xref: /linux/fs/buffer.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49 
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52 			 enum rw_hint hint, struct writeback_control *wbc);
53 
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55 
56 inline void touch_buffer(struct buffer_head *bh)
57 {
58 	trace_block_touch_buffer(bh);
59 	mark_page_accessed(bh->b_page);
60 }
61 EXPORT_SYMBOL(touch_buffer);
62 
63 void __lock_buffer(struct buffer_head *bh)
64 {
65 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
66 }
67 EXPORT_SYMBOL(__lock_buffer);
68 
69 void unlock_buffer(struct buffer_head *bh)
70 {
71 	clear_bit_unlock(BH_Lock, &bh->b_state);
72 	smp_mb__after_atomic();
73 	wake_up_bit(&bh->b_state, BH_Lock);
74 }
75 EXPORT_SYMBOL(unlock_buffer);
76 
77 /*
78  * Returns if the page has dirty or writeback buffers. If all the buffers
79  * are unlocked and clean then the PageDirty information is stale. If
80  * any of the pages are locked, it is assumed they are locked for IO.
81  */
82 void buffer_check_dirty_writeback(struct page *page,
83 				     bool *dirty, bool *writeback)
84 {
85 	struct buffer_head *head, *bh;
86 	*dirty = false;
87 	*writeback = false;
88 
89 	BUG_ON(!PageLocked(page));
90 
91 	if (!page_has_buffers(page))
92 		return;
93 
94 	if (PageWriteback(page))
95 		*writeback = true;
96 
97 	head = page_buffers(page);
98 	bh = head;
99 	do {
100 		if (buffer_locked(bh))
101 			*writeback = true;
102 
103 		if (buffer_dirty(bh))
104 			*dirty = true;
105 
106 		bh = bh->b_this_page;
107 	} while (bh != head);
108 }
109 EXPORT_SYMBOL(buffer_check_dirty_writeback);
110 
111 /*
112  * Block until a buffer comes unlocked.  This doesn't stop it
113  * from becoming locked again - you have to lock it yourself
114  * if you want to preserve its state.
115  */
116 void __wait_on_buffer(struct buffer_head * bh)
117 {
118 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
119 }
120 EXPORT_SYMBOL(__wait_on_buffer);
121 
122 static void
123 __clear_page_buffers(struct page *page)
124 {
125 	ClearPagePrivate(page);
126 	set_page_private(page, 0);
127 	put_page(page);
128 }
129 
130 static void buffer_io_error(struct buffer_head *bh, char *msg)
131 {
132 	if (!test_bit(BH_Quiet, &bh->b_state))
133 		printk_ratelimited(KERN_ERR
134 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
135 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
136 }
137 
138 /*
139  * End-of-IO handler helper function which does not touch the bh after
140  * unlocking it.
141  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142  * a race there is benign: unlock_buffer() only use the bh's address for
143  * hashing after unlocking the buffer, so it doesn't actually touch the bh
144  * itself.
145  */
146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
147 {
148 	if (uptodate) {
149 		set_buffer_uptodate(bh);
150 	} else {
151 		/* This happens, due to failed read-ahead attempts. */
152 		clear_buffer_uptodate(bh);
153 	}
154 	unlock_buffer(bh);
155 }
156 
157 /*
158  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
159  * unlock the buffer. This is what ll_rw_block uses too.
160  */
161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
162 {
163 	__end_buffer_read_notouch(bh, uptodate);
164 	put_bh(bh);
165 }
166 EXPORT_SYMBOL(end_buffer_read_sync);
167 
168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
169 {
170 	if (uptodate) {
171 		set_buffer_uptodate(bh);
172 	} else {
173 		buffer_io_error(bh, ", lost sync page write");
174 		mark_buffer_write_io_error(bh);
175 		clear_buffer_uptodate(bh);
176 	}
177 	unlock_buffer(bh);
178 	put_bh(bh);
179 }
180 EXPORT_SYMBOL(end_buffer_write_sync);
181 
182 /*
183  * Various filesystems appear to want __find_get_block to be non-blocking.
