1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/sched/signal.h> 23 #include <linux/syscalls.h> 24 #include <linux/fs.h> 25 #include <linux/iomap.h> 26 #include <linux/mm.h> 27 #include <linux/percpu.h> 28 #include <linux/slab.h> 29 #include <linux/capability.h> 30 #include <linux/blkdev.h> 31 #include <linux/file.h> 32 #include <linux/quotaops.h> 33 #include <linux/highmem.h> 34 #include <linux/export.h> 35 #include <linux/backing-dev.h> 36 #include <linux/writeback.h> 37 #include <linux/hash.h> 38 #include <linux/suspend.h> 39 #include <linux/buffer_head.h> 40 #include <linux/task_io_accounting_ops.h> 41 #include <linux/bio.h> 42 #include <linux/notifier.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <trace/events/block.h> 49 50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 52 enum rw_hint hint, struct writeback_control *wbc); 53 54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 55 56 inline void touch_buffer(struct buffer_head *bh) 57 { 58 trace_block_touch_buffer(bh); 59 mark_page_accessed(bh->b_page); 60 } 61 EXPORT_SYMBOL(touch_buffer); 62 63 void __lock_buffer(struct buffer_head *bh) 64 { 65 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 66 } 67 EXPORT_SYMBOL(__lock_buffer); 68 69 void unlock_buffer(struct buffer_head *bh) 70 { 71 clear_bit_unlock(BH_Lock, &bh->b_state); 72 smp_mb__after_atomic(); 73 wake_up_bit(&bh->b_state, BH_Lock); 74 } 75 EXPORT_SYMBOL(unlock_buffer); 76 77 /* 78 * Returns if the page has dirty or writeback buffers. If all the buffers 79 * are unlocked and clean then the PageDirty information is stale. If 80 * any of the pages are locked, it is assumed they are locked for IO. 81 */ 82 void buffer_check_dirty_writeback(struct page *page, 83 bool *dirty, bool *writeback) 84 { 85 struct buffer_head *head, *bh; 86 *dirty = false; 87 *writeback = false; 88 89 BUG_ON(!PageLocked(page)); 90 91 if (!page_has_buffers(page)) 92 return; 93 94 if (PageWriteback(page)) 95 *writeback = true; 96 97 head = page_buffers(page); 98 bh = head; 99 do { 100 if (buffer_locked(bh)) 101 *writeback = true; 102 103 if (buffer_dirty(bh)) 104 *dirty = true; 105 106 bh = bh->b_this_page; 107 } while (bh != head); 108 } 109 EXPORT_SYMBOL(buffer_check_dirty_writeback); 110 111 /* 112 * Block until a buffer comes unlocked. This doesn't stop it 113 * from becoming locked again - you have to lock it yourself 114 * if you want to preserve its state. 115 */ 116 void __wait_on_buffer(struct buffer_head * bh) 117 { 118 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 119 } 120 EXPORT_SYMBOL(__wait_on_buffer); 121 122 static void 123 __clear_page_buffers(struct page *page) 124 { 125 ClearPagePrivate(page); 126 set_page_private(page, 0); 127 put_page(page); 128 } 129 130 static void buffer_io_error(struct buffer_head *bh, char *msg) 131 { 132 if (!test_bit(BH_Quiet, &bh->b_state)) 133 printk_ratelimited(KERN_ERR 134 "Buffer I/O error on dev %pg, logical block %llu%s\n", 135 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 136 } 137 138 /* 139 * End-of-IO handler helper function which does not touch the bh after 140 * unlocking it. 141 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 142 * a race there is benign: unlock_buffer() only use the bh's address for 143 * hashing after unlocking the buffer, so it doesn't actually touch the bh 144 * itself. 145 */ 146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 147 { 148 if (uptodate) { 149 set_buffer_uptodate(bh); 150 } else { 151 /* This happens, due to failed read-ahead attempts. */ 152 clear_buffer_uptodate(bh); 153 } 154 unlock_buffer(bh); 155 } 156 157 /* 158 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 159 * unlock the buffer. This is what ll_rw_block uses too. 160 */ 161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 162 { 163 __end_buffer_read_notouch(bh, uptodate); 164 put_bh(bh); 165 } 166 EXPORT_SYMBOL(end_buffer_read_sync); 167 168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 169 { 170 if (uptodate) { 171 set_buffer_uptodate(bh); 172 } else { 173 buffer_io_error(bh, ", lost sync page write"); 174 mark_buffer_write_io_error(bh); 175 clear_buffer_uptodate(bh); 176 } 177 unlock_buffer(bh); 178 put_bh(bh); 179 } 180 EXPORT_SYMBOL(end_buffer_write_sync); 181 182 /* 183 * Various filesystems appear to want __find_get_block to be non-blocking. 184 * But it's the page lock which protects the buffers. To get around this, 185 * we get exclusion from try_to_free_buffers with the blockdev mapping's 186 * private_lock. 187 * 188 * Hack idea: for the blockdev mapping, private_lock contention 189 * may be quite high. This code could TryLock the page, and if that 190 * succeeds, there is no need to take private_lock. 191 */ 192 static struct buffer_head * 193 __find_get_block_slow(struct block_device *bdev, sector_t block) 194 { 195 struct inode *bd_inode = bdev->bd_inode; 196 struct address_space *bd_mapping = bd_inode->i_mapping; 197 struct buffer_head *ret = NULL; 198 pgoff_t index; 199 struct buffer_head *bh; 200 struct buffer_head *head; 201 struct page *page; 202 int all_mapped = 1; 203 204 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 205 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 206 if (!page) 207 goto out; 208 209 spin_lock(&bd_mapping->private_lock); 210 if (!page_has_buffers(page)) 211 goto out_unlock; 212 head = page_buffers(page); 213 bh = head; 214 do { 215 if (!buffer_mapped(bh)) 216 all_mapped = 0; 217 else if (bh->b_blocknr == block) { 218 ret = bh; 219 get_bh(bh); 220 goto out_unlock; 221 } 222 bh = bh->b_this_page; 223 } while (bh != head); 224 225 /* we might be here because some of the buffers on this page are 226 * not mapped. This is due to various races between 227 * file io on the block device and getblk. It gets dealt with 228 * elsewhere, don't buffer_error if we had some unmapped buffers 229 */ 230 if (all_mapped) { 231 printk("__find_get_block_slow() failed. " 232 "block=%llu, b_blocknr=%llu\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr); 235 printk("b_state=0x%08lx, b_size=%zu\n", 236 bh->b_state, bh->b_size); 237 printk("device %pg blocksize: %d\n", bdev, 238 1 << bd_inode->i_blkbits); 239 } 240 out_unlock: 241 spin_unlock(&bd_mapping->private_lock); 242 put_page(page); 243 out: 244 return ret; 245 } 246 247 /* 248 * I/O completion handler for block_read_full_page() - pages 249 * which come unlocked at the end of I/O. 250 */ 251 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 252 { 253 unsigned long flags; 254 struct buffer_head *first; 255 struct buffer_head *tmp; 256 struct page *page; 257 int page_uptodate = 1; 258 259 BUG_ON(!buffer_async_read(bh)); 260 261 page = bh->b_page; 262 if (uptodate) { 263 set_buffer_uptodate(bh); 264 } else { 265 clear_buffer_uptodate(bh); 266 buffer_io_error(bh, ", async page read"); 267 SetPageError(page); 268 } 269 270 /* 271 * Be _very_ careful from here on. Bad things can happen if 272 * two buffer heads end IO at almost the same time and both 273 * decide that the page is now completely done. 274 */ 275 first = page_buffers(page); 276 local_irq_save(flags); 277 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 278 clear_buffer_async_read(bh); 279 unlock_buffer(bh); 280 tmp = bh; 281 do { 282 if (!buffer_uptodate(tmp)) 283 page_uptodate = 0; 284 if (buffer_async_read(tmp)) { 285 BUG_ON(!buffer_locked(tmp)); 286 goto still_busy; 287 } 288 tmp = tmp->b_this_page; 289 } while (tmp != bh); 290 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 291 local_irq_restore(flags); 292 293 /* 294 * If none of the buffers had errors and they are all 295 * uptodate then we can set the page uptodate. 296 */ 297 if (page_uptodate && !PageError(page)) 298 SetPageUptodate(page); 299 unlock_page(page); 300 return; 301 302 still_busy: 303 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 304 local_irq_restore(flags); 305 return; 306 } 307 308 /* 309 * Completion handler for block_write_full_page() - pages which are unlocked 310 * during I/O, and which have PageWriteback cleared upon I/O completion. 311 */ 312 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 313 { 314 unsigned long flags; 315 struct buffer_head *first; 316 struct buffer_head *tmp; 317 struct page *page; 318 319 BUG_ON(!buffer_async_write(bh)); 320 321 page = bh->b_page; 322 if (uptodate) { 323 set_buffer_uptodate(bh); 324 } else { 325 buffer_io_error(bh, ", lost async page write"); 326 mark_buffer_write_io_error(bh); 327 clear_buffer_uptodate(bh); 328 SetPageError(page); 329 } 330 331 first = page_buffers(page); 332 local_irq_save(flags); 333 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 334 335 clear_buffer_async_write(bh); 336 unlock_buffer(bh); 337 tmp = bh->b_this_page; 338 while (tmp != bh) { 339 if (buffer_async_write(tmp)) { 340 BUG_ON(!buffer_locked(tmp)); 341 goto still_busy; 342 } 343 tmp = tmp->b_this_page; 344 } 345 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 346 local_irq_restore(flags); 347 end_page_writeback(page); 348 return; 349 350 still_busy: 351 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 352 local_irq_restore(flags); 353 return; 354 } 355 EXPORT_SYMBOL(end_buffer_async_write); 356 357 /* 358 * If a page's buffers are under async readin (end_buffer_async_read 359 * completion) then there is a possibility that another thread of 360 * control could lock one of the buffers after it has completed 361 * but while some of the other buffers have not completed. This 362 * locked buffer would confuse end_buffer_async_read() into not unlocking 363 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 364 * that this buffer is not under async I/O. 365 * 366 * The page comes unlocked when it has no locked buffer_async buffers 367 * left. 368 * 369 * PageLocked prevents anyone starting new async I/O reads any of 370 * the buffers. 371 * 372 * PageWriteback is used to prevent simultaneous writeout of the same 373 * page. 374 * 375 * PageLocked prevents anyone from starting writeback of a page which is 376 * under read I/O (PageWriteback is only ever set against a locked page). 377 */ 378 static void mark_buffer_async_read(struct buffer_head *bh) 379 { 380 bh->b_end_io = end_buffer_async_read; 381 set_buffer_async_read(bh); 382 } 383 384 static void mark_buffer_async_write_endio(struct buffer_head *bh, 385 bh_end_io_t *handler) 386 { 387 bh->b_end_io = handler; 388 set_buffer_async_write(bh); 389 } 390 391 void mark_buffer_async_write(struct buffer_head *bh) 392 { 393 mark_buffer_async_write_endio(bh, end_buffer_async_write); 394 } 395 EXPORT_SYMBOL(mark_buffer_async_write); 396 397 398 /* 399 * fs/buffer.c contains helper functions for buffer-backed address space's 400 * fsync functions. A common requirement for buffer-based filesystems is 401 * that certain data from the backing blockdev needs to be written out for 402 * a successful fsync(). For example, ext2 indirect blocks need to be 403 * written back and waited upon before fsync() returns. 404 * 405 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 406 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 407 * management of a list of dependent buffers at ->i_mapping->private_list. 408 * 409 * Locking is a little subtle: try_to_free_buffers() will remove buffers 410 * from their controlling inode's queue when they are being freed. But 411 * try_to_free_buffers() will be operating against the *blockdev* mapping 412 * at the time, not against the S_ISREG file which depends on those buffers. 413 * So the locking for private_list is via the private_lock in the address_space 414 * which backs the buffers. Which is different from the address_space 415 * against which the buffers are listed. So for a particular address_space, 416 * mapping->private_lock does *not* protect mapping->private_list! In fact, 417 * mapping->private_list will always be protected by the backing blockdev's 418 * ->private_lock. 419 * 420 * Which introduces a requirement: all buffers on an address_space's 421 * ->private_list must be from the same address_space: the blockdev's. 422 * 423 * address_spaces which do not place buffers at ->private_list via these 424 * utility functions are free to use private_lock and private_list for 425 * whatever they want. The only requirement is that list_empty(private_list) 426 * be true at clear_inode() time. 427 * 428 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 429 * filesystems should do that. invalidate_inode_buffers() should just go 430 * BUG_ON(!list_empty). 