xref: /linux/fs/buffer.c (revision cc04a46f11ea046ed53e2c832ae29e4790f7e35f)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/backing-dev.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45 #include <trace/events/block.h>
46 
47 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
48 static int submit_bh_wbc(int rw, struct buffer_head *bh,
49 			 unsigned long bio_flags,
50 			 struct writeback_control *wbc);
51 
52 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
53 
54 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
55 {
56 	bh->b_end_io = handler;
57 	bh->b_private = private;
58 }
59 EXPORT_SYMBOL(init_buffer);
60 
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63 	trace_block_touch_buffer(bh);
64 	mark_page_accessed(bh->b_page);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67 
68 void __lock_buffer(struct buffer_head *bh)
69 {
70 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73 
74 void unlock_buffer(struct buffer_head *bh)
75 {
76 	clear_bit_unlock(BH_Lock, &bh->b_state);
77 	smp_mb__after_atomic();
78 	wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81 
82 /*
83  * Returns if the page has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the PageDirty information is stale. If
85  * any of the pages are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct page *page,
88 				     bool *dirty, bool *writeback)
89 {
90 	struct buffer_head *head, *bh;
91 	*dirty = false;
92 	*writeback = false;
93 
94 	BUG_ON(!PageLocked(page));
95 
96 	if (!page_has_buffers(page))
97 		return;
98 
99 	if (PageWriteback(page))
100 		*writeback = true;
101 
102 	head = page_buffers(page);
103 	bh = head;
104 	do {
105 		if (buffer_locked(bh))
106 			*writeback = true;
107 
108 		if (buffer_dirty(bh))
109 			*dirty = true;
110 
111 		bh = bh->b_this_page;
112 	} while (bh != head);
113 }
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void
128 __clear_page_buffers(struct page *page)
129 {
130 	ClearPagePrivate(page);
131 	set_page_private(page, 0);
132 	page_cache_release(page);
133 }
134 
135 static void buffer_io_error(struct buffer_head *bh, char *msg)
136 {
137 	char b[BDEVNAME_SIZE];
138 
139 	if (!test_bit(BH_Quiet, &bh->b_state))
140 		printk_ratelimited(KERN_ERR
141 			"Buffer I/O error on dev %s, logical block %llu%s\n",
142 			bdevname(bh->b_bdev, b),
143 			(unsigned long long)bh->b_blocknr, msg);
144 }
145 
146 /*
147  * End-of-IO handler helper function which does not touch the bh after
148  * unlocking it.
149  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
150  * a race there is benign: unlock_buffer() only use the bh's address for
151  * hashing after unlocking the buffer, so it doesn't actually touch the bh
152  * itself.
153  */
154 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
155 {
156 	if (uptodate) {
157 		set_buffer_uptodate(bh);
158 	} else {
159 		/* This happens, due to failed READA attempts. */
160 		clear_buffer_uptodate(bh);
161 	}
162 	unlock_buffer(bh);
163 }
164 
165 /*
166  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
167  * unlock the buffer. This is what ll_rw_block uses too.
168  */
169 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
170 {
171 	__end_buffer_read_notouch(bh, uptodate);
172 	put_bh(bh);
173 }
174 EXPORT_SYMBOL(end_buffer_read_sync);
175 
176 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
177 {
178 	if (uptodate) {
179 		set_buffer_uptodate(bh);
180 	} else {
181 		buffer_io_error(bh, ", lost sync page write");
182 		set_buffer_write_io_error(bh);
183 		clear_buffer_uptodate(bh);
184 	}
185 	unlock_buffer(bh);
186 	put_bh(bh);
187 }
188 EXPORT_SYMBOL(end_buffer_write_sync);
189 
190 /*
191  * Various filesystems appear to want __find_get_block to be non-blocking.
192  * But it's the page lock which protects the buffers.  To get around this,
193  * we get exclusion from try_to_free_buffers with the blockdev mapping's
194  * private_lock.
195  *
196  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
197  * may be quite high.  This code could TryLock the page, and if that
198  * succeeds, there is no need to take private_lock. (But if
199  * private_lock is contended then so is mapping->tree_lock).
200  */
201 static struct buffer_head *
202 __find_get_block_slow(struct block_device *bdev, sector_t block)
203 {
204 	struct inode *bd_inode = bdev->bd_inode;
205 	struct address_space *bd_mapping = bd_inode->i_mapping;
206 	struct buffer_head *ret = NULL;
207 	pgoff_t index;
208 	struct buffer_head *bh;
209 	struct buffer_head *head;
210 	struct page *page;
211 	int all_mapped = 1;
212 
213 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
214 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
215 	if (!page)
216 		goto out;
217 
218 	spin_lock(&bd_mapping->private_lock);
219 	if (!page_has_buffers(page))
220 		goto out_unlock;
221 	head = page_buffers(page);
222 	bh = head;
223 	do {
224 		if (!buffer_mapped(bh))
225 			all_mapped = 0;
226 		else if (bh->b_blocknr == block) {
227 			ret = bh;
228 			get_bh(bh);
229 			goto out_unlock;
230 		}
231 		bh = bh->b_this_page;
232 	} while (bh != head);
233 
234 	/* we might be here because some of the buffers on this page are
235 	 * not mapped.  This is due to various races between
236 	 * file io on the block device and getblk.  It gets dealt with
237 	 * elsewhere, don't buffer_error if we had some unmapped buffers
238 	 */
239 	if (all_mapped) {
240 		char b[BDEVNAME_SIZE];
241 
242 		printk("__find_get_block_slow() failed. "
243 			"block=%llu, b_blocknr=%llu\n",
244 			(unsigned long long)block,
245 			(unsigned long long)bh->b_blocknr);
246 		printk("b_state=0x%08lx, b_size=%zu\n",
247 			bh->b_state, bh->b_size);
248 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
249 			1 << bd_inode->i_blkbits);
250 	}
251 out_unlock:
252 	spin_unlock(&bd_mapping->private_lock);
253 	page_cache_release(page);
254 out:
255 	return ret;
256 }
257 
258 /*
259  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
260  */
261 static void free_more_memory(void)
262 {
263 	struct zone *zone;
264 	int nid;
265 
266 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
267 	yield();
268 
269 	for_each_online_node(nid) {
270 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
271 						gfp_zone(GFP_NOFS), NULL,
272 						&zone);
273 		if (zone)
274 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
275 						GFP_NOFS, NULL);
276 	}
277 }
278 
279 /*
280  * I/O completion handler for block_read_full_page() - pages
281  * which come unlocked at the end of I/O.
282  */
283 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
284 {
285 	unsigned long flags;
286 	struct buffer_head *first;
287 	struct buffer_head *tmp;
288 	struct page *page;
289 	int page_uptodate = 1;
290 
291 	BUG_ON(!buffer_async_read(bh));
292 
293 	page = bh->b_page;
294 	if (uptodate) {
295 		set_buffer_uptodate(bh);
296 	} else {
297 		clear_buffer_uptodate(bh);
298 		buffer_io_error(bh, ", async page read");
299 		SetPageError(page);
300 	}
301 
302 	/*
303 	 * Be _very_ careful from here on. Bad things can happen if
304 	 * two buffer heads end IO at almost the same time and both
305 	 * decide that the page is now completely done.
306 	 */
307 	first = page_buffers(page);
308 	local_irq_save(flags);
309 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
310 	clear_buffer_async_read(bh);
311 	unlock_buffer(bh);
312 	tmp = bh;
313 	do {
314 		if (!buffer_uptodate(tmp))
315 			page_uptodate = 0;
316 		if (buffer_async_read(tmp)) {
317 			BUG_ON(!buffer_locked(tmp));
318 			goto still_busy;
319 		}
320 		tmp = tmp->b_this_page;
321 	} while (tmp != bh);
322 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
323 	local_irq_restore(flags);
324 
325 	/*
326 	 * If none of the buffers had errors and they are all
327 	 * uptodate then we can set the page uptodate.
328 	 */
329 	if (page_uptodate && !PageError(page))
330 		SetPageUptodate(page);
331 	unlock_page(page);
332 	return;
333 
334 still_busy:
335 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
336 	local_irq_restore(flags);
337 	return;
338 }
339 
340 /*
341  * Completion handler for block_write_full_page() - pages which are unlocked
342  * during I/O, and which have PageWriteback cleared upon I/O completion.
343  */
344 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
345 {
346 	unsigned long flags;
347 	struct buffer_head *first;
348 	struct buffer_head *tmp;
349 	struct page *page;
350 
351 	BUG_ON(!buffer_async_write(bh));
352 
353 	page = bh->b_page;
354 	if (uptodate) {
355 		set_buffer_uptodate(bh);
356 	} else {
357 		buffer_io_error(bh, ", lost async page write");
358 		set_bit(AS_EIO, &page->mapping->flags);
359 		set_buffer_write_io_error(bh);
360 		clear_buffer_uptodate(bh);
361 		SetPageError(page);
362 	}
363 
364 	first = page_buffers(page);
365 	local_irq_save(flags);
366 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
367 
368 	clear_buffer_async_write(bh);
369 	unlock_buffer(bh);
370 	tmp = bh->b_this_page;
371 	while (tmp != bh) {
372 		if (buffer_async_write(tmp)) {
373 			BUG_ON(!buffer_locked(tmp));
374 			goto still_busy;
375 		}
376 		tmp = tmp->b_this_page;
377 	}
378 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
379 	local_irq_restore(flags);
380 	end_page_writeback(page);
381 	return;
382 
383 still_busy:
384 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
385 	local_irq_restore(flags);
386 	return;
387 }
388 EXPORT_SYMBOL(end_buffer_async_write);
389 
390 /*
391  * If a page's buffers are under async readin (end_buffer_async_read
392  * completion) then there is a possibility that another thread of
393  * control could lock one of the buffers after it has completed
394  * but while some of the other buffers have not completed.  This
395  * locked buffer would confuse end_buffer_async_read() into not unlocking
396  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
397  * that this buffer is not under async I/O.
398  *
399  * The page comes unlocked when it has no locked buffer_async buffers
400  * left.
401  *
402  * PageLocked prevents anyone starting new async I/O reads any of
403  * the buffers.
404  *
405  * PageWriteback is used to prevent simultaneous writeout of the same
406  * page.
407  *
408  * PageLocked prevents anyone from starting writeback of a page which is
409  * under read I/O (PageWriteback is only ever set against a locked page).
410  */
411 static void mark_buffer_async_read(struct buffer_head *bh)
412 {
413 	bh->b_end_io = end_buffer_async_read;
414 	set_buffer_async_read(bh);
415 }
416 
417 static void mark_buffer_async_write_endio(struct buffer_head *bh,
418 					  bh_end_io_t *handler)
419 {
420 	bh->b_end_io = handler;
421 	set_buffer_async_write(bh);
422 }
423 
424 void mark_buffer_async_write(struct buffer_head *bh)
425 {
426 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
427 }
428 EXPORT_SYMBOL(mark_buffer_async_write);
429 
430 
431 /*
432  * fs/buffer.c contains helper functions for buffer-backed address space's
433  * fsync functions.  A common requirement for buffer-based filesystems is
434  * that certain data from the backing blockdev needs to be written out for
435  * a successful fsync().  For example, ext2 indirect blocks need to be
436  * written back and waited upon before fsync() returns.
437  *
438  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
439  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
440  * management of a list of dependent buffers at ->i_mapping->private_list.
441  *
442  * Locking is a little subtle: try_to_free_buffers() will remove buffers
443  * from their controlling inode's queue when they are being freed.  But
444  * try_to_free_buffers() will be operating against the *blockdev* mapping
445  * at the time, not against the S_ISREG file which depends on those buffers.
446  * So the locking for private_list is via the private_lock in the address_space
447  * which backs the buffers.  Which is different from the address_space
448  * against which the buffers are listed.  So for a particular address_space,
449  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
450  * mapping->private_list will always be protected by the backing blockdev's
451  * ->private_lock.
452  *
453  * Which introduces a requirement: all buffers on an address_space's
454  * ->private_list must be from the same address_space: the blockdev's.
455  *
456  * address_spaces which do not place buffers at ->private_list via these
457  * utility functions are free to use private_lock and private_list for
458  * whatever they want.  The only requirement is that list_empty(private_list)
459  * be true at clear_inode() time.
460  *
461  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
462  * filesystems should do that.  invalidate_inode_buffers() should just go
463  * BUG_ON(!list_empty).
464  *
465  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
466  * take an address_space, not an inode.  And it should be called
467  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
468  * queued up.
469  *
470  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
471  * list if it is already on a list.  Because if the buffer is on a list,
472  * it *must* already be on the right one.  If not, the filesystem is being
473  * silly.  This will save a ton of locking.  But first we have to ensure
474  * that buffers are taken *off* the old inode's list when they are freed
475  * (presumably in truncate).  That requires careful auditing of all
476  * filesystems (do it inside bforget()).  It could also be done by bringing
477  * b_inode back.
478  */
479 
480 /*
481  * The buffer's backing address_space's private_lock must be held
482  */
483 static void __remove_assoc_queue(struct buffer_head *bh)
484 {
485 	list_del_init(&bh->b_assoc_buffers);
486 	WARN_ON(!bh->b_assoc_map);
487 	if (buffer_write_io_error(bh))
488 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
489 	bh->b_assoc_map = NULL;
490 }
491 
492 int inode_has_buffers(struct inode *inode)
493 {
494 	return !list_empty(&inode->i_data.private_list);
495 }
496 
497 /*
498  * osync is designed to support O_SYNC io.  It waits synchronously for
499  * all already-submitted IO to complete, but does not queue any new
500  * writes to the disk.
501  *
502  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
503  * you dirty the buffers, and then use osync_inode_buffers to wait for
504  * completion.  Any other dirty buffers which are not yet queued for
505  * write will not be flushed to disk by the osync.
