1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/backing-dev.h> 34 #include <linux/writeback.h> 35 #include <linux/hash.h> 36 #include <linux/suspend.h> 37 #include <linux/buffer_head.h> 38 #include <linux/task_io_accounting_ops.h> 39 #include <linux/bio.h> 40 #include <linux/notifier.h> 41 #include <linux/cpu.h> 42 #include <linux/bitops.h> 43 #include <linux/mpage.h> 44 #include <linux/bit_spinlock.h> 45 #include <trace/events/block.h> 46 47 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 48 static int submit_bh_wbc(int rw, struct buffer_head *bh, 49 unsigned long bio_flags, 50 struct writeback_control *wbc); 51 52 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 53 54 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 55 { 56 bh->b_end_io = handler; 57 bh->b_private = private; 58 } 59 EXPORT_SYMBOL(init_buffer); 60 61 inline void touch_buffer(struct buffer_head *bh) 62 { 63 trace_block_touch_buffer(bh); 64 mark_page_accessed(bh->b_page); 65 } 66 EXPORT_SYMBOL(touch_buffer); 67 68 void __lock_buffer(struct buffer_head *bh) 69 { 70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 71 } 72 EXPORT_SYMBOL(__lock_buffer); 73 74 void unlock_buffer(struct buffer_head *bh) 75 { 76 clear_bit_unlock(BH_Lock, &bh->b_state); 77 smp_mb__after_atomic(); 78 wake_up_bit(&bh->b_state, BH_Lock); 79 } 80 EXPORT_SYMBOL(unlock_buffer); 81 82 /* 83 * Returns if the page has dirty or writeback buffers. If all the buffers 84 * are unlocked and clean then the PageDirty information is stale. If 85 * any of the pages are locked, it is assumed they are locked for IO. 86 */ 87 void buffer_check_dirty_writeback(struct page *page, 88 bool *dirty, bool *writeback) 89 { 90 struct buffer_head *head, *bh; 91 *dirty = false; 92 *writeback = false; 93 94 BUG_ON(!PageLocked(page)); 95 96 if (!page_has_buffers(page)) 97 return; 98 99 if (PageWriteback(page)) 100 *writeback = true; 101 102 head = page_buffers(page); 103 bh = head; 104 do { 105 if (buffer_locked(bh)) 106 *writeback = true; 107 108 if (buffer_dirty(bh)) 109 *dirty = true; 110 111 bh = bh->b_this_page; 112 } while (bh != head); 113 } 114 EXPORT_SYMBOL(buffer_check_dirty_writeback); 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void 128 __clear_page_buffers(struct page *page) 129 { 130 ClearPagePrivate(page); 131 set_page_private(page, 0); 132 page_cache_release(page); 133 } 134 135 static void buffer_io_error(struct buffer_head *bh, char *msg) 136 { 137 char b[BDEVNAME_SIZE]; 138 139 if (!test_bit(BH_Quiet, &bh->b_state)) 140 printk_ratelimited(KERN_ERR 141 "Buffer I/O error on dev %s, logical block %llu%s\n", 142 bdevname(bh->b_bdev, b), 143 (unsigned long long)bh->b_blocknr, msg); 144 } 145 146 /* 147 * End-of-IO handler helper function which does not touch the bh after 148 * unlocking it. 149 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 150 * a race there is benign: unlock_buffer() only use the bh's address for 151 * hashing after unlocking the buffer, so it doesn't actually touch the bh 152 * itself. 153 */ 154 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 155 { 156 if (uptodate) { 157 set_buffer_uptodate(bh); 158 } else { 159 /* This happens, due to failed READA attempts. */ 160 clear_buffer_uptodate(bh); 161 } 162 unlock_buffer(bh); 163 } 164 165 /* 166 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 167 * unlock the buffer. This is what ll_rw_block uses too. 168 */ 169 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 170 { 171 __end_buffer_read_notouch(bh, uptodate); 172 put_bh(bh); 173 } 174 EXPORT_SYMBOL(end_buffer_read_sync); 175 176 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 177 { 178 if (uptodate) { 179 set_buffer_uptodate(bh); 180 } else { 181 buffer_io_error(bh, ", lost sync page write"); 182 set_buffer_write_io_error(bh); 183 clear_buffer_uptodate(bh); 184 } 185 unlock_buffer(bh); 186 put_bh(bh); 187 } 188 EXPORT_SYMBOL(end_buffer_write_sync); 189 190 /* 191 * Various filesystems appear to want __find_get_block to be non-blocking. 192 * But it's the page lock which protects the buffers. To get around this, 193 * we get exclusion from try_to_free_buffers with the blockdev mapping's 194 * private_lock. 195 * 196 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 197 * may be quite high. This code could TryLock the page, and if that 198 * succeeds, there is no need to take private_lock. (But if 199 * private_lock is contended then so is mapping->tree_lock). 200 */ 201 static struct buffer_head * 202 __find_get_block_slow(struct block_device *bdev, sector_t block) 203 { 204 struct inode *bd_inode = bdev->bd_inode; 205 struct address_space *bd_mapping = bd_inode->i_mapping; 206 struct buffer_head *ret = NULL; 207 pgoff_t index; 208 struct buffer_head *bh; 209 struct buffer_head *head; 210 struct page *page; 211 int all_mapped = 1; 212 213 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 214 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 215 if (!page) 216 goto out; 217 218 spin_lock(&bd_mapping->private_lock); 219 if (!page_has_buffers(page)) 220 goto out_unlock; 221 head = page_buffers(page); 222 bh = head; 223 do { 224 if (!buffer_mapped(bh)) 225 all_mapped = 0; 226 else if (bh->b_blocknr == block) { 227 ret = bh; 228 get_bh(bh); 229 goto out_unlock; 230 } 231 bh = bh->b_this_page; 232 } while (bh != head); 233 234 /* we might be here because some of the buffers on this page are 235 * not mapped. This is due to various races between 236 * file io on the block device and getblk. It gets dealt with 237 * elsewhere, don't buffer_error if we had some unmapped buffers 238 */ 239 if (all_mapped) { 240 char b[BDEVNAME_SIZE]; 241 242 printk("__find_get_block_slow() failed. " 243 "block=%llu, b_blocknr=%llu\n", 244 (unsigned long long)block, 245 (unsigned long long)bh->b_blocknr); 246 printk("b_state=0x%08lx, b_size=%zu\n", 247 bh->b_state, bh->b_size); 248 printk("device %s blocksize: %d\n", bdevname(bdev, b), 249 1 << bd_inode->i_blkbits); 250 } 251 out_unlock: 252 spin_unlock(&bd_mapping->private_lock); 253 page_cache_release(page); 254 out: 255 return ret; 256 } 257 258 /* 259 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 260 */ 261 static void free_more_memory(void) 262 { 263 struct zone *zone; 264 int nid; 265 266 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 267 yield(); 268 269 for_each_online_node(nid) { 270 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 271 gfp_zone(GFP_NOFS), NULL, 272 &zone); 273 if (zone) 274 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 275 GFP_NOFS, NULL); 276 } 277 } 278 279 /* 280 * I/O completion handler for block_read_full_page() - pages 281 * which come unlocked at the end of I/O. 282 */ 283 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 284 { 285 unsigned long flags; 286 struct buffer_head *first; 287 struct buffer_head *tmp; 288 struct page *page; 289 int page_uptodate = 1; 290 291 BUG_ON(!buffer_async_read(bh)); 292 293 page = bh->b_page; 294 if (uptodate) { 295 set_buffer_uptodate(bh); 296 } else { 297 clear_buffer_uptodate(bh); 298 buffer_io_error(bh, ", async page read"); 299 SetPageError(page); 300 } 301 302 /* 303 * Be _very_ careful from here on. Bad things can happen if 304 * two buffer heads end IO at almost the same time and both 305 * decide that the page is now completely done. 306 */ 307 first = page_buffers(page); 308 local_irq_save(flags); 309 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 310 clear_buffer_async_read(bh); 311 unlock_buffer(bh); 312 tmp = bh; 313 do { 314 if (!buffer_uptodate(tmp)) 315 page_uptodate = 0; 316 if (buffer_async_read(tmp)) { 317 BUG_ON(!buffer_locked(tmp)); 318 goto still_busy; 319 } 320 tmp = tmp->b_this_page; 321 } while (tmp != bh); 322 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 323 local_irq_restore(flags); 324 325 /* 326 * If none of the buffers had errors and they are all 327 * uptodate then we can set the page uptodate. 328 */ 329 if (page_uptodate && !PageError(page)) 330 SetPageUptodate(page); 331 unlock_page(page); 332 return; 333 334 still_busy: 335 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 336 local_irq_restore(flags); 337 return; 338 } 339 340 /* 341 * Completion handler for block_write_full_page() - pages which are unlocked 342 * during I/O, and which have PageWriteback cleared upon I/O completion. 343 */ 344 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 345 { 346 unsigned long flags; 347 struct buffer_head *first; 348 struct buffer_head *tmp; 349 struct page *page; 350 351 BUG_ON(!buffer_async_write(bh)); 352 353 page = bh->b_page; 354 if (uptodate) { 355 set_buffer_uptodate(bh); 356 } else { 357 buffer_io_error(bh, ", lost async page write"); 358 set_bit(AS_EIO, &page->mapping->flags); 359 set_buffer_write_io_error(bh); 360 clear_buffer_uptodate(bh); 361 SetPageError(page); 362 } 363 364 first = page_buffers(page); 365 local_irq_save(flags); 366 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 367 368 clear_buffer_async_write(bh); 369 unlock_buffer(bh); 370 tmp = bh->b_this_page; 371 while (tmp != bh) { 372 if (buffer_async_write(tmp)) { 373 BUG_ON(!buffer_locked(tmp)); 374 goto still_busy; 375 } 376 tmp = tmp->b_this_page; 377 } 378 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 379 local_irq_restore(flags); 380 end_page_writeback(page); 381 return; 382 383 still_busy: 384 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 385 local_irq_restore(flags); 386 return; 387 } 388 EXPORT_SYMBOL(end_buffer_async_write); 389 390 /* 391 * If a page's buffers are under async readin (end_buffer_async_read 392 * completion) then there is a possibility that another thread of 393 * control could lock one of the buffers after it has completed 394 * but while some of the other buffers have not completed. This 395 * locked buffer would confuse end_buffer_async_read() into not unlocking 396 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 397 * that this buffer is not under async I/O. 398 * 399 * The page comes unlocked when it has no locked buffer_async buffers 400 * left. 401 * 402 * PageLocked prevents anyone starting new async I/O reads any of 403 * the buffers. 404 * 405 * PageWriteback is used to prevent simultaneous writeout of the same 406 * page. 407 * 408 * PageLocked prevents anyone from starting writeback of a page which is 409 * under read I/O (PageWriteback is only ever set against a locked page). 410 */ 411 static void mark_buffer_async_read(struct buffer_head *bh) 412 { 413 bh->b_end_io = end_buffer_async_read; 414 set_buffer_async_read(bh); 415 } 416 417 static void mark_buffer_async_write_endio(struct buffer_head *bh, 418 bh_end_io_t *handler) 419 { 420 bh->b_end_io = handler; 421 set_buffer_async_write(bh); 422 } 423 424 void mark_buffer_async_write(struct buffer_head *bh) 425 { 426 mark_buffer_async_write_endio(bh, end_buffer_async_write); 427 } 428 EXPORT_SYMBOL(mark_buffer_async_write); 429 430 431 /* 432 * fs/buffer.c contains helper functions for buffer-backed address space's 433 * fsync functions. A common requirement for buffer-based filesystems is 434 * that certain data from the backing blockdev needs to be written out for 435 * a successful fsync(). For example, ext2 indirect blocks need to be 436 * written back and waited upon before fsync() returns. 437 * 438 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 439 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 440 * management of a list of dependent buffers at ->i_mapping->private_list. 441 * 442 * Locking is a little subtle: try_to_free_buffers() will remove buffers 443 * from their controlling inode's queue when they are being freed. But 444 * try_to_free_buffers() will be operating against the *blockdev* mapping 445 * at the time, not against the S_ISREG file which depends on those buffers. 446 * So the locking for private_list is via the private_lock in the address_space 447 * which backs the buffers. Which is different from the address_space 448 * against which the buffers are listed. So for a particular address_space, 449 * mapping->private_lock does *not* protect mapping->private_list! In fact, 450 * mapping->private_list will always be protected by the backing blockdev's 451 * ->private_lock. 452 * 453 * Which introduces a requirement: all buffers on an address_space's 454 * ->private_list must be from the same address_space: the blockdev's. 455 * 456 * address_spaces which do not place buffers at ->private_list via these 457 * utility functions are free to use private_lock and private_list for 458 * whatever they want. The only requirement is that list_empty(private_list) 459 * be true at clear_inode() time. 460 * 461 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 462 * filesystems should do that. invalidate_inode_buffers() should just go 463 * BUG_ON(!list_empty). 