1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/module.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 static int sync_buffer(void *word) 58 { 59 struct block_device *bd; 60 struct buffer_head *bh 61 = container_of(word, struct buffer_head, b_state); 62 63 smp_mb(); 64 bd = bh->b_bdev; 65 if (bd) 66 blk_run_address_space(bd->bd_inode->i_mapping); 67 io_schedule(); 68 return 0; 69 } 70 71 void __lock_buffer(struct buffer_head *bh) 72 { 73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 74 TASK_UNINTERRUPTIBLE); 75 } 76 EXPORT_SYMBOL(__lock_buffer); 77 78 void unlock_buffer(struct buffer_head *bh) 79 { 80 clear_bit_unlock(BH_Lock, &bh->b_state); 81 smp_mb__after_clear_bit(); 82 wake_up_bit(&bh->b_state, BH_Lock); 83 } 84 EXPORT_SYMBOL(unlock_buffer); 85 86 /* 87 * Block until a buffer comes unlocked. This doesn't stop it 88 * from becoming locked again - you have to lock it yourself 89 * if you want to preserve its state. 90 */ 91 void __wait_on_buffer(struct buffer_head * bh) 92 { 93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 94 } 95 EXPORT_SYMBOL(__wait_on_buffer); 96 97 static void 98 __clear_page_buffers(struct page *page) 99 { 100 ClearPagePrivate(page); 101 set_page_private(page, 0); 102 page_cache_release(page); 103 } 104 105 106 static int quiet_error(struct buffer_head *bh) 107 { 108 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 109 return 0; 110 return 1; 111 } 112 113 114 static void buffer_io_error(struct buffer_head *bh) 115 { 116 char b[BDEVNAME_SIZE]; 117 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 118 bdevname(bh->b_bdev, b), 119 (unsigned long long)bh->b_blocknr); 120 } 121 122 /* 123 * End-of-IO handler helper function which does not touch the bh after 124 * unlocking it. 125 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 126 * a race there is benign: unlock_buffer() only use the bh's address for 127 * hashing after unlocking the buffer, so it doesn't actually touch the bh 128 * itself. 129 */ 130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 131 { 132 if (uptodate) { 133 set_buffer_uptodate(bh); 134 } else { 135 /* This happens, due to failed READA attempts. */ 136 clear_buffer_uptodate(bh); 137 } 138 unlock_buffer(bh); 139 } 140 141 /* 142 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 143 * unlock the buffer. This is what ll_rw_block uses too. 144 */ 145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 146 { 147 __end_buffer_read_notouch(bh, uptodate); 148 put_bh(bh); 149 } 150 EXPORT_SYMBOL(end_buffer_read_sync); 151 152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 153 { 154 char b[BDEVNAME_SIZE]; 155 156 if (uptodate) { 157 set_buffer_uptodate(bh); 158 } else { 159 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) { 160 buffer_io_error(bh); 161 printk(KERN_WARNING "lost page write due to " 162 "I/O error on %s\n", 163 bdevname(bh->b_bdev, b)); 164 } 165 set_buffer_write_io_error(bh); 166 clear_buffer_uptodate(bh); 167 } 168 unlock_buffer(bh); 169 put_bh(bh); 170 } 171 EXPORT_SYMBOL(end_buffer_write_sync); 172 173 /* 174 * Various filesystems appear to want __find_get_block to be non-blocking. 175 * But it's the page lock which protects the buffers. To get around this, 176 * we get exclusion from try_to_free_buffers with the blockdev mapping's 177 * private_lock. 178 * 179 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 180 * may be quite high. This code could TryLock the page, and if that 181 * succeeds, there is no need to take private_lock. (But if 182 * private_lock is contended then so is mapping->tree_lock). 183 */ 184 static struct buffer_head * 185 __find_get_block_slow(struct block_device *bdev, sector_t block) 186 { 187 struct inode *bd_inode = bdev->bd_inode; 188 struct address_space *bd_mapping = bd_inode->i_mapping; 189 struct buffer_head *ret = NULL; 190 pgoff_t index; 191 struct buffer_head *bh; 192 struct buffer_head *head; 193 struct page *page; 194 int all_mapped = 1; 195 196 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 197 page = find_get_page(bd_mapping, index); 198 if (!page) 199 goto out; 200 201 spin_lock(&bd_mapping->private_lock); 202 if (!page_has_buffers(page)) 203 goto out_unlock; 204 head = page_buffers(page); 205 bh = head; 206 do { 207 if (!buffer_mapped(bh)) 208 all_mapped = 0; 209 else if (bh->b_blocknr == block) { 210 ret = bh; 211 get_bh(bh); 212 goto out_unlock; 213 } 214 bh = bh->b_this_page; 215 } while (bh != head); 216 217 /* we might be here because some of the buffers on this page are 218 * not mapped. This is due to various races between 219 * file io on the block device and getblk. It gets dealt with 220 * elsewhere, don't buffer_error if we had some unmapped buffers 221 */ 222 if (all_mapped) { 223 printk("__find_get_block_slow() failed. " 224 "block=%llu, b_blocknr=%llu\n", 225 (unsigned long long)block, 226 (unsigned long long)bh->b_blocknr); 227 printk("b_state=0x%08lx, b_size=%zu\n", 228 bh->b_state, bh->b_size); 229 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 230 } 231 out_unlock: 232 spin_unlock(&bd_mapping->private_lock); 233 page_cache_release(page); 234 out: 235 return ret; 236 } 237 238 /* If invalidate_buffers() will trash dirty buffers, it means some kind 239 of fs corruption is going on. Trashing dirty data always imply losing 240 information that was supposed to be just stored on the physical layer 241 by the user. 242 243 Thus invalidate_buffers in general usage is not allwowed to trash 244 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 245 be preserved. These buffers are simply skipped. 246 247 We also skip buffers which are still in use. For example this can 248 happen if a userspace program is reading the block device. 249 250 NOTE: In the case where the user removed a removable-media-disk even if 251 there's still dirty data not synced on disk (due a bug in the device driver 252 or due an error of the user), by not destroying the dirty buffers we could 253 generate corruption also on the next media inserted, thus a parameter is 254 necessary to handle this case in the most safe way possible (trying 255 to not corrupt also the new disk inserted with the data belonging to 256 the old now corrupted disk). Also for the ramdisk the natural thing 257 to do in order to release the ramdisk memory is to destroy dirty buffers. 258 259 These are two special cases. Normal usage imply the device driver 260 to issue a sync on the device (without waiting I/O completion) and 261 then an invalidate_buffers call that doesn't trash dirty buffers. 262 263 For handling cache coherency with the blkdev pagecache the 'update' case 264 is been introduced. It is needed to re-read from disk any pinned 265 buffer. NOTE: re-reading from disk is destructive so we can do it only 266 when we assume nobody is changing the buffercache under our I/O and when 267 we think the disk contains more recent information than the buffercache. 268 The update == 1 pass marks the buffers we need to update, the update == 2 269 pass does the actual I/O. */ 270 void invalidate_bdev(struct block_device *bdev) 271 { 272 struct address_space *mapping = bdev->bd_inode->i_mapping; 273 274 if (mapping->nrpages == 0) 275 return; 276 277 invalidate_bh_lrus(); 278 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 279 invalidate_mapping_pages(mapping, 0, -1); 280 } 281 EXPORT_SYMBOL(invalidate_bdev); 282 283 /* 284 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 285 */ 286 static void free_more_memory(void) 287 { 288 struct zone *zone; 289 int nid; 290 291 wakeup_flusher_threads(1024); 292 yield(); 293 294 for_each_online_node(nid) { 295 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 296 gfp_zone(GFP_NOFS), NULL, 297 &zone); 298 if (zone) 299 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 300 GFP_NOFS, NULL); 301 } 302 } 303 304 /* 305 * I/O completion handler for block_read_full_page() - pages 306 * which come unlocked at the end of I/O. 307 */ 308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 309 { 310 unsigned long flags; 311 struct buffer_head *first; 312 struct buffer_head *tmp; 313 struct page *page; 314 int page_uptodate = 1; 315 316 BUG_ON(!buffer_async_read(bh)); 317 318 page = bh->b_page; 319 if (uptodate) { 320 set_buffer_uptodate(bh); 321 } else { 322 clear_buffer_uptodate(bh); 323 if (!quiet_error(bh)) 324 buffer_io_error(bh); 325 SetPageError(page); 326 } 327 328 /* 329 * Be _very_ careful from here on. Bad things can happen if 330 * two buffer heads end IO at almost the same time and both 331 * decide that the page is now completely done. 332 */ 333 first = page_buffers(page); 334 local_irq_save(flags); 335 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 336 clear_buffer_async_read(bh); 337 unlock_buffer(bh); 338 tmp = bh; 339 do { 340 if (!buffer_uptodate(tmp)) 341 page_uptodate = 0; 342 if (buffer_async_read(tmp)) { 343 BUG_ON(!buffer_locked(tmp)); 344 goto still_busy; 345 } 346 tmp = tmp->b_this_page; 347 } while (tmp != bh); 348 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 349 local_irq_restore(flags); 350 351 /* 352 * If none of the buffers had errors and they are all 353 * uptodate then we can set the page uptodate. 354 */ 355 if (page_uptodate && !PageError(page)) 356 SetPageUptodate(page); 357 unlock_page(page); 358 return; 359 360 still_busy: 361 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 362 local_irq_restore(flags); 363 return; 364 } 365 366 /* 367 * Completion handler for block_write_full_page() - pages which are unlocked 368 * during I/O, and which have PageWriteback cleared upon I/O completion. 369 */ 370 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 371 { 372 char b[BDEVNAME_SIZE]; 373 unsigned long flags; 374 struct buffer_head *first; 375 struct buffer_head *tmp; 376 struct page *page; 377 378 BUG_ON(!buffer_async_write(bh)); 379 380 page = bh->b_page; 381 if (uptodate) { 382 set_buffer_uptodate(bh); 383 } else { 384 if (!quiet_error(bh)) { 385 buffer_io_error(bh); 386 printk(KERN_WARNING "lost page write due to " 387 "I/O error on %s\n", 388 bdevname(bh->b_bdev, b)); 389 } 390 set_bit(AS_EIO, &page->mapping->flags); 391 set_buffer_write_io_error(bh); 392 clear_buffer_uptodate(bh); 393 SetPageError(page); 394 } 395 396 first = page_buffers(page); 397 local_irq_save(flags); 398 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 399 400 clear_buffer_async_write(bh); 401 unlock_buffer(bh); 402 tmp = bh->b_this_page; 403 while (tmp != bh) { 404 if (buffer_async_write(tmp)) { 405 BUG_ON(!buffer_locked(tmp)); 406 goto still_busy; 407 } 408 tmp = tmp->b_this_page; 409 } 410 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 411 local_irq_restore(flags); 412 end_page_writeback(page); 413 return; 414 415 still_busy: 416 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 417 local_irq_restore(flags); 418 return; 419 } 420 EXPORT_SYMBOL(end_buffer_async_write); 421 422 /* 423 * If a page's buffers are under async readin (end_buffer_async_read 424 * completion) then there is a possibility that another thread of 425 * control could lock one of the buffers after it has completed 426 * but while some of the other buffers have not completed. This 427 * locked buffer would confuse end_buffer_async_read() into not unlocking 428 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 429 * that this buffer is not under async I/O. 430 * 431 * The page comes unlocked when it has no locked buffer_async buffers 432 * left. 433 * 434 * PageLocked prevents anyone starting new async I/O reads any of 435 * the buffers. 436 * 437 * PageWriteback is used to prevent simultaneous writeout of the same 438 * page. 439 * 440 * PageLocked prevents anyone from starting writeback of a page which is 441 * under read I/O (PageWriteback is only ever set against a locked page). 