xref: /linux/fs/buffer.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 static int sleep_on_buffer(void *word)
58 {
59 	io_schedule();
60 	return 0;
61 }
62 
63 void __lock_buffer(struct buffer_head *bh)
64 {
65 	wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
66 							TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69 
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 	clear_bit_unlock(BH_Lock, &bh->b_state);
73 	smp_mb__after_clear_bit();
74 	wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77 
78 /*
79  * Block until a buffer comes unlocked.  This doesn't stop it
80  * from becoming locked again - you have to lock it yourself
81  * if you want to preserve its state.
82  */
83 void __wait_on_buffer(struct buffer_head * bh)
84 {
85 	wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
86 }
87 EXPORT_SYMBOL(__wait_on_buffer);
88 
89 static void
90 __clear_page_buffers(struct page *page)
91 {
92 	ClearPagePrivate(page);
93 	set_page_private(page, 0);
94 	page_cache_release(page);
95 }
96 
97 
98 static int quiet_error(struct buffer_head *bh)
99 {
100 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
101 		return 0;
102 	return 1;
103 }
104 
105 
106 static void buffer_io_error(struct buffer_head *bh)
107 {
108 	char b[BDEVNAME_SIZE];
109 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
110 			bdevname(bh->b_bdev, b),
111 			(unsigned long long)bh->b_blocknr);
112 }
113 
114 /*
115  * End-of-IO handler helper function which does not touch the bh after
116  * unlocking it.
117  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
118  * a race there is benign: unlock_buffer() only use the bh's address for
119  * hashing after unlocking the buffer, so it doesn't actually touch the bh
120  * itself.
121  */
122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
123 {
124 	if (uptodate) {
125 		set_buffer_uptodate(bh);
126 	} else {
127 		/* This happens, due to failed READA attempts. */
128 		clear_buffer_uptodate(bh);
129 	}
130 	unlock_buffer(bh);
131 }
132 
133 /*
134  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
135  * unlock the buffer. This is what ll_rw_block uses too.
136  */
137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
138 {
139 	__end_buffer_read_notouch(bh, uptodate);
140 	put_bh(bh);
141 }
142 EXPORT_SYMBOL(end_buffer_read_sync);
143 
144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
145 {
146 	char b[BDEVNAME_SIZE];
147 
148 	if (uptodate) {
149 		set_buffer_uptodate(bh);
150 	} else {
151 		if (!quiet_error(bh)) {
152 			buffer_io_error(bh);
153 			printk(KERN_WARNING "lost page write due to "
154 					"I/O error on %s\n",
155 				       bdevname(bh->b_bdev, b));
156 		}
157 		set_buffer_write_io_error(bh);
158 		clear_buffer_uptodate(bh);
159 	}
160 	unlock_buffer(bh);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_write_sync);
164 
165 /*
166  * Various filesystems appear to want __find_get_block to be non-blocking.
167  * But it's the page lock which protects the buffers.  To get around this,
168  * we get exclusion from try_to_free_buffers with the blockdev mapping's
169  * private_lock.
170  *
171  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
172  * may be quite high.  This code could TryLock the page, and if that
173  * succeeds, there is no need to take private_lock. (But if
174  * private_lock is contended then so is mapping->tree_lock).
175  */
176 static struct buffer_head *
177 __find_get_block_slow(struct block_device *bdev, sector_t block)
178 {
179 	struct inode *bd_inode = bdev->bd_inode;
180 	struct address_space *bd_mapping = bd_inode->i_mapping;
181 	struct buffer_head *ret = NULL;
182 	pgoff_t index;
183 	struct buffer_head *bh;
184 	struct buffer_head *head;
185 	struct page *page;
186 	int all_mapped = 1;
187 
188 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
189 	page = find_get_page(bd_mapping, index);
190 	if (!page)
191 		goto out;
192 
193 	spin_lock(&bd_mapping->private_lock);
194 	if (!page_has_buffers(page))
195 		goto out_unlock;
196 	head = page_buffers(page);
197 	bh = head;
198 	do {
199 		if (!buffer_mapped(bh))
200 			all_mapped = 0;
201 		else if (bh->b_blocknr == block) {
202 			ret = bh;
203 			get_bh(bh);
204 			goto out_unlock;
205 		}
206 		bh = bh->b_this_page;
207 	} while (bh != head);
208 
209 	/* we might be here because some of the buffers on this page are
210 	 * not mapped.  This is due to various races between
211 	 * file io on the block device and getblk.  It gets dealt with
212 	 * elsewhere, don't buffer_error if we had some unmapped buffers
213 	 */
214 	if (all_mapped) {
215 		char b[BDEVNAME_SIZE];
216 
217 		printk("__find_get_block_slow() failed. "
218 			"block=%llu, b_blocknr=%llu\n",
219 			(unsigned long long)block,
220 			(unsigned long long)bh->b_blocknr);
221 		printk("b_state=0x%08lx, b_size=%zu\n",
222 			bh->b_state, bh->b_size);
223 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
224 			1 << bd_inode->i_blkbits);
225 	}
226 out_unlock:
227 	spin_unlock(&bd_mapping->private_lock);
228 	page_cache_release(page);
229 out:
230 	return ret;
231 }
232 
233 /*
234  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
235  */
236 static void free_more_memory(void)
237 {
238 	struct zone *zone;
239 	int nid;
240 
241 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
242 	yield();
243 
244 	for_each_online_node(nid) {
245 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
246 						gfp_zone(GFP_NOFS), NULL,
247 						&zone);
248 		if (zone)
249 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
250 						GFP_NOFS, NULL);
251 	}
252 }
253 
254 /*
255  * I/O completion handler for block_read_full_page() - pages
256  * which come unlocked at the end of I/O.
257  */
258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
259 {
260 	unsigned long flags;
261 	struct buffer_head *first;
262 	struct buffer_head *tmp;
263 	struct page *page;
264 	int page_uptodate = 1;
265 
266 	BUG_ON(!buffer_async_read(bh));
267 
268 	page = bh->b_page;
269 	if (uptodate) {
270 		set_buffer_uptodate(bh);
271 	} else {
272 		clear_buffer_uptodate(bh);
273 		if (!quiet_error(bh))
274 			buffer_io_error(bh);
275 		SetPageError(page);
276 	}
277 
278 	/*
279 	 * Be _very_ careful from here on. Bad things can happen if
280 	 * two buffer heads end IO at almost the same time and both
281 	 * decide that the page is now completely done.
282 	 */
283 	first = page_buffers(page);
284 	local_irq_save(flags);
285 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
286 	clear_buffer_async_read(bh);
287 	unlock_buffer(bh);
288 	tmp = bh;
289 	do {
290 		if (!buffer_uptodate(tmp))
291 			page_uptodate = 0;
292 		if (buffer_async_read(tmp)) {
293 			BUG_ON(!buffer_locked(tmp));
294 			goto still_busy;
295 		}
296 		tmp = tmp->b_this_page;
297 	} while (tmp != bh);
298 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
299 	local_irq_restore(flags);
300 
301 	/*
302 	 * If none of the buffers had errors and they are all
303 	 * uptodate then we can set the page uptodate.
304 	 */
305 	if (page_uptodate && !PageError(page))
306 		SetPageUptodate(page);
307 	unlock_page(page);
308 	return;
309 
310 still_busy:
311 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
312 	local_irq_restore(flags);
313 	return;
314 }
315 
316 /*
317  * Completion handler for block_write_full_page() - pages which are unlocked
318  * during I/O, and which have PageWriteback cleared upon I/O completion.
319  */
320 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
321 {
322 	char b[BDEVNAME_SIZE];
323 	unsigned long flags;
324 	struct buffer_head *first;
325 	struct buffer_head *tmp;
326 	struct page *page;
327 
328 	BUG_ON(!buffer_async_write(bh));
329 
330 	page = bh->b_page;
331 	if (uptodate) {
332 		set_buffer_uptodate(bh);
333 	} else {
334 		if (!quiet_error(bh)) {
335 			buffer_io_error(bh);
336 			printk(KERN_WARNING "lost page write due to "
337 					"I/O error on %s\n",
338 			       bdevname(bh->b_bdev, b));
339 		}
340 		set_bit(AS_EIO, &page->mapping->flags);
341 		set_buffer_write_io_error(bh);
342 		clear_buffer_uptodate(bh);
343 		SetPageError(page);
344 	}
345 
346 	first = page_buffers(page);
347 	local_irq_save(flags);
348 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
349 
350 	clear_buffer_async_write(bh);
351 	unlock_buffer(bh);
352 	tmp = bh->b_this_page;
353 	while (tmp != bh) {
354 		if (buffer_async_write(tmp)) {
355 			BUG_ON(!buffer_locked(tmp));
356 			goto still_busy;
357 		}
358 		tmp = tmp->b_this_page;
359 	}
360 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361 	local_irq_restore(flags);
362 	end_page_writeback(page);
363 	return;
364 
365 still_busy:
366 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
367 	local_irq_restore(flags);
368 	return;
369 }
370 EXPORT_SYMBOL(end_buffer_async_write);
371 
372 /*
373  * If a page's buffers are under async readin (end_buffer_async_read
374  * completion) then there is a possibility that another thread of
375  * control could lock one of the buffers after it has completed
376  * but while some of the other buffers have not completed.  This
377  * locked buffer would confuse end_buffer_async_read() into not unlocking
378  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
379  * that this buffer is not under async I/O.
380  *
381  * The page comes unlocked when it has no locked buffer_async buffers
382  * left.
383  *
384  * PageLocked prevents anyone starting new async I/O reads any of
385  * the buffers.
386  *
387  * PageWriteback is used to prevent simultaneous writeout of the same
388  * page.
389  *
390  * PageLocked prevents anyone from starting writeback of a page which is
391  * under read I/O (PageWriteback is only ever set against a locked page).
392  */
393 static void mark_buffer_async_read(struct buffer_head *bh)
394 {
395 	bh->b_end_io = end_buffer_async_read;
396 	set_buffer_async_read(bh);
397 }
398 
399 static void mark_buffer_async_write_endio(struct buffer_head *bh,
400 					  bh_end_io_t *handler)
401 {
402 	bh->b_end_io = handler;
403 	set_buffer_async_write(bh);
404 }
405 
406 void mark_buffer_async_write(struct buffer_head *bh)
407 {
408 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
409 }
410 EXPORT_SYMBOL(mark_buffer_async_write);
411 
412 
413 /*
414  * fs/buffer.c contains helper functions for buffer-backed address space's
415  * fsync functions.  A common requirement for buffer-based filesystems is
416  * that certain data from the backing blockdev needs to be written out for
417  * a successful fsync().  For example, ext2 indirect blocks need to be
418  * written back and waited upon before fsync() returns.
419  *
420  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
421  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
422  * management of a list of dependent buffers at ->i_mapping->private_list.
423  *
424  * Locking is a little subtle: try_to_free_buffers() will remove buffers
425  * from their controlling inode's queue when they are being freed.  But
426  * try_to_free_buffers() will be operating against the *blockdev* mapping
427  * at the time, not against the S_ISREG file which depends on those buffers.
428  * So the locking for private_list is via the private_lock in the address_space
429  * which backs the buffers.  Which is different from the address_space
430  * against which the buffers are listed.  So for a particular address_space,
431  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
432  * mapping->private_list will always be protected by the backing blockdev's
433  * ->private_lock.
434  *
435  * Which introduces a requirement: all buffers on an address_space's
436  * ->private_list must be from the same address_space: the blockdev's.
437  *
438  * address_spaces which do not place buffers at ->private_list via these
439  * utility functions are free to use private_lock and private_list for
440  * whatever they want.  The only requirement is that list_empty(private_list)
441  * be true at clear_inode() time.
442  *
443  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
444  * filesystems should do that.  invalidate_inode_buffers() should just go
445  * BUG_ON(!list_empty).
446  *
447  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
448  * take an address_space, not an inode.  And it should be called
449  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
450  * queued up.
451  *
452  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
453  * list if it is already on a list.  Because if the buffer is on a list,
454  * it *must* already be on the right one.  If not, the filesystem is being
455  * silly.  This will save a ton of locking.  But first we have to ensure
456  * that buffers are taken *off* the old inode's list when they are freed
457  * (presumably in truncate).  That requires careful auditing of all
458  * filesystems (do it inside bforget()).  It could also be done by bringing
459  * b_inode back.
460  */
461 
462 /*
463  * The buffer's backing address_space's private_lock must be held
464  */
465 static void __remove_assoc_queue(struct buffer_head *bh)
466 {
467 	list_del_init(&bh->b_assoc_buffers);
468 	WARN_ON(!bh->b_assoc_map);
469 	if (buffer_write_io_error(bh))
470 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
471 	bh->b_assoc_map = NULL;
472 }
473 
474 int inode_has_buffers(struct inode *inode)
475 {
476 	return !list_empty(&inode->i_data.private_list);
477 }
478 
479 /*
480  * osync is designed to support O_SYNC io.  It waits synchronously for
481  * all already-submitted IO to complete, but does not queue any new
482  * writes to the disk.
483  *
484  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
485  * you dirty the buffers, and then use osync_inode_buffers to wait for
486  * completion.  Any other dirty buffers which are not yet queued for
487  * write will not be flushed to disk by the osync.