464 * 465 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 466 * take an address_space, not an inode. And it should be called 467 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 468 * queued up. 469 * 470 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 471 * list if it is already on a list. Because if the buffer is on a list, 472 * it *must* already be on the right one. If not, the filesystem is being 473 * silly. This will save a ton of locking. But first we have to ensure 474 * that buffers are taken *off* the old inode's list when they are freed 475 * (presumably in truncate). That requires careful auditing of all 476 * filesystems (do it inside bforget()). It could also be done by bringing 477 * b_inode back. 478 */ 479 480 /* 481 * The buffer's backing address_space's private_lock must be held 482 */ 483 static void __remove_assoc_queue(struct buffer_head *bh) 484 { 485 list_del_init(&bh->b_assoc_buffers); 486 WARN_ON(!bh->b_assoc_map); 487 if (buffer_write_io_error(bh)) 488 set_bit(AS_EIO, &bh->b_assoc_map->flags); 489 bh->b_assoc_map = NULL; 490 } 491 492 int inode_has_buffers(struct inode *inode) 493 { 494 return !list_empty(&inode->i_data.private_list); 495 } 496 497 /* 498 * osync is designed to support O_SYNC io. It waits synchronously for 499 * all already-submitted IO to complete, but does not queue any new 500 * writes to the disk. 501 * 502 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 503 * you dirty the buffers, and then use osync_inode_buffers to wait for 504 * completion. Any other dirty buffers which are not yet queued for 505 * write will not be flushed to disk by the osync. 506 */ 507 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 508 { 509 struct buffer_head *bh; 510 struct list_head *p; 511 int err = 0; 512 513 spin_lock(lock); 514 repeat: 515 list_for_each_prev(p, list) { 516 bh = BH_ENTRY(p); 517 if (buffer_locked(bh)) { 518 get_bh(bh); 519 spin_unlock(lock); 520 wait_on_buffer(bh); 521 if (!buffer_uptodate(bh)) 522 err = -EIO; 523 brelse(bh); 524 spin_lock(lock); 525 goto repeat; 526 } 527 } 528 spin_unlock(lock); 529 return err; 530 } 531 532 static void do_thaw_one(struct super_block *sb, void *unused) 533 { 534 char b[BDEVNAME_SIZE]; 535 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 536 printk(KERN_WARNING "Emergency Thaw on %s\n", 537 bdevname(sb->s_bdev, b)); 538 } 539 540 static void do_thaw_all(struct work_struct *work) 541 { 542 iterate_supers(do_thaw_one, NULL); 543 kfree(work); 544 printk(KERN_WARNING "Emergency Thaw complete\n"); 545 } 546 547 /** 548 * emergency_thaw_all -- forcibly thaw every frozen filesystem 549 * 550 * Used for emergency unfreeze of all filesystems via SysRq 551 */ 552 void emergency_thaw_all(void) 553 { 554 struct work_struct *work; 555 556 work = kmalloc(sizeof(*work), GFP_ATOMIC); 557 if (work) { 558 INIT_WORK(work, do_thaw_all); 559 schedule_work(work); 560 } 561 } 562 563 /** 564 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 565 * @mapping: the mapping which wants those buffers written 566 * 567 * Starts I/O against the buffers at mapping->private_list, and waits upon 568 * that I/O. 569 * 570 * Basically, this is a convenience function for fsync(). 571 * @mapping is a file or directory which needs those buffers to be written for 572 * a successful fsync(). 573 */ 574 int sync_mapping_buffers(struct address_space *mapping) 575 { 576 struct address_space *buffer_mapping = mapping->private_data; 577 578 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 579 return 0; 580 581 return fsync_buffers_list(&buffer_mapping->private_lock, 582 &mapping->private_list); 583 } 584 EXPORT_SYMBOL(sync_mapping_buffers); 585 586 /* 587 * Called when we've recently written block `bblock', and it is known that 588 * `bblock' was for a buffer_boundary() buffer. This means that the block at 589 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 590 * dirty, schedule it for IO. So that indirects merge nicely with their data. 591 */ 592 void write_boundary_block(struct block_device *bdev, 593 sector_t bblock, unsigned blocksize) 594 { 595 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 596 if (bh) { 597 if (buffer_dirty(bh)) 598 ll_rw_block(WRITE, 1, &bh); 599 put_bh(bh); 600 } 601 } 602 603 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 604 { 605 struct address_space *mapping = inode->i_mapping; 606 struct address_space *buffer_mapping = bh->b_page->mapping; 607 608 mark_buffer_dirty(bh); 609 if (!mapping->private_data) { 610 mapping->private_data = buffer_mapping; 611 } else { 612 BUG_ON(mapping->private_data != buffer_mapping); 613 } 614 if (!bh->b_assoc_map) { 615 spin_lock(&buffer_mapping->private_lock); 616 list_move_tail(&bh->b_assoc_buffers, 617 &mapping->private_list); 618 bh->b_assoc_map = mapping; 619 spin_unlock(&buffer_mapping->private_lock); 620 } 621 } 622 EXPORT_SYMBOL(mark_buffer_dirty_inode); 623 624 /* 625 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 626 * dirty. 627 * 628 * If warn is true, then emit a warning if the page is not uptodate and has 629 * not been truncated. 630 * 631 * The caller must hold mem_cgroup_begin_page_stat() lock. 632 */ 633 static void __set_page_dirty(struct page *page, struct address_space *mapping, 634 struct mem_cgroup *memcg, int warn) 635 { 636 unsigned long flags; 637 638 spin_lock_irqsave(&mapping->tree_lock, flags); 639 if (page->mapping) { /* Race with truncate? */ 640 WARN_ON_ONCE(warn && !PageUptodate(page)); 641 account_page_dirtied(page, mapping, memcg); 642 radix_tree_tag_set(&mapping->page_tree, 643 page_index(page), PAGECACHE_TAG_DIRTY); 644 } 645 spin_unlock_irqrestore(&mapping->tree_lock, flags); 646 } 647 648 /* 649 * Add a page to the dirty page list. 650 * 651 * It is a sad fact of life that this function is called from several places 652 * deeply under spinlocking. It may not sleep. 653 * 654 * If the page has buffers, the uptodate buffers are set dirty, to preserve 655 * dirty-state coherency between the page and the buffers. It the page does 656 * not have buffers then when they are later attached they will all be set 657 * dirty. 658 * 659 * The buffers are dirtied before the page is dirtied. There's a small race 660 * window in which a writepage caller may see the page cleanness but not the 661 * buffer dirtiness. That's fine. If this code were to set the page dirty 662 * before the buffers, a concurrent writepage caller could clear the page dirty 663 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 664 * page on the dirty page list. 665 * 666 * We use private_lock to lock against try_to_free_buffers while using the 667 * page's buffer list. Also use this to protect against clean buffers being 668 * added to the page after it was set dirty. 669 * 670 * FIXME: may need to call ->reservepage here as well. That's rather up to the 671 * address_space though. 672 */ 673 int __set_page_dirty_buffers(struct page *page) 674 { 675 int newly_dirty; 676 struct mem_cgroup *memcg; 677 struct address_space *mapping = page_mapping(page); 678 679 if (unlikely(!mapping)) 680 return !TestSetPageDirty(page); 681 682 spin_lock(&mapping->private_lock); 683 if (page_has_buffers(page)) { 684 struct buffer_head *head = page_buffers(page); 685 struct buffer_head *bh = head; 686 687 do { 688 set_buffer_dirty(bh); 689 bh = bh->b_this_page; 690 } while (bh != head); 691 } 692 /* 693 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with 694 * per-memcg dirty page counters. 695 */ 696 memcg = mem_cgroup_begin_page_stat(page); 697 newly_dirty = !TestSetPageDirty(page); 698 spin_unlock(&mapping->private_lock); 699 700 if (newly_dirty) 701 __set_page_dirty(page, mapping, memcg, 1); 702 703 mem_cgroup_end_page_stat(memcg); 704 705 if (newly_dirty) 706 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 707 708 return newly_dirty; 709 } 710 EXPORT_SYMBOL(__set_page_dirty_buffers); 711 712 /* 713 * Write out and wait upon a list of buffers. 714 * 715 * We have conflicting pressures: we want to make sure that all 716 * initially dirty buffers get waited on, but that any subsequently 717 * dirtied buffers don't. After all, we don't want fsync to last 718 * forever if somebody is actively writing to the file. 719 * 720 * Do this in two main stages: first we copy dirty buffers to a 721 * temporary inode list, queueing the writes as we go. Then we clean 722 * up, waiting for those writes to complete. 723 * 724 * During this second stage, any subsequent updates to the file may end 725 * up refiling the buffer on the original inode's dirty list again, so 726 * there is a chance we will end up with a buffer queued for write but 727 * not yet completed on that list. So, as a final cleanup we go through 728 * the osync code to catch these locked, dirty buffers without requeuing 729 * any newly dirty buffers for write. 730 */ 731 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 732 { 733 struct buffer_head *bh; 734 struct list_head tmp; 735 struct address_space *mapping; 736 int err = 0, err2; 737 struct blk_plug plug; 738 739 INIT_LIST_HEAD(&tmp); 740 blk_start_plug(&plug); 741 742 spin_lock(lock); 743 while (!list_empty(list)) { 744 bh = BH_ENTRY(list->next); 745 mapping = bh->b_assoc_map; 746 __remove_assoc_queue(bh); 747 /* Avoid race with mark_buffer_dirty_inode() which does 748 * a lockless check and we rely on seeing the dirty bit */ 749 smp_mb(); 750 if (buffer_dirty(bh) || buffer_locked(bh)) { 751 list_add(&bh->b_assoc_buffers, &tmp); 752 bh->b_assoc_map = mapping; 753 if (buffer_dirty(bh)) { 754 get_bh(bh); 755 spin_unlock(lock); 756 /* 757 * Ensure any pending I/O completes so that 758 * write_dirty_buffer() actually writes the 759 * current contents - it is a noop if I/O is 760 * still in flight on potentially older 761 * contents. 762 */ 763 write_dirty_buffer(bh, WRITE_SYNC); 764 765 /* 766 * Kick off IO for the previous mapping. Note 767 * that we will not run the very last mapping, 768 * wait_on_buffer() will do that for us 769 * through sync_buffer(). 770 */ 771 brelse(bh); 772 spin_lock(lock); 773 } 774 } 775 } 776 777 spin_unlock(lock); 778 blk_finish_plug(&plug); 779 spin_lock(lock); 780 781 while (!list_empty(&tmp)) { 782 bh = BH_ENTRY(tmp.prev); 783 get_bh(bh); 784 mapping = bh->b_assoc_map; 785 __remove_assoc_queue(bh); 786 /* Avoid race with mark_buffer_dirty_inode() which does 787 * a lockless check and we rely on seeing the dirty bit */ 788 smp_mb(); 789 if (buffer_dirty(bh)) { 790 list_add(&bh->b_assoc_buffers, 791 &mapping->private_list); 792 bh->b_assoc_map = mapping; 793 } 794 spin_unlock(lock); 795 wait_on_buffer(bh); 796 if (!buffer_uptodate(bh)) 797 err = -EIO; 798 brelse(bh); 799 spin_lock(lock); 800 } 801 802 spin_unlock(lock); 803 err2 = osync_buffers_list(lock, list); 804 if (err) 805 return err; 806 else 807 return err2; 808 } 809 810 /* 811 * Invalidate any and all dirty buffers on a given inode. We are 812 * probably unmounting the fs, but that doesn't mean we have already 813 * done a sync(). Just drop the buffers from the inode list. 814 * 815 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 816 * assumes that all the buffers are against the blockdev. Not true 817 * for reiserfs. 818 */ 819 void invalidate_inode_buffers(struct inode *inode) 820 { 821 if (inode_has_buffers(inode)) { 822 struct address_space *mapping = &inode->i_data; 823 struct list_head *list = &mapping->private_list; 824 struct address_space *buffer_mapping = mapping->private_data; 825 826 spin_lock(&buffer_mapping->private_lock); 827 while (!list_empty(list)) 828 __remove_assoc_queue(BH_ENTRY(list->next)); 829 spin_unlock(&buffer_mapping->private_lock); 830 } 831 } 832 EXPORT_SYMBOL(invalidate_inode_buffers); 833 834 /* 835 * Remove any clean buffers from the inode's buffer list. This is called 836 * when we're trying to free the inode itself. Those buffers can pin it. 837 * 838 * Returns true if all buffers were removed. 