442 */ 443 static void mark_buffer_async_read(struct buffer_head *bh) 444 { 445 bh->b_end_io = end_buffer_async_read; 446 set_buffer_async_read(bh); 447 } 448 449 static void mark_buffer_async_write_endio(struct buffer_head *bh, 450 bh_end_io_t *handler) 451 { 452 bh->b_end_io = handler; 453 set_buffer_async_write(bh); 454 } 455 456 void mark_buffer_async_write(struct buffer_head *bh) 457 { 458 mark_buffer_async_write_endio(bh, end_buffer_async_write); 459 } 460 EXPORT_SYMBOL(mark_buffer_async_write); 461 462 463 /* 464 * fs/buffer.c contains helper functions for buffer-backed address space's 465 * fsync functions. A common requirement for buffer-based filesystems is 466 * that certain data from the backing blockdev needs to be written out for 467 * a successful fsync(). For example, ext2 indirect blocks need to be 468 * written back and waited upon before fsync() returns. 469 * 470 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 471 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 472 * management of a list of dependent buffers at ->i_mapping->private_list. 473 * 474 * Locking is a little subtle: try_to_free_buffers() will remove buffers 475 * from their controlling inode's queue when they are being freed. But 476 * try_to_free_buffers() will be operating against the *blockdev* mapping 477 * at the time, not against the S_ISREG file which depends on those buffers. 478 * So the locking for private_list is via the private_lock in the address_space 479 * which backs the buffers. Which is different from the address_space 480 * against which the buffers are listed. So for a particular address_space, 481 * mapping->private_lock does *not* protect mapping->private_list! In fact, 482 * mapping->private_list will always be protected by the backing blockdev's 483 * ->private_lock. 484 * 485 * Which introduces a requirement: all buffers on an address_space's 486 * ->private_list must be from the same address_space: the blockdev's. 487 * 488 * address_spaces which do not place buffers at ->private_list via these 489 * utility functions are free to use private_lock and private_list for 490 * whatever they want. The only requirement is that list_empty(private_list) 491 * be true at clear_inode() time. 492 * 493 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 494 * filesystems should do that. invalidate_inode_buffers() should just go 495 * BUG_ON(!list_empty). 496 * 497 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 498 * take an address_space, not an inode. And it should be called 499 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 500 * queued up. 501 * 502 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 503 * list if it is already on a list. Because if the buffer is on a list, 504 * it *must* already be on the right one. If not, the filesystem is being 505 * silly. This will save a ton of locking. But first we have to ensure 506 * that buffers are taken *off* the old inode's list when they are freed 507 * (presumably in truncate). That requires careful auditing of all 508 * filesystems (do it inside bforget()). It could also be done by bringing 509 * b_inode back. 510 */ 511 512 /* 513 * The buffer's backing address_space's private_lock must be held 514 */ 515 static void __remove_assoc_queue(struct buffer_head *bh) 516 { 517 list_del_init(&bh->b_assoc_buffers); 518 WARN_ON(!bh->b_assoc_map); 519 if (buffer_write_io_error(bh)) 520 set_bit(AS_EIO, &bh->b_assoc_map->flags); 521 bh->b_assoc_map = NULL; 522 } 523 524 int inode_has_buffers(struct inode *inode) 525 { 526 return !list_empty(&inode->i_data.private_list); 527 } 528 529 /* 530 * osync is designed to support O_SYNC io. It waits synchronously for 531 * all already-submitted IO to complete, but does not queue any new 532 * writes to the disk. 533 * 534 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 535 * you dirty the buffers, and then use osync_inode_buffers to wait for 536 * completion. Any other dirty buffers which are not yet queued for 537 * write will not be flushed to disk by the osync. 538 */ 539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 540 { 541 struct buffer_head *bh; 542 struct list_head *p; 543 int err = 0; 544 545 spin_lock(lock); 546 repeat: 547 list_for_each_prev(p, list) { 548 bh = BH_ENTRY(p); 549 if (buffer_locked(bh)) { 550 get_bh(bh); 551 spin_unlock(lock); 552 wait_on_buffer(bh); 553 if (!buffer_uptodate(bh)) 554 err = -EIO; 555 brelse(bh); 556 spin_lock(lock); 557 goto repeat; 558 } 559 } 560 spin_unlock(lock); 561 return err; 562 } 563 564 static void do_thaw_one(struct super_block *sb, void *unused) 565 { 566 char b[BDEVNAME_SIZE]; 567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 568 printk(KERN_WARNING "Emergency Thaw on %s\n", 569 bdevname(sb->s_bdev, b)); 570 } 571 572 static void do_thaw_all(struct work_struct *work) 573 { 574 iterate_supers(do_thaw_one, NULL); 575 kfree(work); 576 printk(KERN_WARNING "Emergency Thaw complete\n"); 577 } 578 579 /** 580 * emergency_thaw_all -- forcibly thaw every frozen filesystem 581 * 582 * Used for emergency unfreeze of all filesystems via SysRq 583 */ 584 void emergency_thaw_all(void) 585 { 586 struct work_struct *work; 587 588 work = kmalloc(sizeof(*work), GFP_ATOMIC); 589 if (work) { 590 INIT_WORK(work, do_thaw_all); 591 schedule_work(work); 592 } 593 } 594 595 /** 596 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 597 * @mapping: the mapping which wants those buffers written 598 * 599 * Starts I/O against the buffers at mapping->private_list, and waits upon 600 * that I/O. 601 * 602 * Basically, this is a convenience function for fsync(). 603 * @mapping is a file or directory which needs those buffers to be written for 604 * a successful fsync(). 605 */ 606 int sync_mapping_buffers(struct address_space *mapping) 607 { 608 struct address_space *buffer_mapping = mapping->assoc_mapping; 609 610 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 611 return 0; 612 613 return fsync_buffers_list(&buffer_mapping->private_lock, 614 &mapping->private_list); 615 } 616 EXPORT_SYMBOL(sync_mapping_buffers); 617 618 /* 619 * Called when we've recently written block `bblock', and it is known that 620 * `bblock' was for a buffer_boundary() buffer. This means that the block at 621 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 622 * dirty, schedule it for IO. So that indirects merge nicely with their data. 623 */ 624 void write_boundary_block(struct block_device *bdev, 625 sector_t bblock, unsigned blocksize) 626 { 627 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 628 if (bh) { 629 if (buffer_dirty(bh)) 630 ll_rw_block(WRITE, 1, &bh); 631 put_bh(bh); 632 } 633 } 634 635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 636 { 637 struct address_space *mapping = inode->i_mapping; 638 struct address_space *buffer_mapping = bh->b_page->mapping; 639 640 mark_buffer_dirty(bh); 641 if (!mapping->assoc_mapping) { 642 mapping->assoc_mapping = buffer_mapping; 643 } else { 644 BUG_ON(mapping->assoc_mapping != buffer_mapping); 645 } 646 if (!bh->b_assoc_map) { 647 spin_lock(&buffer_mapping->private_lock); 648 list_move_tail(&bh->b_assoc_buffers, 649 &mapping->private_list); 650 bh->b_assoc_map = mapping; 651 spin_unlock(&buffer_mapping->private_lock); 652 } 653 } 654 EXPORT_SYMBOL(mark_buffer_dirty_inode); 655 656 /* 657 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 658 * dirty. 659 * 660 * If warn is true, then emit a warning if the page is not uptodate and has 661 * not been truncated. 662 */ 663 static void __set_page_dirty(struct page *page, 664 struct address_space *mapping, int warn) 665 { 666 spin_lock_irq(&mapping->tree_lock); 667 if (page->mapping) { /* Race with truncate? */ 668 WARN_ON_ONCE(warn && !PageUptodate(page)); 669 account_page_dirtied(page, mapping); 670 radix_tree_tag_set(&mapping->page_tree, 671 page_index(page), PAGECACHE_TAG_DIRTY); 672 } 673 spin_unlock_irq(&mapping->tree_lock); 674 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 675 } 676 677 /* 678 * Add a page to the dirty page list. 679 * 680 * It is a sad fact of life that this function is called from several places 681 * deeply under spinlocking. It may not sleep. 682 * 683 * If the page has buffers, the uptodate buffers are set dirty, to preserve 684 * dirty-state coherency between the page and the buffers. It the page does 685 * not have buffers then when they are later attached they will all be set 686 * dirty. 687 * 688 * The buffers are dirtied before the page is dirtied. There's a small race 689 * window in which a writepage caller may see the page cleanness but not the 690 * buffer dirtiness. That's fine. If this code were to set the page dirty 691 * before the buffers, a concurrent writepage caller could clear the page dirty 692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 693 * page on the dirty page list. 694 * 695 * We use private_lock to lock against try_to_free_buffers while using the 696 * page's buffer list. Also use this to protect against clean buffers being 697 * added to the page after it was set dirty. 698 * 699 * FIXME: may need to call ->reservepage here as well. That's rather up to the 700 * address_space though. 701 */ 702 int __set_page_dirty_buffers(struct page *page) 703 { 704 int newly_dirty; 705 struct address_space *mapping = page_mapping(page); 706 707 if (unlikely(!mapping)) 708 return !TestSetPageDirty(page); 709 710 spin_lock(&mapping->private_lock); 711 if (page_has_buffers(page)) { 712 struct buffer_head *head = page_buffers(page); 713 struct buffer_head *bh = head; 714 715 do { 716 set_buffer_dirty(bh); 717 bh = bh->b_this_page; 718 } while (bh != head); 719 } 720 newly_dirty = !TestSetPageDirty(page); 721 spin_unlock(&mapping->private_lock); 722 723 if (newly_dirty) 724 __set_page_dirty(page, mapping, 1); 725 return newly_dirty; 726 } 727 EXPORT_SYMBOL(__set_page_dirty_buffers); 728 729 /* 730 * Write out and wait upon a list of buffers. 731 * 732 * We have conflicting pressures: we want to make sure that all 733 * initially dirty buffers get waited on, but that any subsequently 734 * dirtied buffers don't. After all, we don't want fsync to last 735 * forever if somebody is actively writing to the file. 736 * 737 * Do this in two main stages: first we copy dirty buffers to a 738 * temporary inode list, queueing the writes as we go. Then we clean 739 * up, waiting for those writes to complete. 740 * 741 * During this second stage, any subsequent updates to the file may end 742 * up refiling the buffer on the original inode's dirty list again, so 743 * there is a chance we will end up with a buffer queued for write but 744 * not yet completed on that list. So, as a final cleanup we go through 745 * the osync code to catch these locked, dirty buffers without requeuing 746 * any newly dirty buffers for write. 747 */ 748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 749 { 750 struct buffer_head *bh; 751 struct list_head tmp; 752 struct address_space *mapping, *prev_mapping = NULL; 753 int err = 0, err2; 754 755 INIT_LIST_HEAD(&tmp); 756 757 spin_lock(lock); 758 while (!list_empty(list)) { 759 bh = BH_ENTRY(list->next); 760 mapping = bh->b_assoc_map; 761 __remove_assoc_queue(bh); 762 /* Avoid race with mark_buffer_dirty_inode() which does 763 * a lockless check and we rely on seeing the dirty bit */ 764 smp_mb(); 765 if (buffer_dirty(bh) || buffer_locked(bh)) { 766 list_add(&bh->b_assoc_buffers, &tmp); 767 bh->b_assoc_map = mapping; 768 if (buffer_dirty(bh)) { 769 get_bh(bh); 770 spin_unlock(lock); 771 /* 772 * Ensure any pending I/O completes so that 773 * write_dirty_buffer() actually writes the 774 * current contents - it is a noop if I/O is 775 * still in flight on potentially older 776 * contents. 777 */ 778 write_dirty_buffer(bh, WRITE_SYNC_PLUG); 779 780 /* 781 * Kick off IO for the previous mapping. Note 782 * that we will not run the very last mapping, 783 * wait_on_buffer() will do that for us 784 * through sync_buffer(). 