488  */
489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
490 {
491 	struct buffer_head *bh;
492 	struct list_head *p;
493 	int err = 0;
494 
495 	spin_lock(lock);
496 repeat:
497 	list_for_each_prev(p, list) {
498 		bh = BH_ENTRY(p);
499 		if (buffer_locked(bh)) {
500 			get_bh(bh);
501 			spin_unlock(lock);
502 			wait_on_buffer(bh);
503 			if (!buffer_uptodate(bh))
504 				err = -EIO;
505 			brelse(bh);
506 			spin_lock(lock);
507 			goto repeat;
508 		}
509 	}
510 	spin_unlock(lock);
511 	return err;
512 }
513 
514 static void do_thaw_one(struct super_block *sb, void *unused)
515 {
516 	char b[BDEVNAME_SIZE];
517 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
518 		printk(KERN_WARNING "Emergency Thaw on %s\n",
519 		       bdevname(sb->s_bdev, b));
520 }
521 
522 static void do_thaw_all(struct work_struct *work)
523 {
524 	iterate_supers(do_thaw_one, NULL);
525 	kfree(work);
526 	printk(KERN_WARNING "Emergency Thaw complete\n");
527 }
528 
529 /**
530  * emergency_thaw_all -- forcibly thaw every frozen filesystem
531  *
532  * Used for emergency unfreeze of all filesystems via SysRq
533  */
534 void emergency_thaw_all(void)
535 {
536 	struct work_struct *work;
537 
538 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
539 	if (work) {
540 		INIT_WORK(work, do_thaw_all);
541 		schedule_work(work);
542 	}
543 }
544 
545 /**
546  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547  * @mapping: the mapping which wants those buffers written
548  *
549  * Starts I/O against the buffers at mapping->private_list, and waits upon
550  * that I/O.
551  *
552  * Basically, this is a convenience function for fsync().
553  * @mapping is a file or directory which needs those buffers to be written for
554  * a successful fsync().
555  */
556 int sync_mapping_buffers(struct address_space *mapping)
557 {
558 	struct address_space *buffer_mapping = mapping->assoc_mapping;
559 
560 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
561 		return 0;
562 
563 	return fsync_buffers_list(&buffer_mapping->private_lock,
564 					&mapping->private_list);
565 }
566 EXPORT_SYMBOL(sync_mapping_buffers);
567 
568 /*
569  * Called when we've recently written block `bblock', and it is known that
570  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
571  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
572  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
573  */
574 void write_boundary_block(struct block_device *bdev,
575 			sector_t bblock, unsigned blocksize)
576 {
577 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
578 	if (bh) {
579 		if (buffer_dirty(bh))
580 			ll_rw_block(WRITE, 1, &bh);
581 		put_bh(bh);
582 	}
583 }
584 
585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
586 {
587 	struct address_space *mapping = inode->i_mapping;
588 	struct address_space *buffer_mapping = bh->b_page->mapping;
589 
590 	mark_buffer_dirty(bh);
591 	if (!mapping->assoc_mapping) {
592 		mapping->assoc_mapping = buffer_mapping;
593 	} else {
594 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
595 	}
596 	if (!bh->b_assoc_map) {
597 		spin_lock(&buffer_mapping->private_lock);
598 		list_move_tail(&bh->b_assoc_buffers,
599 				&mapping->private_list);
600 		bh->b_assoc_map = mapping;
601 		spin_unlock(&buffer_mapping->private_lock);
602 	}
603 }
604 EXPORT_SYMBOL(mark_buffer_dirty_inode);
605 
606 /*
607  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
608  * dirty.
609  *
610  * If warn is true, then emit a warning if the page is not uptodate and has
611  * not been truncated.
612  */
613 static void __set_page_dirty(struct page *page,
614 		struct address_space *mapping, int warn)
615 {
616 	spin_lock_irq(&mapping->tree_lock);
617 	if (page->mapping) {	/* Race with truncate? */
618 		WARN_ON_ONCE(warn && !PageUptodate(page));
619 		account_page_dirtied(page, mapping);
620 		radix_tree_tag_set(&mapping->page_tree,
621 				page_index(page), PAGECACHE_TAG_DIRTY);
622 	}
623 	spin_unlock_irq(&mapping->tree_lock);
624 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
625 }
626 
627 /*
628  * Add a page to the dirty page list.
629  *
630  * It is a sad fact of life that this function is called from several places
631  * deeply under spinlocking.  It may not sleep.
632  *
633  * If the page has buffers, the uptodate buffers are set dirty, to preserve
634  * dirty-state coherency between the page and the buffers.  It the page does
635  * not have buffers then when they are later attached they will all be set
636  * dirty.
637  *
638  * The buffers are dirtied before the page is dirtied.  There's a small race
639  * window in which a writepage caller may see the page cleanness but not the
640  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
641  * before the buffers, a concurrent writepage caller could clear the page dirty
642  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
643  * page on the dirty page list.
644  *
645  * We use private_lock to lock against try_to_free_buffers while using the
646  * page's buffer list.  Also use this to protect against clean buffers being
647  * added to the page after it was set dirty.
648  *
649  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
650  * address_space though.
651  */
652 int __set_page_dirty_buffers(struct page *page)
653 {
654 	int newly_dirty;
655 	struct address_space *mapping = page_mapping(page);
656 
657 	if (unlikely(!mapping))
658 		return !TestSetPageDirty(page);
659 
660 	spin_lock(&mapping->private_lock);
661 	if (page_has_buffers(page)) {
662 		struct buffer_head *head = page_buffers(page);
663 		struct buffer_head *bh = head;
664 
665 		do {
666 			set_buffer_dirty(bh);
667 			bh = bh->b_this_page;
668 		} while (bh != head);
669 	}
670 	newly_dirty = !TestSetPageDirty(page);
671 	spin_unlock(&mapping->private_lock);
672 
673 	if (newly_dirty)
674 		__set_page_dirty(page, mapping, 1);
675 	return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678 
679 /*
680  * Write out and wait upon a list of buffers.
681  *
682  * We have conflicting pressures: we want to make sure that all
683  * initially dirty buffers get waited on, but that any subsequently
684  * dirtied buffers don't.  After all, we don't want fsync to last
685  * forever if somebody is actively writing to the file.
686  *
687  * Do this in two main stages: first we copy dirty buffers to a
688  * temporary inode list, queueing the writes as we go.  Then we clean
689  * up, waiting for those writes to complete.
690  *
691  * During this second stage, any subsequent updates to the file may end
692  * up refiling the buffer on the original inode's dirty list again, so
693  * there is a chance we will end up with a buffer queued for write but
694  * not yet completed on that list.  So, as a final cleanup we go through
695  * the osync code to catch these locked, dirty buffers without requeuing
696  * any newly dirty buffers for write.
697  */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700 	struct buffer_head *bh;
701 	struct list_head tmp;
702 	struct address_space *mapping;
703 	int err = 0, err2;
704 	struct blk_plug plug;
705 
706 	INIT_LIST_HEAD(&tmp);
707 	blk_start_plug(&plug);
708 
709 	spin_lock(lock);
710 	while (!list_empty(list)) {
711 		bh = BH_ENTRY(list->next);
712 		mapping = bh->b_assoc_map;
713 		__remove_assoc_queue(bh);
714 		/* Avoid race with mark_buffer_dirty_inode() which does
715 		 * a lockless check and we rely on seeing the dirty bit */
716 		smp_mb();
717 		if (buffer_dirty(bh) || buffer_locked(bh)) {
718 			list_add(&bh->b_assoc_buffers, &tmp);
719 			bh->b_assoc_map = mapping;
720 			if (buffer_dirty(bh)) {
721 				get_bh(bh);
722 				spin_unlock(lock);
723 				/*
724 				 * Ensure any pending I/O completes so that
725 				 * write_dirty_buffer() actually writes the
726 				 * current contents - it is a noop if I/O is
727 				 * still in flight on potentially older
728 				 * contents.
729 				 */
730 				write_dirty_buffer(bh, WRITE_SYNC);
731 
732 				/*
733 				 * Kick off IO for the previous mapping. Note
734 				 * that we will not run the very last mapping,
735 				 * wait_on_buffer() will do that for us
736 				 * through sync_buffer().
737 				 */
738 				brelse(bh);
739 				spin_lock(lock);
740 			}
741 		}
742 	}
743 
744 	spin_unlock(lock);
745 	blk_finish_plug(&plug);
746 	spin_lock(lock);
747 
748 	while (!list_empty(&tmp)) {
749 		bh = BH_ENTRY(tmp.prev);
750 		get_bh(bh);
751 		mapping = bh->b_assoc_map;
752 		__remove_assoc_queue(bh);
753 		/* Avoid race with mark_buffer_dirty_inode() which does
754 		 * a lockless check and we rely on seeing the dirty bit */
755 		smp_mb();
756 		if (buffer_dirty(bh)) {
757 			list_add(&bh->b_assoc_buffers,
758 				 &mapping->private_list);
759 			bh->b_assoc_map = mapping;
760 		}
761 		spin_unlock(lock);
762 		wait_on_buffer(bh);
763 		if (!buffer_uptodate(bh))
764 			err = -EIO;
765 		brelse(bh);
766 		spin_lock(lock);
767 	}
768 
769 	spin_unlock(lock);
770 	err2 = osync_buffers_list(lock, list);
771 	if (err)
772 		return err;
773 	else
774 		return err2;
775 }
776 
777 /*
778  * Invalidate any and all dirty buffers on a given inode.  We are
779  * probably unmounting the fs, but that doesn't mean we have already
780  * done a sync().  Just drop the buffers from the inode list.
781  *
782  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
783  * assumes that all the buffers are against the blockdev.  Not true
784  * for reiserfs.
785  */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788 	if (inode_has_buffers(inode)) {
789 		struct address_space *mapping = &inode->i_data;
790 		struct list_head *list = &mapping->private_list;
791 		struct address_space *buffer_mapping = mapping->assoc_mapping;
792 
793 		spin_lock(&buffer_mapping->private_lock);
794 		while (!list_empty(list))
795 			__remove_assoc_queue(BH_ENTRY(list->next));
796 		spin_unlock(&buffer_mapping->private_lock);
797 	}
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800 
801 /*
802  * Remove any clean buffers from the inode's buffer list.  This is called
803  * when we're trying to free the inode itself.  Those buffers can pin it.
804  *
805  * Returns true if all buffers were removed.
806  */
807 int remove_inode_buffers(struct inode *inode)
808 {
809 	int ret = 1;
810 
811 	if (inode_has_buffers(inode)) {
812 		struct address_space *mapping = &inode->i_data;
813 		struct list_head *list = &mapping->private_list;
814 		struct address_space *buffer_mapping = mapping->assoc_mapping;
815 
816 		spin_lock(&buffer_mapping->private_lock);
817 		while (!list_empty(list)) {
818 			struct buffer_head *bh = BH_ENTRY(list->next);
819 			if (buffer_dirty(bh)) {
820 				ret = 0;
821 				break;
822 			}
823 			__remove_assoc_queue(bh);
824 		}
825 		spin_unlock(&buffer_mapping->private_lock);
826 	}
827 	return ret;
828 }
829 
830 /*
831  * Create the appropriate buffers when given a page for data area and
832  * the size of each buffer.. Use the bh->b_this_page linked list to
833  * follow the buffers created.  Return NULL if unable to create more
834  * buffers.
835  *
836  * The retry flag is used to differentiate async IO (paging, swapping)
837  * which may not fail from ordinary buffer allocations.
838  */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 		int retry)
841 {
842 	struct buffer_head *bh, *head;
843 	long offset;
844 
845 try_again:
846 	head = NULL;
847 	offset = PAGE_SIZE;
848 	while ((offset -= size) >= 0) {
849 		bh = alloc_buffer_head(GFP_NOFS);
850 		if (!bh)
851 			goto no_grow;
852 
853 		bh->b_bdev = NULL;
854 		bh->b_this_page = head;
855 		bh->b_blocknr = -1;
856 		head = bh;
857 
858 		bh->b_state = 0;
859 		atomic_set(&bh->b_count, 0);
860 		bh->b_size = size;
861 
862 		/* Link the buffer to its page */
863 		set_bh_page(bh, page, offset);
864 
865 		init_buffer(bh, NULL, NULL);
866 	}
867 	return head;
868 /*
869  * In case anything failed, we just free everything we got.
870  */
871 no_grow:
872 	if (head) {
873 		do {
874 			bh = head;
875 			head = head->b_this_page;
876 			free_buffer_head(bh);
877 		} while (head);
878 	}
879 
880 	/*
881 	 * Return failure for non-async IO requests.  Async IO requests
882 	 * are not allowed to fail, so we have to wait until buffer heads
883 	 * become available.  But we don't want tasks sleeping with
884 	 * partially complete buffers, so all were released above.
885 	 */
886 	if (!retry)
887 		return NULL;
888 
889 	/* We're _really_ low on memory. Now we just
890 	 * wait for old buffer heads to become free due to
891 	 * finishing IO.  Since this is an async request and
892 	 * the reserve list is empty, we're sure there are
893 	 * async buffer heads in use.
