do {
923 			bh = head;
924 			head = head->b_this_page;
925 			free_buffer_head(bh);
926 		} while (head);
927 	}
928 
929 	/*
930 	 * Return failure for non-async IO requests.  Async IO requests
931 	 * are not allowed to fail, so we have to wait until buffer heads
932 	 * become available.  But we don't want tasks sleeping with
933 	 * partially complete buffers, so all were released above.
934 	 */
935 	if (!retry)
936 		return NULL;
937 
938 	/* We're _really_ low on memory. Now we just
939 	 * wait for old buffer heads to become free due to
940 	 * finishing IO.  Since this is an async request and
941 	 * the reserve list is empty, we're sure there are
942 	 * async buffer heads in use.
943 	 */
944 	free_more_memory();
945 	goto try_again;
946 }
947 EXPORT_SYMBOL_GPL(alloc_page_buffers);
948 
949 static inline void
950 link_dev_buffers(struct page *page, struct buffer_head *head)
951 {
952 	struct buffer_head *bh, *tail;
953 
954 	bh = head;
955 	do {
956 		tail = bh;
957 		bh = bh->b_this_page;
958 	} while (bh);
959 	tail->b_this_page = head;
960 	attach_page_buffers(page, head);
961 }
962 
963 /*
964  * Initialise the state of a blockdev page's buffers.
965  */
966 static void
967 init_page_buffers(struct page *page, struct block_device *bdev,
968 			sector_t block, int size)
969 {
970 	struct buffer_head *head = page_buffers(page);
971 	struct buffer_head *bh = head;
972 	int uptodate = PageUptodate(page);
973 
974 	do {
975 		if (!buffer_mapped(bh)) {
976 			init_buffer(bh, NULL, NULL);
977 			bh->b_bdev = bdev;
978 			bh->b_blocknr = block;
979 			if (uptodate)
980 				set_buffer_uptodate(bh);
981 			set_buffer_mapped(bh);
982 		}
983 		block++;
984 		bh = bh->b_this_page;
985 	} while (bh != head);
986 }
987 
988 /*
989  * Create the page-cache page that contains the requested block.
990  *
991  * This is user purely for blockdev mappings.
992  */
993 static struct page *
994 grow_dev_page(struct block_device *bdev, sector_t block,
995 		pgoff_t index, int size)
996 {
997 	struct inode *inode = bdev->bd_inode;
998 	struct page *page;
999 	struct buffer_head *bh;
1000 
1001 	page = find_or_create_page(inode->i_mapping, index,
1002 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1003 	if (!page)
1004 		return NULL;
1005 
1006 	BUG_ON(!PageLocked(page));
1007 
1008 	if (page_has_buffers(page)) {
1009 		bh = page_buffers(page);
1010 		if (bh->b_size == size) {
1011 			init_page_buffers(page, bdev, block, size);
1012 			return page;
1013 		}
1014 		if (!try_to_free_buffers(page))
1015 			goto failed;
1016 	}
1017 
1018 	/*
1019 	 * Allocate some buffers for this page
1020 	 */
1021 	bh = alloc_page_buffers(page, size, 0);
1022 	if (!bh)
1023 		goto failed;
1024 
1025 	/*
1026 	 * Link the page to the buffers and initialise them.  Take the
1027 	 * lock to be atomic wrt __find_get_block(), which does not
1028 	 * run under the page lock.
1029 	 */
1030 	spin_lock(&inode->i_mapping->private_lock);
1031 	link_dev_buffers(page, bh);
1032 	init_page_buffers(page, bdev, block, size);
1033 	spin_unlock(&inode->i_mapping->private_lock);
1034 	return page;
1035 
1036 failed:
1037 	BUG();
1038 	unlock_page(page);
1039 	page_cache_release(page);
1040 	return NULL;
1041 }
1042 
1043 /*
1044  * Create buffers for the specified block device block's page.  If
1045  * that page was dirty, the buffers are set dirty also.
1046  */
1047 static int
1048 grow_buffers(struct block_device *bdev, sector_t block, int size)
1049 {
1050 	struct page *page;
1051 	pgoff_t index;
1052 	int sizebits;
1053 
1054 	sizebits = -1;
1055 	do {
1056 		sizebits++;
1057 	} while ((size << sizebits) < PAGE_SIZE);
1058 
1059 	index = block >> sizebits;
1060 
1061 	/*
1062 	 * Check for a block which wants to lie outside our maximum possible
1063 	 * pagecache index.  (this comparison is done using sector_t types).
1064 	 */
1065 	if (unlikely(index != block >> sizebits)) {
1066 		char b[BDEVNAME_SIZE];
1067 
1068 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1069 			"device %s\n",
1070 			__func__, (unsigned long long)block,
1071 			bdevname(bdev, b));
1072 		return -EIO;
1073 	}
1074 	block = index << sizebits;
1075 	/* Create a page with the proper size buffers.. */
1076 	page = grow_dev_page(bdev, block, index, size);
1077 	if (!page)
1078 		return 0;
1079 	unlock_page(page);
1080 	page_cache_release(page);
1081 	return 1;
1082 }
1083 
1084 static struct buffer_head *
1085 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1086 {
1087 	/* Size must be multiple of hard sectorsize */
1088 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1089 			(size < 512 || size > PAGE_SIZE))) {
1090 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1091 					size);
1092 		printk(KERN_ERR "logical block size: %d\n",
1093 					bdev_logical_block_size(bdev));
1094 
1095 		dump_stack();
1096 		return NULL;
1097 	}
1098 
1099 	for (;;) {
1100 		struct buffer_head * bh;
1101 		int ret;
1102 
1103 		bh = __find_get_block(bdev, block, size);
1104 		if (bh)
1105 			return bh;
1106 
1107 		ret = grow_buffers(bdev, block, size);
1108 		if (ret < 0)
1109 			return NULL;
1110 		if (ret == 0)
1111 			free_more_memory();
1112 	}
1113 }
1114 
1115 /*
1116  * The relationship between dirty buffers and dirty pages:
1117  *
1118  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1119  * the page is tagged dirty in its radix tree.
1120  *
1121  * At all times, the dirtiness of the buffers represents the dirtiness of
1122  * subsections of the page.  If the page has buffers, the page dirty bit is
1123  * merely a hint about the true dirty state.
1124  *
1125  * When a page is set dirty in its entirety, all its buffers are marked dirty
1126  * (if the page has buffers).
1127  *
1128  * When a buffer is marked dirty, its page is dirtied, but the page's other
1129  * buffers are not.
1130  *
1131  * Also.  When blockdev buffers are explicitly read with bread(), they
1132  * individually become uptodate.  But their backing page remains not
1133  * uptodate - even if all of its buffers are uptodate.  A subsequent
1134  * block_read_full_page() against that page will discover all the uptodate
1135  * buffers, will set the page uptodate and will perform no I/O.
1136  */
1137 
1138 /**
1139  * mark_buffer_dirty - mark a buffer_head as needing writeout
1140  * @bh: the buffer_head to mark dirty
1141  *
1142  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1143  * backing page dirty, then tag the page as dirty in its address_space's radix
1144  * tree and then attach the address_space's inode to its superblock's dirty
1145  * inode list.
1146  *
1147  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1148  * mapping->tree_lock and the global inode_lock.
1149  */
1150 void mark_buffer_dirty(struct buffer_head *bh)
1151 {
1152 	WARN_ON_ONCE(!buffer_uptodate(bh));
1153 
1154 	/*
1155 	 * Very *carefully* optimize the it-is-already-dirty case.
1156 	 *
1157 	 * Don't let the final "is it dirty" escape to before we
1158 	 * perhaps modified the buffer.
1159 	 */
1160 	if (buffer_dirty(bh)) {
1161 		smp_mb();
1162 		if (buffer_dirty(bh))
1163 			return;
1164 	}
1165 
1166 	if (!test_set_buffer_dirty(bh)) {
1167 		struct page *page = bh->b_page;
1168 		if (!TestSetPageDirty(page)) {
1169 			struct address_space *mapping = page_mapping(page);
1170 			if (mapping)
1171 				__set_page_dirty(page, mapping, 0);
1172 		}
1173 	}
1174 }
1175 EXPORT_SYMBOL(mark_buffer_dirty);
1176 
1177 /*
1178  * Decrement a buffer_head's reference count.  If all buffers against a page
1179  * have zero reference count, are clean and unlocked, and if the page is clean
1180  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1181  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1182  * a page but it ends up not being freed, and buffers may later be reattached).
1183  */
1184 void __brelse(struct buffer_head * buf)
1185 {
1186 	if (atomic_read(&buf->b_count)) {
1187 		put_bh(buf);
1188 		return;
1189 	}
1190 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1191 }
1192 EXPORT_SYMBOL(__brelse);
1193 
1194 /*
1195  * bforget() is like brelse(), except it discards any
1196  * potentially dirty data.
1197  */
1198 void __bforget(struct buffer_head *bh)
1199 {
1200 	clear_buffer_dirty(bh);
1201 	if (bh->b_assoc_map) {
1202 		struct address_space *buffer_mapping = bh->b_page->mapping;
1203 
1204 		spin_lock(&buffer_mapping->private_lock);
1205 		list_del_init(&bh->b_assoc_buffers);
1206 		bh->b_assoc_map = NULL;
1207 		spin_unlock(&buffer_mapping->private_lock);
1208 	}
1209 	__brelse(bh);
1210 }
1211 EXPORT_SYMBOL(__bforget);
1212 
1213 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1214 {
1215 	lock_buffer(bh);
1216 	if (buffer_uptodate(bh)) {
1217 		unlock_buffer(bh);
1218 		return bh;
1219 	} else {
1220 		get_bh(bh);
1221 		bh->b_end_io = end_buffer_read_sync;
1222 		submit_bh(READ, bh);
1223 		wait_on_buffer(bh);
1224 		if (buffer_uptodate(bh))
1225 			return bh;
1226 	}
1227 	brelse(bh);
1228 	return NULL;
1229 }
1230 
1231 /*
1232  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1233  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1234  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1235  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1236  * CPU's LRUs at the same time.