785 */ 786 if (prev_mapping && prev_mapping != mapping) 787 blk_run_address_space(prev_mapping); 788 prev_mapping = mapping; 789 790 brelse(bh); 791 spin_lock(lock); 792 } 793 } 794 } 795 796 while (!list_empty(&tmp)) { 797 bh = BH_ENTRY(tmp.prev); 798 get_bh(bh); 799 mapping = bh->b_assoc_map; 800 __remove_assoc_queue(bh); 801 /* Avoid race with mark_buffer_dirty_inode() which does 802 * a lockless check and we rely on seeing the dirty bit */ 803 smp_mb(); 804 if (buffer_dirty(bh)) { 805 list_add(&bh->b_assoc_buffers, 806 &mapping->private_list); 807 bh->b_assoc_map = mapping; 808 } 809 spin_unlock(lock); 810 wait_on_buffer(bh); 811 if (!buffer_uptodate(bh)) 812 err = -EIO; 813 brelse(bh); 814 spin_lock(lock); 815 } 816 817 spin_unlock(lock); 818 err2 = osync_buffers_list(lock, list); 819 if (err) 820 return err; 821 else 822 return err2; 823 } 824 825 /* 826 * Invalidate any and all dirty buffers on a given inode. We are 827 * probably unmounting the fs, but that doesn't mean we have already 828 * done a sync(). Just drop the buffers from the inode list. 829 * 830 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 831 * assumes that all the buffers are against the blockdev. Not true 832 * for reiserfs. 833 */ 834 void invalidate_inode_buffers(struct inode *inode) 835 { 836 if (inode_has_buffers(inode)) { 837 struct address_space *mapping = &inode->i_data; 838 struct list_head *list = &mapping->private_list; 839 struct address_space *buffer_mapping = mapping->assoc_mapping; 840 841 spin_lock(&buffer_mapping->private_lock); 842 while (!list_empty(list)) 843 __remove_assoc_queue(BH_ENTRY(list->next)); 844 spin_unlock(&buffer_mapping->private_lock); 845 } 846 } 847 EXPORT_SYMBOL(invalidate_inode_buffers); 848 849 /* 850 * Remove any clean buffers from the inode's buffer list. This is called 851 * when we're trying to free the inode itself. Those buffers can pin it. 852 * 853 * Returns true if all buffers were removed. 854 */ 855 int remove_inode_buffers(struct inode *inode) 856 { 857 int ret = 1; 858 859 if (inode_has_buffers(inode)) { 860 struct address_space *mapping = &inode->i_data; 861 struct list_head *list = &mapping->private_list; 862 struct address_space *buffer_mapping = mapping->assoc_mapping; 863 864 spin_lock(&buffer_mapping->private_lock); 865 while (!list_empty(list)) { 866 struct buffer_head *bh = BH_ENTRY(list->next); 867 if (buffer_dirty(bh)) { 868 ret = 0; 869 break; 870 } 871 __remove_assoc_queue(bh); 872 } 873 spin_unlock(&buffer_mapping->private_lock); 874 } 875 return ret; 876 } 877 878 /* 879 * Create the appropriate buffers when given a page for data area and 880 * the size of each buffer.. Use the bh->b_this_page linked list to 881 * follow the buffers created. Return NULL if unable to create more 882 * buffers. 883 * 884 * The retry flag is used to differentiate async IO (paging, swapping) 885 * which may not fail from ordinary buffer allocations. 886 */ 887 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 888 int retry) 889 { 890 struct buffer_head *bh, *head; 891 long offset; 892 893 try_again: 894 head = NULL; 895 offset = PAGE_SIZE; 896 while ((offset -= size) >= 0) { 897 bh = alloc_buffer_head(GFP_NOFS); 898 if (!bh) 899 goto no_grow; 900 901 bh->b_bdev = NULL; 902 bh->b_this_page = head; 903 bh->b_blocknr = -1; 904 head = bh; 905 906 bh->b_state = 0; 907 atomic_set(&bh->b_count, 0); 908 bh->b_private = NULL; 909 bh->b_size = size; 910 911 /* Link the buffer to its page */ 912 set_bh_page(bh, page, offset); 913 914 init_buffer(bh, NULL, NULL); 915 } 916 return head; 917 /* 918 * In case anything failed, we just free everything we got. 919 */ 920 no_grow: 921 if (head) { 922 do { 923 bh = head; 924 head = head->b_this_page; 925 free_buffer_head(bh); 926 } while (head); 927 } 928 929 /* 930 * Return failure for non-async IO requests. Async IO requests 931 * are not allowed to fail, so we have to wait until buffer heads 932 * become available. But we don't want tasks sleeping with 933 * partially complete buffers, so all were released above. 934 */ 935 if (!retry) 936 return NULL; 937 938 /* We're _really_ low on memory. Now we just 939 * wait for old buffer heads to become free due to 940 * finishing IO. Since this is an async request and 941 * the reserve list is empty, we're sure there are 942 * async buffer heads in use. 943 */ 944 free_more_memory(); 945 goto try_again; 946 } 947 EXPORT_SYMBOL_GPL(alloc_page_buffers); 948 949 static inline void 950 link_dev_buffers(struct page *page, struct buffer_head *head) 951 { 952 struct buffer_head *bh, *tail; 953 954 bh = head; 955 do { 956 tail = bh; 957 bh = bh->b_this_page; 958 } while (bh); 959 tail->b_this_page = head; 960 attach_page_buffers(page, head); 961 } 962 963 /* 964 * Initialise the state of a blockdev page's buffers. 965 */ 966 static void 967 init_page_buffers(struct page *page, struct block_device *bdev, 968 sector_t block, int size) 969 { 970 struct buffer_head *head = page_buffers(page); 971 struct buffer_head *bh = head; 972 int uptodate = PageUptodate(page); 973 974 do { 975 if (!buffer_mapped(bh)) { 976 init_buffer(bh, NULL, NULL); 977 bh->b_bdev = bdev; 978 bh->b_blocknr = block; 979 if (uptodate) 980 set_buffer_uptodate(bh); 981 set_buffer_mapped(bh); 982 } 983 block++; 984 bh = bh->b_this_page; 985 } while (bh != head); 986 } 987 988 /* 989 * Create the page-cache page that contains the requested block. 990 * 991 * This is user purely for blockdev mappings. 992 */ 993 static struct page * 994 grow_dev_page(struct block_device *bdev, sector_t block, 995 pgoff_t index, int size) 996 { 997 struct inode *inode = bdev->bd_inode; 998 struct page *page; 999 struct buffer_head *bh; 1000 1001 page = find_or_create_page(inode->i_mapping, index, 1002 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 1003 if (!page) 1004 return NULL; 1005 1006 BUG_ON(!PageLocked(page)); 1007 1008 if (page_has_buffers(page)) { 1009 bh = page_buffers(page); 1010 if (bh->b_size == size) { 1011 init_page_buffers(page, bdev, block, size); 1012 return page; 1013 } 1014 if (!try_to_free_buffers(page)) 1015 goto failed; 1016 } 1017 1018 /* 1019 * Allocate some buffers for this page 1020 */ 1021 bh = alloc_page_buffers(page, size, 0); 1022 if (!bh) 1023 goto failed; 1024 1025 /* 1026 * Link the page to the buffers and initialise them. Take the 1027 * lock to be atomic wrt __find_get_block(), which does not 1028 * run under the page lock. 1029 */ 1030 spin_lock(&inode->i_mapping->private_lock); 1031 link_dev_buffers(page, bh); 1032 init_page_buffers(page, bdev, block, size); 1033 spin_unlock(&inode->i_mapping->private_lock); 1034 return page; 1035 1036 failed: 1037 BUG(); 1038 unlock_page(page); 1039 page_cache_release(page); 1040 return NULL; 1041 } 1042 1043 /* 1044 * Create buffers for the specified block device block's page. If 1045 * that page was dirty, the buffers are set dirty also. 1046 */ 1047 static int 1048 grow_buffers(struct block_device *bdev, sector_t block, int size) 1049 { 1050 struct page *page; 1051 pgoff_t index; 1052 int sizebits; 1053 1054 sizebits = -1; 1055 do { 1056 sizebits++; 1057 } while ((size << sizebits) < PAGE_SIZE); 1058 1059 index = block >> sizebits; 1060 1061 /* 1062 * Check for a block which wants to lie outside our maximum possible 1063 * pagecache index. (this comparison is done using sector_t types). 1064 */ 1065 if (unlikely(index != block >> sizebits)) { 1066 char b[BDEVNAME_SIZE]; 1067 1068 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1069 "device %s\n", 1070 __func__, (unsigned long long)block, 1071 bdevname(bdev, b)); 1072 return -EIO; 1073 } 1074 block = index << sizebits; 1075 /* Create a page with the proper size buffers.. */ 1076 page = grow_dev_page(bdev, block, index, size); 1077 if (!page) 1078 return 0; 1079 unlock_page(page); 1080 page_cache_release(page); 1081 return 1; 1082 } 1083 1084 static struct buffer_head * 1085 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1086 { 1087 /* Size must be multiple of hard sectorsize */ 1088 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1089 (size < 512 || size > PAGE_SIZE))) { 1090 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1091 size); 1092 printk(KERN_ERR "logical block size: %d\n", 1093 bdev_logical_block_size(bdev)); 1094 1095 dump_stack(); 1096 return NULL; 1097 } 1098 1099 for (;;) { 1100 struct buffer_head * bh; 1101 int ret; 1102 1103 bh = __find_get_block(bdev, block, size); 1104 if (bh) 1105 return bh; 1106 1107 ret = grow_buffers(bdev, block, size); 1108 if (ret < 0) 1109 return NULL; 1110 if (ret == 0) 1111 free_more_memory(); 1112 } 1113 } 1114 1115 /* 1116 * The relationship between dirty buffers and dirty pages: 1117 * 1118 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1119 * the page is tagged dirty in its radix tree. 1120 * 1121 * At all times, the dirtiness of the buffers represents the dirtiness of 1122 * subsections of the page. If the page has buffers, the page dirty bit is 1123 * merely a hint about the true dirty state. 1124 * 1125 * When a page is set dirty in its entirety, all its buffers are marked dirty 1126 * (if the page has buffers). 1127 * 1128 * When a buffer is marked dirty, its page is dirtied, but the page's other 1129 * buffers are not. 1130 * 1131 * Also. When blockdev buffers are explicitly read with bread(), they 1132 * individually become uptodate. But their backing page remains not 1133 * uptodate - even if all of its buffers are uptodate. A subsequent 1134 * block_read_full_page() against that page will discover all the uptodate 1135 * buffers, will set the page uptodate and will perform no I/O. 1136 */ 1137 1138 /** 1139 * mark_buffer_dirty - mark a buffer_head as needing writeout 1140 * @bh: the buffer_head to mark dirty 1141 * 1142 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1143 * backing page dirty, then tag the page as dirty in its address_space's radix 1144 * tree and then attach the address_space's inode to its superblock's dirty 1145 * inode list. 1146 * 1147 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1148 * mapping->tree_lock and the global inode_lock. 1149 */ 1150 void mark_buffer_dirty(struct buffer_head *bh) 1151 { 1152 WARN_ON_ONCE(!buffer_uptodate(bh)); 1153 1154 /* 1155 * Very *carefully* optimize the it-is-already-dirty case. 1156 * 1157 * Don't let the final "is it dirty" escape to before we 1158 * perhaps modified the buffer. 1159 */ 1160 if (buffer_dirty(bh)) { 1161 smp_mb(); 1162 if (buffer_dirty(bh)) 1163 return; 1164 } 1165 1166 if (!test_set_buffer_dirty(bh)) { 1167 struct page *page = bh->b_page; 1168 if (!TestSetPageDirty(page)) { 1169 struct address_space *mapping = page_mapping(page); 1170 if (mapping) 1171 __set_page_dirty(page, mapping, 0); 1172 } 1173 } 1174 } 1175 EXPORT_SYMBOL(mark_buffer_dirty); 1176 1177 /* 1178 * Decrement a buffer_head's reference count. If all buffers against a page 1179 * have zero reference count, are clean and unlocked, and if the page is clean 1180 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1181 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1182 * a page but it ends up not being freed, and buffers may later be reattached). 1183 */ 1184 void __brelse(struct buffer_head * buf) 1185 { 1186 if (atomic_read(&buf->b_count)) { 1187 put_bh(buf); 1188 return; 1189 } 1190 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1191 } 1192 EXPORT_SYMBOL(__brelse); 1193 1194 /* 1195 * bforget() is like brelse(), except it discards any 1196 * potentially dirty data. 1197 */ 1198 void __bforget(struct buffer_head *bh) 1199 { 1200 clear_buffer_dirty(bh); 1201 if (bh->b_assoc_map) { 1202 struct address_space *buffer_mapping = bh->b_page->mapping; 1203 1204 spin_lock(&buffer_mapping->private_lock); 1205 list_del_init(&bh->b_assoc_buffers); 1206 bh->b_assoc_map = NULL; 1207 spin_unlock(&buffer_mapping->private_lock); 1208 } 1209 __brelse(bh); 1210 } 1211 EXPORT_SYMBOL(__bforget); 1212 1213 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1214 { 1215 lock_buffer(bh); 1216 if (buffer_uptodate(bh)) { 1217 unlock_buffer(bh); 1218 return bh; 1219 } else { 1220 get_bh(bh); 1221 bh->b_end_io = end_buffer_read_sync; 1222 submit_bh(READ, bh); 1223 wait_on_buffer(bh); 1224 if (buffer_uptodate(bh)) 1225 return bh; 1226 } 1227 brelse(bh); 1228 return NULL; 1229 } 1230 1231 /* 1232 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1233 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1234 * refcount elevated by one when they're in an LRU. A buffer can only appear 1235 * once in a particular CPU's LRU. A single buffer can be present in multiple 1236 * CPU's LRUs at the same time. 1237 * 1238 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1239 * sb_find_get_block(). 