894 	 */
895 	free_more_memory();
896 	goto try_again;
897 }
898 EXPORT_SYMBOL_GPL(alloc_page_buffers);
899 
900 static inline void
901 link_dev_buffers(struct page *page, struct buffer_head *head)
902 {
903 	struct buffer_head *bh, *tail;
904 
905 	bh = head;
906 	do {
907 		tail = bh;
908 		bh = bh->b_this_page;
909 	} while (bh);
910 	tail->b_this_page = head;
911 	attach_page_buffers(page, head);
912 }
913 
914 /*
915  * Initialise the state of a blockdev page's buffers.
916  */
917 static void
918 init_page_buffers(struct page *page, struct block_device *bdev,
919 			sector_t block, int size)
920 {
921 	struct buffer_head *head = page_buffers(page);
922 	struct buffer_head *bh = head;
923 	int uptodate = PageUptodate(page);
924 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode));
925 
926 	do {
927 		if (!buffer_mapped(bh)) {
928 			init_buffer(bh, NULL, NULL);
929 			bh->b_bdev = bdev;
930 			bh->b_blocknr = block;
931 			if (uptodate)
932 				set_buffer_uptodate(bh);
933 			if (block < end_block)
934 				set_buffer_mapped(bh);
935 		}
936 		block++;
937 		bh = bh->b_this_page;
938 	} while (bh != head);
939 }
940 
941 /*
942  * Create the page-cache page that contains the requested block.
943  *
944  * This is user purely for blockdev mappings.
945  */
946 static struct page *
947 grow_dev_page(struct block_device *bdev, sector_t block,
948 		pgoff_t index, int size)
949 {
950 	struct inode *inode = bdev->bd_inode;
951 	struct page *page;
952 	struct buffer_head *bh;
953 
954 	page = find_or_create_page(inode->i_mapping, index,
955 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
956 	if (!page)
957 		return NULL;
958 
959 	BUG_ON(!PageLocked(page));
960 
961 	if (page_has_buffers(page)) {
962 		bh = page_buffers(page);
963 		if (bh->b_size == size) {
964 			init_page_buffers(page, bdev, block, size);
965 			return page;
966 		}
967 		if (!try_to_free_buffers(page))
968 			goto failed;
969 	}
970 
971 	/*
972 	 * Allocate some buffers for this page
973 	 */
974 	bh = alloc_page_buffers(page, size, 0);
975 	if (!bh)
976 		goto failed;
977 
978 	/*
979 	 * Link the page to the buffers and initialise them.  Take the
980 	 * lock to be atomic wrt __find_get_block(), which does not
981 	 * run under the page lock.
982 	 */
983 	spin_lock(&inode->i_mapping->private_lock);
984 	link_dev_buffers(page, bh);
985 	init_page_buffers(page, bdev, block, size);
986 	spin_unlock(&inode->i_mapping->private_lock);
987 	return page;
988 
989 failed:
990 	unlock_page(page);
991 	page_cache_release(page);
992 	return NULL;
993 }
994 
995 /*
996  * Create buffers for the specified block device block's page.  If
997  * that page was dirty, the buffers are set dirty also.
998  */
999 static int
1000 grow_buffers(struct block_device *bdev, sector_t block, int size)
1001 {
1002 	struct page *page;
1003 	pgoff_t index;
1004 	int sizebits;
1005 
1006 	sizebits = -1;
1007 	do {
1008 		sizebits++;
1009 	} while ((size << sizebits) < PAGE_SIZE);
1010 
1011 	index = block >> sizebits;
1012 
1013 	/*
1014 	 * Check for a block which wants to lie outside our maximum possible
1015 	 * pagecache index.  (this comparison is done using sector_t types).
1016 	 */
1017 	if (unlikely(index != block >> sizebits)) {
1018 		char b[BDEVNAME_SIZE];
1019 
1020 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1021 			"device %s\n",
1022 			__func__, (unsigned long long)block,
1023 			bdevname(bdev, b));
1024 		return -EIO;
1025 	}
1026 	block = index << sizebits;
1027 	/* Create a page with the proper size buffers.. */
1028 	page = grow_dev_page(bdev, block, index, size);
1029 	if (!page)
1030 		return 0;
1031 	unlock_page(page);
1032 	page_cache_release(page);
1033 	return 1;
1034 }
1035 
1036 static struct buffer_head *
1037 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1038 {
1039 	int ret;
1040 	struct buffer_head *bh;
1041 
1042 	/* Size must be multiple of hard sectorsize */
1043 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1044 			(size < 512 || size > PAGE_SIZE))) {
1045 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1046 					size);
1047 		printk(KERN_ERR "logical block size: %d\n",
1048 					bdev_logical_block_size(bdev));
1049 
1050 		dump_stack();
1051 		return NULL;
1052 	}
1053 
1054 retry:
1055 	bh = __find_get_block(bdev, block, size);
1056 	if (bh)
1057 		return bh;
1058 
1059 	ret = grow_buffers(bdev, block, size);
1060 	if (ret == 0) {
1061 		free_more_memory();
1062 		goto retry;
1063 	} else if (ret > 0) {
1064 		bh = __find_get_block(bdev, block, size);
1065 		if (bh)
1066 			return bh;
1067 	}
1068 	return NULL;
1069 }
1070 
1071 /*
1072  * The relationship between dirty buffers and dirty pages:
1073  *
1074  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1075  * the page is tagged dirty in its radix tree.
1076  *
1077  * At all times, the dirtiness of the buffers represents the dirtiness of
1078  * subsections of the page.  If the page has buffers, the page dirty bit is
1079  * merely a hint about the true dirty state.
1080  *
1081  * When a page is set dirty in its entirety, all its buffers are marked dirty
1082  * (if the page has buffers).
1083  *
1084  * When a buffer is marked dirty, its page is dirtied, but the page's other
1085  * buffers are not.
1086  *
1087  * Also.  When blockdev buffers are explicitly read with bread(), they
1088  * individually become uptodate.  But their backing page remains not
1089  * uptodate - even if all of its buffers are uptodate.  A subsequent
1090  * block_read_full_page() against that page will discover all the uptodate
1091  * buffers, will set the page uptodate and will perform no I/O.
1092  */
1093 
1094 /**
1095  * mark_buffer_dirty - mark a buffer_head as needing writeout
1096  * @bh: the buffer_head to mark dirty
1097  *
1098  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1099  * backing page dirty, then tag the page as dirty in its address_space's radix
1100  * tree and then attach the address_space's inode to its superblock's dirty
1101  * inode list.
1102  *
1103  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1104  * mapping->tree_lock and mapping->host->i_lock.
1105  */
1106 void mark_buffer_dirty(struct buffer_head *bh)
1107 {
1108 	WARN_ON_ONCE(!buffer_uptodate(bh));
1109 
1110 	/*
1111 	 * Very *carefully* optimize the it-is-already-dirty case.
1112 	 *
1113 	 * Don't let the final "is it dirty" escape to before we
1114 	 * perhaps modified the buffer.
1115 	 */
1116 	if (buffer_dirty(bh)) {
1117 		smp_mb();
1118 		if (buffer_dirty(bh))
1119 			return;
1120 	}
1121 
1122 	if (!test_set_buffer_dirty(bh)) {
1123 		struct page *page = bh->b_page;
1124 		if (!TestSetPageDirty(page)) {
1125 			struct address_space *mapping = page_mapping(page);
1126 			if (mapping)
1127 				__set_page_dirty(page, mapping, 0);
1128 		}
1129 	}
1130 }
1131 EXPORT_SYMBOL(mark_buffer_dirty);
1132 
1133 /*
1134  * Decrement a buffer_head's reference count.  If all buffers against a page
1135  * have zero reference count, are clean and unlocked, and if the page is clean
1136  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1137  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1138  * a page but it ends up not being freed, and buffers may later be reattached).
1139  */
1140 void __brelse(struct buffer_head * buf)
1141 {
1142 	if (atomic_read(&buf->b_count)) {
1143 		put_bh(buf);
1144 		return;
1145 	}
1146 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1147 }
1148 EXPORT_SYMBOL(__brelse);
1149 
1150 /*
1151  * bforget() is like brelse(), except it discards any
1152  * potentially dirty data.
1153  */
1154 void __bforget(struct buffer_head *bh)
1155 {
1156 	clear_buffer_dirty(bh);
1157 	if (bh->b_assoc_map) {
1158 		struct address_space *buffer_mapping = bh->b_page->mapping;
1159 
1160 		spin_lock(&buffer_mapping->private_lock);
1161 		list_del_init(&bh->b_assoc_buffers);
1162 		bh->b_assoc_map = NULL;
1163 		spin_unlock(&buffer_mapping->private_lock);
1164 	}
1165 	__brelse(bh);
1166 }
1167 EXPORT_SYMBOL(__bforget);
1168 
1169 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1170 {
1171 	lock_buffer(bh);
1172 	if (buffer_uptodate(bh)) {
1173 		unlock_buffer(bh);
1174 		return bh;
1175 	} else {
1176 		get_bh(bh);
1177 		bh->b_end_io = end_buffer_read_sync;
1178 		submit_bh(READ, bh);
1179 		wait_on_buffer(bh);
1180 		if (buffer_uptodate(bh))
1181 			return bh;
1182 	}
1183 	brelse(bh);
1184 	return NULL;
1185 }
1186 
1187 /*
1188  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1189  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1190  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1191  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1192  * CPU's LRUs at the same time.
1193  *
1194  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1195  * sb_find_get_block().
1196  *
1197  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1198  * a local interrupt disable for that.
1199  */
1200 
1201 #define BH_LRU_SIZE	8
1202 
1203 struct bh_lru {
1204 	struct buffer_head *bhs[BH_LRU_SIZE];
1205 };
1206 
1207 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1208 
1209 #ifdef CONFIG_SMP
1210 #define bh_lru_lock()	local_irq_disable()
1211 #define bh_lru_unlock()	local_irq_enable()
1212 #else
1213 #define bh_lru_lock()	preempt_disable()
1214 #define bh_lru_unlock()	preempt_enable()
1215 #endif
1216 
1217 static inline void check_irqs_on(void)
1218 {
1219 #ifdef irqs_disabled
1220 	BUG_ON(irqs_disabled());
1221 #endif
1222 }
1223 
1224 /*
1225  * The LRU management algorithm is dopey-but-simple.  Sorry.
1226  */
1227 static void bh_lru_install(struct buffer_head *bh)
1228 {
1229 	struct buffer_head *evictee = NULL;
1230 
1231 	check_irqs_on();
1232 	bh_lru_lock();
1233 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1234 		struct buffer_head *bhs[BH_LRU_SIZE];
1235 		int in;
1236 		int out = 0;
1237 
1238 		get_bh(bh);
1239 		bhs[out++] = bh;
1240 		for (in = 0; in < BH_LRU_SIZE; in++) {
1241 			struct buffer_head *bh2 =
1242 				__this_cpu_read(bh_lrus.bhs[in]);
1243 
1244 			if (bh2 == bh) {
1245 				__brelse(bh2);
1246 			} else {
1247 				if (out >= BH_LRU_SIZE) {
1248 					BUG_ON(evictee != NULL);
1249 					evictee = bh2;
1250 				} else {
1251 					bhs[out++] = bh2;
1252 				}
1253 			}
1254 		}
1255 		while (out < BH_LRU_SIZE)
1256 			bhs[out++] = NULL;
1257 		memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1258 	}
1259 	bh_lru_unlock();
1260 
1261 	if (evictee)
1262 		__brelse(evictee);
1263 }
1264 
1265 /*
1266  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1267  */
1268 static struct buffer_head *
1269 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1270 {
1271 	struct buffer_head *ret = NULL;
1272 	unsigned int i;
1273 
1274 	check_irqs_on();
1275 	bh_lru_lock();
1276 	for (i = 0; i < BH_LRU_SIZE; i++) {
1277 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1278 
1279 		if (bh && bh->b_bdev == bdev &&
1280 				bh->b_blocknr == block && bh->b_size == size) {
1281 			if (i) {
1282 				while (i) {
1283 					__this_cpu_write(bh_lrus.bhs[i],
1284 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1285 					i--;
1286 				}
1287 				__this_cpu_write(bh_lrus.bhs[0], bh);
1288 			}
1289 			get_bh(bh);
1290 			ret = bh;
1291 			break;
1292 		}
1293 	}
1294 	bh_lru_unlock();
1295 	return ret;
1296 }
1297 
1298 /*
1299  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1300  * it in the LRU and mark it as accessed.  If it is not present then return
1301  * NULL
1302  */
1303 struct buffer_head *
1304 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1305 {
1306 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1307 
1308 	if (bh == NULL) {
1309 		bh = __find_get_block_slow(bdev, block);
1310 		if (bh)
1311 			bh_lru_install(bh);
1312 	}
1313 	if (bh)
1314 		touch_buffer(bh);
1315 	return bh;
1316 }
1317 EXPORT_SYMBOL(__find_get_block);
1318 
1319 /*
1320  * __getblk will locate (and, if necessary, create) the buffer_head
1321  * which corresponds to the passed block_device, block and size. The
1322  * returned buffer has its reference count incremented.
1323  *
1324  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1325  * illegal block number, __getblk() will happily return a buffer_head
1326  * which represents the non-existent block.  Very weird.