506  */
507 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
508 {
509 	struct buffer_head *bh;
510 	struct list_head *p;
511 	int err = 0;
512 
513 	spin_lock(lock);
514 repeat:
515 	list_for_each_prev(p, list) {
516 		bh = BH_ENTRY(p);
517 		if (buffer_locked(bh)) {
518 			get_bh(bh);
519 			spin_unlock(lock);
520 			wait_on_buffer(bh);
521 			if (!buffer_uptodate(bh))
522 				err = -EIO;
523 			brelse(bh);
524 			spin_lock(lock);
525 			goto repeat;
526 		}
527 	}
528 	spin_unlock(lock);
529 	return err;
530 }
531 
532 static void do_thaw_one(struct super_block *sb, void *unused)
533 {
534 	char b[BDEVNAME_SIZE];
535 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
536 		printk(KERN_WARNING "Emergency Thaw on %s\n",
537 		       bdevname(sb->s_bdev, b));
538 }
539 
540 static void do_thaw_all(struct work_struct *work)
541 {
542 	iterate_supers(do_thaw_one, NULL);
543 	kfree(work);
544 	printk(KERN_WARNING "Emergency Thaw complete\n");
545 }
546 
547 /**
548  * emergency_thaw_all -- forcibly thaw every frozen filesystem
549  *
550  * Used for emergency unfreeze of all filesystems via SysRq
551  */
552 void emergency_thaw_all(void)
553 {
554 	struct work_struct *work;
555 
556 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
557 	if (work) {
558 		INIT_WORK(work, do_thaw_all);
559 		schedule_work(work);
560 	}
561 }
562 
563 /**
564  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
565  * @mapping: the mapping which wants those buffers written
566  *
567  * Starts I/O against the buffers at mapping->private_list, and waits upon
568  * that I/O.
569  *
570  * Basically, this is a convenience function for fsync().
571  * @mapping is a file or directory which needs those buffers to be written for
572  * a successful fsync().
573  */
574 int sync_mapping_buffers(struct address_space *mapping)
575 {
576 	struct address_space *buffer_mapping = mapping->private_data;
577 
578 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
579 		return 0;
580 
581 	return fsync_buffers_list(&buffer_mapping->private_lock,
582 					&mapping->private_list);
583 }
584 EXPORT_SYMBOL(sync_mapping_buffers);
585 
586 /*
587  * Called when we've recently written block `bblock', and it is known that
588  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
589  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
590  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
591  */
592 void write_boundary_block(struct block_device *bdev,
593 			sector_t bblock, unsigned blocksize)
594 {
595 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
596 	if (bh) {
597 		if (buffer_dirty(bh))
598 			ll_rw_block(WRITE, 1, &bh);
599 		put_bh(bh);
600 	}
601 }
602 
603 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
604 {
605 	struct address_space *mapping = inode->i_mapping;
606 	struct address_space *buffer_mapping = bh->b_page->mapping;
607 
608 	mark_buffer_dirty(bh);
609 	if (!mapping->private_data) {
610 		mapping->private_data = buffer_mapping;
611 	} else {
612 		BUG_ON(mapping->private_data != buffer_mapping);
613 	}
614 	if (!bh->b_assoc_map) {
615 		spin_lock(&buffer_mapping->private_lock);
616 		list_move_tail(&bh->b_assoc_buffers,
617 				&mapping->private_list);
618 		bh->b_assoc_map = mapping;
619 		spin_unlock(&buffer_mapping->private_lock);
620 	}
621 }
622 EXPORT_SYMBOL(mark_buffer_dirty_inode);
623 
624 /*
625  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
626  * dirty.
627  *
628  * If warn is true, then emit a warning if the page is not uptodate and has
629  * not been truncated.
630  *
631  * The caller must hold mem_cgroup_begin_page_stat() lock.
632  */
633 static void __set_page_dirty(struct page *page, struct address_space *mapping,
634 			     struct mem_cgroup *memcg, int warn)
635 {
636 	unsigned long flags;
637 
638 	spin_lock_irqsave(&mapping->tree_lock, flags);
639 	if (page->mapping) {	/* Race with truncate? */
640 		WARN_ON_ONCE(warn && !PageUptodate(page));
641 		account_page_dirtied(page, mapping, memcg);
642 		radix_tree_tag_set(&mapping->page_tree,
643 				page_index(page), PAGECACHE_TAG_DIRTY);
644 	}
645 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
646 }
647 
648 /*
649  * Add a page to the dirty page list.
650  *
651  * It is a sad fact of life that this function is called from several places
652  * deeply under spinlocking.  It may not sleep.
653  *
654  * If the page has buffers, the uptodate buffers are set dirty, to preserve
655  * dirty-state coherency between the page and the buffers.  It the page does
656  * not have buffers then when they are later attached they will all be set
657  * dirty.
658  *
659  * The buffers are dirtied before the page is dirtied.  There's a small race
660  * window in which a writepage caller may see the page cleanness but not the
661  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
662  * before the buffers, a concurrent writepage caller could clear the page dirty
663  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
664  * page on the dirty page list.
665  *
666  * We use private_lock to lock against try_to_free_buffers while using the
667  * page's buffer list.  Also use this to protect against clean buffers being
668  * added to the page after it was set dirty.
669  *
670  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
671  * address_space though.
672  */
673 int __set_page_dirty_buffers(struct page *page)
674 {
675 	int newly_dirty;
676 	struct mem_cgroup *memcg;
677 	struct address_space *mapping = page_mapping(page);
678 
679 	if (unlikely(!mapping))
680 		return !TestSetPageDirty(page);
681 
682 	spin_lock(&mapping->private_lock);
683 	if (page_has_buffers(page)) {
684 		struct buffer_head *head = page_buffers(page);
685 		struct buffer_head *bh = head;
686 
687 		do {
688 			set_buffer_dirty(bh);
689 			bh = bh->b_this_page;
690 		} while (bh != head);
691 	}
692 	/*
693 	 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
694 	 * per-memcg dirty page counters.
695 	 */
696 	memcg = mem_cgroup_begin_page_stat(page);
697 	newly_dirty = !TestSetPageDirty(page);
698 	spin_unlock(&mapping->private_lock);
699 
700 	if (newly_dirty)
701 		__set_page_dirty(page, mapping, memcg, 1);
702 
703 	mem_cgroup_end_page_stat(memcg);
704 
705 	if (newly_dirty)
706 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
707 
708 	return newly_dirty;
709 }
710 EXPORT_SYMBOL(__set_page_dirty_buffers);
711 
712 /*
713  * Write out and wait upon a list of buffers.
714  *
715  * We have conflicting pressures: we want to make sure that all
716  * initially dirty buffers get waited on, but that any subsequently
717  * dirtied buffers don't.  After all, we don't want fsync to last
718  * forever if somebody is actively writing to the file.
719  *
720  * Do this in two main stages: first we copy dirty buffers to a
721  * temporary inode list, queueing the writes as we go.  Then we clean
722  * up, waiting for those writes to complete.
723  *
724  * During this second stage, any subsequent updates to the file may end
725  * up refiling the buffer on the original inode's dirty list again, so
726  * there is a chance we will end up with a buffer queued for write but
727  * not yet completed on that list.  So, as a final cleanup we go through
728  * the osync code to catch these locked, dirty buffers without requeuing
729  * any newly dirty buffers for write.
730  */
731 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
732 {
733 	struct buffer_head *bh;
734 	struct list_head tmp;
735 	struct address_space *mapping;
736 	int err = 0, err2;
737 	struct blk_plug plug;
738 
739 	INIT_LIST_HEAD(&tmp);
740 	blk_start_plug(&plug);
741 
742 	spin_lock(lock);
743 	while (!list_empty(list)) {
744 		bh = BH_ENTRY(list->next);
745 		mapping = bh->b_assoc_map;
746 		__remove_assoc_queue(bh);
747 		/* Avoid race with mark_buffer_dirty_inode() which does
748 		 * a lockless check and we rely on seeing the dirty bit */
749 		smp_mb();
750 		if (buffer_dirty(bh) || buffer_locked(bh)) {
751 			list_add(&bh->b_assoc_buffers, &tmp);
752 			bh->b_assoc_map = mapping;
753 			if (buffer_dirty(bh)) {
754 				get_bh(bh);
755 				spin_unlock(lock);
756 				/*
757 				 * Ensure any pending I/O completes so that
758 				 * write_dirty_buffer() actually writes the
759 				 * current contents - it is a noop if I/O is
760 				 * still in flight on potentially older
761 				 * contents.
762 				 */
763 				write_dirty_buffer(bh, WRITE_SYNC);
764 
765 				/*
766 				 * Kick off IO for the previous mapping. Note
767 				 * that we will not run the very last mapping,
768 				 * wait_on_buffer() will do that for us
769 				 * through sync_buffer().
770 				 */
771 				brelse(bh);
772 				spin_lock(lock);
773 			}
774 		}
775 	}
776 
777 	spin_unlock(lock);
778 	blk_finish_plug(&plug);
779 	spin_lock(lock);
780 
781 	while (!list_empty(&tmp)) {
782 		bh = BH_ENTRY(tmp.prev);
783 		get_bh(bh);
784 		mapping = bh->b_assoc_map;
785 		__remove_assoc_queue(bh);
786 		/* Avoid race with mark_buffer_dirty_inode() which does
787 		 * a lockless check and we rely on seeing the dirty bit */
788 		smp_mb();
789 		if (buffer_dirty(bh)) {
790 			list_add(&bh->b_assoc_buffers,
791 				 &mapping->private_list);
792 			bh->b_assoc_map = mapping;
793 		}
794 		spin_unlock(lock);
795 		wait_on_buffer(bh);
796 		if (!buffer_uptodate(bh))
797 			err = -EIO;
798 		brelse(bh);
799 		spin_lock(lock);
800 	}
801 
802 	spin_unlock(lock);
803 	err2 = osync_buffers_list(lock, list);
804 	if (err)
805 		return err;
806 	else
807 		return err2;
808 }
809 
810 /*
811  * Invalidate any and all dirty buffers on a given inode.  We are
812  * probably unmounting the fs, but that doesn't mean we have already
813  * done a sync().  Just drop the buffers from the inode list.
814  *
815  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
816  * assumes that all the buffers are against the blockdev.  Not true
817  * for reiserfs.
818  */
819 void invalidate_inode_buffers(struct inode *inode)
820 {
821 	if (inode_has_buffers(inode)) {
822 		struct address_space *mapping = &inode->i_data;
823 		struct list_head *list = &mapping->private_list;
824 		struct address_space *buffer_mapping = mapping->private_data;
825 
826 		spin_lock(&buffer_mapping->private_lock);
827 		while (!list_empty(list))
828 			__remove_assoc_queue(BH_ENTRY(list->next));
829 		spin_unlock(&buffer_mapping->private_lock);
830 	}
831 }
832 EXPORT_SYMBOL(invalidate_inode_buffers);
833 
834 /*
835  * Remove any clean buffers from the inode's buffer list.  This is called
836  * when we're trying to free the inode itself.  Those buffers can pin it.
837  *
838  * Returns true if all buffers were removed.
839  */
840 int remove_inode_buffers(struct inode *inode)
841 {
842 	int ret = 1;
843 
844 	if (inode_has_buffers(inode)) {
845 		struct address_space *mapping = &inode->i_data;
846 		struct list_head *list = &mapping->private_list;
847 		struct address_space *buffer_mapping = mapping->private_data;
848 
849 		spin_lock(&buffer_mapping->private_lock);
850 		while (!list_empty(list)) {
851 			struct buffer_head *bh = BH_ENTRY(list->next);
852 			if (buffer_dirty(bh)) {
853 				ret = 0;
854 				break;
855 			}
856 			__remove_assoc_queue(bh);
857 		}
858 		spin_unlock(&buffer_mapping->private_lock);
859 	}
860 	return ret;
861 }
862 
863 /*
864  * Create the appropriate buffers when given a page for data area and
865  * the size of each buffer.. Use the bh->b_this_page linked list to
866  * follow the buffers created.  Return NULL if unable to create more
867  * buffers.
868  *
869  * The retry flag is used to differentiate async IO (paging, swapping)
870  * which may not fail from ordinary buffer allocations.
871  */
872 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
873 		int retry)
874 {
875 	struct buffer_head *bh, *head;
876 	long offset;
877 
878 try_again:
879 	head = NULL;
880 	offset = PAGE_SIZE;
881 	while ((offset -= size) >= 0) {
882 		bh = alloc_buffer_head(GFP_NOFS);
883 		if (!bh)
884 			goto no_grow;
885 
886 		bh->b_this_page = head;
887 		bh->b_blocknr = -1;
888 		head = bh;
889 
890 		bh->b_size = size;
891 
892 		/* Link the buffer to its page */
893 		set_bh_page(bh, page, offset);
894 	}
895 	return head;
896 /*
897  * In case anything failed, we just free everything we got.
898  */
899 no_grow:
900 	if (head) {
901 		do {
902 			bh = head;
903 			head = head->b_this_page;
904 			free_buffer_head(bh);
905 		} while (head);
906 	}
907 
908 	/*
909 	 * Return failure for non-async IO requests.  Async IO requests
910 	 * are not allowed to fail, so we have to wait until buffer heads
911 	 * become available.  But we don't want tasks sleeping with
912 	 * partially complete buffers, so all were released above.
913 	 */
914 	if (!retry)
915 		return NULL;
916 
917 	/* We're _really_ low on memory. Now we just
918 	 * wait for old buffer heads to become free due to
919 	 * finishing IO.  Since this is an async request and
920 	 * the reserve list is empty, we're sure there are
921 	 * async buffer heads in use.