839 */ 840 int remove_inode_buffers(struct inode *inode) 841 { 842 int ret = 1; 843 844 if (inode_has_buffers(inode)) { 845 struct address_space *mapping = &inode->i_data; 846 struct list_head *list = &mapping->private_list; 847 struct address_space *buffer_mapping = mapping->private_data; 848 849 spin_lock(&buffer_mapping->private_lock); 850 while (!list_empty(list)) { 851 struct buffer_head *bh = BH_ENTRY(list->next); 852 if (buffer_dirty(bh)) { 853 ret = 0; 854 break; 855 } 856 __remove_assoc_queue(bh); 857 } 858 spin_unlock(&buffer_mapping->private_lock); 859 } 860 return ret; 861 } 862 863 /* 864 * Create the appropriate buffers when given a page for data area and 865 * the size of each buffer.. Use the bh->b_this_page linked list to 866 * follow the buffers created. Return NULL if unable to create more 867 * buffers. 868 * 869 * The retry flag is used to differentiate async IO (paging, swapping) 870 * which may not fail from ordinary buffer allocations. 871 */ 872 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 873 int retry) 874 { 875 struct buffer_head *bh, *head; 876 long offset; 877 878 try_again: 879 head = NULL; 880 offset = PAGE_SIZE; 881 while ((offset -= size) >= 0) { 882 bh = alloc_buffer_head(GFP_NOFS); 883 if (!bh) 884 goto no_grow; 885 886 bh->b_this_page = head; 887 bh->b_blocknr = -1; 888 head = bh; 889 890 bh->b_size = size; 891 892 /* Link the buffer to its page */ 893 set_bh_page(bh, page, offset); 894 } 895 return head; 896 /* 897 * In case anything failed, we just free everything we got. 898 */ 899 no_grow: 900 if (head) { 901 do { 902 bh = head; 903 head = head->b_this_page; 904 free_buffer_head(bh); 905 } while (head); 906 } 907 908 /* 909 * Return failure for non-async IO requests. Async IO requests 910 * are not allowed to fail, so we have to wait until buffer heads 911 * become available. But we don't want tasks sleeping with 912 * partially complete buffers, so all were released above. 913 */ 914 if (!retry) 915 return NULL; 916 917 /* We're _really_ low on memory. Now we just 918 * wait for old buffer heads to become free due to 919 * finishing IO. Since this is an async request and 920 * the reserve list is empty, we're sure there are 921 * async buffer heads in use. 922 */ 923 free_more_memory(); 924 goto try_again; 925 } 926 EXPORT_SYMBOL_GPL(alloc_page_buffers); 927 928 static inline void 929 link_dev_buffers(struct page *page, struct buffer_head *head) 930 { 931 struct buffer_head *bh, *tail; 932 933 bh = head; 934 do { 935 tail = bh; 936 bh = bh->b_this_page; 937 } while (bh); 938 tail->b_this_page = head; 939 attach_page_buffers(page, head); 940 } 941 942 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 943 { 944 sector_t retval = ~((sector_t)0); 945 loff_t sz = i_size_read(bdev->bd_inode); 946 947 if (sz) { 948 unsigned int sizebits = blksize_bits(size); 949 retval = (sz >> sizebits); 950 } 951 return retval; 952 } 953 954 /* 955 * Initialise the state of a blockdev page's buffers. 956 */ 957 static sector_t 958 init_page_buffers(struct page *page, struct block_device *bdev, 959 sector_t block, int size) 960 { 961 struct buffer_head *head = page_buffers(page); 962 struct buffer_head *bh = head; 963 int uptodate = PageUptodate(page); 964 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 965 966 do { 967 if (!buffer_mapped(bh)) { 968 init_buffer(bh, NULL, NULL); 969 bh->b_bdev = bdev; 970 bh->b_blocknr = block; 971 if (uptodate) 972 set_buffer_uptodate(bh); 973 if (block < end_block) 974 set_buffer_mapped(bh); 975 } 976 block++; 977 bh = bh->b_this_page; 978 } while (bh != head); 979 980 /* 981 * Caller needs to validate requested block against end of device. 982 */ 983 return end_block; 984 } 985 986 /* 987 * Create the page-cache page that contains the requested block. 988 * 989 * This is used purely for blockdev mappings. 990 */ 991 static int 992 grow_dev_page(struct block_device *bdev, sector_t block, 993 pgoff_t index, int size, int sizebits, gfp_t gfp) 994 { 995 struct inode *inode = bdev->bd_inode; 996 struct page *page; 997 struct buffer_head *bh; 998 sector_t end_block; 999 int ret = 0; /* Will call free_more_memory() */ 1000 gfp_t gfp_mask; 1001 1002 gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp; 1003 1004 /* 1005 * XXX: __getblk_slow() can not really deal with failure and 1006 * will endlessly loop on improvised global reclaim. Prefer 1007 * looping in the allocator rather than here, at least that 1008 * code knows what it's doing. 1009 */ 1010 gfp_mask |= __GFP_NOFAIL; 1011 1012 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 1013 if (!page) 1014 return ret; 1015 1016 BUG_ON(!PageLocked(page)); 1017 1018 if (page_has_buffers(page)) { 1019 bh = page_buffers(page); 1020 if (bh->b_size == size) { 1021 end_block = init_page_buffers(page, bdev, 1022 (sector_t)index << sizebits, 1023 size); 1024 goto done; 1025 } 1026 if (!try_to_free_buffers(page)) 1027 goto failed; 1028 } 1029 1030 /* 1031 * Allocate some buffers for this page 1032 */ 1033 bh = alloc_page_buffers(page, size, 0); 1034 if (!bh) 1035 goto failed; 1036 1037 /* 1038 * Link the page to the buffers and initialise them. Take the 1039 * lock to be atomic wrt __find_get_block(), which does not 1040 * run under the page lock. 1041 */ 1042 spin_lock(&inode->i_mapping->private_lock); 1043 link_dev_buffers(page, bh); 1044 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1045 size); 1046 spin_unlock(&inode->i_mapping->private_lock); 1047 done: 1048 ret = (block < end_block) ? 1 : -ENXIO; 1049 failed: 1050 unlock_page(page); 1051 page_cache_release(page); 1052 return ret; 1053 } 1054 1055 /* 1056 * Create buffers for the specified block device block's page. If 1057 * that page was dirty, the buffers are set dirty also. 1058 */ 1059 static int 1060 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1061 { 1062 pgoff_t index; 1063 int sizebits; 1064 1065 sizebits = -1; 1066 do { 1067 sizebits++; 1068 } while ((size << sizebits) < PAGE_SIZE); 1069 1070 index = block >> sizebits; 1071 1072 /* 1073 * Check for a block which wants to lie outside our maximum possible 1074 * pagecache index. (this comparison is done using sector_t types). 1075 */ 1076 if (unlikely(index != block >> sizebits)) { 1077 char b[BDEVNAME_SIZE]; 1078 1079 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1080 "device %s\n", 1081 __func__, (unsigned long long)block, 1082 bdevname(bdev, b)); 1083 return -EIO; 1084 } 1085 1086 /* Create a page with the proper size buffers.. */ 1087 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1088 } 1089 1090 struct buffer_head * 1091 __getblk_slow(struct block_device *bdev, sector_t block, 1092 unsigned size, gfp_t gfp) 1093 { 1094 /* Size must be multiple of hard sectorsize */ 1095 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1096 (size < 512 || size > PAGE_SIZE))) { 1097 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1098 size); 1099 printk(KERN_ERR "logical block size: %d\n", 1100 bdev_logical_block_size(bdev)); 1101 1102 dump_stack(); 1103 return NULL; 1104 } 1105 1106 for (;;) { 1107 struct buffer_head *bh; 1108 int ret; 1109 1110 bh = __find_get_block(bdev, block, size); 1111 if (bh) 1112 return bh; 1113 1114 ret = grow_buffers(bdev, block, size, gfp); 1115 if (ret < 0) 1116 return NULL; 1117 if (ret == 0) 1118 free_more_memory(); 1119 } 1120 } 1121 EXPORT_SYMBOL(__getblk_slow); 1122 1123 /* 1124 * The relationship between dirty buffers and dirty pages: 1125 * 1126 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1127 * the page is tagged dirty in its radix tree. 1128 * 1129 * At all times, the dirtiness of the buffers represents the dirtiness of 1130 * subsections of the page. If the page has buffers, the page dirty bit is 1131 * merely a hint about the true dirty state. 1132 * 1133 * When a page is set dirty in its entirety, all its buffers are marked dirty 1134 * (if the page has buffers). 1135 * 1136 * When a buffer is marked dirty, its page is dirtied, but the page's other 1137 * buffers are not. 1138 * 1139 * Also. When blockdev buffers are explicitly read with bread(), they 1140 * individually become uptodate. But their backing page remains not 1141 * uptodate - even if all of its buffers are uptodate. A subsequent 1142 * block_read_full_page() against that page will discover all the uptodate 1143 * buffers, will set the page uptodate and will perform no I/O. 1144 */ 1145 1146 /** 1147 * mark_buffer_dirty - mark a buffer_head as needing writeout 1148 * @bh: the buffer_head to mark dirty 1149 * 1150 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1151 * backing page dirty, then tag the page as dirty in its address_space's radix 1152 * tree and then attach the address_space's inode to its superblock's dirty 1153 * inode list. 1154 * 1155 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1156 * mapping->tree_lock and mapping->host->i_lock. 1157 */ 1158 void mark_buffer_dirty(struct buffer_head *bh) 1159 { 1160 WARN_ON_ONCE(!buffer_uptodate(bh)); 1161 1162 trace_block_dirty_buffer(bh); 1163 1164 /* 1165 * Very *carefully* optimize the it-is-already-dirty case. 1166 * 1167 * Don't let the final "is it dirty" escape to before we 1168 * perhaps modified the buffer. 1169 */ 1170 if (buffer_dirty(bh)) { 1171 smp_mb(); 1172 if (buffer_dirty(bh)) 1173 return; 1174 } 1175 1176 if (!test_set_buffer_dirty(bh)) { 1177 struct page *page = bh->b_page; 1178 struct address_space *mapping = NULL; 1179 struct mem_cgroup *memcg; 1180 1181 memcg = mem_cgroup_begin_page_stat(page); 1182 if (!TestSetPageDirty(page)) { 1183 mapping = page_mapping(page); 1184 if (mapping) 1185 __set_page_dirty(page, mapping, memcg, 0); 1186 } 1187 mem_cgroup_end_page_stat(memcg); 1188 if (mapping) 1189 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1190 } 1191 } 1192 EXPORT_SYMBOL(mark_buffer_dirty); 1193 1194 /* 1195 * Decrement a buffer_head's reference count. If all buffers against a page 1196 * have zero reference count, are clean and unlocked, and if the page is clean 1197 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1198 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1199 * a page but it ends up not being freed, and buffers may later be reattached). 1200 */ 1201 void __brelse(struct buffer_head * buf) 1202 { 1203 if (atomic_read(&buf->b_count)) { 1204 put_bh(buf); 1205 return; 1206 } 1207 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1208 } 1209 EXPORT_SYMBOL(__brelse); 1210 1211 /* 1212 * bforget() is like brelse(), except it discards any 1213 * potentially dirty data. 1214 */ 1215 void __bforget(struct buffer_head *bh) 1216 { 1217 clear_buffer_dirty(bh); 1218 if (bh->b_assoc_map) { 1219 struct address_space *buffer_mapping = bh->b_page->mapping; 1220 1221 spin_lock(&buffer_mapping->private_lock); 1222 list_del_init(&bh->b_assoc_buffers); 1223 bh->b_assoc_map = NULL; 1224 spin_unlock(&buffer_mapping->private_lock); 1225 } 1226 __brelse(bh); 1227 } 1228 EXPORT_SYMBOL(__bforget); 1229 1230 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1231 { 1232 lock_buffer(bh); 1233 if (buffer_uptodate(bh)) { 1234 unlock_buffer(bh); 1235 return bh; 1236 } else { 1237 get_bh(bh); 1238 bh->b_end_io = end_buffer_read_sync; 1239 submit_bh(READ, bh); 1240 wait_on_buffer(bh); 1241 if (buffer_uptodate(bh)) 1242 return bh; 1243 } 1244 brelse(bh); 1245 return NULL; 1246 } 1247 1248 /* 1249 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1250 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1251 * refcount elevated by one when they're in an LRU. A buffer can only appear 1252 * once in a particular CPU's LRU. A single buffer can be present in multiple 1253 * CPU's LRUs at the same time. 1254 * 1255 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1256 * sb_find_get_block(). 1257 * 1258 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1259 * a local interrupt disable for that. 1260 */ 1261 1262 #define BH_LRU_SIZE 16 1263 1264 struct bh_lru { 1265 struct buffer_head *bhs[BH_LRU_SIZE]; 1266 }; 1267 1268 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1269 1270 #ifdef CONFIG_SMP 1271 #define bh_lru_lock() local_irq_disable() 1272 #define bh_lru_unlock() local_irq_enable() 1273 #else 1274 #define bh_lru_lock() preempt_disable() 1275 #define bh_lru_unlock() preempt_enable() 1276 #endif 1277 1278 static inline void check_irqs_on(void) 1279 { 1280 #ifdef irqs_disabled 1281 BUG_ON(irqs_disabled()); 1282 #endif 1283 } 1284 1285 /* 1286 * The LRU management algorithm is dopey-but-simple. Sorry. 