431 * 432 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 433 * take an address_space, not an inode. And it should be called 434 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 435 * queued up. 436 * 437 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 438 * list if it is already on a list. Because if the buffer is on a list, 439 * it *must* already be on the right one. If not, the filesystem is being 440 * silly. This will save a ton of locking. But first we have to ensure 441 * that buffers are taken *off* the old inode's list when they are freed 442 * (presumably in truncate). That requires careful auditing of all 443 * filesystems (do it inside bforget()). It could also be done by bringing 444 * b_inode back. 445 */ 446 447 /* 448 * The buffer's backing address_space's private_lock must be held 449 */ 450 static void __remove_assoc_queue(struct buffer_head *bh) 451 { 452 list_del_init(&bh->b_assoc_buffers); 453 WARN_ON(!bh->b_assoc_map); 454 bh->b_assoc_map = NULL; 455 } 456 457 int inode_has_buffers(struct inode *inode) 458 { 459 return !list_empty(&inode->i_data.private_list); 460 } 461 462 /* 463 * osync is designed to support O_SYNC io. It waits synchronously for 464 * all already-submitted IO to complete, but does not queue any new 465 * writes to the disk. 466 * 467 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 468 * you dirty the buffers, and then use osync_inode_buffers to wait for 469 * completion. Any other dirty buffers which are not yet queued for 470 * write will not be flushed to disk by the osync. 471 */ 472 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 473 { 474 struct buffer_head *bh; 475 struct list_head *p; 476 int err = 0; 477 478 spin_lock(lock); 479 repeat: 480 list_for_each_prev(p, list) { 481 bh = BH_ENTRY(p); 482 if (buffer_locked(bh)) { 483 get_bh(bh); 484 spin_unlock(lock); 485 wait_on_buffer(bh); 486 if (!buffer_uptodate(bh)) 487 err = -EIO; 488 brelse(bh); 489 spin_lock(lock); 490 goto repeat; 491 } 492 } 493 spin_unlock(lock); 494 return err; 495 } 496 497 void emergency_thaw_bdev(struct super_block *sb) 498 { 499 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 500 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 501 } 502 503 /** 504 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 505 * @mapping: the mapping which wants those buffers written 506 * 507 * Starts I/O against the buffers at mapping->private_list, and waits upon 508 * that I/O. 509 * 510 * Basically, this is a convenience function for fsync(). 511 * @mapping is a file or directory which needs those buffers to be written for 512 * a successful fsync(). 513 */ 514 int sync_mapping_buffers(struct address_space *mapping) 515 { 516 struct address_space *buffer_mapping = mapping->private_data; 517 518 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 519 return 0; 520 521 return fsync_buffers_list(&buffer_mapping->private_lock, 522 &mapping->private_list); 523 } 524 EXPORT_SYMBOL(sync_mapping_buffers); 525 526 /* 527 * Called when we've recently written block `bblock', and it is known that 528 * `bblock' was for a buffer_boundary() buffer. This means that the block at 529 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 530 * dirty, schedule it for IO. So that indirects merge nicely with their data. 531 */ 532 void write_boundary_block(struct block_device *bdev, 533 sector_t bblock, unsigned blocksize) 534 { 535 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 536 if (bh) { 537 if (buffer_dirty(bh)) 538 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 539 put_bh(bh); 540 } 541 } 542 543 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 544 { 545 struct address_space *mapping = inode->i_mapping; 546 struct address_space *buffer_mapping = bh->b_page->mapping; 547 548 mark_buffer_dirty(bh); 549 if (!mapping->private_data) { 550 mapping->private_data = buffer_mapping; 551 } else { 552 BUG_ON(mapping->private_data != buffer_mapping); 553 } 554 if (!bh->b_assoc_map) { 555 spin_lock(&buffer_mapping->private_lock); 556 list_move_tail(&bh->b_assoc_buffers, 557 &mapping->private_list); 558 bh->b_assoc_map = mapping; 559 spin_unlock(&buffer_mapping->private_lock); 560 } 561 } 562 EXPORT_SYMBOL(mark_buffer_dirty_inode); 563 564 /* 565 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 566 * dirty. 567 * 568 * If warn is true, then emit a warning if the page is not uptodate and has 569 * not been truncated. 570 * 571 * The caller must hold lock_page_memcg(). 572 */ 573 void __set_page_dirty(struct page *page, struct address_space *mapping, 574 int warn) 575 { 576 unsigned long flags; 577 578 xa_lock_irqsave(&mapping->i_pages, flags); 579 if (page->mapping) { /* Race with truncate? */ 580 WARN_ON_ONCE(warn && !PageUptodate(page)); 581 account_page_dirtied(page, mapping); 582 radix_tree_tag_set(&mapping->i_pages, 583 page_index(page), PAGECACHE_TAG_DIRTY); 584 } 585 xa_unlock_irqrestore(&mapping->i_pages, flags); 586 } 587 EXPORT_SYMBOL_GPL(__set_page_dirty); 588 589 /* 590 * Add a page to the dirty page list. 591 * 592 * It is a sad fact of life that this function is called from several places 593 * deeply under spinlocking. It may not sleep. 594 * 595 * If the page has buffers, the uptodate buffers are set dirty, to preserve 596 * dirty-state coherency between the page and the buffers. It the page does 597 * not have buffers then when they are later attached they will all be set 598 * dirty. 599 * 600 * The buffers are dirtied before the page is dirtied. There's a small race 601 * window in which a writepage caller may see the page cleanness but not the 602 * buffer dirtiness. That's fine. If this code were to set the page dirty 603 * before the buffers, a concurrent writepage caller could clear the page dirty 604 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 605 * page on the dirty page list. 606 * 607 * We use private_lock to lock against try_to_free_buffers while using the 608 * page's buffer list. Also use this to protect against clean buffers being 609 * added to the page after it was set dirty. 610 * 611 * FIXME: may need to call ->reservepage here as well. That's rather up to the 612 * address_space though. 613 */ 614 int __set_page_dirty_buffers(struct page *page) 615 { 616 int newly_dirty; 617 struct address_space *mapping = page_mapping(page); 618 619 if (unlikely(!mapping)) 620 return !TestSetPageDirty(page); 621 622 spin_lock(&mapping->private_lock); 623 if (page_has_buffers(page)) { 624 struct buffer_head *head = page_buffers(page); 625 struct buffer_head *bh = head; 626 627 do { 628 set_buffer_dirty(bh); 629 bh = bh->b_this_page; 630 } while (bh != head); 631 } 632 /* 633 * Lock out page->mem_cgroup migration to keep PageDirty 634 * synchronized with per-memcg dirty page counters. 635 */ 636 lock_page_memcg(page); 637 newly_dirty = !TestSetPageDirty(page); 638 spin_unlock(&mapping->private_lock); 639 640 if (newly_dirty) 641 __set_page_dirty(page, mapping, 1); 642 643 unlock_page_memcg(page); 644 645 if (newly_dirty) 646 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 647 648 return newly_dirty; 649 } 650 EXPORT_SYMBOL(__set_page_dirty_buffers); 651 652 /* 653 * Write out and wait upon a list of buffers. 654 * 655 * We have conflicting pressures: we want to make sure that all 656 * initially dirty buffers get waited on, but that any subsequently 657 * dirtied buffers don't. After all, we don't want fsync to last 658 * forever if somebody is actively writing to the file. 659 * 660 * Do this in two main stages: first we copy dirty buffers to a 661 * temporary inode list, queueing the writes as we go. Then we clean 662 * up, waiting for those writes to complete. 663 * 664 * During this second stage, any subsequent updates to the file may end 665 * up refiling the buffer on the original inode's dirty list again, so 666 * there is a chance we will end up with a buffer queued for write but 667 * not yet completed on that list. So, as a final cleanup we go through 668 * the osync code to catch these locked, dirty buffers without requeuing 669 * any newly dirty buffers for write. 670 */ 671 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 672 { 673 struct buffer_head *bh; 674 struct list_head tmp; 675 struct address_space *mapping; 676 int err = 0, err2; 677 struct blk_plug plug; 678 679 INIT_LIST_HEAD(&tmp); 680 blk_start_plug(&plug); 681 682 spin_lock(lock); 683 while (!list_empty(list)) { 684 bh = BH_ENTRY(list->next); 685 mapping = bh->b_assoc_map; 686 __remove_assoc_queue(bh); 687 /* Avoid race with mark_buffer_dirty_inode() which does 688 * a lockless check and we rely on seeing the dirty bit */ 689 smp_mb(); 690 if (buffer_dirty(bh) || buffer_locked(bh)) { 691 list_add(&bh->b_assoc_buffers, &tmp); 692 bh->b_assoc_map = mapping; 693 if (buffer_dirty(bh)) { 694 get_bh(bh); 695 spin_unlock(lock); 696 /* 697 * Ensure any pending I/O completes so that 698 * write_dirty_buffer() actually writes the 699 * current contents - it is a noop if I/O is 700 * still in flight on potentially older 701 * contents. 702 */ 703 write_dirty_buffer(bh, REQ_SYNC); 704 705 /* 706 * Kick off IO for the previous mapping. Note 707 * that we will not run the very last mapping, 708 * wait_on_buffer() will do that for us 709 * through sync_buffer(). 710 */ 711 brelse(bh); 712 spin_lock(lock); 713 } 714 } 715 } 716 717 spin_unlock(lock); 718 blk_finish_plug(&plug); 719 spin_lock(lock); 720 721 while (!list_empty(&tmp)) { 722 bh = BH_ENTRY(tmp.prev); 723 get_bh(bh); 724 mapping = bh->b_assoc_map; 725 __remove_assoc_queue(bh); 726 /* Avoid race with mark_buffer_dirty_inode() which does 727 * a lockless check and we rely on seeing the dirty bit */ 728 smp_mb(); 729 if (buffer_dirty(bh)) { 730 list_add(&bh->b_assoc_buffers, 731 &mapping->private_list); 732 bh->b_assoc_map = mapping; 733 } 734 spin_unlock(lock); 735 wait_on_buffer(bh); 736 if (!buffer_uptodate(bh)) 737 err = -EIO; 738 brelse(bh); 739 spin_lock(lock); 740 } 741 742 spin_unlock(lock); 743 err2 = osync_buffers_list(lock, list); 744 if (err) 745 return err; 746 else 747 return err2; 748 } 749 750 /* 751 * Invalidate any and all dirty buffers on a given inode. We are 752 * probably unmounting the fs, but that doesn't mean we have already 753 * done a sync(). Just drop the buffers from the inode list. 754 * 755 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 756 * assumes that all the buffers are against the blockdev. Not true 757 * for reiserfs. 758 */ 759 void invalidate_inode_buffers(struct inode *inode) 760 { 761 if (inode_has_buffers(inode)) { 762 struct address_space *mapping = &inode->i_data; 763 struct list_head *list = &mapping->private_list; 764 struct address_space *buffer_mapping = mapping->private_data; 765 766 spin_lock(&buffer_mapping->private_lock); 767 while (!list_empty(list)) 768 __remove_assoc_queue(BH_ENTRY(list->next)); 769 spin_unlock(&buffer_mapping->private_lock); 770 } 771 } 772 EXPORT_SYMBOL(invalidate_inode_buffers); 773 774 /* 775 * Remove any clean buffers from the inode's buffer list. This is called 776 * when we're trying to free the inode itself. Those buffers can pin it. 777 * 778 * Returns true if all buffers were removed. 779 */ 780 int remove_inode_buffers(struct inode *inode) 781 { 782 int ret = 1; 783 784 if (inode_has_buffers(inode)) { 785 struct address_space *mapping = &inode->i_data; 786 struct list_head *list = &mapping->private_list; 787 struct address_space *buffer_mapping = mapping->private_data; 788 789 spin_lock(&buffer_mapping->private_lock); 790 while (!list_empty(list)) { 791 struct buffer_head *bh = BH_ENTRY(list->next); 792 if (buffer_dirty(bh)) { 793 ret = 0; 794 break; 795 } 796 __remove_assoc_queue(bh); 797 } 798 spin_unlock(&buffer_mapping->private_lock); 799 } 800 return ret; 801 } 802 803 /* 804 * Create the appropriate buffers when given a page for data area and 805 * the size of each buffer.. Use the bh->b_this_page linked list to 806 * follow the buffers created. Return NULL if unable to create more 807 * buffers. 808 * 809 * The retry flag is used to differentiate async IO (paging, swapping) 810 * which may not fail from ordinary buffer allocations. 