1237  *
1238  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1239  * sb_find_get_block().
1240  *
1241  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1242  * a local interrupt disable for that.
1243  */
1244 
1245 #define BH_LRU_SIZE	8
1246 
1247 struct bh_lru {
1248 	struct buffer_head *bhs[BH_LRU_SIZE];
1249 };
1250 
1251 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1252 
1253 #ifdef CONFIG_SMP
1254 #define bh_lru_lock()	local_irq_disable()
1255 #define bh_lru_unlock()	local_irq_enable()
1256 #else
1257 #define bh_lru_lock()	preempt_disable()
1258 #define bh_lru_unlock()	preempt_enable()
1259 #endif
1260 
1261 static inline void check_irqs_on(void)
1262 {
1263 #ifdef irqs_disabled
1264 	BUG_ON(irqs_disabled());
1265 #endif
1266 }
1267 
1268 /*
1269  * The LRU management algorithm is dopey-but-simple.  Sorry.
1270  */
1271 static void bh_lru_install(struct buffer_head *bh)
1272 {
1273 	struct buffer_head *evictee = NULL;
1274 	struct bh_lru *lru;
1275 
1276 	check_irqs_on();
1277 	bh_lru_lock();
1278 	lru = &__get_cpu_var(bh_lrus);
1279 	if (lru->bhs[0] != bh) {
1280 		struct buffer_head *bhs[BH_LRU_SIZE];
1281 		int in;
1282 		int out = 0;
1283 
1284 		get_bh(bh);
1285 		bhs[out++] = bh;
1286 		for (in = 0; in < BH_LRU_SIZE; in++) {
1287 			struct buffer_head *bh2 = lru->bhs[in];
1288 
1289 			if (bh2 == bh) {
1290 				__brelse(bh2);
1291 			} else {
1292 				if (out >= BH_LRU_SIZE) {
1293 					BUG_ON(evictee != NULL);
1294 					evictee = bh2;
1295 				} else {
1296 					bhs[out++] = bh2;
1297 				}
1298 			}
1299 		}
1300 		while (out < BH_LRU_SIZE)
1301 			bhs[out++] = NULL;
1302 		memcpy(lru->bhs, bhs, sizeof(bhs));
1303 	}
1304 	bh_lru_unlock();
1305 
1306 	if (evictee)
1307 		__brelse(evictee);
1308 }
1309 
1310 /*
1311  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1312  */
1313 static struct buffer_head *
1314 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1315 {
1316 	struct buffer_head *ret = NULL;
1317 	struct bh_lru *lru;
1318 	unsigned int i;
1319 
1320 	check_irqs_on();
1321 	bh_lru_lock();
1322 	lru = &__get_cpu_var(bh_lrus);
1323 	for (i = 0; i < BH_LRU_SIZE; i++) {
1324 		struct buffer_head *bh = lru->bhs[i];
1325 
1326 		if (bh && bh->b_bdev == bdev &&
1327 				bh->b_blocknr == block && bh->b_size == size) {
1328 			if (i) {
1329 				while (i) {
1330 					lru->bhs[i] = lru->bhs[i - 1];
1331 					i--;
1332 				}
1333 				lru->bhs[0] = bh;
1334 			}
1335 			get_bh(bh);
1336 			ret = bh;
1337 			break;
1338 		}
1339 	}
1340 	bh_lru_unlock();
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1346  * it in the LRU and mark it as accessed.  If it is not present then return
1347  * NULL
1348  */
1349 struct buffer_head *
1350 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1351 {
1352 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1353 
1354 	if (bh == NULL) {
1355 		bh = __find_get_block_slow(bdev, block);
1356 		if (bh)
1357 			bh_lru_install(bh);
1358 	}
1359 	if (bh)
1360 		touch_buffer(bh);
1361 	return bh;
1362 }
1363 EXPORT_SYMBOL(__find_get_block);
1364 
1365 /*
1366  * __getblk will locate (and, if necessary, create) the buffer_head
1367  * which corresponds to the passed block_device, block and size. The
1368  * returned buffer has its reference count incremented.
1369  *
1370  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1371  * illegal block number, __getblk() will happily return a buffer_head
1372  * which represents the non-existent block.  Very weird.
1373  *
1374  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1375  * attempt is failing.  FIXME, perhaps?
1376  */
1377 struct buffer_head *
1378 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1379 {
1380 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1381 
1382 	might_sleep();
1383 	if (bh == NULL)
1384 		bh = __getblk_slow(bdev, block, size);
1385 	return bh;
1386 }
1387 EXPORT_SYMBOL(__getblk);
1388 
1389 /*
1390  * Do async read-ahead on a buffer..
1391  */
1392 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1393 {
1394 	struct buffer_head *bh = __getblk(bdev, block, size);
1395 	if (likely(bh)) {
1396 		ll_rw_block(READA, 1, &bh);
1397 		brelse(bh);
1398 	}
1399 }
1400 EXPORT_SYMBOL(__breadahead);
1401 
1402 /**
1403  *  __bread() - reads a specified block and returns the bh
1404  *  @bdev: the block_device to read from
1405  *  @block: number of block
1406  *  @size: size (in bytes) to read
1407  *
1408  *  Reads a specified block, and returns buffer head that contains it.
1409  *  It returns NULL if the block was unreadable.
1410  */
1411 struct buffer_head *
1412 __bread(struct block_device *bdev, sector_t block, unsigned size)
1413 {
1414 	struct buffer_head *bh = __getblk(bdev, block, size);
1415 
1416 	if (likely(bh) && !buffer_uptodate(bh))
1417 		bh = __bread_slow(bh);
1418 	return bh;
1419 }
1420 EXPORT_SYMBOL(__bread);
1421 
1422 /*
1423  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1424  * This doesn't race because it runs in each cpu either in irq
1425  * or with preempt disabled.
1426  */
1427 static void invalidate_bh_lru(void *arg)
1428 {
1429 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1430 	int i;
1431 
1432 	for (i = 0; i < BH_LRU_SIZE; i++) {
1433 		brelse(b->bhs[i]);
1434 		b->bhs[i] = NULL;
1435 	}
1436 	put_cpu_var(bh_lrus);
1437 }
1438 
1439 void invalidate_bh_lrus(void)
1440 {
1441 	on_each_cpu(invalidate_bh_lru, NULL, 1);
1442 }
1443 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1444 
1445 void set_bh_page(struct buffer_head *bh,
1446 		struct page *page, unsigned long offset)
1447 {
1448 	bh->b_page = page;
1449 	BUG_ON(offset >= PAGE_SIZE);
1450 	if (PageHighMem(page))
1451 		/*
1452 		 * This catches illegal uses and preserves the offset:
1453 		 */
1454 		bh->b_data = (char *)(0 + offset);
1455 	else
1456 		bh->b_data = page_address(page) + offset;
1457 }
1458 EXPORT_SYMBOL(set_bh_page);
1459 
1460 /*
1461  * Called when truncating a buffer on a page completely.
1462  */
1463 static void discard_buffer(struct buffer_head * bh)
1464 {
1465 	lock_buffer(bh);
1466 	clear_buffer_dirty(bh);
1467 	bh->b_bdev = NULL;
1468 	clear_buffer_mapped(bh);
1469 	clear_buffer_req(bh);
1470 	clear_buffer_new(bh);
1471 	clear_buffer_delay(bh);
1472 	clear_buffer_unwritten(bh);
1473 	unlock_buffer(bh);
1474 }
1475 
1476 /**
1477  * block_invalidatepage - invalidate part of all of a buffer-backed page
1478  *
1479  * @page: the page which is affected
1480  * @offset: the index of the truncation point
1481  *
1482  * block_invalidatepage() is called when all or part of the page has become
1483  * invalidatedby a truncate operation.
1484  *
1485  * block_invalidatepage() does not have to release all buffers, but it must
1486  * ensure that no dirty buffer is left outside @offset and that no I/O
1487  * is underway against any of the blocks which are outside the truncation
1488  * point.  Because the caller is about to free (and possibly reuse) those
1489  * blocks on-disk.
1490  */
1491 void block_invalidatepage(struct page *page, unsigned long offset)
1492 {
1493 	struct buffer_head *head, *bh, *next;
1494 	unsigned int curr_off = 0;
1495 
1496 	BUG_ON(!PageLocked(page));
1497 	if (!page_has_buffers(page))
1498 		goto out;
1499 
1500 	head = page_buffers(page);
1501 	bh = head;
1502 	do {
1503 		unsigned int next_off = curr_off + bh->b_size;
1504 		next = bh->b_this_page;
1505 
1506 		/*
1507 		 * is this block fully invalidated?
1508 		 */
1509 		if (offset <= curr_off)
1510 			discard_buffer(bh);
1511 		curr_off = next_off;
1512 		bh = next;
1513 	} while (bh != head);
1514 
1515 	/*
1516 	 * We release buffers only if the entire page is being invalidated.
1517 	 * The get_block cached value has been unconditionally invalidated,
1518 	 * so real IO is not possible anymore.
1519 	 */
1520 	if (offset == 0)
1521 		try_to_release_page(page, 0);
1522 out:
1523 	return;
1524 }
1525 EXPORT_SYMBOL(block_invalidatepage);
1526 
1527 /*
1528  * We attach and possibly dirty the buffers atomically wrt
1529  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1530  * is already excluded via the page lock.