1287 */ 1288 static void bh_lru_install(struct buffer_head *bh) 1289 { 1290 struct buffer_head *evictee = NULL; 1291 1292 check_irqs_on(); 1293 bh_lru_lock(); 1294 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1295 struct buffer_head *bhs[BH_LRU_SIZE]; 1296 int in; 1297 int out = 0; 1298 1299 get_bh(bh); 1300 bhs[out++] = bh; 1301 for (in = 0; in < BH_LRU_SIZE; in++) { 1302 struct buffer_head *bh2 = 1303 __this_cpu_read(bh_lrus.bhs[in]); 1304 1305 if (bh2 == bh) { 1306 __brelse(bh2); 1307 } else { 1308 if (out >= BH_LRU_SIZE) { 1309 BUG_ON(evictee != NULL); 1310 evictee = bh2; 1311 } else { 1312 bhs[out++] = bh2; 1313 } 1314 } 1315 } 1316 while (out < BH_LRU_SIZE) 1317 bhs[out++] = NULL; 1318 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1319 } 1320 bh_lru_unlock(); 1321 1322 if (evictee) 1323 __brelse(evictee); 1324 } 1325 1326 /* 1327 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1328 */ 1329 static struct buffer_head * 1330 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1331 { 1332 struct buffer_head *ret = NULL; 1333 unsigned int i; 1334 1335 check_irqs_on(); 1336 bh_lru_lock(); 1337 for (i = 0; i < BH_LRU_SIZE; i++) { 1338 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1339 1340 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1341 bh->b_size == size) { 1342 if (i) { 1343 while (i) { 1344 __this_cpu_write(bh_lrus.bhs[i], 1345 __this_cpu_read(bh_lrus.bhs[i - 1])); 1346 i--; 1347 } 1348 __this_cpu_write(bh_lrus.bhs[0], bh); 1349 } 1350 get_bh(bh); 1351 ret = bh; 1352 break; 1353 } 1354 } 1355 bh_lru_unlock(); 1356 return ret; 1357 } 1358 1359 /* 1360 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1361 * it in the LRU and mark it as accessed. If it is not present then return 1362 * NULL 1363 */ 1364 struct buffer_head * 1365 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1366 { 1367 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1368 1369 if (bh == NULL) { 1370 /* __find_get_block_slow will mark the page accessed */ 1371 bh = __find_get_block_slow(bdev, block); 1372 if (bh) 1373 bh_lru_install(bh); 1374 } else 1375 touch_buffer(bh); 1376 1377 return bh; 1378 } 1379 EXPORT_SYMBOL(__find_get_block); 1380 1381 /* 1382 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1383 * which corresponds to the passed block_device, block and size. The 1384 * returned buffer has its reference count incremented. 1385 * 1386 * __getblk_gfp() will lock up the machine if grow_dev_page's 1387 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1388 */ 1389 struct buffer_head * 1390 __getblk_gfp(struct block_device *bdev, sector_t block, 1391 unsigned size, gfp_t gfp) 1392 { 1393 struct buffer_head *bh = __find_get_block(bdev, block, size); 1394 1395 might_sleep(); 1396 if (bh == NULL) 1397 bh = __getblk_slow(bdev, block, size, gfp); 1398 return bh; 1399 } 1400 EXPORT_SYMBOL(__getblk_gfp); 1401 1402 /* 1403 * Do async read-ahead on a buffer.. 1404 */ 1405 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1406 { 1407 struct buffer_head *bh = __getblk(bdev, block, size); 1408 if (likely(bh)) { 1409 ll_rw_block(READA, 1, &bh); 1410 brelse(bh); 1411 } 1412 } 1413 EXPORT_SYMBOL(__breadahead); 1414 1415 /** 1416 * __bread_gfp() - reads a specified block and returns the bh 1417 * @bdev: the block_device to read from 1418 * @block: number of block 1419 * @size: size (in bytes) to read 1420 * @gfp: page allocation flag 1421 * 1422 * Reads a specified block, and returns buffer head that contains it. 1423 * The page cache can be allocated from non-movable area 1424 * not to prevent page migration if you set gfp to zero. 1425 * It returns NULL if the block was unreadable. 1426 */ 1427 struct buffer_head * 1428 __bread_gfp(struct block_device *bdev, sector_t block, 1429 unsigned size, gfp_t gfp) 1430 { 1431 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1432 1433 if (likely(bh) && !buffer_uptodate(bh)) 1434 bh = __bread_slow(bh); 1435 return bh; 1436 } 1437 EXPORT_SYMBOL(__bread_gfp); 1438 1439 /* 1440 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1441 * This doesn't race because it runs in each cpu either in irq 1442 * or with preempt disabled. 1443 */ 1444 static void invalidate_bh_lru(void *arg) 1445 { 1446 struct bh_lru *b = &get_cpu_var(bh_lrus); 1447 int i; 1448 1449 for (i = 0; i < BH_LRU_SIZE; i++) { 1450 brelse(b->bhs[i]); 1451 b->bhs[i] = NULL; 1452 } 1453 put_cpu_var(bh_lrus); 1454 } 1455 1456 static bool has_bh_in_lru(int cpu, void *dummy) 1457 { 1458 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1459 int i; 1460 1461 for (i = 0; i < BH_LRU_SIZE; i++) { 1462 if (b->bhs[i]) 1463 return 1; 1464 } 1465 1466 return 0; 1467 } 1468 1469 void invalidate_bh_lrus(void) 1470 { 1471 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1472 } 1473 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1474 1475 void set_bh_page(struct buffer_head *bh, 1476 struct page *page, unsigned long offset) 1477 { 1478 bh->b_page = page; 1479 BUG_ON(offset >= PAGE_SIZE); 1480 if (PageHighMem(page)) 1481 /* 1482 * This catches illegal uses and preserves the offset: 1483 */ 1484 bh->b_data = (char *)(0 + offset); 1485 else 1486 bh->b_data = page_address(page) + offset; 1487 } 1488 EXPORT_SYMBOL(set_bh_page); 1489 1490 /* 1491 * Called when truncating a buffer on a page completely. 1492 */ 1493 1494 /* Bits that are cleared during an invalidate */ 1495 #define BUFFER_FLAGS_DISCARD \ 1496 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1497 1 << BH_Delay | 1 << BH_Unwritten) 1498 1499 static void discard_buffer(struct buffer_head * bh) 1500 { 1501 unsigned long b_state, b_state_old; 1502 1503 lock_buffer(bh); 1504 clear_buffer_dirty(bh); 1505 bh->b_bdev = NULL; 1506 b_state = bh->b_state; 1507 for (;;) { 1508 b_state_old = cmpxchg(&bh->b_state, b_state, 1509 (b_state & ~BUFFER_FLAGS_DISCARD)); 1510 if (b_state_old == b_state) 1511 break; 1512 b_state = b_state_old; 1513 } 1514 unlock_buffer(bh); 1515 } 1516 1517 /** 1518 * block_invalidatepage - invalidate part or all of a buffer-backed page 1519 * 1520 * @page: the page which is affected 1521 * @offset: start of the range to invalidate 1522 * @length: length of the range to invalidate 1523 * 1524 * block_invalidatepage() is called when all or part of the page has become 1525 * invalidated by a truncate operation. 1526 * 1527 * block_invalidatepage() does not have to release all buffers, but it must 1528 * ensure that no dirty buffer is left outside @offset and that no I/O 1529 * is underway against any of the blocks which are outside the truncation 1530 * point. Because the caller is about to free (and possibly reuse) those 1531 * blocks on-disk. 1532 */ 1533 void block_invalidatepage(struct page *page, unsigned int offset, 1534 unsigned int length) 1535 { 1536 struct buffer_head *head, *bh, *next; 1537 unsigned int curr_off = 0; 1538 unsigned int stop = length + offset; 1539 1540 BUG_ON(!PageLocked(page)); 1541 if (!page_has_buffers(page)) 1542 goto out; 1543 1544 /* 1545 * Check for overflow 1546 */ 1547 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1548 1549 head = page_buffers(page); 1550 bh = head; 1551 do { 1552 unsigned int next_off = curr_off + bh->b_size; 1553 next = bh->b_this_page; 1554 1555 /* 1556 * Are we still fully in range ? 1557 */ 1558 if (next_off > stop) 1559 goto out; 1560 1561 /* 1562 * is this block fully invalidated? 1563 */ 1564 if (offset <= curr_off) 1565 discard_buffer(bh); 1566 curr_off = next_off; 1567 bh = next; 1568 } while (bh != head); 1569 1570 /* 1571 * We release buffers only if the entire page is being invalidated. 1572 * The get_block cached value has been unconditionally invalidated, 1573 * so real IO is not possible anymore. 1574 */ 1575 if (offset == 0) 1576 try_to_release_page(page, 0); 1577 out: 1578 return; 1579 } 1580 EXPORT_SYMBOL(block_invalidatepage); 1581 1582 1583 /* 1584 * We attach and possibly dirty the buffers atomically wrt 1585 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1586 * is already excluded via the page lock. 1587 */ 1588 void create_empty_buffers(struct page *page, 1589 unsigned long blocksize, unsigned long b_state) 1590 { 1591 struct buffer_head *bh, *head, *tail; 1592 1593 head = alloc_page_buffers(page, blocksize, 1); 1594 bh = head; 1595 do { 1596 bh->b_state |= b_state; 1597 tail = bh; 1598 bh = bh->b_this_page; 1599 } while (bh); 1600 tail->b_this_page = head; 1601 1602 spin_lock(&page->mapping->private_lock); 1603 if (PageUptodate(page) || PageDirty(page)) { 1604 bh = head; 1605 do { 1606 if (PageDirty(page)) 1607 set_buffer_dirty(bh); 1608 if (PageUptodate(page)) 1609 set_buffer_uptodate(bh); 1610 bh = bh->b_this_page; 1611 } while (bh != head); 1612 } 1613 attach_page_buffers(page, head); 1614 spin_unlock(&page->mapping->private_lock); 1615 } 1616 EXPORT_SYMBOL(create_empty_buffers); 1617 1618 /* 1619 * We are taking a block for data and we don't want any output from any 1620 * buffer-cache aliases starting from return from that function and 1621 * until the moment when something will explicitly mark the buffer 1622 * dirty (hopefully that will not happen until we will free that block ;-) 1623 * We don't even need to mark it not-uptodate - nobody can expect 1624 * anything from a newly allocated buffer anyway. We used to used 1625 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1626 * don't want to mark the alias unmapped, for example - it would confuse 1627 * anyone who might pick it with bread() afterwards... 1628 * 1629 * Also.. Note that bforget() doesn't lock the buffer. So there can 1630 * be writeout I/O going on against recently-freed buffers. We don't 1631 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1632 * only if we really need to. That happens here. 1633 */ 1634 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1635 { 1636 struct buffer_head *old_bh; 1637 1638 might_sleep(); 1639 1640 old_bh = __find_get_block_slow(bdev, block); 1641 if (old_bh) { 1642 clear_buffer_dirty(old_bh); 1643 wait_on_buffer(old_bh); 1644 clear_buffer_req(old_bh); 1645 __brelse(old_bh); 1646 } 1647 } 1648 EXPORT_SYMBOL(unmap_underlying_metadata); 1649 1650 /* 1651 * Size is a power-of-two in the range 512..PAGE_SIZE, 1652 * and the case we care about most is PAGE_SIZE. 1653 * 1654 * So this *could* possibly be written with those 1655 * constraints in mind (relevant mostly if some 1656 * architecture has a slow bit-scan instruction) 1657 */ 1658 static inline int block_size_bits(unsigned int blocksize) 1659 { 1660 return ilog2(blocksize); 1661 } 1662 1663 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1664 { 1665 BUG_ON(!PageLocked(page)); 1666 1667 if (!page_has_buffers(page)) 1668 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1669 return page_buffers(page); 1670 } 1671 1672 /* 1673 * NOTE! All mapped/uptodate combinations are valid: 1674 * 1675 * Mapped Uptodate Meaning 1676 * 1677 * No No "unknown" - must do get_block() 1678 * No Yes "hole" - zero-filled 1679 * Yes No "allocated" - allocated on disk, not read in 1680 * Yes Yes "valid" - allocated and up-to-date in memory. 1681 * 1682 * "Dirty" is valid only with the last case (mapped+uptodate). 1683 */ 1684 1685 /* 1686 * While block_write_full_page is writing back the dirty buffers under 1687 * the page lock, whoever dirtied the buffers may decide to clean them 1688 * again at any time. We handle that by only looking at the buffer 1689 * state inside lock_buffer(). 1690 * 1691 * If block_write_full_page() is called for regular writeback 1692 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1693 * locked buffer. This only can happen if someone has written the buffer 1694 * directly, with submit_bh(). At the address_space level PageWriteback 1695 * prevents this contention from occurring. 1696 * 1697 * If block_write_full_page() is called with wbc->sync_mode == 1698 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1699 * causes the writes to be flagged as synchronous writes. 1700 */ 1701 static int __block_write_full_page(struct inode *inode, struct page *page, 1702 get_block_t *get_block, struct writeback_control *wbc, 1703 bh_end_io_t *handler) 1704 { 1705 int err; 1706 sector_t block; 1707 sector_t last_block; 1708 struct buffer_head *bh, *head; 1709 unsigned int blocksize, bbits; 1710 int nr_underway = 0; 1711 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE); 1712 1713 head = create_page_buffers(page, inode, 1714 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1715 1716 /* 1717 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1718 * here, and the (potentially unmapped) buffers may become dirty at 1719 * any time. If a buffer becomes dirty here after we've inspected it 1720 * then we just miss that fact, and the page stays dirty. 