1327  *
1328  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1329  * attempt is failing.  FIXME, perhaps?
1330  */
1331 struct buffer_head *
1332 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1333 {
1334 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1335 
1336 	might_sleep();
1337 	if (bh == NULL)
1338 		bh = __getblk_slow(bdev, block, size);
1339 	return bh;
1340 }
1341 EXPORT_SYMBOL(__getblk);
1342 
1343 /*
1344  * Do async read-ahead on a buffer..
1345  */
1346 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1347 {
1348 	struct buffer_head *bh = __getblk(bdev, block, size);
1349 	if (likely(bh)) {
1350 		ll_rw_block(READA, 1, &bh);
1351 		brelse(bh);
1352 	}
1353 }
1354 EXPORT_SYMBOL(__breadahead);
1355 
1356 /**
1357  *  __bread() - reads a specified block and returns the bh
1358  *  @bdev: the block_device to read from
1359  *  @block: number of block
1360  *  @size: size (in bytes) to read
1361  *
1362  *  Reads a specified block, and returns buffer head that contains it.
1363  *  It returns NULL if the block was unreadable.
1364  */
1365 struct buffer_head *
1366 __bread(struct block_device *bdev, sector_t block, unsigned size)
1367 {
1368 	struct buffer_head *bh = __getblk(bdev, block, size);
1369 
1370 	if (likely(bh) && !buffer_uptodate(bh))
1371 		bh = __bread_slow(bh);
1372 	return bh;
1373 }
1374 EXPORT_SYMBOL(__bread);
1375 
1376 /*
1377  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1378  * This doesn't race because it runs in each cpu either in irq
1379  * or with preempt disabled.
1380  */
1381 static void invalidate_bh_lru(void *arg)
1382 {
1383 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1384 	int i;
1385 
1386 	for (i = 0; i < BH_LRU_SIZE; i++) {
1387 		brelse(b->bhs[i]);
1388 		b->bhs[i] = NULL;
1389 	}
1390 	put_cpu_var(bh_lrus);
1391 }
1392 
1393 static bool has_bh_in_lru(int cpu, void *dummy)
1394 {
1395 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1396 	int i;
1397 
1398 	for (i = 0; i < BH_LRU_SIZE; i++) {
1399 		if (b->bhs[i])
1400 			return 1;
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 void invalidate_bh_lrus(void)
1407 {
1408 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1409 }
1410 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1411 
1412 void set_bh_page(struct buffer_head *bh,
1413 		struct page *page, unsigned long offset)
1414 {
1415 	bh->b_page = page;
1416 	BUG_ON(offset >= PAGE_SIZE);
1417 	if (PageHighMem(page))
1418 		/*
1419 		 * This catches illegal uses and preserves the offset:
1420 		 */
1421 		bh->b_data = (char *)(0 + offset);
1422 	else
1423 		bh->b_data = page_address(page) + offset;
1424 }
1425 EXPORT_SYMBOL(set_bh_page);
1426 
1427 /*
1428  * Called when truncating a buffer on a page completely.
1429  */
1430 static void discard_buffer(struct buffer_head * bh)
1431 {
1432 	lock_buffer(bh);
1433 	clear_buffer_dirty(bh);
1434 	bh->b_bdev = NULL;
1435 	clear_buffer_mapped(bh);
1436 	clear_buffer_req(bh);
1437 	clear_buffer_new(bh);
1438 	clear_buffer_delay(bh);
1439 	clear_buffer_unwritten(bh);
1440 	unlock_buffer(bh);
1441 }
1442 
1443 /**
1444  * block_invalidatepage - invalidate part or all of a buffer-backed page
1445  *
1446  * @page: the page which is affected
1447  * @offset: the index of the truncation point
1448  *
1449  * block_invalidatepage() is called when all or part of the page has become
1450  * invalidated by a truncate operation.
1451  *
1452  * block_invalidatepage() does not have to release all buffers, but it must
1453  * ensure that no dirty buffer is left outside @offset and that no I/O
1454  * is underway against any of the blocks which are outside the truncation
1455  * point.  Because the caller is about to free (and possibly reuse) those
1456  * blocks on-disk.
1457  */
1458 void block_invalidatepage(struct page *page, unsigned long offset)
1459 {
1460 	struct buffer_head *head, *bh, *next;
1461 	unsigned int curr_off = 0;
1462 
1463 	BUG_ON(!PageLocked(page));
1464 	if (!page_has_buffers(page))
1465 		goto out;
1466 
1467 	head = page_buffers(page);
1468 	bh = head;
1469 	do {
1470 		unsigned int next_off = curr_off + bh->b_size;
1471 		next = bh->b_this_page;
1472 
1473 		/*
1474 		 * is this block fully invalidated?
1475 		 */
1476 		if (offset <= curr_off)
1477 			discard_buffer(bh);
1478 		curr_off = next_off;
1479 		bh = next;
1480 	} while (bh != head);
1481 
1482 	/*
1483 	 * We release buffers only if the entire page is being invalidated.
1484 	 * The get_block cached value has been unconditionally invalidated,
1485 	 * so real IO is not possible anymore.
1486 	 */
1487 	if (offset == 0)
1488 		try_to_release_page(page, 0);
1489 out:
1490 	return;
1491 }
1492 EXPORT_SYMBOL(block_invalidatepage);
1493 
1494 /*
1495  * We attach and possibly dirty the buffers atomically wrt
1496  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1497  * is already excluded via the page lock.
1498  */
1499 void create_empty_buffers(struct page *page,
1500 			unsigned long blocksize, unsigned long b_state)
1501 {
1502 	struct buffer_head *bh, *head, *tail;
1503 
1504 	head = alloc_page_buffers(page, blocksize, 1);
1505 	bh = head;
1506 	do {
1507 		bh->b_state |= b_state;
1508 		tail = bh;
1509 		bh = bh->b_this_page;
1510 	} while (bh);
1511 	tail->b_this_page = head;
1512 
1513 	spin_lock(&page->mapping->private_lock);
1514 	if (PageUptodate(page) || PageDirty(page)) {
1515 		bh = head;
1516 		do {
1517 			if (PageDirty(page))
1518 				set_buffer_dirty(bh);
1519 			if (PageUptodate(page))
1520 				set_buffer_uptodate(bh);
1521 			bh = bh->b_this_page;
1522 		} while (bh != head);
1523 	}
1524 	attach_page_buffers(page, head);
1525 	spin_unlock(&page->mapping->private_lock);
1526 }
1527 EXPORT_SYMBOL(create_empty_buffers);
1528 
1529 /*
1530  * We are taking a block for data and we don't want any output from any
1531  * buffer-cache aliases starting from return from that function and
1532  * until the moment when something will explicitly mark the buffer
1533  * dirty (hopefully that will not happen until we will free that block ;-)
1534  * We don't even need to mark it not-uptodate - nobody can expect
1535  * anything from a newly allocated buffer anyway. We used to used
1536  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1537  * don't want to mark the alias unmapped, for example - it would confuse
1538  * anyone who might pick it with bread() afterwards...
1539  *
1540  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1541  * be writeout I/O going on against recently-freed buffers.  We don't
1542  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1543  * only if we really need to.  That happens here.
1544  */
1545 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1546 {
1547 	struct buffer_head *old_bh;
1548 
1549 	might_sleep();
1550 
1551 	old_bh = __find_get_block_slow(bdev, block);
1552 	if (old_bh) {
1553 		clear_buffer_dirty(old_bh);
1554 		wait_on_buffer(old_bh);
1555 		clear_buffer_req(old_bh);
1556 		__brelse(old_bh);
1557 	}
1558 }
1559 EXPORT_SYMBOL(unmap_underlying_metadata);
1560 
1561 /*
1562  * NOTE! All mapped/uptodate combinations are valid:
1563  *
1564  *	Mapped	Uptodate	Meaning
1565  *
1566  *	No	No		"unknown" - must do get_block()
1567  *	No	Yes		"hole" - zero-filled
1568  *	Yes	No		"allocated" - allocated on disk, not read in
1569  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1570  *
1571  * "Dirty" is valid only with the last case (mapped+uptodate).
1572  */
1573 
1574 /*
1575  * While block_write_full_page is writing back the dirty buffers under
1576  * the page lock, whoever dirtied the buffers may decide to clean them
1577  * again at any time.  We handle that by only looking at the buffer
1578  * state inside lock_buffer().
1579  *
1580  * If block_write_full_page() is called for regular writeback
1581  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1582  * locked buffer.   This only can happen if someone has written the buffer
1583  * directly, with submit_bh().  At the address_space level PageWriteback
1584  * prevents this contention from occurring.
1585  *
1586  * If block_write_full_page() is called with wbc->sync_mode ==
1587  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1588  * causes the writes to be flagged as synchronous writes.
1589  */
1590 static int __block_write_full_page(struct inode *inode, struct page *page,
1591 			get_block_t *get_block, struct writeback_control *wbc,
1592 			bh_end_io_t *handler)
1593 {
1594 	int err;
1595 	sector_t block;
1596 	sector_t last_block;
1597 	struct buffer_head *bh, *head;
1598 	const unsigned blocksize = 1 << inode->i_blkbits;
1599 	int nr_underway = 0;
1600 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1601 			WRITE_SYNC : WRITE);
1602 
1603 	BUG_ON(!PageLocked(page));
1604 
1605 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1606 
1607 	if (!page_has_buffers(page)) {
1608 		create_empty_buffers(page, blocksize,
1609 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1610 	}
1611 
1612 	/*
1613 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1614 	 * here, and the (potentially unmapped) buffers may become dirty at
1615 	 * any time.  If a buffer becomes dirty here after we've inspected it
1616 	 * then we just miss that fact, and the page stays dirty.
1617 	 *
1618 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1619 	 * handle that here by just cleaning them.
1620 	 */
1621 
1622 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1623 	head = page_buffers(page);
1624 	bh = head;
1625 
1626 	/*
1627 	 * Get all the dirty buffers mapped to disk addresses and
1628 	 * handle any aliases from the underlying blockdev's mapping.
1629 	 */
1630 	do {
1631 		if (block > last_block) {
1632 			/*
1633 			 * mapped buffers outside i_size will occur, because
1634 			 * this page can be outside i_size when there is a
1635 			 * truncate in progress.
1636 			 */
1637 			/*
1638 			 * The buffer was zeroed by block_write_full_page()
1639 			 */
1640 			clear_buffer_dirty(bh);
1641 			set_buffer_uptodate(bh);
1642 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1643 			   buffer_dirty(bh)) {
1644 			WARN_ON(bh->b_size != blocksize);
1645 			err = get_block(inode, block, bh, 1);
1646 			if (err)
1647 				goto recover;
1648 			clear_buffer_delay(bh);
1649 			if (buffer_new(bh)) {
1650 				/* blockdev mappings never come here */
1651 				clear_buffer_new(bh);
1652 				unmap_underlying_metadata(bh->b_bdev,
1653 							bh->b_blocknr);
1654 			}
1655 		}
1656 		bh = bh->b_this_page;
1657 		block++;
1658 	} while (bh != head);
1659 
1660 	do {
1661 		if (!buffer_mapped(bh))
1662 			continue;
1663 		/*
1664 		 * If it's a fully non-blocking write attempt and we cannot
1665 		 * lock the buffer then redirty the page.  Note that this can
1666 		 * potentially cause a busy-wait loop from writeback threads
1667 		 * and kswapd activity, but those code paths have their own
1668 		 * higher-level throttling.
1669 		 */
1670 		if (wbc->sync_mode != WB_SYNC_NONE) {
1671 			lock_buffer(bh);
1672 		} else if (!trylock_buffer(bh)) {
1673 			redirty_page_for_writepage(wbc, page);
1674 			continue;
1675 		}
1676 		if (test_clear_buffer_dirty(bh)) {
1677 			mark_buffer_async_write_endio(bh, handler);
1678 		} else {
1679 			unlock_buffer(bh);
1680 		}
1681 	} while ((bh = bh->b_this_page) != head);
1682 
1683 	/*
1684 	 * The page and its buffers are protected by PageWriteback(), so we can
1685 	 * drop the bh refcounts early.
1686 	 */
1687 	BUG_ON(PageWriteback(page));
1688 	set_page_writeback(page);
1689 
1690 	do {
1691 		struct buffer_head *next = bh->b_this_page;
1692 		if (buffer_async_write(bh)) {
1693 			submit_bh(write_op, bh);
1694 			nr_underway++;
1695 		}
1696 		bh = next;
1697 	} while (bh != head);
1698 	unlock_page(page);
1699 
1700 	err = 0;
1701 done:
1702 	if (nr_underway == 0) {
1703 		/*
1704 		 * The page was marked dirty, but the buffers were
1705 		 * clean.  Someone wrote them back by hand with
1706 		 * ll_rw_block/submit_bh.  A rare case.
1707 		 */
1708 		end_page_writeback(page);
1709 
1710 		/*
1711 		 * The page and buffer_heads can be released at any time from
1712 		 * here on.
1713 		 */
1714 	}
1715 	return err;
1716 
1717 recover:
1718 	/*
1719 	 * ENOSPC, or some other error.  We may already have added some
1720 	 * blocks to the file, so we need to write these out to avoid
1721 	 * exposing stale data.