1531  */
1532 void create_empty_buffers(struct page *page,
1533 			unsigned long blocksize, unsigned long b_state)
1534 {
1535 	struct buffer_head *bh, *head, *tail;
1536 
1537 	head = alloc_page_buffers(page, blocksize, 1);
1538 	bh = head;
1539 	do {
1540 		bh->b_state |= b_state;
1541 		tail = bh;
1542 		bh = bh->b_this_page;
1543 	} while (bh);
1544 	tail->b_this_page = head;
1545 
1546 	spin_lock(&page->mapping->private_lock);
1547 	if (PageUptodate(page) || PageDirty(page)) {
1548 		bh = head;
1549 		do {
1550 			if (PageDirty(page))
1551 				set_buffer_dirty(bh);
1552 			if (PageUptodate(page))
1553 				set_buffer_uptodate(bh);
1554 			bh = bh->b_this_page;
1555 		} while (bh != head);
1556 	}
1557 	attach_page_buffers(page, head);
1558 	spin_unlock(&page->mapping->private_lock);
1559 }
1560 EXPORT_SYMBOL(create_empty_buffers);
1561 
1562 /*
1563  * We are taking a block for data and we don't want any output from any
1564  * buffer-cache aliases starting from return from that function and
1565  * until the moment when something will explicitly mark the buffer
1566  * dirty (hopefully that will not happen until we will free that block ;-)
1567  * We don't even need to mark it not-uptodate - nobody can expect
1568  * anything from a newly allocated buffer anyway. We used to used
1569  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1570  * don't want to mark the alias unmapped, for example - it would confuse
1571  * anyone who might pick it with bread() afterwards...
1572  *
1573  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1574  * be writeout I/O going on against recently-freed buffers.  We don't
1575  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1576  * only if we really need to.  That happens here.
1577  */
1578 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1579 {
1580 	struct buffer_head *old_bh;
1581 
1582 	might_sleep();
1583 
1584 	old_bh = __find_get_block_slow(bdev, block);
1585 	if (old_bh) {
1586 		clear_buffer_dirty(old_bh);
1587 		wait_on_buffer(old_bh);
1588 		clear_buffer_req(old_bh);
1589 		__brelse(old_bh);
1590 	}
1591 }
1592 EXPORT_SYMBOL(unmap_underlying_metadata);
1593 
1594 /*
1595  * NOTE! All mapped/uptodate combinations are valid:
1596  *
1597  *	Mapped	Uptodate	Meaning
1598  *
1599  *	No	No		"unknown" - must do get_block()
1600  *	No	Yes		"hole" - zero-filled
1601  *	Yes	No		"allocated" - allocated on disk, not read in
1602  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1603  *
1604  * "Dirty" is valid only with the last case (mapped+uptodate).
1605  */
1606 
1607 /*
1608  * While block_write_full_page is writing back the dirty buffers under
1609  * the page lock, whoever dirtied the buffers may decide to clean them
1610  * again at any time.  We handle that by only looking at the buffer
1611  * state inside lock_buffer().
1612  *
1613  * If block_write_full_page() is called for regular writeback
1614  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1615  * locked buffer.   This only can happen if someone has written the buffer
1616  * directly, with submit_bh().  At the address_space level PageWriteback
1617  * prevents this contention from occurring.
1618  *
1619  * If block_write_full_page() is called with wbc->sync_mode ==
1620  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1621  * causes the writes to be flagged as synchronous writes, but the
1622  * block device queue will NOT be unplugged, since usually many pages
1623  * will be pushed to the out before the higher-level caller actually
1624  * waits for the writes to be completed.  The various wait functions,
1625  * such as wait_on_writeback_range() will ultimately call sync_page()
1626  * which will ultimately call blk_run_backing_dev(), which will end up
1627  * unplugging the device queue.
1628  */
1629 static int __block_write_full_page(struct inode *inode, struct page *page,
1630 			get_block_t *get_block, struct writeback_control *wbc,
1631 			bh_end_io_t *handler)
1632 {
1633 	int err;
1634 	sector_t block;
1635 	sector_t last_block;
1636 	struct buffer_head *bh, *head;
1637 	const unsigned blocksize = 1 << inode->i_blkbits;
1638 	int nr_underway = 0;
1639 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1640 			WRITE_SYNC_PLUG : WRITE);
1641 
1642 	BUG_ON(!PageLocked(page));
1643 
1644 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1645 
1646 	if (!page_has_buffers(page)) {
1647 		create_empty_buffers(page, blocksize,
1648 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1649 	}
1650 
1651 	/*
1652 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1653 	 * here, and the (potentially unmapped) buffers may become dirty at
1654 	 * any time.  If a buffer becomes dirty here after we've inspected it
1655 	 * then we just miss that fact, and the page stays dirty.
1656 	 *
1657 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1658 	 * handle that here by just cleaning them.
1659 	 */
1660 
1661 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1662 	head = page_buffers(page);
1663 	bh = head;
1664 
1665 	/*
1666 	 * Get all the dirty buffers mapped to disk addresses and
1667 	 * handle any aliases from the underlying blockdev's mapping.
1668 	 */
1669 	do {
1670 		if (block > last_block) {
1671 			/*
1672 			 * mapped buffers outside i_size will occur, because
1673 			 * this page can be outside i_size when there is a
1674 			 * truncate in progress.
1675 			 */
1676 			/*
1677 			 * The buffer was zeroed by block_write_full_page()
1678 			 */
1679 			clear_buffer_dirty(bh);
1680 			set_buffer_uptodate(bh);
1681 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1682 			   buffer_dirty(bh)) {
1683 			WARN_ON(bh->b_size != blocksize);
1684 			err = get_block(inode, block, bh, 1);
1685 			if (err)
1686 				goto recover;
1687 			clear_buffer_delay(bh);
1688 			if (buffer_new(bh)) {
1689 				/* blockdev mappings never come here */
1690 				clear_buffer_new(bh);
1691 				unmap_underlying_metadata(bh->b_bdev,
1692 							bh->b_blocknr);
1693 			}
1694 		}
1695 		bh = bh->b_this_page;
1696 		block++;
1697 	} while (bh != head);
1698 
1699 	do {
1700 		if (!buffer_mapped(bh))
1701 			continue;
1702 		/*
1703 		 * If it's a fully non-blocking write attempt and we cannot
1704 		 * lock the buffer then redirty the page.  Note that this can
1705 		 * potentially cause a busy-wait loop from writeback threads
1706 		 * and kswapd activity, but those code paths have their own
1707 		 * higher-level throttling.
1708 		 */
1709 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1710 			lock_buffer(bh);
1711 		} else if (!trylock_buffer(bh)) {
1712 			redirty_page_for_writepage(wbc, page);
1713 			continue;
1714 		}
1715 		if (test_clear_buffer_dirty(bh)) {
1716 			mark_buffer_async_write_endio(bh, handler);
1717 		} else {
1718 			unlock_buffer(bh);
1719 		}
1720 	} while ((bh = bh->b_this_page) != head);
1721 
1722 	/*
1723 	 * The page and its buffers are protected by PageWriteback(), so we can
1724 	 * drop the bh refcounts early.
1725 	 */
1726 	BUG_ON(PageWriteback(page));
1727 	set_page_writeback(page);
1728 
1729 	do {
1730 		struct buffer_head *next = bh->b_this_page;
1731 		if (buffer_async_write(bh)) {
1732 			submit_bh(write_op, bh);
1733 			nr_underway++;
1734 		}
1735 		bh = next;
1736 	} while (bh != head);
1737 	unlock_page(page);
1738 
1739 	err = 0;
1740 done:
1741 	if (nr_underway == 0) {
1742 		/*
1743 		 * The page was marked dirty, but the buffers were
1744 		 * clean.  Someone wrote them back by hand with
1745 		 * ll_rw_block/submit_bh.  A rare case.
1746 		 */
1747 		end_page_writeback(page);
1748 
1749 		/*
1750 		 * The page and buffer_heads can be released at any time from
1751 		 * here on.
1752 		 */
1753 	}
1754 	return err;
1755 
1756 recover:
1757 	/*
1758 	 * ENOSPC, or some other error.  We may already have added some
1759 	 * blocks to the file, so we need to write these out to avoid
1760 	 * exposing stale data.
1761 	 * The page is currently locked and not marked for writeback
1762 	 */
1763 	bh = head;
1764 	/* Recovery: lock and submit the mapped buffers */
1765 	do {
1766 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1767 		    !buffer_delay(bh)) {
1768 			lock_buffer(bh);
1769 			mark_buffer_async_write_endio(bh, handler);
1770 		} else {
1771 			/*
1772 			 * The buffer may have been set dirty during
1773 			 * attachment to a dirty page.
1774 			 */
1775 			clear_buffer_dirty(bh);
1776 		}
1777 	} while ((bh = bh->b_this_page) != head);
1778 	SetPageError(page);
1779 	BUG_ON(PageWriteback(page));
1780 	mapping_set_error(page->mapping, err);
1781 	set_page_writeback(page);
1782 	do {
1783 		struct buffer_head *next = bh->b_this_page;
1784 		if (buffer_async_write(bh)) {
1785 			clear_buffer_dirty(bh);
1786 			submit_bh(write_op, bh);
1787 			nr_underway++;
1788 		}
1789 		bh = next;
1790 	} while (bh != head);
1791 	unlock_page(page);
1792 	goto done;
1793 }
1794 
1795 /*
1796  * If a page has any new buffers, zero them out here, and mark them uptodate
1797  * and dirty so they'll be written out (in order to prevent uninitialised
1798  * block data from leaking). And clear the new bit.