1721 * 1722 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1723 * handle that here by just cleaning them. 1724 */ 1725 1726 bh = head; 1727 blocksize = bh->b_size; 1728 bbits = block_size_bits(blocksize); 1729 1730 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1731 last_block = (i_size_read(inode) - 1) >> bbits; 1732 1733 /* 1734 * Get all the dirty buffers mapped to disk addresses and 1735 * handle any aliases from the underlying blockdev's mapping. 1736 */ 1737 do { 1738 if (block > last_block) { 1739 /* 1740 * mapped buffers outside i_size will occur, because 1741 * this page can be outside i_size when there is a 1742 * truncate in progress. 1743 */ 1744 /* 1745 * The buffer was zeroed by block_write_full_page() 1746 */ 1747 clear_buffer_dirty(bh); 1748 set_buffer_uptodate(bh); 1749 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1750 buffer_dirty(bh)) { 1751 WARN_ON(bh->b_size != blocksize); 1752 err = get_block(inode, block, bh, 1); 1753 if (err) 1754 goto recover; 1755 clear_buffer_delay(bh); 1756 if (buffer_new(bh)) { 1757 /* blockdev mappings never come here */ 1758 clear_buffer_new(bh); 1759 unmap_underlying_metadata(bh->b_bdev, 1760 bh->b_blocknr); 1761 } 1762 } 1763 bh = bh->b_this_page; 1764 block++; 1765 } while (bh != head); 1766 1767 do { 1768 if (!buffer_mapped(bh)) 1769 continue; 1770 /* 1771 * If it's a fully non-blocking write attempt and we cannot 1772 * lock the buffer then redirty the page. Note that this can 1773 * potentially cause a busy-wait loop from writeback threads 1774 * and kswapd activity, but those code paths have their own 1775 * higher-level throttling. 1776 */ 1777 if (wbc->sync_mode != WB_SYNC_NONE) { 1778 lock_buffer(bh); 1779 } else if (!trylock_buffer(bh)) { 1780 redirty_page_for_writepage(wbc, page); 1781 continue; 1782 } 1783 if (test_clear_buffer_dirty(bh)) { 1784 mark_buffer_async_write_endio(bh, handler); 1785 } else { 1786 unlock_buffer(bh); 1787 } 1788 } while ((bh = bh->b_this_page) != head); 1789 1790 /* 1791 * The page and its buffers are protected by PageWriteback(), so we can 1792 * drop the bh refcounts early. 1793 */ 1794 BUG_ON(PageWriteback(page)); 1795 set_page_writeback(page); 1796 1797 do { 1798 struct buffer_head *next = bh->b_this_page; 1799 if (buffer_async_write(bh)) { 1800 submit_bh_wbc(write_op, bh, 0, wbc); 1801 nr_underway++; 1802 } 1803 bh = next; 1804 } while (bh != head); 1805 unlock_page(page); 1806 1807 err = 0; 1808 done: 1809 if (nr_underway == 0) { 1810 /* 1811 * The page was marked dirty, but the buffers were 1812 * clean. Someone wrote them back by hand with 1813 * ll_rw_block/submit_bh. A rare case. 1814 */ 1815 end_page_writeback(page); 1816 1817 /* 1818 * The page and buffer_heads can be released at any time from 1819 * here on. 1820 */ 1821 } 1822 return err; 1823 1824 recover: 1825 /* 1826 * ENOSPC, or some other error. We may already have added some 1827 * blocks to the file, so we need to write these out to avoid 1828 * exposing stale data. 1829 * The page is currently locked and not marked for writeback 1830 */ 1831 bh = head; 1832 /* Recovery: lock and submit the mapped buffers */ 1833 do { 1834 if (buffer_mapped(bh) && buffer_dirty(bh) && 1835 !buffer_delay(bh)) { 1836 lock_buffer(bh); 1837 mark_buffer_async_write_endio(bh, handler); 1838 } else { 1839 /* 1840 * The buffer may have been set dirty during 1841 * attachment to a dirty page. 1842 */ 1843 clear_buffer_dirty(bh); 1844 } 1845 } while ((bh = bh->b_this_page) != head); 1846 SetPageError(page); 1847 BUG_ON(PageWriteback(page)); 1848 mapping_set_error(page->mapping, err); 1849 set_page_writeback(page); 1850 do { 1851 struct buffer_head *next = bh->b_this_page; 1852 if (buffer_async_write(bh)) { 1853 clear_buffer_dirty(bh); 1854 submit_bh_wbc(write_op, bh, 0, wbc); 1855 nr_underway++; 1856 } 1857 bh = next; 1858 } while (bh != head); 1859 unlock_page(page); 1860 goto done; 1861 } 1862 1863 /* 1864 * If a page has any new buffers, zero them out here, and mark them uptodate 1865 * and dirty so they'll be written out (in order to prevent uninitialised 1866 * block data from leaking). And clear the new bit. 1867 */ 1868 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1869 { 1870 unsigned int block_start, block_end; 1871 struct buffer_head *head, *bh; 1872 1873 BUG_ON(!PageLocked(page)); 1874 if (!page_has_buffers(page)) 1875 return; 1876 1877 bh = head = page_buffers(page); 1878 block_start = 0; 1879 do { 1880 block_end = block_start + bh->b_size; 1881 1882 if (buffer_new(bh)) { 1883 if (block_end > from && block_start < to) { 1884 if (!PageUptodate(page)) { 1885 unsigned start, size; 1886 1887 start = max(from, block_start); 1888 size = min(to, block_end) - start; 1889 1890 zero_user(page, start, size); 1891 set_buffer_uptodate(bh); 1892 } 1893 1894 clear_buffer_new(bh); 1895 mark_buffer_dirty(bh); 1896 } 1897 } 1898 1899 block_start = block_end; 1900 bh = bh->b_this_page; 1901 } while (bh != head); 1902 } 1903 EXPORT_SYMBOL(page_zero_new_buffers); 1904 1905 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1906 get_block_t *get_block) 1907 { 1908 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1909 unsigned to = from + len; 1910 struct inode *inode = page->mapping->host; 1911 unsigned block_start, block_end; 1912 sector_t block; 1913 int err = 0; 1914 unsigned blocksize, bbits; 1915 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1916 1917 BUG_ON(!PageLocked(page)); 1918 BUG_ON(from > PAGE_CACHE_SIZE); 1919 BUG_ON(to > PAGE_CACHE_SIZE); 1920 BUG_ON(from > to); 1921 1922 head = create_page_buffers(page, inode, 0); 1923 blocksize = head->b_size; 1924 bbits = block_size_bits(blocksize); 1925 1926 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1927 1928 for(bh = head, block_start = 0; bh != head || !block_start; 1929 block++, block_start=block_end, bh = bh->b_this_page) { 1930 block_end = block_start + blocksize; 1931 if (block_end <= from || block_start >= to) { 1932 if (PageUptodate(page)) { 1933 if (!buffer_uptodate(bh)) 1934 set_buffer_uptodate(bh); 1935 } 1936 continue; 1937 } 1938 if (buffer_new(bh)) 1939 clear_buffer_new(bh); 1940 if (!buffer_mapped(bh)) { 1941 WARN_ON(bh->b_size != blocksize); 1942 err = get_block(inode, block, bh, 1); 1943 if (err) 1944 break; 1945 if (buffer_new(bh)) { 1946 unmap_underlying_metadata(bh->b_bdev, 1947 bh->b_blocknr); 1948 if (PageUptodate(page)) { 1949 clear_buffer_new(bh); 1950 set_buffer_uptodate(bh); 1951 mark_buffer_dirty(bh); 1952 continue; 1953 } 1954 if (block_end > to || block_start < from) 1955 zero_user_segments(page, 1956 to, block_end, 1957 block_start, from); 1958 continue; 1959 } 1960 } 1961 if (PageUptodate(page)) { 1962 if (!buffer_uptodate(bh)) 1963 set_buffer_uptodate(bh); 1964 continue; 1965 } 1966 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1967 !buffer_unwritten(bh) && 1968 (block_start < from || block_end > to)) { 1969 ll_rw_block(READ, 1, &bh); 1970 *wait_bh++=bh; 1971 } 1972 } 1973 /* 1974 * If we issued read requests - let them complete. 1975 */ 1976 while(wait_bh > wait) { 1977 wait_on_buffer(*--wait_bh); 1978 if (!buffer_uptodate(*wait_bh)) 1979 err = -EIO; 1980 } 1981 if (unlikely(err)) 1982 page_zero_new_buffers(page, from, to); 1983 return err; 1984 } 1985 EXPORT_SYMBOL(__block_write_begin); 1986 1987 static int __block_commit_write(struct inode *inode, struct page *page, 1988 unsigned from, unsigned to) 1989 { 1990 unsigned block_start, block_end; 1991 int partial = 0; 1992 unsigned blocksize; 1993 struct buffer_head *bh, *head; 1994 1995 bh = head = page_buffers(page); 1996 blocksize = bh->b_size; 1997 1998 block_start = 0; 1999 do { 2000 block_end = block_start + blocksize; 2001 if (block_end <= from || block_start >= to) { 2002 if (!buffer_uptodate(bh)) 2003 partial = 1; 2004 } else { 2005 set_buffer_uptodate(bh); 2006 mark_buffer_dirty(bh); 2007 } 2008 clear_buffer_new(bh); 2009 2010 block_start = block_end; 2011 bh = bh->b_this_page; 2012 } while (bh != head); 2013 2014 /* 2015 * If this is a partial write which happened to make all buffers 2016 * uptodate then we can optimize away a bogus readpage() for 2017 * the next read(). Here we 'discover' whether the page went 2018 * uptodate as a result of this (potentially partial) write. 2019 */ 2020 if (!partial) 2021 SetPageUptodate(page); 2022 return 0; 2023 } 2024 2025 /* 2026 * block_write_begin takes care of the basic task of block allocation and 2027 * bringing partial write blocks uptodate first. 2028 * 2029 * The filesystem needs to handle block truncation upon failure. 2030 */ 2031 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2032 unsigned flags, struct page **pagep, get_block_t *get_block) 2033 { 2034 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2035 struct page *page; 2036 int status; 2037 2038 page = grab_cache_page_write_begin(mapping, index, flags); 2039 if (!page) 2040 return -ENOMEM; 2041 2042 status = __block_write_begin(page, pos, len, get_block); 2043 if (unlikely(status)) { 2044 unlock_page(page); 2045 page_cache_release(page); 2046 page = NULL; 2047 } 2048 2049 *pagep = page; 2050 return status; 2051 } 2052 EXPORT_SYMBOL(block_write_begin); 2053 2054 int block_write_end(struct file *file, struct address_space *mapping, 2055 loff_t pos, unsigned len, unsigned copied, 2056 struct page *page, void *fsdata) 2057 { 2058 struct inode *inode = mapping->host; 2059 unsigned start; 2060 2061 start = pos & (PAGE_CACHE_SIZE - 1); 2062 2063 if (unlikely(copied < len)) { 2064 /* 2065 * The buffers that were written will now be uptodate, so we 2066 * don't have to worry about a readpage reading them and 2067 * overwriting a partial write. However if we have encountered 2068 * a short write and only partially written into a buffer, it 2069 * will not be marked uptodate, so a readpage might come in and 2070 * destroy our partial write. 2071 * 2072 * Do the simplest thing, and just treat any short write to a 2073 * non uptodate page as a zero-length write, and force the 2074 * caller to redo the whole thing. 2075 */ 2076 if (!PageUptodate(page)) 2077 copied = 0; 2078 2079 page_zero_new_buffers(page, start+copied, start+len); 2080 } 2081 flush_dcache_page(page); 2082 2083 /* This could be a short (even 0-length) commit */ 2084 __block_commit_write(inode, page, start, start+copied); 2085 2086 return copied; 2087 } 2088 EXPORT_SYMBOL(block_write_end); 2089 2090 int generic_write_end(struct file *file, struct address_space *mapping, 2091 loff_t pos, unsigned len, unsigned copied, 2092 struct page *page, void *fsdata) 2093 { 2094 struct inode *inode = mapping->host; 2095 loff_t old_size = inode->i_size; 2096 int i_size_changed = 0; 2097 2098 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2099 2100 /* 2101 * No need to use i_size_read() here, the i_size 2102 * cannot change under us because we hold i_mutex. 2103 * 2104 * But it's important to update i_size while still holding page lock: 2105 * page writeout could otherwise come in and zero beyond i_size. 2106 */ 2107 if (pos+copied > inode->i_size) { 2108 i_size_write(inode, pos+copied); 2109 i_size_changed = 1; 2110 } 2111 2112 unlock_page(page); 2113 page_cache_release(page); 2114 2115 if (old_size < pos) 2116 pagecache_isize_extended(inode, old_size, pos); 2117 /* 2118 * Don't mark the inode dirty under page lock. First, it unnecessarily 2119 * makes the holding time of page lock longer. Second, it forces lock 2120 * ordering of page lock and transaction start for journaling 2121 * filesystems. 2122 */ 2123 if (i_size_changed) 2124 mark_inode_dirty(inode); 2125 2126 return copied; 2127 } 2128 EXPORT_SYMBOL(generic_write_end); 2129 2130 /* 2131 * block_is_partially_uptodate checks whether buffers within a page are 2132 * uptodate or not. 2133 * 2134 * Returns true if all buffers which correspond to a file portion 2135 * we want to read are uptodate. 