184  * But it's the page lock which protects the buffers.  To get around this,
185  * we get exclusion from try_to_free_buffers with the blockdev mapping's
186  * private_lock.
187  *
188  * Hack idea: for the blockdev mapping, private_lock contention
189  * may be quite high.  This code could TryLock the page, and if that
190  * succeeds, there is no need to take private_lock.
191  */
192 static struct buffer_head *
193 __find_get_block_slow(struct block_device *bdev, sector_t block)
194 {
195 	struct inode *bd_inode = bdev->bd_inode;
196 	struct address_space *bd_mapping = bd_inode->i_mapping;
197 	struct buffer_head *ret = NULL;
198 	pgoff_t index;
199 	struct buffer_head *bh;
200 	struct buffer_head *head;
201 	struct page *page;
202 	int all_mapped = 1;
203 
204 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
205 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
206 	if (!page)
207 		goto out;
208 
209 	spin_lock(&bd_mapping->private_lock);
210 	if (!page_has_buffers(page))
211 		goto out_unlock;
212 	head = page_buffers(page);
213 	bh = head;
214 	do {
215 		if (!buffer_mapped(bh))
216 			all_mapped = 0;
217 		else if (bh->b_blocknr == block) {
218 			ret = bh;
219 			get_bh(bh);
220 			goto out_unlock;
221 		}
222 		bh = bh->b_this_page;
223 	} while (bh != head);
224 
225 	/* we might be here because some of the buffers on this page are
226 	 * not mapped.  This is due to various races between
227 	 * file io on the block device and getblk.  It gets dealt with
228 	 * elsewhere, don't buffer_error if we had some unmapped buffers
229 	 */
230 	if (all_mapped) {
231 		printk("__find_get_block_slow() failed. "
232 			"block=%llu, b_blocknr=%llu\n",
233 			(unsigned long long)block,
234 			(unsigned long long)bh->b_blocknr);
235 		printk("b_state=0x%08lx, b_size=%zu\n",
236 			bh->b_state, bh->b_size);
237 		printk("device %pg blocksize: %d\n", bdev,
238 			1 << bd_inode->i_blkbits);
239 	}
240 out_unlock:
241 	spin_unlock(&bd_mapping->private_lock);
242 	put_page(page);
243 out:
244 	return ret;
245 }
246 
247 /*
248  * I/O completion handler for block_read_full_page() - pages
249  * which come unlocked at the end of I/O.
250  */
251 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
252 {
253 	unsigned long flags;
254 	struct buffer_head *first;
255 	struct buffer_head *tmp;
256 	struct page *page;
257 	int page_uptodate = 1;
258 
259 	BUG_ON(!buffer_async_read(bh));
260 
261 	page = bh->b_page;
262 	if (uptodate) {
263 		set_buffer_uptodate(bh);
264 	} else {
265 		clear_buffer_uptodate(bh);
266 		buffer_io_error(bh, ", async page read");
267 		SetPageError(page);
268 	}
269 
270 	/*
271 	 * Be _very_ careful from here on. Bad things can happen if
272 	 * two buffer heads end IO at almost the same time and both
273 	 * decide that the page is now completely done.
274 	 */
275 	first = page_buffers(page);
276 	local_irq_save(flags);
277 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
278 	clear_buffer_async_read(bh);
279 	unlock_buffer(bh);
280 	tmp = bh;
281 	do {
282 		if (!buffer_uptodate(tmp))
283 			page_uptodate = 0;
284 		if (buffer_async_read(tmp)) {
285 			BUG_ON(!buffer_locked(tmp));
286 			goto still_busy;
287 		}
288 		tmp = tmp->b_this_page;
289 	} while (tmp != bh);
290 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
291 	local_irq_restore(flags);
292 
293 	/*
294 	 * If none of the buffers had errors and they are all
295 	 * uptodate then we can set the page uptodate.