922 	 */
923 	free_more_memory();
924 	goto try_again;
925 }
926 EXPORT_SYMBOL_GPL(alloc_page_buffers);
927 
928 static inline void
929 link_dev_buffers(struct page *page, struct buffer_head *head)
930 {
931 	struct buffer_head *bh, *tail;
932 
933 	bh = head;
934 	do {
935 		tail = bh;
936 		bh = bh->b_this_page;
937 	} while (bh);
938 	tail->b_this_page = head;
939 	attach_page_buffers(page, head);
940 }
941 
942 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
943 {
944 	sector_t retval = ~((sector_t)0);
945 	loff_t sz = i_size_read(bdev->bd_inode);
946 
947 	if (sz) {
948 		unsigned int sizebits = blksize_bits(size);
949 		retval = (sz >> sizebits);
950 	}
951 	return retval;
952 }
953 
954 /*
955  * Initialise the state of a blockdev page's buffers.
956  */
957 static sector_t
958 init_page_buffers(struct page *page, struct block_device *bdev,
959 			sector_t block, int size)
960 {
961 	struct buffer_head *head = page_buffers(page);
962 	struct buffer_head *bh = head;
963 	int uptodate = PageUptodate(page);
964 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
965 
966 	do {
967 		if (!buffer_mapped(bh)) {
968 			init_buffer(bh, NULL, NULL);
969 			bh->b_bdev = bdev;
970 			bh->b_blocknr = block;
971 			if (uptodate)
972 				set_buffer_uptodate(bh);
973 			if (block < end_block)
974 				set_buffer_mapped(bh);
975 		}
976 		block++;
977 		bh = bh->b_this_page;
978 	} while (bh != head);
979 
980 	/*
981 	 * Caller needs to validate requested block against end of device.
982 	 */
983 	return end_block;
984 }
985 
986 /*
987  * Create the page-cache page that contains the requested block.
988  *
989  * This is used purely for blockdev mappings.
990  */
991 static int
992 grow_dev_page(struct block_device *bdev, sector_t block,
993 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
994 {
995 	struct inode *inode = bdev->bd_inode;
996 	struct page *page;
997 	struct buffer_head *bh;
998 	sector_t end_block;
999 	int ret = 0;		/* Will call free_more_memory() */
1000 	gfp_t gfp_mask;
1001 
1002 	gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp;
1003 
1004 	/*
1005 	 * XXX: __getblk_slow() can not really deal with failure and
1006 	 * will endlessly loop on improvised global reclaim.  Prefer
1007 	 * looping in the allocator rather than here, at least that
1008 	 * code knows what it's doing.
1009 	 */
1010 	gfp_mask |= __GFP_NOFAIL;
1011 
1012 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1013 	if (!page)
1014 		return ret;
1015 
1016 	BUG_ON(!PageLocked(page));
1017 
1018 	if (page_has_buffers(page)) {
1019 		bh = page_buffers(page);
1020 		if (bh->b_size == size) {
1021 			end_block = init_page_buffers(page, bdev,
1022 						(sector_t)index << sizebits,
1023 						size);
1024 			goto done;
1025 		}
1026 		if (!try_to_free_buffers(page))
1027 			goto failed;
1028 	}
1029 
1030 	/*
1031 	 * Allocate some buffers for this page
1032 	 */
1033 	bh = alloc_page_buffers(page, size, 0);
1034 	if (!bh)
1035 		goto failed;
1036 
1037 	/*
1038 	 * Link the page to the buffers and initialise them.  Take the
1039 	 * lock to be atomic wrt __find_get_block(), which does not
1040 	 * run under the page lock.
1041 	 */
1042 	spin_lock(&inode->i_mapping->private_lock);
1043 	link_dev_buffers(page, bh);
1044 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1045 			size);
1046 	spin_unlock(&inode->i_mapping->private_lock);
1047 done:
1048 	ret = (block < end_block) ? 1 : -ENXIO;
1049 failed:
1050 	unlock_page(page);
1051 	page_cache_release(page);
1052 	return ret;
1053 }
1054 
1055 /*
1056  * Create buffers for the specified block device block's page.  If
1057  * that page was dirty, the buffers are set dirty also.
1058  */
1059 static int
1060 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1061 {
1062 	pgoff_t index;
1063 	int sizebits;
1064 
1065 	sizebits = -1;
1066 	do {
1067 		sizebits++;
1068 	} while ((size << sizebits) < PAGE_SIZE);
1069 
1070 	index = block >> sizebits;
1071 
1072 	/*
1073 	 * Check for a block which wants to lie outside our maximum possible
1074 	 * pagecache index.  (this comparison is done using sector_t types).
1075 	 */
1076 	if (unlikely(index != block >> sizebits)) {
1077 		char b[BDEVNAME_SIZE];
1078 
1079 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1080 			"device %s\n",
1081 			__func__, (unsigned long long)block,
1082 			bdevname(bdev, b));
1083 		return -EIO;
1084 	}
1085 
1086 	/* Create a page with the proper size buffers.. */
1087 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1088 }
1089 
1090 struct buffer_head *
1091 __getblk_slow(struct block_device *bdev, sector_t block,
1092 	     unsigned size, gfp_t gfp)
1093 {
1094 	/* Size must be multiple of hard sectorsize */
1095 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1096 			(size < 512 || size > PAGE_SIZE))) {
1097 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1098 					size);
1099 		printk(KERN_ERR "logical block size: %d\n",
1100 					bdev_logical_block_size(bdev));
1101 
1102 		dump_stack();
1103 		return NULL;
1104 	}
1105 
1106 	for (;;) {
1107 		struct buffer_head *bh;
1108 		int ret;
1109 
1110 		bh = __find_get_block(bdev, block, size);
1111 		if (bh)
1112 			return bh;
1113 
1114 		ret = grow_buffers(bdev, block, size, gfp);
1115 		if (ret < 0)
1116 			return NULL;
1117 		if (ret == 0)
1118 			free_more_memory();
1119 	}
1120 }
1121 EXPORT_SYMBOL(__getblk_slow);
1122 
1123 /*
1124  * The relationship between dirty buffers and dirty pages:
1125  *
1126  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1127  * the page is tagged dirty in its radix tree.
1128  *
1129  * At all times, the dirtiness of the buffers represents the dirtiness of
1130  * subsections of the page.  If the page has buffers, the page dirty bit is
1131  * merely a hint about the true dirty state.
1132  *
1133  * When a page is set dirty in its entirety, all its buffers are marked dirty
1134  * (if the page has buffers).
1135  *
1136  * When a buffer is marked dirty, its page is dirtied, but the page's other
1137  * buffers are not.
1138  *
1139  * Also.  When blockdev buffers are explicitly read with bread(), they
1140  * individually become uptodate.  But their backing page remains not
1141  * uptodate - even if all of its buffers are uptodate.  A subsequent
1142  * block_read_full_page() against that page will discover all the uptodate
1143  * buffers, will set the page uptodate and will perform no I/O.
1144  */
1145 
1146 /**
1147  * mark_buffer_dirty - mark a buffer_head as needing writeout
1148  * @bh: the buffer_head to mark dirty
1149  *
1150  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1151  * backing page dirty, then tag the page as dirty in its address_space's radix
1152  * tree and then attach the address_space's inode to its superblock's dirty
1153  * inode list.
1154  *
1155  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1156  * mapping->tree_lock and mapping->host->i_lock.
1157  */
1158 void mark_buffer_dirty(struct buffer_head *bh)
1159 {
1160 	WARN_ON_ONCE(!buffer_uptodate(bh));
1161 
1162 	trace_block_dirty_buffer(bh);
1163 
1164 	/*
1165 	 * Very *carefully* optimize the it-is-already-dirty case.
1166 	 *
1167 	 * Don't let the final "is it dirty" escape to before we
1168 	 * perhaps modified the buffer.
1169 	 */
1170 	if (buffer_dirty(bh)) {
1171 		smp_mb();
1172 		if (buffer_dirty(bh))
1173 			return;
1174 	}
1175 
1176 	if (!test_set_buffer_dirty(bh)) {
1177 		struct page *page = bh->b_page;
1178 		struct address_space *mapping = NULL;
1179 		struct mem_cgroup *memcg;
1180 
1181 		memcg = mem_cgroup_begin_page_stat(page);
1182 		if (!TestSetPageDirty(page)) {
1183 			mapping = page_mapping(page);
1184 			if (mapping)
1185 				__set_page_dirty(page, mapping, memcg, 0);
1186 		}
1187 		mem_cgroup_end_page_stat(memcg);
1188 		if (mapping)
1189 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1190 	}
1191 }
1192 EXPORT_SYMBOL(mark_buffer_dirty);
1193 
1194 /*
1195  * Decrement a buffer_head's reference count.  If all buffers against a page
1196  * have zero reference count, are clean and unlocked, and if the page is clean
1197  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1198  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1199  * a page but it ends up not being freed, and buffers may later be reattached).
1200  */
1201 void __brelse(struct buffer_head * buf)
1202 {
1203 	if (atomic_read(&buf->b_count)) {
1204 		put_bh(buf);
1205 		return;
1206 	}
1207 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1208 }
1209 EXPORT_SYMBOL(__brelse);
1210 
1211 /*
1212  * bforget() is like brelse(), except it discards any
1213  * potentially dirty data.
1214  */
1215 void __bforget(struct buffer_head *bh)
1216 {
1217 	clear_buffer_dirty(bh);
1218 	if (bh->b_assoc_map) {
1219 		struct address_space *buffer_mapping = bh->b_page->mapping;
1220 
1221 		spin_lock(&buffer_mapping->private_lock);
1222 		list_del_init(&bh->b_assoc_buffers);
1223 		bh->b_assoc_map = NULL;
1224 		spin_unlock(&buffer_mapping->private_lock);
1225 	}
1226 	__brelse(bh);
1227 }
1228 EXPORT_SYMBOL(__bforget);
1229 
1230 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1231 {
1232 	lock_buffer(bh);
1233 	if (buffer_uptodate(bh)) {
1234 		unlock_buffer(bh);
1235 		return bh;
1236 	} else {
1237 		get_bh(bh);
1238 		bh->b_end_io = end_buffer_read_sync;
1239 		submit_bh(READ, bh);
1240 		wait_on_buffer(bh);
1241 		if (buffer_uptodate(bh))
1242 			return bh;
1243 	}
1244 	brelse(bh);
1245 	return NULL;
1246 }
1247 
1248 /*
1249  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1250  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1251  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1252  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1253  * CPU's LRUs at the same time.
1254  *
1255  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1256  * sb_find_get_block().
1257  *
1258  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1259  * a local interrupt disable for that.
1260  */
1261 
1262 #define BH_LRU_SIZE	16
1263 
1264 struct bh_lru {
1265 	struct buffer_head *bhs[BH_LRU_SIZE];
1266 };
1267 
1268 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1269 
1270 #ifdef CONFIG_SMP
1271 #define bh_lru_lock()	local_irq_disable()
1272 #define bh_lru_unlock()	local_irq_enable()
1273 #else
1274 #define bh_lru_lock()	preempt_disable()
1275 #define bh_lru_unlock()	preempt_enable()
1276 #endif
1277 
1278 static inline void check_irqs_on(void)
1279 {
1280 #ifdef irqs_disabled
1281 	BUG_ON(irqs_disabled());
1282 #endif
1283 }
1284 
1285 /*
1286  * The LRU management algorithm is dopey-but-simple.  Sorry.
1287  */
1288 static void bh_lru_install(struct buffer_head *bh)
1289 {
1290 	struct buffer_head *evictee = NULL;
1291 
1292 	check_irqs_on();
1293 	bh_lru_lock();
1294 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1295 		struct buffer_head *bhs[BH_LRU_SIZE];
1296 		int in;
1297 		int out = 0;
1298 
1299 		get_bh(bh);
1300 		bhs[out++] = bh;
1301 		for (in = 0; in < BH_LRU_SIZE; in++) {
1302 			struct buffer_head *bh2 =
1303 				__this_cpu_read(bh_lrus.bhs[in]);
1304 
1305 			if (bh2 == bh) {
1306 				__brelse(bh2);
1307 			} else {
1308 				if (out >= BH_LRU_SIZE) {
1309 					BUG_ON(evictee != NULL);
1310 					evictee = bh2;
1311 				} else {
1312 					bhs[out++] = bh2;
1313 				}
1314 			}
1315 		}
1316 		while (out < BH_LRU_SIZE)
1317 			bhs[out++] = NULL;
1318 		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1319 	}
1320 	bh_lru_unlock();
1321 
1322 	if (evictee)
1323 		__brelse(evictee);
1324 }
1325 
1326 /*
1327  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1328  */
1329 static struct buffer_head *
1330 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1331 {
1332 	struct buffer_head *ret = NULL;
1333 	unsigned int i;
1334 
1335 	check_irqs_on();
1336 	bh_lru_lock();
1337 	for (i = 0; i < BH_LRU_SIZE; i++) {
1338 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1339 
1340 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1341 		    bh->b_size == size) {
1342 			if (i) {
1343 				while (i) {
1344 					__this_cpu_write(bh_lrus.bhs[i],
1345 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1346 					i--;
1347 				}
1348 				__this_cpu_write(bh_lrus.bhs[0], bh);
1349 			}
1350 			get_bh(bh);
1351 			ret = bh;
1352 			break;
1353 		}
1354 	}
1355 	bh_lru_unlock();
1356 	return ret;
1357 }
1358 
1359 /*
1360  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1361  * it in the LRU and mark it as accessed.  If it is not present then return
1362  * NULL
1363  */
1364 struct buffer_head *
1365 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1366 {
1367 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1368 
1369 	if (bh == NULL) {
1370 		/* __find_get_block_slow will mark the page accessed */
1371 		bh = __find_get_block_slow(bdev, block);
1372 		if (bh)
1373 			bh_lru_install(bh);
1374 	} else
1375 		touch_buffer(bh);
1376 
1377 	return bh;
1378 }
1379 EXPORT_SYMBOL(__find_get_block);
1380 
1381 /*
1382  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1383  * which corresponds to the passed block_device, block and size. The
1384  * returned buffer has its reference count incremented.