2136 */ 2137 int block_is_partially_uptodate(struct page *page, unsigned long from, 2138 unsigned long count) 2139 { 2140 unsigned block_start, block_end, blocksize; 2141 unsigned to; 2142 struct buffer_head *bh, *head; 2143 int ret = 1; 2144 2145 if (!page_has_buffers(page)) 2146 return 0; 2147 2148 head = page_buffers(page); 2149 blocksize = head->b_size; 2150 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count); 2151 to = from + to; 2152 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2153 return 0; 2154 2155 bh = head; 2156 block_start = 0; 2157 do { 2158 block_end = block_start + blocksize; 2159 if (block_end > from && block_start < to) { 2160 if (!buffer_uptodate(bh)) { 2161 ret = 0; 2162 break; 2163 } 2164 if (block_end >= to) 2165 break; 2166 } 2167 block_start = block_end; 2168 bh = bh->b_this_page; 2169 } while (bh != head); 2170 2171 return ret; 2172 } 2173 EXPORT_SYMBOL(block_is_partially_uptodate); 2174 2175 /* 2176 * Generic "read page" function for block devices that have the normal 2177 * get_block functionality. This is most of the block device filesystems. 2178 * Reads the page asynchronously --- the unlock_buffer() and 2179 * set/clear_buffer_uptodate() functions propagate buffer state into the 2180 * page struct once IO has completed. 2181 */ 2182 int block_read_full_page(struct page *page, get_block_t *get_block) 2183 { 2184 struct inode *inode = page->mapping->host; 2185 sector_t iblock, lblock; 2186 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2187 unsigned int blocksize, bbits; 2188 int nr, i; 2189 int fully_mapped = 1; 2190 2191 head = create_page_buffers(page, inode, 0); 2192 blocksize = head->b_size; 2193 bbits = block_size_bits(blocksize); 2194 2195 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 2196 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2197 bh = head; 2198 nr = 0; 2199 i = 0; 2200 2201 do { 2202 if (buffer_uptodate(bh)) 2203 continue; 2204 2205 if (!buffer_mapped(bh)) { 2206 int err = 0; 2207 2208 fully_mapped = 0; 2209 if (iblock < lblock) { 2210 WARN_ON(bh->b_size != blocksize); 2211 err = get_block(inode, iblock, bh, 0); 2212 if (err) 2213 SetPageError(page); 2214 } 2215 if (!buffer_mapped(bh)) { 2216 zero_user(page, i * blocksize, blocksize); 2217 if (!err) 2218 set_buffer_uptodate(bh); 2219 continue; 2220 } 2221 /* 2222 * get_block() might have updated the buffer 2223 * synchronously 2224 */ 2225 if (buffer_uptodate(bh)) 2226 continue; 2227 } 2228 arr[nr++] = bh; 2229 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2230 2231 if (fully_mapped) 2232 SetPageMappedToDisk(page); 2233 2234 if (!nr) { 2235 /* 2236 * All buffers are uptodate - we can set the page uptodate 2237 * as well. But not if get_block() returned an error. 2238 */ 2239 if (!PageError(page)) 2240 SetPageUptodate(page); 2241 unlock_page(page); 2242 return 0; 2243 } 2244 2245 /* Stage two: lock the buffers */ 2246 for (i = 0; i < nr; i++) { 2247 bh = arr[i]; 2248 lock_buffer(bh); 2249 mark_buffer_async_read(bh); 2250 } 2251 2252 /* 2253 * Stage 3: start the IO. Check for uptodateness 2254 * inside the buffer lock in case another process reading 2255 * the underlying blockdev brought it uptodate (the sct fix). 2256 */ 2257 for (i = 0; i < nr; i++) { 2258 bh = arr[i]; 2259 if (buffer_uptodate(bh)) 2260 end_buffer_async_read(bh, 1); 2261 else 2262 submit_bh(READ, bh); 2263 } 2264 return 0; 2265 } 2266 EXPORT_SYMBOL(block_read_full_page); 2267 2268 /* utility function for filesystems that need to do work on expanding 2269 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2270 * deal with the hole. 2271 */ 2272 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2273 { 2274 struct address_space *mapping = inode->i_mapping; 2275 struct page *page; 2276 void *fsdata; 2277 int err; 2278 2279 err = inode_newsize_ok(inode, size); 2280 if (err) 2281 goto out; 2282 2283 err = pagecache_write_begin(NULL, mapping, size, 0, 2284 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2285 &page, &fsdata); 2286 if (err) 2287 goto out; 2288 2289 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2290 BUG_ON(err > 0); 2291 2292 out: 2293 return err; 2294 } 2295 EXPORT_SYMBOL(generic_cont_expand_simple); 2296 2297 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2298 loff_t pos, loff_t *bytes) 2299 { 2300 struct inode *inode = mapping->host; 2301 unsigned blocksize = 1 << inode->i_blkbits; 2302 struct page *page; 2303 void *fsdata; 2304 pgoff_t index, curidx; 2305 loff_t curpos; 2306 unsigned zerofrom, offset, len; 2307 int err = 0; 2308 2309 index = pos >> PAGE_CACHE_SHIFT; 2310 offset = pos & ~PAGE_CACHE_MASK; 2311 2312 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2313 zerofrom = curpos & ~PAGE_CACHE_MASK; 2314 if (zerofrom & (blocksize-1)) { 2315 *bytes |= (blocksize-1); 2316 (*bytes)++; 2317 } 2318 len = PAGE_CACHE_SIZE - zerofrom; 2319 2320 err = pagecache_write_begin(file, mapping, curpos, len, 2321 AOP_FLAG_UNINTERRUPTIBLE, 2322 &page, &fsdata); 2323 if (err) 2324 goto out; 2325 zero_user(page, zerofrom, len); 2326 err = pagecache_write_end(file, mapping, curpos, len, len, 2327 page, fsdata); 2328 if (err < 0) 2329 goto out; 2330 BUG_ON(err != len); 2331 err = 0; 2332 2333 balance_dirty_pages_ratelimited(mapping); 2334 2335 if (unlikely(fatal_signal_pending(current))) { 2336 err = -EINTR; 2337 goto out; 2338 } 2339 } 2340 2341 /* page covers the boundary, find the boundary offset */ 2342 if (index == curidx) { 2343 zerofrom = curpos & ~PAGE_CACHE_MASK; 2344 /* if we will expand the thing last block will be filled */ 2345 if (offset <= zerofrom) { 2346 goto out; 2347 } 2348 if (zerofrom & (blocksize-1)) { 2349 *bytes |= (blocksize-1); 2350 (*bytes)++; 2351 } 2352 len = offset - zerofrom; 2353 2354 err = pagecache_write_begin(file, mapping, curpos, len, 2355 AOP_FLAG_UNINTERRUPTIBLE, 2356 &page, &fsdata); 2357 if (err) 2358 goto out; 2359 zero_user(page, zerofrom, len); 2360 err = pagecache_write_end(file, mapping, curpos, len, len, 2361 page, fsdata); 2362 if (err < 0) 2363 goto out; 2364 BUG_ON(err != len); 2365 err = 0; 2366 } 2367 out: 2368 return err; 2369 } 2370 2371 /* 2372 * For moronic filesystems that do not allow holes in file. 2373 * We may have to extend the file. 2374 */ 2375 int cont_write_begin(struct file *file, struct address_space *mapping, 2376 loff_t pos, unsigned len, unsigned flags, 2377 struct page **pagep, void **fsdata, 2378 get_block_t *get_block, loff_t *bytes) 2379 { 2380 struct inode *inode = mapping->host; 2381 unsigned blocksize = 1 << inode->i_blkbits; 2382 unsigned zerofrom; 2383 int err; 2384 2385 err = cont_expand_zero(file, mapping, pos, bytes); 2386 if (err) 2387 return err; 2388 2389 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2390 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2391 *bytes |= (blocksize-1); 2392 (*bytes)++; 2393 } 2394 2395 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2396 } 2397 EXPORT_SYMBOL(cont_write_begin); 2398 2399 int block_commit_write(struct page *page, unsigned from, unsigned to) 2400 { 2401 struct inode *inode = page->mapping->host; 2402 __block_commit_write(inode,page,from,to); 2403 return 0; 2404 } 2405 EXPORT_SYMBOL(block_commit_write); 2406 2407 /* 2408 * block_page_mkwrite() is not allowed to change the file size as it gets 2409 * called from a page fault handler when a page is first dirtied. Hence we must 2410 * be careful to check for EOF conditions here. We set the page up correctly 2411 * for a written page which means we get ENOSPC checking when writing into 2412 * holes and correct delalloc and unwritten extent mapping on filesystems that 2413 * support these features. 2414 * 2415 * We are not allowed to take the i_mutex here so we have to play games to 2416 * protect against truncate races as the page could now be beyond EOF. Because 2417 * truncate writes the inode size before removing pages, once we have the 2418 * page lock we can determine safely if the page is beyond EOF. If it is not 2419 * beyond EOF, then the page is guaranteed safe against truncation until we 2420 * unlock the page. 2421 * 2422 * Direct callers of this function should protect against filesystem freezing 2423 * using sb_start_write() - sb_end_write() functions. 2424 */ 2425 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2426 get_block_t get_block) 2427 { 2428 struct page *page = vmf->page; 2429 struct inode *inode = file_inode(vma->vm_file); 2430 unsigned long end; 2431 loff_t size; 2432 int ret; 2433 2434 lock_page(page); 2435 size = i_size_read(inode); 2436 if ((page->mapping != inode->i_mapping) || 2437 (page_offset(page) > size)) { 2438 /* We overload EFAULT to mean page got truncated */ 2439 ret = -EFAULT; 2440 goto out_unlock; 2441 } 2442 2443 /* page is wholly or partially inside EOF */ 2444 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2445 end = size & ~PAGE_CACHE_MASK; 2446 else 2447 end = PAGE_CACHE_SIZE; 2448 2449 ret = __block_write_begin(page, 0, end, get_block); 2450 if (!ret) 2451 ret = block_commit_write(page, 0, end); 2452 2453 if (unlikely(ret < 0)) 2454 goto out_unlock; 2455 set_page_dirty(page); 2456 wait_for_stable_page(page); 2457 return 0; 2458 out_unlock: 2459 unlock_page(page); 2460 return ret; 2461 } 2462 EXPORT_SYMBOL(__block_page_mkwrite); 2463 2464 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2465 get_block_t get_block) 2466 { 2467 int ret; 2468 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 2469 2470 sb_start_pagefault(sb); 2471 2472 /* 2473 * Update file times before taking page lock. We may end up failing the 2474 * fault so this update may be superfluous but who really cares... 2475 */ 2476 file_update_time(vma->vm_file); 2477 2478 ret = __block_page_mkwrite(vma, vmf, get_block); 2479 sb_end_pagefault(sb); 2480 return block_page_mkwrite_return(ret); 2481 } 2482 EXPORT_SYMBOL(block_page_mkwrite); 2483 2484 /* 2485 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2486 * immediately, while under the page lock. So it needs a special end_io 2487 * handler which does not touch the bh after unlocking it. 2488 */ 2489 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2490 { 2491 __end_buffer_read_notouch(bh, uptodate); 2492 } 2493 2494 /* 2495 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2496 * the page (converting it to circular linked list and taking care of page 2497 * dirty races). 2498 */ 2499 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2500 { 2501 struct buffer_head *bh; 2502 2503 BUG_ON(!PageLocked(page)); 2504 2505 spin_lock(&page->mapping->private_lock); 2506 bh = head; 2507 do { 2508 if (PageDirty(page)) 2509 set_buffer_dirty(bh); 2510 if (!bh->b_this_page) 2511 bh->b_this_page = head; 2512 bh = bh->b_this_page; 2513 } while (bh != head); 2514 attach_page_buffers(page, head); 2515 spin_unlock(&page->mapping->private_lock); 2516 } 2517 2518 /* 2519 * On entry, the page is fully not uptodate. 2520 * On exit the page is fully uptodate in the areas outside (from,to) 2521 * The filesystem needs to handle block truncation upon failure. 2522 */ 2523 int nobh_write_begin(struct address_space *mapping, 2524 loff_t pos, unsigned len, unsigned flags, 2525 struct page **pagep, void **fsdata, 2526 get_block_t *get_block) 2527 { 2528 struct inode *inode = mapping->host; 2529 const unsigned blkbits = inode->i_blkbits; 2530 const unsigned blocksize = 1 << blkbits; 2531 struct buffer_head *head, *bh; 2532 struct page *page; 2533 pgoff_t index; 2534 unsigned from, to; 2535 unsigned block_in_page; 2536 unsigned block_start, block_end; 2537 sector_t block_in_file; 2538 int nr_reads = 0; 2539 int ret = 0; 2540 int is_mapped_to_disk = 1; 2541 2542 index = pos >> PAGE_CACHE_SHIFT; 2543 from = pos & (PAGE_CACHE_SIZE - 1); 2544 to = from + len; 2545 2546 page = grab_cache_page_write_begin(mapping, index, flags); 2547 if (!page) 2548 return -ENOMEM; 2549 *pagep = page; 2550 *fsdata = NULL; 2551 2552 if (page_has_buffers(page)) { 2553 ret = __block_write_begin(page, pos, len, get_block); 2554 if (unlikely(ret)) 2555 goto out_release; 2556 return ret; 2557 } 2558 2559 if (PageMappedToDisk(page)) 2560 return 0; 2561 2562 /* 2563 * Allocate buffers so that we can keep track of state, and potentially 2564 * attach them to the page if an error occurs. In the common case of 2565 * no error, they will just be freed again without ever being attached 2566 * to the page (which is all OK, because we're under the page lock). 