296 	 */
297 	if (page_uptodate && !PageError(page))
298 		SetPageUptodate(page);
299 	unlock_page(page);
300 	return;
301 
302 still_busy:
303 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
304 	local_irq_restore(flags);
305 	return;
306 }
307 
308 /*
309  * Completion handler for block_write_full_page() - pages which are unlocked
310  * during I/O, and which have PageWriteback cleared upon I/O completion.
311  */
312 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
313 {
314 	unsigned long flags;
315 	struct buffer_head *first;
316 	struct buffer_head *tmp;
317 	struct page *page;
318 
319 	BUG_ON(!buffer_async_write(bh));
320 
321 	page = bh->b_page;
322 	if (uptodate) {
323 		set_buffer_uptodate(bh);
324 	} else {
325 		buffer_io_error(bh, ", lost async page write");
326 		mark_buffer_write_io_error(bh);
327 		clear_buffer_uptodate(bh);
328 		SetPageError(page);
329 	}
330 
331 	first = page_buffers(page);
332 	local_irq_save(flags);
333 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
334 
335 	clear_buffer_async_write(bh);
336 	unlock_buffer(bh);
337 	tmp = bh->b_this_page;
338 	while (tmp != bh) {
339 		if (buffer_async_write(tmp)) {
340 			BUG_ON(!buffer_locked(tmp));
341 			goto still_busy;
342 		}
343 		tmp = tmp->b_this_page;
344 	}
345 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 	local_irq_restore(flags);
347 	end_page_writeback(page);
348 	return;
349 
350 still_busy:
351 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
352 	local_irq_restore(flags);
353 	return;
354 }
355 EXPORT_SYMBOL(end_buffer_async_write);
356 
357 /*
358  * If a page's buffers are under async readin (end_buffer_async_read
359  * completion) then there is a possibility that another thread of
360  * control could lock one of the buffers after it has completed
361  * but while some of the other buffers have not completed.  This
362  * locked buffer would confuse end_buffer_async_read() into not unlocking
363  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
364  * that this buffer is not under async I/O.
365  *
366  * The page comes unlocked when it has no locked buffer_async buffers
367  * left.
368  *
369  * PageLocked prevents anyone starting new async I/O reads any of
370  * the buffers.
371  *
372  * PageWriteback is used to prevent simultaneous writeout of the same
373  * page.
374  *
375  * PageLocked prevents anyone from starting writeback of a page which is
376  * under read I/O (PageWriteback is only ever set against a locked page).
377  */
378 static void mark_buffer_async_read(struct buffer_head *bh)
379 {
380 	bh->b_end_io = end_buffer_async_read;
381 	set_buffer_async_read(bh);
382 }
383 
384 static void mark_buffer_async_write_endio(struct buffer_head *bh,
385 					  bh_end_io_t *handler)
386 {
387 	bh->b_end_io = handler;
388 	set_buffer_async_write(bh);
389 }
390 
391 void mark_buffer_async_write(struct buffer_head *bh)
392 {
393 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
394 }
395 EXPORT_SYMBOL(mark_buffer_async_write);
396 
397 
398 /*
399  * fs/buffer.c contains helper functions for buffer-backed address space's
400  * fsync functions.  A common requirement for buffer-based filesystems is
401  * that certain data from the backing blockdev needs to be written out for
402  * a successful fsync().  For example, ext2 indirect blocks need to be
403  * written back and waited upon before fsync() returns.
404  *
405  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
406  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
407  * management of a list of dependent buffers at ->i_mapping->private_list.
408  *
409  * Locking is a little subtle: try_to_free_buffers() will remove buffers
410  * from their controlling inode's queue when they are being freed.  But
411  * try_to_free_buffers() will be operating against the *blockdev* mapping
412  * at the time, not against the S_ISREG file which depends on those buffers.
413  * So the locking for private_list is via the private_lock in the address_space
414  * which backs the buffers.  Which is different from the address_space
415  * against which the buffers are listed.  So for a particular address_space,
416  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
417  * mapping->private_list will always be protected by the backing blockdev's
418  * ->private_lock.
