1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 #include <linux/sched/isolation.h> 53 54 #include "internal.h" 55 56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 58 enum rw_hint hint, struct writeback_control *wbc); 59 60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 61 62 inline void touch_buffer(struct buffer_head *bh) 63 { 64 trace_block_touch_buffer(bh); 65 folio_mark_accessed(bh->b_folio); 66 } 67 EXPORT_SYMBOL(touch_buffer); 68 69 void __lock_buffer(struct buffer_head *bh) 70 { 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 72 } 73 EXPORT_SYMBOL(__lock_buffer); 74 75 void unlock_buffer(struct buffer_head *bh) 76 { 77 clear_bit_unlock(BH_Lock, &bh->b_state); 78 smp_mb__after_atomic(); 79 wake_up_bit(&bh->b_state, BH_Lock); 80 } 81 EXPORT_SYMBOL(unlock_buffer); 82 83 /* 84 * Returns if the folio has dirty or writeback buffers. If all the buffers 85 * are unlocked and clean then the folio_test_dirty information is stale. If 86 * any of the buffers are locked, it is assumed they are locked for IO. 87 */ 88 void buffer_check_dirty_writeback(struct folio *folio, 89 bool *dirty, bool *writeback) 90 { 91 struct buffer_head *head, *bh; 92 *dirty = false; 93 *writeback = false; 94 95 BUG_ON(!folio_test_locked(folio)); 96 97 head = folio_buffers(folio); 98 if (!head) 99 return; 100 101 if (folio_test_writeback(folio)) 102 *writeback = true; 103 104 bh = head; 105 do { 106 if (buffer_locked(bh)) 107 *writeback = true; 108 109 if (buffer_dirty(bh)) 110 *dirty = true; 111 112 bh = bh->b_this_page; 113 } while (bh != head); 114 } 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 __end_buffer_read_notouch(bh, uptodate); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 /* 180 * Various filesystems appear to want __find_get_block to be non-blocking. 181 * But it's the page lock which protects the buffers. To get around this, 182 * we get exclusion from try_to_free_buffers with the blockdev mapping's 183 * i_private_lock. 184 * 185 * Hack idea: for the blockdev mapping, i_private_lock contention 186 * may be quite high. This code could TryLock the page, and if that 187 * succeeds, there is no need to take i_private_lock. 188 */ 189 static struct buffer_head * 190 __find_get_block_slow(struct block_device *bdev, sector_t block) 191 { 192 struct address_space *bd_mapping = bdev->bd_mapping; 193 const int blkbits = bd_mapping->host->i_blkbits; 194 struct buffer_head *ret = NULL; 195 pgoff_t index; 196 struct buffer_head *bh; 197 struct buffer_head *head; 198 struct folio *folio; 199 int all_mapped = 1; 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 201 202 index = ((loff_t)block << blkbits) / PAGE_SIZE; 203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); 204 if (IS_ERR(folio)) 205 goto out; 206 207 spin_lock(&bd_mapping->i_private_lock); 208 head = folio_buffers(folio); 209 if (!head) 210 goto out_unlock; 211 bh = head; 212 do { 213 if (!buffer_mapped(bh)) 214 all_mapped = 0; 215 else if (bh->b_blocknr == block) { 216 ret = bh; 217 get_bh(bh); 218 goto out_unlock; 219 } 220 bh = bh->b_this_page; 221 } while (bh != head); 222 223 /* we might be here because some of the buffers on this page are 224 * not mapped. This is due to various races between 225 * file io on the block device and getblk. It gets dealt with 226 * elsewhere, don't buffer_error if we had some unmapped buffers 227 */ 228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 229 if (all_mapped && __ratelimit(&last_warned)) { 230 printk("__find_get_block_slow() failed. block=%llu, " 231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 232 "device %pg blocksize: %d\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr, 235 bh->b_state, bh->b_size, bdev, 236 1 << blkbits); 237 } 238 out_unlock: 239 spin_unlock(&bd_mapping->i_private_lock); 240 folio_put(folio); 241 out: 242 return ret; 243 } 244 245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 246 { 247 unsigned long flags; 248 struct buffer_head *first; 249 struct buffer_head *tmp; 250 struct folio *folio; 251 int folio_uptodate = 1; 252 253 BUG_ON(!buffer_async_read(bh)); 254 255 folio = bh->b_folio; 256 if (uptodate) { 257 set_buffer_uptodate(bh); 258 } else { 259 clear_buffer_uptodate(bh); 260 buffer_io_error(bh, ", async page read"); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = folio_buffers(folio); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 folio_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 folio_end_read(folio, folio_uptodate); 285 return; 286 287 still_busy: 288 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 289 return; 290 } 291 292 struct postprocess_bh_ctx { 293 struct work_struct work; 294 struct buffer_head *bh; 295 }; 296 297 static void verify_bh(struct work_struct *work) 298 { 299 struct postprocess_bh_ctx *ctx = 300 container_of(work, struct postprocess_bh_ctx, work); 301 struct buffer_head *bh = ctx->bh; 302 bool valid; 303 304 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 305 end_buffer_async_read(bh, valid); 306 kfree(ctx); 307 } 308 309 static bool need_fsverity(struct buffer_head *bh) 310 { 311 struct folio *folio = bh->b_folio; 312 struct inode *inode = folio->mapping->host; 313 314 return fsverity_active(inode) && 315 /* needed by ext4 */ 316 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 317 } 318 319 static void decrypt_bh(struct work_struct *work) 320 { 321 struct postprocess_bh_ctx *ctx = 322 container_of(work, struct postprocess_bh_ctx, work); 323 struct buffer_head *bh = ctx->bh; 324 int err; 325 326 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 327 bh_offset(bh)); 328 if (err == 0 && need_fsverity(bh)) { 329 /* 330 * We use different work queues for decryption and for verity 331 * because verity may require reading metadata pages that need 332 * decryption, and we shouldn't recurse to the same workqueue. 333 */ 334 INIT_WORK(&ctx->work, verify_bh); 335 fsverity_enqueue_verify_work(&ctx->work); 336 return; 337 } 338 end_buffer_async_read(bh, err == 0); 339 kfree(ctx); 340 } 341 342 /* 343 * I/O completion handler for block_read_full_folio() - pages 344 * which come unlocked at the end of I/O. 345 */ 346 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 347 { 348 struct inode *inode = bh->b_folio->mapping->host; 349 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 350 bool verify = need_fsverity(bh); 351 352 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 353 if (uptodate && (decrypt || verify)) { 354 struct postprocess_bh_ctx *ctx = 355 kmalloc(sizeof(*ctx), GFP_ATOMIC); 356 357 if (ctx) { 358 ctx->bh = bh; 359 if (decrypt) { 360 INIT_WORK(&ctx->work, decrypt_bh); 361 fscrypt_enqueue_decrypt_work(&ctx->work); 362 } else { 363 INIT_WORK(&ctx->work, verify_bh); 364 fsverity_enqueue_verify_work(&ctx->work); 365 } 366 return; 367 } 368 uptodate = 0; 369 } 370 end_buffer_async_read(bh, uptodate); 371 } 372 373 /* 374 * Completion handler for block_write_full_folio() - folios which are unlocked 375 * during I/O, and which have the writeback flag cleared upon I/O completion. 376 */ 377 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 378 { 379 unsigned long flags; 380 struct buffer_head *first; 381 struct buffer_head *tmp; 382 struct folio *folio; 383 384 BUG_ON(!buffer_async_write(bh)); 385 386 folio = bh->b_folio; 387 if (uptodate) { 388 set_buffer_uptodate(bh); 389 } else { 390 buffer_io_error(bh, ", lost async page write"); 391 mark_buffer_write_io_error(bh); 392 clear_buffer_uptodate(bh); 393 } 394 395 first = folio_buffers(folio); 396 spin_lock_irqsave(&first->b_uptodate_lock, flags); 397 398 clear_buffer_async_write(bh); 399 unlock_buffer(bh); 400 tmp = bh->b_this_page; 401 while (tmp != bh) { 402 if (buffer_async_write(tmp)) { 403 BUG_ON(!buffer_locked(tmp)); 404 goto still_busy; 405 } 406 tmp = tmp->b_this_page; 407 } 408 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 409 folio_end_writeback(folio); 410 return; 411 412 still_busy: 413 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 414 return; 415 } 416 417 /* 418 * If a page's buffers are under async readin (end_buffer_async_read 419 * completion) then there is a possibility that another thread of 420 * control could lock one of the buffers after it has completed 421 * but while some of the other buffers have not completed. This 422 * locked buffer would confuse end_buffer_async_read() into not unlocking 423 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 424 * that this buffer is not under async I/O. 425 * 426 * The page comes unlocked when it has no locked buffer_async buffers 427 * left. 428 * 429 * PageLocked prevents anyone starting new async I/O reads any of 430 * the buffers. 431 * 432 * PageWriteback is used to prevent simultaneous writeout of the same 433 * page. 434 * 435 * PageLocked prevents anyone from starting writeback of a page which is 436 * under read I/O (PageWriteback is only ever set against a locked page). 437 */ 438 static void mark_buffer_async_read(struct buffer_head *bh) 439 { 440 bh->b_end_io = end_buffer_async_read_io; 441 set_buffer_async_read(bh); 442 } 443 444 static void mark_buffer_async_write_endio(struct buffer_head *bh, 445 bh_end_io_t *handler) 446 { 447 bh->b_end_io = handler; 448 set_buffer_async_write(bh); 449 } 450 451 void mark_buffer_async_write(struct buffer_head *bh) 452 { 453 mark_buffer_async_write_endio(bh, end_buffer_async_write); 454 } 455 EXPORT_SYMBOL(mark_buffer_async_write); 456 457 458 /* 459 * fs/buffer.c contains helper functions for buffer-backed address space's 460 * fsync functions. A common requirement for buffer-based filesystems is 461 * that certain data from the backing blockdev needs to be written out for 462 * a successful fsync(). For example, ext2 indirect blocks need to be 463 * written back and waited upon before fsync() returns. 464 * 465 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(), 466 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 467 * management of a list of dependent buffers at ->i_mapping->i_private_list. 468 * 469 * Locking is a little subtle: try_to_free_buffers() will remove buffers 470 * from their controlling inode's queue when they are being freed. But 471 * try_to_free_buffers() will be operating against the *blockdev* mapping 472 * at the time, not against the S_ISREG file which depends on those buffers. 473 * So the locking for i_private_list is via the i_private_lock in the address_space 474 * which backs the buffers. Which is different from the address_space 475 * against which the buffers are listed. So for a particular address_space, 476 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact, 477 * mapping->i_private_list will always be protected by the backing blockdev's 478 * ->i_private_lock. 479 * 480 * Which introduces a requirement: all buffers on an address_space's 481 * ->i_private_list must be from the same address_space: the blockdev's. 482 * 483 * address_spaces which do not place buffers at ->i_private_list via these 484 * utility functions are free to use i_private_lock and i_private_list for 485 * whatever they want. The only requirement is that list_empty(i_private_list) 486 * be true at clear_inode() time. 487 * 488 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 489 * filesystems should do that. invalidate_inode_buffers() should just go 490 * BUG_ON(!list_empty). 