1799  */
1800 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1801 {
1802 	unsigned int block_start, block_end;
1803 	struct buffer_head *head, *bh;
1804 
1805 	BUG_ON(!PageLocked(page));
1806 	if (!page_has_buffers(page))
1807 		return;
1808 
1809 	bh = head = page_buffers(page);
1810 	block_start = 0;
1811 	do {
1812 		block_end = block_start + bh->b_size;
1813 
1814 		if (buffer_new(bh)) {
1815 			if (block_end > from && block_start < to) {
1816 				if (!PageUptodate(page)) {
1817 					unsigned start, size;
1818 
1819 					start = max(from, block_start);
1820 					size = min(to, block_end) - start;
1821 
1822 					zero_user(page, start, size);
1823 					set_buffer_uptodate(bh);
1824 				}
1825 
1826 				clear_buffer_new(bh);
1827 				mark_buffer_dirty(bh);
1828 			}
1829 		}
1830 
1831 		block_start = block_end;
1832 		bh = bh->b_this_page;
1833 	} while (bh != head);
1834 }
1835 EXPORT_SYMBOL(page_zero_new_buffers);
1836 
1837 int block_prepare_write(struct page *page, unsigned from, unsigned to,
1838 		get_block_t *get_block)
1839 {
1840 	struct inode *inode = page->mapping->host;
1841 	unsigned block_start, block_end;
1842 	sector_t block;
1843 	int err = 0;
1844 	unsigned blocksize, bbits;
1845 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1846 
1847 	BUG_ON(!PageLocked(page));
1848 	BUG_ON(from > PAGE_CACHE_SIZE);
1849 	BUG_ON(to > PAGE_CACHE_SIZE);
1850 	BUG_ON(from > to);
1851 
1852 	blocksize = 1 << inode->i_blkbits;
1853 	if (!page_has_buffers(page))
1854 		create_empty_buffers(page, blocksize, 0);
1855 	head = page_buffers(page);
1856 
1857 	bbits = inode->i_blkbits;
1858 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1859 
1860 	for(bh = head, block_start = 0; bh != head || !block_start;
1861 	    block++, block_start=block_end, bh = bh->b_this_page) {
1862 		block_end = block_start + blocksize;
1863 		if (block_end <= from || block_start >= to) {
1864 			if (PageUptodate(page)) {
1865 				if (!buffer_uptodate(bh))
1866 					set_buffer_uptodate(bh);
1867 			}
1868 			continue;
1869 		}
1870 		if (buffer_new(bh))
1871 			clear_buffer_new(bh);
1872 		if (!buffer_mapped(bh)) {
1873 			WARN_ON(bh->b_size != blocksize);
1874 			err = get_block(inode, block, bh, 1);
1875 			if (err)
1876 				break;
1877 			if (buffer_new(bh)) {
1878 				unmap_underlying_metadata(bh->b_bdev,
1879 							bh->b_blocknr);
1880 				if (PageUptodate(page)) {
1881 					clear_buffer_new(bh);
1882 					set_buffer_uptodate(bh);
1883 					mark_buffer_dirty(bh);
1884 					continue;
1885 				}
1886 				if (block_end > to || block_start < from)
1887 					zero_user_segments(page,
1888 						to, block_end,
1889 						block_start, from);
1890 				continue;
1891 			}
1892 		}
1893 		if (PageUptodate(page)) {
1894 			if (!buffer_uptodate(bh))
1895 				set_buffer_uptodate(bh);
1896 			continue;
1897 		}
1898 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1899 		    !buffer_unwritten(bh) &&
1900 		     (block_start < from || block_end > to)) {
1901 			ll_rw_block(READ, 1, &bh);
1902 			*wait_bh++=bh;
1903 		}
1904 	}
1905 	/*
1906 	 * If we issued read requests - let them complete.
1907 	 */
1908 	while(wait_bh > wait) {
1909 		wait_on_buffer(*--wait_bh);
1910 		if (!buffer_uptodate(*wait_bh))
1911 			err = -EIO;
1912 	}
1913 	if (unlikely(err)) {
1914 		page_zero_new_buffers(page, from, to);
1915 		ClearPageUptodate(page);
1916 	}
1917 	return err;
1918 }
1919 EXPORT_SYMBOL(block_prepare_write);
1920 
1921 static int __block_commit_write(struct inode *inode, struct page *page,
1922 		unsigned from, unsigned to)
1923 {
1924 	unsigned block_start, block_end;
1925 	int partial = 0;
1926 	unsigned blocksize;
1927 	struct buffer_head *bh, *head;
1928 
1929 	blocksize = 1 << inode->i_blkbits;
1930 
1931 	for(bh = head = page_buffers(page), block_start = 0;
1932 	    bh != head || !block_start;
1933 	    block_start=block_end, bh = bh->b_this_page) {
1934 		block_end = block_start + blocksize;
1935 		if (block_end <= from || block_start >= to) {
1936 			if (!buffer_uptodate(bh))
1937 				partial = 1;
1938 		} else {
1939 			set_buffer_uptodate(bh);
1940 			mark_buffer_dirty(bh);
1941 		}
1942 		clear_buffer_new(bh);
1943 	}
1944 
1945 	/*
1946 	 * If this is a partial write which happened to make all buffers
1947 	 * uptodate then we can optimize away a bogus readpage() for
1948 	 * the next read(). Here we 'discover' whether the page went
1949 	 * uptodate as a result of this (potentially partial) write.
1950 	 */
1951 	if (!partial)
1952 		SetPageUptodate(page);
1953 	return 0;
1954 }
1955 
1956 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1957 		get_block_t *get_block)
1958 {
1959 	unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1960 
1961 	return block_prepare_write(page, start, start + len, get_block);
1962 }
1963 EXPORT_SYMBOL(__block_write_begin);
1964 
1965 /*
1966  * block_write_begin takes care of the basic task of block allocation and
1967  * bringing partial write blocks uptodate first.
1968  *
1969  * The filesystem needs to handle block truncation upon failure.
1970  */
1971 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1972 		unsigned flags, struct page **pagep, get_block_t *get_block)
1973 {
1974 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1975 	struct page *page;
1976 	int status;
1977 
1978 	page = grab_cache_page_write_begin(mapping, index, flags);
1979 	if (!page)
1980 		return -ENOMEM;
1981 
1982 	status = __block_write_begin(page, pos, len, get_block);
1983 	if (unlikely(status)) {
1984 		unlock_page(page);
1985 		page_cache_release(page);
1986 		page = NULL;
1987 	}
1988 
1989 	*pagep = page;
1990 	return status;
1991 }
1992 EXPORT_SYMBOL(block_write_begin);
1993 
1994 int block_write_end(struct file *file, struct address_space *mapping,
1995 			loff_t pos, unsigned len, unsigned copied,
1996 			struct page *page, void *fsdata)
1997 {
1998 	struct inode *inode = mapping->host;
1999 	unsigned start;
2000 
2001 	start = pos & (PAGE_CACHE_SIZE - 1);
2002 
2003 	if (unlikely(copied < len)) {
2004 		/*
2005 		 * The buffers that were written will now be uptodate, so we
2006 		 * don't have to worry about a readpage reading them and
2007 		 * overwriting a partial write. However if we have encountered
2008 		 * a short write and only partially written into a buffer, it
2009 		 * will not be marked uptodate, so a readpage might come in and
2010 		 * destroy our partial write.
2011 		 *
2012 		 * Do the simplest thing, and just treat any short write to a
2013 		 * non uptodate page as a zero-length write, and force the
2014 		 * caller to redo the whole thing.
2015 		 */
2016 		if (!PageUptodate(page))
2017 			copied = 0;
2018 
2019 		page_zero_new_buffers(page, start+copied, start+len);
2020 	}
2021 	flush_dcache_page(page);
2022 
2023 	/* This could be a short (even 0-length) commit */
2024 	__block_commit_write(inode, page, start, start+copied);
2025 
2026 	return copied;
2027 }
2028 EXPORT_SYMBOL(block_write_end);
2029 
2030 int generic_write_end(struct file *file, struct address_space *mapping,
2031 			loff_t pos, unsigned len, unsigned copied,
2032 			struct page *page, void *fsdata)
2033 {
2034 	struct inode *inode = mapping->host;
2035 	int i_size_changed = 0;
2036 
2037 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2038 
2039 	/*
2040 	 * No need to use i_size_read() here, the i_size
2041 	 * cannot change under us because we hold i_mutex.
2042 	 *
2043 	 * But it's important to update i_size while still holding page lock:
2044 	 * page writeout could otherwise come in and zero beyond i_size.
2045 	 */
2046 	if (pos+copied > inode->i_size) {
2047 		i_size_write(inode, pos+copied);
2048 		i_size_changed = 1;
2049 	}
2050 
2051 	unlock_page(page);
2052 	page_cache_release(page);
2053 
2054 	/*
2055 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2056 	 * makes the holding time of page lock longer. Second, it forces lock
2057 	 * ordering of page lock and transaction start for journaling
2058 	 * filesystems.
2059 	 */
2060 	if (i_size_changed)
2061 		mark_inode_dirty(inode);
2062 
2063 	return copied;
2064 }
2065 EXPORT_SYMBOL(generic_write_end);
2066 
2067 /*
2068  * block_is_partially_uptodate checks whether buffers within a page are
2069  * uptodate or not.
2070  *
2071  * Returns true if all buffers which correspond to a file portion
2072  * we want to read are uptodate.
2073  */
2074 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2075 					unsigned long from)
2076 {
2077 	struct inode *inode = page->mapping->host;
2078 	unsigned block_start, block_end, blocksize;
2079 	unsigned to;
2080 	struct buffer_head *bh, *head;
2081 	int ret = 1;
2082 
2083 	if (!page_has_buffers(page))
2084 		return 0;
2085 
2086 	blocksize = 1 << inode->i_blkbits;
2087 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2088 	to = from + to;
2089 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2090 		return 0;
2091 
2092 	head = page_buffers(page);
2093 	bh = head;
2094 	block_start = 0;
2095 	do {
2096 		block_end = block_start + blocksize;
2097 		if (block_end > from && block_start < to) {
2098 			if (!buffer_uptodate(bh)) {
2099 				ret = 0;
2100 				break;
2101 			}
2102 			if (block_end >= to)
2103 				break;
2104 		}
2105 		block_start = block_end;
2106 		bh = bh->b_this_page;
2107 	} while (bh != head);
2108 
2109 	return ret;
2110 }
2111 EXPORT_SYMBOL(block_is_partially_uptodate);
2112 
2113 /*
2114  * Generic "read page" function for block devices that have the normal
2115  * get_block functionality. This is most of the block device filesystems.
2116  * Reads the page asynchronously --- the unlock_buffer() and
2117  * set/clear_buffer_uptodate() functions propagate buffer state into the
2118  * page struct once IO has completed.