1722 	 * The page is currently locked and not marked for writeback
1723 	 */
1724 	bh = head;
1725 	/* Recovery: lock and submit the mapped buffers */
1726 	do {
1727 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1728 		    !buffer_delay(bh)) {
1729 			lock_buffer(bh);
1730 			mark_buffer_async_write_endio(bh, handler);
1731 		} else {
1732 			/*
1733 			 * The buffer may have been set dirty during
1734 			 * attachment to a dirty page.
1735 			 */
1736 			clear_buffer_dirty(bh);
1737 		}
1738 	} while ((bh = bh->b_this_page) != head);
1739 	SetPageError(page);
1740 	BUG_ON(PageWriteback(page));
1741 	mapping_set_error(page->mapping, err);
1742 	set_page_writeback(page);
1743 	do {
1744 		struct buffer_head *next = bh->b_this_page;
1745 		if (buffer_async_write(bh)) {
1746 			clear_buffer_dirty(bh);
1747 			submit_bh(write_op, bh);
1748 			nr_underway++;
1749 		}
1750 		bh = next;
1751 	} while (bh != head);
1752 	unlock_page(page);
1753 	goto done;
1754 }
1755 
1756 /*
1757  * If a page has any new buffers, zero them out here, and mark them uptodate
1758  * and dirty so they'll be written out (in order to prevent uninitialised
1759  * block data from leaking). And clear the new bit.
1760  */
1761 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1762 {
1763 	unsigned int block_start, block_end;
1764 	struct buffer_head *head, *bh;
1765 
1766 	BUG_ON(!PageLocked(page));
1767 	if (!page_has_buffers(page))
1768 		return;
1769 
1770 	bh = head = page_buffers(page);
1771 	block_start = 0;
1772 	do {
1773 		block_end = block_start + bh->b_size;
1774 
1775 		if (buffer_new(bh)) {
1776 			if (block_end > from && block_start < to) {
1777 				if (!PageUptodate(page)) {
1778 					unsigned start, size;
1779 
1780 					start = max(from, block_start);
1781 					size = min(to, block_end) - start;
1782 
1783 					zero_user(page, start, size);
1784 					set_buffer_uptodate(bh);
1785 				}
1786 
1787 				clear_buffer_new(bh);
1788 				mark_buffer_dirty(bh);
1789 			}
1790 		}
1791 
1792 		block_start = block_end;
1793 		bh = bh->b_this_page;
1794 	} while (bh != head);
1795 }
1796 EXPORT_SYMBOL(page_zero_new_buffers);
1797 
1798 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1799 		get_block_t *get_block)
1800 {
1801 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1802 	unsigned to = from + len;
1803 	struct inode *inode = page->mapping->host;
1804 	unsigned block_start, block_end;
1805 	sector_t block;
1806 	int err = 0;
1807 	unsigned blocksize, bbits;
1808 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1809 
1810 	BUG_ON(!PageLocked(page));
1811 	BUG_ON(from > PAGE_CACHE_SIZE);
1812 	BUG_ON(to > PAGE_CACHE_SIZE);
1813 	BUG_ON(from > to);
1814 
1815 	blocksize = 1 << inode->i_blkbits;
1816 	if (!page_has_buffers(page))
1817 		create_empty_buffers(page, blocksize, 0);
1818 	head = page_buffers(page);
1819 
1820 	bbits = inode->i_blkbits;
1821 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1822 
1823 	for(bh = head, block_start = 0; bh != head || !block_start;
1824 	    block++, block_start=block_end, bh = bh->b_this_page) {
1825 		block_end = block_start + blocksize;
1826 		if (block_end <= from || block_start >= to) {
1827 			if (PageUptodate(page)) {
1828 				if (!buffer_uptodate(bh))
1829 					set_buffer_uptodate(bh);
1830 			}
1831 			continue;
1832 		}
1833 		if (buffer_new(bh))
1834 			clear_buffer_new(bh);
1835 		if (!buffer_mapped(bh)) {
1836 			WARN_ON(bh->b_size != blocksize);
1837 			err = get_block(inode, block, bh, 1);
1838 			if (err)
1839 				break;
1840 			if (buffer_new(bh)) {
1841 				unmap_underlying_metadata(bh->b_bdev,
1842 							bh->b_blocknr);
1843 				if (PageUptodate(page)) {
1844 					clear_buffer_new(bh);
1845 					set_buffer_uptodate(bh);
1846 					mark_buffer_dirty(bh);
1847 					continue;
1848 				}
1849 				if (block_end > to || block_start < from)
1850 					zero_user_segments(page,
1851 						to, block_end,
1852 						block_start, from);
1853 				continue;
1854 			}
1855 		}
1856 		if (PageUptodate(page)) {
1857 			if (!buffer_uptodate(bh))
1858 				set_buffer_uptodate(bh);
1859 			continue;
1860 		}
1861 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1862 		    !buffer_unwritten(bh) &&
1863 		     (block_start < from || block_end > to)) {
1864 			ll_rw_block(READ, 1, &bh);
1865 			*wait_bh++=bh;
1866 		}
1867 	}
1868 	/*
1869 	 * If we issued read requests - let them complete.
1870 	 */
1871 	while(wait_bh > wait) {
1872 		wait_on_buffer(*--wait_bh);
1873 		if (!buffer_uptodate(*wait_bh))
1874 			err = -EIO;
1875 	}
1876 	if (unlikely(err))
1877 		page_zero_new_buffers(page, from, to);
1878 	return err;
1879 }
1880 EXPORT_SYMBOL(__block_write_begin);
1881 
1882 static int __block_commit_write(struct inode *inode, struct page *page,
1883 		unsigned from, unsigned to)
1884 {
1885 	unsigned block_start, block_end;
1886 	int partial = 0;
1887 	unsigned blocksize;
1888 	struct buffer_head *bh, *head;
1889 
1890 	blocksize = 1 << inode->i_blkbits;
1891 
1892 	for(bh = head = page_buffers(page), block_start = 0;
1893 	    bh != head || !block_start;
1894 	    block_start=block_end, bh = bh->b_this_page) {
1895 		block_end = block_start + blocksize;
1896 		if (block_end <= from || block_start >= to) {
1897 			if (!buffer_uptodate(bh))
1898 				partial = 1;
1899 		} else {
1900 			set_buffer_uptodate(bh);
1901 			mark_buffer_dirty(bh);
1902 		}
1903 		clear_buffer_new(bh);
1904 	}
1905 
1906 	/*
1907 	 * If this is a partial write which happened to make all buffers
1908 	 * uptodate then we can optimize away a bogus readpage() for
1909 	 * the next read(). Here we 'discover' whether the page went
1910 	 * uptodate as a result of this (potentially partial) write.
1911 	 */
1912 	if (!partial)
1913 		SetPageUptodate(page);
1914 	return 0;
1915 }
1916 
1917 /*
1918  * block_write_begin takes care of the basic task of block allocation and
1919  * bringing partial write blocks uptodate first.
1920  *
1921  * The filesystem needs to handle block truncation upon failure.
1922  */
1923 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1924 		unsigned flags, struct page **pagep, get_block_t *get_block)
1925 {
1926 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1927 	struct page *page;
1928 	int status;
1929 
1930 	page = grab_cache_page_write_begin(mapping, index, flags);
1931 	if (!page)
1932 		return -ENOMEM;
1933 
1934 	status = __block_write_begin(page, pos, len, get_block);
1935 	if (unlikely(status)) {
1936 		unlock_page(page);
1937 		page_cache_release(page);
1938 		page = NULL;
1939 	}
1940 
1941 	*pagep = page;
1942 	return status;
1943 }
1944 EXPORT_SYMBOL(block_write_begin);
1945 
1946 int block_write_end(struct file *file, struct address_space *mapping,
1947 			loff_t pos, unsigned len, unsigned copied,
1948 			struct page *page, void *fsdata)
1949 {
1950 	struct inode *inode = mapping->host;
1951 	unsigned start;
1952 
1953 	start = pos & (PAGE_CACHE_SIZE - 1);
1954 
1955 	if (unlikely(copied < len)) {
1956 		/*
1957 		 * The buffers that were written will now be uptodate, so we
1958 		 * don't have to worry about a readpage reading them and
1959 		 * overwriting a partial write. However if we have encountered
1960 		 * a short write and only partially written into a buffer, it
1961 		 * will not be marked uptodate, so a readpage might come in and
1962 		 * destroy our partial write.
1963 		 *
1964 		 * Do the simplest thing, and just treat any short write to a
1965 		 * non uptodate page as a zero-length write, and force the
1966 		 * caller to redo the whole thing.
1967 		 */
1968 		if (!PageUptodate(page))
1969 			copied = 0;
1970 
1971 		page_zero_new_buffers(page, start+copied, start+len);
1972 	}
1973 	flush_dcache_page(page);
1974 
1975 	/* This could be a short (even 0-length) commit */
1976 	__block_commit_write(inode, page, start, start+copied);
1977 
1978 	return copied;
1979 }
1980 EXPORT_SYMBOL(block_write_end);
1981 
1982 int generic_write_end(struct file *file, struct address_space *mapping,
1983 			loff_t pos, unsigned len, unsigned copied,
1984 			struct page *page, void *fsdata)
1985 {
1986 	struct inode *inode = mapping->host;
1987 	int i_size_changed = 0;
1988 
1989 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1990 
1991 	/*
1992 	 * No need to use i_size_read() here, the i_size
1993 	 * cannot change under us because we hold i_mutex.
1994 	 *
1995 	 * But it's important to update i_size while still holding page lock:
1996 	 * page writeout could otherwise come in and zero beyond i_size.
1997 	 */
1998 	if (pos+copied > inode->i_size) {
1999 		i_size_write(inode, pos+copied);
2000 		i_size_changed = 1;
2001 	}
2002 
2003 	unlock_page(page);
2004 	page_cache_release(page);
2005 
2006 	/*
2007 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2008 	 * makes the holding time of page lock longer. Second, it forces lock
2009 	 * ordering of page lock and transaction start for journaling
2010 	 * filesystems.
2011 	 */
2012 	if (i_size_changed)
2013 		mark_inode_dirty(inode);
2014 
2015 	return copied;
2016 }
2017 EXPORT_SYMBOL(generic_write_end);
2018 
2019 /*
2020  * block_is_partially_uptodate checks whether buffers within a page are
2021  * uptodate or not.
2022  *
2023  * Returns true if all buffers which correspond to a file portion
2024  * we want to read are uptodate.
2025  */
2026 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2027 					unsigned long from)
2028 {
2029 	struct inode *inode = page->mapping->host;
2030 	unsigned block_start, block_end, blocksize;
2031 	unsigned to;
2032 	struct buffer_head *bh, *head;
2033 	int ret = 1;
2034 
2035 	if (!page_has_buffers(page))
2036 		return 0;
2037 
2038 	blocksize = 1 << inode->i_blkbits;
2039 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2040 	to = from + to;
2041 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2042 		return 0;
2043 
2044 	head = page_buffers(page);
2045 	bh = head;
2046 	block_start = 0;
2047 	do {
2048 		block_end = block_start + blocksize;
2049 		if (block_end > from && block_start < to) {
2050 			if (!buffer_uptodate(bh)) {
2051 				ret = 0;
2052 				break;
2053 			}
2054 			if (block_end >= to)
2055 				break;
2056 		}
2057 		block_start = block_end;
2058 		bh = bh->b_this_page;
2059 	} while (bh != head);
2060 
2061 	return ret;
2062 }
2063 EXPORT_SYMBOL(block_is_partially_uptodate);
2064 
2065 /*
2066  * Generic "read page" function for block devices that have the normal
2067  * get_block functionality. This is most of the block device filesystems.
2068  * Reads the page asynchronously --- the unlock_buffer() and
2069  * set/clear_buffer_uptodate() functions propagate buffer state into the
2070  * page struct once IO has completed.
2071  */
2072 int block_read_full_page(struct page *page, get_block_t *get_block)
2073 {
2074 	struct inode *inode = page->mapping->host;
2075 	sector_t iblock, lblock;
2076 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2077 	unsigned int blocksize;
2078 	int nr, i;
2079 	int fully_mapped = 1;
2080 
2081 	BUG_ON(!PageLocked(page));
2082 	blocksize = 1 << inode->i_blkbits;
2083 	if (!page_has_buffers(page))
2084 		create_empty_buffers(page, blocksize, 0);
2085 	head = page_buffers(page);
2086 
2087 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2088 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2089 	bh = head;
2090 	nr = 0;
2091 	i = 0;
2092 
2093 	do {
2094 		if (buffer_uptodate(bh))
2095 			continue;
2096 
2097 		if (!buffer_mapped(bh)) {
2098 			int err = 0;
2099 
2100 			fully_mapped = 0;
2101 			if (iblock < lblock) {
2102 				WARN_ON(bh->b_size != blocksize);
2103 				err = get_block(inode, iblock, bh, 0);
2104 				if (err)
2105 					SetPageError(page);
2106 			}
2107 			if (!buffer_mapped(bh)) {
2108 				zero_user(page, i * blocksize, blocksize);
2109 				if (!err)
2110 					set_buffer_uptodate(bh);
2111 				continue;
2112 			}
2113 			/*
2114 			 * get_block() might have updated the buffer
2115 			 * synchronously
2116 			 */
2117 			if (buffer_uptodate(bh))
2118 				continue;
2119 		}
2120 		arr[nr++] = bh;
2121 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2122 
2123 	if (fully_mapped)
2124 		SetPageMappedToDisk(page);
2125 
2126 	if (!nr) {
2127 		/*
2128 		 * All buffers are uptodate - we can set the page uptodate
2129 		 * as well. But not if get_block() returned an error.