491 * 492 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 493 * take an address_space, not an inode. And it should be called 494 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 495 * queued up. 496 * 497 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 498 * list if it is already on a list. Because if the buffer is on a list, 499 * it *must* already be on the right one. If not, the filesystem is being 500 * silly. This will save a ton of locking. But first we have to ensure 501 * that buffers are taken *off* the old inode's list when they are freed 502 * (presumably in truncate). That requires careful auditing of all 503 * filesystems (do it inside bforget()). It could also be done by bringing 504 * b_inode back. 505 */ 506 507 /* 508 * The buffer's backing address_space's i_private_lock must be held 509 */ 510 static void __remove_assoc_queue(struct buffer_head *bh) 511 { 512 list_del_init(&bh->b_assoc_buffers); 513 WARN_ON(!bh->b_assoc_map); 514 bh->b_assoc_map = NULL; 515 } 516 517 int inode_has_buffers(struct inode *inode) 518 { 519 return !list_empty(&inode->i_data.i_private_list); 520 } 521 522 /* 523 * osync is designed to support O_SYNC io. It waits synchronously for 524 * all already-submitted IO to complete, but does not queue any new 525 * writes to the disk. 526 * 527 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 528 * as you dirty the buffers, and then use osync_inode_buffers to wait for 529 * completion. Any other dirty buffers which are not yet queued for 530 * write will not be flushed to disk by the osync. 531 */ 532 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 533 { 534 struct buffer_head *bh; 535 struct list_head *p; 536 int err = 0; 537 538 spin_lock(lock); 539 repeat: 540 list_for_each_prev(p, list) { 541 bh = BH_ENTRY(p); 542 if (buffer_locked(bh)) { 543 get_bh(bh); 544 spin_unlock(lock); 545 wait_on_buffer(bh); 546 if (!buffer_uptodate(bh)) 547 err = -EIO; 548 brelse(bh); 549 spin_lock(lock); 550 goto repeat; 551 } 552 } 553 spin_unlock(lock); 554 return err; 555 } 556 557 /** 558 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 559 * @mapping: the mapping which wants those buffers written 560 * 561 * Starts I/O against the buffers at mapping->i_private_list, and waits upon 562 * that I/O. 563 * 564 * Basically, this is a convenience function for fsync(). 565 * @mapping is a file or directory which needs those buffers to be written for 566 * a successful fsync(). 567 */ 568 int sync_mapping_buffers(struct address_space *mapping) 569 { 570 struct address_space *buffer_mapping = mapping->i_private_data; 571 572 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list)) 573 return 0; 574 575 return fsync_buffers_list(&buffer_mapping->i_private_lock, 576 &mapping->i_private_list); 577 } 578 EXPORT_SYMBOL(sync_mapping_buffers); 579 580 /** 581 * generic_buffers_fsync_noflush - generic buffer fsync implementation 582 * for simple filesystems with no inode lock 583 * 584 * @file: file to synchronize 585 * @start: start offset in bytes 586 * @end: end offset in bytes (inclusive) 587 * @datasync: only synchronize essential metadata if true 588 * 589 * This is a generic implementation of the fsync method for simple 590 * filesystems which track all non-inode metadata in the buffers list 591 * hanging off the address_space structure. 592 */ 593 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, 594 bool datasync) 595 { 596 struct inode *inode = file->f_mapping->host; 597 int err; 598 int ret; 599 600 err = file_write_and_wait_range(file, start, end); 601 if (err) 602 return err; 603 604 ret = sync_mapping_buffers(inode->i_mapping); 605 if (!(inode->i_state & I_DIRTY_ALL)) 606 goto out; 607 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 608 goto out; 609 610 err = sync_inode_metadata(inode, 1); 611 if (ret == 0) 612 ret = err; 613 614 out: 615 /* check and advance again to catch errors after syncing out buffers */ 616 err = file_check_and_advance_wb_err(file); 617 if (ret == 0) 618 ret = err; 619 return ret; 620 } 621 EXPORT_SYMBOL(generic_buffers_fsync_noflush); 622 623 /** 624 * generic_buffers_fsync - generic buffer fsync implementation 625 * for simple filesystems with no inode lock 626 * 627 * @file: file to synchronize 628 * @start: start offset in bytes 629 * @end: end offset in bytes (inclusive) 630 * @datasync: only synchronize essential metadata if true 631 * 632 * This is a generic implementation of the fsync method for simple 633 * filesystems which track all non-inode metadata in the buffers list 634 * hanging off the address_space structure. This also makes sure that 635 * a device cache flush operation is called at the end. 636 */ 637 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, 638 bool datasync) 639 { 640 struct inode *inode = file->f_mapping->host; 641 int ret; 642 643 ret = generic_buffers_fsync_noflush(file, start, end, datasync); 644 if (!ret) 645 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 646 return ret; 647 } 648 EXPORT_SYMBOL(generic_buffers_fsync); 649 650 /* 651 * Called when we've recently written block `bblock', and it is known that 652 * `bblock' was for a buffer_boundary() buffer. This means that the block at 653 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 654 * dirty, schedule it for IO. So that indirects merge nicely with their data. 655 */ 656 void write_boundary_block(struct block_device *bdev, 657 sector_t bblock, unsigned blocksize) 658 { 659 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 660 if (bh) { 661 if (buffer_dirty(bh)) 662 write_dirty_buffer(bh, 0); 663 put_bh(bh); 664 } 665 } 666 667 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 668 { 669 struct address_space *mapping = inode->i_mapping; 670 struct address_space *buffer_mapping = bh->b_folio->mapping; 671 672 mark_buffer_dirty(bh); 673 if (!mapping->i_private_data) { 674 mapping->i_private_data = buffer_mapping; 675 } else { 676 BUG_ON(mapping->i_private_data != buffer_mapping); 677 } 678 if (!bh->b_assoc_map) { 679 spin_lock(&buffer_mapping->i_private_lock); 680 list_move_tail(&bh->b_assoc_buffers, 681 &mapping->i_private_list); 682 bh->b_assoc_map = mapping; 683 spin_unlock(&buffer_mapping->i_private_lock); 684 } 685 } 686 EXPORT_SYMBOL(mark_buffer_dirty_inode); 687 688 /** 689 * block_dirty_folio - Mark a folio as dirty. 690 * @mapping: The address space containing this folio. 691 * @folio: The folio to mark dirty. 692 * 693 * Filesystems which use buffer_heads can use this function as their 694 * ->dirty_folio implementation. Some filesystems need to do a little 695 * work before calling this function. Filesystems which do not use 696 * buffer_heads should call filemap_dirty_folio() instead. 697 * 698 * If the folio has buffers, the uptodate buffers are set dirty, to 699 * preserve dirty-state coherency between the folio and the buffers. 700 * Buffers added to a dirty folio are created dirty. 701 * 702 * The buffers are dirtied before the folio is dirtied. There's a small 703 * race window in which writeback may see the folio cleanness but not the 704 * buffer dirtiness. That's fine. If this code were to set the folio 705 * dirty before the buffers, writeback could clear the folio dirty flag, 706 * see a bunch of clean buffers and we'd end up with dirty buffers/clean 707 * folio on the dirty folio list. 708 * 709 * We use i_private_lock to lock against try_to_free_buffers() while 710 * using the folio's buffer list. This also prevents clean buffers 711 * being added to the folio after it was set dirty. 712 * 713 * Context: May only be called from process context. Does not sleep. 714 * Caller must ensure that @folio cannot be truncated during this call, 715 * typically by holding the folio lock or having a page in the folio 716 * mapped and holding the page table lock. 717 * 718 * Return: True if the folio was dirtied; false if it was already dirtied. 719 */ 720 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 721 { 722 struct buffer_head *head; 723 bool newly_dirty; 724 725 spin_lock(&mapping->i_private_lock); 726 head = folio_buffers(folio); 727 if (head) { 728 struct buffer_head *bh = head; 729 730 do { 731 set_buffer_dirty(bh); 732 bh = bh->b_this_page; 733 } while (bh != head); 734 } 735 /* 736 * Lock out page's memcg migration to keep PageDirty 737 * synchronized with per-memcg dirty page counters. 738 */ 739 newly_dirty = !folio_test_set_dirty(folio); 740 spin_unlock(&mapping->i_private_lock); 741 742 if (newly_dirty) 743 __folio_mark_dirty(folio, mapping, 1); 744 745 if (newly_dirty) 746 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 747 748 return newly_dirty; 749 } 750 EXPORT_SYMBOL(block_dirty_folio); 751 752 /* 753 * Write out and wait upon a list of buffers. 754 * 755 * We have conflicting pressures: we want to make sure that all 756 * initially dirty buffers get waited on, but that any subsequently 757 * dirtied buffers don't. After all, we don't want fsync to last 758 * forever if somebody is actively writing to the file. 759 * 760 * Do this in two main stages: first we copy dirty buffers to a 761 * temporary inode list, queueing the writes as we go. Then we clean 762 * up, waiting for those writes to complete. 763 * 764 * During this second stage, any subsequent updates to the file may end 765 * up refiling the buffer on the original inode's dirty list again, so 766 * there is a chance we will end up with a buffer queued for write but 767 * not yet completed on that list. So, as a final cleanup we go through 768 * the osync code to catch these locked, dirty buffers without requeuing 769 * any newly dirty buffers for write. 770 */ 771 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 772 { 773 struct buffer_head *bh; 774 struct address_space *mapping; 775 int err = 0, err2; 776 struct blk_plug plug; 777 LIST_HEAD(tmp); 778 779 blk_start_plug(&plug); 780 781 spin_lock(lock); 782 while (!list_empty(list)) { 783 bh = BH_ENTRY(list->next); 784 mapping = bh->b_assoc_map; 785 __remove_assoc_queue(bh); 786 /* Avoid race with mark_buffer_dirty_inode() which does 787 * a lockless check and we rely on seeing the dirty bit */ 788 smp_mb(); 789 if (buffer_dirty(bh) || buffer_locked(bh)) { 790 list_add(&bh->b_assoc_buffers, &tmp); 791 bh->b_assoc_map = mapping; 792 if (buffer_dirty(bh)) { 793 get_bh(bh); 794 spin_unlock(lock); 795 /* 796 * Ensure any pending I/O completes so that 797 * write_dirty_buffer() actually writes the 798 * current contents - it is a noop if I/O is 799 * still in flight on potentially older 800 * contents. 801 */ 802 write_dirty_buffer(bh, REQ_SYNC); 803 804 /* 805 * Kick off IO for the previous mapping. Note 806 * that we will not run the very last mapping, 807 * wait_on_buffer() will do that for us 808 * through sync_buffer(). 