2119  */
2120 int block_read_full_page(struct page *page, get_block_t *get_block)
2121 {
2122 	struct inode *inode = page->mapping->host;
2123 	sector_t iblock, lblock;
2124 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2125 	unsigned int blocksize;
2126 	int nr, i;
2127 	int fully_mapped = 1;
2128 
2129 	BUG_ON(!PageLocked(page));
2130 	blocksize = 1 << inode->i_blkbits;
2131 	if (!page_has_buffers(page))
2132 		create_empty_buffers(page, blocksize, 0);
2133 	head = page_buffers(page);
2134 
2135 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2136 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2137 	bh = head;
2138 	nr = 0;
2139 	i = 0;
2140 
2141 	do {
2142 		if (buffer_uptodate(bh))
2143 			continue;
2144 
2145 		if (!buffer_mapped(bh)) {
2146 			int err = 0;
2147 
2148 			fully_mapped = 0;
2149 			if (iblock < lblock) {
2150 				WARN_ON(bh->b_size != blocksize);
2151 				err = get_block(inode, iblock, bh, 0);
2152 				if (err)
2153 					SetPageError(page);
2154 			}
2155 			if (!buffer_mapped(bh)) {
2156 				zero_user(page, i * blocksize, blocksize);
2157 				if (!err)
2158 					set_buffer_uptodate(bh);
2159 				continue;
2160 			}
2161 			/*
2162 			 * get_block() might have updated the buffer
2163 			 * synchronously
2164 			 */
2165 			if (buffer_uptodate(bh))
2166 				continue;
2167 		}
2168 		arr[nr++] = bh;
2169 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2170 
2171 	if (fully_mapped)
2172 		SetPageMappedToDisk(page);
2173 
2174 	if (!nr) {
2175 		/*
2176 		 * All buffers are uptodate - we can set the page uptodate
2177 		 * as well. But not if get_block() returned an error.
2178 		 */
2179 		if (!PageError(page))
2180 			SetPageUptodate(page);
2181 		unlock_page(page);
2182 		return 0;
2183 	}
2184 
2185 	/* Stage two: lock the buffers */
2186 	for (i = 0; i < nr; i++) {
2187 		bh = arr[i];
2188 		lock_buffer(bh);
2189 		mark_buffer_async_read(bh);
2190 	}
2191 
2192 	/*
2193 	 * Stage 3: start the IO.  Check for uptodateness
2194 	 * inside the buffer lock in case another process reading
2195 	 * the underlying blockdev brought it uptodate (the sct fix).
2196 	 */
2197 	for (i = 0; i < nr; i++) {
2198 		bh = arr[i];
2199 		if (buffer_uptodate(bh))
2200 			end_buffer_async_read(bh, 1);
2201 		else
2202 			submit_bh(READ, bh);
2203 	}
2204 	return 0;
2205 }
2206 EXPORT_SYMBOL(block_read_full_page);
2207 
2208 /* utility function for filesystems that need to do work on expanding
2209  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2210  * deal with the hole.
2211  */
2212 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2213 {
2214 	struct address_space *mapping = inode->i_mapping;
2215 	struct page *page;
2216 	void *fsdata;
2217 	int err;
2218 
2219 	err = inode_newsize_ok(inode, size);
2220 	if (err)
2221 		goto out;
2222 
2223 	err = pagecache_write_begin(NULL, mapping, size, 0,
2224 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2225 				&page, &fsdata);
2226 	if (err)
2227 		goto out;
2228 
2229 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2230 	BUG_ON(err > 0);
2231 
2232 out:
2233 	return err;
2234 }
2235 EXPORT_SYMBOL(generic_cont_expand_simple);
2236 
2237 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2238 			    loff_t pos, loff_t *bytes)
2239 {
2240 	struct inode *inode = mapping->host;
2241 	unsigned blocksize = 1 << inode->i_blkbits;
2242 	struct page *page;
2243 	void *fsdata;
2244 	pgoff_t index, curidx;
2245 	loff_t curpos;
2246 	unsigned zerofrom, offset, len;
2247 	int err = 0;
2248 
2249 	index = pos >> PAGE_CACHE_SHIFT;
2250 	offset = pos & ~PAGE_CACHE_MASK;
2251 
2252 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2253 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2254 		if (zerofrom & (blocksize-1)) {
2255 			*bytes |= (blocksize-1);
2256 			(*bytes)++;
2257 		}
2258 		len = PAGE_CACHE_SIZE - zerofrom;
2259 
2260 		err = pagecache_write_begin(file, mapping, curpos, len,
2261 						AOP_FLAG_UNINTERRUPTIBLE,
2262 						&page, &fsdata);
2263 		if (err)
2264 			goto out;
2265 		zero_user(page, zerofrom, len);
2266 		err = pagecache_write_end(file, mapping, curpos, len, len,
2267 						page, fsdata);
2268 		if (err < 0)
2269 			goto out;
2270 		BUG_ON(err != len);
2271 		err = 0;
2272 
2273 		balance_dirty_pages_ratelimited(mapping);
2274 	}
2275 
2276 	/* page covers the boundary, find the boundary offset */
2277 	if (index == curidx) {
2278 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2279 		/* if we will expand the thing last block will be filled */
2280 		if (offset <= zerofrom) {
2281 			goto out;
2282 		}
2283 		if (zerofrom & (blocksize-1)) {
2284 			*bytes |= (blocksize-1);
2285 			(*bytes)++;
2286 		}
2287 		len = offset - zerofrom;
2288 
2289 		err = pagecache_write_begin(file, mapping, curpos, len,
2290 						AOP_FLAG_UNINTERRUPTIBLE,
2291 						&page, &fsdata);
2292 		if (err)
2293 			goto out;
2294 		zero_user(page, zerofrom, len);
2295 		err = pagecache_write_end(file, mapping, curpos, len, len,
2296 						page, fsdata);
2297 		if (err < 0)
2298 			goto out;
2299 		BUG_ON(err != len);
2300 		err = 0;
2301 	}
2302 out:
2303 	return err;
2304 }
2305 
2306 /*
2307  * For moronic filesystems that do not allow holes in file.
2308  * We may have to extend the file.
2309  */
2310 int cont_write_begin(struct file *file, struct address_space *mapping,
2311 			loff_t pos, unsigned len, unsigned flags,
2312 			struct page **pagep, void **fsdata,
2313 			get_block_t *get_block, loff_t *bytes)
2314 {
2315 	struct inode *inode = mapping->host;
2316 	unsigned blocksize = 1 << inode->i_blkbits;
2317 	unsigned zerofrom;
2318 	int err;
2319 
2320 	err = cont_expand_zero(file, mapping, pos, bytes);
2321 	if (err)
2322 		return err;
2323 
2324 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2325 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2326 		*bytes |= (blocksize-1);
2327 		(*bytes)++;
2328 	}
2329 
2330 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2331 }
2332 EXPORT_SYMBOL(cont_write_begin);
2333 
2334 int block_commit_write(struct page *page, unsigned from, unsigned to)
2335 {
2336 	struct inode *inode = page->mapping->host;
2337 	__block_commit_write(inode,page,from,to);
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL(block_commit_write);
2341 
2342 /*
2343  * block_page_mkwrite() is not allowed to change the file size as it gets
2344  * called from a page fault handler when a page is first dirtied. Hence we must
2345  * be careful to check for EOF conditions here. We set the page up correctly
2346  * for a written page which means we get ENOSPC checking when writing into
2347  * holes and correct delalloc and unwritten extent mapping on filesystems that
2348  * support these features.
2349  *
2350  * We are not allowed to take the i_mutex here so we have to play games to
2351  * protect against truncate races as the page could now be beyond EOF.  Because
2352  * truncate writes the inode size before removing pages, once we have the
2353  * page lock we can determine safely if the page is beyond EOF. If it is not
2354  * beyond EOF, then the page is guaranteed safe against truncation until we
2355  * unlock the page.
2356  */
2357 int
2358 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2359 		   get_block_t get_block)
2360 {
2361 	struct page *page = vmf->page;
2362 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2363 	unsigned long end;
2364 	loff_t size;
2365 	int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2366 
2367 	lock_page(page);
2368 	size = i_size_read(inode);
2369 	if ((page->mapping != inode->i_mapping) ||
2370 	    (page_offset(page) > size)) {
2371 		/* page got truncated out from underneath us */
2372 		unlock_page(page);
2373 		goto out;
2374 	}
2375 
2376 	/* page is wholly or partially inside EOF */
2377 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2378 		end = size & ~PAGE_CACHE_MASK;
2379 	else
2380 		end = PAGE_CACHE_SIZE;
2381 
2382 	ret = block_prepare_write(page, 0, end, get_block);
2383 	if (!ret)
2384 		ret = block_commit_write(page, 0, end);
2385 
2386 	if (unlikely(ret)) {
2387 		unlock_page(page);
2388 		if (ret == -ENOMEM)
2389 			ret = VM_FAULT_OOM;
2390 		else /* -ENOSPC, -EIO, etc */
2391 			ret = VM_FAULT_SIGBUS;
2392 	} else
2393 		ret = VM_FAULT_LOCKED;
2394 
2395 out:
2396 	return ret;
2397 }
2398 EXPORT_SYMBOL(block_page_mkwrite);
2399 
2400 /*
2401  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2402  * immediately, while under the page lock.  So it needs a special end_io
2403  * handler which does not touch the bh after unlocking it.
2404  */
2405 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2406 {
2407 	__end_buffer_read_notouch(bh, uptodate);
2408 }
2409 
2410 /*
2411  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2412  * the page (converting it to circular linked list and taking care of page
2413  * dirty races).
2414  */
2415 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2416 {
2417 	struct buffer_head *bh;
2418 
2419 	BUG_ON(!PageLocked(page));
2420 
2421 	spin_lock(&page->mapping->private_lock);
2422 	bh = head;
2423 	do {
2424 		if (PageDirty(page))
2425 			set_buffer_dirty(bh);
2426 		if (!bh->b_this_page)
2427 			bh->b_this_page = head;
2428 		bh = bh->b_this_page;
2429 	} while (bh != head);
2430 	attach_page_buffers(page, head);
2431 	spin_unlock(&page->mapping->private_lock);
2432 }
2433 
2434 /*
2435  * On entry, the page is fully not uptodate.
2436  * On exit the page is fully uptodate in the areas outside (from,to)
2437  * The filesystem needs to handle block truncation upon failure.