2130 		 */
2131 		if (!PageError(page))
2132 			SetPageUptodate(page);
2133 		unlock_page(page);
2134 		return 0;
2135 	}
2136 
2137 	/* Stage two: lock the buffers */
2138 	for (i = 0; i < nr; i++) {
2139 		bh = arr[i];
2140 		lock_buffer(bh);
2141 		mark_buffer_async_read(bh);
2142 	}
2143 
2144 	/*
2145 	 * Stage 3: start the IO.  Check for uptodateness
2146 	 * inside the buffer lock in case another process reading
2147 	 * the underlying blockdev brought it uptodate (the sct fix).
2148 	 */
2149 	for (i = 0; i < nr; i++) {
2150 		bh = arr[i];
2151 		if (buffer_uptodate(bh))
2152 			end_buffer_async_read(bh, 1);
2153 		else
2154 			submit_bh(READ, bh);
2155 	}
2156 	return 0;
2157 }
2158 EXPORT_SYMBOL(block_read_full_page);
2159 
2160 /* utility function for filesystems that need to do work on expanding
2161  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2162  * deal with the hole.
2163  */
2164 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2165 {
2166 	struct address_space *mapping = inode->i_mapping;
2167 	struct page *page;
2168 	void *fsdata;
2169 	int err;
2170 
2171 	err = inode_newsize_ok(inode, size);
2172 	if (err)
2173 		goto out;
2174 
2175 	err = pagecache_write_begin(NULL, mapping, size, 0,
2176 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2177 				&page, &fsdata);
2178 	if (err)
2179 		goto out;
2180 
2181 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2182 	BUG_ON(err > 0);
2183 
2184 out:
2185 	return err;
2186 }
2187 EXPORT_SYMBOL(generic_cont_expand_simple);
2188 
2189 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2190 			    loff_t pos, loff_t *bytes)
2191 {
2192 	struct inode *inode = mapping->host;
2193 	unsigned blocksize = 1 << inode->i_blkbits;
2194 	struct page *page;
2195 	void *fsdata;
2196 	pgoff_t index, curidx;
2197 	loff_t curpos;
2198 	unsigned zerofrom, offset, len;
2199 	int err = 0;
2200 
2201 	index = pos >> PAGE_CACHE_SHIFT;
2202 	offset = pos & ~PAGE_CACHE_MASK;
2203 
2204 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2205 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2206 		if (zerofrom & (blocksize-1)) {
2207 			*bytes |= (blocksize-1);
2208 			(*bytes)++;
2209 		}
2210 		len = PAGE_CACHE_SIZE - zerofrom;
2211 
2212 		err = pagecache_write_begin(file, mapping, curpos, len,
2213 						AOP_FLAG_UNINTERRUPTIBLE,
2214 						&page, &fsdata);
2215 		if (err)
2216 			goto out;
2217 		zero_user(page, zerofrom, len);
2218 		err = pagecache_write_end(file, mapping, curpos, len, len,
2219 						page, fsdata);
2220 		if (err < 0)
2221 			goto out;
2222 		BUG_ON(err != len);
2223 		err = 0;
2224 
2225 		balance_dirty_pages_ratelimited(mapping);
2226 	}
2227 
2228 	/* page covers the boundary, find the boundary offset */
2229 	if (index == curidx) {
2230 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2231 		/* if we will expand the thing last block will be filled */
2232 		if (offset <= zerofrom) {
2233 			goto out;
2234 		}
2235 		if (zerofrom & (blocksize-1)) {
2236 			*bytes |= (blocksize-1);
2237 			(*bytes)++;
2238 		}
2239 		len = offset - zerofrom;
2240 
2241 		err = pagecache_write_begin(file, mapping, curpos, len,
2242 						AOP_FLAG_UNINTERRUPTIBLE,
2243 						&page, &fsdata);
2244 		if (err)
2245 			goto out;
2246 		zero_user(page, zerofrom, len);
2247 		err = pagecache_write_end(file, mapping, curpos, len, len,
2248 						page, fsdata);
2249 		if (err < 0)
2250 			goto out;
2251 		BUG_ON(err != len);
2252 		err = 0;
2253 	}
2254 out:
2255 	return err;
2256 }
2257 
2258 /*
2259  * For moronic filesystems that do not allow holes in file.
2260  * We may have to extend the file.
2261  */
2262 int cont_write_begin(struct file *file, struct address_space *mapping,
2263 			loff_t pos, unsigned len, unsigned flags,
2264 			struct page **pagep, void **fsdata,
2265 			get_block_t *get_block, loff_t *bytes)
2266 {
2267 	struct inode *inode = mapping->host;
2268 	unsigned blocksize = 1 << inode->i_blkbits;
2269 	unsigned zerofrom;
2270 	int err;
2271 
2272 	err = cont_expand_zero(file, mapping, pos, bytes);
2273 	if (err)
2274 		return err;
2275 
2276 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2277 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2278 		*bytes |= (blocksize-1);
2279 		(*bytes)++;
2280 	}
2281 
2282 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2283 }
2284 EXPORT_SYMBOL(cont_write_begin);
2285 
2286 int block_commit_write(struct page *page, unsigned from, unsigned to)
2287 {
2288 	struct inode *inode = page->mapping->host;
2289 	__block_commit_write(inode,page,from,to);
2290 	return 0;
2291 }
2292 EXPORT_SYMBOL(block_commit_write);
2293 
2294 /*
2295  * block_page_mkwrite() is not allowed to change the file size as it gets
2296  * called from a page fault handler when a page is first dirtied. Hence we must
2297  * be careful to check for EOF conditions here. We set the page up correctly
2298  * for a written page which means we get ENOSPC checking when writing into
2299  * holes and correct delalloc and unwritten extent mapping on filesystems that
2300  * support these features.
2301  *
2302  * We are not allowed to take the i_mutex here so we have to play games to
2303  * protect against truncate races as the page could now be beyond EOF.  Because
2304  * truncate writes the inode size before removing pages, once we have the
2305  * page lock we can determine safely if the page is beyond EOF. If it is not
2306  * beyond EOF, then the page is guaranteed safe against truncation until we
2307  * unlock the page.
2308  *
2309  * Direct callers of this function should call vfs_check_frozen() so that page
2310  * fault does not busyloop until the fs is thawed.
2311  */
2312 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2313 			 get_block_t get_block)
2314 {
2315 	struct page *page = vmf->page;
2316 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2317 	unsigned long end;
2318 	loff_t size;
2319 	int ret;
2320 
2321 	lock_page(page);
2322 	size = i_size_read(inode);
2323 	if ((page->mapping != inode->i_mapping) ||
2324 	    (page_offset(page) > size)) {
2325 		/* We overload EFAULT to mean page got truncated */
2326 		ret = -EFAULT;
2327 		goto out_unlock;
2328 	}
2329 
2330 	/* page is wholly or partially inside EOF */
2331 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2332 		end = size & ~PAGE_CACHE_MASK;
2333 	else
2334 		end = PAGE_CACHE_SIZE;
2335 
2336 	ret = __block_write_begin(page, 0, end, get_block);
2337 	if (!ret)
2338 		ret = block_commit_write(page, 0, end);
2339 
2340 	if (unlikely(ret < 0))
2341 		goto out_unlock;
2342 	/*
2343 	 * Freezing in progress? We check after the page is marked dirty and
2344 	 * with page lock held so if the test here fails, we are sure freezing
2345 	 * code will wait during syncing until the page fault is done - at that
2346 	 * point page will be dirty and unlocked so freezing code will write it
2347 	 * and writeprotect it again.
2348 	 */
2349 	set_page_dirty(page);
2350 	if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2351 		ret = -EAGAIN;
2352 		goto out_unlock;
2353 	}
2354 	wait_on_page_writeback(page);
2355 	return 0;
2356 out_unlock:
2357 	unlock_page(page);
2358 	return ret;
2359 }
2360 EXPORT_SYMBOL(__block_page_mkwrite);
2361 
2362 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2363 		   get_block_t get_block)
2364 {
2365 	int ret;
2366 	struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2367 
2368 	/*
2369 	 * This check is racy but catches the common case. The check in
2370 	 * __block_page_mkwrite() is reliable.
2371 	 */
2372 	vfs_check_frozen(sb, SB_FREEZE_WRITE);
2373 	ret = __block_page_mkwrite(vma, vmf, get_block);
2374 	return block_page_mkwrite_return(ret);
2375 }
2376 EXPORT_SYMBOL(block_page_mkwrite);
2377 
2378 /*
2379  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2380  * immediately, while under the page lock.  So it needs a special end_io
2381  * handler which does not touch the bh after unlocking it.
2382  */
2383 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2384 {
2385 	__end_buffer_read_notouch(bh, uptodate);
2386 }
2387 
2388 /*
2389  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2390  * the page (converting it to circular linked list and taking care of page
2391  * dirty races).
2392  */
2393 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2394 {
2395 	struct buffer_head *bh;
2396 
2397 	BUG_ON(!PageLocked(page));
2398 
2399 	spin_lock(&page->mapping->private_lock);
2400 	bh = head;
2401 	do {
2402 		if (PageDirty(page))
2403 			set_buffer_dirty(bh);
2404 		if (!bh->b_this_page)
2405 			bh->b_this_page = head;
2406 		bh = bh->b_this_page;
2407 	} while (bh != head);
2408 	attach_page_buffers(page, head);
2409 	spin_unlock(&page->mapping->private_lock);
2410 }
2411 
2412 /*
2413  * On entry, the page is fully not uptodate.
2414  * On exit the page is fully uptodate in the areas outside (from,to)
2415  * The filesystem needs to handle block truncation upon failure.
2416  */
2417 int nobh_write_begin(struct address_space *mapping,
2418 			loff_t pos, unsigned len, unsigned flags,
2419 			struct page **pagep, void **fsdata,
2420 			get_block_t *get_block)
2421 {
2422 	struct inode *inode = mapping->host;
2423 	const unsigned blkbits = inode->i_blkbits;
2424 	const unsigned blocksize = 1 << blkbits;
2425 	struct buffer_head *head, *bh;
2426 	struct page *page;
2427 	pgoff_t index;
2428 	unsigned from, to;
2429 	unsigned block_in_page;
2430 	unsigned block_start, block_end;
2431 	sector_t block_in_file;
2432 	int nr_reads = 0;
2433 	int ret = 0;
2434 	int is_mapped_to_disk = 1;
2435 
2436 	index = pos >> PAGE_CACHE_SHIFT;
2437 	from = pos & (PAGE_CACHE_SIZE - 1);
2438 	to = from + len;
2439 
2440 	page = grab_cache_page_write_begin(mapping, index, flags);
2441 	if (!page)
2442 		return -ENOMEM;
2443 	*pagep = page;
2444 	*fsdata = NULL;
2445 
2446 	if (page_has_buffers(page)) {
2447 		ret = __block_write_begin(page, pos, len, get_block);
2448 		if (unlikely(ret))
2449 			goto out_release;
2450 		return ret;
2451 	}
2452 
2453 	if (PageMappedToDisk(page))
2454 		return 0;
2455 
2456 	/*
2457 	 * Allocate buffers so that we can keep track of state, and potentially
2458 	 * attach them to the page if an error occurs. In the common case of
2459 	 * no error, they will just be freed again without ever being attached
2460 	 * to the page (which is all OK, because we're under the page lock).
2461 	 *
2462 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2463 	 * than the circular one we're used to.
2464 	 */
2465 	head = alloc_page_buffers(page, blocksize, 0);
2466 	if (!head) {
2467 		ret = -ENOMEM;
2468 		goto out_release;
2469 	}
2470 
2471 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2472 
2473 	/*
2474 	 * We loop across all blocks in the page, whether or not they are
2475 	 * part of the affected region.  This is so we can discover if the
2476 	 * page is fully mapped-to-disk.
2477 	 */
2478 	for (block_start = 0, block_in_page = 0, bh = head;
2479 		  block_start < PAGE_CACHE_SIZE;
2480 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2481 		int create;
2482 
2483 		block_end = block_start + blocksize;
2484 		bh->b_state = 0;
2485 		create = 1;
2486 		if (block_start >= to)
2487 			create = 0;
2488 		ret = get_block(inode, block_in_file + block_in_page,
2489 					bh, create);
2490 		if (ret)
2491 			goto failed;
2492 		if (!buffer_mapped(bh))
2493 			is_mapped_to_disk = 0;
2494 		if (buffer_new(bh))
2495 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2496 		if (PageUptodate(page)) {
2497 			set_buffer_uptodate(bh);
2498 			continue;
2499 		}
2500 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2501 			zero_user_segments(page, block_start, from,
2502 							to, block_end);
2503 			continue;
2504 		}
2505 		if (buffer_uptodate(bh))
2506 			continue;	/* reiserfs does this */
2507 		if (block_start < from || block_end > to) {
2508 			lock_buffer(bh);
2509 			bh->b_end_io = end_buffer_read_nobh;
2510 			submit_bh(READ, bh);
2511 			nr_reads++;
2512 		}
2513 	}
2514 
2515 	if (nr_reads) {
2516 		/*
2517 		 * The page is locked, so these buffers are protected from
2518 		 * any VM or truncate activity.  Hence we don't need to care
2519 		 * for the buffer_head refcounts.