419  *
420  * Which introduces a requirement: all buffers on an address_space's
421  * ->private_list must be from the same address_space: the blockdev's.
422  *
423  * address_spaces which do not place buffers at ->private_list via these
424  * utility functions are free to use private_lock and private_list for
425  * whatever they want.  The only requirement is that list_empty(private_list)
426  * be true at clear_inode() time.
427  *
428  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
429  * filesystems should do that.  invalidate_inode_buffers() should just go
430  * BUG_ON(!list_empty).
431  *
432  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
433  * take an address_space, not an inode.  And it should be called
434  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
435  * queued up.
436  *
437  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
438  * list if it is already on a list.  Because if the buffer is on a list,
439  * it *must* already be on the right one.  If not, the filesystem is being
440  * silly.  This will save a ton of locking.  But first we have to ensure
441  * that buffers are taken *off* the old inode's list when they are freed
442  * (presumably in truncate).  That requires careful auditing of all
443  * filesystems (do it inside bforget()).  It could also be done by bringing
444  * b_inode back.
445  */
446 
447 /*
448  * The buffer's backing address_space's private_lock must be held
449  */
450 static void __remove_assoc_queue(struct buffer_head *bh)
451 {
452 	list_del_init(&bh->b_assoc_buffers);
453 	WARN_ON(!bh->b_assoc_map);
454 	bh->b_assoc_map = NULL;
455 }
456 
457 int inode_has_buffers(struct inode *inode)
458 {
459 	return !list_empty(&inode->i_data.private_list);
460 }
461 
462 /*
463  * osync is designed to support O_SYNC io.  It waits synchronously for
464  * all already-submitted IO to complete, but does not queue any new
465  * writes to the disk.
466  *
467  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
468  * you dirty the buffers, and then use osync_inode_buffers to wait for
469  * completion.  Any other dirty buffers which are not yet queued for
470  * write will not be flushed to disk by the osync.
471  */
472 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
473 {
474 	struct buffer_head *bh;
475 	struct list_head *p;
476 	int err = 0;
477 
478 	spin_lock(lock);
479 repeat:
480 	list_for_each_prev(p, list) {
481 		bh = BH_ENTRY(p);
482 		if (buffer_locked(bh)) {
483 			get_bh(bh);
484 			spin_unlock(lock);
485 			wait_on_buffer(bh);
486 			if (!buffer_uptodate(bh))
487 				err = -EIO;
488 			brelse(bh);
489 			spin_lock(lock);
490 			goto repeat;
491 		}
492 	}
493 	spin_unlock(lock);
494 	return err;
495 }
496 
497 void emergency_thaw_bdev(struct super_block *sb)
498 {
499 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
500 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
501 }
502 
503 /**
504  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
505  * @mapping: the mapping which wants those buffers written
506  *
507  * Starts I/O against the buffers at mapping->private_list, and waits upon
508  * that I/O.
509  *
510  * Basically, this is a convenience function for fsync().
511  * @mapping is a file or directory which needs those buffers to be written for
512  * a successful fsync().
513  */
514 int sync_mapping_buffers(struct address_space *mapping)
515 {
516 	struct address_space *buffer_mapping = mapping->private_data;
517 
518 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
519 		return 0;
520 
521 	return fsync_buffers_list(&buffer_mapping->private_lock,
522 					&mapping->private_list);
523 }
524 EXPORT_SYMBOL(sync_mapping_buffers);
525 
526 /*
527  * Called when we've recently written block `bblock', and it is known that
528  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
529  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
530  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
531  */
532 void write_boundary_block(struct block_device *bdev,
533 			sector_t bblock, unsigned blocksize)
534 {
535 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
536 	if (bh) {
537 		if (buffer_dirty(bh))
538 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
539 		put_bh(bh);
540 	}
541 }
542 
543 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
544 {
545 	struct address_space *mapping = inode->i_mapping;
546 	struct address_space *buffer_mapping = bh->b_page->mapping;
547 
548 	mark_buffer_dirty(bh);
549 	if (!mapping->private_data) {
550 		mapping->private_data = buffer_mapping;
551 	} else {
552 		BUG_ON(mapping->private_data != buffer_mapping);
553 	}
554 	if (!bh->b_assoc_map) {
555 		spin_lock(&buffer_mapping->private_lock);
556 		list_move_tail(&bh->b_assoc_buffers,
557 				&mapping->private_list);
558 		bh->b_assoc_map = mapping;
559 		spin_unlock(&buffer_mapping->private_lock);
560 	}
561 }
562 EXPORT_SYMBOL(mark_buffer_dirty_inode);
563 
564 /*
565  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
566  * dirty.