811 */ 812 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 813 bool retry) 814 { 815 struct buffer_head *bh, *head; 816 gfp_t gfp = GFP_NOFS; 817 long offset; 818 819 if (retry) 820 gfp |= __GFP_NOFAIL; 821 822 head = NULL; 823 offset = PAGE_SIZE; 824 while ((offset -= size) >= 0) { 825 bh = alloc_buffer_head(gfp); 826 if (!bh) 827 goto no_grow; 828 829 bh->b_this_page = head; 830 bh->b_blocknr = -1; 831 head = bh; 832 833 bh->b_size = size; 834 835 /* Link the buffer to its page */ 836 set_bh_page(bh, page, offset); 837 } 838 return head; 839 /* 840 * In case anything failed, we just free everything we got. 841 */ 842 no_grow: 843 if (head) { 844 do { 845 bh = head; 846 head = head->b_this_page; 847 free_buffer_head(bh); 848 } while (head); 849 } 850 851 return NULL; 852 } 853 EXPORT_SYMBOL_GPL(alloc_page_buffers); 854 855 static inline void 856 link_dev_buffers(struct page *page, struct buffer_head *head) 857 { 858 struct buffer_head *bh, *tail; 859 860 bh = head; 861 do { 862 tail = bh; 863 bh = bh->b_this_page; 864 } while (bh); 865 tail->b_this_page = head; 866 attach_page_buffers(page, head); 867 } 868 869 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 870 { 871 sector_t retval = ~((sector_t)0); 872 loff_t sz = i_size_read(bdev->bd_inode); 873 874 if (sz) { 875 unsigned int sizebits = blksize_bits(size); 876 retval = (sz >> sizebits); 877 } 878 return retval; 879 } 880 881 /* 882 * Initialise the state of a blockdev page's buffers. 883 */ 884 static sector_t 885 init_page_buffers(struct page *page, struct block_device *bdev, 886 sector_t block, int size) 887 { 888 struct buffer_head *head = page_buffers(page); 889 struct buffer_head *bh = head; 890 int uptodate = PageUptodate(page); 891 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 892 893 do { 894 if (!buffer_mapped(bh)) { 895 bh->b_end_io = NULL; 896 bh->b_private = NULL; 897 bh->b_bdev = bdev; 898 bh->b_blocknr = block; 899 if (uptodate) 900 set_buffer_uptodate(bh); 901 if (block < end_block) 902 set_buffer_mapped(bh); 903 } 904 block++; 905 bh = bh->b_this_page; 906 } while (bh != head); 907 908 /* 909 * Caller needs to validate requested block against end of device. 910 */ 911 return end_block; 912 } 913 914 /* 915 * Create the page-cache page that contains the requested block. 916 * 917 * This is used purely for blockdev mappings. 918 */ 919 static int 920 grow_dev_page(struct block_device *bdev, sector_t block, 921 pgoff_t index, int size, int sizebits, gfp_t gfp) 922 { 923 struct inode *inode = bdev->bd_inode; 924 struct page *page; 925 struct buffer_head *bh; 926 sector_t end_block; 927 int ret = 0; /* Will call free_more_memory() */ 928 gfp_t gfp_mask; 929 930 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 931 932 /* 933 * XXX: __getblk_slow() can not really deal with failure and 934 * will endlessly loop on improvised global reclaim. Prefer 935 * looping in the allocator rather than here, at least that 936 * code knows what it's doing. 937 */ 938 gfp_mask |= __GFP_NOFAIL; 939 940 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 941 942 BUG_ON(!PageLocked(page)); 943 944 if (page_has_buffers(page)) { 945 bh = page_buffers(page); 946 if (bh->b_size == size) { 947 end_block = init_page_buffers(page, bdev, 948 (sector_t)index << sizebits, 949 size); 950 goto done; 951 } 952 if (!try_to_free_buffers(page)) 953 goto failed; 954 } 955 956 /* 957 * Allocate some buffers for this page 958 */ 959 bh = alloc_page_buffers(page, size, true); 960 961 /* 962 * Link the page to the buffers and initialise them. Take the 963 * lock to be atomic wrt __find_get_block(), which does not 964 * run under the page lock. 965 */ 966 spin_lock(&inode->i_mapping->private_lock); 967 link_dev_buffers(page, bh); 968 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 969 size); 970 spin_unlock(&inode->i_mapping->private_lock); 971 done: 972 ret = (block < end_block) ? 1 : -ENXIO; 973 failed: 974 unlock_page(page); 975 put_page(page); 976 return ret; 977 } 978 979 /* 980 * Create buffers for the specified block device block's page. If 981 * that page was dirty, the buffers are set dirty also. 982 */ 983 static int 984 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 985 { 986 pgoff_t index; 987 int sizebits; 988 989 sizebits = -1; 990 do { 991 sizebits++; 992 } while ((size << sizebits) < PAGE_SIZE); 993 994 index = block >> sizebits; 995 996 /* 997 * Check for a block which wants to lie outside our maximum possible 998 * pagecache index. (this comparison is done using sector_t types). 999 */ 1000 if (unlikely(index != block >> sizebits)) { 1001 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1002 "device %pg\n", 1003 __func__, (unsigned long long)block, 1004 bdev); 1005 return -EIO; 1006 } 1007 1008 /* Create a page with the proper size buffers.. */ 1009 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1010 } 1011 1012 static struct buffer_head * 1013 __getblk_slow(struct block_device *bdev, sector_t block, 1014 unsigned size, gfp_t gfp) 1015 { 1016 /* Size must be multiple of hard sectorsize */ 1017 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1018 (size < 512 || size > PAGE_SIZE))) { 1019 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1020 size); 1021 printk(KERN_ERR "logical block size: %d\n", 1022 bdev_logical_block_size(bdev)); 1023 1024 dump_stack(); 1025 return NULL; 1026 } 1027 1028 for (;;) { 1029 struct buffer_head *bh; 1030 int ret; 1031 1032 bh = __find_get_block(bdev, block, size); 1033 if (bh) 1034 return bh; 1035 1036 ret = grow_buffers(bdev, block, size, gfp); 1037 if (ret < 0) 1038 return NULL; 1039 } 1040 } 1041 1042 /* 1043 * The relationship between dirty buffers and dirty pages: 1044 * 1045 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1046 * the page is tagged dirty in its radix tree. 1047 * 1048 * At all times, the dirtiness of the buffers represents the dirtiness of 1049 * subsections of the page. If the page has buffers, the page dirty bit is 1050 * merely a hint about the true dirty state. 1051 * 1052 * When a page is set dirty in its entirety, all its buffers are marked dirty 1053 * (if the page has buffers). 1054 * 1055 * When a buffer is marked dirty, its page is dirtied, but the page's other 1056 * buffers are not. 1057 * 1058 * Also. When blockdev buffers are explicitly read with bread(), they 1059 * individually become uptodate. But their backing page remains not 1060 * uptodate - even if all of its buffers are uptodate. A subsequent 1061 * block_read_full_page() against that page will discover all the uptodate 1062 * buffers, will set the page uptodate and will perform no I/O. 1063 */ 1064 1065 /** 1066 * mark_buffer_dirty - mark a buffer_head as needing writeout 1067 * @bh: the buffer_head to mark dirty 1068 * 1069 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1070 * backing page dirty, then tag the page as dirty in its address_space's radix 1071 * tree and then attach the address_space's inode to its superblock's dirty 1072 * inode list. 1073 * 1074 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1075 * i_pages lock and mapping->host->i_lock. 1076 */ 1077 void mark_buffer_dirty(struct buffer_head *bh) 1078 { 1079 WARN_ON_ONCE(!buffer_uptodate(bh)); 1080 1081 trace_block_dirty_buffer(bh); 1082 1083 /* 1084 * Very *carefully* optimize the it-is-already-dirty case. 1085 * 1086 * Don't let the final "is it dirty" escape to before we 1087 * perhaps modified the buffer. 1088 */ 1089 if (buffer_dirty(bh)) { 1090 smp_mb(); 1091 if (buffer_dirty(bh)) 1092 return; 1093 } 1094 1095 if (!test_set_buffer_dirty(bh)) { 1096 struct page *page = bh->b_page; 1097 struct address_space *mapping = NULL; 1098 1099 lock_page_memcg(page); 1100 if (!TestSetPageDirty(page)) { 1101 mapping = page_mapping(page); 1102 if (mapping) 1103 __set_page_dirty(page, mapping, 0); 1104 } 1105 unlock_page_memcg(page); 1106 if (mapping) 1107 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1108 } 1109 } 1110 EXPORT_SYMBOL(mark_buffer_dirty); 1111 1112 void mark_buffer_write_io_error(struct buffer_head *bh) 1113 { 1114 set_buffer_write_io_error(bh); 1115 /* FIXME: do we need to set this in both places? */ 1116 if (bh->b_page && bh->b_page->mapping) 1117 mapping_set_error(bh->b_page->mapping, -EIO); 1118 if (bh->b_assoc_map) 1119 mapping_set_error(bh->b_assoc_map, -EIO); 1120 } 1121 EXPORT_SYMBOL(mark_buffer_write_io_error); 1122 1123 /* 1124 * Decrement a buffer_head's reference count. If all buffers against a page 1125 * have zero reference count, are clean and unlocked, and if the page is clean 1126 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1127 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1128 * a page but it ends up not being freed, and buffers may later be reattached). 1129 */ 1130 void __brelse(struct buffer_head * buf) 1131 { 1132 if (atomic_read(&buf->b_count)) { 1133 put_bh(buf); 1134 return; 1135 } 1136 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1137 } 1138 EXPORT_SYMBOL(__brelse); 1139 1140 /* 1141 * bforget() is like brelse(), except it discards any 1142 * potentially dirty data. 1143 */ 1144 void __bforget(struct buffer_head *bh) 1145 { 1146 clear_buffer_dirty(bh); 1147 if (bh->b_assoc_map) { 1148 struct address_space *buffer_mapping = bh->b_page->mapping; 1149 1150 spin_lock(&buffer_mapping->private_lock); 1151 list_del_init(&bh->b_assoc_buffers); 1152 bh->b_assoc_map = NULL; 1153 spin_unlock(&buffer_mapping->private_lock); 1154 } 1155 __brelse(bh); 1156 } 1157 EXPORT_SYMBOL(__bforget); 1158 1159 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1160 { 1161 lock_buffer(bh); 1162 if (buffer_uptodate(bh)) { 1163 unlock_buffer(bh); 1164 return bh; 1165 } else { 1166 get_bh(bh); 1167 bh->b_end_io = end_buffer_read_sync; 1168 submit_bh(REQ_OP_READ, 0, bh); 1169 wait_on_buffer(bh); 1170 if (buffer_uptodate(bh)) 1171 return bh; 1172 } 1173 brelse(bh); 1174 return NULL; 1175 } 1176 1177 /* 1178 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1179 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1180 * refcount elevated by one when they're in an LRU. A buffer can only appear 1181 * once in a particular CPU's LRU. A single buffer can be present in multiple 1182 * CPU's LRUs at the same time. 1183 * 1184 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1185 * sb_find_get_block(). 1186 * 1187 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1188 * a local interrupt disable for that. 1189 */ 1190 1191 #define BH_LRU_SIZE 16 1192 1193 struct bh_lru { 1194 struct buffer_head *bhs[BH_LRU_SIZE]; 1195 }; 1196 1197 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1198 1199 #ifdef CONFIG_SMP 1200 #define bh_lru_lock() local_irq_disable() 1201 #define bh_lru_unlock() local_irq_enable() 1202 #else 1203 #define bh_lru_lock() preempt_disable() 1204 #define bh_lru_unlock() preempt_enable() 1205 #endif 1206 1207 static inline void check_irqs_on(void) 1208 { 1209 #ifdef irqs_disabled 1210 BUG_ON(irqs_disabled()); 1211 #endif 1212 } 1213 1214 /* 1215 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1216 * inserted at the front, and the buffer_head at the back if any is evicted. 1217 * Or, if already in the LRU it is moved to the front. 1218 */ 1219 static void bh_lru_install(struct buffer_head *bh) 1220 { 1221 struct buffer_head *evictee = bh; 1222 struct bh_lru *b; 1223 int i; 1224 1225 check_irqs_on(); 1226 bh_lru_lock(); 1227 1228 b = this_cpu_ptr(&bh_lrus); 1229 for (i = 0; i < BH_LRU_SIZE; i++) { 1230 swap(evictee, b->bhs[i]); 1231 if (evictee == bh) { 1232 bh_lru_unlock(); 1233 return; 1234 } 1235 } 1236 1237 get_bh(bh); 1238 bh_lru_unlock(); 1239 brelse(evictee); 1240 } 1241 1242 /* 1243 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1244 */ 1245 static struct buffer_head * 1246 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1247 { 1248 struct buffer_head *ret = NULL; 1249 unsigned int i; 1250 1251 check_irqs_on(); 1252 bh_lru_lock(); 1253 for (i = 0; i < BH_LRU_SIZE; i++) { 1254 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1255 1256 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1257 bh->b_size == size) { 1258 if (i) { 1259 while (i) { 1260 __this_cpu_write(bh_lrus.bhs[i], 1261 __this_cpu_read(bh_lrus.bhs[i - 1])); 1262 i--; 1263 } 1264 __this_cpu_write(bh_lrus.bhs[0], bh); 1265 } 1266 get_bh(bh); 1267 ret = bh; 1268 break; 1269 } 1270 } 1271 bh_lru_unlock(); 1272 return ret; 1273 } 1274 1275 /* 1276 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1277 * it in the LRU and mark it as accessed. If it is not present then return 1278 * NULL 1279 */ 1280 struct buffer_head * 1281 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1282 { 1283 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1284 1285 if (bh == NULL) { 1286 /* __find_get_block_slow will mark the page accessed */ 1287 bh = __find_get_block_slow(bdev, block); 1288 if (bh) 1289 bh_lru_install(bh); 1290 } else 1291 touch_buffer(bh); 1292 1293 return bh; 1294 } 1295 EXPORT_SYMBOL(__find_get_block); 1296 1297 /* 1298 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1299 * which corresponds to the passed block_device, block and size. The 1300 * returned buffer has its reference count incremented. 