809 */ 810 brelse(bh); 811 spin_lock(lock); 812 } 813 } 814 } 815 816 spin_unlock(lock); 817 blk_finish_plug(&plug); 818 spin_lock(lock); 819 820 while (!list_empty(&tmp)) { 821 bh = BH_ENTRY(tmp.prev); 822 get_bh(bh); 823 mapping = bh->b_assoc_map; 824 __remove_assoc_queue(bh); 825 /* Avoid race with mark_buffer_dirty_inode() which does 826 * a lockless check and we rely on seeing the dirty bit */ 827 smp_mb(); 828 if (buffer_dirty(bh)) { 829 list_add(&bh->b_assoc_buffers, 830 &mapping->i_private_list); 831 bh->b_assoc_map = mapping; 832 } 833 spin_unlock(lock); 834 wait_on_buffer(bh); 835 if (!buffer_uptodate(bh)) 836 err = -EIO; 837 brelse(bh); 838 spin_lock(lock); 839 } 840 841 spin_unlock(lock); 842 err2 = osync_buffers_list(lock, list); 843 if (err) 844 return err; 845 else 846 return err2; 847 } 848 849 /* 850 * Invalidate any and all dirty buffers on a given inode. We are 851 * probably unmounting the fs, but that doesn't mean we have already 852 * done a sync(). Just drop the buffers from the inode list. 853 * 854 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which 855 * assumes that all the buffers are against the blockdev. 856 */ 857 void invalidate_inode_buffers(struct inode *inode) 858 { 859 if (inode_has_buffers(inode)) { 860 struct address_space *mapping = &inode->i_data; 861 struct list_head *list = &mapping->i_private_list; 862 struct address_space *buffer_mapping = mapping->i_private_data; 863 864 spin_lock(&buffer_mapping->i_private_lock); 865 while (!list_empty(list)) 866 __remove_assoc_queue(BH_ENTRY(list->next)); 867 spin_unlock(&buffer_mapping->i_private_lock); 868 } 869 } 870 EXPORT_SYMBOL(invalidate_inode_buffers); 871 872 /* 873 * Remove any clean buffers from the inode's buffer list. This is called 874 * when we're trying to free the inode itself. Those buffers can pin it. 875 * 876 * Returns true if all buffers were removed. 877 */ 878 int remove_inode_buffers(struct inode *inode) 879 { 880 int ret = 1; 881 882 if (inode_has_buffers(inode)) { 883 struct address_space *mapping = &inode->i_data; 884 struct list_head *list = &mapping->i_private_list; 885 struct address_space *buffer_mapping = mapping->i_private_data; 886 887 spin_lock(&buffer_mapping->i_private_lock); 888 while (!list_empty(list)) { 889 struct buffer_head *bh = BH_ENTRY(list->next); 890 if (buffer_dirty(bh)) { 891 ret = 0; 892 break; 893 } 894 __remove_assoc_queue(bh); 895 } 896 spin_unlock(&buffer_mapping->i_private_lock); 897 } 898 return ret; 899 } 900 901 /* 902 * Create the appropriate buffers when given a folio for data area and 903 * the size of each buffer.. Use the bh->b_this_page linked list to 904 * follow the buffers created. Return NULL if unable to create more 905 * buffers. 906 * 907 * The retry flag is used to differentiate async IO (paging, swapping) 908 * which may not fail from ordinary buffer allocations. 909 */ 910 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 911 gfp_t gfp) 912 { 913 struct buffer_head *bh, *head; 914 long offset; 915 struct mem_cgroup *memcg, *old_memcg; 916 917 /* The folio lock pins the memcg */ 918 memcg = folio_memcg(folio); 919 old_memcg = set_active_memcg(memcg); 920 921 head = NULL; 922 offset = folio_size(folio); 923 while ((offset -= size) >= 0) { 924 bh = alloc_buffer_head(gfp); 925 if (!bh) 926 goto no_grow; 927 928 bh->b_this_page = head; 929 bh->b_blocknr = -1; 930 head = bh; 931 932 bh->b_size = size; 933 934 /* Link the buffer to its folio */ 935 folio_set_bh(bh, folio, offset); 936 } 937 out: 938 set_active_memcg(old_memcg); 939 return head; 940 /* 941 * In case anything failed, we just free everything we got. 942 */ 943 no_grow: 944 if (head) { 945 do { 946 bh = head; 947 head = head->b_this_page; 948 free_buffer_head(bh); 949 } while (head); 950 } 951 952 goto out; 953 } 954 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 955 956 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size) 957 { 958 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 959 960 return folio_alloc_buffers(page_folio(page), size, gfp); 961 } 962 EXPORT_SYMBOL_GPL(alloc_page_buffers); 963 964 static inline void link_dev_buffers(struct folio *folio, 965 struct buffer_head *head) 966 { 967 struct buffer_head *bh, *tail; 968 969 bh = head; 970 do { 971 tail = bh; 972 bh = bh->b_this_page; 973 } while (bh); 974 tail->b_this_page = head; 975 folio_attach_private(folio, head); 976 } 977 978 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 979 { 980 sector_t retval = ~((sector_t)0); 981 loff_t sz = bdev_nr_bytes(bdev); 982 983 if (sz) { 984 unsigned int sizebits = blksize_bits(size); 985 retval = (sz >> sizebits); 986 } 987 return retval; 988 } 989 990 /* 991 * Initialise the state of a blockdev folio's buffers. 992 */ 993 static sector_t folio_init_buffers(struct folio *folio, 994 struct block_device *bdev, unsigned size) 995 { 996 struct buffer_head *head = folio_buffers(folio); 997 struct buffer_head *bh = head; 998 bool uptodate = folio_test_uptodate(folio); 999 sector_t block = div_u64(folio_pos(folio), size); 1000 sector_t end_block = blkdev_max_block(bdev, size); 1001 1002 do { 1003 if (!buffer_mapped(bh)) { 1004 bh->b_end_io = NULL; 1005 bh->b_private = NULL; 1006 bh->b_bdev = bdev; 1007 bh->b_blocknr = block; 1008 if (uptodate) 1009 set_buffer_uptodate(bh); 1010 if (block < end_block) 1011 set_buffer_mapped(bh); 1012 } 1013 block++; 1014 bh = bh->b_this_page; 1015 } while (bh != head); 1016 1017 /* 1018 * Caller needs to validate requested block against end of device. 1019 */ 1020 return end_block; 1021 } 1022 1023 /* 1024 * Create the page-cache folio that contains the requested block. 1025 * 1026 * This is used purely for blockdev mappings. 1027 * 1028 * Returns false if we have a failure which cannot be cured by retrying 1029 * without sleeping. Returns true if we succeeded, or the caller should retry. 1030 */ 1031 static bool grow_dev_folio(struct block_device *bdev, sector_t block, 1032 pgoff_t index, unsigned size, gfp_t gfp) 1033 { 1034 struct address_space *mapping = bdev->bd_mapping; 1035 struct folio *folio; 1036 struct buffer_head *bh; 1037 sector_t end_block = 0; 1038 1039 folio = __filemap_get_folio(mapping, index, 1040 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1041 if (IS_ERR(folio)) 1042 return false; 1043 1044 bh = folio_buffers(folio); 1045 if (bh) { 1046 if (bh->b_size == size) { 1047 end_block = folio_init_buffers(folio, bdev, size); 1048 goto unlock; 1049 } 1050 1051 /* 1052 * Retrying may succeed; for example the folio may finish 1053 * writeback, or buffers may be cleaned. This should not 1054 * happen very often; maybe we have old buffers attached to 1055 * this blockdev's page cache and we're trying to change 1056 * the block size? 1057 */ 1058 if (!try_to_free_buffers(folio)) { 1059 end_block = ~0ULL; 1060 goto unlock; 1061 } 1062 } 1063 1064 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT); 1065 if (!bh) 1066 goto unlock; 1067 1068 /* 1069 * Link the folio to the buffers and initialise them. Take the 1070 * lock to be atomic wrt __find_get_block(), which does not 1071 * run under the folio lock. 1072 */ 1073 spin_lock(&mapping->i_private_lock); 1074 link_dev_buffers(folio, bh); 1075 end_block = folio_init_buffers(folio, bdev, size); 1076 spin_unlock(&mapping->i_private_lock); 1077 unlock: 1078 folio_unlock(folio); 1079 folio_put(folio); 1080 return block < end_block; 1081 } 1082 1083 /* 1084 * Create buffers for the specified block device block's folio. If 1085 * that folio was dirty, the buffers are set dirty also. Returns false 1086 * if we've hit a permanent error. 1087 */ 1088 static bool grow_buffers(struct block_device *bdev, sector_t block, 1089 unsigned size, gfp_t gfp) 1090 { 1091 loff_t pos; 1092 1093 /* 1094 * Check for a block which lies outside our maximum possible 1095 * pagecache index. 1096 */ 1097 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) { 1098 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n", 1099 __func__, (unsigned long long)block, 1100 bdev); 1101 return false; 1102 } 1103 1104 /* Create a folio with the proper size buffers */ 1105 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp); 1106 } 1107 1108 static struct buffer_head * 1109 __getblk_slow(struct block_device *bdev, sector_t block, 1110 unsigned size, gfp_t gfp) 1111 { 1112 /* Size must be multiple of hard sectorsize */ 1113 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1114 (size < 512 || size > PAGE_SIZE))) { 1115 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1116 size); 1117 printk(KERN_ERR "logical block size: %d\n", 1118 bdev_logical_block_size(bdev)); 1119 1120 dump_stack(); 1121 return NULL; 1122 } 1123 1124 for (;;) { 1125 struct buffer_head *bh; 1126 1127 bh = __find_get_block(bdev, block, size); 1128 if (bh) 1129 return bh; 1130 1131 if (!grow_buffers(bdev, block, size, gfp)) 1132 return NULL; 1133 } 1134 } 1135 1136 /* 1137 * The relationship between dirty buffers and dirty pages: 1138 * 1139 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1140 * the page is tagged dirty in the page cache. 1141 * 1142 * At all times, the dirtiness of the buffers represents the dirtiness of 1143 * subsections of the page. If the page has buffers, the page dirty bit is 1144 * merely a hint about the true dirty state. 1145 * 1146 * When a page is set dirty in its entirety, all its buffers are marked dirty 1147 * (if the page has buffers). 1148 * 1149 * When a buffer is marked dirty, its page is dirtied, but the page's other 1150 * buffers are not. 1151 * 1152 * Also. When blockdev buffers are explicitly read with bread(), they 1153 * individually become uptodate. But their backing page remains not 1154 * uptodate - even if all of its buffers are uptodate. A subsequent 1155 * block_read_full_folio() against that folio will discover all the uptodate 1156 * buffers, will set the folio uptodate and will perform no I/O. 1157 */ 1158 1159 /** 1160 * mark_buffer_dirty - mark a buffer_head as needing writeout 1161 * @bh: the buffer_head to mark dirty 1162 * 1163 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1164 * its backing page dirty, then tag the page as dirty in the page cache 1165 * and then attach the address_space's inode to its superblock's dirty 1166 * inode list. 1167 * 1168 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock, 1169 * i_pages lock and mapping->host->i_lock. 1170 */ 1171 void mark_buffer_dirty(struct buffer_head *bh) 1172 { 1173 WARN_ON_ONCE(!buffer_uptodate(bh)); 1174 1175 trace_block_dirty_buffer(bh); 1176 1177 /* 1178 * Very *carefully* optimize the it-is-already-dirty case. 1179 * 1180 * Don't let the final "is it dirty" escape to before we 1181 * perhaps modified the buffer. 1182 */ 1183 if (buffer_dirty(bh)) { 1184 smp_mb(); 1185 if (buffer_dirty(bh)) 1186 return; 1187 } 1188 1189 if (!test_set_buffer_dirty(bh)) { 1190 struct folio *folio = bh->b_folio; 1191 struct address_space *mapping = NULL; 1192 1193 if (!folio_test_set_dirty(folio)) { 1194 mapping = folio->mapping; 1195 if (mapping) 1196 __folio_mark_dirty(folio, mapping, 0); 1197 } 1198 if (mapping) 1199 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1200 } 1201 } 1202 EXPORT_SYMBOL(mark_buffer_dirty); 1203 1204 void mark_buffer_write_io_error(struct buffer_head *bh) 1205 { 1206 set_buffer_write_io_error(bh); 1207 /* FIXME: do we need to set this in both places? */ 1208 if (bh->b_folio && bh->b_folio->mapping) 1209 mapping_set_error(bh->b_folio->mapping, -EIO); 1210 if (bh->b_assoc_map) { 1211 mapping_set_error(bh->b_assoc_map, -EIO); 1212 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO); 1213 } 1214 } 1215 EXPORT_SYMBOL(mark_buffer_write_io_error); 1216 1217 /** 1218 * __brelse - Release a buffer. 