567  *
568  * If warn is true, then emit a warning if the page is not uptodate and has
569  * not been truncated.
570  *
571  * The caller must hold lock_page_memcg().
572  */
573 void __set_page_dirty(struct page *page, struct address_space *mapping,
574 			     int warn)
575 {
576 	unsigned long flags;
577 
578 	xa_lock_irqsave(&mapping->i_pages, flags);
579 	if (page->mapping) {	/* Race with truncate? */
580 		WARN_ON_ONCE(warn && !PageUptodate(page));
581 		account_page_dirtied(page, mapping);
582 		radix_tree_tag_set(&mapping->i_pages,
583 				page_index(page), PAGECACHE_TAG_DIRTY);
584 	}
585 	xa_unlock_irqrestore(&mapping->i_pages, flags);
586 }
587 EXPORT_SYMBOL_GPL(__set_page_dirty);
588 
589 /*
590  * Add a page to the dirty page list.
591  *
592  * It is a sad fact of life that this function is called from several places
593  * deeply under spinlocking.  It may not sleep.
594  *
595  * If the page has buffers, the uptodate buffers are set dirty, to preserve
596  * dirty-state coherency between the page and the buffers.  It the page does
597  * not have buffers then when they are later attached they will all be set
598  * dirty.
599  *
600  * The buffers are dirtied before the page is dirtied.  There's a small race
601  * window in which a writepage caller may see the page cleanness but not the
602  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
603  * before the buffers, a concurrent writepage caller could clear the page dirty
604  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
605  * page on the dirty page list.
606  *
607  * We use private_lock to lock against try_to_free_buffers while using the
608  * page's buffer list.  Also use this to protect against clean buffers being
609  * added to the page after it was set dirty.
610  *
611  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
612  * address_space though.
613  */
614 int __set_page_dirty_buffers(struct page *page)
615 {
616 	int newly_dirty;
617 	struct address_space *mapping = page_mapping(page);
618 
619 	if (unlikely(!mapping))
620 		return !TestSetPageDirty(page);
621 
622 	spin_lock(&mapping->private_lock);
623 	if (page_has_buffers(page)) {
624 		struct buffer_head *head = page_buffers(page);
625 		struct buffer_head *bh = head;
626 
627 		do {
628 			set_buffer_dirty(bh);
629 			bh = bh->b_this_page;
630 		} while (bh != head);
631 	}
632 	/*
633 	 * Lock out page->mem_cgroup migration to keep PageDirty
634 	 * synchronized with per-memcg dirty page counters.
635 	 */
636 	lock_page_memcg(page);
637 	newly_dirty = !TestSetPageDirty(page);
638 	spin_unlock(&mapping->private_lock);
639 
640 	if (newly_dirty)
641 		__set_page_dirty(page, mapping, 1);
642 
643 	unlock_page_memcg(page);
644 
645 	if (newly_dirty)
646 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
647 
648 	return newly_dirty;
649 }
650 EXPORT_SYMBOL(__set_page_dirty_buffers);
651 
652 /*
653  * Write out and wait upon a list of buffers.
654  *
655  * We have conflicting pressures: we want to make sure that all
656  * initially dirty buffers get waited on, but that any subsequently
657  * dirtied buffers don't.  After all, we don't want fsync to last
658  * forever if somebody is actively writing to the file.