1385  *
1386  * __getblk_gfp() will lock up the machine if grow_dev_page's
1387  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1388  */
1389 struct buffer_head *
1390 __getblk_gfp(struct block_device *bdev, sector_t block,
1391 	     unsigned size, gfp_t gfp)
1392 {
1393 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1394 
1395 	might_sleep();
1396 	if (bh == NULL)
1397 		bh = __getblk_slow(bdev, block, size, gfp);
1398 	return bh;
1399 }
1400 EXPORT_SYMBOL(__getblk_gfp);
1401 
1402 /*
1403  * Do async read-ahead on a buffer..
1404  */
1405 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1406 {
1407 	struct buffer_head *bh = __getblk(bdev, block, size);
1408 	if (likely(bh)) {
1409 		ll_rw_block(READA, 1, &bh);
1410 		brelse(bh);
1411 	}
1412 }
1413 EXPORT_SYMBOL(__breadahead);
1414 
1415 /**
1416  *  __bread_gfp() - reads a specified block and returns the bh
1417  *  @bdev: the block_device to read from
1418  *  @block: number of block
1419  *  @size: size (in bytes) to read
1420  *  @gfp: page allocation flag
1421  *
1422  *  Reads a specified block, and returns buffer head that contains it.
1423  *  The page cache can be allocated from non-movable area
1424  *  not to prevent page migration if you set gfp to zero.
1425  *  It returns NULL if the block was unreadable.
1426  */
1427 struct buffer_head *
1428 __bread_gfp(struct block_device *bdev, sector_t block,
1429 		   unsigned size, gfp_t gfp)
1430 {
1431 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1432 
1433 	if (likely(bh) && !buffer_uptodate(bh))
1434 		bh = __bread_slow(bh);
1435 	return bh;
1436 }
1437 EXPORT_SYMBOL(__bread_gfp);
1438 
1439 /*
1440  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1441  * This doesn't race because it runs in each cpu either in irq
1442  * or with preempt disabled.
1443  */
1444 static void invalidate_bh_lru(void *arg)
1445 {
1446 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1447 	int i;
1448 
1449 	for (i = 0; i < BH_LRU_SIZE; i++) {
1450 		brelse(b->bhs[i]);
1451 		b->bhs[i] = NULL;
1452 	}
1453 	put_cpu_var(bh_lrus);
1454 }
1455 
1456 static bool has_bh_in_lru(int cpu, void *dummy)
1457 {
1458 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1459 	int i;
1460 
1461 	for (i = 0; i < BH_LRU_SIZE; i++) {
1462 		if (b->bhs[i])
1463 			return 1;
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 void invalidate_bh_lrus(void)
1470 {
1471 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1472 }
1473 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1474 
1475 void set_bh_page(struct buffer_head *bh,
1476 		struct page *page, unsigned long offset)
1477 {
1478 	bh->b_page = page;
1479 	BUG_ON(offset >= PAGE_SIZE);
1480 	if (PageHighMem(page))
1481 		/*
1482 		 * This catches illegal uses and preserves the offset:
1483 		 */
1484 		bh->b_data = (char *)(0 + offset);
1485 	else
1486 		bh->b_data = page_address(page) + offset;
1487 }
1488 EXPORT_SYMBOL(set_bh_page);
1489 
1490 /*
1491  * Called when truncating a buffer on a page completely.
1492  */
1493 
1494 /* Bits that are cleared during an invalidate */
1495 #define BUFFER_FLAGS_DISCARD \
1496 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1497 	 1 << BH_Delay | 1 << BH_Unwritten)
1498 
1499 static void discard_buffer(struct buffer_head * bh)
1500 {
1501 	unsigned long b_state, b_state_old;
1502 
1503 	lock_buffer(bh);
1504 	clear_buffer_dirty(bh);
1505 	bh->b_bdev = NULL;
1506 	b_state = bh->b_state;
1507 	for (;;) {
1508 		b_state_old = cmpxchg(&bh->b_state, b_state,
1509 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1510 		if (b_state_old == b_state)
1511 			break;
1512 		b_state = b_state_old;
1513 	}
1514 	unlock_buffer(bh);
1515 }
1516 
1517 /**
1518  * block_invalidatepage - invalidate part or all of a buffer-backed page
1519  *
1520  * @page: the page which is affected
1521  * @offset: start of the range to invalidate
1522  * @length: length of the range to invalidate
1523  *
1524  * block_invalidatepage() is called when all or part of the page has become
1525  * invalidated by a truncate operation.
1526  *
1527  * block_invalidatepage() does not have to release all buffers, but it must
1528  * ensure that no dirty buffer is left outside @offset and that no I/O
1529  * is underway against any of the blocks which are outside the truncation
1530  * point.  Because the caller is about to free (and possibly reuse) those
1531  * blocks on-disk.
1532  */
1533 void block_invalidatepage(struct page *page, unsigned int offset,
1534 			  unsigned int length)
1535 {
1536 	struct buffer_head *head, *bh, *next;
1537 	unsigned int curr_off = 0;
1538 	unsigned int stop = length + offset;
1539 
1540 	BUG_ON(!PageLocked(page));
1541 	if (!page_has_buffers(page))
1542 		goto out;
1543 
1544 	/*
1545 	 * Check for overflow
1546 	 */
1547 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1548 
1549 	head = page_buffers(page);
1550 	bh = head;
1551 	do {
1552 		unsigned int next_off = curr_off + bh->b_size;
1553 		next = bh->b_this_page;
1554 
1555 		/*
1556 		 * Are we still fully in range ?
1557 		 */
1558 		if (next_off > stop)
1559 			goto out;
1560 
1561 		/*
1562 		 * is this block fully invalidated?
1563 		 */
1564 		if (offset <= curr_off)
1565 			discard_buffer(bh);
1566 		curr_off = next_off;
1567 		bh = next;
1568 	} while (bh != head);
1569 
1570 	/*
1571 	 * We release buffers only if the entire page is being invalidated.
1572 	 * The get_block cached value has been unconditionally invalidated,
1573 	 * so real IO is not possible anymore.
1574 	 */
1575 	if (offset == 0)
1576 		try_to_release_page(page, 0);
1577 out:
1578 	return;
1579 }
1580 EXPORT_SYMBOL(block_invalidatepage);
1581 
1582 
1583 /*
1584  * We attach and possibly dirty the buffers atomically wrt
1585  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1586  * is already excluded via the page lock.
1587  */
1588 void create_empty_buffers(struct page *page,
1589 			unsigned long blocksize, unsigned long b_state)
1590 {
1591 	struct buffer_head *bh, *head, *tail;
1592 
1593 	head = alloc_page_buffers(page, blocksize, 1);
1594 	bh = head;
1595 	do {
1596 		bh->b_state |= b_state;
1597 		tail = bh;
1598 		bh = bh->b_this_page;
1599 	} while (bh);
1600 	tail->b_this_page = head;
1601 
1602 	spin_lock(&page->mapping->private_lock);
1603 	if (PageUptodate(page) || PageDirty(page)) {
1604 		bh = head;
1605 		do {
1606 			if (PageDirty(page))
1607 				set_buffer_dirty(bh);
1608 			if (PageUptodate(page))
1609 				set_buffer_uptodate(bh);
1610 			bh = bh->b_this_page;
1611 		} while (bh != head);
1612 	}
1613 	attach_page_buffers(page, head);
1614 	spin_unlock(&page->mapping->private_lock);
1615 }
1616 EXPORT_SYMBOL(create_empty_buffers);
1617 
1618 /*
1619  * We are taking a block for data and we don't want any output from any
1620  * buffer-cache aliases starting from return from that function and
1621  * until the moment when something will explicitly mark the buffer
1622  * dirty (hopefully that will not happen until we will free that block ;-)
1623  * We don't even need to mark it not-uptodate - nobody can expect
1624  * anything from a newly allocated buffer anyway. We used to used
1625  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1626  * don't want to mark the alias unmapped, for example - it would confuse
1627  * anyone who might pick it with bread() afterwards...
1628  *
1629  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1630  * be writeout I/O going on against recently-freed buffers.  We don't
1631  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1632  * only if we really need to.  That happens here.
1633  */
1634 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1635 {
1636 	struct buffer_head *old_bh;
1637 
1638 	might_sleep();
1639 
1640 	old_bh = __find_get_block_slow(bdev, block);
1641 	if (old_bh) {
1642 		clear_buffer_dirty(old_bh);
1643 		wait_on_buffer(old_bh);
1644 		clear_buffer_req(old_bh);
1645 		__brelse(old_bh);
1646 	}
1647 }
1648 EXPORT_SYMBOL(unmap_underlying_metadata);
1649 
1650 /*
1651  * Size is a power-of-two in the range 512..PAGE_SIZE,
1652  * and the case we care about most is PAGE_SIZE.
1653  *
1654  * So this *could* possibly be written with those
1655  * constraints in mind (relevant mostly if some
1656  * architecture has a slow bit-scan instruction)
1657  */
1658 static inline int block_size_bits(unsigned int blocksize)
1659 {
1660 	return ilog2(blocksize);
1661 }
1662 
1663 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1664 {
1665 	BUG_ON(!PageLocked(page));
1666 
1667 	if (!page_has_buffers(page))
1668 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1669 	return page_buffers(page);
1670 }
1671 
1672 /*
1673  * NOTE! All mapped/uptodate combinations are valid:
1674  *
1675  *	Mapped	Uptodate	Meaning
1676  *
1677  *	No	No		"unknown" - must do get_block()
1678  *	No	Yes		"hole" - zero-filled
1679  *	Yes	No		"allocated" - allocated on disk, not read in
1680  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1681  *
1682  * "Dirty" is valid only with the last case (mapped+uptodate).
1683  */
1684 
1685 /*
1686  * While block_write_full_page is writing back the dirty buffers under
1687  * the page lock, whoever dirtied the buffers may decide to clean them
1688  * again at any time.  We handle that by only looking at the buffer
1689  * state inside lock_buffer().
1690  *
1691  * If block_write_full_page() is called for regular writeback
1692  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1693  * locked buffer.   This only can happen if someone has written the buffer
1694  * directly, with submit_bh().  At the address_space level PageWriteback
1695  * prevents this contention from occurring.
1696  *
1697  * If block_write_full_page() is called with wbc->sync_mode ==
1698  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1699  * causes the writes to be flagged as synchronous writes.
1700  */
1701 static int __block_write_full_page(struct inode *inode, struct page *page,
1702 			get_block_t *get_block, struct writeback_control *wbc,
1703 			bh_end_io_t *handler)
1704 {
1705 	int err;
1706 	sector_t block;
1707 	sector_t last_block;
1708 	struct buffer_head *bh, *head;
1709 	unsigned int blocksize, bbits;
1710 	int nr_underway = 0;
1711 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
1712 
1713 	head = create_page_buffers(page, inode,
1714 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1715 
1716 	/*
1717 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1718 	 * here, and the (potentially unmapped) buffers may become dirty at
1719 	 * any time.  If a buffer becomes dirty here after we've inspected it
1720 	 * then we just miss that fact, and the page stays dirty.
1721 	 *
1722 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1723 	 * handle that here by just cleaning them.
1724 	 */
1725 
1726 	bh = head;
1727 	blocksize = bh->b_size;
1728 	bbits = block_size_bits(blocksize);
1729 
1730 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1731 	last_block = (i_size_read(inode) - 1) >> bbits;
1732 
1733 	/*
1734 	 * Get all the dirty buffers mapped to disk addresses and
1735 	 * handle any aliases from the underlying blockdev's mapping.
1736 	 */
1737 	do {
1738 		if (block > last_block) {
1739 			/*
1740 			 * mapped buffers outside i_size will occur, because
1741 			 * this page can be outside i_size when there is a
1742 			 * truncate in progress.
1743 			 */
1744 			/*
1745 			 * The buffer was zeroed by block_write_full_page()
1746 			 */
1747 			clear_buffer_dirty(bh);
1748 			set_buffer_uptodate(bh);
1749 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1750 			   buffer_dirty(bh)) {
1751 			WARN_ON(bh->b_size != blocksize);
1752 			err = get_block(inode, block, bh, 1);
1753 			if (err)
1754 				goto recover;
1755 			clear_buffer_delay(bh);
1756 			if (buffer_new(bh)) {
1757 				/* blockdev mappings never come here */
1758 				clear_buffer_new(bh);
1759 				unmap_underlying_metadata(bh->b_bdev,
1760 							bh->b_blocknr);
1761 			}
1762 		}
1763 		bh = bh->b_this_page;
1764 		block++;
1765 	} while (bh != head);
1766 
1767 	do {
1768 		if (!buffer_mapped(bh))
1769 			continue;
1770 		/*
1771 		 * If it's a fully non-blocking write attempt and we cannot
1772 		 * lock the buffer then redirty the page.  Note that this can
1773 		 * potentially cause a busy-wait loop from writeback threads
1774 		 * and kswapd activity, but those code paths have their own
1775 		 * higher-level throttling.
1776 		 */
1777 		if (wbc->sync_mode != WB_SYNC_NONE) {
1778 			lock_buffer(bh);
1779 		} else if (!trylock_buffer(bh)) {
1780 			redirty_page_for_writepage(wbc, page);
1781 			continue;
1782 		}
1783 		if (test_clear_buffer_dirty(bh)) {
1784 			mark_buffer_async_write_endio(bh, handler);
1785 		} else {
1786 			unlock_buffer(bh);
1787 		}
1788 	} while ((bh = bh->b_this_page) != head);
1789 
1790 	/*
1791 	 * The page and its buffers are protected by PageWriteback(), so we can
1792 	 * drop the bh refcounts early.