1219 * @bh: The buffer to release. 1220 * 1221 * This variant of brelse() can be called if @bh is guaranteed to not be NULL. 1222 */ 1223 void __brelse(struct buffer_head *bh) 1224 { 1225 if (atomic_read(&bh->b_count)) { 1226 put_bh(bh); 1227 return; 1228 } 1229 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1230 } 1231 EXPORT_SYMBOL(__brelse); 1232 1233 /** 1234 * __bforget - Discard any dirty data in a buffer. 1235 * @bh: The buffer to forget. 1236 * 1237 * This variant of bforget() can be called if @bh is guaranteed to not 1238 * be NULL. 1239 */ 1240 void __bforget(struct buffer_head *bh) 1241 { 1242 clear_buffer_dirty(bh); 1243 if (bh->b_assoc_map) { 1244 struct address_space *buffer_mapping = bh->b_folio->mapping; 1245 1246 spin_lock(&buffer_mapping->i_private_lock); 1247 list_del_init(&bh->b_assoc_buffers); 1248 bh->b_assoc_map = NULL; 1249 spin_unlock(&buffer_mapping->i_private_lock); 1250 } 1251 __brelse(bh); 1252 } 1253 EXPORT_SYMBOL(__bforget); 1254 1255 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1256 { 1257 lock_buffer(bh); 1258 if (buffer_uptodate(bh)) { 1259 unlock_buffer(bh); 1260 return bh; 1261 } else { 1262 get_bh(bh); 1263 bh->b_end_io = end_buffer_read_sync; 1264 submit_bh(REQ_OP_READ, bh); 1265 wait_on_buffer(bh); 1266 if (buffer_uptodate(bh)) 1267 return bh; 1268 } 1269 brelse(bh); 1270 return NULL; 1271 } 1272 1273 /* 1274 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1275 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1276 * refcount elevated by one when they're in an LRU. A buffer can only appear 1277 * once in a particular CPU's LRU. A single buffer can be present in multiple 1278 * CPU's LRUs at the same time. 1279 * 1280 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1281 * sb_find_get_block(). 1282 * 1283 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1284 * a local interrupt disable for that. 1285 */ 1286 1287 #define BH_LRU_SIZE 16 1288 1289 struct bh_lru { 1290 struct buffer_head *bhs[BH_LRU_SIZE]; 1291 }; 1292 1293 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1294 1295 #ifdef CONFIG_SMP 1296 #define bh_lru_lock() local_irq_disable() 1297 #define bh_lru_unlock() local_irq_enable() 1298 #else 1299 #define bh_lru_lock() preempt_disable() 1300 #define bh_lru_unlock() preempt_enable() 1301 #endif 1302 1303 static inline void check_irqs_on(void) 1304 { 1305 #ifdef irqs_disabled 1306 BUG_ON(irqs_disabled()); 1307 #endif 1308 } 1309 1310 /* 1311 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1312 * inserted at the front, and the buffer_head at the back if any is evicted. 1313 * Or, if already in the LRU it is moved to the front. 1314 */ 1315 static void bh_lru_install(struct buffer_head *bh) 1316 { 1317 struct buffer_head *evictee = bh; 1318 struct bh_lru *b; 1319 int i; 1320 1321 check_irqs_on(); 1322 bh_lru_lock(); 1323 1324 /* 1325 * the refcount of buffer_head in bh_lru prevents dropping the 1326 * attached page(i.e., try_to_free_buffers) so it could cause 1327 * failing page migration. 1328 * Skip putting upcoming bh into bh_lru until migration is done. 1329 */ 1330 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) { 1331 bh_lru_unlock(); 1332 return; 1333 } 1334 1335 b = this_cpu_ptr(&bh_lrus); 1336 for (i = 0; i < BH_LRU_SIZE; i++) { 1337 swap(evictee, b->bhs[i]); 1338 if (evictee == bh) { 1339 bh_lru_unlock(); 1340 return; 1341 } 1342 } 1343 1344 get_bh(bh); 1345 bh_lru_unlock(); 1346 brelse(evictee); 1347 } 1348 1349 /* 1350 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1351 */ 1352 static struct buffer_head * 1353 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1354 { 1355 struct buffer_head *ret = NULL; 1356 unsigned int i; 1357 1358 check_irqs_on(); 1359 bh_lru_lock(); 1360 if (cpu_is_isolated(smp_processor_id())) { 1361 bh_lru_unlock(); 1362 return NULL; 1363 } 1364 for (i = 0; i < BH_LRU_SIZE; i++) { 1365 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1366 1367 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1368 bh->b_size == size) { 1369 if (i) { 1370 while (i) { 1371 __this_cpu_write(bh_lrus.bhs[i], 1372 __this_cpu_read(bh_lrus.bhs[i - 1])); 1373 i--; 1374 } 1375 __this_cpu_write(bh_lrus.bhs[0], bh); 1376 } 1377 get_bh(bh); 1378 ret = bh; 1379 break; 1380 } 1381 } 1382 bh_lru_unlock(); 1383 return ret; 1384 } 1385 1386 /* 1387 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1388 * it in the LRU and mark it as accessed. If it is not present then return 1389 * NULL 1390 */ 1391 struct buffer_head * 1392 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1393 { 1394 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1395 1396 if (bh == NULL) { 1397 /* __find_get_block_slow will mark the page accessed */ 1398 bh = __find_get_block_slow(bdev, block); 1399 if (bh) 1400 bh_lru_install(bh); 1401 } else 1402 touch_buffer(bh); 1403 1404 return bh; 1405 } 1406 EXPORT_SYMBOL(__find_get_block); 1407 1408 /** 1409 * bdev_getblk - Get a buffer_head in a block device's buffer cache. 1410 * @bdev: The block device. 1411 * @block: The block number. 1412 * @size: The size of buffer_heads for this @bdev. 1413 * @gfp: The memory allocation flags to use. 1414 * 1415 * The returned buffer head has its reference count incremented, but is 1416 * not locked. The caller should call brelse() when it has finished 1417 * with the buffer. The buffer may not be uptodate. If needed, the 1418 * caller can bring it uptodate either by reading it or overwriting it. 1419 * 1420 * Return: The buffer head, or NULL if memory could not be allocated. 1421 */ 1422 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block, 1423 unsigned size, gfp_t gfp) 1424 { 1425 struct buffer_head *bh = __find_get_block(bdev, block, size); 1426 1427 might_alloc(gfp); 1428 if (bh) 1429 return bh; 1430 1431 return __getblk_slow(bdev, block, size, gfp); 1432 } 1433 EXPORT_SYMBOL(bdev_getblk); 1434 1435 /* 1436 * Do async read-ahead on a buffer.. 1437 */ 1438 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1439 { 1440 struct buffer_head *bh = bdev_getblk(bdev, block, size, 1441 GFP_NOWAIT | __GFP_MOVABLE); 1442 1443 if (likely(bh)) { 1444 bh_readahead(bh, REQ_RAHEAD); 1445 brelse(bh); 1446 } 1447 } 1448 EXPORT_SYMBOL(__breadahead); 1449 1450 /** 1451 * __bread_gfp() - Read a block. 1452 * @bdev: The block device to read from. 1453 * @block: Block number in units of block size. 1454 * @size: The block size of this device in bytes. 1455 * @gfp: Not page allocation flags; see below. 1456 * 1457 * You are not expected to call this function. You should use one of 1458 * sb_bread(), sb_bread_unmovable() or __bread(). 1459 * 1460 * Read a specified block, and return the buffer head that refers to it. 1461 * If @gfp is 0, the memory will be allocated using the block device's 1462 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be 1463 * allocated from a movable area. Do not pass in a complete set of 1464 * GFP flags. 1465 * 1466 * The returned buffer head has its refcount increased. The caller should 1467 * call brelse() when it has finished with the buffer. 1468 * 1469 * Context: May sleep waiting for I/O. 1470 * Return: NULL if the block was unreadable. 1471 */ 1472 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block, 1473 unsigned size, gfp_t gfp) 1474 { 1475 struct buffer_head *bh; 1476 1477 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS); 1478 1479 /* 1480 * Prefer looping in the allocator rather than here, at least that 1481 * code knows what it's doing. 1482 */ 1483 gfp |= __GFP_NOFAIL; 1484 1485 bh = bdev_getblk(bdev, block, size, gfp); 1486 1487 if (likely(bh) && !buffer_uptodate(bh)) 1488 bh = __bread_slow(bh); 1489 return bh; 1490 } 1491 EXPORT_SYMBOL(__bread_gfp); 1492 1493 static void __invalidate_bh_lrus(struct bh_lru *b) 1494 { 1495 int i; 1496 1497 for (i = 0; i < BH_LRU_SIZE; i++) { 1498 brelse(b->bhs[i]); 1499 b->bhs[i] = NULL; 1500 } 1501 } 1502 /* 1503 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1504 * This doesn't race because it runs in each cpu either in irq 1505 * or with preempt disabled. 1506 */ 1507 static void invalidate_bh_lru(void *arg) 1508 { 1509 struct bh_lru *b = &get_cpu_var(bh_lrus); 1510 1511 __invalidate_bh_lrus(b); 1512 put_cpu_var(bh_lrus); 1513 } 1514 1515 bool has_bh_in_lru(int cpu, void *dummy) 1516 { 1517 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1518 int i; 1519 1520 for (i = 0; i < BH_LRU_SIZE; i++) { 1521 if (b->bhs[i]) 1522 return true; 1523 } 1524 1525 return false; 1526 } 1527 1528 void invalidate_bh_lrus(void) 1529 { 1530 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1531 } 1532 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1533 1534 /* 1535 * It's called from workqueue context so we need a bh_lru_lock to close 1536 * the race with preemption/irq. 1537 */ 1538 void invalidate_bh_lrus_cpu(void) 1539 { 1540 struct bh_lru *b; 1541 1542 bh_lru_lock(); 1543 b = this_cpu_ptr(&bh_lrus); 1544 __invalidate_bh_lrus(b); 1545 bh_lru_unlock(); 1546 } 1547 1548 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1549 unsigned long offset) 1550 { 1551 bh->b_folio = folio; 1552 BUG_ON(offset >= folio_size(folio)); 1553 if (folio_test_highmem(folio)) 1554 /* 1555 * This catches illegal uses and preserves the offset: 1556 */ 1557 bh->b_data = (char *)(0 + offset); 1558 else 1559 bh->b_data = folio_address(folio) + offset; 1560 } 1561 EXPORT_SYMBOL(folio_set_bh); 1562 1563 /* 1564 * Called when truncating a buffer on a page completely. 1565 */ 1566 1567 /* Bits that are cleared during an invalidate */ 1568 #define BUFFER_FLAGS_DISCARD \ 1569 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1570 1 << BH_Delay | 1 << BH_Unwritten) 1571 1572 static void discard_buffer(struct buffer_head * bh) 1573 { 1574 unsigned long b_state; 1575 1576 lock_buffer(bh); 1577 clear_buffer_dirty(bh); 1578 bh->b_bdev = NULL; 1579 b_state = READ_ONCE(bh->b_state); 1580 do { 1581 } while (!try_cmpxchg(&bh->b_state, &b_state, 1582 b_state & ~BUFFER_FLAGS_DISCARD)); 1583 unlock_buffer(bh); 1584 } 1585 1586 /** 1587 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1588 * @folio: The folio which is affected. 1589 * @offset: start of the range to invalidate 1590 * @length: length of the range to invalidate 1591 * 1592 * block_invalidate_folio() is called when all or part of the folio has been 1593 * invalidated by a truncate operation. 1594 * 1595 * block_invalidate_folio() does not have to release all buffers, but it must 1596 * ensure that no dirty buffer is left outside @offset and that no I/O 1597 * is underway against any of the blocks which are outside the truncation 1598 * point. Because the caller is about to free (and possibly reuse) those 1599 * blocks on-disk. 1600 */ 1601 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1602 { 1603 struct buffer_head *head, *bh, *next; 1604 size_t curr_off = 0; 1605 size_t stop = length + offset; 1606 1607 BUG_ON(!folio_test_locked(folio)); 1608 1609 /* 1610 * Check for overflow 1611 */ 1612 BUG_ON(stop > folio_size(folio) || stop < length); 1613 1614 head = folio_buffers(folio); 1615 if (!head) 1616 return; 1617 1618 bh = head; 1619 do { 1620 size_t next_off = curr_off + bh->b_size; 1621 next = bh->b_this_page; 1622 1623 /* 1624 * Are we still fully in range ? 