1240 * 1241 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1242 * a local interrupt disable for that. 1243 */ 1244 1245 #define BH_LRU_SIZE 8 1246 1247 struct bh_lru { 1248 struct buffer_head *bhs[BH_LRU_SIZE]; 1249 }; 1250 1251 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1252 1253 #ifdef CONFIG_SMP 1254 #define bh_lru_lock() local_irq_disable() 1255 #define bh_lru_unlock() local_irq_enable() 1256 #else 1257 #define bh_lru_lock() preempt_disable() 1258 #define bh_lru_unlock() preempt_enable() 1259 #endif 1260 1261 static inline void check_irqs_on(void) 1262 { 1263 #ifdef irqs_disabled 1264 BUG_ON(irqs_disabled()); 1265 #endif 1266 } 1267 1268 /* 1269 * The LRU management algorithm is dopey-but-simple. Sorry. 1270 */ 1271 static void bh_lru_install(struct buffer_head *bh) 1272 { 1273 struct buffer_head *evictee = NULL; 1274 struct bh_lru *lru; 1275 1276 check_irqs_on(); 1277 bh_lru_lock(); 1278 lru = &__get_cpu_var(bh_lrus); 1279 if (lru->bhs[0] != bh) { 1280 struct buffer_head *bhs[BH_LRU_SIZE]; 1281 int in; 1282 int out = 0; 1283 1284 get_bh(bh); 1285 bhs[out++] = bh; 1286 for (in = 0; in < BH_LRU_SIZE; in++) { 1287 struct buffer_head *bh2 = lru->bhs[in]; 1288 1289 if (bh2 == bh) { 1290 __brelse(bh2); 1291 } else { 1292 if (out >= BH_LRU_SIZE) { 1293 BUG_ON(evictee != NULL); 1294 evictee = bh2; 1295 } else { 1296 bhs[out++] = bh2; 1297 } 1298 } 1299 } 1300 while (out < BH_LRU_SIZE) 1301 bhs[out++] = NULL; 1302 memcpy(lru->bhs, bhs, sizeof(bhs)); 1303 } 1304 bh_lru_unlock(); 1305 1306 if (evictee) 1307 __brelse(evictee); 1308 } 1309 1310 /* 1311 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1312 */ 1313 static struct buffer_head * 1314 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1315 { 1316 struct buffer_head *ret = NULL; 1317 struct bh_lru *lru; 1318 unsigned int i; 1319 1320 check_irqs_on(); 1321 bh_lru_lock(); 1322 lru = &__get_cpu_var(bh_lrus); 1323 for (i = 0; i < BH_LRU_SIZE; i++) { 1324 struct buffer_head *bh = lru->bhs[i]; 1325 1326 if (bh && bh->b_bdev == bdev && 1327 bh->b_blocknr == block && bh->b_size == size) { 1328 if (i) { 1329 while (i) { 1330 lru->bhs[i] = lru->bhs[i - 1]; 1331 i--; 1332 } 1333 lru->bhs[0] = bh; 1334 } 1335 get_bh(bh); 1336 ret = bh; 1337 break; 1338 } 1339 } 1340 bh_lru_unlock(); 1341 return ret; 1342 } 1343 1344 /* 1345 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1346 * it in the LRU and mark it as accessed. If it is not present then return 1347 * NULL 1348 */ 1349 struct buffer_head * 1350 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1351 { 1352 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1353 1354 if (bh == NULL) { 1355 bh = __find_get_block_slow(bdev, block); 1356 if (bh) 1357 bh_lru_install(bh); 1358 } 1359 if (bh) 1360 touch_buffer(bh); 1361 return bh; 1362 } 1363 EXPORT_SYMBOL(__find_get_block); 1364 1365 /* 1366 * __getblk will locate (and, if necessary, create) the buffer_head 1367 * which corresponds to the passed block_device, block and size. The 1368 * returned buffer has its reference count incremented. 1369 * 1370 * __getblk() cannot fail - it just keeps trying. If you pass it an 1371 * illegal block number, __getblk() will happily return a buffer_head 1372 * which represents the non-existent block. Very weird. 1373 * 1374 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1375 * attempt is failing. FIXME, perhaps? 1376 */ 1377 struct buffer_head * 1378 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1379 { 1380 struct buffer_head *bh = __find_get_block(bdev, block, size); 1381 1382 might_sleep(); 1383 if (bh == NULL) 1384 bh = __getblk_slow(bdev, block, size); 1385 return bh; 1386 } 1387 EXPORT_SYMBOL(__getblk); 1388 1389 /* 1390 * Do async read-ahead on a buffer.. 1391 */ 1392 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1393 { 1394 struct buffer_head *bh = __getblk(bdev, block, size); 1395 if (likely(bh)) { 1396 ll_rw_block(READA, 1, &bh); 1397 brelse(bh); 1398 } 1399 } 1400 EXPORT_SYMBOL(__breadahead); 1401 1402 /** 1403 * __bread() - reads a specified block and returns the bh 1404 * @bdev: the block_device to read from 1405 * @block: number of block 1406 * @size: size (in bytes) to read 1407 * 1408 * Reads a specified block, and returns buffer head that contains it. 1409 * It returns NULL if the block was unreadable. 1410 */ 1411 struct buffer_head * 1412 __bread(struct block_device *bdev, sector_t block, unsigned size) 1413 { 1414 struct buffer_head *bh = __getblk(bdev, block, size); 1415 1416 if (likely(bh) && !buffer_uptodate(bh)) 1417 bh = __bread_slow(bh); 1418 return bh; 1419 } 1420 EXPORT_SYMBOL(__bread); 1421 1422 /* 1423 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1424 * This doesn't race because it runs in each cpu either in irq 1425 * or with preempt disabled. 1426 */ 1427 static void invalidate_bh_lru(void *arg) 1428 { 1429 struct bh_lru *b = &get_cpu_var(bh_lrus); 1430 int i; 1431 1432 for (i = 0; i < BH_LRU_SIZE; i++) { 1433 brelse(b->bhs[i]); 1434 b->bhs[i] = NULL; 1435 } 1436 put_cpu_var(bh_lrus); 1437 } 1438 1439 void invalidate_bh_lrus(void) 1440 { 1441 on_each_cpu(invalidate_bh_lru, NULL, 1); 1442 } 1443 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1444 1445 void set_bh_page(struct buffer_head *bh, 1446 struct page *page, unsigned long offset) 1447 { 1448 bh->b_page = page; 1449 BUG_ON(offset >= PAGE_SIZE); 1450 if (PageHighMem(page)) 1451 /* 1452 * This catches illegal uses and preserves the offset: 1453 */ 1454 bh->b_data = (char *)(0 + offset); 1455 else 1456 bh->b_data = page_address(page) + offset; 1457 } 1458 EXPORT_SYMBOL(set_bh_page); 1459 1460 /* 1461 * Called when truncating a buffer on a page completely. 1462 */ 1463 static void discard_buffer(struct buffer_head * bh) 1464 { 1465 lock_buffer(bh); 1466 clear_buffer_dirty(bh); 1467 bh->b_bdev = NULL; 1468 clear_buffer_mapped(bh); 1469 clear_buffer_req(bh); 1470 clear_buffer_new(bh); 1471 clear_buffer_delay(bh); 1472 clear_buffer_unwritten(bh); 1473 unlock_buffer(bh); 1474 } 1475 1476 /** 1477 * block_invalidatepage - invalidate part of all of a buffer-backed page 1478 * 1479 * @page: the page which is affected 1480 * @offset: the index of the truncation point 1481 * 1482 * block_invalidatepage() is called when all or part of the page has become 1483 * invalidatedby a truncate operation. 1484 * 1485 * block_invalidatepage() does not have to release all buffers, but it must 1486 * ensure that no dirty buffer is left outside @offset and that no I/O 1487 * is underway against any of the blocks which are outside the truncation 1488 * point. Because the caller is about to free (and possibly reuse) those 1489 * blocks on-disk. 1490 */ 1491 void block_invalidatepage(struct page *page, unsigned long offset) 1492 { 1493 struct buffer_head *head, *bh, *next; 1494 unsigned int curr_off = 0; 1495 1496 BUG_ON(!PageLocked(page)); 1497 if (!page_has_buffers(page)) 1498 goto out; 1499 1500 head = page_buffers(page); 1501 bh = head; 1502 do { 1503 unsigned int next_off = curr_off + bh->b_size; 1504 next = bh->b_this_page; 1505 1506 /* 1507 * is this block fully invalidated? 1508 */ 1509 if (offset <= curr_off) 1510 discard_buffer(bh); 1511 curr_off = next_off; 1512 bh = next; 1513 } while (bh != head); 1514 1515 /* 1516 * We release buffers only if the entire page is being invalidated. 1517 * The get_block cached value has been unconditionally invalidated, 1518 * so real IO is not possible anymore. 1519 */ 1520 if (offset == 0) 1521 try_to_release_page(page, 0); 1522 out: 1523 return; 1524 } 1525 EXPORT_SYMBOL(block_invalidatepage); 1526 1527 /* 1528 * We attach and possibly dirty the buffers atomically wrt 1529 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1530 * is already excluded via the page lock. 1531 */ 1532 void create_empty_buffers(struct page *page, 1533 unsigned long blocksize, unsigned long b_state) 1534 { 1535 struct buffer_head *bh, *head, *tail; 1536 1537 head = alloc_page_buffers(page, blocksize, 1); 1538 bh = head; 1539 do { 1540 bh->b_state |= b_state; 1541 tail = bh; 1542 bh = bh->b_this_page; 1543 } while (bh); 1544 tail->b_this_page = head; 1545 1546 spin_lock(&page->mapping->private_lock); 1547 if (PageUptodate(page) || PageDirty(page)) { 1548 bh = head; 1549 do { 1550 if (PageDirty(page)) 1551 set_buffer_dirty(bh); 1552 if (PageUptodate(page)) 1553 set_buffer_uptodate(bh); 1554 bh = bh->b_this_page; 1555 } while (bh != head); 1556 } 1557 attach_page_buffers(page, head); 1558 spin_unlock(&page->mapping->private_lock); 1559 } 1560 EXPORT_SYMBOL(create_empty_buffers); 1561 1562 /* 1563 * We are taking a block for data and we don't want any output from any 1564 * buffer-cache aliases starting from return from that function and 1565 * until the moment when something will explicitly mark the buffer 1566 * dirty (hopefully that will not happen until we will free that block ;-) 1567 * We don't even need to mark it not-uptodate - nobody can expect 1568 * anything from a newly allocated buffer anyway. We used to used 1569 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1570 * don't want to mark the alias unmapped, for example - it would confuse 1571 * anyone who might pick it with bread() afterwards... 1572 * 1573 * Also.. Note that bforget() doesn't lock the buffer. So there can 1574 * be writeout I/O going on against recently-freed buffers. We don't 1575 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1576 * only if we really need to. That happens here. 1577 */ 1578 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1579 { 1580 struct buffer_head *old_bh; 1581 1582 might_sleep(); 1583 1584 old_bh = __find_get_block_slow(bdev, block); 1585 if (old_bh) { 1586 clear_buffer_dirty(old_bh); 1587 wait_on_buffer(old_bh); 1588 clear_buffer_req(old_bh); 1589 __brelse(old_bh); 1590 } 1591 } 1592 EXPORT_SYMBOL(unmap_underlying_metadata); 1593 1594 /* 1595 * NOTE! All mapped/uptodate combinations are valid: 1596 * 1597 * Mapped Uptodate Meaning 1598 * 1599 * No No "unknown" - must do get_block() 1600 * No Yes "hole" - zero-filled 1601 * Yes No "allocated" - allocated on disk, not read in 1602 * Yes Yes "valid" - allocated and up-to-date in memory. 1603 * 1604 * "Dirty" is valid only with the last case (mapped+uptodate). 1605 */ 1606 1607 /* 1608 * While block_write_full_page is writing back the dirty buffers under 1609 * the page lock, whoever dirtied the buffers may decide to clean them 1610 * again at any time. We handle that by only looking at the buffer 1611 * state inside lock_buffer(). 1612 * 1613 * If block_write_full_page() is called for regular writeback 1614 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1615 * locked buffer. This only can happen if someone has written the buffer 1616 * directly, with submit_bh(). At the address_space level PageWriteback 1617 * prevents this contention from occurring. 1618 * 1619 * If block_write_full_page() is called with wbc->sync_mode == 1620 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this 1621 * causes the writes to be flagged as synchronous writes, but the 1622 * block device queue will NOT be unplugged, since usually many pages 1623 * will be pushed to the out before the higher-level caller actually 1624 * waits for the writes to be completed. The various wait functions, 1625 * such as wait_on_writeback_range() will ultimately call sync_page() 1626 * which will ultimately call blk_run_backing_dev(), which will end up 1627 * unplugging the device queue. 1628 */ 1629 static int __block_write_full_page(struct inode *inode, struct page *page, 1630 get_block_t *get_block, struct writeback_control *wbc, 1631 bh_end_io_t *handler) 1632 { 1633 int err; 1634 sector_t block; 1635 sector_t last_block; 1636 struct buffer_head *bh, *head; 1637 const unsigned blocksize = 1 << inode->i_blkbits; 1638 int nr_underway = 0; 1639 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1640 WRITE_SYNC_PLUG : WRITE); 1641 1642 BUG_ON(!PageLocked(page)); 1643 1644 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1645 1646 if (!page_has_buffers(page)) { 1647 create_empty_buffers(page, blocksize, 1648 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1649 } 1650 1651 /* 1652 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1653 * here, and the (potentially unmapped) buffers may become dirty at 1654 * any time. If a buffer becomes dirty here after we've inspected it 1655 * then we just miss that fact, and the page stays dirty. 