1793 	 */
1794 	BUG_ON(PageWriteback(page));
1795 	set_page_writeback(page);
1796 
1797 	do {
1798 		struct buffer_head *next = bh->b_this_page;
1799 		if (buffer_async_write(bh)) {
1800 			submit_bh_wbc(write_op, bh, 0, wbc);
1801 			nr_underway++;
1802 		}
1803 		bh = next;
1804 	} while (bh != head);
1805 	unlock_page(page);
1806 
1807 	err = 0;
1808 done:
1809 	if (nr_underway == 0) {
1810 		/*
1811 		 * The page was marked dirty, but the buffers were
1812 		 * clean.  Someone wrote them back by hand with
1813 		 * ll_rw_block/submit_bh.  A rare case.
1814 		 */
1815 		end_page_writeback(page);
1816 
1817 		/*
1818 		 * The page and buffer_heads can be released at any time from
1819 		 * here on.
1820 		 */
1821 	}
1822 	return err;
1823 
1824 recover:
1825 	/*
1826 	 * ENOSPC, or some other error.  We may already have added some
1827 	 * blocks to the file, so we need to write these out to avoid
1828 	 * exposing stale data.
1829 	 * The page is currently locked and not marked for writeback
1830 	 */
1831 	bh = head;
1832 	/* Recovery: lock and submit the mapped buffers */
1833 	do {
1834 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1835 		    !buffer_delay(bh)) {
1836 			lock_buffer(bh);
1837 			mark_buffer_async_write_endio(bh, handler);
1838 		} else {
1839 			/*
1840 			 * The buffer may have been set dirty during
1841 			 * attachment to a dirty page.
1842 			 */
1843 			clear_buffer_dirty(bh);
1844 		}
1845 	} while ((bh = bh->b_this_page) != head);
1846 	SetPageError(page);
1847 	BUG_ON(PageWriteback(page));
1848 	mapping_set_error(page->mapping, err);
1849 	set_page_writeback(page);
1850 	do {
1851 		struct buffer_head *next = bh->b_this_page;
1852 		if (buffer_async_write(bh)) {
1853 			clear_buffer_dirty(bh);
1854 			submit_bh_wbc(write_op, bh, 0, wbc);
1855 			nr_underway++;
1856 		}
1857 		bh = next;
1858 	} while (bh != head);
1859 	unlock_page(page);
1860 	goto done;
1861 }
1862 
1863 /*
1864  * If a page has any new buffers, zero them out here, and mark them uptodate
1865  * and dirty so they'll be written out (in order to prevent uninitialised
1866  * block data from leaking). And clear the new bit.
1867  */
1868 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1869 {
1870 	unsigned int block_start, block_end;
1871 	struct buffer_head *head, *bh;
1872 
1873 	BUG_ON(!PageLocked(page));
1874 	if (!page_has_buffers(page))
1875 		return;
1876 
1877 	bh = head = page_buffers(page);
1878 	block_start = 0;
1879 	do {
1880 		block_end = block_start + bh->b_size;
1881 
1882 		if (buffer_new(bh)) {
1883 			if (block_end > from && block_start < to) {
1884 				if (!PageUptodate(page)) {
1885 					unsigned start, size;
1886 
1887 					start = max(from, block_start);
1888 					size = min(to, block_end) - start;
1889 
1890 					zero_user(page, start, size);
1891 					set_buffer_uptodate(bh);
1892 				}
1893 
1894 				clear_buffer_new(bh);
1895 				mark_buffer_dirty(bh);
1896 			}
1897 		}
1898 
1899 		block_start = block_end;
1900 		bh = bh->b_this_page;
1901 	} while (bh != head);
1902 }
1903 EXPORT_SYMBOL(page_zero_new_buffers);
1904 
1905 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1906 		get_block_t *get_block)
1907 {
1908 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1909 	unsigned to = from + len;
1910 	struct inode *inode = page->mapping->host;
1911 	unsigned block_start, block_end;
1912 	sector_t block;
1913 	int err = 0;
1914 	unsigned blocksize, bbits;
1915 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1916 
1917 	BUG_ON(!PageLocked(page));
1918 	BUG_ON(from > PAGE_CACHE_SIZE);
1919 	BUG_ON(to > PAGE_CACHE_SIZE);
1920 	BUG_ON(from > to);
1921 
1922 	head = create_page_buffers(page, inode, 0);
1923 	blocksize = head->b_size;
1924 	bbits = block_size_bits(blocksize);
1925 
1926 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1927 
1928 	for(bh = head, block_start = 0; bh != head || !block_start;
1929 	    block++, block_start=block_end, bh = bh->b_this_page) {
1930 		block_end = block_start + blocksize;
1931 		if (block_end <= from || block_start >= to) {
1932 			if (PageUptodate(page)) {
1933 				if (!buffer_uptodate(bh))
1934 					set_buffer_uptodate(bh);
1935 			}
1936 			continue;
1937 		}
1938 		if (buffer_new(bh))
1939 			clear_buffer_new(bh);
1940 		if (!buffer_mapped(bh)) {
1941 			WARN_ON(bh->b_size != blocksize);
1942 			err = get_block(inode, block, bh, 1);
1943 			if (err)
1944 				break;
1945 			if (buffer_new(bh)) {
1946 				unmap_underlying_metadata(bh->b_bdev,
1947 							bh->b_blocknr);
1948 				if (PageUptodate(page)) {
1949 					clear_buffer_new(bh);
1950 					set_buffer_uptodate(bh);
1951 					mark_buffer_dirty(bh);
1952 					continue;
1953 				}
1954 				if (block_end > to || block_start < from)
1955 					zero_user_segments(page,
1956 						to, block_end,
1957 						block_start, from);
1958 				continue;
1959 			}
1960 		}
1961 		if (PageUptodate(page)) {
1962 			if (!buffer_uptodate(bh))
1963 				set_buffer_uptodate(bh);
1964 			continue;
1965 		}
1966 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1967 		    !buffer_unwritten(bh) &&
1968 		     (block_start < from || block_end > to)) {
1969 			ll_rw_block(READ, 1, &bh);
1970 			*wait_bh++=bh;
1971 		}
1972 	}
1973 	/*
1974 	 * If we issued read requests - let them complete.
1975 	 */
1976 	while(wait_bh > wait) {
1977 		wait_on_buffer(*--wait_bh);
1978 		if (!buffer_uptodate(*wait_bh))
1979 			err = -EIO;
1980 	}
1981 	if (unlikely(err))
1982 		page_zero_new_buffers(page, from, to);
1983 	return err;
1984 }
1985 EXPORT_SYMBOL(__block_write_begin);
1986 
1987 static int __block_commit_write(struct inode *inode, struct page *page,
1988 		unsigned from, unsigned to)
1989 {
1990 	unsigned block_start, block_end;
1991 	int partial = 0;
1992 	unsigned blocksize;
1993 	struct buffer_head *bh, *head;
1994 
1995 	bh = head = page_buffers(page);
1996 	blocksize = bh->b_size;
1997 
1998 	block_start = 0;
1999 	do {
2000 		block_end = block_start + blocksize;
2001 		if (block_end <= from || block_start >= to) {
2002 			if (!buffer_uptodate(bh))
2003 				partial = 1;
2004 		} else {
2005 			set_buffer_uptodate(bh);
2006 			mark_buffer_dirty(bh);
2007 		}
2008 		clear_buffer_new(bh);
2009 
2010 		block_start = block_end;
2011 		bh = bh->b_this_page;
2012 	} while (bh != head);
2013 
2014 	/*
2015 	 * If this is a partial write which happened to make all buffers
2016 	 * uptodate then we can optimize away a bogus readpage() for
2017 	 * the next read(). Here we 'discover' whether the page went
2018 	 * uptodate as a result of this (potentially partial) write.
2019 	 */
2020 	if (!partial)
2021 		SetPageUptodate(page);
2022 	return 0;
2023 }
2024 
2025 /*
2026  * block_write_begin takes care of the basic task of block allocation and
2027  * bringing partial write blocks uptodate first.
2028  *
2029  * The filesystem needs to handle block truncation upon failure.
2030  */
2031 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2032 		unsigned flags, struct page **pagep, get_block_t *get_block)
2033 {
2034 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2035 	struct page *page;
2036 	int status;
2037 
2038 	page = grab_cache_page_write_begin(mapping, index, flags);
2039 	if (!page)
2040 		return -ENOMEM;
2041 
2042 	status = __block_write_begin(page, pos, len, get_block);
2043 	if (unlikely(status)) {
2044 		unlock_page(page);
2045 		page_cache_release(page);
2046 		page = NULL;
2047 	}
2048 
2049 	*pagep = page;
2050 	return status;
2051 }
2052 EXPORT_SYMBOL(block_write_begin);
2053 
2054 int block_write_end(struct file *file, struct address_space *mapping,
2055 			loff_t pos, unsigned len, unsigned copied,
2056 			struct page *page, void *fsdata)
2057 {
2058 	struct inode *inode = mapping->host;
2059 	unsigned start;
2060 
2061 	start = pos & (PAGE_CACHE_SIZE - 1);
2062 
2063 	if (unlikely(copied < len)) {
2064 		/*
2065 		 * The buffers that were written will now be uptodate, so we
2066 		 * don't have to worry about a readpage reading them and
2067 		 * overwriting a partial write. However if we have encountered
2068 		 * a short write and only partially written into a buffer, it
2069 		 * will not be marked uptodate, so a readpage might come in and
2070 		 * destroy our partial write.
2071 		 *
2072 		 * Do the simplest thing, and just treat any short write to a
2073 		 * non uptodate page as a zero-length write, and force the
2074 		 * caller to redo the whole thing.
2075 		 */
2076 		if (!PageUptodate(page))
2077 			copied = 0;
2078 
2079 		page_zero_new_buffers(page, start+copied, start+len);
2080 	}
2081 	flush_dcache_page(page);
2082 
2083 	/* This could be a short (even 0-length) commit */
2084 	__block_commit_write(inode, page, start, start+copied);
2085 
2086 	return copied;
2087 }
2088 EXPORT_SYMBOL(block_write_end);
2089 
2090 int generic_write_end(struct file *file, struct address_space *mapping,
2091 			loff_t pos, unsigned len, unsigned copied,
2092 			struct page *page, void *fsdata)
2093 {
2094 	struct inode *inode = mapping->host;
2095 	loff_t old_size = inode->i_size;
2096 	int i_size_changed = 0;
2097 
2098 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2099 
2100 	/*
2101 	 * No need to use i_size_read() here, the i_size
2102 	 * cannot change under us because we hold i_mutex.
2103 	 *
2104 	 * But it's important to update i_size while still holding page lock:
2105 	 * page writeout could otherwise come in and zero beyond i_size.
2106 	 */
2107 	if (pos+copied > inode->i_size) {
2108 		i_size_write(inode, pos+copied);
2109 		i_size_changed = 1;
2110 	}
2111 
2112 	unlock_page(page);
2113 	page_cache_release(page);
2114 
2115 	if (old_size < pos)
2116 		pagecache_isize_extended(inode, old_size, pos);
2117 	/*
2118 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2119 	 * makes the holding time of page lock longer. Second, it forces lock
2120 	 * ordering of page lock and transaction start for journaling
2121 	 * filesystems.
2122 	 */
2123 	if (i_size_changed)
2124 		mark_inode_dirty(inode);
2125 
2126 	return copied;
2127 }
2128 EXPORT_SYMBOL(generic_write_end);
2129 
2130 /*
2131  * block_is_partially_uptodate checks whether buffers within a page are
2132  * uptodate or not.
2133  *
2134  * Returns true if all buffers which correspond to a file portion
2135  * we want to read are uptodate.
2136  */
2137 int block_is_partially_uptodate(struct page *page, unsigned long from,
2138 					unsigned long count)
2139 {
2140 	unsigned block_start, block_end, blocksize;
2141 	unsigned to;
2142 	struct buffer_head *bh, *head;
2143 	int ret = 1;
2144 
2145 	if (!page_has_buffers(page))
2146 		return 0;
2147 
2148 	head = page_buffers(page);
2149 	blocksize = head->b_size;
2150 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2151 	to = from + to;
2152 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2153 		return 0;
2154 
2155 	bh = head;
2156 	block_start = 0;
2157 	do {
2158 		block_end = block_start + blocksize;
2159 		if (block_end > from && block_start < to) {
2160 			if (!buffer_uptodate(bh)) {
2161 				ret = 0;
2162 				break;
2163 			}
2164 			if (block_end >= to)
2165 				break;
2166 		}
2167 		block_start = block_end;
2168 		bh = bh->b_this_page;
2169 	} while (bh != head);
2170 
2171 	return ret;
2172 }
2173 EXPORT_SYMBOL(block_is_partially_uptodate);
2174 
2175 /*
2176  * Generic "read page" function for block devices that have the normal
2177  * get_block functionality. This is most of the block device filesystems.
2178  * Reads the page asynchronously --- the unlock_buffer() and
2179  * set/clear_buffer_uptodate() functions propagate buffer state into the
2180  * page struct once IO has completed.