2438  */
2439 int nobh_write_begin(struct address_space *mapping,
2440 			loff_t pos, unsigned len, unsigned flags,
2441 			struct page **pagep, void **fsdata,
2442 			get_block_t *get_block)
2443 {
2444 	struct inode *inode = mapping->host;
2445 	const unsigned blkbits = inode->i_blkbits;
2446 	const unsigned blocksize = 1 << blkbits;
2447 	struct buffer_head *head, *bh;
2448 	struct page *page;
2449 	pgoff_t index;
2450 	unsigned from, to;
2451 	unsigned block_in_page;
2452 	unsigned block_start, block_end;
2453 	sector_t block_in_file;
2454 	int nr_reads = 0;
2455 	int ret = 0;
2456 	int is_mapped_to_disk = 1;
2457 
2458 	index = pos >> PAGE_CACHE_SHIFT;
2459 	from = pos & (PAGE_CACHE_SIZE - 1);
2460 	to = from + len;
2461 
2462 	page = grab_cache_page_write_begin(mapping, index, flags);
2463 	if (!page)
2464 		return -ENOMEM;
2465 	*pagep = page;
2466 	*fsdata = NULL;
2467 
2468 	if (page_has_buffers(page)) {
2469 		unlock_page(page);
2470 		page_cache_release(page);
2471 		*pagep = NULL;
2472 		return block_write_begin(mapping, pos, len, flags, pagep,
2473 					 get_block);
2474 	}
2475 
2476 	if (PageMappedToDisk(page))
2477 		return 0;
2478 
2479 	/*
2480 	 * Allocate buffers so that we can keep track of state, and potentially
2481 	 * attach them to the page if an error occurs. In the common case of
2482 	 * no error, they will just be freed again without ever being attached
2483 	 * to the page (which is all OK, because we're under the page lock).
2484 	 *
2485 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2486 	 * than the circular one we're used to.
2487 	 */
2488 	head = alloc_page_buffers(page, blocksize, 0);
2489 	if (!head) {
2490 		ret = -ENOMEM;
2491 		goto out_release;
2492 	}
2493 
2494 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2495 
2496 	/*
2497 	 * We loop across all blocks in the page, whether or not they are
2498 	 * part of the affected region.  This is so we can discover if the
2499 	 * page is fully mapped-to-disk.
2500 	 */
2501 	for (block_start = 0, block_in_page = 0, bh = head;
2502 		  block_start < PAGE_CACHE_SIZE;
2503 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2504 		int create;
2505 
2506 		block_end = block_start + blocksize;
2507 		bh->b_state = 0;
2508 		create = 1;
2509 		if (block_start >= to)
2510 			create = 0;
2511 		ret = get_block(inode, block_in_file + block_in_page,
2512 					bh, create);
2513 		if (ret)
2514 			goto failed;
2515 		if (!buffer_mapped(bh))
2516 			is_mapped_to_disk = 0;
2517 		if (buffer_new(bh))
2518 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2519 		if (PageUptodate(page)) {
2520 			set_buffer_uptodate(bh);
2521 			continue;
2522 		}
2523 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2524 			zero_user_segments(page, block_start, from,
2525 							to, block_end);
2526 			continue;
2527 		}
2528 		if (buffer_uptodate(bh))
2529 			continue;	/* reiserfs does this */
2530 		if (block_start < from || block_end > to) {
2531 			lock_buffer(bh);
2532 			bh->b_end_io = end_buffer_read_nobh;
2533 			submit_bh(READ, bh);
2534 			nr_reads++;
2535 		}
2536 	}
2537 
2538 	if (nr_reads) {
2539 		/*
2540 		 * The page is locked, so these buffers are protected from
2541 		 * any VM or truncate activity.  Hence we don't need to care
2542 		 * for the buffer_head refcounts.
2543 		 */
2544 		for (bh = head; bh; bh = bh->b_this_page) {
2545 			wait_on_buffer(bh);
2546 			if (!buffer_uptodate(bh))
2547 				ret = -EIO;
2548 		}
2549 		if (ret)
2550 			goto failed;
2551 	}
2552 
2553 	if (is_mapped_to_disk)
2554 		SetPageMappedToDisk(page);
2555 
2556 	*fsdata = head; /* to be released by nobh_write_end */
2557 
2558 	return 0;
2559 
2560 failed:
2561 	BUG_ON(!ret);
2562 	/*
2563 	 * Error recovery is a bit difficult. We need to zero out blocks that
2564 	 * were newly allocated, and dirty them to ensure they get written out.
2565 	 * Buffers need to be attached to the page at this point, otherwise
2566 	 * the handling of potential IO errors during writeout would be hard
2567 	 * (could try doing synchronous writeout, but what if that fails too?)
2568 	 */
2569 	attach_nobh_buffers(page, head);
2570 	page_zero_new_buffers(page, from, to);
2571 
2572 out_release:
2573 	unlock_page(page);
2574 	page_cache_release(page);
2575 	*pagep = NULL;
2576 
2577 	return ret;
2578 }
2579 EXPORT_SYMBOL(nobh_write_begin);
2580 
2581 int nobh_write_end(struct file *file, struct address_space *mapping,
2582 			loff_t pos, unsigned len, unsigned copied,
2583 			struct page *page, void *fsdata)
2584 {
2585 	struct inode *inode = page->mapping->host;
2586 	struct buffer_head *head = fsdata;
2587 	struct buffer_head *bh;
2588 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2589 
2590 	if (unlikely(copied < len) && head)
2591 		attach_nobh_buffers(page, head);
2592 	if (page_has_buffers(page))
2593 		return generic_write_end(file, mapping, pos, len,
2594 					copied, page, fsdata);
2595 
2596 	SetPageUptodate(page);
2597 	set_page_dirty(page);
2598 	if (pos+copied > inode->i_size) {
2599 		i_size_write(inode, pos+copied);
2600 		mark_inode_dirty(inode);
2601 	}
2602 
2603 	unlock_page(page);
2604 	page_cache_release(page);
2605 
2606 	while (head) {
2607 		bh = head;
2608 		head = head->b_this_page;
2609 		free_buffer_head(bh);
2610 	}
2611 
2612 	return copied;
2613 }
2614 EXPORT_SYMBOL(nobh_write_end);
2615 
2616 /*
2617  * nobh_writepage() - based on block_full_write_page() except
2618  * that it tries to operate without attaching bufferheads to
2619  * the page.
2620  */
2621 int nobh_writepage(struct page *page, get_block_t *get_block,
2622 			struct writeback_control *wbc)
2623 {
2624 	struct inode * const inode = page->mapping->host;
2625 	loff_t i_size = i_size_read(inode);
2626 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2627 	unsigned offset;
2628 	int ret;
2629 
2630 	/* Is the page fully inside i_size? */
2631 	if (page->index < end_index)
2632 		goto out;
2633 
2634 	/* Is the page fully outside i_size? (truncate in progress) */
2635 	offset = i_size & (PAGE_CACHE_SIZE-1);
2636 	if (page->index >= end_index+1 || !offset) {
2637 		/*
2638 		 * The page may have dirty, unmapped buffers.  For example,
2639 		 * they may have been added in ext3_writepage().  Make them
2640 		 * freeable here, so the page does not leak.
2641 		 */
2642 #if 0
2643 		/* Not really sure about this  - do we need this ? */
2644 		if (page->mapping->a_ops->invalidatepage)
2645 			page->mapping->a_ops->invalidatepage(page, offset);
2646 #endif
2647 		unlock_page(page);
2648 		return 0; /* don't care */
2649 	}
2650 
2651 	/*
2652 	 * The page straddles i_size.  It must be zeroed out on each and every
2653 	 * writepage invocation because it may be mmapped.  "A file is mapped
2654 	 * in multiples of the page size.  For a file that is not a multiple of
2655 	 * the  page size, the remaining memory is zeroed when mapped, and
2656 	 * writes to that region are not written out to the file."