2567 * 2568 * Be careful: the buffer linked list is a NULL terminated one, rather 2569 * than the circular one we're used to. 2570 */ 2571 head = alloc_page_buffers(page, blocksize, 0); 2572 if (!head) { 2573 ret = -ENOMEM; 2574 goto out_release; 2575 } 2576 2577 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2578 2579 /* 2580 * We loop across all blocks in the page, whether or not they are 2581 * part of the affected region. This is so we can discover if the 2582 * page is fully mapped-to-disk. 2583 */ 2584 for (block_start = 0, block_in_page = 0, bh = head; 2585 block_start < PAGE_CACHE_SIZE; 2586 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2587 int create; 2588 2589 block_end = block_start + blocksize; 2590 bh->b_state = 0; 2591 create = 1; 2592 if (block_start >= to) 2593 create = 0; 2594 ret = get_block(inode, block_in_file + block_in_page, 2595 bh, create); 2596 if (ret) 2597 goto failed; 2598 if (!buffer_mapped(bh)) 2599 is_mapped_to_disk = 0; 2600 if (buffer_new(bh)) 2601 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2602 if (PageUptodate(page)) { 2603 set_buffer_uptodate(bh); 2604 continue; 2605 } 2606 if (buffer_new(bh) || !buffer_mapped(bh)) { 2607 zero_user_segments(page, block_start, from, 2608 to, block_end); 2609 continue; 2610 } 2611 if (buffer_uptodate(bh)) 2612 continue; /* reiserfs does this */ 2613 if (block_start < from || block_end > to) { 2614 lock_buffer(bh); 2615 bh->b_end_io = end_buffer_read_nobh; 2616 submit_bh(READ, bh); 2617 nr_reads++; 2618 } 2619 } 2620 2621 if (nr_reads) { 2622 /* 2623 * The page is locked, so these buffers are protected from 2624 * any VM or truncate activity. Hence we don't need to care 2625 * for the buffer_head refcounts. 2626 */ 2627 for (bh = head; bh; bh = bh->b_this_page) { 2628 wait_on_buffer(bh); 2629 if (!buffer_uptodate(bh)) 2630 ret = -EIO; 2631 } 2632 if (ret) 2633 goto failed; 2634 } 2635 2636 if (is_mapped_to_disk) 2637 SetPageMappedToDisk(page); 2638 2639 *fsdata = head; /* to be released by nobh_write_end */ 2640 2641 return 0; 2642 2643 failed: 2644 BUG_ON(!ret); 2645 /* 2646 * Error recovery is a bit difficult. We need to zero out blocks that 2647 * were newly allocated, and dirty them to ensure they get written out. 2648 * Buffers need to be attached to the page at this point, otherwise 2649 * the handling of potential IO errors during writeout would be hard 2650 * (could try doing synchronous writeout, but what if that fails too?) 2651 */ 2652 attach_nobh_buffers(page, head); 2653 page_zero_new_buffers(page, from, to); 2654 2655 out_release: 2656 unlock_page(page); 2657 page_cache_release(page); 2658 *pagep = NULL; 2659 2660 return ret; 2661 } 2662 EXPORT_SYMBOL(nobh_write_begin); 2663 2664 int nobh_write_end(struct file *file, struct address_space *mapping, 2665 loff_t pos, unsigned len, unsigned copied, 2666 struct page *page, void *fsdata) 2667 { 2668 struct inode *inode = page->mapping->host; 2669 struct buffer_head *head = fsdata; 2670 struct buffer_head *bh; 2671 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2672 2673 if (unlikely(copied < len) && head) 2674 attach_nobh_buffers(page, head); 2675 if (page_has_buffers(page)) 2676 return generic_write_end(file, mapping, pos, len, 2677 copied, page, fsdata); 2678 2679 SetPageUptodate(page); 2680 set_page_dirty(page); 2681 if (pos+copied > inode->i_size) { 2682 i_size_write(inode, pos+copied); 2683 mark_inode_dirty(inode); 2684 } 2685 2686 unlock_page(page); 2687 page_cache_release(page); 2688 2689 while (head) { 2690 bh = head; 2691 head = head->b_this_page; 2692 free_buffer_head(bh); 2693 } 2694 2695 return copied; 2696 } 2697 EXPORT_SYMBOL(nobh_write_end); 2698 2699 /* 2700 * nobh_writepage() - based on block_full_write_page() except 2701 * that it tries to operate without attaching bufferheads to 2702 * the page. 2703 */ 2704 int nobh_writepage(struct page *page, get_block_t *get_block, 2705 struct writeback_control *wbc) 2706 { 2707 struct inode * const inode = page->mapping->host; 2708 loff_t i_size = i_size_read(inode); 2709 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2710 unsigned offset; 2711 int ret; 2712 2713 /* Is the page fully inside i_size? */ 2714 if (page->index < end_index) 2715 goto out; 2716 2717 /* Is the page fully outside i_size? (truncate in progress) */ 2718 offset = i_size & (PAGE_CACHE_SIZE-1); 2719 if (page->index >= end_index+1 || !offset) { 2720 /* 2721 * The page may have dirty, unmapped buffers. For example, 2722 * they may have been added in ext3_writepage(). Make them 2723 * freeable here, so the page does not leak. 2724 */ 2725 #if 0 2726 /* Not really sure about this - do we need this ? */ 2727 if (page->mapping->a_ops->invalidatepage) 2728 page->mapping->a_ops->invalidatepage(page, offset); 2729 #endif 2730 unlock_page(page); 2731 return 0; /* don't care */ 2732 } 2733 2734 /* 2735 * The page straddles i_size. It must be zeroed out on each and every 2736 * writepage invocation because it may be mmapped. "A file is mapped 2737 * in multiples of the page size. For a file that is not a multiple of 2738 * the page size, the remaining memory is zeroed when mapped, and 2739 * writes to that region are not written out to the file." 2740 */ 2741 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2742 out: 2743 ret = mpage_writepage(page, get_block, wbc); 2744 if (ret == -EAGAIN) 2745 ret = __block_write_full_page(inode, page, get_block, wbc, 2746 end_buffer_async_write); 2747 return ret; 2748 } 2749 EXPORT_SYMBOL(nobh_writepage); 2750 2751 int nobh_truncate_page(struct address_space *mapping, 2752 loff_t from, get_block_t *get_block) 2753 { 2754 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2755 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2756 unsigned blocksize; 2757 sector_t iblock; 2758 unsigned length, pos; 2759 struct inode *inode = mapping->host; 2760 struct page *page; 2761 struct buffer_head map_bh; 2762 int err; 2763 2764 blocksize = 1 << inode->i_blkbits; 2765 length = offset & (blocksize - 1); 2766 2767 /* Block boundary? Nothing to do */ 2768 if (!length) 2769 return 0; 2770 2771 length = blocksize - length; 2772 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2773 2774 page = grab_cache_page(mapping, index); 2775 err = -ENOMEM; 2776 if (!page) 2777 goto out; 2778 2779 if (page_has_buffers(page)) { 2780 has_buffers: 2781 unlock_page(page); 2782 page_cache_release(page); 2783 return block_truncate_page(mapping, from, get_block); 2784 } 2785 2786 /* Find the buffer that contains "offset" */ 2787 pos = blocksize; 2788 while (offset >= pos) { 2789 iblock++; 2790 pos += blocksize; 2791 } 2792 2793 map_bh.b_size = blocksize; 2794 map_bh.b_state = 0; 2795 err = get_block(inode, iblock, &map_bh, 0); 2796 if (err) 2797 goto unlock; 2798 /* unmapped? It's a hole - nothing to do */ 2799 if (!buffer_mapped(&map_bh)) 2800 goto unlock; 2801 2802 /* Ok, it's mapped. Make sure it's up-to-date */ 2803 if (!PageUptodate(page)) { 2804 err = mapping->a_ops->readpage(NULL, page); 2805 if (err) { 2806 page_cache_release(page); 2807 goto out; 2808 } 2809 lock_page(page); 2810 if (!PageUptodate(page)) { 2811 err = -EIO; 2812 goto unlock; 2813 } 2814 if (page_has_buffers(page)) 2815 goto has_buffers; 2816 } 2817 zero_user(page, offset, length); 2818 set_page_dirty(page); 2819 err = 0; 2820 2821 unlock: 2822 unlock_page(page); 2823 page_cache_release(page); 2824 out: 2825 return err; 2826 } 2827 EXPORT_SYMBOL(nobh_truncate_page); 2828 2829 int block_truncate_page(struct address_space *mapping, 2830 loff_t from, get_block_t *get_block) 2831 { 2832 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2833 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2834 unsigned blocksize; 2835 sector_t iblock; 2836 unsigned length, pos; 2837 struct inode *inode = mapping->host; 2838 struct page *page; 2839 struct buffer_head *bh; 2840 int err; 2841 2842 blocksize = 1 << inode->i_blkbits; 2843 length = offset & (blocksize - 1); 2844 2845 /* Block boundary? Nothing to do */ 2846 if (!length) 2847 return 0; 2848 2849 length = blocksize - length; 2850 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2851 2852 page = grab_cache_page(mapping, index); 2853 err = -ENOMEM; 2854 if (!page) 2855 goto out; 2856 2857 if (!page_has_buffers(page)) 2858 create_empty_buffers(page, blocksize, 0); 2859 2860 /* Find the buffer that contains "offset" */ 2861 bh = page_buffers(page); 2862 pos = blocksize; 2863 while (offset >= pos) { 2864 bh = bh->b_this_page; 2865 iblock++; 2866 pos += blocksize; 2867 } 2868 2869 err = 0; 2870 if (!buffer_mapped(bh)) { 2871 WARN_ON(bh->b_size != blocksize); 2872 err = get_block(inode, iblock, bh, 0); 2873 if (err) 2874 goto unlock; 2875 /* unmapped? It's a hole - nothing to do */ 2876 if (!buffer_mapped(bh)) 2877 goto unlock; 2878 } 2879 2880 /* Ok, it's mapped. Make sure it's up-to-date */ 2881 if (PageUptodate(page)) 2882 set_buffer_uptodate(bh); 2883 2884 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2885 err = -EIO; 2886 ll_rw_block(READ, 1, &bh); 2887 wait_on_buffer(bh); 2888 /* Uhhuh. Read error. Complain and punt. */ 2889 if (!buffer_uptodate(bh)) 2890 goto unlock; 2891 } 2892 2893 zero_user(page, offset, length); 2894 mark_buffer_dirty(bh); 2895 err = 0; 2896 2897 unlock: 2898 unlock_page(page); 2899 page_cache_release(page); 2900 out: 2901 return err; 2902 } 2903 EXPORT_SYMBOL(block_truncate_page); 2904 2905 /* 2906 * The generic ->writepage function for buffer-backed address_spaces 2907 */ 2908 int block_write_full_page(struct page *page, get_block_t *get_block, 2909 struct writeback_control *wbc) 2910 { 2911 struct inode * const inode = page->mapping->host; 2912 loff_t i_size = i_size_read(inode); 2913 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2914 unsigned offset; 2915 2916 /* Is the page fully inside i_size? */ 2917 if (page->index < end_index) 2918 return __block_write_full_page(inode, page, get_block, wbc, 2919 end_buffer_async_write); 2920 2921 /* Is the page fully outside i_size? (truncate in progress) */ 2922 offset = i_size & (PAGE_CACHE_SIZE-1); 2923 if (page->index >= end_index+1 || !offset) { 2924 /* 2925 * The page may have dirty, unmapped buffers. For example, 2926 * they may have been added in ext3_writepage(). Make them 2927 * freeable here, so the page does not leak. 2928 */ 2929 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 2930 unlock_page(page); 2931 return 0; /* don't care */ 2932 } 2933 2934 /* 2935 * The page straddles i_size. It must be zeroed out on each and every 2936 * writepage invocation because it may be mmapped. "A file is mapped 2937 * in multiples of the page size. For a file that is not a multiple of 2938 * the page size, the remaining memory is zeroed when mapped, and 2939 * writes to that region are not written out to the file." 2940 */ 2941 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2942 return __block_write_full_page(inode, page, get_block, wbc, 2943 end_buffer_async_write); 2944 } 2945 EXPORT_SYMBOL(block_write_full_page); 2946 2947 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2948 get_block_t *get_block) 2949 { 2950 struct buffer_head tmp; 2951 struct inode *inode = mapping->host; 2952 tmp.b_state = 0; 2953 tmp.b_blocknr = 0; 2954 tmp.b_size = 1 << inode->i_blkbits; 2955 get_block(inode, block, &tmp, 0); 2956 return tmp.b_blocknr; 2957 } 2958 EXPORT_SYMBOL(generic_block_bmap); 2959 2960 static void end_bio_bh_io_sync(struct bio *bio) 2961 { 2962 struct buffer_head *bh = bio->bi_private; 2963 2964 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2965 set_bit(BH_Quiet, &bh->b_state); 2966 2967 bh->b_end_io(bh, !bio->bi_error); 2968 bio_put(bio); 2969 } 2970 2971 /* 2972 * This allows us to do IO even on the odd last sectors 2973 * of a device, even if the block size is some multiple 2974 * of the physical sector size. 2975 * 2976 * We'll just truncate the bio to the size of the device, 2977 * and clear the end of the buffer head manually. 