2181  */
2182 int block_read_full_page(struct page *page, get_block_t *get_block)
2183 {
2184 	struct inode *inode = page->mapping->host;
2185 	sector_t iblock, lblock;
2186 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2187 	unsigned int blocksize, bbits;
2188 	int nr, i;
2189 	int fully_mapped = 1;
2190 
2191 	head = create_page_buffers(page, inode, 0);
2192 	blocksize = head->b_size;
2193 	bbits = block_size_bits(blocksize);
2194 
2195 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2196 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2197 	bh = head;
2198 	nr = 0;
2199 	i = 0;
2200 
2201 	do {
2202 		if (buffer_uptodate(bh))
2203 			continue;
2204 
2205 		if (!buffer_mapped(bh)) {
2206 			int err = 0;
2207 
2208 			fully_mapped = 0;
2209 			if (iblock < lblock) {
2210 				WARN_ON(bh->b_size != blocksize);
2211 				err = get_block(inode, iblock, bh, 0);
2212 				if (err)
2213 					SetPageError(page);
2214 			}
2215 			if (!buffer_mapped(bh)) {
2216 				zero_user(page, i * blocksize, blocksize);
2217 				if (!err)
2218 					set_buffer_uptodate(bh);
2219 				continue;
2220 			}
2221 			/*
2222 			 * get_block() might have updated the buffer
2223 			 * synchronously
2224 			 */
2225 			if (buffer_uptodate(bh))
2226 				continue;
2227 		}
2228 		arr[nr++] = bh;
2229 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2230 
2231 	if (fully_mapped)
2232 		SetPageMappedToDisk(page);
2233 
2234 	if (!nr) {
2235 		/*
2236 		 * All buffers are uptodate - we can set the page uptodate
2237 		 * as well. But not if get_block() returned an error.
2238 		 */
2239 		if (!PageError(page))
2240 			SetPageUptodate(page);
2241 		unlock_page(page);
2242 		return 0;
2243 	}
2244 
2245 	/* Stage two: lock the buffers */
2246 	for (i = 0; i < nr; i++) {
2247 		bh = arr[i];
2248 		lock_buffer(bh);
2249 		mark_buffer_async_read(bh);
2250 	}
2251 
2252 	/*
2253 	 * Stage 3: start the IO.  Check for uptodateness
2254 	 * inside the buffer lock in case another process reading
2255 	 * the underlying blockdev brought it uptodate (the sct fix).
2256 	 */
2257 	for (i = 0; i < nr; i++) {
2258 		bh = arr[i];
2259 		if (buffer_uptodate(bh))
2260 			end_buffer_async_read(bh, 1);
2261 		else
2262 			submit_bh(READ, bh);
2263 	}
2264 	return 0;
2265 }
2266 EXPORT_SYMBOL(block_read_full_page);
2267 
2268 /* utility function for filesystems that need to do work on expanding
2269  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2270  * deal with the hole.
2271  */
2272 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2273 {
2274 	struct address_space *mapping = inode->i_mapping;
2275 	struct page *page;
2276 	void *fsdata;
2277 	int err;
2278 
2279 	err = inode_newsize_ok(inode, size);
2280 	if (err)
2281 		goto out;
2282 
2283 	err = pagecache_write_begin(NULL, mapping, size, 0,
2284 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2285 				&page, &fsdata);
2286 	if (err)
2287 		goto out;
2288 
2289 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2290 	BUG_ON(err > 0);
2291 
2292 out:
2293 	return err;
2294 }
2295 EXPORT_SYMBOL(generic_cont_expand_simple);
2296 
2297 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2298 			    loff_t pos, loff_t *bytes)
2299 {
2300 	struct inode *inode = mapping->host;
2301 	unsigned blocksize = 1 << inode->i_blkbits;
2302 	struct page *page;
2303 	void *fsdata;
2304 	pgoff_t index, curidx;
2305 	loff_t curpos;
2306 	unsigned zerofrom, offset, len;
2307 	int err = 0;
2308 
2309 	index = pos >> PAGE_CACHE_SHIFT;
2310 	offset = pos & ~PAGE_CACHE_MASK;
2311 
2312 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2313 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2314 		if (zerofrom & (blocksize-1)) {
2315 			*bytes |= (blocksize-1);
2316 			(*bytes)++;
2317 		}
2318 		len = PAGE_CACHE_SIZE - zerofrom;
2319 
2320 		err = pagecache_write_begin(file, mapping, curpos, len,
2321 						AOP_FLAG_UNINTERRUPTIBLE,
2322 						&page, &fsdata);
2323 		if (err)
2324 			goto out;
2325 		zero_user(page, zerofrom, len);
2326 		err = pagecache_write_end(file, mapping, curpos, len, len,
2327 						page, fsdata);
2328 		if (err < 0)
2329 			goto out;
2330 		BUG_ON(err != len);
2331 		err = 0;
2332 
2333 		balance_dirty_pages_ratelimited(mapping);
2334 
2335 		if (unlikely(fatal_signal_pending(current))) {
2336 			err = -EINTR;
2337 			goto out;
2338 		}
2339 	}
2340 
2341 	/* page covers the boundary, find the boundary offset */
2342 	if (index == curidx) {
2343 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2344 		/* if we will expand the thing last block will be filled */
2345 		if (offset <= zerofrom) {
2346 			goto out;
2347 		}
2348 		if (zerofrom & (blocksize-1)) {
2349 			*bytes |= (blocksize-1);
2350 			(*bytes)++;
2351 		}
2352 		len = offset - zerofrom;
2353 
2354 		err = pagecache_write_begin(file, mapping, curpos, len,
2355 						AOP_FLAG_UNINTERRUPTIBLE,
2356 						&page, &fsdata);
2357 		if (err)
2358 			goto out;
2359 		zero_user(page, zerofrom, len);
2360 		err = pagecache_write_end(file, mapping, curpos, len, len,
2361 						page, fsdata);
2362 		if (err < 0)
2363 			goto out;
2364 		BUG_ON(err != len);
2365 		err = 0;
2366 	}
2367 out:
2368 	return err;
2369 }
2370 
2371 /*
2372  * For moronic filesystems that do not allow holes in file.
2373  * We may have to extend the file.
2374  */
2375 int cont_write_begin(struct file *file, struct address_space *mapping,
2376 			loff_t pos, unsigned len, unsigned flags,
2377 			struct page **pagep, void **fsdata,
2378 			get_block_t *get_block, loff_t *bytes)
2379 {
2380 	struct inode *inode = mapping->host;
2381 	unsigned blocksize = 1 << inode->i_blkbits;
2382 	unsigned zerofrom;
2383 	int err;
2384 
2385 	err = cont_expand_zero(file, mapping, pos, bytes);
2386 	if (err)
2387 		return err;
2388 
2389 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2390 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2391 		*bytes |= (blocksize-1);
2392 		(*bytes)++;
2393 	}
2394 
2395 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2396 }
2397 EXPORT_SYMBOL(cont_write_begin);
2398 
2399 int block_commit_write(struct page *page, unsigned from, unsigned to)
2400 {
2401 	struct inode *inode = page->mapping->host;
2402 	__block_commit_write(inode,page,from,to);
2403 	return 0;
2404 }
2405 EXPORT_SYMBOL(block_commit_write);
2406 
2407 /*
2408  * block_page_mkwrite() is not allowed to change the file size as it gets
2409  * called from a page fault handler when a page is first dirtied. Hence we must
2410  * be careful to check for EOF conditions here. We set the page up correctly
2411  * for a written page which means we get ENOSPC checking when writing into
2412  * holes and correct delalloc and unwritten extent mapping on filesystems that
2413  * support these features.
2414  *
2415  * We are not allowed to take the i_mutex here so we have to play games to
2416  * protect against truncate races as the page could now be beyond EOF.  Because
2417  * truncate writes the inode size before removing pages, once we have the
2418  * page lock we can determine safely if the page is beyond EOF. If it is not
2419  * beyond EOF, then the page is guaranteed safe against truncation until we
2420  * unlock the page.
2421  *
2422  * Direct callers of this function should protect against filesystem freezing
2423  * using sb_start_write() - sb_end_write() functions.
2424  */
2425 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2426 			 get_block_t get_block)
2427 {
2428 	struct page *page = vmf->page;
2429 	struct inode *inode = file_inode(vma->vm_file);
2430 	unsigned long end;
2431 	loff_t size;
2432 	int ret;
2433 
2434 	lock_page(page);
2435 	size = i_size_read(inode);
2436 	if ((page->mapping != inode->i_mapping) ||
2437 	    (page_offset(page) > size)) {
2438 		/* We overload EFAULT to mean page got truncated */
2439 		ret = -EFAULT;
2440 		goto out_unlock;
2441 	}
2442 
2443 	/* page is wholly or partially inside EOF */
2444 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2445 		end = size & ~PAGE_CACHE_MASK;
2446 	else
2447 		end = PAGE_CACHE_SIZE;
2448 
2449 	ret = __block_write_begin(page, 0, end, get_block);
2450 	if (!ret)
2451 		ret = block_commit_write(page, 0, end);
2452 
2453 	if (unlikely(ret < 0))
2454 		goto out_unlock;
2455 	set_page_dirty(page);
2456 	wait_for_stable_page(page);
2457 	return 0;
2458 out_unlock:
2459 	unlock_page(page);
2460 	return ret;
2461 }
2462 EXPORT_SYMBOL(__block_page_mkwrite);
2463 
2464 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2465 		   get_block_t get_block)
2466 {
2467 	int ret;
2468 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2469 
2470 	sb_start_pagefault(sb);
2471 
2472 	/*
2473 	 * Update file times before taking page lock. We may end up failing the
2474 	 * fault so this update may be superfluous but who really cares...
2475 	 */
2476 	file_update_time(vma->vm_file);
2477 
2478 	ret = __block_page_mkwrite(vma, vmf, get_block);
2479 	sb_end_pagefault(sb);
2480 	return block_page_mkwrite_return(ret);
2481 }
2482 EXPORT_SYMBOL(block_page_mkwrite);
2483 
2484 /*
2485  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2486  * immediately, while under the page lock.  So it needs a special end_io
2487  * handler which does not touch the bh after unlocking it.
2488  */
2489 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2490 {
2491 	__end_buffer_read_notouch(bh, uptodate);
2492 }
2493 
2494 /*
2495  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2496  * the page (converting it to circular linked list and taking care of page
2497  * dirty races).
2498  */
2499 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2500 {
2501 	struct buffer_head *bh;
2502 
2503 	BUG_ON(!PageLocked(page));
2504 
2505 	spin_lock(&page->mapping->private_lock);
2506 	bh = head;
2507 	do {
2508 		if (PageDirty(page))
2509 			set_buffer_dirty(bh);
2510 		if (!bh->b_this_page)
2511 			bh->b_this_page = head;
2512 		bh = bh->b_this_page;
2513 	} while (bh != head);
2514 	attach_page_buffers(page, head);
2515 	spin_unlock(&page->mapping->private_lock);
2516 }
2517 
2518 /*
2519  * On entry, the page is fully not uptodate.
2520  * On exit the page is fully uptodate in the areas outside (from,to)
2521  * The filesystem needs to handle block truncation upon failure.
2522  */
2523 int nobh_write_begin(struct address_space *mapping,
2524 			loff_t pos, unsigned len, unsigned flags,
2525 			struct page **pagep, void **fsdata,
2526 			get_block_t *get_block)
2527 {
2528 	struct inode *inode = mapping->host;
2529 	const unsigned blkbits = inode->i_blkbits;
2530 	const unsigned blocksize = 1 << blkbits;
2531 	struct buffer_head *head, *bh;
2532 	struct page *page;
2533 	pgoff_t index;
2534 	unsigned from, to;
2535 	unsigned block_in_page;
2536 	unsigned block_start, block_end;
2537 	sector_t block_in_file;
2538 	int nr_reads = 0;
2539 	int ret = 0;
2540 	int is_mapped_to_disk = 1;
2541 
2542 	index = pos >> PAGE_CACHE_SHIFT;
2543 	from = pos & (PAGE_CACHE_SIZE - 1);
2544 	to = from + len;
2545 
2546 	page = grab_cache_page_write_begin(mapping, index, flags);
2547 	if (!page)
2548 		return -ENOMEM;
2549 	*pagep = page;
2550 	*fsdata = NULL;
2551 
2552 	if (page_has_buffers(page)) {
2553 		ret = __block_write_begin(page, pos, len, get_block);
2554 		if (unlikely(ret))
2555 			goto out_release;
2556 		return ret;
2557 	}
2558 
2559 	if (PageMappedToDisk(page))
2560 		return 0;
2561 
2562 	/*
2563 	 * Allocate buffers so that we can keep track of state, and potentially
2564 	 * attach them to the page if an error occurs. In the common case of
2565 	 * no error, they will just be freed again without ever being attached
2566 	 * to the page (which is all OK, because we're under the page lock).
2567 	 *
2568 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2569 	 * than the circular one we're used to.
2570 	 */
2571 	head = alloc_page_buffers(page, blocksize, 0);
2572 	if (!head) {
2573 		ret = -ENOMEM;
2574 		goto out_release;
2575 	}
2576 
2577 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2578 
2579 	/*
2580 	 * We loop across all blocks in the page, whether or not they are
2581 	 * part of the affected region.  This is so we can discover if the
2582 	 * page is fully mapped-to-disk.
2583 	 */
2584 	for (block_start = 0, block_in_page = 0, bh = head;
2585 		  block_start < PAGE_CACHE_SIZE;
2586 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2587 		int create;
2588 
2589 		block_end = block_start + blocksize;
2590 		bh->b_state = 0;
2591 		create = 1;
2592 		if (block_start >= to)
2593 			create = 0;
2594 		ret = get_block(inode, block_in_file + block_in_page,
2595 					bh, create);
2596 		if (ret)
2597 			goto failed;
2598 		if (!buffer_mapped(bh))
2599 			is_mapped_to_disk = 0;
2600 		if (buffer_new(bh))
2601 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2602 		if (PageUptodate(page)) {
2603 			set_buffer_uptodate(bh);
2604 			continue;
2605 		}
2606 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2607 			zero_user_segments(page, block_start, from,
2608 							to, block_end);
2609 			continue;
2610 		}
2611 		if (buffer_uptodate(bh))
2612 			continue;	/* reiserfs does this */
2613 		if (block_start < from || block_end > to) {
2614 			lock_buffer(bh);
2615 			bh->b_end_io = end_buffer_read_nobh;
2616 			submit_bh(READ, bh);
2617 			nr_reads++;
2618 		}
2619 	}
2620 
2621 	if (nr_reads) {
2622 		/*
2623 		 * The page is locked, so these buffers are protected from
2624 		 * any VM or truncate activity.  Hence we don't need to care
2625 		 * for the buffer_head refcounts.