2520 		 */
2521 		for (bh = head; bh; bh = bh->b_this_page) {
2522 			wait_on_buffer(bh);
2523 			if (!buffer_uptodate(bh))
2524 				ret = -EIO;
2525 		}
2526 		if (ret)
2527 			goto failed;
2528 	}
2529 
2530 	if (is_mapped_to_disk)
2531 		SetPageMappedToDisk(page);
2532 
2533 	*fsdata = head; /* to be released by nobh_write_end */
2534 
2535 	return 0;
2536 
2537 failed:
2538 	BUG_ON(!ret);
2539 	/*
2540 	 * Error recovery is a bit difficult. We need to zero out blocks that
2541 	 * were newly allocated, and dirty them to ensure they get written out.
2542 	 * Buffers need to be attached to the page at this point, otherwise
2543 	 * the handling of potential IO errors during writeout would be hard
2544 	 * (could try doing synchronous writeout, but what if that fails too?)
2545 	 */
2546 	attach_nobh_buffers(page, head);
2547 	page_zero_new_buffers(page, from, to);
2548 
2549 out_release:
2550 	unlock_page(page);
2551 	page_cache_release(page);
2552 	*pagep = NULL;
2553 
2554 	return ret;
2555 }
2556 EXPORT_SYMBOL(nobh_write_begin);
2557 
2558 int nobh_write_end(struct file *file, struct address_space *mapping,
2559 			loff_t pos, unsigned len, unsigned copied,
2560 			struct page *page, void *fsdata)
2561 {
2562 	struct inode *inode = page->mapping->host;
2563 	struct buffer_head *head = fsdata;
2564 	struct buffer_head *bh;
2565 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2566 
2567 	if (unlikely(copied < len) && head)
2568 		attach_nobh_buffers(page, head);
2569 	if (page_has_buffers(page))
2570 		return generic_write_end(file, mapping, pos, len,
2571 					copied, page, fsdata);
2572 
2573 	SetPageUptodate(page);
2574 	set_page_dirty(page);
2575 	if (pos+copied > inode->i_size) {
2576 		i_size_write(inode, pos+copied);
2577 		mark_inode_dirty(inode);
2578 	}
2579 
2580 	unlock_page(page);
2581 	page_cache_release(page);
2582 
2583 	while (head) {
2584 		bh = head;
2585 		head = head->b_this_page;
2586 		free_buffer_head(bh);
2587 	}
2588 
2589 	return copied;
2590 }
2591 EXPORT_SYMBOL(nobh_write_end);
2592 
2593 /*
2594  * nobh_writepage() - based on block_full_write_page() except
2595  * that it tries to operate without attaching bufferheads to
2596  * the page.
2597  */
2598 int nobh_writepage(struct page *page, get_block_t *get_block,
2599 			struct writeback_control *wbc)
2600 {
2601 	struct inode * const inode = page->mapping->host;
2602 	loff_t i_size = i_size_read(inode);
2603 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2604 	unsigned offset;
2605 	int ret;
2606 
2607 	/* Is the page fully inside i_size? */
2608 	if (page->index < end_index)
2609 		goto out;
2610 
2611 	/* Is the page fully outside i_size? (truncate in progress) */
2612 	offset = i_size & (PAGE_CACHE_SIZE-1);
2613 	if (page->index >= end_index+1 || !offset) {
2614 		/*
2615 		 * The page may have dirty, unmapped buffers.  For example,
2616 		 * they may have been added in ext3_writepage().  Make them
2617 		 * freeable here, so the page does not leak.
2618 		 */
2619 #if 0
2620 		/* Not really sure about this  - do we need this ? */
2621 		if (page->mapping->a_ops->invalidatepage)
2622 			page->mapping->a_ops->invalidatepage(page, offset);
2623 #endif
2624 		unlock_page(page);
2625 		return 0; /* don't care */
2626 	}
2627 
2628 	/*
2629 	 * The page straddles i_size.  It must be zeroed out on each and every
2630 	 * writepage invocation because it may be mmapped.  "A file is mapped
2631 	 * in multiples of the page size.  For a file that is not a multiple of
2632 	 * the  page size, the remaining memory is zeroed when mapped, and
2633 	 * writes to that region are not written out to the file."
2634 	 */
2635 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2636 out:
2637 	ret = mpage_writepage(page, get_block, wbc);
2638 	if (ret == -EAGAIN)
2639 		ret = __block_write_full_page(inode, page, get_block, wbc,
2640 					      end_buffer_async_write);
2641 	return ret;
2642 }
2643 EXPORT_SYMBOL(nobh_writepage);
2644 
2645 int nobh_truncate_page(struct address_space *mapping,
2646 			loff_t from, get_block_t *get_block)
2647 {
2648 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2649 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2650 	unsigned blocksize;
2651 	sector_t iblock;
2652 	unsigned length, pos;
2653 	struct inode *inode = mapping->host;
2654 	struct page *page;
2655 	struct buffer_head map_bh;
2656 	int err;
2657 
2658 	blocksize = 1 << inode->i_blkbits;
2659 	length = offset & (blocksize - 1);
2660 
2661 	/* Block boundary? Nothing to do */
2662 	if (!length)
2663 		return 0;
2664 
2665 	length = blocksize - length;
2666 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2667 
2668 	page = grab_cache_page(mapping, index);
2669 	err = -ENOMEM;
2670 	if (!page)
2671 		goto out;
2672 
2673 	if (page_has_buffers(page)) {
2674 has_buffers:
2675 		unlock_page(page);
2676 		page_cache_release(page);
2677 		return block_truncate_page(mapping, from, get_block);
2678 	}
2679 
2680 	/* Find the buffer that contains "offset" */
2681 	pos = blocksize;
2682 	while (offset >= pos) {
2683 		iblock++;
2684 		pos += blocksize;
2685 	}
2686 
2687 	map_bh.b_size = blocksize;
2688 	map_bh.b_state = 0;
2689 	err = get_block(inode, iblock, &map_bh, 0);
2690 	if (err)
2691 		goto unlock;
2692 	/* unmapped? It's a hole - nothing to do */
2693 	if (!buffer_mapped(&map_bh))
2694 		goto unlock;
2695 
2696 	/* Ok, it's mapped. Make sure it's up-to-date */
2697 	if (!PageUptodate(page)) {
2698 		err = mapping->a_ops->readpage(NULL, page);
2699 		if (err) {
2700 			page_cache_release(page);
2701 			goto out;
2702 		}
2703 		lock_page(page);
2704 		if (!PageUptodate(page)) {
2705 			err = -EIO;
2706 			goto unlock;
2707 		}
2708 		if (page_has_buffers(page))
2709 			goto has_buffers;
2710 	}
2711 	zero_user(page, offset, length);
2712 	set_page_dirty(page);
2713 	err = 0;
2714 
2715 unlock:
2716 	unlock_page(page);
2717 	page_cache_release(page);
2718 out:
2719 	return err;
2720 }
2721 EXPORT_SYMBOL(nobh_truncate_page);
2722 
2723 int block_truncate_page(struct address_space *mapping,
2724 			loff_t from, get_block_t *get_block)
2725 {
2726 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2727 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2728 	unsigned blocksize;
2729 	sector_t iblock;
2730 	unsigned length, pos;
2731 	struct inode *inode = mapping->host;
2732 	struct page *page;
2733 	struct buffer_head *bh;
2734 	int err;
2735 
2736 	blocksize = 1 << inode->i_blkbits;
2737 	length = offset & (blocksize - 1);
2738 
2739 	/* Block boundary? Nothing to do */
2740 	if (!length)
2741 		return 0;
2742 
2743 	length = blocksize - length;
2744 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2745 
2746 	page = grab_cache_page(mapping, index);
2747 	err = -ENOMEM;
2748 	if (!page)
2749 		goto out;
2750 
2751 	if (!page_has_buffers(page))
2752 		create_empty_buffers(page, blocksize, 0);
2753 
2754 	/* Find the buffer that contains "offset" */
2755 	bh = page_buffers(page);
2756 	pos = blocksize;
2757 	while (offset >= pos) {
2758 		bh = bh->b_this_page;
2759 		iblock++;
2760 		pos += blocksize;
2761 	}
2762 
2763 	err = 0;
2764 	if (!buffer_mapped(bh)) {
2765 		WARN_ON(bh->b_size != blocksize);
2766 		err = get_block(inode, iblock, bh, 0);
2767 		if (err)
2768 			goto unlock;
2769 		/* unmapped? It's a hole - nothing to do */
2770 		if (!buffer_mapped(bh))
2771 			goto unlock;
2772 	}
2773 
2774 	/* Ok, it's mapped. Make sure it's up-to-date */
2775 	if (PageUptodate(page))
2776 		set_buffer_uptodate(bh);
2777 
2778 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2779 		err = -EIO;
2780 		ll_rw_block(READ, 1, &bh);
2781 		wait_on_buffer(bh);
2782 		/* Uhhuh. Read error. Complain and punt. */
2783 		if (!buffer_uptodate(bh))
2784 			goto unlock;
2785 	}
2786 
2787 	zero_user(page, offset, length);
2788 	mark_buffer_dirty(bh);
2789 	err = 0;
2790 
2791 unlock:
2792 	unlock_page(page);
2793 	page_cache_release(page);
2794 out:
2795 	return err;
2796 }
2797 EXPORT_SYMBOL(block_truncate_page);
2798 
2799 /*
2800  * The generic ->writepage function for buffer-backed address_spaces
2801  * this form passes in the end_io handler used to finish the IO.
2802  */
2803 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2804 			struct writeback_control *wbc, bh_end_io_t *handler)
2805 {
2806 	struct inode * const inode = page->mapping->host;
2807 	loff_t i_size = i_size_read(inode);
2808 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2809 	unsigned offset;
2810 
2811 	/* Is the page fully inside i_size? */
2812 	if (page->index < end_index)
2813 		return __block_write_full_page(inode, page, get_block, wbc,
2814 					       handler);
2815 
2816 	/* Is the page fully outside i_size? (truncate in progress) */
2817 	offset = i_size & (PAGE_CACHE_SIZE-1);
2818 	if (page->index >= end_index+1 || !offset) {
2819 		/*
2820 		 * The page may have dirty, unmapped buffers.  For example,
2821 		 * they may have been added in ext3_writepage().  Make them
2822 		 * freeable here, so the page does not leak.
2823 		 */
2824 		do_invalidatepage(page, 0);
2825 		unlock_page(page);
2826 		return 0; /* don't care */
2827 	}
2828 
2829 	/*
2830 	 * The page straddles i_size.  It must be zeroed out on each and every
2831 	 * writepage invocation because it may be mmapped.  "A file is mapped
2832 	 * in multiples of the page size.  For a file that is not a multiple of
2833 	 * the  page size, the remaining memory is zeroed when mapped, and
2834 	 * writes to that region are not written out to the file."
2835 	 */
2836 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2837 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2838 }
2839 EXPORT_SYMBOL(block_write_full_page_endio);
2840 
2841 /*
2842  * The generic ->writepage function for buffer-backed address_spaces
2843  */
2844 int block_write_full_page(struct page *page, get_block_t *get_block,
2845 			struct writeback_control *wbc)
2846 {
2847 	return block_write_full_page_endio(page, get_block, wbc,
2848 					   end_buffer_async_write);
2849 }
2850 EXPORT_SYMBOL(block_write_full_page);
2851 
2852 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2853 			    get_block_t *get_block)
2854 {
2855 	struct buffer_head tmp;
2856 	struct inode *inode = mapping->host;
2857 	tmp.b_state = 0;
2858 	tmp.b_blocknr = 0;
2859 	tmp.b_size = 1 << inode->i_blkbits;
2860 	get_block(inode, block, &tmp, 0);
2861 	return tmp.b_blocknr;
2862 }
2863 EXPORT_SYMBOL(generic_block_bmap);
2864 
2865 static void end_bio_bh_io_sync(struct bio *bio, int err)
2866 {
2867 	struct buffer_head *bh = bio->bi_private;
2868 
2869 	if (err == -EOPNOTSUPP) {
2870 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2871 	}
2872 
2873 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2874 		set_bit(BH_Quiet, &bh->b_state);
2875 
2876 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2877 	bio_put(bio);
2878 }
2879 
2880 int submit_bh(int rw, struct buffer_head * bh)
2881 {
2882 	struct bio *bio;
2883 	int ret = 0;
2884 
2885 	BUG_ON(!buffer_locked(bh));
2886 	BUG_ON(!buffer_mapped(bh));
2887 	BUG_ON(!bh->b_end_io);
2888 	BUG_ON(buffer_delay(bh));
2889 	BUG_ON(buffer_unwritten(bh));
2890 
2891 	/*
2892 	 * Only clear out a write error when rewriting
2893 	 */
2894 	if (test_set_buffer_req(bh) && (rw & WRITE))
2895 		clear_buffer_write_io_error(bh);
2896 
2897 	/*
2898 	 * from here on down, it's all bio -- do the initial mapping,
2899 	 * submit_bio -> generic_make_request may further map this bio around
2900 	 */
2901 	bio = bio_alloc(GFP_NOIO, 1);
2902 
2903 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2904 	bio->bi_bdev = bh->b_bdev;
2905 	bio->bi_io_vec[0].bv_page = bh->b_page;
2906 	bio->bi_io_vec[0].bv_len = bh->b_size;
2907 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2908 
2909 	bio->bi_vcnt = 1;
2910 	bio->bi_idx = 0;
2911 	bio->bi_size = bh->b_size;
2912 
2913 	bio->bi_end_io = end_bio_bh_io_sync;
2914 	bio->bi_private = bh;
2915 
2916 	bio_get(bio);
2917 	submit_bio(rw, bio);
2918 
2919 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2920 		ret = -EOPNOTSUPP;
2921 
2922 	bio_put(bio);
2923 	return ret;
2924 }
2925 EXPORT_SYMBOL(submit_bh);
2926 
2927 /**
2928  * ll_rw_block: low-level access to block devices (DEPRECATED)
2929  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2930  * @nr: number of &struct buffer_heads in the array
2931  * @bhs: array of pointers to &struct buffer_head
2932  *
2933  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2934  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2935  * %READA option is described in the documentation for generic_make_request()
2936  * which ll_rw_block() calls.