1301 * 1302 * __getblk_gfp() will lock up the machine if grow_dev_page's 1303 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1304 */ 1305 struct buffer_head * 1306 __getblk_gfp(struct block_device *bdev, sector_t block, 1307 unsigned size, gfp_t gfp) 1308 { 1309 struct buffer_head *bh = __find_get_block(bdev, block, size); 1310 1311 might_sleep(); 1312 if (bh == NULL) 1313 bh = __getblk_slow(bdev, block, size, gfp); 1314 return bh; 1315 } 1316 EXPORT_SYMBOL(__getblk_gfp); 1317 1318 /* 1319 * Do async read-ahead on a buffer.. 1320 */ 1321 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1322 { 1323 struct buffer_head *bh = __getblk(bdev, block, size); 1324 if (likely(bh)) { 1325 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1326 brelse(bh); 1327 } 1328 } 1329 EXPORT_SYMBOL(__breadahead); 1330 1331 /** 1332 * __bread_gfp() - reads a specified block and returns the bh 1333 * @bdev: the block_device to read from 1334 * @block: number of block 1335 * @size: size (in bytes) to read 1336 * @gfp: page allocation flag 1337 * 1338 * Reads a specified block, and returns buffer head that contains it. 1339 * The page cache can be allocated from non-movable area 1340 * not to prevent page migration if you set gfp to zero. 1341 * It returns NULL if the block was unreadable. 1342 */ 1343 struct buffer_head * 1344 __bread_gfp(struct block_device *bdev, sector_t block, 1345 unsigned size, gfp_t gfp) 1346 { 1347 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1348 1349 if (likely(bh) && !buffer_uptodate(bh)) 1350 bh = __bread_slow(bh); 1351 return bh; 1352 } 1353 EXPORT_SYMBOL(__bread_gfp); 1354 1355 /* 1356 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1357 * This doesn't race because it runs in each cpu either in irq 1358 * or with preempt disabled. 1359 */ 1360 static void invalidate_bh_lru(void *arg) 1361 { 1362 struct bh_lru *b = &get_cpu_var(bh_lrus); 1363 int i; 1364 1365 for (i = 0; i < BH_LRU_SIZE; i++) { 1366 brelse(b->bhs[i]); 1367 b->bhs[i] = NULL; 1368 } 1369 put_cpu_var(bh_lrus); 1370 } 1371 1372 static bool has_bh_in_lru(int cpu, void *dummy) 1373 { 1374 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1375 int i; 1376 1377 for (i = 0; i < BH_LRU_SIZE; i++) { 1378 if (b->bhs[i]) 1379 return 1; 1380 } 1381 1382 return 0; 1383 } 1384 1385 void invalidate_bh_lrus(void) 1386 { 1387 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1388 } 1389 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1390 1391 void set_bh_page(struct buffer_head *bh, 1392 struct page *page, unsigned long offset) 1393 { 1394 bh->b_page = page; 1395 BUG_ON(offset >= PAGE_SIZE); 1396 if (PageHighMem(page)) 1397 /* 1398 * This catches illegal uses and preserves the offset: 1399 */ 1400 bh->b_data = (char *)(0 + offset); 1401 else 1402 bh->b_data = page_address(page) + offset; 1403 } 1404 EXPORT_SYMBOL(set_bh_page); 1405 1406 /* 1407 * Called when truncating a buffer on a page completely. 1408 */ 1409 1410 /* Bits that are cleared during an invalidate */ 1411 #define BUFFER_FLAGS_DISCARD \ 1412 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1413 1 << BH_Delay | 1 << BH_Unwritten) 1414 1415 static void discard_buffer(struct buffer_head * bh) 1416 { 1417 unsigned long b_state, b_state_old; 1418 1419 lock_buffer(bh); 1420 clear_buffer_dirty(bh); 1421 bh->b_bdev = NULL; 1422 b_state = bh->b_state; 1423 for (;;) { 1424 b_state_old = cmpxchg(&bh->b_state, b_state, 1425 (b_state & ~BUFFER_FLAGS_DISCARD)); 1426 if (b_state_old == b_state) 1427 break; 1428 b_state = b_state_old; 1429 } 1430 unlock_buffer(bh); 1431 } 1432 1433 /** 1434 * block_invalidatepage - invalidate part or all of a buffer-backed page 1435 * 1436 * @page: the page which is affected 1437 * @offset: start of the range to invalidate 1438 * @length: length of the range to invalidate 1439 * 1440 * block_invalidatepage() is called when all or part of the page has become 1441 * invalidated by a truncate operation. 1442 * 1443 * block_invalidatepage() does not have to release all buffers, but it must 1444 * ensure that no dirty buffer is left outside @offset and that no I/O 1445 * is underway against any of the blocks which are outside the truncation 1446 * point. Because the caller is about to free (and possibly reuse) those 1447 * blocks on-disk. 1448 */ 1449 void block_invalidatepage(struct page *page, unsigned int offset, 1450 unsigned int length) 1451 { 1452 struct buffer_head *head, *bh, *next; 1453 unsigned int curr_off = 0; 1454 unsigned int stop = length + offset; 1455 1456 BUG_ON(!PageLocked(page)); 1457 if (!page_has_buffers(page)) 1458 goto out; 1459 1460 /* 1461 * Check for overflow 1462 */ 1463 BUG_ON(stop > PAGE_SIZE || stop < length); 1464 1465 head = page_buffers(page); 1466 bh = head; 1467 do { 1468 unsigned int next_off = curr_off + bh->b_size; 1469 next = bh->b_this_page; 1470 1471 /* 1472 * Are we still fully in range ? 1473 */ 1474 if (next_off > stop) 1475 goto out; 1476 1477 /* 1478 * is this block fully invalidated? 1479 */ 1480 if (offset <= curr_off) 1481 discard_buffer(bh); 1482 curr_off = next_off; 1483 bh = next; 1484 } while (bh != head); 1485 1486 /* 1487 * We release buffers only if the entire page is being invalidated. 1488 * The get_block cached value has been unconditionally invalidated, 1489 * so real IO is not possible anymore. 1490 */ 1491 if (length == PAGE_SIZE) 1492 try_to_release_page(page, 0); 1493 out: 1494 return; 1495 } 1496 EXPORT_SYMBOL(block_invalidatepage); 1497 1498 1499 /* 1500 * We attach and possibly dirty the buffers atomically wrt 1501 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1502 * is already excluded via the page lock. 1503 */ 1504 void create_empty_buffers(struct page *page, 1505 unsigned long blocksize, unsigned long b_state) 1506 { 1507 struct buffer_head *bh, *head, *tail; 1508 1509 head = alloc_page_buffers(page, blocksize, true); 1510 bh = head; 1511 do { 1512 bh->b_state |= b_state; 1513 tail = bh; 1514 bh = bh->b_this_page; 1515 } while (bh); 1516 tail->b_this_page = head; 1517 1518 spin_lock(&page->mapping->private_lock); 1519 if (PageUptodate(page) || PageDirty(page)) { 1520 bh = head; 1521 do { 1522 if (PageDirty(page)) 1523 set_buffer_dirty(bh); 1524 if (PageUptodate(page)) 1525 set_buffer_uptodate(bh); 1526 bh = bh->b_this_page; 1527 } while (bh != head); 1528 } 1529 attach_page_buffers(page, head); 1530 spin_unlock(&page->mapping->private_lock); 1531 } 1532 EXPORT_SYMBOL(create_empty_buffers); 1533 1534 /** 1535 * clean_bdev_aliases: clean a range of buffers in block device 1536 * @bdev: Block device to clean buffers in 1537 * @block: Start of a range of blocks to clean 1538 * @len: Number of blocks to clean 1539 * 1540 * We are taking a range of blocks for data and we don't want writeback of any 1541 * buffer-cache aliases starting from return from this function and until the 1542 * moment when something will explicitly mark the buffer dirty (hopefully that 1543 * will not happen until we will free that block ;-) We don't even need to mark 1544 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1545 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1546 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1547 * would confuse anyone who might pick it with bread() afterwards... 1548 * 1549 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1550 * writeout I/O going on against recently-freed buffers. We don't wait on that 1551 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1552 * need to. That happens here. 1553 */ 1554 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1555 { 1556 struct inode *bd_inode = bdev->bd_inode; 1557 struct address_space *bd_mapping = bd_inode->i_mapping; 1558 struct pagevec pvec; 1559 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1560 pgoff_t end; 1561 int i, count; 1562 struct buffer_head *bh; 1563 struct buffer_head *head; 1564 1565 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1566 pagevec_init(&pvec); 1567 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1568 count = pagevec_count(&pvec); 1569 for (i = 0; i < count; i++) { 1570 struct page *page = pvec.pages[i]; 1571 1572 if (!page_has_buffers(page)) 1573 continue; 1574 /* 1575 * We use page lock instead of bd_mapping->private_lock 1576 * to pin buffers here since we can afford to sleep and 1577 * it scales better than a global spinlock lock. 1578 */ 1579 lock_page(page); 1580 /* Recheck when the page is locked which pins bhs */ 1581 if (!page_has_buffers(page)) 1582 goto unlock_page; 1583 head = page_buffers(page); 1584 bh = head; 1585 do { 1586 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1587 goto next; 1588 if (bh->b_blocknr >= block + len) 1589 break; 1590 clear_buffer_dirty(bh); 1591 wait_on_buffer(bh); 1592 clear_buffer_req(bh); 1593 next: 1594 bh = bh->b_this_page; 1595 } while (bh != head); 1596 unlock_page: 1597 unlock_page(page); 1598 } 1599 pagevec_release(&pvec); 1600 cond_resched(); 1601 /* End of range already reached? */ 1602 if (index > end || !index) 1603 break; 1604 } 1605 } 1606 EXPORT_SYMBOL(clean_bdev_aliases); 1607 1608 /* 1609 * Size is a power-of-two in the range 512..PAGE_SIZE, 1610 * and the case we care about most is PAGE_SIZE. 1611 * 1612 * So this *could* possibly be written with those 1613 * constraints in mind (relevant mostly if some 1614 * architecture has a slow bit-scan instruction) 1615 */ 1616 static inline int block_size_bits(unsigned int blocksize) 1617 { 1618 return ilog2(blocksize); 1619 } 1620 1621 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1622 { 1623 BUG_ON(!PageLocked(page)); 1624 1625 if (!page_has_buffers(page)) 1626 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1627 b_state); 1628 return page_buffers(page); 1629 } 1630 1631 /* 1632 * NOTE! All mapped/uptodate combinations are valid: 1633 * 1634 * Mapped Uptodate Meaning 1635 * 1636 * No No "unknown" - must do get_block() 1637 * No Yes "hole" - zero-filled 1638 * Yes No "allocated" - allocated on disk, not read in 1639 * Yes Yes "valid" - allocated and up-to-date in memory. 1640 * 1641 * "Dirty" is valid only with the last case (mapped+uptodate). 1642 */ 1643 1644 /* 1645 * While block_write_full_page is writing back the dirty buffers under 1646 * the page lock, whoever dirtied the buffers may decide to clean them 1647 * again at any time. We handle that by only looking at the buffer 1648 * state inside lock_buffer(). 1649 * 1650 * If block_write_full_page() is called for regular writeback 1651 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1652 * locked buffer. This only can happen if someone has written the buffer 1653 * directly, with submit_bh(). At the address_space level PageWriteback 1654 * prevents this contention from occurring. 1655 * 1656 * If block_write_full_page() is called with wbc->sync_mode == 1657 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1658 * causes the writes to be flagged as synchronous writes. 1659 */ 1660 int __block_write_full_page(struct inode *inode, struct page *page, 1661 get_block_t *get_block, struct writeback_control *wbc, 1662 bh_end_io_t *handler) 1663 { 1664 int err; 1665 sector_t block; 1666 sector_t last_block; 1667 struct buffer_head *bh, *head; 1668 unsigned int blocksize, bbits; 1669 int nr_underway = 0; 1670 int write_flags = wbc_to_write_flags(wbc); 1671 1672 head = create_page_buffers(page, inode, 1673 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1674 1675 /* 1676 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1677 * here, and the (potentially unmapped) buffers may become dirty at 1678 * any time. If a buffer becomes dirty here after we've inspected it 1679 * then we just miss that fact, and the page stays dirty. 1680 * 1681 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1682 * handle that here by just cleaning them. 1683 */ 1684 1685 bh = head; 1686 blocksize = bh->b_size; 1687 bbits = block_size_bits(blocksize); 1688 1689 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1690 last_block = (i_size_read(inode) - 1) >> bbits; 1691 1692 /* 1693 * Get all the dirty buffers mapped to disk addresses and 1694 * handle any aliases from the underlying blockdev's mapping. 1695 */ 1696 do { 1697 if (block > last_block) { 1698 /* 1699 * mapped buffers outside i_size will occur, because 1700 * this page can be outside i_size when there is a 1701 * truncate in progress. 