1625 */ 1626 if (next_off > stop) 1627 goto out; 1628 1629 /* 1630 * is this block fully invalidated? 1631 */ 1632 if (offset <= curr_off) 1633 discard_buffer(bh); 1634 curr_off = next_off; 1635 bh = next; 1636 } while (bh != head); 1637 1638 /* 1639 * We release buffers only if the entire folio is being invalidated. 1640 * The get_block cached value has been unconditionally invalidated, 1641 * so real IO is not possible anymore. 1642 */ 1643 if (length == folio_size(folio)) 1644 filemap_release_folio(folio, 0); 1645 out: 1646 folio_clear_mappedtodisk(folio); 1647 return; 1648 } 1649 EXPORT_SYMBOL(block_invalidate_folio); 1650 1651 /* 1652 * We attach and possibly dirty the buffers atomically wrt 1653 * block_dirty_folio() via i_private_lock. try_to_free_buffers 1654 * is already excluded via the folio lock. 1655 */ 1656 struct buffer_head *create_empty_buffers(struct folio *folio, 1657 unsigned long blocksize, unsigned long b_state) 1658 { 1659 struct buffer_head *bh, *head, *tail; 1660 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL; 1661 1662 head = folio_alloc_buffers(folio, blocksize, gfp); 1663 bh = head; 1664 do { 1665 bh->b_state |= b_state; 1666 tail = bh; 1667 bh = bh->b_this_page; 1668 } while (bh); 1669 tail->b_this_page = head; 1670 1671 spin_lock(&folio->mapping->i_private_lock); 1672 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1673 bh = head; 1674 do { 1675 if (folio_test_dirty(folio)) 1676 set_buffer_dirty(bh); 1677 if (folio_test_uptodate(folio)) 1678 set_buffer_uptodate(bh); 1679 bh = bh->b_this_page; 1680 } while (bh != head); 1681 } 1682 folio_attach_private(folio, head); 1683 spin_unlock(&folio->mapping->i_private_lock); 1684 1685 return head; 1686 } 1687 EXPORT_SYMBOL(create_empty_buffers); 1688 1689 /** 1690 * clean_bdev_aliases: clean a range of buffers in block device 1691 * @bdev: Block device to clean buffers in 1692 * @block: Start of a range of blocks to clean 1693 * @len: Number of blocks to clean 1694 * 1695 * We are taking a range of blocks for data and we don't want writeback of any 1696 * buffer-cache aliases starting from return from this function and until the 1697 * moment when something will explicitly mark the buffer dirty (hopefully that 1698 * will not happen until we will free that block ;-) We don't even need to mark 1699 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1700 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1701 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1702 * would confuse anyone who might pick it with bread() afterwards... 1703 * 1704 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1705 * writeout I/O going on against recently-freed buffers. We don't wait on that 1706 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1707 * need to. That happens here. 1708 */ 1709 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1710 { 1711 struct address_space *bd_mapping = bdev->bd_mapping; 1712 const int blkbits = bd_mapping->host->i_blkbits; 1713 struct folio_batch fbatch; 1714 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE; 1715 pgoff_t end; 1716 int i, count; 1717 struct buffer_head *bh; 1718 struct buffer_head *head; 1719 1720 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE; 1721 folio_batch_init(&fbatch); 1722 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1723 count = folio_batch_count(&fbatch); 1724 for (i = 0; i < count; i++) { 1725 struct folio *folio = fbatch.folios[i]; 1726 1727 if (!folio_buffers(folio)) 1728 continue; 1729 /* 1730 * We use folio lock instead of bd_mapping->i_private_lock 1731 * to pin buffers here since we can afford to sleep and 1732 * it scales better than a global spinlock lock. 1733 */ 1734 folio_lock(folio); 1735 /* Recheck when the folio is locked which pins bhs */ 1736 head = folio_buffers(folio); 1737 if (!head) 1738 goto unlock_page; 1739 bh = head; 1740 do { 1741 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1742 goto next; 1743 if (bh->b_blocknr >= block + len) 1744 break; 1745 clear_buffer_dirty(bh); 1746 wait_on_buffer(bh); 1747 clear_buffer_req(bh); 1748 next: 1749 bh = bh->b_this_page; 1750 } while (bh != head); 1751 unlock_page: 1752 folio_unlock(folio); 1753 } 1754 folio_batch_release(&fbatch); 1755 cond_resched(); 1756 /* End of range already reached? */ 1757 if (index > end || !index) 1758 break; 1759 } 1760 } 1761 EXPORT_SYMBOL(clean_bdev_aliases); 1762 1763 static struct buffer_head *folio_create_buffers(struct folio *folio, 1764 struct inode *inode, 1765 unsigned int b_state) 1766 { 1767 struct buffer_head *bh; 1768 1769 BUG_ON(!folio_test_locked(folio)); 1770 1771 bh = folio_buffers(folio); 1772 if (!bh) 1773 bh = create_empty_buffers(folio, 1774 1 << READ_ONCE(inode->i_blkbits), b_state); 1775 return bh; 1776 } 1777 1778 /* 1779 * NOTE! All mapped/uptodate combinations are valid: 1780 * 1781 * Mapped Uptodate Meaning 1782 * 1783 * No No "unknown" - must do get_block() 1784 * No Yes "hole" - zero-filled 1785 * Yes No "allocated" - allocated on disk, not read in 1786 * Yes Yes "valid" - allocated and up-to-date in memory. 1787 * 1788 * "Dirty" is valid only with the last case (mapped+uptodate). 1789 */ 1790 1791 /* 1792 * While block_write_full_folio is writing back the dirty buffers under 1793 * the page lock, whoever dirtied the buffers may decide to clean them 1794 * again at any time. We handle that by only looking at the buffer 1795 * state inside lock_buffer(). 1796 * 1797 * If block_write_full_folio() is called for regular writeback 1798 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1799 * locked buffer. This only can happen if someone has written the buffer 1800 * directly, with submit_bh(). At the address_space level PageWriteback 1801 * prevents this contention from occurring. 1802 * 1803 * If block_write_full_folio() is called with wbc->sync_mode == 1804 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1805 * causes the writes to be flagged as synchronous writes. 1806 */ 1807 int __block_write_full_folio(struct inode *inode, struct folio *folio, 1808 get_block_t *get_block, struct writeback_control *wbc) 1809 { 1810 int err; 1811 sector_t block; 1812 sector_t last_block; 1813 struct buffer_head *bh, *head; 1814 size_t blocksize; 1815 int nr_underway = 0; 1816 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1817 1818 head = folio_create_buffers(folio, inode, 1819 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1820 1821 /* 1822 * Be very careful. We have no exclusion from block_dirty_folio 1823 * here, and the (potentially unmapped) buffers may become dirty at 1824 * any time. If a buffer becomes dirty here after we've inspected it 1825 * then we just miss that fact, and the folio stays dirty. 1826 * 1827 * Buffers outside i_size may be dirtied by block_dirty_folio; 1828 * handle that here by just cleaning them. 1829 */ 1830 1831 bh = head; 1832 blocksize = bh->b_size; 1833 1834 block = div_u64(folio_pos(folio), blocksize); 1835 last_block = div_u64(i_size_read(inode) - 1, blocksize); 1836 1837 /* 1838 * Get all the dirty buffers mapped to disk addresses and 1839 * handle any aliases from the underlying blockdev's mapping. 1840 */ 1841 do { 1842 if (block > last_block) { 1843 /* 1844 * mapped buffers outside i_size will occur, because 1845 * this folio can be outside i_size when there is a 1846 * truncate in progress. 1847 */ 1848 /* 1849 * The buffer was zeroed by block_write_full_folio() 1850 */ 1851 clear_buffer_dirty(bh); 1852 set_buffer_uptodate(bh); 1853 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1854 buffer_dirty(bh)) { 1855 WARN_ON(bh->b_size != blocksize); 1856 err = get_block(inode, block, bh, 1); 1857 if (err) 1858 goto recover; 1859 clear_buffer_delay(bh); 1860 if (buffer_new(bh)) { 1861 /* blockdev mappings never come here */ 1862 clear_buffer_new(bh); 1863 clean_bdev_bh_alias(bh); 1864 } 1865 } 1866 bh = bh->b_this_page; 1867 block++; 1868 } while (bh != head); 1869 1870 do { 1871 if (!buffer_mapped(bh)) 1872 continue; 1873 /* 1874 * If it's a fully non-blocking write attempt and we cannot 1875 * lock the buffer then redirty the folio. Note that this can 1876 * potentially cause a busy-wait loop from writeback threads 1877 * and kswapd activity, but those code paths have their own 1878 * higher-level throttling. 1879 */ 1880 if (wbc->sync_mode != WB_SYNC_NONE) { 1881 lock_buffer(bh); 1882 } else if (!trylock_buffer(bh)) { 1883 folio_redirty_for_writepage(wbc, folio); 1884 continue; 1885 } 1886 if (test_clear_buffer_dirty(bh)) { 1887 mark_buffer_async_write_endio(bh, 1888 end_buffer_async_write); 1889 } else { 1890 unlock_buffer(bh); 1891 } 1892 } while ((bh = bh->b_this_page) != head); 1893 1894 /* 1895 * The folio and its buffers are protected by the writeback flag, 1896 * so we can drop the bh refcounts early. 1897 */ 1898 BUG_ON(folio_test_writeback(folio)); 1899 folio_start_writeback(folio); 1900 1901 do { 1902 struct buffer_head *next = bh->b_this_page; 1903 if (buffer_async_write(bh)) { 1904 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1905 inode->i_write_hint, wbc); 1906 nr_underway++; 1907 } 1908 bh = next; 1909 } while (bh != head); 1910 folio_unlock(folio); 1911 1912 err = 0; 1913 done: 1914 if (nr_underway == 0) { 1915 /* 1916 * The folio was marked dirty, but the buffers were 1917 * clean. Someone wrote them back by hand with 1918 * write_dirty_buffer/submit_bh. A rare case. 1919 */ 1920 folio_end_writeback(folio); 1921 1922 /* 1923 * The folio and buffer_heads can be released at any time from 1924 * here on. 1925 */ 1926 } 1927 return err; 1928 1929 recover: 1930 /* 1931 * ENOSPC, or some other error. We may already have added some 1932 * blocks to the file, so we need to write these out to avoid 1933 * exposing stale data. 1934 * The folio is currently locked and not marked for writeback 1935 */ 1936 bh = head; 1937 /* Recovery: lock and submit the mapped buffers */ 1938 do { 1939 if (buffer_mapped(bh) && buffer_dirty(bh) && 1940 !buffer_delay(bh)) { 1941 lock_buffer(bh); 1942 mark_buffer_async_write_endio(bh, 1943 end_buffer_async_write); 1944 } else { 1945 /* 1946 * The buffer may have been set dirty during 1947 * attachment to a dirty folio. 