2657 	 */
2658 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2659 out:
2660 	ret = mpage_writepage(page, get_block, wbc);
2661 	if (ret == -EAGAIN)
2662 		ret = __block_write_full_page(inode, page, get_block, wbc,
2663 					      end_buffer_async_write);
2664 	return ret;
2665 }
2666 EXPORT_SYMBOL(nobh_writepage);
2667 
2668 int nobh_truncate_page(struct address_space *mapping,
2669 			loff_t from, get_block_t *get_block)
2670 {
2671 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2672 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2673 	unsigned blocksize;
2674 	sector_t iblock;
2675 	unsigned length, pos;
2676 	struct inode *inode = mapping->host;
2677 	struct page *page;
2678 	struct buffer_head map_bh;
2679 	int err;
2680 
2681 	blocksize = 1 << inode->i_blkbits;
2682 	length = offset & (blocksize - 1);
2683 
2684 	/* Block boundary? Nothing to do */
2685 	if (!length)
2686 		return 0;
2687 
2688 	length = blocksize - length;
2689 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2690 
2691 	page = grab_cache_page(mapping, index);
2692 	err = -ENOMEM;
2693 	if (!page)
2694 		goto out;
2695 
2696 	if (page_has_buffers(page)) {
2697 has_buffers:
2698 		unlock_page(page);
2699 		page_cache_release(page);
2700 		return block_truncate_page(mapping, from, get_block);
2701 	}
2702 
2703 	/* Find the buffer that contains "offset" */
2704 	pos = blocksize;
2705 	while (offset >= pos) {
2706 		iblock++;
2707 		pos += blocksize;
2708 	}
2709 
2710 	map_bh.b_size = blocksize;
2711 	map_bh.b_state = 0;
2712 	err = get_block(inode, iblock, &map_bh, 0);
2713 	if (err)
2714 		goto unlock;
2715 	/* unmapped? It's a hole - nothing to do */
2716 	if (!buffer_mapped(&map_bh))
2717 		goto unlock;
2718 
2719 	/* Ok, it's mapped. Make sure it's up-to-date */
2720 	if (!PageUptodate(page)) {
2721 		err = mapping->a_ops->readpage(NULL, page);
2722 		if (err) {
2723 			page_cache_release(page);
2724 			goto out;
2725 		}
2726 		lock_page(page);
2727 		if (!PageUptodate(page)) {
2728 			err = -EIO;
2729 			goto unlock;
2730 		}
2731 		if (page_has_buffers(page))
2732 			goto has_buffers;
2733 	}
2734 	zero_user(page, offset, length);
2735 	set_page_dirty(page);
2736 	err = 0;
2737 
2738 unlock:
2739 	unlock_page(page);
2740 	page_cache_release(page);
2741 out:
2742 	return err;
2743 }
2744 EXPORT_SYMBOL(nobh_truncate_page);
2745 
2746 int block_truncate_page(struct address_space *mapping,
2747 			loff_t from, get_block_t *get_block)
2748 {
2749 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2750 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2751 	unsigned blocksize;
2752 	sector_t iblock;
2753 	unsigned length, pos;
2754 	struct inode *inode = mapping->host;
2755 	struct page *page;
2756 	struct buffer_head *bh;
2757 	int err;
2758 
2759 	blocksize = 1 << inode->i_blkbits;
2760 	length = offset & (blocksize - 1);
2761 
2762 	/* Block boundary? Nothing to do */
2763 	if (!length)
2764 		return 0;
2765 
2766 	length = blocksize - length;
2767 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2768 
2769 	page = grab_cache_page(mapping, index);
2770 	err = -ENOMEM;
2771 	if (!page)
2772 		goto out;
2773 
2774 	if (!page_has_buffers(page))
2775 		create_empty_buffers(page, blocksize, 0);
2776 
2777 	/* Find the buffer that contains "offset" */
2778 	bh = page_buffers(page);
2779 	pos = blocksize;
2780 	while (offset >= pos) {
2781 		bh = bh->b_this_page;
2782 		iblock++;
2783 		pos += blocksize;
2784 	}
2785 
2786 	err = 0;
2787 	if (!buffer_mapped(bh)) {
2788 		WARN_ON(bh->b_size != blocksize);
2789 		err = get_block(inode, iblock, bh, 0);
2790 		if (err)
2791 			goto unlock;
2792 		/* unmapped? It's a hole - nothing to do */
2793 		if (!buffer_mapped(bh))
2794 			goto unlock;
2795 	}
2796 
2797 	/* Ok, it's mapped. Make sure it's up-to-date */
2798 	if (PageUptodate(page))
2799 		set_buffer_uptodate(bh);
2800 
2801 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2802 		err = -EIO;
2803 		ll_rw_block(READ, 1, &bh);
2804 		wait_on_buffer(bh);
2805 		/* Uhhuh. Read error. Complain and punt. */
2806 		if (!buffer_uptodate(bh))
2807 			goto unlock;
2808 	}
2809 
2810 	zero_user(page, offset, length);
2811 	mark_buffer_dirty(bh);
2812 	err = 0;
2813 
2814 unlock:
2815 	unlock_page(page);
2816 	page_cache_release(page);
2817 out:
2818 	return err;
2819 }
2820 EXPORT_SYMBOL(block_truncate_page);
2821 
2822 /*
2823  * The generic ->writepage function for buffer-backed address_spaces
2824  * this form passes in the end_io handler used to finish the IO.
2825  */
2826 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2827 			struct writeback_control *wbc, bh_end_io_t *handler)
2828 {
2829 	struct inode * const inode = page->mapping->host;
2830 	loff_t i_size = i_size_read(inode);
2831 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2832 	unsigned offset;
2833 
2834 	/* Is the page fully inside i_size? */
2835 	if (page->index < end_index)
2836 		return __block_write_full_page(inode, page, get_block, wbc,
2837 					       handler);
2838 
2839 	/* Is the page fully outside i_size? (truncate in progress) */
2840 	offset = i_size & (PAGE_CACHE_SIZE-1);
2841 	if (page->index >= end_index+1 || !offset) {
2842 		/*
2843 		 * The page may have dirty, unmapped buffers.  For example,
2844 		 * they may have been added in ext3_writepage().  Make them
2845 		 * freeable here, so the page does not leak.
2846 		 */
2847 		do_invalidatepage(page, 0);
2848 		unlock_page(page);
2849 		return 0; /* don't care */
2850 	}
2851 
2852 	/*
2853 	 * The page straddles i_size.  It must be zeroed out on each and every
2854 	 * writepage invocation because it may be mmapped.  "A file is mapped
2855 	 * in multiples of the page size.  For a file that is not a multiple of
2856 	 * the  page size, the remaining memory is zeroed when mapped, and
2857 	 * writes to that region are not written out to the file."
2858 	 */
2859 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2860 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2861 }
2862 EXPORT_SYMBOL(block_write_full_page_endio);
2863 
2864 /*
2865  * The generic ->writepage function for buffer-backed address_spaces
2866  */
2867 int block_write_full_page(struct page *page, get_block_t *get_block,
2868 			struct writeback_control *wbc)
2869 {
2870 	return block_write_full_page_endio(page, get_block, wbc,
2871 					   end_buffer_async_write);
2872 }
2873 EXPORT_SYMBOL(block_write_full_page);
2874 
2875 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2876 			    get_block_t *get_block)
2877 {
2878 	struct buffer_head tmp;
2879 	struct inode *inode = mapping->host;
2880 	tmp.b_state = 0;
2881 	tmp.b_blocknr = 0;
2882 	tmp.b_size = 1 << inode->i_blkbits;
2883 	get_block(inode, block, &tmp, 0);
2884 	return tmp.b_blocknr;
2885 }
2886 EXPORT_SYMBOL(generic_block_bmap);
2887 
2888 static void end_bio_bh_io_sync(struct bio *bio, int err)
2889 {
2890 	struct buffer_head *bh = bio->bi_private;
2891 
2892 	if (err == -EOPNOTSUPP) {
2893 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2894 		set_bit(BH_Eopnotsupp, &bh->b_state);
2895 	}
2896 
2897 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2898 		set_bit(BH_Quiet, &bh->b_state);
2899 
2900 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2901 	bio_put(bio);
2902 }
2903 
2904 int submit_bh(int rw, struct buffer_head * bh)
2905 {
2906 	struct bio *bio;
2907 	int ret = 0;
2908 
2909 	BUG_ON(!buffer_locked(bh));
2910 	BUG_ON(!buffer_mapped(bh));
2911 	BUG_ON(!bh->b_end_io);
2912 	BUG_ON(buffer_delay(bh));
2913 	BUG_ON(buffer_unwritten(bh));
2914 
2915 	/*
2916 	 * Only clear out a write error when rewriting
2917 	 */
2918 	if (test_set_buffer_req(bh) && (rw & WRITE))
2919 		clear_buffer_write_io_error(bh);
2920 
2921 	/*
2922 	 * from here on down, it's all bio -- do the initial mapping,
2923 	 * submit_bio -> generic_make_request may further map this bio around
2924 	 */
2925 	bio = bio_alloc(GFP_NOIO, 1);
2926 
2927 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2928 	bio->bi_bdev = bh->b_bdev;
2929 	bio->bi_io_vec[0].bv_page = bh->b_page;
2930 	bio->bi_io_vec[0].bv_len = bh->b_size;
2931 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2932 
2933 	bio->bi_vcnt = 1;
2934 	bio->bi_idx = 0;
2935 	bio->bi_size = bh->b_size;
2936 
2937 	bio->bi_end_io = end_bio_bh_io_sync;
2938 	bio->bi_private = bh;
2939 
2940 	bio_get(bio);
2941 	submit_bio(rw, bio);
2942 
2943 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2944 		ret = -EOPNOTSUPP;
2945 
2946 	bio_put(bio);
2947 	return ret;
2948 }
2949 EXPORT_SYMBOL(submit_bh);
2950 
2951 /**
2952  * ll_rw_block: low-level access to block devices (DEPRECATED)
2953  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2954  * @nr: number of &struct buffer_heads in the array
2955  * @bhs: array of pointers to &struct buffer_head
2956  *
2957  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2958  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2959  * %READA option is described in the documentation for generic_make_request()
2960  * which ll_rw_block() calls.
2961  *
2962  * This function drops any buffer that it cannot get a lock on (with the
2963  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2964  * request, and any buffer that appears to be up-to-date when doing read
2965  * request.  Further it marks as clean buffers that are processed for
2966  * writing (the buffer cache won't assume that they are actually clean
2967  * until the buffer gets unlocked).
2968  *
2969  * ll_rw_block sets b_end_io to simple completion handler that marks
2970  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2971  * any waiters.
2972  *
2973  * All of the buffers must be for the same device, and must also be a
2974  * multiple of the current approved size for the device.
2975  */
2976 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2977 {
2978 	int i;
2979 
2980 	for (i = 0; i < nr; i++) {
2981 		struct buffer_head *bh = bhs[i];
2982 
2983 		if (!trylock_buffer(bh))
2984 			continue;
2985 		if (rw == WRITE) {
2986 			if (test_clear_buffer_dirty(bh)) {
2987 				bh->b_end_io = end_buffer_write_sync;
2988 				get_bh(bh);
2989 				submit_bh(WRITE, bh);
2990 				continue;
2991 			}
2992 		} else {
2993 			if (!buffer_uptodate(bh)) {
2994 				bh->b_end_io = end_buffer_read_sync;
2995 				get_bh(bh);
2996 				submit_bh(rw, bh);
2997 				continue;
2998 			}
2999 		}
3000 		unlock_buffer(bh);
3001 	}
3002 }
3003 EXPORT_SYMBOL(ll_rw_block);
3004 
3005 void write_dirty_buffer(struct buffer_head *bh, int rw)
3006 {
3007 	lock_buffer(bh);
3008 	if (!test_clear_buffer_dirty(bh)) {
3009 		unlock_buffer(bh);
3010 		return;
3011 	}
3012 	bh->b_end_io = end_buffer_write_sync;
3013 	get_bh(bh);
3014 	submit_bh(rw, bh);
3015 }
3016 EXPORT_SYMBOL(write_dirty_buffer);
3017 
3018 /*
3019  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3020  * and then start new I/O and then wait upon it.  The caller must have a ref on
3021  * the buffer_head.