1656 * 1657 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1658 * handle that here by just cleaning them. 1659 */ 1660 1661 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1662 head = page_buffers(page); 1663 bh = head; 1664 1665 /* 1666 * Get all the dirty buffers mapped to disk addresses and 1667 * handle any aliases from the underlying blockdev's mapping. 1668 */ 1669 do { 1670 if (block > last_block) { 1671 /* 1672 * mapped buffers outside i_size will occur, because 1673 * this page can be outside i_size when there is a 1674 * truncate in progress. 1675 */ 1676 /* 1677 * The buffer was zeroed by block_write_full_page() 1678 */ 1679 clear_buffer_dirty(bh); 1680 set_buffer_uptodate(bh); 1681 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1682 buffer_dirty(bh)) { 1683 WARN_ON(bh->b_size != blocksize); 1684 err = get_block(inode, block, bh, 1); 1685 if (err) 1686 goto recover; 1687 clear_buffer_delay(bh); 1688 if (buffer_new(bh)) { 1689 /* blockdev mappings never come here */ 1690 clear_buffer_new(bh); 1691 unmap_underlying_metadata(bh->b_bdev, 1692 bh->b_blocknr); 1693 } 1694 } 1695 bh = bh->b_this_page; 1696 block++; 1697 } while (bh != head); 1698 1699 do { 1700 if (!buffer_mapped(bh)) 1701 continue; 1702 /* 1703 * If it's a fully non-blocking write attempt and we cannot 1704 * lock the buffer then redirty the page. Note that this can 1705 * potentially cause a busy-wait loop from writeback threads 1706 * and kswapd activity, but those code paths have their own 1707 * higher-level throttling. 1708 */ 1709 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1710 lock_buffer(bh); 1711 } else if (!trylock_buffer(bh)) { 1712 redirty_page_for_writepage(wbc, page); 1713 continue; 1714 } 1715 if (test_clear_buffer_dirty(bh)) { 1716 mark_buffer_async_write_endio(bh, handler); 1717 } else { 1718 unlock_buffer(bh); 1719 } 1720 } while ((bh = bh->b_this_page) != head); 1721 1722 /* 1723 * The page and its buffers are protected by PageWriteback(), so we can 1724 * drop the bh refcounts early. 1725 */ 1726 BUG_ON(PageWriteback(page)); 1727 set_page_writeback(page); 1728 1729 do { 1730 struct buffer_head *next = bh->b_this_page; 1731 if (buffer_async_write(bh)) { 1732 submit_bh(write_op, bh); 1733 nr_underway++; 1734 } 1735 bh = next; 1736 } while (bh != head); 1737 unlock_page(page); 1738 1739 err = 0; 1740 done: 1741 if (nr_underway == 0) { 1742 /* 1743 * The page was marked dirty, but the buffers were 1744 * clean. Someone wrote them back by hand with 1745 * ll_rw_block/submit_bh. A rare case. 1746 */ 1747 end_page_writeback(page); 1748 1749 /* 1750 * The page and buffer_heads can be released at any time from 1751 * here on. 1752 */ 1753 } 1754 return err; 1755 1756 recover: 1757 /* 1758 * ENOSPC, or some other error. We may already have added some 1759 * blocks to the file, so we need to write these out to avoid 1760 * exposing stale data. 1761 * The page is currently locked and not marked for writeback 1762 */ 1763 bh = head; 1764 /* Recovery: lock and submit the mapped buffers */ 1765 do { 1766 if (buffer_mapped(bh) && buffer_dirty(bh) && 1767 !buffer_delay(bh)) { 1768 lock_buffer(bh); 1769 mark_buffer_async_write_endio(bh, handler); 1770 } else { 1771 /* 1772 * The buffer may have been set dirty during 1773 * attachment to a dirty page. 1774 */ 1775 clear_buffer_dirty(bh); 1776 } 1777 } while ((bh = bh->b_this_page) != head); 1778 SetPageError(page); 1779 BUG_ON(PageWriteback(page)); 1780 mapping_set_error(page->mapping, err); 1781 set_page_writeback(page); 1782 do { 1783 struct buffer_head *next = bh->b_this_page; 1784 if (buffer_async_write(bh)) { 1785 clear_buffer_dirty(bh); 1786 submit_bh(write_op, bh); 1787 nr_underway++; 1788 } 1789 bh = next; 1790 } while (bh != head); 1791 unlock_page(page); 1792 goto done; 1793 } 1794 1795 /* 1796 * If a page has any new buffers, zero them out here, and mark them uptodate 1797 * and dirty so they'll be written out (in order to prevent uninitialised 1798 * block data from leaking). And clear the new bit. 1799 */ 1800 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1801 { 1802 unsigned int block_start, block_end; 1803 struct buffer_head *head, *bh; 1804 1805 BUG_ON(!PageLocked(page)); 1806 if (!page_has_buffers(page)) 1807 return; 1808 1809 bh = head = page_buffers(page); 1810 block_start = 0; 1811 do { 1812 block_end = block_start + bh->b_size; 1813 1814 if (buffer_new(bh)) { 1815 if (block_end > from && block_start < to) { 1816 if (!PageUptodate(page)) { 1817 unsigned start, size; 1818 1819 start = max(from, block_start); 1820 size = min(to, block_end) - start; 1821 1822 zero_user(page, start, size); 1823 set_buffer_uptodate(bh); 1824 } 1825 1826 clear_buffer_new(bh); 1827 mark_buffer_dirty(bh); 1828 } 1829 } 1830 1831 block_start = block_end; 1832 bh = bh->b_this_page; 1833 } while (bh != head); 1834 } 1835 EXPORT_SYMBOL(page_zero_new_buffers); 1836 1837 int block_prepare_write(struct page *page, unsigned from, unsigned to, 1838 get_block_t *get_block) 1839 { 1840 struct inode *inode = page->mapping->host; 1841 unsigned block_start, block_end; 1842 sector_t block; 1843 int err = 0; 1844 unsigned blocksize, bbits; 1845 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1846 1847 BUG_ON(!PageLocked(page)); 1848 BUG_ON(from > PAGE_CACHE_SIZE); 1849 BUG_ON(to > PAGE_CACHE_SIZE); 1850 BUG_ON(from > to); 1851 1852 blocksize = 1 << inode->i_blkbits; 1853 if (!page_has_buffers(page)) 1854 create_empty_buffers(page, blocksize, 0); 1855 head = page_buffers(page); 1856 1857 bbits = inode->i_blkbits; 1858 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1859 1860 for(bh = head, block_start = 0; bh != head || !block_start; 1861 block++, block_start=block_end, bh = bh->b_this_page) { 1862 block_end = block_start + blocksize; 1863 if (block_end <= from || block_start >= to) { 1864 if (PageUptodate(page)) { 1865 if (!buffer_uptodate(bh)) 1866 set_buffer_uptodate(bh); 1867 } 1868 continue; 1869 } 1870 if (buffer_new(bh)) 1871 clear_buffer_new(bh); 1872 if (!buffer_mapped(bh)) { 1873 WARN_ON(bh->b_size != blocksize); 1874 err = get_block(inode, block, bh, 1); 1875 if (err) 1876 break; 1877 if (buffer_new(bh)) { 1878 unmap_underlying_metadata(bh->b_bdev, 1879 bh->b_blocknr); 1880 if (PageUptodate(page)) { 1881 clear_buffer_new(bh); 1882 set_buffer_uptodate(bh); 1883 mark_buffer_dirty(bh); 1884 continue; 1885 } 1886 if (block_end > to || block_start < from) 1887 zero_user_segments(page, 1888 to, block_end, 1889 block_start, from); 1890 continue; 1891 } 1892 } 1893 if (PageUptodate(page)) { 1894 if (!buffer_uptodate(bh)) 1895 set_buffer_uptodate(bh); 1896 continue; 1897 } 1898 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1899 !buffer_unwritten(bh) && 1900 (block_start < from || block_end > to)) { 1901 ll_rw_block(READ, 1, &bh); 1902 *wait_bh++=bh; 1903 } 1904 } 1905 /* 1906 * If we issued read requests - let them complete. 1907 */ 1908 while(wait_bh > wait) { 1909 wait_on_buffer(*--wait_bh); 1910 if (!buffer_uptodate(*wait_bh)) 1911 err = -EIO; 1912 } 1913 if (unlikely(err)) { 1914 page_zero_new_buffers(page, from, to); 1915 ClearPageUptodate(page); 1916 } 1917 return err; 1918 } 1919 EXPORT_SYMBOL(block_prepare_write); 1920 1921 static int __block_commit_write(struct inode *inode, struct page *page, 1922 unsigned from, unsigned to) 1923 { 1924 unsigned block_start, block_end; 1925 int partial = 0; 1926 unsigned blocksize; 1927 struct buffer_head *bh, *head; 1928 1929 blocksize = 1 << inode->i_blkbits; 1930 1931 for(bh = head = page_buffers(page), block_start = 0; 1932 bh != head || !block_start; 1933 block_start=block_end, bh = bh->b_this_page) { 1934 block_end = block_start + blocksize; 1935 if (block_end <= from || block_start >= to) { 1936 if (!buffer_uptodate(bh)) 1937 partial = 1; 1938 } else { 1939 set_buffer_uptodate(bh); 1940 mark_buffer_dirty(bh); 1941 } 1942 clear_buffer_new(bh); 1943 } 1944 1945 /* 1946 * If this is a partial write which happened to make all buffers 1947 * uptodate then we can optimize away a bogus readpage() for 1948 * the next read(). Here we 'discover' whether the page went 1949 * uptodate as a result of this (potentially partial) write. 1950 */ 1951 if (!partial) 1952 SetPageUptodate(page); 1953 return 0; 1954 } 1955 1956 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1957 get_block_t *get_block) 1958 { 1959 unsigned start = pos & (PAGE_CACHE_SIZE - 1); 1960 1961 return block_prepare_write(page, start, start + len, get_block); 1962 } 1963 EXPORT_SYMBOL(__block_write_begin); 1964 1965 /* 1966 * block_write_begin takes care of the basic task of block allocation and 1967 * bringing partial write blocks uptodate first. 1968 * 1969 * The filesystem needs to handle block truncation upon failure. 1970 */ 1971 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 1972 unsigned flags, struct page **pagep, get_block_t *get_block) 1973 { 1974 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1975 struct page *page; 1976 int status; 1977 1978 page = grab_cache_page_write_begin(mapping, index, flags); 1979 if (!page) 1980 return -ENOMEM; 1981 1982 status = __block_write_begin(page, pos, len, get_block); 1983 if (unlikely(status)) { 1984 unlock_page(page); 1985 page_cache_release(page); 1986 page = NULL; 1987 } 1988 1989 *pagep = page; 1990 return status; 1991 } 1992 EXPORT_SYMBOL(block_write_begin); 1993 1994 int block_write_end(struct file *file, struct address_space *mapping, 1995 loff_t pos, unsigned len, unsigned copied, 1996 struct page *page, void *fsdata) 1997 { 1998 struct inode *inode = mapping->host; 1999 unsigned start; 2000 2001 start = pos & (PAGE_CACHE_SIZE - 1); 2002 2003 if (unlikely(copied < len)) { 2004 /* 2005 * The buffers that were written will now be uptodate, so we 2006 * don't have to worry about a readpage reading them and 2007 * overwriting a partial write. However if we have encountered 2008 * a short write and only partially written into a buffer, it 2009 * will not be marked uptodate, so a readpage might come in and 2010 * destroy our partial write. 2011 * 2012 * Do the simplest thing, and just treat any short write to a 2013 * non uptodate page as a zero-length write, and force the 2014 * caller to redo the whole thing. 2015 */ 2016 if (!PageUptodate(page)) 2017 copied = 0; 2018 2019 page_zero_new_buffers(page, start+copied, start+len); 2020 } 2021 flush_dcache_page(page); 2022 2023 /* This could be a short (even 0-length) commit */ 2024 __block_commit_write(inode, page, start, start+copied); 2025 2026 return copied; 2027 } 2028 EXPORT_SYMBOL(block_write_end); 2029 2030 int generic_write_end(struct file *file, struct address_space *mapping, 2031 loff_t pos, unsigned len, unsigned copied, 2032 struct page *page, void *fsdata) 2033 { 2034 struct inode *inode = mapping->host; 2035 int i_size_changed = 0; 2036 2037 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2038 2039 /* 2040 * No need to use i_size_read() here, the i_size 2041 * cannot change under us because we hold i_mutex. 2042 * 2043 * But it's important to update i_size while still holding page lock: 2044 * page writeout could otherwise come in and zero beyond i_size. 2045 */ 2046 if (pos+copied > inode->i_size) { 2047 i_size_write(inode, pos+copied); 2048 i_size_changed = 1; 2049 } 2050 2051 unlock_page(page); 2052 page_cache_release(page); 2053 2054 /* 2055 * Don't mark the inode dirty under page lock. First, it unnecessarily 2056 * makes the holding time of page lock longer. Second, it forces lock 2057 * ordering of page lock and transaction start for journaling 2058 * filesystems. 2059 */ 2060 if (i_size_changed) 2061 mark_inode_dirty(inode); 2062 2063 return copied; 2064 } 2065 EXPORT_SYMBOL(generic_write_end); 2066 2067 /* 2068 * block_is_partially_uptodate checks whether buffers within a page are 2069 * uptodate or not. 2070 * 2071 * Returns true if all buffers which correspond to a file portion 2072 * we want to read are uptodate. 