1948 */ 1949 clear_buffer_dirty(bh); 1950 } 1951 } while ((bh = bh->b_this_page) != head); 1952 BUG_ON(folio_test_writeback(folio)); 1953 mapping_set_error(folio->mapping, err); 1954 folio_start_writeback(folio); 1955 do { 1956 struct buffer_head *next = bh->b_this_page; 1957 if (buffer_async_write(bh)) { 1958 clear_buffer_dirty(bh); 1959 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1960 inode->i_write_hint, wbc); 1961 nr_underway++; 1962 } 1963 bh = next; 1964 } while (bh != head); 1965 folio_unlock(folio); 1966 goto done; 1967 } 1968 EXPORT_SYMBOL(__block_write_full_folio); 1969 1970 /* 1971 * If a folio has any new buffers, zero them out here, and mark them uptodate 1972 * and dirty so they'll be written out (in order to prevent uninitialised 1973 * block data from leaking). And clear the new bit. 1974 */ 1975 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) 1976 { 1977 size_t block_start, block_end; 1978 struct buffer_head *head, *bh; 1979 1980 BUG_ON(!folio_test_locked(folio)); 1981 head = folio_buffers(folio); 1982 if (!head) 1983 return; 1984 1985 bh = head; 1986 block_start = 0; 1987 do { 1988 block_end = block_start + bh->b_size; 1989 1990 if (buffer_new(bh)) { 1991 if (block_end > from && block_start < to) { 1992 if (!folio_test_uptodate(folio)) { 1993 size_t start, xend; 1994 1995 start = max(from, block_start); 1996 xend = min(to, block_end); 1997 1998 folio_zero_segment(folio, start, xend); 1999 set_buffer_uptodate(bh); 2000 } 2001 2002 clear_buffer_new(bh); 2003 mark_buffer_dirty(bh); 2004 } 2005 } 2006 2007 block_start = block_end; 2008 bh = bh->b_this_page; 2009 } while (bh != head); 2010 } 2011 EXPORT_SYMBOL(folio_zero_new_buffers); 2012 2013 static int 2014 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 2015 const struct iomap *iomap) 2016 { 2017 loff_t offset = (loff_t)block << inode->i_blkbits; 2018 2019 bh->b_bdev = iomap->bdev; 2020 2021 /* 2022 * Block points to offset in file we need to map, iomap contains 2023 * the offset at which the map starts. If the map ends before the 2024 * current block, then do not map the buffer and let the caller 2025 * handle it. 2026 */ 2027 if (offset >= iomap->offset + iomap->length) 2028 return -EIO; 2029 2030 switch (iomap->type) { 2031 case IOMAP_HOLE: 2032 /* 2033 * If the buffer is not up to date or beyond the current EOF, 2034 * we need to mark it as new to ensure sub-block zeroing is 2035 * executed if necessary. 2036 */ 2037 if (!buffer_uptodate(bh) || 2038 (offset >= i_size_read(inode))) 2039 set_buffer_new(bh); 2040 return 0; 2041 case IOMAP_DELALLOC: 2042 if (!buffer_uptodate(bh) || 2043 (offset >= i_size_read(inode))) 2044 set_buffer_new(bh); 2045 set_buffer_uptodate(bh); 2046 set_buffer_mapped(bh); 2047 set_buffer_delay(bh); 2048 return 0; 2049 case IOMAP_UNWRITTEN: 2050 /* 2051 * For unwritten regions, we always need to ensure that regions 2052 * in the block we are not writing to are zeroed. Mark the 2053 * buffer as new to ensure this. 2054 */ 2055 set_buffer_new(bh); 2056 set_buffer_unwritten(bh); 2057 fallthrough; 2058 case IOMAP_MAPPED: 2059 if ((iomap->flags & IOMAP_F_NEW) || 2060 offset >= i_size_read(inode)) { 2061 /* 2062 * This can happen if truncating the block device races 2063 * with the check in the caller as i_size updates on 2064 * block devices aren't synchronized by i_rwsem for 2065 * block devices. 2066 */ 2067 if (S_ISBLK(inode->i_mode)) 2068 return -EIO; 2069 set_buffer_new(bh); 2070 } 2071 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2072 inode->i_blkbits; 2073 set_buffer_mapped(bh); 2074 return 0; 2075 default: 2076 WARN_ON_ONCE(1); 2077 return -EIO; 2078 } 2079 } 2080 2081 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2082 get_block_t *get_block, const struct iomap *iomap) 2083 { 2084 size_t from = offset_in_folio(folio, pos); 2085 size_t to = from + len; 2086 struct inode *inode = folio->mapping->host; 2087 size_t block_start, block_end; 2088 sector_t block; 2089 int err = 0; 2090 size_t blocksize; 2091 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2092 2093 BUG_ON(!folio_test_locked(folio)); 2094 BUG_ON(to > folio_size(folio)); 2095 BUG_ON(from > to); 2096 2097 head = folio_create_buffers(folio, inode, 0); 2098 blocksize = head->b_size; 2099 block = div_u64(folio_pos(folio), blocksize); 2100 2101 for (bh = head, block_start = 0; bh != head || !block_start; 2102 block++, block_start=block_end, bh = bh->b_this_page) { 2103 block_end = block_start + blocksize; 2104 if (block_end <= from || block_start >= to) { 2105 if (folio_test_uptodate(folio)) { 2106 if (!buffer_uptodate(bh)) 2107 set_buffer_uptodate(bh); 2108 } 2109 continue; 2110 } 2111 if (buffer_new(bh)) 2112 clear_buffer_new(bh); 2113 if (!buffer_mapped(bh)) { 2114 WARN_ON(bh->b_size != blocksize); 2115 if (get_block) 2116 err = get_block(inode, block, bh, 1); 2117 else 2118 err = iomap_to_bh(inode, block, bh, iomap); 2119 if (err) 2120 break; 2121 2122 if (buffer_new(bh)) { 2123 clean_bdev_bh_alias(bh); 2124 if (folio_test_uptodate(folio)) { 2125 clear_buffer_new(bh); 2126 set_buffer_uptodate(bh); 2127 mark_buffer_dirty(bh); 2128 continue; 2129 } 2130 if (block_end > to || block_start < from) 2131 folio_zero_segments(folio, 2132 to, block_end, 2133 block_start, from); 2134 continue; 2135 } 2136 } 2137 if (folio_test_uptodate(folio)) { 2138 if (!buffer_uptodate(bh)) 2139 set_buffer_uptodate(bh); 2140 continue; 2141 } 2142 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2143 !buffer_unwritten(bh) && 2144 (block_start < from || block_end > to)) { 2145 bh_read_nowait(bh, 0); 2146 *wait_bh++=bh; 2147 } 2148 } 2149 /* 2150 * If we issued read requests - let them complete. 2151 */ 2152 while(wait_bh > wait) { 2153 wait_on_buffer(*--wait_bh); 2154 if (!buffer_uptodate(*wait_bh)) 2155 err = -EIO; 2156 } 2157 if (unlikely(err)) 2158 folio_zero_new_buffers(folio, from, to); 2159 return err; 2160 } 2161 2162 int __block_write_begin(struct folio *folio, loff_t pos, unsigned len, 2163 get_block_t *get_block) 2164 { 2165 return __block_write_begin_int(folio, pos, len, get_block, NULL); 2166 } 2167 EXPORT_SYMBOL(__block_write_begin); 2168 2169 static void __block_commit_write(struct folio *folio, size_t from, size_t to) 2170 { 2171 size_t block_start, block_end; 2172 bool partial = false; 2173 unsigned blocksize; 2174 struct buffer_head *bh, *head; 2175 2176 bh = head = folio_buffers(folio); 2177 if (!bh) 2178 return; 2179 blocksize = bh->b_size; 2180 2181 block_start = 0; 2182 do { 2183 block_end = block_start + blocksize; 2184 if (block_end <= from || block_start >= to) { 2185 if (!buffer_uptodate(bh)) 2186 partial = true; 2187 } else { 2188 set_buffer_uptodate(bh); 2189 mark_buffer_dirty(bh); 2190 } 2191 if (buffer_new(bh)) 2192 clear_buffer_new(bh); 2193 2194 block_start = block_end; 2195 bh = bh->b_this_page; 2196 } while (bh != head); 2197 2198 /* 2199 * If this is a partial write which happened to make all buffers 2200 * uptodate then we can optimize away a bogus read_folio() for 2201 * the next read(). Here we 'discover' whether the folio went 2202 * uptodate as a result of this (potentially partial) write. 2203 */ 2204 if (!partial) 2205 folio_mark_uptodate(folio); 2206 } 2207 2208 /* 2209 * block_write_begin takes care of the basic task of block allocation and 2210 * bringing partial write blocks uptodate first. 2211 * 2212 * The filesystem needs to handle block truncation upon failure. 2213 */ 2214 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2215 struct folio **foliop, get_block_t *get_block) 2216 { 2217 pgoff_t index = pos >> PAGE_SHIFT; 2218 struct folio *folio; 2219 int status; 2220 2221 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2222 mapping_gfp_mask(mapping)); 2223 if (IS_ERR(folio)) 2224 return PTR_ERR(folio); 2225 2226 status = __block_write_begin_int(folio, pos, len, get_block, NULL); 2227 if (unlikely(status)) { 2228 folio_unlock(folio); 2229 folio_put(folio); 2230 folio = NULL; 2231 } 2232 2233 *foliop = folio; 2234 return status; 2235 } 2236 EXPORT_SYMBOL(block_write_begin); 2237 2238 int block_write_end(struct file *file, struct address_space *mapping, 2239 loff_t pos, unsigned len, unsigned copied, 2240 struct folio *folio, void *fsdata) 2241 { 2242 size_t start = pos - folio_pos(folio); 2243 2244 if (unlikely(copied < len)) { 2245 /* 2246 * The buffers that were written will now be uptodate, so 2247 * we don't have to worry about a read_folio reading them 2248 * and overwriting a partial write. However if we have 2249 * encountered a short write and only partially written 2250 * into a buffer, it will not be marked uptodate, so a 2251 * read_folio might come in and destroy our partial write. 2252 * 2253 * Do the simplest thing, and just treat any short write to a 2254 * non uptodate folio as a zero-length write, and force the 2255 * caller to redo the whole thing. 2256 */ 2257 if (!folio_test_uptodate(folio)) 2258 copied = 0; 2259 2260 folio_zero_new_buffers(folio, start+copied, start+len); 2261 } 2262 flush_dcache_folio(folio); 2263 2264 /* This could be a short (even 0-length) commit */ 2265 __block_commit_write(folio, start, start + copied); 2266 2267 return copied; 2268 } 2269 EXPORT_SYMBOL(block_write_end); 2270 2271 int generic_write_end(struct file *file, struct address_space *mapping, 2272 loff_t pos, unsigned len, unsigned copied, 2273 struct folio *folio, void *fsdata) 2274 { 2275 struct inode *inode = mapping->host; 2276 loff_t old_size = inode->i_size; 2277 bool i_size_changed = false; 2278 2279 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata); 2280 2281 /* 2282 * No need to use i_size_read() here, the i_size cannot change under us 2283 * because we hold i_rwsem. 2284 * 2285 * But it's important to update i_size while still holding folio lock: 2286 * page writeout could otherwise come in and zero beyond i_size. 2287 */ 2288 if (pos + copied > inode->i_size) { 2289 i_size_write(inode, pos + copied); 2290 i_size_changed = true; 2291 } 2292 2293 folio_unlock(folio); 2294 folio_put(folio); 2295 2296 if (old_size < pos) 2297 pagecache_isize_extended(inode, old_size, pos); 2298 /* 2299 * Don't mark the inode dirty under page lock. First, it unnecessarily 2300 * makes the holding time of page lock longer. Second, it forces lock 2301 * ordering of page lock and transaction start for journaling 2302 * filesystems. 2303 */ 2304 if (i_size_changed) 2305 mark_inode_dirty(inode); 2306 return copied; 2307 } 2308 EXPORT_SYMBOL(generic_write_end); 2309 2310 /* 2311 * block_is_partially_uptodate checks whether buffers within a folio are 2312 * uptodate or not. 2313 * 2314 * Returns true if all buffers which correspond to the specified part 2315 * of the folio are uptodate. 2316 */ 2317 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2318 { 2319 unsigned block_start, block_end, blocksize; 2320 unsigned to; 2321 struct buffer_head *bh, *head; 2322 bool ret = true; 2323 2324 head = folio_buffers(folio); 2325 if (!head) 2326 return false; 2327 blocksize = head->b_size; 2328 to = min_t(unsigned, folio_size(folio) - from, count); 2329 to = from + to; 2330 if (from < blocksize && to > folio_size(folio) - blocksize) 2331 return false; 2332 2333 bh = head; 2334 block_start = 0; 2335 do { 2336 block_end = block_start + blocksize; 2337 if (block_end > from && block_start < to) { 2338 if (!buffer_uptodate(bh)) { 2339 ret = false; 2340 break; 2341 } 2342 if (block_end >= to) 2343 break; 2344 } 2345 block_start = block_end; 2346 bh = bh->b_this_page; 2347 } while (bh != head); 2348 2349 return ret; 2350 } 2351 EXPORT_SYMBOL(block_is_partially_uptodate); 2352 2353 /* 2354 * Generic "read_folio" function for block devices that have the normal 2355 * get_block functionality. This is most of the block device filesystems. 2356 * Reads the folio asynchronously --- the unlock_buffer() and 2357 * set/clear_buffer_uptodate() functions propagate buffer state into the 2358 * folio once IO has completed. 