1702 */ 1703 /* 1704 * The buffer was zeroed by block_write_full_page() 1705 */ 1706 clear_buffer_dirty(bh); 1707 set_buffer_uptodate(bh); 1708 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1709 buffer_dirty(bh)) { 1710 WARN_ON(bh->b_size != blocksize); 1711 err = get_block(inode, block, bh, 1); 1712 if (err) 1713 goto recover; 1714 clear_buffer_delay(bh); 1715 if (buffer_new(bh)) { 1716 /* blockdev mappings never come here */ 1717 clear_buffer_new(bh); 1718 clean_bdev_bh_alias(bh); 1719 } 1720 } 1721 bh = bh->b_this_page; 1722 block++; 1723 } while (bh != head); 1724 1725 do { 1726 if (!buffer_mapped(bh)) 1727 continue; 1728 /* 1729 * If it's a fully non-blocking write attempt and we cannot 1730 * lock the buffer then redirty the page. Note that this can 1731 * potentially cause a busy-wait loop from writeback threads 1732 * and kswapd activity, but those code paths have their own 1733 * higher-level throttling. 1734 */ 1735 if (wbc->sync_mode != WB_SYNC_NONE) { 1736 lock_buffer(bh); 1737 } else if (!trylock_buffer(bh)) { 1738 redirty_page_for_writepage(wbc, page); 1739 continue; 1740 } 1741 if (test_clear_buffer_dirty(bh)) { 1742 mark_buffer_async_write_endio(bh, handler); 1743 } else { 1744 unlock_buffer(bh); 1745 } 1746 } while ((bh = bh->b_this_page) != head); 1747 1748 /* 1749 * The page and its buffers are protected by PageWriteback(), so we can 1750 * drop the bh refcounts early. 1751 */ 1752 BUG_ON(PageWriteback(page)); 1753 set_page_writeback(page); 1754 1755 do { 1756 struct buffer_head *next = bh->b_this_page; 1757 if (buffer_async_write(bh)) { 1758 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1759 inode->i_write_hint, wbc); 1760 nr_underway++; 1761 } 1762 bh = next; 1763 } while (bh != head); 1764 unlock_page(page); 1765 1766 err = 0; 1767 done: 1768 if (nr_underway == 0) { 1769 /* 1770 * The page was marked dirty, but the buffers were 1771 * clean. Someone wrote them back by hand with 1772 * ll_rw_block/submit_bh. A rare case. 1773 */ 1774 end_page_writeback(page); 1775 1776 /* 1777 * The page and buffer_heads can be released at any time from 1778 * here on. 1779 */ 1780 } 1781 return err; 1782 1783 recover: 1784 /* 1785 * ENOSPC, or some other error. We may already have added some 1786 * blocks to the file, so we need to write these out to avoid 1787 * exposing stale data. 1788 * The page is currently locked and not marked for writeback 1789 */ 1790 bh = head; 1791 /* Recovery: lock and submit the mapped buffers */ 1792 do { 1793 if (buffer_mapped(bh) && buffer_dirty(bh) && 1794 !buffer_delay(bh)) { 1795 lock_buffer(bh); 1796 mark_buffer_async_write_endio(bh, handler); 1797 } else { 1798 /* 1799 * The buffer may have been set dirty during 1800 * attachment to a dirty page. 1801 */ 1802 clear_buffer_dirty(bh); 1803 } 1804 } while ((bh = bh->b_this_page) != head); 1805 SetPageError(page); 1806 BUG_ON(PageWriteback(page)); 1807 mapping_set_error(page->mapping, err); 1808 set_page_writeback(page); 1809 do { 1810 struct buffer_head *next = bh->b_this_page; 1811 if (buffer_async_write(bh)) { 1812 clear_buffer_dirty(bh); 1813 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1814 inode->i_write_hint, wbc); 1815 nr_underway++; 1816 } 1817 bh = next; 1818 } while (bh != head); 1819 unlock_page(page); 1820 goto done; 1821 } 1822 EXPORT_SYMBOL(__block_write_full_page); 1823 1824 /* 1825 * If a page has any new buffers, zero them out here, and mark them uptodate 1826 * and dirty so they'll be written out (in order to prevent uninitialised 1827 * block data from leaking). And clear the new bit. 1828 */ 1829 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1830 { 1831 unsigned int block_start, block_end; 1832 struct buffer_head *head, *bh; 1833 1834 BUG_ON(!PageLocked(page)); 1835 if (!page_has_buffers(page)) 1836 return; 1837 1838 bh = head = page_buffers(page); 1839 block_start = 0; 1840 do { 1841 block_end = block_start + bh->b_size; 1842 1843 if (buffer_new(bh)) { 1844 if (block_end > from && block_start < to) { 1845 if (!PageUptodate(page)) { 1846 unsigned start, size; 1847 1848 start = max(from, block_start); 1849 size = min(to, block_end) - start; 1850 1851 zero_user(page, start, size); 1852 set_buffer_uptodate(bh); 1853 } 1854 1855 clear_buffer_new(bh); 1856 mark_buffer_dirty(bh); 1857 } 1858 } 1859 1860 block_start = block_end; 1861 bh = bh->b_this_page; 1862 } while (bh != head); 1863 } 1864 EXPORT_SYMBOL(page_zero_new_buffers); 1865 1866 static void 1867 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1868 struct iomap *iomap) 1869 { 1870 loff_t offset = block << inode->i_blkbits; 1871 1872 bh->b_bdev = iomap->bdev; 1873 1874 /* 1875 * Block points to offset in file we need to map, iomap contains 1876 * the offset at which the map starts. If the map ends before the 1877 * current block, then do not map the buffer and let the caller 1878 * handle it. 1879 */ 1880 BUG_ON(offset >= iomap->offset + iomap->length); 1881 1882 switch (iomap->type) { 1883 case IOMAP_HOLE: 1884 /* 1885 * If the buffer is not up to date or beyond the current EOF, 1886 * we need to mark it as new to ensure sub-block zeroing is 1887 * executed if necessary. 1888 */ 1889 if (!buffer_uptodate(bh) || 1890 (offset >= i_size_read(inode))) 1891 set_buffer_new(bh); 1892 break; 1893 case IOMAP_DELALLOC: 1894 if (!buffer_uptodate(bh) || 1895 (offset >= i_size_read(inode))) 1896 set_buffer_new(bh); 1897 set_buffer_uptodate(bh); 1898 set_buffer_mapped(bh); 1899 set_buffer_delay(bh); 1900 break; 1901 case IOMAP_UNWRITTEN: 1902 /* 1903 * For unwritten regions, we always need to ensure that regions 1904 * in the block we are not writing to are zeroed. Mark the 1905 * buffer as new to ensure this. 1906 */ 1907 set_buffer_new(bh); 1908 set_buffer_unwritten(bh); 1909 /* FALLTHRU */ 1910 case IOMAP_MAPPED: 1911 if ((iomap->flags & IOMAP_F_NEW) || 1912 offset >= i_size_read(inode)) 1913 set_buffer_new(bh); 1914 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1915 inode->i_blkbits; 1916 set_buffer_mapped(bh); 1917 break; 1918 } 1919 } 1920 1921 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1922 get_block_t *get_block, struct iomap *iomap) 1923 { 1924 unsigned from = pos & (PAGE_SIZE - 1); 1925 unsigned to = from + len; 1926 struct inode *inode = page->mapping->host; 1927 unsigned block_start, block_end; 1928 sector_t block; 1929 int err = 0; 1930 unsigned blocksize, bbits; 1931 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1932 1933 BUG_ON(!PageLocked(page)); 1934 BUG_ON(from > PAGE_SIZE); 1935 BUG_ON(to > PAGE_SIZE); 1936 BUG_ON(from > to); 1937 1938 head = create_page_buffers(page, inode, 0); 1939 blocksize = head->b_size; 1940 bbits = block_size_bits(blocksize); 1941 1942 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1943 1944 for(bh = head, block_start = 0; bh != head || !block_start; 1945 block++, block_start=block_end, bh = bh->b_this_page) { 1946 block_end = block_start + blocksize; 1947 if (block_end <= from || block_start >= to) { 1948 if (PageUptodate(page)) { 1949 if (!buffer_uptodate(bh)) 1950 set_buffer_uptodate(bh); 1951 } 1952 continue; 1953 } 1954 if (buffer_new(bh)) 1955 clear_buffer_new(bh); 1956 if (!buffer_mapped(bh)) { 1957 WARN_ON(bh->b_size != blocksize); 1958 if (get_block) { 1959 err = get_block(inode, block, bh, 1); 1960 if (err) 1961 break; 1962 } else { 1963 iomap_to_bh(inode, block, bh, iomap); 1964 } 1965 1966 if (buffer_new(bh)) { 1967 clean_bdev_bh_alias(bh); 1968 if (PageUptodate(page)) { 1969 clear_buffer_new(bh); 1970 set_buffer_uptodate(bh); 1971 mark_buffer_dirty(bh); 1972 continue; 1973 } 1974 if (block_end > to || block_start < from) 1975 zero_user_segments(page, 1976 to, block_end, 1977 block_start, from); 1978 continue; 1979 } 1980 } 1981 if (PageUptodate(page)) { 1982 if (!buffer_uptodate(bh)) 1983 set_buffer_uptodate(bh); 1984 continue; 1985 } 1986 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1987 !buffer_unwritten(bh) && 1988 (block_start < from || block_end > to)) { 1989 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1990 *wait_bh++=bh; 1991 } 1992 } 1993 /* 1994 * If we issued read requests - let them complete. 1995 */ 1996 while(wait_bh > wait) { 1997 wait_on_buffer(*--wait_bh); 1998 if (!buffer_uptodate(*wait_bh)) 1999 err = -EIO; 2000 } 2001 if (unlikely(err)) 2002 page_zero_new_buffers(page, from, to); 2003 return err; 2004 } 2005 2006 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2007 get_block_t *get_block) 2008 { 2009 return __block_write_begin_int(page, pos, len, get_block, NULL); 2010 } 2011 EXPORT_SYMBOL(__block_write_begin); 2012 2013 static int __block_commit_write(struct inode *inode, struct page *page, 2014 unsigned from, unsigned to) 2015 { 2016 unsigned block_start, block_end; 2017 int partial = 0; 2018 unsigned blocksize; 2019 struct buffer_head *bh, *head; 2020 2021 bh = head = page_buffers(page); 2022 blocksize = bh->b_size; 2023 2024 block_start = 0; 2025 do { 2026 block_end = block_start + blocksize; 2027 if (block_end <= from || block_start >= to) { 2028 if (!buffer_uptodate(bh)) 2029 partial = 1; 2030 } else { 2031 set_buffer_uptodate(bh); 2032 mark_buffer_dirty(bh); 2033 } 2034 clear_buffer_new(bh); 2035 2036 block_start = block_end; 2037 bh = bh->b_this_page; 2038 } while (bh != head); 2039 2040 /* 2041 * If this is a partial write which happened to make all buffers 2042 * uptodate then we can optimize away a bogus readpage() for 2043 * the next read(). Here we 'discover' whether the page went 2044 * uptodate as a result of this (potentially partial) write. 2045 */ 2046 if (!partial) 2047 SetPageUptodate(page); 2048 return 0; 2049 } 2050 2051 /* 2052 * block_write_begin takes care of the basic task of block allocation and 2053 * bringing partial write blocks uptodate first. 2054 * 2055 * The filesystem needs to handle block truncation upon failure. 2056 */ 2057 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2058 unsigned flags, struct page **pagep, get_block_t *get_block) 2059 { 2060 pgoff_t index = pos >> PAGE_SHIFT; 2061 struct page *page; 2062 int status; 2063 2064 page = grab_cache_page_write_begin(mapping, index, flags); 2065 if (!page) 2066 return -ENOMEM; 2067 2068 status = __block_write_begin(page, pos, len, get_block); 2069 if (unlikely(status)) { 2070 unlock_page(page); 2071 put_page(page); 2072 page = NULL; 2073 } 2074 2075 *pagep = page; 2076 return status; 2077 } 2078 EXPORT_SYMBOL(block_write_begin); 2079 2080 int __generic_write_end(struct inode *inode, loff_t pos, unsigned copied, 2081 struct page *page) 2082 { 2083 loff_t old_size = inode->i_size; 2084 bool i_size_changed = false; 2085 2086 /* 2087 * No need to use i_size_read() here, the i_size cannot change under us 2088 * because we hold i_rwsem. 2089 * 2090 * But it's important to update i_size while still holding page lock: 2091 * page writeout could otherwise come in and zero beyond i_size. 2092 */ 2093 if (pos + copied > inode->i_size) { 2094 i_size_write(inode, pos + copied); 2095 i_size_changed = true; 2096 } 2097 2098 unlock_page(page); 2099 put_page(page); 2100 2101 if (old_size < pos) 2102 pagecache_isize_extended(inode, old_size, pos); 2103 /* 2104 * Don't mark the inode dirty under page lock. First, it unnecessarily 2105 * makes the holding time of page lock longer. Second, it forces lock 2106 * ordering of page lock and transaction start for journaling 2107 * filesystems. 2108 */ 2109 if (i_size_changed) 2110 mark_inode_dirty(inode); 2111 return copied; 2112 } 2113 2114 int block_write_end(struct file *file, struct address_space *mapping, 2115 loff_t pos, unsigned len, unsigned copied, 2116 struct page *page, void *fsdata) 2117 { 2118 struct inode *inode = mapping->host; 2119 unsigned start; 2120 2121 start = pos & (PAGE_SIZE - 1); 2122 2123 if (unlikely(copied < len)) { 2124 /* 2125 * The buffers that were written will now be uptodate, so we 2126 * don't have to worry about a readpage reading them and 2127 * overwriting a partial write. However if we have encountered 2128 * a short write and only partially written into a buffer, it 2129 * will not be marked uptodate, so a readpage might come in and 2130 * destroy our partial write. 2131 * 2132 * Do the simplest thing, and just treat any short write to a 2133 * non uptodate page as a zero-length write, and force the 2134 * caller to redo the whole thing. 