2073 */ 2074 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2075 unsigned long from) 2076 { 2077 struct inode *inode = page->mapping->host; 2078 unsigned block_start, block_end, blocksize; 2079 unsigned to; 2080 struct buffer_head *bh, *head; 2081 int ret = 1; 2082 2083 if (!page_has_buffers(page)) 2084 return 0; 2085 2086 blocksize = 1 << inode->i_blkbits; 2087 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2088 to = from + to; 2089 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2090 return 0; 2091 2092 head = page_buffers(page); 2093 bh = head; 2094 block_start = 0; 2095 do { 2096 block_end = block_start + blocksize; 2097 if (block_end > from && block_start < to) { 2098 if (!buffer_uptodate(bh)) { 2099 ret = 0; 2100 break; 2101 } 2102 if (block_end >= to) 2103 break; 2104 } 2105 block_start = block_end; 2106 bh = bh->b_this_page; 2107 } while (bh != head); 2108 2109 return ret; 2110 } 2111 EXPORT_SYMBOL(block_is_partially_uptodate); 2112 2113 /* 2114 * Generic "read page" function for block devices that have the normal 2115 * get_block functionality. This is most of the block device filesystems. 2116 * Reads the page asynchronously --- the unlock_buffer() and 2117 * set/clear_buffer_uptodate() functions propagate buffer state into the 2118 * page struct once IO has completed. 2119 */ 2120 int block_read_full_page(struct page *page, get_block_t *get_block) 2121 { 2122 struct inode *inode = page->mapping->host; 2123 sector_t iblock, lblock; 2124 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2125 unsigned int blocksize; 2126 int nr, i; 2127 int fully_mapped = 1; 2128 2129 BUG_ON(!PageLocked(page)); 2130 blocksize = 1 << inode->i_blkbits; 2131 if (!page_has_buffers(page)) 2132 create_empty_buffers(page, blocksize, 0); 2133 head = page_buffers(page); 2134 2135 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2136 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2137 bh = head; 2138 nr = 0; 2139 i = 0; 2140 2141 do { 2142 if (buffer_uptodate(bh)) 2143 continue; 2144 2145 if (!buffer_mapped(bh)) { 2146 int err = 0; 2147 2148 fully_mapped = 0; 2149 if (iblock < lblock) { 2150 WARN_ON(bh->b_size != blocksize); 2151 err = get_block(inode, iblock, bh, 0); 2152 if (err) 2153 SetPageError(page); 2154 } 2155 if (!buffer_mapped(bh)) { 2156 zero_user(page, i * blocksize, blocksize); 2157 if (!err) 2158 set_buffer_uptodate(bh); 2159 continue; 2160 } 2161 /* 2162 * get_block() might have updated the buffer 2163 * synchronously 2164 */ 2165 if (buffer_uptodate(bh)) 2166 continue; 2167 } 2168 arr[nr++] = bh; 2169 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2170 2171 if (fully_mapped) 2172 SetPageMappedToDisk(page); 2173 2174 if (!nr) { 2175 /* 2176 * All buffers are uptodate - we can set the page uptodate 2177 * as well. But not if get_block() returned an error. 2178 */ 2179 if (!PageError(page)) 2180 SetPageUptodate(page); 2181 unlock_page(page); 2182 return 0; 2183 } 2184 2185 /* Stage two: lock the buffers */ 2186 for (i = 0; i < nr; i++) { 2187 bh = arr[i]; 2188 lock_buffer(bh); 2189 mark_buffer_async_read(bh); 2190 } 2191 2192 /* 2193 * Stage 3: start the IO. Check for uptodateness 2194 * inside the buffer lock in case another process reading 2195 * the underlying blockdev brought it uptodate (the sct fix). 2196 */ 2197 for (i = 0; i < nr; i++) { 2198 bh = arr[i]; 2199 if (buffer_uptodate(bh)) 2200 end_buffer_async_read(bh, 1); 2201 else 2202 submit_bh(READ, bh); 2203 } 2204 return 0; 2205 } 2206 EXPORT_SYMBOL(block_read_full_page); 2207 2208 /* utility function for filesystems that need to do work on expanding 2209 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2210 * deal with the hole. 2211 */ 2212 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2213 { 2214 struct address_space *mapping = inode->i_mapping; 2215 struct page *page; 2216 void *fsdata; 2217 int err; 2218 2219 err = inode_newsize_ok(inode, size); 2220 if (err) 2221 goto out; 2222 2223 err = pagecache_write_begin(NULL, mapping, size, 0, 2224 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2225 &page, &fsdata); 2226 if (err) 2227 goto out; 2228 2229 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2230 BUG_ON(err > 0); 2231 2232 out: 2233 return err; 2234 } 2235 EXPORT_SYMBOL(generic_cont_expand_simple); 2236 2237 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2238 loff_t pos, loff_t *bytes) 2239 { 2240 struct inode *inode = mapping->host; 2241 unsigned blocksize = 1 << inode->i_blkbits; 2242 struct page *page; 2243 void *fsdata; 2244 pgoff_t index, curidx; 2245 loff_t curpos; 2246 unsigned zerofrom, offset, len; 2247 int err = 0; 2248 2249 index = pos >> PAGE_CACHE_SHIFT; 2250 offset = pos & ~PAGE_CACHE_MASK; 2251 2252 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2253 zerofrom = curpos & ~PAGE_CACHE_MASK; 2254 if (zerofrom & (blocksize-1)) { 2255 *bytes |= (blocksize-1); 2256 (*bytes)++; 2257 } 2258 len = PAGE_CACHE_SIZE - zerofrom; 2259 2260 err = pagecache_write_begin(file, mapping, curpos, len, 2261 AOP_FLAG_UNINTERRUPTIBLE, 2262 &page, &fsdata); 2263 if (err) 2264 goto out; 2265 zero_user(page, zerofrom, len); 2266 err = pagecache_write_end(file, mapping, curpos, len, len, 2267 page, fsdata); 2268 if (err < 0) 2269 goto out; 2270 BUG_ON(err != len); 2271 err = 0; 2272 2273 balance_dirty_pages_ratelimited(mapping); 2274 } 2275 2276 /* page covers the boundary, find the boundary offset */ 2277 if (index == curidx) { 2278 zerofrom = curpos & ~PAGE_CACHE_MASK; 2279 /* if we will expand the thing last block will be filled */ 2280 if (offset <= zerofrom) { 2281 goto out; 2282 } 2283 if (zerofrom & (blocksize-1)) { 2284 *bytes |= (blocksize-1); 2285 (*bytes)++; 2286 } 2287 len = offset - zerofrom; 2288 2289 err = pagecache_write_begin(file, mapping, curpos, len, 2290 AOP_FLAG_UNINTERRUPTIBLE, 2291 &page, &fsdata); 2292 if (err) 2293 goto out; 2294 zero_user(page, zerofrom, len); 2295 err = pagecache_write_end(file, mapping, curpos, len, len, 2296 page, fsdata); 2297 if (err < 0) 2298 goto out; 2299 BUG_ON(err != len); 2300 err = 0; 2301 } 2302 out: 2303 return err; 2304 } 2305 2306 /* 2307 * For moronic filesystems that do not allow holes in file. 2308 * We may have to extend the file. 2309 */ 2310 int cont_write_begin(struct file *file, struct address_space *mapping, 2311 loff_t pos, unsigned len, unsigned flags, 2312 struct page **pagep, void **fsdata, 2313 get_block_t *get_block, loff_t *bytes) 2314 { 2315 struct inode *inode = mapping->host; 2316 unsigned blocksize = 1 << inode->i_blkbits; 2317 unsigned zerofrom; 2318 int err; 2319 2320 err = cont_expand_zero(file, mapping, pos, bytes); 2321 if (err) 2322 return err; 2323 2324 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2325 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2326 *bytes |= (blocksize-1); 2327 (*bytes)++; 2328 } 2329 2330 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2331 } 2332 EXPORT_SYMBOL(cont_write_begin); 2333 2334 int block_commit_write(struct page *page, unsigned from, unsigned to) 2335 { 2336 struct inode *inode = page->mapping->host; 2337 __block_commit_write(inode,page,from,to); 2338 return 0; 2339 } 2340 EXPORT_SYMBOL(block_commit_write); 2341 2342 /* 2343 * block_page_mkwrite() is not allowed to change the file size as it gets 2344 * called from a page fault handler when a page is first dirtied. Hence we must 2345 * be careful to check for EOF conditions here. We set the page up correctly 2346 * for a written page which means we get ENOSPC checking when writing into 2347 * holes and correct delalloc and unwritten extent mapping on filesystems that 2348 * support these features. 2349 * 2350 * We are not allowed to take the i_mutex here so we have to play games to 2351 * protect against truncate races as the page could now be beyond EOF. Because 2352 * truncate writes the inode size before removing pages, once we have the 2353 * page lock we can determine safely if the page is beyond EOF. If it is not 2354 * beyond EOF, then the page is guaranteed safe against truncation until we 2355 * unlock the page. 2356 */ 2357 int 2358 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2359 get_block_t get_block) 2360 { 2361 struct page *page = vmf->page; 2362 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2363 unsigned long end; 2364 loff_t size; 2365 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 2366 2367 lock_page(page); 2368 size = i_size_read(inode); 2369 if ((page->mapping != inode->i_mapping) || 2370 (page_offset(page) > size)) { 2371 /* page got truncated out from underneath us */ 2372 unlock_page(page); 2373 goto out; 2374 } 2375 2376 /* page is wholly or partially inside EOF */ 2377 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2378 end = size & ~PAGE_CACHE_MASK; 2379 else 2380 end = PAGE_CACHE_SIZE; 2381 2382 ret = block_prepare_write(page, 0, end, get_block); 2383 if (!ret) 2384 ret = block_commit_write(page, 0, end); 2385 2386 if (unlikely(ret)) { 2387 unlock_page(page); 2388 if (ret == -ENOMEM) 2389 ret = VM_FAULT_OOM; 2390 else /* -ENOSPC, -EIO, etc */ 2391 ret = VM_FAULT_SIGBUS; 2392 } else 2393 ret = VM_FAULT_LOCKED; 2394 2395 out: 2396 return ret; 2397 } 2398 EXPORT_SYMBOL(block_page_mkwrite); 2399 2400 /* 2401 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2402 * immediately, while under the page lock. So it needs a special end_io 2403 * handler which does not touch the bh after unlocking it. 2404 */ 2405 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2406 { 2407 __end_buffer_read_notouch(bh, uptodate); 2408 } 2409 2410 /* 2411 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2412 * the page (converting it to circular linked list and taking care of page 2413 * dirty races). 2414 */ 2415 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2416 { 2417 struct buffer_head *bh; 2418 2419 BUG_ON(!PageLocked(page)); 2420 2421 spin_lock(&page->mapping->private_lock); 2422 bh = head; 2423 do { 2424 if (PageDirty(page)) 2425 set_buffer_dirty(bh); 2426 if (!bh->b_this_page) 2427 bh->b_this_page = head; 2428 bh = bh->b_this_page; 2429 } while (bh != head); 2430 attach_page_buffers(page, head); 2431 spin_unlock(&page->mapping->private_lock); 2432 } 2433 2434 /* 2435 * On entry, the page is fully not uptodate. 2436 * On exit the page is fully uptodate in the areas outside (from,to) 2437 * The filesystem needs to handle block truncation upon failure. 2438 */ 2439 int nobh_write_begin(struct address_space *mapping, 2440 loff_t pos, unsigned len, unsigned flags, 2441 struct page **pagep, void **fsdata, 2442 get_block_t *get_block) 2443 { 2444 struct inode *inode = mapping->host; 2445 const unsigned blkbits = inode->i_blkbits; 2446 const unsigned blocksize = 1 << blkbits; 2447 struct buffer_head *head, *bh; 2448 struct page *page; 2449 pgoff_t index; 2450 unsigned from, to; 2451 unsigned block_in_page; 2452 unsigned block_start, block_end; 2453 sector_t block_in_file; 2454 int nr_reads = 0; 2455 int ret = 0; 2456 int is_mapped_to_disk = 1; 2457 2458 index = pos >> PAGE_CACHE_SHIFT; 2459 from = pos & (PAGE_CACHE_SIZE - 1); 2460 to = from + len; 2461 2462 page = grab_cache_page_write_begin(mapping, index, flags); 2463 if (!page) 2464 return -ENOMEM; 2465 *pagep = page; 2466 *fsdata = NULL; 2467 2468 if (page_has_buffers(page)) { 2469 unlock_page(page); 2470 page_cache_release(page); 2471 *pagep = NULL; 2472 return block_write_begin(mapping, pos, len, flags, pagep, 2473 get_block); 2474 } 2475 2476 if (PageMappedToDisk(page)) 2477 return 0; 2478 2479 /* 2480 * Allocate buffers so that we can keep track of state, and potentially 2481 * attach them to the page if an error occurs. In the common case of 2482 * no error, they will just be freed again without ever being attached 2483 * to the page (which is all OK, because we're under the page lock). 