2626 		 */
2627 		for (bh = head; bh; bh = bh->b_this_page) {
2628 			wait_on_buffer(bh);
2629 			if (!buffer_uptodate(bh))
2630 				ret = -EIO;
2631 		}
2632 		if (ret)
2633 			goto failed;
2634 	}
2635 
2636 	if (is_mapped_to_disk)
2637 		SetPageMappedToDisk(page);
2638 
2639 	*fsdata = head; /* to be released by nobh_write_end */
2640 
2641 	return 0;
2642 
2643 failed:
2644 	BUG_ON(!ret);
2645 	/*
2646 	 * Error recovery is a bit difficult. We need to zero out blocks that
2647 	 * were newly allocated, and dirty them to ensure they get written out.
2648 	 * Buffers need to be attached to the page at this point, otherwise
2649 	 * the handling of potential IO errors during writeout would be hard
2650 	 * (could try doing synchronous writeout, but what if that fails too?)
2651 	 */
2652 	attach_nobh_buffers(page, head);
2653 	page_zero_new_buffers(page, from, to);
2654 
2655 out_release:
2656 	unlock_page(page);
2657 	page_cache_release(page);
2658 	*pagep = NULL;
2659 
2660 	return ret;
2661 }
2662 EXPORT_SYMBOL(nobh_write_begin);
2663 
2664 int nobh_write_end(struct file *file, struct address_space *mapping,
2665 			loff_t pos, unsigned len, unsigned copied,
2666 			struct page *page, void *fsdata)
2667 {
2668 	struct inode *inode = page->mapping->host;
2669 	struct buffer_head *head = fsdata;
2670 	struct buffer_head *bh;
2671 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2672 
2673 	if (unlikely(copied < len) && head)
2674 		attach_nobh_buffers(page, head);
2675 	if (page_has_buffers(page))
2676 		return generic_write_end(file, mapping, pos, len,
2677 					copied, page, fsdata);
2678 
2679 	SetPageUptodate(page);
2680 	set_page_dirty(page);
2681 	if (pos+copied > inode->i_size) {
2682 		i_size_write(inode, pos+copied);
2683 		mark_inode_dirty(inode);
2684 	}
2685 
2686 	unlock_page(page);
2687 	page_cache_release(page);
2688 
2689 	while (head) {
2690 		bh = head;
2691 		head = head->b_this_page;
2692 		free_buffer_head(bh);
2693 	}
2694 
2695 	return copied;
2696 }
2697 EXPORT_SYMBOL(nobh_write_end);
2698 
2699 /*
2700  * nobh_writepage() - based on block_full_write_page() except
2701  * that it tries to operate without attaching bufferheads to
2702  * the page.
2703  */
2704 int nobh_writepage(struct page *page, get_block_t *get_block,
2705 			struct writeback_control *wbc)
2706 {
2707 	struct inode * const inode = page->mapping->host;
2708 	loff_t i_size = i_size_read(inode);
2709 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2710 	unsigned offset;
2711 	int ret;
2712 
2713 	/* Is the page fully inside i_size? */
2714 	if (page->index < end_index)
2715 		goto out;
2716 
2717 	/* Is the page fully outside i_size? (truncate in progress) */
2718 	offset = i_size & (PAGE_CACHE_SIZE-1);
2719 	if (page->index >= end_index+1 || !offset) {
2720 		/*
2721 		 * The page may have dirty, unmapped buffers.  For example,
2722 		 * they may have been added in ext3_writepage().  Make them
2723 		 * freeable here, so the page does not leak.
2724 		 */
2725 #if 0
2726 		/* Not really sure about this  - do we need this ? */
2727 		if (page->mapping->a_ops->invalidatepage)
2728 			page->mapping->a_ops->invalidatepage(page, offset);
2729 #endif
2730 		unlock_page(page);
2731 		return 0; /* don't care */
2732 	}
2733 
2734 	/*
2735 	 * The page straddles i_size.  It must be zeroed out on each and every
2736 	 * writepage invocation because it may be mmapped.  "A file is mapped
2737 	 * in multiples of the page size.  For a file that is not a multiple of
2738 	 * the  page size, the remaining memory is zeroed when mapped, and
2739 	 * writes to that region are not written out to the file."
2740 	 */
2741 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2742 out:
2743 	ret = mpage_writepage(page, get_block, wbc);
2744 	if (ret == -EAGAIN)
2745 		ret = __block_write_full_page(inode, page, get_block, wbc,
2746 					      end_buffer_async_write);
2747 	return ret;
2748 }
2749 EXPORT_SYMBOL(nobh_writepage);
2750 
2751 int nobh_truncate_page(struct address_space *mapping,
2752 			loff_t from, get_block_t *get_block)
2753 {
2754 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2755 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2756 	unsigned blocksize;
2757 	sector_t iblock;
2758 	unsigned length, pos;
2759 	struct inode *inode = mapping->host;
2760 	struct page *page;
2761 	struct buffer_head map_bh;
2762 	int err;
2763 
2764 	blocksize = 1 << inode->i_blkbits;
2765 	length = offset & (blocksize - 1);
2766 
2767 	/* Block boundary? Nothing to do */
2768 	if (!length)
2769 		return 0;
2770 
2771 	length = blocksize - length;
2772 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2773 
2774 	page = grab_cache_page(mapping, index);
2775 	err = -ENOMEM;
2776 	if (!page)
2777 		goto out;
2778 
2779 	if (page_has_buffers(page)) {
2780 has_buffers:
2781 		unlock_page(page);
2782 		page_cache_release(page);
2783 		return block_truncate_page(mapping, from, get_block);
2784 	}
2785 
2786 	/* Find the buffer that contains "offset" */
2787 	pos = blocksize;
2788 	while (offset >= pos) {
2789 		iblock++;
2790 		pos += blocksize;
2791 	}
2792 
2793 	map_bh.b_size = blocksize;
2794 	map_bh.b_state = 0;
2795 	err = get_block(inode, iblock, &map_bh, 0);
2796 	if (err)
2797 		goto unlock;
2798 	/* unmapped? It's a hole - nothing to do */
2799 	if (!buffer_mapped(&map_bh))
2800 		goto unlock;
2801 
2802 	/* Ok, it's mapped. Make sure it's up-to-date */
2803 	if (!PageUptodate(page)) {
2804 		err = mapping->a_ops->readpage(NULL, page);
2805 		if (err) {
2806 			page_cache_release(page);
2807 			goto out;
2808 		}
2809 		lock_page(page);
2810 		if (!PageUptodate(page)) {
2811 			err = -EIO;
2812 			goto unlock;
2813 		}
2814 		if (page_has_buffers(page))
2815 			goto has_buffers;
2816 	}
2817 	zero_user(page, offset, length);
2818 	set_page_dirty(page);
2819 	err = 0;
2820 
2821 unlock:
2822 	unlock_page(page);
2823 	page_cache_release(page);
2824 out:
2825 	return err;
2826 }
2827 EXPORT_SYMBOL(nobh_truncate_page);
2828 
2829 int block_truncate_page(struct address_space *mapping,
2830 			loff_t from, get_block_t *get_block)
2831 {
2832 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2833 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2834 	unsigned blocksize;
2835 	sector_t iblock;
2836 	unsigned length, pos;
2837 	struct inode *inode = mapping->host;
2838 	struct page *page;
2839 	struct buffer_head *bh;
2840 	int err;
2841 
2842 	blocksize = 1 << inode->i_blkbits;
2843 	length = offset & (blocksize - 1);
2844 
2845 	/* Block boundary? Nothing to do */
2846 	if (!length)
2847 		return 0;
2848 
2849 	length = blocksize - length;
2850 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2851 
2852 	page = grab_cache_page(mapping, index);
2853 	err = -ENOMEM;
2854 	if (!page)
2855 		goto out;
2856 
2857 	if (!page_has_buffers(page))
2858 		create_empty_buffers(page, blocksize, 0);
2859 
2860 	/* Find the buffer that contains "offset" */
2861 	bh = page_buffers(page);
2862 	pos = blocksize;
2863 	while (offset >= pos) {
2864 		bh = bh->b_this_page;
2865 		iblock++;
2866 		pos += blocksize;
2867 	}
2868 
2869 	err = 0;
2870 	if (!buffer_mapped(bh)) {
2871 		WARN_ON(bh->b_size != blocksize);
2872 		err = get_block(inode, iblock, bh, 0);
2873 		if (err)
2874 			goto unlock;
2875 		/* unmapped? It's a hole - nothing to do */
2876 		if (!buffer_mapped(bh))
2877 			goto unlock;
2878 	}
2879 
2880 	/* Ok, it's mapped. Make sure it's up-to-date */
2881 	if (PageUptodate(page))
2882 		set_buffer_uptodate(bh);
2883 
2884 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2885 		err = -EIO;
2886 		ll_rw_block(READ, 1, &bh);
2887 		wait_on_buffer(bh);
2888 		/* Uhhuh. Read error. Complain and punt. */
2889 		if (!buffer_uptodate(bh))
2890 			goto unlock;
2891 	}
2892 
2893 	zero_user(page, offset, length);
2894 	mark_buffer_dirty(bh);
2895 	err = 0;
2896 
2897 unlock:
2898 	unlock_page(page);
2899 	page_cache_release(page);
2900 out:
2901 	return err;
2902 }
2903 EXPORT_SYMBOL(block_truncate_page);
2904 
2905 /*
2906  * The generic ->writepage function for buffer-backed address_spaces
2907  */
2908 int block_write_full_page(struct page *page, get_block_t *get_block,
2909 			struct writeback_control *wbc)
2910 {
2911 	struct inode * const inode = page->mapping->host;
2912 	loff_t i_size = i_size_read(inode);
2913 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2914 	unsigned offset;
2915 
2916 	/* Is the page fully inside i_size? */
2917 	if (page->index < end_index)
2918 		return __block_write_full_page(inode, page, get_block, wbc,
2919 					       end_buffer_async_write);
2920 
2921 	/* Is the page fully outside i_size? (truncate in progress) */
2922 	offset = i_size & (PAGE_CACHE_SIZE-1);
2923 	if (page->index >= end_index+1 || !offset) {
2924 		/*
2925 		 * The page may have dirty, unmapped buffers.  For example,
2926 		 * they may have been added in ext3_writepage().  Make them
2927 		 * freeable here, so the page does not leak.
2928 		 */
2929 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2930 		unlock_page(page);
2931 		return 0; /* don't care */
2932 	}
2933 
2934 	/*
2935 	 * The page straddles i_size.  It must be zeroed out on each and every
2936 	 * writepage invocation because it may be mmapped.  "A file is mapped
2937 	 * in multiples of the page size.  For a file that is not a multiple of
2938 	 * the  page size, the remaining memory is zeroed when mapped, and
2939 	 * writes to that region are not written out to the file."
2940 	 */
2941 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2942 	return __block_write_full_page(inode, page, get_block, wbc,
2943 							end_buffer_async_write);
2944 }
2945 EXPORT_SYMBOL(block_write_full_page);
2946 
2947 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2948 			    get_block_t *get_block)
2949 {
2950 	struct buffer_head tmp;
2951 	struct inode *inode = mapping->host;
2952 	tmp.b_state = 0;
2953 	tmp.b_blocknr = 0;
2954 	tmp.b_size = 1 << inode->i_blkbits;
2955 	get_block(inode, block, &tmp, 0);
2956 	return tmp.b_blocknr;
2957 }
2958 EXPORT_SYMBOL(generic_block_bmap);
2959 
2960 static void end_bio_bh_io_sync(struct bio *bio)
2961 {
2962 	struct buffer_head *bh = bio->bi_private;
2963 
2964 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2965 		set_bit(BH_Quiet, &bh->b_state);
2966 
2967 	bh->b_end_io(bh, !bio->bi_error);
2968 	bio_put(bio);
2969 }
2970 
2971 /*
2972  * This allows us to do IO even on the odd last sectors
2973  * of a device, even if the block size is some multiple
2974  * of the physical sector size.
2975  *
2976  * We'll just truncate the bio to the size of the device,
2977  * and clear the end of the buffer head manually.
2978  *
2979  * Truly out-of-range accesses will turn into actual IO
2980  * errors, this only handles the "we need to be able to
2981  * do IO at the final sector" case.
2982  */
2983 void guard_bio_eod(int rw, struct bio *bio)
2984 {
2985 	sector_t maxsector;
2986 	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2987 	unsigned truncated_bytes;
2988 
2989 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2990 	if (!maxsector)
2991 		return;
2992 
2993 	/*
2994 	 * If the *whole* IO is past the end of the device,
2995 	 * let it through, and the IO layer will turn it into
2996 	 * an EIO.