2135 */ 2136 if (!PageUptodate(page)) 2137 copied = 0; 2138 2139 page_zero_new_buffers(page, start+copied, start+len); 2140 } 2141 flush_dcache_page(page); 2142 2143 /* This could be a short (even 0-length) commit */ 2144 __block_commit_write(inode, page, start, start+copied); 2145 2146 return copied; 2147 } 2148 EXPORT_SYMBOL(block_write_end); 2149 2150 int generic_write_end(struct file *file, struct address_space *mapping, 2151 loff_t pos, unsigned len, unsigned copied, 2152 struct page *page, void *fsdata) 2153 { 2154 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2155 return __generic_write_end(mapping->host, pos, copied, page); 2156 } 2157 EXPORT_SYMBOL(generic_write_end); 2158 2159 /* 2160 * block_is_partially_uptodate checks whether buffers within a page are 2161 * uptodate or not. 2162 * 2163 * Returns true if all buffers which correspond to a file portion 2164 * we want to read are uptodate. 2165 */ 2166 int block_is_partially_uptodate(struct page *page, unsigned long from, 2167 unsigned long count) 2168 { 2169 unsigned block_start, block_end, blocksize; 2170 unsigned to; 2171 struct buffer_head *bh, *head; 2172 int ret = 1; 2173 2174 if (!page_has_buffers(page)) 2175 return 0; 2176 2177 head = page_buffers(page); 2178 blocksize = head->b_size; 2179 to = min_t(unsigned, PAGE_SIZE - from, count); 2180 to = from + to; 2181 if (from < blocksize && to > PAGE_SIZE - blocksize) 2182 return 0; 2183 2184 bh = head; 2185 block_start = 0; 2186 do { 2187 block_end = block_start + blocksize; 2188 if (block_end > from && block_start < to) { 2189 if (!buffer_uptodate(bh)) { 2190 ret = 0; 2191 break; 2192 } 2193 if (block_end >= to) 2194 break; 2195 } 2196 block_start = block_end; 2197 bh = bh->b_this_page; 2198 } while (bh != head); 2199 2200 return ret; 2201 } 2202 EXPORT_SYMBOL(block_is_partially_uptodate); 2203 2204 /* 2205 * Generic "read page" function for block devices that have the normal 2206 * get_block functionality. This is most of the block device filesystems. 2207 * Reads the page asynchronously --- the unlock_buffer() and 2208 * set/clear_buffer_uptodate() functions propagate buffer state into the 2209 * page struct once IO has completed. 2210 */ 2211 int block_read_full_page(struct page *page, get_block_t *get_block) 2212 { 2213 struct inode *inode = page->mapping->host; 2214 sector_t iblock, lblock; 2215 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2216 unsigned int blocksize, bbits; 2217 int nr, i; 2218 int fully_mapped = 1; 2219 2220 head = create_page_buffers(page, inode, 0); 2221 blocksize = head->b_size; 2222 bbits = block_size_bits(blocksize); 2223 2224 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2225 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2226 bh = head; 2227 nr = 0; 2228 i = 0; 2229 2230 do { 2231 if (buffer_uptodate(bh)) 2232 continue; 2233 2234 if (!buffer_mapped(bh)) { 2235 int err = 0; 2236 2237 fully_mapped = 0; 2238 if (iblock < lblock) { 2239 WARN_ON(bh->b_size != blocksize); 2240 err = get_block(inode, iblock, bh, 0); 2241 if (err) 2242 SetPageError(page); 2243 } 2244 if (!buffer_mapped(bh)) { 2245 zero_user(page, i * blocksize, blocksize); 2246 if (!err) 2247 set_buffer_uptodate(bh); 2248 continue; 2249 } 2250 /* 2251 * get_block() might have updated the buffer 2252 * synchronously 2253 */ 2254 if (buffer_uptodate(bh)) 2255 continue; 2256 } 2257 arr[nr++] = bh; 2258 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2259 2260 if (fully_mapped) 2261 SetPageMappedToDisk(page); 2262 2263 if (!nr) { 2264 /* 2265 * All buffers are uptodate - we can set the page uptodate 2266 * as well. But not if get_block() returned an error. 2267 */ 2268 if (!PageError(page)) 2269 SetPageUptodate(page); 2270 unlock_page(page); 2271 return 0; 2272 } 2273 2274 /* Stage two: lock the buffers */ 2275 for (i = 0; i < nr; i++) { 2276 bh = arr[i]; 2277 lock_buffer(bh); 2278 mark_buffer_async_read(bh); 2279 } 2280 2281 /* 2282 * Stage 3: start the IO. Check for uptodateness 2283 * inside the buffer lock in case another process reading 2284 * the underlying blockdev brought it uptodate (the sct fix). 2285 */ 2286 for (i = 0; i < nr; i++) { 2287 bh = arr[i]; 2288 if (buffer_uptodate(bh)) 2289 end_buffer_async_read(bh, 1); 2290 else 2291 submit_bh(REQ_OP_READ, 0, bh); 2292 } 2293 return 0; 2294 } 2295 EXPORT_SYMBOL(block_read_full_page); 2296 2297 /* utility function for filesystems that need to do work on expanding 2298 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2299 * deal with the hole. 2300 */ 2301 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2302 { 2303 struct address_space *mapping = inode->i_mapping; 2304 struct page *page; 2305 void *fsdata; 2306 int err; 2307 2308 err = inode_newsize_ok(inode, size); 2309 if (err) 2310 goto out; 2311 2312 err = pagecache_write_begin(NULL, mapping, size, 0, 2313 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2314 if (err) 2315 goto out; 2316 2317 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2318 BUG_ON(err > 0); 2319 2320 out: 2321 return err; 2322 } 2323 EXPORT_SYMBOL(generic_cont_expand_simple); 2324 2325 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2326 loff_t pos, loff_t *bytes) 2327 { 2328 struct inode *inode = mapping->host; 2329 unsigned int blocksize = i_blocksize(inode); 2330 struct page *page; 2331 void *fsdata; 2332 pgoff_t index, curidx; 2333 loff_t curpos; 2334 unsigned zerofrom, offset, len; 2335 int err = 0; 2336 2337 index = pos >> PAGE_SHIFT; 2338 offset = pos & ~PAGE_MASK; 2339 2340 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2341 zerofrom = curpos & ~PAGE_MASK; 2342 if (zerofrom & (blocksize-1)) { 2343 *bytes |= (blocksize-1); 2344 (*bytes)++; 2345 } 2346 len = PAGE_SIZE - zerofrom; 2347 2348 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2349 &page, &fsdata); 2350 if (err) 2351 goto out; 2352 zero_user(page, zerofrom, len); 2353 err = pagecache_write_end(file, mapping, curpos, len, len, 2354 page, fsdata); 2355 if (err < 0) 2356 goto out; 2357 BUG_ON(err != len); 2358 err = 0; 2359 2360 balance_dirty_pages_ratelimited(mapping); 2361 2362 if (unlikely(fatal_signal_pending(current))) { 2363 err = -EINTR; 2364 goto out; 2365 } 2366 } 2367 2368 /* page covers the boundary, find the boundary offset */ 2369 if (index == curidx) { 2370 zerofrom = curpos & ~PAGE_MASK; 2371 /* if we will expand the thing last block will be filled */ 2372 if (offset <= zerofrom) { 2373 goto out; 2374 } 2375 if (zerofrom & (blocksize-1)) { 2376 *bytes |= (blocksize-1); 2377 (*bytes)++; 2378 } 2379 len = offset - zerofrom; 2380 2381 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2382 &page, &fsdata); 2383 if (err) 2384 goto out; 2385 zero_user(page, zerofrom, len); 2386 err = pagecache_write_end(file, mapping, curpos, len, len, 2387 page, fsdata); 2388 if (err < 0) 2389 goto out; 2390 BUG_ON(err != len); 2391 err = 0; 2392 } 2393 out: 2394 return err; 2395 } 2396 2397 /* 2398 * For moronic filesystems that do not allow holes in file. 2399 * We may have to extend the file. 2400 */ 2401 int cont_write_begin(struct file *file, struct address_space *mapping, 2402 loff_t pos, unsigned len, unsigned flags, 2403 struct page **pagep, void **fsdata, 2404 get_block_t *get_block, loff_t *bytes) 2405 { 2406 struct inode *inode = mapping->host; 2407 unsigned int blocksize = i_blocksize(inode); 2408 unsigned int zerofrom; 2409 int err; 2410 2411 err = cont_expand_zero(file, mapping, pos, bytes); 2412 if (err) 2413 return err; 2414 2415 zerofrom = *bytes & ~PAGE_MASK; 2416 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2417 *bytes |= (blocksize-1); 2418 (*bytes)++; 2419 } 2420 2421 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2422 } 2423 EXPORT_SYMBOL(cont_write_begin); 2424 2425 int block_commit_write(struct page *page, unsigned from, unsigned to) 2426 { 2427 struct inode *inode = page->mapping->host; 2428 __block_commit_write(inode,page,from,to); 2429 return 0; 2430 } 2431 EXPORT_SYMBOL(block_commit_write); 2432 2433 /* 2434 * block_page_mkwrite() is not allowed to change the file size as it gets 2435 * called from a page fault handler when a page is first dirtied. Hence we must 2436 * be careful to check for EOF conditions here. We set the page up correctly 2437 * for a written page which means we get ENOSPC checking when writing into 2438 * holes and correct delalloc and unwritten extent mapping on filesystems that 2439 * support these features. 2440 * 2441 * We are not allowed to take the i_mutex here so we have to play games to 2442 * protect against truncate races as the page could now be beyond EOF. Because 2443 * truncate writes the inode size before removing pages, once we have the 2444 * page lock we can determine safely if the page is beyond EOF. If it is not 2445 * beyond EOF, then the page is guaranteed safe against truncation until we 2446 * unlock the page. 2447 * 2448 * Direct callers of this function should protect against filesystem freezing 2449 * using sb_start_pagefault() - sb_end_pagefault() functions. 2450 */ 2451 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2452 get_block_t get_block) 2453 { 2454 struct page *page = vmf->page; 2455 struct inode *inode = file_inode(vma->vm_file); 2456 unsigned long end; 2457 loff_t size; 2458 int ret; 2459 2460 lock_page(page); 2461 size = i_size_read(inode); 2462 if ((page->mapping != inode->i_mapping) || 2463 (page_offset(page) > size)) { 2464 /* We overload EFAULT to mean page got truncated */ 2465 ret = -EFAULT; 2466 goto out_unlock; 2467 } 2468 2469 /* page is wholly or partially inside EOF */ 2470 if (((page->index + 1) << PAGE_SHIFT) > size) 2471 end = size & ~PAGE_MASK; 2472 else 2473 end = PAGE_SIZE; 2474 2475 ret = __block_write_begin(page, 0, end, get_block); 2476 if (!ret) 2477 ret = block_commit_write(page, 0, end); 2478 2479 if (unlikely(ret < 0)) 2480 goto out_unlock; 2481 set_page_dirty(page); 2482 wait_for_stable_page(page); 2483 return 0; 2484 out_unlock: 2485 unlock_page(page); 2486 return ret; 2487 } 2488 EXPORT_SYMBOL(block_page_mkwrite); 2489 2490 /* 2491 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2492 * immediately, while under the page lock. So it needs a special end_io 2493 * handler which does not touch the bh after unlocking it. 2494 */ 2495 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2496 { 2497 __end_buffer_read_notouch(bh, uptodate); 2498 } 2499 2500 /* 2501 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2502 * the page (converting it to circular linked list and taking care of page 2503 * dirty races). 2504 */ 2505 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2506 { 2507 struct buffer_head *bh; 2508 2509 BUG_ON(!PageLocked(page)); 2510 2511 spin_lock(&page->mapping->private_lock); 2512 bh = head; 2513 do { 2514 if (PageDirty(page)) 2515 set_buffer_dirty(bh); 2516 if (!bh->b_this_page) 2517 bh->b_this_page = head; 2518 bh = bh->b_this_page; 2519 } while (bh != head); 2520 attach_page_buffers(page, head); 2521 spin_unlock(&page->mapping->private_lock); 2522 } 2523 2524 /* 2525 * On entry, the page is fully not uptodate. 2526 * On exit the page is fully uptodate in the areas outside (from,to) 2527 * The filesystem needs to handle block truncation upon failure. 2528 */ 2529 int nobh_write_begin(struct address_space *mapping, 2530 loff_t pos, unsigned len, unsigned flags, 2531 struct page **pagep, void **fsdata, 2532 get_block_t *get_block) 2533 { 2534 struct inode *inode = mapping->host; 2535 const unsigned blkbits = inode->i_blkbits; 2536 const unsigned blocksize = 1 << blkbits; 2537 struct buffer_head *head, *bh; 2538 struct page *page; 2539 pgoff_t index; 2540 unsigned from, to; 2541 unsigned block_in_page; 2542 unsigned block_start, block_end; 2543 sector_t block_in_file; 2544 int nr_reads = 0; 2545 int ret = 0; 2546 int is_mapped_to_disk = 1; 2547 2548 index = pos >> PAGE_SHIFT; 2549 from = pos & (PAGE_SIZE - 1); 2550 to = from + len; 2551 2552 page = grab_cache_page_write_begin(mapping, index, flags); 2553 if (!page) 2554 return -ENOMEM; 2555 *pagep = page; 2556 *fsdata = NULL; 2557 2558 if (page_has_buffers(page)) { 2559 ret = __block_write_begin(page, pos, len, get_block); 2560 if (unlikely(ret)) 2561 goto out_release; 2562 return ret; 2563 } 2564 2565 if (PageMappedToDisk(page)) 2566 return 0; 2567 2568 /* 2569 * Allocate buffers so that we can keep track of state, and potentially 2570 * attach them to the page if an error occurs. In the common case of 2571 * no error, they will just be freed again without ever being attached 2572 * to the page (which is all OK, because we're under the page lock). 