2978 * 2979 * Truly out-of-range accesses will turn into actual IO 2980 * errors, this only handles the "we need to be able to 2981 * do IO at the final sector" case. 2982 */ 2983 void guard_bio_eod(int rw, struct bio *bio) 2984 { 2985 sector_t maxsector; 2986 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 2987 unsigned truncated_bytes; 2988 2989 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 2990 if (!maxsector) 2991 return; 2992 2993 /* 2994 * If the *whole* IO is past the end of the device, 2995 * let it through, and the IO layer will turn it into 2996 * an EIO. 2997 */ 2998 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 2999 return; 3000 3001 maxsector -= bio->bi_iter.bi_sector; 3002 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3003 return; 3004 3005 /* Uhhuh. We've got a bio that straddles the device size! */ 3006 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3007 3008 /* Truncate the bio.. */ 3009 bio->bi_iter.bi_size -= truncated_bytes; 3010 bvec->bv_len -= truncated_bytes; 3011 3012 /* ..and clear the end of the buffer for reads */ 3013 if ((rw & RW_MASK) == READ) { 3014 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 3015 truncated_bytes); 3016 } 3017 } 3018 3019 static int submit_bh_wbc(int rw, struct buffer_head *bh, 3020 unsigned long bio_flags, struct writeback_control *wbc) 3021 { 3022 struct bio *bio; 3023 3024 BUG_ON(!buffer_locked(bh)); 3025 BUG_ON(!buffer_mapped(bh)); 3026 BUG_ON(!bh->b_end_io); 3027 BUG_ON(buffer_delay(bh)); 3028 BUG_ON(buffer_unwritten(bh)); 3029 3030 /* 3031 * Only clear out a write error when rewriting 3032 */ 3033 if (test_set_buffer_req(bh) && (rw & WRITE)) 3034 clear_buffer_write_io_error(bh); 3035 3036 /* 3037 * from here on down, it's all bio -- do the initial mapping, 3038 * submit_bio -> generic_make_request may further map this bio around 3039 */ 3040 bio = bio_alloc(GFP_NOIO, 1); 3041 3042 if (wbc) { 3043 wbc_init_bio(wbc, bio); 3044 wbc_account_io(wbc, bh->b_page, bh->b_size); 3045 } 3046 3047 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3048 bio->bi_bdev = bh->b_bdev; 3049 3050 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3051 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3052 3053 bio->bi_end_io = end_bio_bh_io_sync; 3054 bio->bi_private = bh; 3055 bio->bi_flags |= bio_flags; 3056 3057 /* Take care of bh's that straddle the end of the device */ 3058 guard_bio_eod(rw, bio); 3059 3060 if (buffer_meta(bh)) 3061 rw |= REQ_META; 3062 if (buffer_prio(bh)) 3063 rw |= REQ_PRIO; 3064 3065 submit_bio(rw, bio); 3066 return 0; 3067 } 3068 3069 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags) 3070 { 3071 return submit_bh_wbc(rw, bh, bio_flags, NULL); 3072 } 3073 EXPORT_SYMBOL_GPL(_submit_bh); 3074 3075 int submit_bh(int rw, struct buffer_head *bh) 3076 { 3077 return submit_bh_wbc(rw, bh, 0, NULL); 3078 } 3079 EXPORT_SYMBOL(submit_bh); 3080 3081 /** 3082 * ll_rw_block: low-level access to block devices (DEPRECATED) 3083 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 3084 * @nr: number of &struct buffer_heads in the array 3085 * @bhs: array of pointers to &struct buffer_head 3086 * 3087 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3088 * requests an I/O operation on them, either a %READ or a %WRITE. The third 3089 * %READA option is described in the documentation for generic_make_request() 3090 * which ll_rw_block() calls. 3091 * 3092 * This function drops any buffer that it cannot get a lock on (with the 3093 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3094 * request, and any buffer that appears to be up-to-date when doing read 3095 * request. Further it marks as clean buffers that are processed for 3096 * writing (the buffer cache won't assume that they are actually clean 3097 * until the buffer gets unlocked). 3098 * 3099 * ll_rw_block sets b_end_io to simple completion handler that marks 3100 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3101 * any waiters. 3102 * 3103 * All of the buffers must be for the same device, and must also be a 3104 * multiple of the current approved size for the device. 3105 */ 3106 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 3107 { 3108 int i; 3109 3110 for (i = 0; i < nr; i++) { 3111 struct buffer_head *bh = bhs[i]; 3112 3113 if (!trylock_buffer(bh)) 3114 continue; 3115 if (rw == WRITE) { 3116 if (test_clear_buffer_dirty(bh)) { 3117 bh->b_end_io = end_buffer_write_sync; 3118 get_bh(bh); 3119 submit_bh(WRITE, bh); 3120 continue; 3121 } 3122 } else { 3123 if (!buffer_uptodate(bh)) { 3124 bh->b_end_io = end_buffer_read_sync; 3125 get_bh(bh); 3126 submit_bh(rw, bh); 3127 continue; 3128 } 3129 } 3130 unlock_buffer(bh); 3131 } 3132 } 3133 EXPORT_SYMBOL(ll_rw_block); 3134 3135 void write_dirty_buffer(struct buffer_head *bh, int rw) 3136 { 3137 lock_buffer(bh); 3138 if (!test_clear_buffer_dirty(bh)) { 3139 unlock_buffer(bh); 3140 return; 3141 } 3142 bh->b_end_io = end_buffer_write_sync; 3143 get_bh(bh); 3144 submit_bh(rw, bh); 3145 } 3146 EXPORT_SYMBOL(write_dirty_buffer); 3147 3148 /* 3149 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3150 * and then start new I/O and then wait upon it. The caller must have a ref on 3151 * the buffer_head. 3152 */ 3153 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3154 { 3155 int ret = 0; 3156 3157 WARN_ON(atomic_read(&bh->b_count) < 1); 3158 lock_buffer(bh); 3159 if (test_clear_buffer_dirty(bh)) { 3160 get_bh(bh); 3161 bh->b_end_io = end_buffer_write_sync; 3162 ret = submit_bh(rw, bh); 3163 wait_on_buffer(bh); 3164 if (!ret && !buffer_uptodate(bh)) 3165 ret = -EIO; 3166 } else { 3167 unlock_buffer(bh); 3168 } 3169 return ret; 3170 } 3171 EXPORT_SYMBOL(__sync_dirty_buffer); 3172 3173 int sync_dirty_buffer(struct buffer_head *bh) 3174 { 3175 return __sync_dirty_buffer(bh, WRITE_SYNC); 3176 } 3177 EXPORT_SYMBOL(sync_dirty_buffer); 3178 3179 /* 3180 * try_to_free_buffers() checks if all the buffers on this particular page 3181 * are unused, and releases them if so. 3182 * 3183 * Exclusion against try_to_free_buffers may be obtained by either 3184 * locking the page or by holding its mapping's private_lock. 3185 * 3186 * If the page is dirty but all the buffers are clean then we need to 3187 * be sure to mark the page clean as well. This is because the page 3188 * may be against a block device, and a later reattachment of buffers 3189 * to a dirty page will set *all* buffers dirty. Which would corrupt 3190 * filesystem data on the same device. 3191 * 3192 * The same applies to regular filesystem pages: if all the buffers are 3193 * clean then we set the page clean and proceed. To do that, we require 3194 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3195 * private_lock. 3196 * 3197 * try_to_free_buffers() is non-blocking. 3198 */ 3199 static inline int buffer_busy(struct buffer_head *bh) 3200 { 3201 return atomic_read(&bh->b_count) | 3202 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3203 } 3204 3205 static int 3206 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3207 { 3208 struct buffer_head *head = page_buffers(page); 3209 struct buffer_head *bh; 3210 3211 bh = head; 3212 do { 3213 if (buffer_write_io_error(bh) && page->mapping) 3214 set_bit(AS_EIO, &page->mapping->flags); 3215 if (buffer_busy(bh)) 3216 goto failed; 3217 bh = bh->b_this_page; 3218 } while (bh != head); 3219 3220 do { 3221 struct buffer_head *next = bh->b_this_page; 3222 3223 if (bh->b_assoc_map) 3224 __remove_assoc_queue(bh); 3225 bh = next; 3226 } while (bh != head); 3227 *buffers_to_free = head; 3228 __clear_page_buffers(page); 3229 return 1; 3230 failed: 3231 return 0; 3232 } 3233 3234 int try_to_free_buffers(struct page *page) 3235 { 3236 struct address_space * const mapping = page->mapping; 3237 struct buffer_head *buffers_to_free = NULL; 3238 int ret = 0; 3239 3240 BUG_ON(!PageLocked(page)); 3241 if (PageWriteback(page)) 3242 return 0; 3243 3244 if (mapping == NULL) { /* can this still happen? */ 3245 ret = drop_buffers(page, &buffers_to_free); 3246 goto out; 3247 } 3248 3249 spin_lock(&mapping->private_lock); 3250 ret = drop_buffers(page, &buffers_to_free); 3251 3252 /* 3253 * If the filesystem writes its buffers by hand (eg ext3) 3254 * then we can have clean buffers against a dirty page. We 3255 * clean the page here; otherwise the VM will never notice 3256 * that the filesystem did any IO at all. 3257 * 3258 * Also, during truncate, discard_buffer will have marked all 3259 * the page's buffers clean. We discover that here and clean 3260 * the page also. 3261 * 3262 * private_lock must be held over this entire operation in order 3263 * to synchronise against __set_page_dirty_buffers and prevent the 3264 * dirty bit from being lost. 3265 */ 3266 if (ret) 3267 cancel_dirty_page(page); 3268 spin_unlock(&mapping->private_lock); 3269 out: 3270 if (buffers_to_free) { 3271 struct buffer_head *bh = buffers_to_free; 3272 3273 do { 3274 struct buffer_head *next = bh->b_this_page; 3275 free_buffer_head(bh); 3276 bh = next; 3277 } while (bh != buffers_to_free); 3278 } 3279 return ret; 3280 } 3281 EXPORT_SYMBOL(try_to_free_buffers); 3282 3283 /* 3284 * There are no bdflush tunables left. But distributions are 3285 * still running obsolete flush daemons, so we terminate them here. 3286 * 3287 * Use of bdflush() is deprecated and will be removed in a future kernel. 3288 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3289 */ 3290 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3291 { 3292 static int msg_count; 3293 3294 if (!capable(CAP_SYS_ADMIN)) 3295 return -EPERM; 3296 3297 if (msg_count < 5) { 3298 msg_count++; 3299 printk(KERN_INFO 3300 "warning: process `%s' used the obsolete bdflush" 3301 " system call\n", current->comm); 3302 printk(KERN_INFO "Fix your initscripts?\n"); 3303 } 3304 3305 if (func == 1) 3306 do_exit(0); 3307 return 0; 3308 } 3309 3310 /* 3311 * Buffer-head allocation 3312 */ 3313 static struct kmem_cache *bh_cachep __read_mostly; 3314 3315 /* 3316 * Once the number of bh's in the machine exceeds this level, we start 3317 * stripping them in writeback. 3318 */ 3319 static unsigned long max_buffer_heads; 3320 3321 int buffer_heads_over_limit; 3322 3323 struct bh_accounting { 3324 int nr; /* Number of live bh's */ 3325 int ratelimit; /* Limit cacheline bouncing */ 3326 }; 3327 3328 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3329 3330 static void recalc_bh_state(void) 3331 { 3332 int i; 3333 int tot = 0; 3334 3335 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3336 return; 3337 __this_cpu_write(bh_accounting.ratelimit, 0); 3338 for_each_online_cpu(i) 3339 tot += per_cpu(bh_accounting, i).nr; 3340 buffer_heads_over_limit = (tot > max_buffer_heads); 3341 } 3342 3343 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3344 { 3345 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3346 if (ret) { 3347 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3348 preempt_disable(); 3349 __this_cpu_inc(bh_accounting.nr); 3350 recalc_bh_state(); 3351 preempt_enable(); 3352 } 3353 return ret; 3354 } 3355 EXPORT_SYMBOL(alloc_buffer_head); 3356 3357 void free_buffer_head(struct buffer_head *bh) 3358 { 3359 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3360 kmem_cache_free(bh_cachep, bh); 3361 preempt_disable(); 3362 __this_cpu_dec(bh_accounting.nr); 3363 recalc_bh_state(); 3364 preempt_enable(); 3365 } 3366 EXPORT_SYMBOL(free_buffer_head); 3367 3368 static void buffer_exit_cpu(int cpu) 3369 { 3370 int i; 3371 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3372 3373 for (i = 0; i < BH_LRU_SIZE; i++) { 3374 brelse(b->bhs[i]); 3375 b->bhs[i] = NULL; 3376 } 3377 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3378 per_cpu(bh_accounting, cpu).nr = 0; 3379 } 3380 3381 static int buffer_cpu_notify(struct notifier_block *self, 3382 unsigned long action, void *hcpu) 3383 { 3384 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3385 buffer_exit_cpu((unsigned long)hcpu); 3386 return NOTIFY_OK; 3387 } 3388 3389 /** 3390 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3391 * @bh: struct buffer_head 3392 * 3393 * Return true if the buffer is up-to-date and false, 3394 * with the buffer locked, if not. 3395 */ 3396 int bh_uptodate_or_lock(struct buffer_head *bh) 3397 { 3398 if (!buffer_uptodate(bh)) { 3399 lock_buffer(bh); 3400 if (!buffer_uptodate(bh)) 3401 return 0; 3402 unlock_buffer(bh); 3403 } 3404 return 1; 3405 } 3406 EXPORT_SYMBOL(bh_uptodate_or_lock); 3407 3408 /** 3409 * bh_submit_read - Submit a locked buffer for reading 3410 * @bh: struct buffer_head 3411 * 3412 * Returns zero on success and -EIO on error. 3413 */ 3414 int bh_submit_read(struct buffer_head *bh) 3415 { 3416 BUG_ON(!buffer_locked(bh)); 3417 3418 if (buffer_uptodate(bh)) { 3419 unlock_buffer(bh); 3420 return 0; 3421 } 3422 3423 get_bh(bh); 3424 bh->b_end_io = end_buffer_read_sync; 3425 submit_bh(READ, bh); 3426 wait_on_buffer(bh); 3427 if (buffer_uptodate(bh)) 3428 return 0; 3429 return -EIO; 3430 } 3431 EXPORT_SYMBOL(bh_submit_read); 3432 3433 void __init buffer_init(void) 3434 { 3435 unsigned long nrpages; 3436 3437 bh_cachep = kmem_cache_create("buffer_head", 3438 sizeof(struct buffer_head), 0, 3439 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3440 SLAB_MEM_SPREAD), 3441 NULL); 3442 3443 /* 3444 * Limit the bh occupancy to 10% of ZONE_NORMAL 3445 */ 3446 nrpages = (nr_free_buffer_pages() * 10) / 100; 3447 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3448 hotcpu_notifier(buffer_cpu_notify, 0); 3449 } 3450