2359 */ 2360 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2361 { 2362 struct inode *inode = folio->mapping->host; 2363 sector_t iblock, lblock; 2364 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2365 size_t blocksize; 2366 int nr, i; 2367 int fully_mapped = 1; 2368 bool page_error = false; 2369 loff_t limit = i_size_read(inode); 2370 2371 /* This is needed for ext4. */ 2372 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2373 limit = inode->i_sb->s_maxbytes; 2374 2375 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2376 2377 head = folio_create_buffers(folio, inode, 0); 2378 blocksize = head->b_size; 2379 2380 iblock = div_u64(folio_pos(folio), blocksize); 2381 lblock = div_u64(limit + blocksize - 1, blocksize); 2382 bh = head; 2383 nr = 0; 2384 i = 0; 2385 2386 do { 2387 if (buffer_uptodate(bh)) 2388 continue; 2389 2390 if (!buffer_mapped(bh)) { 2391 int err = 0; 2392 2393 fully_mapped = 0; 2394 if (iblock < lblock) { 2395 WARN_ON(bh->b_size != blocksize); 2396 err = get_block(inode, iblock, bh, 0); 2397 if (err) 2398 page_error = true; 2399 } 2400 if (!buffer_mapped(bh)) { 2401 folio_zero_range(folio, i * blocksize, 2402 blocksize); 2403 if (!err) 2404 set_buffer_uptodate(bh); 2405 continue; 2406 } 2407 /* 2408 * get_block() might have updated the buffer 2409 * synchronously 2410 */ 2411 if (buffer_uptodate(bh)) 2412 continue; 2413 } 2414 arr[nr++] = bh; 2415 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2416 2417 if (fully_mapped) 2418 folio_set_mappedtodisk(folio); 2419 2420 if (!nr) { 2421 /* 2422 * All buffers are uptodate or get_block() returned an 2423 * error when trying to map them - we can finish the read. 2424 */ 2425 folio_end_read(folio, !page_error); 2426 return 0; 2427 } 2428 2429 /* Stage two: lock the buffers */ 2430 for (i = 0; i < nr; i++) { 2431 bh = arr[i]; 2432 lock_buffer(bh); 2433 mark_buffer_async_read(bh); 2434 } 2435 2436 /* 2437 * Stage 3: start the IO. Check for uptodateness 2438 * inside the buffer lock in case another process reading 2439 * the underlying blockdev brought it uptodate (the sct fix). 2440 */ 2441 for (i = 0; i < nr; i++) { 2442 bh = arr[i]; 2443 if (buffer_uptodate(bh)) 2444 end_buffer_async_read(bh, 1); 2445 else 2446 submit_bh(REQ_OP_READ, bh); 2447 } 2448 return 0; 2449 } 2450 EXPORT_SYMBOL(block_read_full_folio); 2451 2452 /* utility function for filesystems that need to do work on expanding 2453 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2454 * deal with the hole. 2455 */ 2456 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2457 { 2458 struct address_space *mapping = inode->i_mapping; 2459 const struct address_space_operations *aops = mapping->a_ops; 2460 struct folio *folio; 2461 void *fsdata = NULL; 2462 int err; 2463 2464 err = inode_newsize_ok(inode, size); 2465 if (err) 2466 goto out; 2467 2468 err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata); 2469 if (err) 2470 goto out; 2471 2472 err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata); 2473 BUG_ON(err > 0); 2474 2475 out: 2476 return err; 2477 } 2478 EXPORT_SYMBOL(generic_cont_expand_simple); 2479 2480 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2481 loff_t pos, loff_t *bytes) 2482 { 2483 struct inode *inode = mapping->host; 2484 const struct address_space_operations *aops = mapping->a_ops; 2485 unsigned int blocksize = i_blocksize(inode); 2486 struct folio *folio; 2487 void *fsdata = NULL; 2488 pgoff_t index, curidx; 2489 loff_t curpos; 2490 unsigned zerofrom, offset, len; 2491 int err = 0; 2492 2493 index = pos >> PAGE_SHIFT; 2494 offset = pos & ~PAGE_MASK; 2495 2496 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2497 zerofrom = curpos & ~PAGE_MASK; 2498 if (zerofrom & (blocksize-1)) { 2499 *bytes |= (blocksize-1); 2500 (*bytes)++; 2501 } 2502 len = PAGE_SIZE - zerofrom; 2503 2504 err = aops->write_begin(file, mapping, curpos, len, 2505 &folio, &fsdata); 2506 if (err) 2507 goto out; 2508 folio_zero_range(folio, offset_in_folio(folio, curpos), len); 2509 err = aops->write_end(file, mapping, curpos, len, len, 2510 folio, fsdata); 2511 if (err < 0) 2512 goto out; 2513 BUG_ON(err != len); 2514 err = 0; 2515 2516 balance_dirty_pages_ratelimited(mapping); 2517 2518 if (fatal_signal_pending(current)) { 2519 err = -EINTR; 2520 goto out; 2521 } 2522 } 2523 2524 /* page covers the boundary, find the boundary offset */ 2525 if (index == curidx) { 2526 zerofrom = curpos & ~PAGE_MASK; 2527 /* if we will expand the thing last block will be filled */ 2528 if (offset <= zerofrom) { 2529 goto out; 2530 } 2531 if (zerofrom & (blocksize-1)) { 2532 *bytes |= (blocksize-1); 2533 (*bytes)++; 2534 } 2535 len = offset - zerofrom; 2536 2537 err = aops->write_begin(file, mapping, curpos, len, 2538 &folio, &fsdata); 2539 if (err) 2540 goto out; 2541 folio_zero_range(folio, offset_in_folio(folio, curpos), len); 2542 err = aops->write_end(file, mapping, curpos, len, len, 2543 folio, fsdata); 2544 if (err < 0) 2545 goto out; 2546 BUG_ON(err != len); 2547 err = 0; 2548 } 2549 out: 2550 return err; 2551 } 2552 2553 /* 2554 * For moronic filesystems that do not allow holes in file. 2555 * We may have to extend the file. 2556 */ 2557 int cont_write_begin(struct file *file, struct address_space *mapping, 2558 loff_t pos, unsigned len, 2559 struct folio **foliop, void **fsdata, 2560 get_block_t *get_block, loff_t *bytes) 2561 { 2562 struct inode *inode = mapping->host; 2563 unsigned int blocksize = i_blocksize(inode); 2564 unsigned int zerofrom; 2565 int err; 2566 2567 err = cont_expand_zero(file, mapping, pos, bytes); 2568 if (err) 2569 return err; 2570 2571 zerofrom = *bytes & ~PAGE_MASK; 2572 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2573 *bytes |= (blocksize-1); 2574 (*bytes)++; 2575 } 2576 2577 return block_write_begin(mapping, pos, len, foliop, get_block); 2578 } 2579 EXPORT_SYMBOL(cont_write_begin); 2580 2581 void block_commit_write(struct page *page, unsigned from, unsigned to) 2582 { 2583 struct folio *folio = page_folio(page); 2584 __block_commit_write(folio, from, to); 2585 } 2586 EXPORT_SYMBOL(block_commit_write); 2587 2588 /* 2589 * block_page_mkwrite() is not allowed to change the file size as it gets 2590 * called from a page fault handler when a page is first dirtied. Hence we must 2591 * be careful to check for EOF conditions here. We set the page up correctly 2592 * for a written page which means we get ENOSPC checking when writing into 2593 * holes and correct delalloc and unwritten extent mapping on filesystems that 2594 * support these features. 2595 * 2596 * We are not allowed to take the i_mutex here so we have to play games to 2597 * protect against truncate races as the page could now be beyond EOF. Because 2598 * truncate writes the inode size before removing pages, once we have the 2599 * page lock we can determine safely if the page is beyond EOF. If it is not 2600 * beyond EOF, then the page is guaranteed safe against truncation until we 2601 * unlock the page. 2602 * 2603 * Direct callers of this function should protect against filesystem freezing 2604 * using sb_start_pagefault() - sb_end_pagefault() functions. 2605 */ 2606 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2607 get_block_t get_block) 2608 { 2609 struct folio *folio = page_folio(vmf->page); 2610 struct inode *inode = file_inode(vma->vm_file); 2611 unsigned long end; 2612 loff_t size; 2613 int ret; 2614 2615 folio_lock(folio); 2616 size = i_size_read(inode); 2617 if ((folio->mapping != inode->i_mapping) || 2618 (folio_pos(folio) >= size)) { 2619 /* We overload EFAULT to mean page got truncated */ 2620 ret = -EFAULT; 2621 goto out_unlock; 2622 } 2623 2624 end = folio_size(folio); 2625 /* folio is wholly or partially inside EOF */ 2626 if (folio_pos(folio) + end > size) 2627 end = size - folio_pos(folio); 2628 2629 ret = __block_write_begin_int(folio, 0, end, get_block, NULL); 2630 if (unlikely(ret)) 2631 goto out_unlock; 2632 2633 __block_commit_write(folio, 0, end); 2634 2635 folio_mark_dirty(folio); 2636 folio_wait_stable(folio); 2637 return 0; 2638 out_unlock: 2639 folio_unlock(folio); 2640 return ret; 2641 } 2642 EXPORT_SYMBOL(block_page_mkwrite); 2643 2644 int block_truncate_page(struct address_space *mapping, 2645 loff_t from, get_block_t *get_block) 2646 { 2647 pgoff_t index = from >> PAGE_SHIFT; 2648 unsigned blocksize; 2649 sector_t iblock; 2650 size_t offset, length, pos; 2651 struct inode *inode = mapping->host; 2652 struct folio *folio; 2653 struct buffer_head *bh; 2654 int err = 0; 2655 2656 blocksize = i_blocksize(inode); 2657 length = from & (blocksize - 1); 2658 2659 /* Block boundary? Nothing to do */ 2660 if (!length) 2661 return 0; 2662 2663 length = blocksize - length; 2664 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits; 2665 2666 folio = filemap_grab_folio(mapping, index); 2667 if (IS_ERR(folio)) 2668 return PTR_ERR(folio); 2669 2670 bh = folio_buffers(folio); 2671 if (!bh) 2672 bh = create_empty_buffers(folio, blocksize, 0); 2673 2674 /* Find the buffer that contains "offset" */ 2675 offset = offset_in_folio(folio, from); 2676 pos = blocksize; 2677 while (offset >= pos) { 2678 bh = bh->b_this_page; 2679 iblock++; 2680 pos += blocksize; 2681 } 2682 2683 if (!buffer_mapped(bh)) { 2684 WARN_ON(bh->b_size != blocksize); 2685 err = get_block(inode, iblock, bh, 0); 2686 if (err) 2687 goto unlock; 2688 /* unmapped? It's a hole - nothing to do */ 2689 if (!buffer_mapped(bh)) 2690 goto unlock; 2691 } 2692 2693 /* Ok, it's mapped. Make sure it's up-to-date */ 2694 if (folio_test_uptodate(folio)) 2695 set_buffer_uptodate(bh); 2696 2697 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2698 err = bh_read(bh, 0); 2699 /* Uhhuh. Read error. Complain and punt. */ 2700 if (err < 0) 2701 goto unlock; 2702 } 2703 2704 folio_zero_range(folio, offset, length); 2705 mark_buffer_dirty(bh); 2706 2707 unlock: 2708 folio_unlock(folio); 2709 folio_put(folio); 2710 2711 return err; 2712 } 2713 EXPORT_SYMBOL(block_truncate_page); 2714 2715 /* 2716 * The generic ->writepage function for buffer-backed address_spaces 2717 */ 2718 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc, 2719 void *get_block) 2720 { 2721 struct inode * const inode = folio->mapping->host; 2722 loff_t i_size = i_size_read(inode); 2723 2724 /* Is the folio fully inside i_size? */ 2725 if (folio_pos(folio) + folio_size(folio) <= i_size) 2726 return __block_write_full_folio(inode, folio, get_block, wbc); 2727 2728 /* Is the folio fully outside i_size? (truncate in progress) */ 2729 if (folio_pos(folio) >= i_size) { 2730 folio_unlock(folio); 2731 return 0; /* don't care */ 2732 } 2733 2734 /* 2735 * The folio straddles i_size. It must be zeroed out on each and every 2736 * writepage invocation because it may be mmapped. "A file is mapped 2737 * in multiples of the page size. For a file that is not a multiple of 2738 * the page size, the remaining memory is zeroed when mapped, and 2739 * writes to that region are not written out to the file." 2740 */ 2741 folio_zero_segment(folio, offset_in_folio(folio, i_size), 2742 folio_size(folio)); 2743 return __block_write_full_folio(inode, folio, get_block, wbc); 2744 } 2745 2746 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2747 get_block_t *get_block) 2748 { 2749 struct inode *inode = mapping->host; 2750 struct