2573 * 2574 * Be careful: the buffer linked list is a NULL terminated one, rather 2575 * than the circular one we're used to. 2576 */ 2577 head = alloc_page_buffers(page, blocksize, false); 2578 if (!head) { 2579 ret = -ENOMEM; 2580 goto out_release; 2581 } 2582 2583 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2584 2585 /* 2586 * We loop across all blocks in the page, whether or not they are 2587 * part of the affected region. This is so we can discover if the 2588 * page is fully mapped-to-disk. 2589 */ 2590 for (block_start = 0, block_in_page = 0, bh = head; 2591 block_start < PAGE_SIZE; 2592 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2593 int create; 2594 2595 block_end = block_start + blocksize; 2596 bh->b_state = 0; 2597 create = 1; 2598 if (block_start >= to) 2599 create = 0; 2600 ret = get_block(inode, block_in_file + block_in_page, 2601 bh, create); 2602 if (ret) 2603 goto failed; 2604 if (!buffer_mapped(bh)) 2605 is_mapped_to_disk = 0; 2606 if (buffer_new(bh)) 2607 clean_bdev_bh_alias(bh); 2608 if (PageUptodate(page)) { 2609 set_buffer_uptodate(bh); 2610 continue; 2611 } 2612 if (buffer_new(bh) || !buffer_mapped(bh)) { 2613 zero_user_segments(page, block_start, from, 2614 to, block_end); 2615 continue; 2616 } 2617 if (buffer_uptodate(bh)) 2618 continue; /* reiserfs does this */ 2619 if (block_start < from || block_end > to) { 2620 lock_buffer(bh); 2621 bh->b_end_io = end_buffer_read_nobh; 2622 submit_bh(REQ_OP_READ, 0, bh); 2623 nr_reads++; 2624 } 2625 } 2626 2627 if (nr_reads) { 2628 /* 2629 * The page is locked, so these buffers are protected from 2630 * any VM or truncate activity. Hence we don't need to care 2631 * for the buffer_head refcounts. 2632 */ 2633 for (bh = head; bh; bh = bh->b_this_page) { 2634 wait_on_buffer(bh); 2635 if (!buffer_uptodate(bh)) 2636 ret = -EIO; 2637 } 2638 if (ret) 2639 goto failed; 2640 } 2641 2642 if (is_mapped_to_disk) 2643 SetPageMappedToDisk(page); 2644 2645 *fsdata = head; /* to be released by nobh_write_end */ 2646 2647 return 0; 2648 2649 failed: 2650 BUG_ON(!ret); 2651 /* 2652 * Error recovery is a bit difficult. We need to zero out blocks that 2653 * were newly allocated, and dirty them to ensure they get written out. 2654 * Buffers need to be attached to the page at this point, otherwise 2655 * the handling of potential IO errors during writeout would be hard 2656 * (could try doing synchronous writeout, but what if that fails too?) 2657 */ 2658 attach_nobh_buffers(page, head); 2659 page_zero_new_buffers(page, from, to); 2660 2661 out_release: 2662 unlock_page(page); 2663 put_page(page); 2664 *pagep = NULL; 2665 2666 return ret; 2667 } 2668 EXPORT_SYMBOL(nobh_write_begin); 2669 2670 int nobh_write_end(struct file *file, struct address_space *mapping, 2671 loff_t pos, unsigned len, unsigned copied, 2672 struct page *page, void *fsdata) 2673 { 2674 struct inode *inode = page->mapping->host; 2675 struct buffer_head *head = fsdata; 2676 struct buffer_head *bh; 2677 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2678 2679 if (unlikely(copied < len) && head) 2680 attach_nobh_buffers(page, head); 2681 if (page_has_buffers(page)) 2682 return generic_write_end(file, mapping, pos, len, 2683 copied, page, fsdata); 2684 2685 SetPageUptodate(page); 2686 set_page_dirty(page); 2687 if (pos+copied > inode->i_size) { 2688 i_size_write(inode, pos+copied); 2689 mark_inode_dirty(inode); 2690 } 2691 2692 unlock_page(page); 2693 put_page(page); 2694 2695 while (head) { 2696 bh = head; 2697 head = head->b_this_page; 2698 free_buffer_head(bh); 2699 } 2700 2701 return copied; 2702 } 2703 EXPORT_SYMBOL(nobh_write_end); 2704 2705 /* 2706 * nobh_writepage() - based on block_full_write_page() except 2707 * that it tries to operate without attaching bufferheads to 2708 * the page. 2709 */ 2710 int nobh_writepage(struct page *page, get_block_t *get_block, 2711 struct writeback_control *wbc) 2712 { 2713 struct inode * const inode = page->mapping->host; 2714 loff_t i_size = i_size_read(inode); 2715 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2716 unsigned offset; 2717 int ret; 2718 2719 /* Is the page fully inside i_size? */ 2720 if (page->index < end_index) 2721 goto out; 2722 2723 /* Is the page fully outside i_size? (truncate in progress) */ 2724 offset = i_size & (PAGE_SIZE-1); 2725 if (page->index >= end_index+1 || !offset) { 2726 /* 2727 * The page may have dirty, unmapped buffers. For example, 2728 * they may have been added in ext3_writepage(). Make them 2729 * freeable here, so the page does not leak. 2730 */ 2731 #if 0 2732 /* Not really sure about this - do we need this ? */ 2733 if (page->mapping->a_ops->invalidatepage) 2734 page->mapping->a_ops->invalidatepage(page, offset); 2735 #endif 2736 unlock_page(page); 2737 return 0; /* don't care */ 2738 } 2739 2740 /* 2741 * The page straddles i_size. It must be zeroed out on each and every 2742 * writepage invocation because it may be mmapped. "A file is mapped 2743 * in multiples of the page size. For a file that is not a multiple of 2744 * the page size, the remaining memory is zeroed when mapped, and 2745 * writes to that region are not written out to the file." 2746 */ 2747 zero_user_segment(page, offset, PAGE_SIZE); 2748 out: 2749 ret = mpage_writepage(page, get_block, wbc); 2750 if (ret == -EAGAIN) 2751 ret = __block_write_full_page(inode, page, get_block, wbc, 2752 end_buffer_async_write); 2753 return ret; 2754 } 2755 EXPORT_SYMBOL(nobh_writepage); 2756 2757 int nobh_truncate_page(struct address_space *mapping, 2758 loff_t from, get_block_t *get_block) 2759 { 2760 pgoff_t index = from >> PAGE_SHIFT; 2761 unsigned offset = from & (PAGE_SIZE-1); 2762 unsigned blocksize; 2763 sector_t iblock; 2764 unsigned length, pos; 2765 struct inode *inode = mapping->host; 2766 struct page *page; 2767 struct buffer_head map_bh; 2768 int err; 2769 2770 blocksize = i_blocksize(inode); 2771 length = offset & (blocksize - 1); 2772 2773 /* Block boundary? Nothing to do */ 2774 if (!length) 2775 return 0; 2776 2777 length = blocksize - length; 2778 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2779 2780 page = grab_cache_page(mapping, index); 2781 err = -ENOMEM; 2782 if (!page) 2783 goto out; 2784 2785 if (page_has_buffers(page)) { 2786 has_buffers: 2787 unlock_page(page); 2788 put_page(page); 2789 return block_truncate_page(mapping, from, get_block); 2790 } 2791 2792 /* Find the buffer that contains "offset" */ 2793 pos = blocksize; 2794 while (offset >= pos) { 2795 iblock++; 2796 pos += blocksize; 2797 } 2798 2799 map_bh.b_size = blocksize; 2800 map_bh.b_state = 0; 2801 err = get_block(inode, iblock, &map_bh, 0); 2802 if (err) 2803 goto unlock; 2804 /* unmapped? It's a hole - nothing to do */ 2805 if (!buffer_mapped(&map_bh)) 2806 goto unlock; 2807 2808 /* Ok, it's mapped. Make sure it's up-to-date */ 2809 if (!PageUptodate(page)) { 2810 err = mapping->a_ops->readpage(NULL, page); 2811 if (err) { 2812 put_page(page); 2813 goto out; 2814 } 2815 lock_page(page); 2816 if (!PageUptodate(page)) { 2817 err = -EIO; 2818 goto unlock; 2819 } 2820 if (page_has_buffers(page)) 2821 goto has_buffers; 2822 } 2823 zero_user(page, offset, length); 2824 set_page_dirty(page); 2825 err = 0; 2826 2827 unlock: 2828 unlock_page(page); 2829 put_page(page); 2830 out: 2831 return err; 2832 } 2833 EXPORT_SYMBOL(nobh_truncate_page); 2834 2835 int block_truncate_page(struct address_space *mapping, 2836 loff_t from, get_block_t *get_block) 2837 { 2838 pgoff_t index = from >> PAGE_SHIFT; 2839 unsigned offset = from & (PAGE_SIZE-1); 2840 unsigned blocksize; 2841 sector_t iblock; 2842 unsigned length, pos; 2843 struct inode *inode = mapping->host; 2844 struct page *page; 2845 struct buffer_head *bh; 2846 int err; 2847 2848 blocksize = i_blocksize(inode); 2849 length = offset & (blocksize - 1); 2850 2851 /* Block boundary? Nothing to do */ 2852 if (!length) 2853 return 0; 2854 2855 length = blocksize - length; 2856 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2857 2858 page = grab_cache_page(mapping, index); 2859 err = -ENOMEM; 2860 if (!page) 2861 goto out; 2862 2863 if (!page_has_buffers(page)) 2864 create_empty_buffers(page, blocksize, 0); 2865 2866 /* Find the buffer that contains "offset" */ 2867 bh = page_buffers(page); 2868 pos = blocksize; 2869 while (offset >= pos) { 2870 bh = bh->b_this_page; 2871 iblock++; 2872 pos += blocksize; 2873 } 2874 2875 err = 0; 2876 if (!buffer_mapped(bh)) { 2877 WARN_ON(bh->b_size != blocksize); 2878 err = get_block(inode, iblock, bh, 0); 2879 if (err) 2880 goto unlock; 2881 /* unmapped? It's a hole - nothing to do */ 2882 if (!buffer_mapped(bh)) 2883 goto unlock; 2884 } 2885 2886 /* Ok, it's mapped. Make sure it's up-to-date */ 2887 if (PageUptodate(page)) 2888 set_buffer_uptodate(bh); 2889 2890 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2891 err = -EIO; 2892 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2893 wait_on_buffer(bh); 2894 /* Uhhuh. Read error. Complain and punt. */ 2895 if (!buffer_uptodate(bh)) 2896 goto unlock; 2897 } 2898 2899 zero_user(page, offset, length); 2900 mark_buffer_dirty(bh); 2901 err = 0; 2902 2903 unlock: 2904 unlock_page(page); 2905 put_page(page); 2906 out: 2907 return err; 2908 } 2909 EXPORT_SYMBOL(block_truncate_page); 2910 2911 /* 2912 * The generic ->writepage function for buffer-backed address_spaces 2913 */ 2914 int block_write_full_page(struct page *page, get_block_t *get_block, 2915 struct writeback_control *wbc) 2916 { 2917 struct inode * const inode = page->mapping->host; 2918 loff_t i_size = i_size_read(inode); 2919 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2920 unsigned offset; 2921 2922 /* Is the page fully inside i_size? */ 2923 if (page->index < end_index) 2924 return __block_write_full_page(inode, page, get_block, wbc, 2925 end_buffer_async_write); 2926 2927 /* Is the page fully outside i_size? (truncate in progress) */ 2928 offset = i_size & (PAGE_SIZE-1); 2929 if (page->index >= end_index+1 || !offset) { 2930 /* 2931 * The page may have dirty, unmapped buffers. For example, 2932 * they may have been added in ext3_writepage(). Make them 2933 * freeable here, so the page does not leak. 2934 */ 2935 do_invalidatepage(page, 0, PAGE_SIZE); 2936 unlock_page(page); 2937 return 0; /* don't care */ 2938 } 2939 2940 /* 2941 * The page straddles i_size. It must be zeroed out on each and every 2942 * writepage invocation because it may be mmapped. "A file is mapped 2943 * in multiples of the page size. For a file that is not a multiple of 2944 * the page size, the remaining memory is zeroed when mapped, and 2945 * writes to that region are not written out to the file." 2946 */ 2947 zero_user_segment(page, offset, PAGE_SIZE); 2948 return __block_write_full_page(inode, page, get_block, wbc, 2949 end_buffer_async_write); 2950 } 2951 EXPORT_SYMBOL(block_write_full_page); 2952 2953 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2954 get_block_t *get_block) 2955 { 2956 struct inode *inode = mapping->host; 2957 struct buffer_head tmp = { 2958 .b_size = i_blocksize(inode), 2959 }; 2960 2961 get_block(inode, block, &tmp, 0); 2962 return tmp.b_blocknr; 2963 } 2964 EXPORT_SYMBOL(generic_block_bmap); 2965 2966 static void end_bio_bh_io_sync(struct bio *bio) 2967 { 2968 struct buffer_head *bh = bio->bi_private; 2969 2970 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2971 set_bit(BH_Quiet, &bh->b_state); 2972 2973 bh->b_end_io(bh, !bio->bi_status); 2974 bio_put(bio); 2975 } 2976 2977 /* 2978 * This allows us to do IO even on the odd last sectors 2979 * of a device, even if the block size is some multiple 2980 * of the physical sector size. 2981 * 2982 * We'll just truncate the bio to the size of the device, 2983 * and clear the end of the buffer head manually. 