2997 	 */
2998 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
2999 		return;
3000 
3001 	maxsector -= bio->bi_iter.bi_sector;
3002 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3003 		return;
3004 
3005 	/* Uhhuh. We've got a bio that straddles the device size! */
3006 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3007 
3008 	/* Truncate the bio.. */
3009 	bio->bi_iter.bi_size -= truncated_bytes;
3010 	bvec->bv_len -= truncated_bytes;
3011 
3012 	/* ..and clear the end of the buffer for reads */
3013 	if ((rw & RW_MASK) == READ) {
3014 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3015 				truncated_bytes);
3016 	}
3017 }
3018 
3019 static int submit_bh_wbc(int rw, struct buffer_head *bh,
3020 			 unsigned long bio_flags, struct writeback_control *wbc)
3021 {
3022 	struct bio *bio;
3023 
3024 	BUG_ON(!buffer_locked(bh));
3025 	BUG_ON(!buffer_mapped(bh));
3026 	BUG_ON(!bh->b_end_io);
3027 	BUG_ON(buffer_delay(bh));
3028 	BUG_ON(buffer_unwritten(bh));
3029 
3030 	/*
3031 	 * Only clear out a write error when rewriting
3032 	 */
3033 	if (test_set_buffer_req(bh) && (rw & WRITE))
3034 		clear_buffer_write_io_error(bh);
3035 
3036 	/*
3037 	 * from here on down, it's all bio -- do the initial mapping,
3038 	 * submit_bio -> generic_make_request may further map this bio around
3039 	 */
3040 	bio = bio_alloc(GFP_NOIO, 1);
3041 
3042 	if (wbc) {
3043 		wbc_init_bio(wbc, bio);
3044 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3045 	}
3046 
3047 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3048 	bio->bi_bdev = bh->b_bdev;
3049 
3050 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3051 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3052 
3053 	bio->bi_end_io = end_bio_bh_io_sync;
3054 	bio->bi_private = bh;
3055 	bio->bi_flags |= bio_flags;
3056 
3057 	/* Take care of bh's that straddle the end of the device */
3058 	guard_bio_eod(rw, bio);
3059 
3060 	if (buffer_meta(bh))
3061 		rw |= REQ_META;
3062 	if (buffer_prio(bh))
3063 		rw |= REQ_PRIO;
3064 
3065 	submit_bio(rw, bio);
3066 	return 0;
3067 }
3068 
3069 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3070 {
3071 	return submit_bh_wbc(rw, bh, bio_flags, NULL);
3072 }
3073 EXPORT_SYMBOL_GPL(_submit_bh);
3074 
3075 int submit_bh(int rw, struct buffer_head *bh)
3076 {
3077 	return submit_bh_wbc(rw, bh, 0, NULL);
3078 }
3079 EXPORT_SYMBOL(submit_bh);
3080 
3081 /**
3082  * ll_rw_block: low-level access to block devices (DEPRECATED)
3083  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3084  * @nr: number of &struct buffer_heads in the array
3085  * @bhs: array of pointers to &struct buffer_head
3086  *
3087  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3088  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3089  * %READA option is described in the documentation for generic_make_request()
3090  * which ll_rw_block() calls.
3091  *
3092  * This function drops any buffer that it cannot get a lock on (with the
3093  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3094  * request, and any buffer that appears to be up-to-date when doing read
3095  * request.  Further it marks as clean buffers that are processed for
3096  * writing (the buffer cache won't assume that they are actually clean
3097  * until the buffer gets unlocked).
3098  *
3099  * ll_rw_block sets b_end_io to simple completion handler that marks
3100  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3101  * any waiters.
3102  *
3103  * All of the buffers must be for the same device, and must also be a
3104  * multiple of the current approved size for the device.
3105  */
3106 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3107 {
3108 	int i;
3109 
3110 	for (i = 0; i < nr; i++) {
3111 		struct buffer_head *bh = bhs[i];
3112 
3113 		if (!trylock_buffer(bh))
3114 			continue;
3115 		if (rw == WRITE) {
3116 			if (test_clear_buffer_dirty(bh)) {
3117 				bh->b_end_io = end_buffer_write_sync;
3118 				get_bh(bh);
3119 				submit_bh(WRITE, bh);
3120 				continue;
3121 			}
3122 		} else {
3123 			if (!buffer_uptodate(bh)) {
3124 				bh->b_end_io = end_buffer_read_sync;
3125 				get_bh(bh);
3126 				submit_bh(rw, bh);
3127 				continue;
3128 			}
3129 		}
3130 		unlock_buffer(bh);
3131 	}
3132 }
3133 EXPORT_SYMBOL(ll_rw_block);
3134 
3135 void write_dirty_buffer(struct buffer_head *bh, int rw)
3136 {
3137 	lock_buffer(bh);
3138 	if (!test_clear_buffer_dirty(bh)) {
3139 		unlock_buffer(bh);
3140 		return;
3141 	}
3142 	bh->b_end_io = end_buffer_write_sync;
3143 	get_bh(bh);
3144 	submit_bh(rw, bh);
3145 }
3146 EXPORT_SYMBOL(write_dirty_buffer);
3147 
3148 /*
3149  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3150  * and then start new I/O and then wait upon it.  The caller must have a ref on
3151  * the buffer_head.
3152  */
3153 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3154 {
3155 	int ret = 0;
3156 
3157 	WARN_ON(atomic_read(&bh->b_count) < 1);
3158 	lock_buffer(bh);
3159 	if (test_clear_buffer_dirty(bh)) {
3160 		get_bh(bh);
3161 		bh->b_end_io = end_buffer_write_sync;
3162 		ret = submit_bh(rw, bh);
3163 		wait_on_buffer(bh);
3164 		if (!ret && !buffer_uptodate(bh))
3165 			ret = -EIO;
3166 	} else {
3167 		unlock_buffer(bh);
3168 	}
3169 	return ret;
3170 }
3171 EXPORT_SYMBOL(__sync_dirty_buffer);
3172 
3173 int sync_dirty_buffer(struct buffer_head *bh)
3174 {
3175 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3176 }
3177 EXPORT_SYMBOL(sync_dirty_buffer);
3178 
3179 /*
3180  * try_to_free_buffers() checks if all the buffers on this particular page
3181  * are unused, and releases them if so.
3182  *
3183  * Exclusion against try_to_free_buffers may be obtained by either
3184  * locking the page or by holding its mapping's private_lock.
3185  *
3186  * If the page is dirty but all the buffers are clean then we need to
3187  * be sure to mark the page clean as well.  This is because the page
3188  * may be against a block device, and a later reattachment of buffers
3189  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3190  * filesystem data on the same device.
3191  *
3192  * The same applies to regular filesystem pages: if all the buffers are
3193  * clean then we set the page clean and proceed.  To do that, we require
3194  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3195  * private_lock.
3196  *
3197  * try_to_free_buffers() is non-blocking.
3198  */
3199 static inline int buffer_busy(struct buffer_head *bh)
3200 {
3201 	return atomic_read(&bh->b_count) |
3202 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3203 }
3204 
3205 static int
3206 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3207 {
3208 	struct buffer_head *head = page_buffers(page);
3209 	struct buffer_head *bh;
3210 
3211 	bh = head;
3212 	do {
3213 		if (buffer_write_io_error(bh) && page->mapping)
3214 			set_bit(AS_EIO, &page->mapping->flags);
3215 		if (buffer_busy(bh))
3216 			goto failed;
3217 		bh = bh->b_this_page;
3218 	} while (bh != head);
3219 
3220 	do {
3221 		struct buffer_head *next = bh->b_this_page;
3222 
3223 		if (bh->b_assoc_map)
3224 			__remove_assoc_queue(bh);
3225 		bh = next;
3226 	} while (bh != head);
3227 	*buffers_to_free = head;
3228 	__clear_page_buffers(page);
3229 	return 1;
3230 failed:
3231 	return 0;
3232 }
3233 
3234 int try_to_free_buffers(struct page *page)
3235 {
3236 	struct address_space * const mapping = page->mapping;
3237 	struct buffer_head *buffers_to_free = NULL;
3238 	int ret = 0;
3239 
3240 	BUG_ON(!PageLocked(page));
3241 	if (PageWriteback(page))
3242 		return 0;
3243 
3244 	if (mapping == NULL) {		/* can this still happen? */
3245 		ret = drop_buffers(page, &buffers_to_free);
3246 		goto out;
3247 	}
3248 
3249 	spin_lock(&mapping->private_lock);
3250 	ret = drop_buffers(page, &buffers_to_free);
3251 
3252 	/*
3253 	 * If the filesystem writes its buffers by hand (eg ext3)
3254 	 * then we can have clean buffers against a dirty page.  We
3255 	 * clean the page here; otherwise the VM will never notice
3256 	 * that the filesystem did any IO at all.
3257 	 *
3258 	 * Also, during truncate, discard_buffer will have marked all
3259 	 * the page's buffers clean.  We discover that here and clean
3260 	 * the page also.
3261 	 *
3262 	 * private_lock must be held over this entire operation in order
3263 	 * to synchronise against __set_page_dirty_buffers and prevent the
3264 	 * dirty bit from being lost.
3265 	 */
3266 	if (ret)
3267 		cancel_dirty_page(page);
3268 	spin_unlock(&mapping->private_lock);
3269 out:
3270 	if (buffers_to_free) {
3271 		struct buffer_head *bh = buffers_to_free;
3272 
3273 		do {
3274 			struct buffer_head *next = bh->b_this_page;
3275 			free_buffer_head(bh);
3276 			bh = next;
3277 		} while (bh != buffers_to_free);
3278 	}
3279 	return ret;
3280 }
3281 EXPORT_SYMBOL(try_to_free_buffers);
3282 
3283 /*
3284  * There are no bdflush tunables left.  But distributions are
3285  * still running obsolete flush daemons, so we terminate them here.
3286  *
3287  * Use of bdflush() is deprecated and will be removed in a future kernel.
3288  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3289  */
3290 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3291 {
3292 	static int msg_count;
3293 
3294 	if (!capable(CAP_SYS_ADMIN))
3295 		return -EPERM;
3296 
3297 	if (msg_count < 5) {
3298 		msg_count++;
3299 		printk(KERN_INFO
3300 			"warning: process `%s' used the obsolete bdflush"
3301 			" system call\n", current->comm);
3302 		printk(KERN_INFO "Fix your initscripts?\n");
3303 	}
3304 
3305 	if (func == 1)
3306 		do_exit(0);
3307 	return 0;
3308 }
3309 
3310 /*
3311  * Buffer-head allocation
3312  */
3313 static struct kmem_cache *bh_cachep __read_mostly;
3314 
3315 /*
3316  * Once the number of bh's in the machine exceeds this level, we start
3317  * stripping them in writeback.
3318  */
3319 static unsigned long max_buffer_heads;
3320 
3321 int buffer_heads_over_limit;
3322 
3323 struct bh_accounting {
3324 	int nr;			/* Number of live bh's */
3325 	int ratelimit;		/* Limit cacheline bouncing */
3326 };
3327 
3328 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3329 
3330 static void recalc_bh_state(void)
3331 {
3332 	int i;
3333 	int tot = 0;
3334 
3335 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3336 		return;
3337 	__this_cpu_write(bh_accounting.ratelimit, 0);
3338 	for_each_online_cpu(i)
3339 		tot += per_cpu(bh_accounting, i).nr;
3340 	buffer_heads_over_limit = (tot > max_buffer_heads);
3341 }
3342 
3343 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3344 {
3345 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3346 	if (ret) {
3347 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3348 		preempt_disable();
3349 		__this_cpu_inc(bh_accounting.nr);
3350 		recalc_bh_state();
3351 		preempt_enable();
3352 	}
3353 	return ret;
3354 }
3355 EXPORT_SYMBOL(alloc_buffer_head);
3356 
3357 void free_buffer_head(struct buffer_head *bh)
3358 {
3359 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3360 	kmem_cache_free(bh_cachep, bh);
3361 	preempt_disable();
3362 	__this_cpu_dec(bh_accounting.nr);
3363 	recalc_bh_state();
3364 	preempt_enable();
3365 }
3366 EXPORT_SYMBOL(free_buffer_head);
3367 
3368 static void buffer_exit_cpu(int cpu)
3369 {
3370 	int i;
3371 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3372 
3373 	for (i = 0; i < BH_LRU_SIZE; i++) {
3374 		brelse(b->bhs[i]);
3375 		b->bhs[i] = NULL;
3376 	}
3377 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3378 	per_cpu(bh_accounting, cpu).nr = 0;
3379 }
3380 
3381 static int buffer_cpu_notify(struct notifier_block *self,
3382 			      unsigned long action, void *hcpu)
3383 {
3384 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3385 		buffer_exit_cpu((unsigned long)hcpu);
3386 	return NOTIFY_OK;
3387 }
3388 
3389 /**
3390  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3391  * @bh: struct buffer_head
3392  *
3393  * Return true if the buffer is up-to-date and false,
3394  * with the buffer locked, if not.
3395  */
3396 int bh_uptodate_or_lock(struct buffer_head *bh)
3397 {
3398 	if (!buffer_uptodate(bh)) {
3399 		lock_buffer(bh);
3400 		if (!buffer_uptodate(bh))
3401 			return 0;
3402 		unlock_buffer(bh);
3403 	}
3404 	return 1;
3405 }
3406 EXPORT_SYMBOL(bh_uptodate_or_lock);
3407 
3408 /**
3409  * bh_submit_read - Submit a locked buffer for reading
3410  * @bh: struct buffer_head
3411  *
3412  * Returns zero on success and -EIO on error.
3413  */
3414 int bh_submit_read(struct buffer_head *bh)
3415 {
3416 	BUG_ON(!buffer_locked(bh));
3417 
3418 	if (buffer_uptodate(bh)) {
3419 		unlock_buffer(bh);
3420 		return 0;
3421 	}
3422 
3423 	get_bh(bh);
3424 	bh->b_end_io = end_buffer_read_sync;
3425 	submit_bh(READ, bh);
3426 	wait_on_buffer(bh);
3427 	if (buffer_uptodate(bh))
3428 		return 0;
3429 	return -EIO;
3430 }
3431 EXPORT_SYMBOL(bh_submit_read);
3432 
3433 void __init buffer_init(void)
3434 {
3435 	unsigned long nrpages;
3436 
3437 	bh_cachep = kmem_cache_create("buffer_head",
3438 			sizeof(struct buffer_head), 0,
3439 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3440 				SLAB_MEM_SPREAD),
3441 				NULL);
3442 
3443 	/*
3444 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3445 	 */
3446 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3447 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3448 	hotcpu_notifier(buffer_cpu_notify, 0);
3449 }
3450