2937  *
2938  * This function drops any buffer that it cannot get a lock on (with the
2939  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2940  * request, and any buffer that appears to be up-to-date when doing read
2941  * request.  Further it marks as clean buffers that are processed for
2942  * writing (the buffer cache won't assume that they are actually clean
2943  * until the buffer gets unlocked).
2944  *
2945  * ll_rw_block sets b_end_io to simple completion handler that marks
2946  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2947  * any waiters.
2948  *
2949  * All of the buffers must be for the same device, and must also be a
2950  * multiple of the current approved size for the device.
2951  */
2952 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2953 {
2954 	int i;
2955 
2956 	for (i = 0; i < nr; i++) {
2957 		struct buffer_head *bh = bhs[i];
2958 
2959 		if (!trylock_buffer(bh))
2960 			continue;
2961 		if (rw == WRITE) {
2962 			if (test_clear_buffer_dirty(bh)) {
2963 				bh->b_end_io = end_buffer_write_sync;
2964 				get_bh(bh);
2965 				submit_bh(WRITE, bh);
2966 				continue;
2967 			}
2968 		} else {
2969 			if (!buffer_uptodate(bh)) {
2970 				bh->b_end_io = end_buffer_read_sync;
2971 				get_bh(bh);
2972 				submit_bh(rw, bh);
2973 				continue;
2974 			}
2975 		}
2976 		unlock_buffer(bh);
2977 	}
2978 }
2979 EXPORT_SYMBOL(ll_rw_block);
2980 
2981 void write_dirty_buffer(struct buffer_head *bh, int rw)
2982 {
2983 	lock_buffer(bh);
2984 	if (!test_clear_buffer_dirty(bh)) {
2985 		unlock_buffer(bh);
2986 		return;
2987 	}
2988 	bh->b_end_io = end_buffer_write_sync;
2989 	get_bh(bh);
2990 	submit_bh(rw, bh);
2991 }
2992 EXPORT_SYMBOL(write_dirty_buffer);
2993 
2994 /*
2995  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2996  * and then start new I/O and then wait upon it.  The caller must have a ref on
2997  * the buffer_head.
2998  */
2999 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3000 {
3001 	int ret = 0;
3002 
3003 	WARN_ON(atomic_read(&bh->b_count) < 1);
3004 	lock_buffer(bh);
3005 	if (test_clear_buffer_dirty(bh)) {
3006 		get_bh(bh);
3007 		bh->b_end_io = end_buffer_write_sync;
3008 		ret = submit_bh(rw, bh);
3009 		wait_on_buffer(bh);
3010 		if (!ret && !buffer_uptodate(bh))
3011 			ret = -EIO;
3012 	} else {
3013 		unlock_buffer(bh);
3014 	}
3015 	return ret;
3016 }
3017 EXPORT_SYMBOL(__sync_dirty_buffer);
3018 
3019 int sync_dirty_buffer(struct buffer_head *bh)
3020 {
3021 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3022 }
3023 EXPORT_SYMBOL(sync_dirty_buffer);
3024 
3025 /*
3026  * try_to_free_buffers() checks if all the buffers on this particular page
3027  * are unused, and releases them if so.
3028  *
3029  * Exclusion against try_to_free_buffers may be obtained by either
3030  * locking the page or by holding its mapping's private_lock.
3031  *
3032  * If the page is dirty but all the buffers are clean then we need to
3033  * be sure to mark the page clean as well.  This is because the page
3034  * may be against a block device, and a later reattachment of buffers
3035  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3036  * filesystem data on the same device.
3037  *
3038  * The same applies to regular filesystem pages: if all the buffers are
3039  * clean then we set the page clean and proceed.  To do that, we require
3040  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3041  * private_lock.
3042  *
3043  * try_to_free_buffers() is non-blocking.
3044  */
3045 static inline int buffer_busy(struct buffer_head *bh)
3046 {
3047 	return atomic_read(&bh->b_count) |
3048 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3049 }
3050 
3051 static int
3052 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3053 {
3054 	struct buffer_head *head = page_buffers(page);
3055 	struct buffer_head *bh;
3056 
3057 	bh = head;
3058 	do {
3059 		if (buffer_write_io_error(bh) && page->mapping)
3060 			set_bit(AS_EIO, &page->mapping->flags);
3061 		if (buffer_busy(bh))
3062 			goto failed;
3063 		bh = bh->b_this_page;
3064 	} while (bh != head);
3065 
3066 	do {
3067 		struct buffer_head *next = bh->b_this_page;
3068 
3069 		if (bh->b_assoc_map)
3070 			__remove_assoc_queue(bh);
3071 		bh = next;
3072 	} while (bh != head);
3073 	*buffers_to_free = head;
3074 	__clear_page_buffers(page);
3075 	return 1;
3076 failed:
3077 	return 0;
3078 }
3079 
3080 int try_to_free_buffers(struct page *page)
3081 {
3082 	struct address_space * const mapping = page->mapping;
3083 	struct buffer_head *buffers_to_free = NULL;
3084 	int ret = 0;
3085 
3086 	BUG_ON(!PageLocked(page));
3087 	if (PageWriteback(page))
3088 		return 0;
3089 
3090 	if (mapping == NULL) {		/* can this still happen? */
3091 		ret = drop_buffers(page, &buffers_to_free);
3092 		goto out;
3093 	}
3094 
3095 	spin_lock(&mapping->private_lock);
3096 	ret = drop_buffers(page, &buffers_to_free);
3097 
3098 	/*
3099 	 * If the filesystem writes its buffers by hand (eg ext3)
3100 	 * then we can have clean buffers against a dirty page.  We
3101 	 * clean the page here; otherwise the VM will never notice
3102 	 * that the filesystem did any IO at all.
3103 	 *
3104 	 * Also, during truncate, discard_buffer will have marked all
3105 	 * the page's buffers clean.  We discover that here and clean
3106 	 * the page also.
3107 	 *
3108 	 * private_lock must be held over this entire operation in order
3109 	 * to synchronise against __set_page_dirty_buffers and prevent the
3110 	 * dirty bit from being lost.
3111 	 */
3112 	if (ret)
3113 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3114 	spin_unlock(&mapping->private_lock);
3115 out:
3116 	if (buffers_to_free) {
3117 		struct buffer_head *bh = buffers_to_free;
3118 
3119 		do {
3120 			struct buffer_head *next = bh->b_this_page;
3121 			free_buffer_head(bh);
3122 			bh = next;
3123 		} while (bh != buffers_to_free);
3124 	}
3125 	return ret;
3126 }
3127 EXPORT_SYMBOL(try_to_free_buffers);
3128 
3129 /*
3130  * There are no bdflush tunables left.  But distributions are
3131  * still running obsolete flush daemons, so we terminate them here.
3132  *
3133  * Use of bdflush() is deprecated and will be removed in a future kernel.
3134  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3135  */
3136 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3137 {
3138 	static int msg_count;
3139 
3140 	if (!capable(CAP_SYS_ADMIN))
3141 		return -EPERM;
3142 
3143 	if (msg_count < 5) {
3144 		msg_count++;
3145 		printk(KERN_INFO
3146 			"warning: process `%s' used the obsolete bdflush"
3147 			" system call\n", current->comm);
3148 		printk(KERN_INFO "Fix your initscripts?\n");
3149 	}
3150 
3151 	if (func == 1)
3152 		do_exit(0);
3153 	return 0;
3154 }
3155 
3156 /*
3157  * Buffer-head allocation
3158  */
3159 static struct kmem_cache *bh_cachep __read_mostly;
3160 
3161 /*
3162  * Once the number of bh's in the machine exceeds this level, we start
3163  * stripping them in writeback.
3164  */
3165 static int max_buffer_heads;
3166 
3167 int buffer_heads_over_limit;
3168 
3169 struct bh_accounting {
3170 	int nr;			/* Number of live bh's */
3171 	int ratelimit;		/* Limit cacheline bouncing */
3172 };
3173 
3174 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3175 
3176 static void recalc_bh_state(void)
3177 {
3178 	int i;
3179 	int tot = 0;
3180 
3181 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3182 		return;
3183 	__this_cpu_write(bh_accounting.ratelimit, 0);
3184 	for_each_online_cpu(i)
3185 		tot += per_cpu(bh_accounting, i).nr;
3186 	buffer_heads_over_limit = (tot > max_buffer_heads);
3187 }
3188 
3189 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3190 {
3191 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3192 	if (ret) {
3193 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3194 		preempt_disable();
3195 		__this_cpu_inc(bh_accounting.nr);
3196 		recalc_bh_state();
3197 		preempt_enable();
3198 	}
3199 	return ret;
3200 }
3201 EXPORT_SYMBOL(alloc_buffer_head);
3202 
3203 void free_buffer_head(struct buffer_head *bh)
3204 {
3205 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3206 	kmem_cache_free(bh_cachep, bh);
3207 	preempt_disable();
3208 	__this_cpu_dec(bh_accounting.nr);
3209 	recalc_bh_state();
3210 	preempt_enable();
3211 }
3212 EXPORT_SYMBOL(free_buffer_head);
3213 
3214 static void buffer_exit_cpu(int cpu)
3215 {
3216 	int i;
3217 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3218 
3219 	for (i = 0; i < BH_LRU_SIZE; i++) {
3220 		brelse(b->bhs[i]);
3221 		b->bhs[i] = NULL;
3222 	}
3223 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3224 	per_cpu(bh_accounting, cpu).nr = 0;
3225 }
3226 
3227 static int buffer_cpu_notify(struct notifier_block *self,
3228 			      unsigned long action, void *hcpu)
3229 {
3230 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3231 		buffer_exit_cpu((unsigned long)hcpu);
3232 	return NOTIFY_OK;
3233 }
3234 
3235 /**
3236  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3237  * @bh: struct buffer_head
3238  *
3239  * Return true if the buffer is up-to-date and false,
3240  * with the buffer locked, if not.
3241  */
3242 int bh_uptodate_or_lock(struct buffer_head *bh)
3243 {
3244 	if (!buffer_uptodate(bh)) {
3245 		lock_buffer(bh);
3246 		if (!buffer_uptodate(bh))
3247 			return 0;
3248 		unlock_buffer(bh);
3249 	}
3250 	return 1;
3251 }
3252 EXPORT_SYMBOL(bh_uptodate_or_lock);
3253 
3254 /**
3255  * bh_submit_read - Submit a locked buffer for reading
3256  * @bh: struct buffer_head
3257  *
3258  * Returns zero on success and -EIO on error.
3259  */
3260 int bh_submit_read(struct buffer_head *bh)
3261 {
3262 	BUG_ON(!buffer_locked(bh));
3263 
3264 	if (buffer_uptodate(bh)) {
3265 		unlock_buffer(bh);
3266 		return 0;
3267 	}
3268 
3269 	get_bh(bh);
3270 	bh->b_end_io = end_buffer_read_sync;
3271 	submit_bh(READ, bh);
3272 	wait_on_buffer(bh);
3273 	if (buffer_uptodate(bh))
3274 		return 0;
3275 	return -EIO;
3276 }
3277 EXPORT_SYMBOL(bh_submit_read);
3278 
3279 void __init buffer_init(void)
3280 {
3281 	int nrpages;
3282 
3283 	bh_cachep = kmem_cache_create("buffer_head",
3284 			sizeof(struct buffer_head), 0,
3285 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3286 				SLAB_MEM_SPREAD),
3287 				NULL);
3288 
3289 	/*
3290 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3291 	 */
3292 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3293 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3294 	hotcpu_notifier(buffer_cpu_notify, 0);
3295 }
3296