2984 * 2985 * Truly out-of-range accesses will turn into actual IO 2986 * errors, this only handles the "we need to be able to 2987 * do IO at the final sector" case. 2988 */ 2989 void guard_bio_eod(int op, struct bio *bio) 2990 { 2991 sector_t maxsector; 2992 struct bio_vec *bvec = bio_last_bvec_all(bio); 2993 unsigned truncated_bytes; 2994 struct hd_struct *part; 2995 2996 rcu_read_lock(); 2997 part = __disk_get_part(bio->bi_disk, bio->bi_partno); 2998 if (part) 2999 maxsector = part_nr_sects_read(part); 3000 else 3001 maxsector = get_capacity(bio->bi_disk); 3002 rcu_read_unlock(); 3003 3004 if (!maxsector) 3005 return; 3006 3007 /* 3008 * If the *whole* IO is past the end of the device, 3009 * let it through, and the IO layer will turn it into 3010 * an EIO. 3011 */ 3012 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3013 return; 3014 3015 maxsector -= bio->bi_iter.bi_sector; 3016 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3017 return; 3018 3019 /* Uhhuh. We've got a bio that straddles the device size! */ 3020 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3021 3022 /* Truncate the bio.. */ 3023 bio->bi_iter.bi_size -= truncated_bytes; 3024 bvec->bv_len -= truncated_bytes; 3025 3026 /* ..and clear the end of the buffer for reads */ 3027 if (op == REQ_OP_READ) { 3028 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 3029 truncated_bytes); 3030 } 3031 } 3032 3033 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3034 enum rw_hint write_hint, struct writeback_control *wbc) 3035 { 3036 struct bio *bio; 3037 3038 BUG_ON(!buffer_locked(bh)); 3039 BUG_ON(!buffer_mapped(bh)); 3040 BUG_ON(!bh->b_end_io); 3041 BUG_ON(buffer_delay(bh)); 3042 BUG_ON(buffer_unwritten(bh)); 3043 3044 /* 3045 * Only clear out a write error when rewriting 3046 */ 3047 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3048 clear_buffer_write_io_error(bh); 3049 3050 /* 3051 * from here on down, it's all bio -- do the initial mapping, 3052 * submit_bio -> generic_make_request may further map this bio around 3053 */ 3054 bio = bio_alloc(GFP_NOIO, 1); 3055 3056 if (wbc) { 3057 wbc_init_bio(wbc, bio); 3058 wbc_account_io(wbc, bh->b_page, bh->b_size); 3059 } 3060 3061 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3062 bio_set_dev(bio, bh->b_bdev); 3063 bio->bi_write_hint = write_hint; 3064 3065 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3066 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3067 3068 bio->bi_end_io = end_bio_bh_io_sync; 3069 bio->bi_private = bh; 3070 3071 /* Take care of bh's that straddle the end of the device */ 3072 guard_bio_eod(op, bio); 3073 3074 if (buffer_meta(bh)) 3075 op_flags |= REQ_META; 3076 if (buffer_prio(bh)) 3077 op_flags |= REQ_PRIO; 3078 bio_set_op_attrs(bio, op, op_flags); 3079 3080 submit_bio(bio); 3081 return 0; 3082 } 3083 3084 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3085 { 3086 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3087 } 3088 EXPORT_SYMBOL(submit_bh); 3089 3090 /** 3091 * ll_rw_block: low-level access to block devices (DEPRECATED) 3092 * @op: whether to %READ or %WRITE 3093 * @op_flags: req_flag_bits 3094 * @nr: number of &struct buffer_heads in the array 3095 * @bhs: array of pointers to &struct buffer_head 3096 * 3097 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3098 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3099 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3100 * %REQ_RAHEAD. 3101 * 3102 * This function drops any buffer that it cannot get a lock on (with the 3103 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3104 * request, and any buffer that appears to be up-to-date when doing read 3105 * request. Further it marks as clean buffers that are processed for 3106 * writing (the buffer cache won't assume that they are actually clean 3107 * until the buffer gets unlocked). 3108 * 3109 * ll_rw_block sets b_end_io to simple completion handler that marks 3110 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3111 * any waiters. 3112 * 3113 * All of the buffers must be for the same device, and must also be a 3114 * multiple of the current approved size for the device. 3115 */ 3116 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3117 { 3118 int i; 3119 3120 for (i = 0; i < nr; i++) { 3121 struct buffer_head *bh = bhs[i]; 3122 3123 if (!trylock_buffer(bh)) 3124 continue; 3125 if (op == WRITE) { 3126 if (test_clear_buffer_dirty(bh)) { 3127 bh->b_end_io = end_buffer_write_sync; 3128 get_bh(bh); 3129 submit_bh(op, op_flags, bh); 3130 continue; 3131 } 3132 } else { 3133 if (!buffer_uptodate(bh)) { 3134 bh->b_end_io = end_buffer_read_sync; 3135 get_bh(bh); 3136 submit_bh(op, op_flags, bh); 3137 continue; 3138 } 3139 } 3140 unlock_buffer(bh); 3141 } 3142 } 3143 EXPORT_SYMBOL(ll_rw_block); 3144 3145 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3146 { 3147 lock_buffer(bh); 3148 if (!test_clear_buffer_dirty(bh)) { 3149 unlock_buffer(bh); 3150 return; 3151 } 3152 bh->b_end_io = end_buffer_write_sync; 3153 get_bh(bh); 3154 submit_bh(REQ_OP_WRITE, op_flags, bh); 3155 } 3156 EXPORT_SYMBOL(write_dirty_buffer); 3157 3158 /* 3159 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3160 * and then start new I/O and then wait upon it. The caller must have a ref on 3161 * the buffer_head. 3162 */ 3163 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3164 { 3165 int ret = 0; 3166 3167 WARN_ON(atomic_read(&bh->b_count) < 1); 3168 lock_buffer(bh); 3169 if (test_clear_buffer_dirty(bh)) { 3170 get_bh(bh); 3171 bh->b_end_io = end_buffer_write_sync; 3172 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3173 wait_on_buffer(bh); 3174 if (!ret && !buffer_uptodate(bh)) 3175 ret = -EIO; 3176 } else { 3177 unlock_buffer(bh); 3178 } 3179 return ret; 3180 } 3181 EXPORT_SYMBOL(__sync_dirty_buffer); 3182 3183 int sync_dirty_buffer(struct buffer_head *bh) 3184 { 3185 return __sync_dirty_buffer(bh, REQ_SYNC); 3186 } 3187 EXPORT_SYMBOL(sync_dirty_buffer); 3188 3189 /* 3190 * try_to_free_buffers() checks if all the buffers on this particular page 3191 * are unused, and releases them if so. 3192 * 3193 * Exclusion against try_to_free_buffers may be obtained by either 3194 * locking the page or by holding its mapping's private_lock. 3195 * 3196 * If the page is dirty but all the buffers are clean then we need to 3197 * be sure to mark the page clean as well. This is because the page 3198 * may be against a block device, and a later reattachment of buffers 3199 * to a dirty page will set *all* buffers dirty. Which would corrupt 3200 * filesystem data on the same device. 3201 * 3202 * The same applies to regular filesystem pages: if all the buffers are 3203 * clean then we set the page clean and proceed. To do that, we require 3204 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3205 * private_lock. 3206 * 3207 * try_to_free_buffers() is non-blocking. 3208 */ 3209 static inline int buffer_busy(struct buffer_head *bh) 3210 { 3211 return atomic_read(&bh->b_count) | 3212 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3213 } 3214 3215 static int 3216 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3217 { 3218 struct buffer_head *head = page_buffers(page); 3219 struct buffer_head *bh; 3220 3221 bh = head; 3222 do { 3223 if (buffer_busy(bh)) 3224 goto failed; 3225 bh = bh->b_this_page; 3226 } while (bh != head); 3227 3228 do { 3229 struct buffer_head *next = bh->b_this_page; 3230 3231 if (bh->b_assoc_map) 3232 __remove_assoc_queue(bh); 3233 bh = next; 3234 } while (bh != head); 3235 *buffers_to_free = head; 3236 __clear_page_buffers(page); 3237 return 1; 3238 failed: 3239 return 0; 3240 } 3241 3242 int try_to_free_buffers(struct page *page) 3243 { 3244 struct address_space * const mapping = page->mapping; 3245 struct buffer_head *buffers_to_free = NULL; 3246 int ret = 0; 3247 3248 BUG_ON(!PageLocked(page)); 3249 if (PageWriteback(page)) 3250 return 0; 3251 3252 if (mapping == NULL) { /* can this still happen? */ 3253 ret = drop_buffers(page, &buffers_to_free); 3254 goto out; 3255 } 3256 3257 spin_lock(&mapping->private_lock); 3258 ret = drop_buffers(page, &buffers_to_free); 3259 3260 /* 3261 * If the filesystem writes its buffers by hand (eg ext3) 3262 * then we can have clean buffers against a dirty page. We 3263 * clean the page here; otherwise the VM will never notice 3264 * that the filesystem did any IO at all. 3265 * 3266 * Also, during truncate, discard_buffer will have marked all 3267 * the page's buffers clean. We discover that here and clean 3268 * the page also. 3269 * 3270 * private_lock must be held over this entire operation in order 3271 * to synchronise against __set_page_dirty_buffers and prevent the 3272 * dirty bit from being lost. 3273 */ 3274 if (ret) 3275 cancel_dirty_page(page); 3276 spin_unlock(&mapping->private_lock); 3277 out: 3278 if (buffers_to_free) { 3279 struct buffer_head *bh = buffers_to_free; 3280 3281 do { 3282 struct buffer_head *next = bh->b_this_page; 3283 free_buffer_head(bh); 3284 bh = next; 3285 } while (bh != buffers_to_free); 3286 } 3287 return ret; 3288 } 3289 EXPORT_SYMBOL(try_to_free_buffers); 3290 3291 /* 3292 * There are no bdflush tunables left. But distributions are 3293 * still running obsolete flush daemons, so we terminate them here. 3294 * 3295 * Use of bdflush() is deprecated and will be removed in a future kernel. 3296 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3297 */ 3298 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3299 { 3300 static int msg_count; 3301 3302 if (!capable(CAP_SYS_ADMIN)) 3303 return -EPERM; 3304 3305 if (msg_count < 5) { 3306 msg_count++; 3307 printk(KERN_INFO 3308 "warning: process `%s' used the obsolete bdflush" 3309 " system call\n", current->comm); 3310 printk(KERN_INFO "Fix your initscripts?\n"); 3311 } 3312 3313 if (func == 1) 3314 do_exit(0); 3315 return 0; 3316 } 3317 3318 /* 3319 * Buffer-head allocation 3320 */ 3321 static struct kmem_cache *bh_cachep __read_mostly; 3322 3323 /* 3324 * Once the number of bh's in the machine exceeds this level, we start 3325 * stripping them in writeback. 3326 */ 3327 static unsigned long max_buffer_heads; 3328 3329 int buffer_heads_over_limit; 3330 3331 struct bh_accounting { 3332 int nr; /* Number of live bh's */ 3333 int ratelimit; /* Limit cacheline bouncing */ 3334 }; 3335 3336 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3337 3338 static void recalc_bh_state(void) 3339 { 3340 int i; 3341 int tot = 0; 3342 3343 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3344 return; 3345 __this_cpu_write(bh_accounting.ratelimit, 0); 3346 for_each_online_cpu(i) 3347 tot += per_cpu(bh_accounting, i).nr; 3348 buffer_heads_over_limit = (tot > max_buffer_heads); 3349 } 3350 3351 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3352 { 3353 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3354 if (ret) { 3355 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3356 preempt_disable(); 3357 __this_cpu_inc(bh_accounting.nr); 3358 recalc_bh_state(); 3359 preempt_enable(); 3360 } 3361 return ret; 3362 } 3363 EXPORT_SYMBOL(alloc_buffer_head); 3364 3365 void free_buffer_head(struct buffer_head *bh) 3366 { 3367 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3368 kmem_cache_free(bh_cachep, bh); 3369 preempt_disable(); 3370 __this_cpu_dec(bh_accounting.nr); 3371 recalc_bh_state(); 3372 preempt_enable(); 3373 } 3374 EXPORT_SYMBOL(free_buffer_head); 3375 3376 static int buffer_exit_cpu_dead(unsigned int cpu) 3377 { 3378 int i; 3379 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3380 3381 for (i = 0; i < BH_LRU_SIZE; i++) { 3382 brelse(b->bhs[i]); 3383 b->bhs[i] = NULL; 3384 } 3385 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3386 per_cpu(bh_accounting, cpu).nr = 0; 3387 return 0; 3388 } 3389 3390 /** 3391 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3392 * @bh: struct buffer_head 3393 * 3394 * Return true if the buffer is up-to-date and false, 3395 * with the buffer locked, if not. 3396 */ 3397 int bh_uptodate_or_lock(struct buffer_head *bh) 3398 { 3399 if (!buffer_uptodate(bh)) { 3400 lock_buffer(bh); 3401 if (!buffer_uptodate(bh)) 3402 return 0; 3403 unlock_buffer(bh); 3404 } 3405 return 1; 3406 } 3407 EXPORT_SYMBOL(bh_uptodate_or_lock); 3408 3409 /** 3410 * bh_submit_read - Submit a locked buffer for reading 3411 * @bh: struct buffer_head 3412 * 3413 * Returns zero on success and -EIO on error. 3414 */ 3415 int bh_submit_read(struct buffer_head *bh) 3416 { 3417 BUG_ON(!buffer_locked(bh)); 3418 3419 if (buffer_uptodate(bh)) { 3420 unlock_buffer(bh); 3421 return 0; 3422 } 3423 3424 get_bh(bh); 3425 bh->b_end_io = end_buffer_read_sync; 3426 submit_bh(REQ_OP_READ, 0, bh); 3427 wait_on_buffer(bh); 3428 if (buffer_uptodate(bh)) 3429 return 0; 3430 return -EIO; 3431 } 3432 EXPORT_SYMBOL(bh_submit_read); 3433 3434 void __init buffer_init(void) 3435 { 3436 unsigned long nrpages; 3437 int ret; 3438 3439 bh_cachep = kmem_cache_create("buffer_head", 3440 sizeof(struct buffer_head), 0, 3441 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3442 SLAB_MEM_SPREAD), 3443 NULL); 3444 3445 /* 3446 * Limit the bh occupancy to 10% of ZONE_NORMAL 3447 */ 3448 nrpages = (nr_free_buffer_pages() * 10) / 100; 3449 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3450 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3451 NULL, buffer_exit_cpu_dead); 3452 WARN_ON(ret < 0); 3453 } 3454