buffer_head tmp = { 2751 .b_size = i_blocksize(inode), 2752 }; 2753 2754 get_block(inode, block, &tmp, 0); 2755 return tmp.b_blocknr; 2756 } 2757 EXPORT_SYMBOL(generic_block_bmap); 2758 2759 static void end_bio_bh_io_sync(struct bio *bio) 2760 { 2761 struct buffer_head *bh = bio->bi_private; 2762 2763 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2764 set_bit(BH_Quiet, &bh->b_state); 2765 2766 bh->b_end_io(bh, !bio->bi_status); 2767 bio_put(bio); 2768 } 2769 2770 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2771 enum rw_hint write_hint, 2772 struct writeback_control *wbc) 2773 { 2774 const enum req_op op = opf & REQ_OP_MASK; 2775 struct bio *bio; 2776 2777 BUG_ON(!buffer_locked(bh)); 2778 BUG_ON(!buffer_mapped(bh)); 2779 BUG_ON(!bh->b_end_io); 2780 BUG_ON(buffer_delay(bh)); 2781 BUG_ON(buffer_unwritten(bh)); 2782 2783 /* 2784 * Only clear out a write error when rewriting 2785 */ 2786 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2787 clear_buffer_write_io_error(bh); 2788 2789 if (buffer_meta(bh)) 2790 opf |= REQ_META; 2791 if (buffer_prio(bh)) 2792 opf |= REQ_PRIO; 2793 2794 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2795 2796 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2797 2798 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2799 bio->bi_write_hint = write_hint; 2800 2801 bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh)); 2802 2803 bio->bi_end_io = end_bio_bh_io_sync; 2804 bio->bi_private = bh; 2805 2806 /* Take care of bh's that straddle the end of the device */ 2807 guard_bio_eod(bio); 2808 2809 if (wbc) { 2810 wbc_init_bio(wbc, bio); 2811 wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size); 2812 } 2813 2814 submit_bio(bio); 2815 } 2816 2817 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2818 { 2819 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL); 2820 } 2821 EXPORT_SYMBOL(submit_bh); 2822 2823 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2824 { 2825 lock_buffer(bh); 2826 if (!test_clear_buffer_dirty(bh)) { 2827 unlock_buffer(bh); 2828 return; 2829 } 2830 bh->b_end_io = end_buffer_write_sync; 2831 get_bh(bh); 2832 submit_bh(REQ_OP_WRITE | op_flags, bh); 2833 } 2834 EXPORT_SYMBOL(write_dirty_buffer); 2835 2836 /* 2837 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2838 * and then start new I/O and then wait upon it. The caller must have a ref on 2839 * the buffer_head. 2840 */ 2841 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2842 { 2843 WARN_ON(atomic_read(&bh->b_count) < 1); 2844 lock_buffer(bh); 2845 if (test_clear_buffer_dirty(bh)) { 2846 /* 2847 * The bh should be mapped, but it might not be if the 2848 * device was hot-removed. Not much we can do but fail the I/O. 2849 */ 2850 if (!buffer_mapped(bh)) { 2851 unlock_buffer(bh); 2852 return -EIO; 2853 } 2854 2855 get_bh(bh); 2856 bh->b_end_io = end_buffer_write_sync; 2857 submit_bh(REQ_OP_WRITE | op_flags, bh); 2858 wait_on_buffer(bh); 2859 if (!buffer_uptodate(bh)) 2860 return -EIO; 2861 } else { 2862 unlock_buffer(bh); 2863 } 2864 return 0; 2865 } 2866 EXPORT_SYMBOL(__sync_dirty_buffer); 2867 2868 int sync_dirty_buffer(struct buffer_head *bh) 2869 { 2870 return __sync_dirty_buffer(bh, REQ_SYNC); 2871 } 2872 EXPORT_SYMBOL(sync_dirty_buffer); 2873 2874 static inline int buffer_busy(struct buffer_head *bh) 2875 { 2876 return atomic_read(&bh->b_count) | 2877 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2878 } 2879 2880 static bool 2881 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2882 { 2883 struct buffer_head *head = folio_buffers(folio); 2884 struct buffer_head *bh; 2885 2886 bh = head; 2887 do { 2888 if (buffer_busy(bh)) 2889 goto failed; 2890 bh = bh->b_this_page; 2891 } while (bh != head); 2892 2893 do { 2894 struct buffer_head *next = bh->b_this_page; 2895 2896 if (bh->b_assoc_map) 2897 __remove_assoc_queue(bh); 2898 bh = next; 2899 } while (bh != head); 2900 *buffers_to_free = head; 2901 folio_detach_private(folio); 2902 return true; 2903 failed: 2904 return false; 2905 } 2906 2907 /** 2908 * try_to_free_buffers - Release buffers attached to this folio. 2909 * @folio: The folio. 2910 * 2911 * If any buffers are in use (dirty, under writeback, elevated refcount), 2912 * no buffers will be freed. 2913 * 2914 * If the folio is dirty but all the buffers are clean then we need to 2915 * be sure to mark the folio clean as well. This is because the folio 2916 * may be against a block device, and a later reattachment of buffers 2917 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2918 * filesystem data on the same device. 2919 * 2920 * The same applies to regular filesystem folios: if all the buffers are 2921 * clean then we set the folio clean and proceed. To do that, we require 2922 * total exclusion from block_dirty_folio(). That is obtained with 2923 * i_private_lock. 2924 * 2925 * Exclusion against try_to_free_buffers may be obtained by either 2926 * locking the folio or by holding its mapping's i_private_lock. 2927 * 2928 * Context: Process context. @folio must be locked. Will not sleep. 2929 * Return: true if all buffers attached to this folio were freed. 2930 */ 2931 bool try_to_free_buffers(struct folio *folio) 2932 { 2933 struct address_space * const mapping = folio->mapping; 2934 struct buffer_head *buffers_to_free = NULL; 2935 bool ret = 0; 2936 2937 BUG_ON(!folio_test_locked(folio)); 2938 if (folio_test_writeback(folio)) 2939 return false; 2940 2941 if (mapping == NULL) { /* can this still happen? */ 2942 ret = drop_buffers(folio, &buffers_to_free); 2943 goto out; 2944 } 2945 2946 spin_lock(&mapping->i_private_lock); 2947 ret = drop_buffers(folio, &buffers_to_free); 2948 2949 /* 2950 * If the filesystem writes its buffers by hand (eg ext3) 2951 * then we can have clean buffers against a dirty folio. We 2952 * clean the folio here; otherwise the VM will never notice 2953 * that the filesystem did any IO at all. 2954 * 2955 * Also, during truncate, discard_buffer will have marked all 2956 * the folio's buffers clean. We discover that here and clean 2957 * the folio also. 2958 * 2959 * i_private_lock must be held over this entire operation in order 2960 * to synchronise against block_dirty_folio and prevent the 2961 * dirty bit from being lost. 2962 */ 2963 if (ret) 2964 folio_cancel_dirty(folio); 2965 spin_unlock(&mapping->i_private_lock); 2966 out: 2967 if (buffers_to_free) { 2968 struct buffer_head *bh = buffers_to_free; 2969 2970 do { 2971 struct buffer_head *next = bh->b_this_page; 2972 free_buffer_head(bh); 2973 bh = next; 2974 } while (bh != buffers_to_free); 2975 } 2976 return ret; 2977 } 2978 EXPORT_SYMBOL(try_to_free_buffers); 2979 2980 /* 2981 * Buffer-head allocation 2982 */ 2983 static struct kmem_cache *bh_cachep __ro_after_init; 2984 2985 /* 2986 * Once the number of bh's in the machine exceeds this level, we start 2987 * stripping them in writeback. 2988 */ 2989 static unsigned long max_buffer_heads __ro_after_init; 2990 2991 int buffer_heads_over_limit; 2992 2993 struct bh_accounting { 2994 int nr; /* Number of live bh's */ 2995 int ratelimit; /* Limit cacheline bouncing */ 2996 }; 2997 2998 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 2999 3000 static void recalc_bh_state(void) 3001 { 3002 int i; 3003 int tot = 0; 3004 3005 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3006 return; 3007 __this_cpu_write(bh_accounting.ratelimit, 0); 3008 for_each_online_cpu(i) 3009 tot += per_cpu(bh_accounting, i).nr; 3010 buffer_heads_over_limit = (tot > max_buffer_heads); 3011 } 3012 3013 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3014 { 3015 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3016 if (ret) { 3017 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3018 spin_lock_init(&ret->b_uptodate_lock); 3019 preempt_disable(); 3020 __this_cpu_inc(bh_accounting.nr); 3021 recalc_bh_state(); 3022 preempt_enable(); 3023 } 3024 return ret; 3025 } 3026 EXPORT_SYMBOL(alloc_buffer_head); 3027 3028 void free_buffer_head(struct buffer_head *bh) 3029 { 3030 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3031 kmem_cache_free(bh_cachep, bh); 3032 preempt_disable(); 3033 __this_cpu_dec(bh_accounting.nr); 3034 recalc_bh_state(); 3035 preempt_enable(); 3036 } 3037 EXPORT_SYMBOL(free_buffer_head); 3038 3039 static int buffer_exit_cpu_dead(unsigned int cpu) 3040 { 3041 int i; 3042 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3043 3044 for (i = 0; i < BH_LRU_SIZE; i++) { 3045 brelse(b->bhs[i]); 3046 b->bhs[i] = NULL; 3047 } 3048 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3049 per_cpu(bh_accounting, cpu).nr = 0; 3050 return 0; 3051 } 3052 3053 /** 3054 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3055 * @bh: struct buffer_head 3056 * 3057 * Return true if the buffer is up-to-date and false, 3058 * with the buffer locked, if not. 3059 */ 3060 int bh_uptodate_or_lock(struct buffer_head *bh) 3061 { 3062 if (!buffer_uptodate(bh)) { 3063 lock_buffer(bh); 3064 if (!buffer_uptodate(bh)) 3065 return 0; 3066 unlock_buffer(bh); 3067 } 3068 return 1; 3069 } 3070 EXPORT_SYMBOL(bh_uptodate_or_lock); 3071 3072 /** 3073 * __bh_read - Submit read for a locked buffer 3074 * @bh: struct buffer_head 3075 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3076 * @wait: wait until reading finish 3077 * 3078 * Returns zero on success or don't wait, and -EIO on error. 3079 */ 3080 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3081 { 3082 int ret = 0; 3083 3084 BUG_ON(!buffer_locked(bh)); 3085 3086 get_bh(bh); 3087 bh->b_end_io = end_buffer_read_sync; 3088 submit_bh(REQ_OP_READ | op_flags, bh); 3089 if (wait) { 3090 wait_on_buffer(bh); 3091 if (!buffer_uptodate(bh)) 3092 ret = -EIO; 3093 } 3094 return ret; 3095 } 3096 EXPORT_SYMBOL(__bh_read); 3097 3098 /** 3099 * __bh_read_batch - Submit read for a batch of unlocked buffers 3100 * @nr: entry number of the buffer batch 3101 * @bhs: a batch of struct buffer_head 3102 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3103 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3104 * buffer that cannot lock. 3105 * 3106 * Returns zero on success or don't wait, and -EIO on error. 3107 */ 3108 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3109 blk_opf_t op_flags, bool force_lock) 3110 { 3111 int i; 3112 3113 for (i = 0; i < nr; i++) { 3114 struct buffer_head *bh = bhs[i]; 3115 3116 if (buffer_uptodate(bh)) 3117 continue; 3118 3119 if (force_lock) 3120 lock_buffer(bh); 3121 else 3122 if (!trylock_buffer(bh)) 3123 continue; 3124 3125 if (buffer_uptodate(bh)) { 3126 unlock_buffer(bh); 3127 continue; 3128 } 3129 3130 bh->b_end_io = end_buffer_read_sync; 3131 get_bh(bh); 3132 submit_bh(REQ_OP_READ | op_flags, bh); 3133 } 3134 } 3135 EXPORT_SYMBOL(__bh_read_batch); 3136 3137 void __init buffer_init(void) 3138 { 3139 unsigned long nrpages; 3140 int ret; 3141 3142 bh_cachep = KMEM_CACHE(buffer_head, 3143 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC); 3144 /* 3145 * Limit the bh occupancy to 10% of ZONE_NORMAL 3146 */ 3147 nrpages = (nr_free_buffer_pages() * 10) / 100; 3148 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3149 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3150 NULL, buffer_exit_cpu_dead); 3151 WARN_ON(ret < 0); 3152 } 3153