2484 * 2485 * Be careful: the buffer linked list is a NULL terminated one, rather 2486 * than the circular one we're used to. 2487 */ 2488 head = alloc_page_buffers(page, blocksize, 0); 2489 if (!head) { 2490 ret = -ENOMEM; 2491 goto out_release; 2492 } 2493 2494 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2495 2496 /* 2497 * We loop across all blocks in the page, whether or not they are 2498 * part of the affected region. This is so we can discover if the 2499 * page is fully mapped-to-disk. 2500 */ 2501 for (block_start = 0, block_in_page = 0, bh = head; 2502 block_start < PAGE_CACHE_SIZE; 2503 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2504 int create; 2505 2506 block_end = block_start + blocksize; 2507 bh->b_state = 0; 2508 create = 1; 2509 if (block_start >= to) 2510 create = 0; 2511 ret = get_block(inode, block_in_file + block_in_page, 2512 bh, create); 2513 if (ret) 2514 goto failed; 2515 if (!buffer_mapped(bh)) 2516 is_mapped_to_disk = 0; 2517 if (buffer_new(bh)) 2518 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2519 if (PageUptodate(page)) { 2520 set_buffer_uptodate(bh); 2521 continue; 2522 } 2523 if (buffer_new(bh) || !buffer_mapped(bh)) { 2524 zero_user_segments(page, block_start, from, 2525 to, block_end); 2526 continue; 2527 } 2528 if (buffer_uptodate(bh)) 2529 continue; /* reiserfs does this */ 2530 if (block_start < from || block_end > to) { 2531 lock_buffer(bh); 2532 bh->b_end_io = end_buffer_read_nobh; 2533 submit_bh(READ, bh); 2534 nr_reads++; 2535 } 2536 } 2537 2538 if (nr_reads) { 2539 /* 2540 * The page is locked, so these buffers are protected from 2541 * any VM or truncate activity. Hence we don't need to care 2542 * for the buffer_head refcounts. 2543 */ 2544 for (bh = head; bh; bh = bh->b_this_page) { 2545 wait_on_buffer(bh); 2546 if (!buffer_uptodate(bh)) 2547 ret = -EIO; 2548 } 2549 if (ret) 2550 goto failed; 2551 } 2552 2553 if (is_mapped_to_disk) 2554 SetPageMappedToDisk(page); 2555 2556 *fsdata = head; /* to be released by nobh_write_end */ 2557 2558 return 0; 2559 2560 failed: 2561 BUG_ON(!ret); 2562 /* 2563 * Error recovery is a bit difficult. We need to zero out blocks that 2564 * were newly allocated, and dirty them to ensure they get written out. 2565 * Buffers need to be attached to the page at this point, otherwise 2566 * the handling of potential IO errors during writeout would be hard 2567 * (could try doing synchronous writeout, but what if that fails too?) 2568 */ 2569 attach_nobh_buffers(page, head); 2570 page_zero_new_buffers(page, from, to); 2571 2572 out_release: 2573 unlock_page(page); 2574 page_cache_release(page); 2575 *pagep = NULL; 2576 2577 return ret; 2578 } 2579 EXPORT_SYMBOL(nobh_write_begin); 2580 2581 int nobh_write_end(struct file *file, struct address_space *mapping, 2582 loff_t pos, unsigned len, unsigned copied, 2583 struct page *page, void *fsdata) 2584 { 2585 struct inode *inode = page->mapping->host; 2586 struct buffer_head *head = fsdata; 2587 struct buffer_head *bh; 2588 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2589 2590 if (unlikely(copied < len) && head) 2591 attach_nobh_buffers(page, head); 2592 if (page_has_buffers(page)) 2593 return generic_write_end(file, mapping, pos, len, 2594 copied, page, fsdata); 2595 2596 SetPageUptodate(page); 2597 set_page_dirty(page); 2598 if (pos+copied > inode->i_size) { 2599 i_size_write(inode, pos+copied); 2600 mark_inode_dirty(inode); 2601 } 2602 2603 unlock_page(page); 2604 page_cache_release(page); 2605 2606 while (head) { 2607 bh = head; 2608 head = head->b_this_page; 2609 free_buffer_head(bh); 2610 } 2611 2612 return copied; 2613 } 2614 EXPORT_SYMBOL(nobh_write_end); 2615 2616 /* 2617 * nobh_writepage() - based on block_full_write_page() except 2618 * that it tries to operate without attaching bufferheads to 2619 * the page. 2620 */ 2621 int nobh_writepage(struct page *page, get_block_t *get_block, 2622 struct writeback_control *wbc) 2623 { 2624 struct inode * const inode = page->mapping->host; 2625 loff_t i_size = i_size_read(inode); 2626 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2627 unsigned offset; 2628 int ret; 2629 2630 /* Is the page fully inside i_size? */ 2631 if (page->index < end_index) 2632 goto out; 2633 2634 /* Is the page fully outside i_size? (truncate in progress) */ 2635 offset = i_size & (PAGE_CACHE_SIZE-1); 2636 if (page->index >= end_index+1 || !offset) { 2637 /* 2638 * The page may have dirty, unmapped buffers. For example, 2639 * they may have been added in ext3_writepage(). Make them 2640 * freeable here, so the page does not leak. 2641 */ 2642 #if 0 2643 /* Not really sure about this - do we need this ? */ 2644 if (page->mapping->a_ops->invalidatepage) 2645 page->mapping->a_ops->invalidatepage(page, offset); 2646 #endif 2647 unlock_page(page); 2648 return 0; /* don't care */ 2649 } 2650 2651 /* 2652 * The page straddles i_size. It must be zeroed out on each and every 2653 * writepage invocation because it may be mmapped. "A file is mapped 2654 * in multiples of the page size. For a file that is not a multiple of 2655 * the page size, the remaining memory is zeroed when mapped, and 2656 * writes to that region are not written out to the file." 2657 */ 2658 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2659 out: 2660 ret = mpage_writepage(page, get_block, wbc); 2661 if (ret == -EAGAIN) 2662 ret = __block_write_full_page(inode, page, get_block, wbc, 2663 end_buffer_async_write); 2664 return ret; 2665 } 2666 EXPORT_SYMBOL(nobh_writepage); 2667 2668 int nobh_truncate_page(struct address_space *mapping, 2669 loff_t from, get_block_t *get_block) 2670 { 2671 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2672 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2673 unsigned blocksize; 2674 sector_t iblock; 2675 unsigned length, pos; 2676 struct inode *inode = mapping->host; 2677 struct page *page; 2678 struct buffer_head map_bh; 2679 int err; 2680 2681 blocksize = 1 << inode->i_blkbits; 2682 length = offset & (blocksize - 1); 2683 2684 /* Block boundary? Nothing to do */ 2685 if (!length) 2686 return 0; 2687 2688 length = blocksize - length; 2689 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2690 2691 page = grab_cache_page(mapping, index); 2692 err = -ENOMEM; 2693 if (!page) 2694 goto out; 2695 2696 if (page_has_buffers(page)) { 2697 has_buffers: 2698 unlock_page(page); 2699 page_cache_release(page); 2700 return block_truncate_page(mapping, from, get_block); 2701 } 2702 2703 /* Find the buffer that contains "offset" */ 2704 pos = blocksize; 2705 while (offset >= pos) { 2706 iblock++; 2707 pos += blocksize; 2708 } 2709 2710 map_bh.b_size = blocksize; 2711 map_bh.b_state = 0; 2712 err = get_block(inode, iblock, &map_bh, 0); 2713 if (err) 2714 goto unlock; 2715 /* unmapped? It's a hole - nothing to do */ 2716 if (!buffer_mapped(&map_bh)) 2717 goto unlock; 2718 2719 /* Ok, it's mapped. Make sure it's up-to-date */ 2720 if (!PageUptodate(page)) { 2721 err = mapping->a_ops->readpage(NULL, page); 2722 if (err) { 2723 page_cache_release(page); 2724 goto out; 2725 } 2726 lock_page(page); 2727 if (!PageUptodate(page)) { 2728 err = -EIO; 2729 goto unlock; 2730 } 2731 if (page_has_buffers(page)) 2732 goto has_buffers; 2733 } 2734 zero_user(page, offset, length); 2735 set_page_dirty(page); 2736 err = 0; 2737 2738 unlock: 2739 unlock_page(page); 2740 page_cache_release(page); 2741 out: 2742 return err; 2743 } 2744 EXPORT_SYMBOL(nobh_truncate_page); 2745 2746 int block_truncate_page(struct address_space *mapping, 2747 loff_t from, get_block_t *get_block) 2748 { 2749 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2750 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2751 unsigned blocksize; 2752 sector_t iblock; 2753 unsigned length, pos; 2754 struct inode *inode = mapping->host; 2755 struct page *page; 2756 struct buffer_head *bh; 2757 int err; 2758 2759 blocksize = 1 << inode->i_blkbits; 2760 length = offset & (blocksize - 1); 2761 2762 /* Block boundary? Nothing to do */ 2763 if (!length) 2764 return 0; 2765 2766 length = blocksize - length; 2767 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2768 2769 page = grab_cache_page(mapping, index); 2770 err = -ENOMEM; 2771 if (!page) 2772 goto out; 2773 2774 if (!page_has_buffers(page)) 2775 create_empty_buffers(page, blocksize, 0); 2776 2777 /* Find the buffer that contains "offset" */ 2778 bh = page_buffers(page); 2779 pos = blocksize; 2780 while (offset >= pos) { 2781 bh = bh->b_this_page; 2782 iblock++; 2783 pos += blocksize; 2784 } 2785 2786 err = 0; 2787 if (!buffer_mapped(bh)) { 2788 WARN_ON(bh->b_size != blocksize); 2789 err = get_block(inode, iblock, bh, 0); 2790 if (err) 2791 goto unlock; 2792 /* unmapped? It's a hole - nothing to do */ 2793 if (!buffer_mapped(bh)) 2794 goto unlock; 2795 } 2796 2797 /* Ok, it's mapped. Make sure it's up-to-date */ 2798 if (PageUptodate(page)) 2799 set_buffer_uptodate(bh); 2800 2801 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2802 err = -EIO; 2803 ll_rw_block(READ, 1, &bh); 2804 wait_on_buffer(bh); 2805 /* Uhhuh. Read error. Complain and punt. */ 2806 if (!buffer_uptodate(bh)) 2807 goto unlock; 2808 } 2809 2810 zero_user(page, offset, length); 2811 mark_buffer_dirty(bh); 2812 err = 0; 2813 2814 unlock: 2815 unlock_page(page); 2816 page_cache_release(page); 2817 out: 2818 return err; 2819 } 2820 EXPORT_SYMBOL(block_truncate_page); 2821 2822 /* 2823 * The generic ->writepage function for buffer-backed address_spaces 2824 * this form passes in the end_io handler used to finish the IO. 2825 */ 2826 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2827 struct writeback_control *wbc, bh_end_io_t *handler) 2828 { 2829 struct inode * const inode = page->mapping->host; 2830 loff_t i_size = i_size_read(inode); 2831 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2832 unsigned offset; 2833 2834 /* Is the page fully inside i_size? */ 2835 if (page->index < end_index) 2836 return __block_write_full_page(inode, page, get_block, wbc, 2837 handler); 2838 2839 /* Is the page fully outside i_size? (truncate in progress) */ 2840 offset = i_size & (PAGE_CACHE_SIZE-1); 2841 if (page->index >= end_index+1 || !offset) { 2842 /* 2843 * The page may have dirty, unmapped buffers. For example, 2844 * they may have been added in ext3_writepage(). Make them 2845 * freeable here, so the page does not leak. 2846 */ 2847 do_invalidatepage(page, 0); 2848 unlock_page(page); 2849 return 0; /* don't care */ 2850 } 2851 2852 /* 2853 * The page straddles i_size. It must be zeroed out on each and every 2854 * writepage invocation because it may be mmapped. "A file is mapped 2855 * in multiples of the page size. For a file that is not a multiple of 2856 * the page size, the remaining memory is zeroed when mapped, and 2857 * writes to that region are not written out to the file." 2858 */ 2859 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2860 return __block_write_full_page(inode, page, get_block, wbc, handler); 2861 } 2862 EXPORT_SYMBOL(block_write_full_page_endio); 2863 2864 /* 2865 * The generic ->writepage function for buffer-backed address_spaces 2866 */ 2867 int block_write_full_page(struct page *page, get_block_t *get_block, 2868 struct writeback_control *wbc) 2869 { 2870 return block_write_full_page_endio(page, get_block, wbc, 2871 end_buffer_async_write); 2872 } 2873 EXPORT_SYMBOL(block_write_full_page); 2874 2875 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2876 get_block_t *get_block) 2877 { 2878 struct buffer_head tmp; 2879 struct inode *inode = mapping->host; 2880 tmp.b_state = 0; 2881 tmp.b_blocknr = 0; 2882 tmp.b_size = 1 << inode->i_blkbits; 2883 get_block(inode, block, &tmp, 0); 2884 return tmp.b_blocknr; 2885 } 2886 EXPORT_SYMBOL(generic_block_bmap); 2887 2888 static void end_bio_bh_io_sync(struct bio *bio, int err) 2889 { 2890 struct buffer_head *bh = bio->bi_private; 2891 2892 if (err == -EOPNOTSUPP) { 2893 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2894 set_bit(BH_Eopnotsupp, &bh->b_state); 2895 } 2896 2897 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2898 set_bit(BH_Quiet, &bh->b_state); 2899 2900 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2901 bio_put(bio); 2902 } 2903 2904 int submit_bh(int rw, struct buffer_head * bh) 2905 { 2906 struct bio *bio; 2907 int ret = 0; 2908 2909 BUG_ON(!buffer_locked(bh)); 2910 BUG_ON(!buffer_mapped(bh)); 2911 BUG_ON(!bh->b_end_io); 2912 BUG_ON(buffer_delay(bh)); 2913 BUG_ON(buffer_unwritten(bh)); 2914 2915 /* 2916 * Only clear out a write error when rewriting 2917 */ 2918 if (test_set_buffer_req(bh) && (rw & WRITE)) 2919 clear_buffer_write_io_error(bh); 2920 2921 /* 2922 * from here on down, it's all bio -- do the initial mapping, 2923 * submit_bio -> generic_make_request may further map this bio around 2924 */ 2925 bio = bio_alloc(GFP_NOIO, 1); 2926 2927 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2928 bio->bi_bdev = bh->b_bdev; 2929 bio->bi_io_vec[0].bv_page = bh->b_page; 2930 bio->bi_io_vec[0].bv_len = bh->b_size; 2931 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2932 2933 bio->bi_vcnt = 1; 2934 bio->bi_idx = 0; 2935 bio->bi_size = bh->b_size; 2936 2937 bio->bi_end_io = end_bio_bh_io_sync; 2938 bio->bi_private = bh; 2939 2940 bio_get(bio); 2941 submit_bio(rw, bio); 2942 2943 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2944 ret = -EOPNOTSUPP; 2945 2946 bio_put(bio); 2947 return ret; 2948 } 2949 EXPORT_SYMBOL(submit_bh); 2950 2951 /** 2952 * ll_rw_block: low-level access to block devices (DEPRECATED) 2953 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 2954 * @nr: number of &struct buffer_heads in the array 2955 * @bhs: array of pointers to &struct buffer_head 2956 * 2957 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2958 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2959 * %READA option is described in the documentation for generic_make_request() 2960 * which ll_rw_block() calls. 