3022  */
3023 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3024 {
3025 	int ret = 0;
3026 
3027 	WARN_ON(atomic_read(&bh->b_count) < 1);
3028 	lock_buffer(bh);
3029 	if (test_clear_buffer_dirty(bh)) {
3030 		get_bh(bh);
3031 		bh->b_end_io = end_buffer_write_sync;
3032 		ret = submit_bh(rw, bh);
3033 		wait_on_buffer(bh);
3034 		if (buffer_eopnotsupp(bh)) {
3035 			clear_buffer_eopnotsupp(bh);
3036 			ret = -EOPNOTSUPP;
3037 		}
3038 		if (!ret && !buffer_uptodate(bh))
3039 			ret = -EIO;
3040 	} else {
3041 		unlock_buffer(bh);
3042 	}
3043 	return ret;
3044 }
3045 EXPORT_SYMBOL(__sync_dirty_buffer);
3046 
3047 int sync_dirty_buffer(struct buffer_head *bh)
3048 {
3049 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3050 }
3051 EXPORT_SYMBOL(sync_dirty_buffer);
3052 
3053 /*
3054  * try_to_free_buffers() checks if all the buffers on this particular page
3055  * are unused, and releases them if so.
3056  *
3057  * Exclusion against try_to_free_buffers may be obtained by either
3058  * locking the page or by holding its mapping's private_lock.
3059  *
3060  * If the page is dirty but all the buffers are clean then we need to
3061  * be sure to mark the page clean as well.  This is because the page
3062  * may be against a block device, and a later reattachment of buffers
3063  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3064  * filesystem data on the same device.
3065  *
3066  * The same applies to regular filesystem pages: if all the buffers are
3067  * clean then we set the page clean and proceed.  To do that, we require
3068  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3069  * private_lock.
3070  *
3071  * try_to_free_buffers() is non-blocking.
3072  */
3073 static inline int buffer_busy(struct buffer_head *bh)
3074 {
3075 	return atomic_read(&bh->b_count) |
3076 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3077 }
3078 
3079 static int
3080 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3081 {
3082 	struct buffer_head *head = page_buffers(page);
3083 	struct buffer_head *bh;
3084 
3085 	bh = head;
3086 	do {
3087 		if (buffer_write_io_error(bh) && page->mapping)
3088 			set_bit(AS_EIO, &page->mapping->flags);
3089 		if (buffer_busy(bh))
3090 			goto failed;
3091 		bh = bh->b_this_page;
3092 	} while (bh != head);
3093 
3094 	do {
3095 		struct buffer_head *next = bh->b_this_page;
3096 
3097 		if (bh->b_assoc_map)
3098 			__remove_assoc_queue(bh);
3099 		bh = next;
3100 	} while (bh != head);
3101 	*buffers_to_free = head;
3102 	__clear_page_buffers(page);
3103 	return 1;
3104 failed:
3105 	return 0;
3106 }
3107 
3108 int try_to_free_buffers(struct page *page)
3109 {
3110 	struct address_space * const mapping = page->mapping;
3111 	struct buffer_head *buffers_to_free = NULL;
3112 	int ret = 0;
3113 
3114 	BUG_ON(!PageLocked(page));
3115 	if (PageWriteback(page))
3116 		return 0;
3117 
3118 	if (mapping == NULL) {		/* can this still happen? */
3119 		ret = drop_buffers(page, &buffers_to_free);
3120 		goto out;
3121 	}
3122 
3123 	spin_lock(&mapping->private_lock);
3124 	ret = drop_buffers(page, &buffers_to_free);
3125 
3126 	/*
3127 	 * If the filesystem writes its buffers by hand (eg ext3)
3128 	 * then we can have clean buffers against a dirty page.  We
3129 	 * clean the page here; otherwise the VM will never notice
3130 	 * that the filesystem did any IO at all.
3131 	 *
3132 	 * Also, during truncate, discard_buffer will have marked all
3133 	 * the page's buffers clean.  We discover that here and clean
3134 	 * the page also.
3135 	 *
3136 	 * private_lock must be held over this entire operation in order
3137 	 * to synchronise against __set_page_dirty_buffers and prevent the
3138 	 * dirty bit from being lost.
3139 	 */
3140 	if (ret)
3141 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3142 	spin_unlock(&mapping->private_lock);
3143 out:
3144 	if (buffers_to_free) {
3145 		struct buffer_head *bh = buffers_to_free;
3146 
3147 		do {
3148 			struct buffer_head *next = bh->b_this_page;
3149 			free_buffer_head(bh);
3150 			bh = next;
3151 		} while (bh != buffers_to_free);
3152 	}
3153 	return ret;
3154 }
3155 EXPORT_SYMBOL(try_to_free_buffers);
3156 
3157 void block_sync_page(struct page *page)
3158 {
3159 	struct address_space *mapping;
3160 
3161 	smp_mb();
3162 	mapping = page_mapping(page);
3163 	if (mapping)
3164 		blk_run_backing_dev(mapping->backing_dev_info, page);
3165 }
3166 EXPORT_SYMBOL(block_sync_page);
3167 
3168 /*
3169  * There are no bdflush tunables left.  But distributions are
3170  * still running obsolete flush daemons, so we terminate them here.
3171  *
3172  * Use of bdflush() is deprecated and will be removed in a future kernel.
3173  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3174  */
3175 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3176 {
3177 	static int msg_count;
3178 
3179 	if (!capable(CAP_SYS_ADMIN))
3180 		return -EPERM;
3181 
3182 	if (msg_count < 5) {
3183 		msg_count++;
3184 		printk(KERN_INFO
3185 			"warning: process `%s' used the obsolete bdflush"
3186 			" system call\n", current->comm);
3187 		printk(KERN_INFO "Fix your initscripts?\n");
3188 	}
3189 
3190 	if (func == 1)
3191 		do_exit(0);
3192 	return 0;
3193 }
3194 
3195 /*
3196  * Buffer-head allocation
3197  */
3198 static struct kmem_cache *bh_cachep;
3199 
3200 /*
3201  * Once the number of bh's in the machine exceeds this level, we start
3202  * stripping them in writeback.
3203  */
3204 static int max_buffer_heads;
3205 
3206 int buffer_heads_over_limit;
3207 
3208 struct bh_accounting {
3209 	int nr;			/* Number of live bh's */
3210 	int ratelimit;		/* Limit cacheline bouncing */
3211 };
3212 
3213 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3214 
3215 static void recalc_bh_state(void)
3216 {
3217 	int i;
3218 	int tot = 0;
3219 
3220 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3221 		return;
3222 	__get_cpu_var(bh_accounting).ratelimit = 0;
3223 	for_each_online_cpu(i)
3224 		tot += per_cpu(bh_accounting, i).nr;
3225 	buffer_heads_over_limit = (tot > max_buffer_heads);
3226 }
3227 
3228 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3229 {
3230 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3231 	if (ret) {
3232 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3233 		get_cpu_var(bh_accounting).nr++;
3234 		recalc_bh_state();
3235 		put_cpu_var(bh_accounting);
3236 	}
3237 	return ret;
3238 }
3239 EXPORT_SYMBOL(alloc_buffer_head);
3240 
3241 void free_buffer_head(struct buffer_head *bh)
3242 {
3243 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3244 	kmem_cache_free(bh_cachep, bh);
3245 	get_cpu_var(bh_accounting).nr--;
3246 	recalc_bh_state();
3247 	put_cpu_var(bh_accounting);
3248 }
3249 EXPORT_SYMBOL(free_buffer_head);
3250 
3251 static void buffer_exit_cpu(int cpu)
3252 {
3253 	int i;
3254 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3255 
3256 	for (i = 0; i < BH_LRU_SIZE; i++) {
3257 		brelse(b->bhs[i]);
3258 		b->bhs[i] = NULL;
3259 	}
3260 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3261 	per_cpu(bh_accounting, cpu).nr = 0;
3262 	put_cpu_var(bh_accounting);
3263 }
3264 
3265 static int buffer_cpu_notify(struct notifier_block *self,
3266 			      unsigned long action, void *hcpu)
3267 {
3268 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3269 		buffer_exit_cpu((unsigned long)hcpu);
3270 	return NOTIFY_OK;
3271 }
3272 
3273 /**
3274  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3275  * @bh: struct buffer_head
3276  *
3277  * Return true if the buffer is up-to-date and false,
3278  * with the buffer locked, if not.
3279  */
3280 int bh_uptodate_or_lock(struct buffer_head *bh)
3281 {
3282 	if (!buffer_uptodate(bh)) {
3283 		lock_buffer(bh);
3284 		if (!buffer_uptodate(bh))
3285 			return 0;
3286 		unlock_buffer(bh);
3287 	}
3288 	return 1;
3289 }
3290 EXPORT_SYMBOL(bh_uptodate_or_lock);
3291 
3292 /**
3293  * bh_submit_read - Submit a locked buffer for reading
3294  * @bh: struct buffer_head
3295  *
3296  * Returns zero on success and -EIO on error.
3297  */
3298 int bh_submit_read(struct buffer_head *bh)
3299 {
3300 	BUG_ON(!buffer_locked(bh));
3301 
3302 	if (buffer_uptodate(bh)) {
3303 		unlock_buffer(bh);
3304 		return 0;
3305 	}
3306 
3307 	get_bh(bh);
3308 	bh->b_end_io = end_buffer_read_sync;
3309 	submit_bh(READ, bh);
3310 	wait_on_buffer(bh);
3311 	if (buffer_uptodate(bh))
3312 		return 0;
3313 	return -EIO;
3314 }
3315 EXPORT_SYMBOL(bh_submit_read);
3316 
3317 void __init buffer_init(void)
3318 {
3319 	int nrpages;
3320 
3321 	bh_cachep = kmem_cache_create("buffer_head",
3322 			sizeof(struct buffer_head), 0,
3323 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3324 				SLAB_MEM_SPREAD),
3325 				NULL);
3326 
3327 	/*
3328 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3329 	 */
3330 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3331 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3332 	hotcpu_notifier(buffer_cpu_notify, 0);
3333 }
3334