2961 * 2962 * This function drops any buffer that it cannot get a lock on (with the 2963 * BH_Lock state bit), any buffer that appears to be clean when doing a write 2964 * request, and any buffer that appears to be up-to-date when doing read 2965 * request. Further it marks as clean buffers that are processed for 2966 * writing (the buffer cache won't assume that they are actually clean 2967 * until the buffer gets unlocked). 2968 * 2969 * ll_rw_block sets b_end_io to simple completion handler that marks 2970 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2971 * any waiters. 2972 * 2973 * All of the buffers must be for the same device, and must also be a 2974 * multiple of the current approved size for the device. 2975 */ 2976 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2977 { 2978 int i; 2979 2980 for (i = 0; i < nr; i++) { 2981 struct buffer_head *bh = bhs[i]; 2982 2983 if (!trylock_buffer(bh)) 2984 continue; 2985 if (rw == WRITE) { 2986 if (test_clear_buffer_dirty(bh)) { 2987 bh->b_end_io = end_buffer_write_sync; 2988 get_bh(bh); 2989 submit_bh(WRITE, bh); 2990 continue; 2991 } 2992 } else { 2993 if (!buffer_uptodate(bh)) { 2994 bh->b_end_io = end_buffer_read_sync; 2995 get_bh(bh); 2996 submit_bh(rw, bh); 2997 continue; 2998 } 2999 } 3000 unlock_buffer(bh); 3001 } 3002 } 3003 EXPORT_SYMBOL(ll_rw_block); 3004 3005 void write_dirty_buffer(struct buffer_head *bh, int rw) 3006 { 3007 lock_buffer(bh); 3008 if (!test_clear_buffer_dirty(bh)) { 3009 unlock_buffer(bh); 3010 return; 3011 } 3012 bh->b_end_io = end_buffer_write_sync; 3013 get_bh(bh); 3014 submit_bh(rw, bh); 3015 } 3016 EXPORT_SYMBOL(write_dirty_buffer); 3017 3018 /* 3019 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3020 * and then start new I/O and then wait upon it. The caller must have a ref on 3021 * the buffer_head. 3022 */ 3023 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3024 { 3025 int ret = 0; 3026 3027 WARN_ON(atomic_read(&bh->b_count) < 1); 3028 lock_buffer(bh); 3029 if (test_clear_buffer_dirty(bh)) { 3030 get_bh(bh); 3031 bh->b_end_io = end_buffer_write_sync; 3032 ret = submit_bh(rw, bh); 3033 wait_on_buffer(bh); 3034 if (buffer_eopnotsupp(bh)) { 3035 clear_buffer_eopnotsupp(bh); 3036 ret = -EOPNOTSUPP; 3037 } 3038 if (!ret && !buffer_uptodate(bh)) 3039 ret = -EIO; 3040 } else { 3041 unlock_buffer(bh); 3042 } 3043 return ret; 3044 } 3045 EXPORT_SYMBOL(__sync_dirty_buffer); 3046 3047 int sync_dirty_buffer(struct buffer_head *bh) 3048 { 3049 return __sync_dirty_buffer(bh, WRITE_SYNC); 3050 } 3051 EXPORT_SYMBOL(sync_dirty_buffer); 3052 3053 /* 3054 * try_to_free_buffers() checks if all the buffers on this particular page 3055 * are unused, and releases them if so. 3056 * 3057 * Exclusion against try_to_free_buffers may be obtained by either 3058 * locking the page or by holding its mapping's private_lock. 3059 * 3060 * If the page is dirty but all the buffers are clean then we need to 3061 * be sure to mark the page clean as well. This is because the page 3062 * may be against a block device, and a later reattachment of buffers 3063 * to a dirty page will set *all* buffers dirty. Which would corrupt 3064 * filesystem data on the same device. 3065 * 3066 * The same applies to regular filesystem pages: if all the buffers are 3067 * clean then we set the page clean and proceed. To do that, we require 3068 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3069 * private_lock. 3070 * 3071 * try_to_free_buffers() is non-blocking. 3072 */ 3073 static inline int buffer_busy(struct buffer_head *bh) 3074 { 3075 return atomic_read(&bh->b_count) | 3076 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3077 } 3078 3079 static int 3080 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3081 { 3082 struct buffer_head *head = page_buffers(page); 3083 struct buffer_head *bh; 3084 3085 bh = head; 3086 do { 3087 if (buffer_write_io_error(bh) && page->mapping) 3088 set_bit(AS_EIO, &page->mapping->flags); 3089 if (buffer_busy(bh)) 3090 goto failed; 3091 bh = bh->b_this_page; 3092 } while (bh != head); 3093 3094 do { 3095 struct buffer_head *next = bh->b_this_page; 3096 3097 if (bh->b_assoc_map) 3098 __remove_assoc_queue(bh); 3099 bh = next; 3100 } while (bh != head); 3101 *buffers_to_free = head; 3102 __clear_page_buffers(page); 3103 return 1; 3104 failed: 3105 return 0; 3106 } 3107 3108 int try_to_free_buffers(struct page *page) 3109 { 3110 struct address_space * const mapping = page->mapping; 3111 struct buffer_head *buffers_to_free = NULL; 3112 int ret = 0; 3113 3114 BUG_ON(!PageLocked(page)); 3115 if (PageWriteback(page)) 3116 return 0; 3117 3118 if (mapping == NULL) { /* can this still happen? */ 3119 ret = drop_buffers(page, &buffers_to_free); 3120 goto out; 3121 } 3122 3123 spin_lock(&mapping->private_lock); 3124 ret = drop_buffers(page, &buffers_to_free); 3125 3126 /* 3127 * If the filesystem writes its buffers by hand (eg ext3) 3128 * then we can have clean buffers against a dirty page. We 3129 * clean the page here; otherwise the VM will never notice 3130 * that the filesystem did any IO at all. 3131 * 3132 * Also, during truncate, discard_buffer will have marked all 3133 * the page's buffers clean. We discover that here and clean 3134 * the page also. 3135 * 3136 * private_lock must be held over this entire operation in order 3137 * to synchronise against __set_page_dirty_buffers and prevent the 3138 * dirty bit from being lost. 3139 */ 3140 if (ret) 3141 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3142 spin_unlock(&mapping->private_lock); 3143 out: 3144 if (buffers_to_free) { 3145 struct buffer_head *bh = buffers_to_free; 3146 3147 do { 3148 struct buffer_head *next = bh->b_this_page; 3149 free_buffer_head(bh); 3150 bh = next; 3151 } while (bh != buffers_to_free); 3152 } 3153 return ret; 3154 } 3155 EXPORT_SYMBOL(try_to_free_buffers); 3156 3157 void block_sync_page(struct page *page) 3158 { 3159 struct address_space *mapping; 3160 3161 smp_mb(); 3162 mapping = page_mapping(page); 3163 if (mapping) 3164 blk_run_backing_dev(mapping->backing_dev_info, page); 3165 } 3166 EXPORT_SYMBOL(block_sync_page); 3167 3168 /* 3169 * There are no bdflush tunables left. But distributions are 3170 * still running obsolete flush daemons, so we terminate them here. 3171 * 3172 * Use of bdflush() is deprecated and will be removed in a future kernel. 3173 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3174 */ 3175 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3176 { 3177 static int msg_count; 3178 3179 if (!capable(CAP_SYS_ADMIN)) 3180 return -EPERM; 3181 3182 if (msg_count < 5) { 3183 msg_count++; 3184 printk(KERN_INFO 3185 "warning: process `%s' used the obsolete bdflush" 3186 " system call\n", current->comm); 3187 printk(KERN_INFO "Fix your initscripts?\n"); 3188 } 3189 3190 if (func == 1) 3191 do_exit(0); 3192 return 0; 3193 } 3194 3195 /* 3196 * Buffer-head allocation 3197 */ 3198 static struct kmem_cache *bh_cachep; 3199 3200 /* 3201 * Once the number of bh's in the machine exceeds this level, we start 3202 * stripping them in writeback. 3203 */ 3204 static int max_buffer_heads; 3205 3206 int buffer_heads_over_limit; 3207 3208 struct bh_accounting { 3209 int nr; /* Number of live bh's */ 3210 int ratelimit; /* Limit cacheline bouncing */ 3211 }; 3212 3213 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3214 3215 static void recalc_bh_state(void) 3216 { 3217 int i; 3218 int tot = 0; 3219 3220 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 3221 return; 3222 __get_cpu_var(bh_accounting).ratelimit = 0; 3223 for_each_online_cpu(i) 3224 tot += per_cpu(bh_accounting, i).nr; 3225 buffer_heads_over_limit = (tot > max_buffer_heads); 3226 } 3227 3228 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3229 { 3230 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3231 if (ret) { 3232 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3233 get_cpu_var(bh_accounting).nr++; 3234 recalc_bh_state(); 3235 put_cpu_var(bh_accounting); 3236 } 3237 return ret; 3238 } 3239 EXPORT_SYMBOL(alloc_buffer_head); 3240 3241 void free_buffer_head(struct buffer_head *bh) 3242 { 3243 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3244 kmem_cache_free(bh_cachep, bh); 3245 get_cpu_var(bh_accounting).nr--; 3246 recalc_bh_state(); 3247 put_cpu_var(bh_accounting); 3248 } 3249 EXPORT_SYMBOL(free_buffer_head); 3250 3251 static void buffer_exit_cpu(int cpu) 3252 { 3253 int i; 3254 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3255 3256 for (i = 0; i < BH_LRU_SIZE; i++) { 3257 brelse(b->bhs[i]); 3258 b->bhs[i] = NULL; 3259 } 3260 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 3261 per_cpu(bh_accounting, cpu).nr = 0; 3262 put_cpu_var(bh_accounting); 3263 } 3264 3265 static int buffer_cpu_notify(struct notifier_block *self, 3266 unsigned long action, void *hcpu) 3267 { 3268 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3269 buffer_exit_cpu((unsigned long)hcpu); 3270 return NOTIFY_OK; 3271 } 3272 3273 /** 3274 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3275 * @bh: struct buffer_head 3276 * 3277 * Return true if the buffer is up-to-date and false, 3278 * with the buffer locked, if not. 3279 */ 3280 int bh_uptodate_or_lock(struct buffer_head *bh) 3281 { 3282 if (!buffer_uptodate(bh)) { 3283 lock_buffer(bh); 3284 if (!buffer_uptodate(bh)) 3285 return 0; 3286 unlock_buffer(bh); 3287 } 3288 return 1; 3289 } 3290 EXPORT_SYMBOL(bh_uptodate_or_lock); 3291 3292 /** 3293 * bh_submit_read - Submit a locked buffer for reading 3294 * @bh: struct buffer_head 3295 * 3296 * Returns zero on success and -EIO on error. 3297 */ 3298 int bh_submit_read(struct buffer_head *bh) 3299 { 3300 BUG_ON(!buffer_locked(bh)); 3301 3302 if (buffer_uptodate(bh)) { 3303 unlock_buffer(bh); 3304 return 0; 3305 } 3306 3307 get_bh(bh); 3308 bh->b_end_io = end_buffer_read_sync; 3309 submit_bh(READ, bh); 3310 wait_on_buffer(bh); 3311 if (buffer_uptodate(bh)) 3312 return 0; 3313 return -EIO; 3314 } 3315 EXPORT_SYMBOL(bh_submit_read); 3316 3317 void __init buffer_init(void) 3318 { 3319 int nrpages; 3320 3321 bh_cachep = kmem_cache_create("buffer_head", 3322 sizeof(struct buffer_head), 0, 3323 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3324 SLAB_MEM_SPREAD), 3325 NULL); 3326 3327 /* 3328 * Limit the bh occupancy to 10% of ZONE_NORMAL 3329 */ 3330 nrpages = (nr_free_buffer_pages() * 10) / 100; 3331 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3332 hotcpu_notifier(buffer_cpu_notify, 0); 3333 } 3334