659  *
660  * Do this in two main stages: first we copy dirty buffers to a
661  * temporary inode list, queueing the writes as we go.  Then we clean
662  * up, waiting for those writes to complete.
663  *
664  * During this second stage, any subsequent updates to the file may end
665  * up refiling the buffer on the original inode's dirty list again, so
666  * there is a chance we will end up with a buffer queued for write but
667  * not yet completed on that list.  So, as a final cleanup we go through
668  * the osync code to catch these locked, dirty buffers without requeuing
669  * any newly dirty buffers for write.
670  */
671 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
672 {
673 	struct buffer_head *bh;
674 	struct list_head tmp;
675 	struct address_space *mapping;
676 	int err = 0, err2;
677 	struct blk_plug plug;
678 
679 	INIT_LIST_HEAD(&tmp);
680 	blk_start_plug(&plug);
681 
682 	spin_lock(lock);
683 	while (!list_empty(list)) {
684 		bh = BH_ENTRY(list->next);
685 		mapping = bh->b_assoc_map;
686 		__remove_assoc_queue(bh);
687 		/* Avoid race with mark_buffer_dirty_inode() which does
688 		 * a lockless check and we rely on seeing the dirty bit */
689 		smp_mb();
690 		if (buffer_dirty(bh) || buffer_locked(bh)) {
691 			list_add(&bh->b_assoc_buffers, &tmp);
692 			bh->b_assoc_map = mapping;
693 			if (buffer_dirty(bh)) {
694 				get_bh(bh);
695 				spin_unlock(lock);
696 				/*
697 				 * Ensure any pending I/O completes so that
698 				 * write_dirty_buffer() actually writes the
699 				 * current contents - it is a noop if I/O is
700 				 * still in flight on potentially older
701 				 * contents.
702 				 */
703 				write_dirty_buffer(bh, REQ_SYNC);
704 
705 				/*
706 				 * Kick off IO for the previous mapping. Note
707 				 * that we will not run the very last mapping,
708 				 * wait_on_buffer() will do that for us
709 				 * through sync_buffer().
710 				 */
711 				brelse(bh);
712 				spin_lock(lock);
713 			}
714 		}
715 	}
716 
717 	spin_unlock(lock);
718 	blk_finish_plug(&plug);
719 	spin_lock(lock);
720 
721 	while (!list_empty(&tmp)) {
722 		bh = BH_ENTRY(tmp.prev);
723 		get_bh(bh);
724 		mapping = bh->b_assoc_map;
725 		__remove_assoc_queue(bh);
726 		/* Avoid race with mark_buffer_dirty_inode() which does
727 		 * a lockless check and we rely on seeing the dirty bit */
728 		smp_mb();
729 		if (buffer_dirty(bh)) {
730 			list_add(&bh->b_assoc_buffers,
731 				 &mapping->private_list);
732 			bh->b_assoc_map = mapping;
733 		}
734 		spin_unlock(lock);
735 		wait_on_buffer(bh);
736 		if (!buffer_uptodate(bh))
737 			err = -EIO;
738 		brelse(bh);
739 		spin_lock(lock);
740 	}
741 
742 	spin_unlock(lock);
743 	err2 = osync_buffers_list(lock, list);
744 	if (err)
745 		return err;
746 	else
747 		return err2;
748 }
749 
750 /*
751  * Invalidate any and all dirty buffers on a given inode.  We are
752  * probably unmounting the fs, but that doesn't mean we have already
753  * done a sync().  Just drop the buffers from the inode list.
754  *
755  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
756  * assumes that all the buffers are against the blockdev.  Not true
757  * for reiserfs.
758  */
759 void invalidate_inode_buffers(struct inode *inode)
760 {
761 	if (inode_has_buffers(inode)) {
762 		struct address_space *mapping = &inode->i_data;
763 		struct list_head *list = &mapping->private_list;
764 		struct address_space *buffer_mapping = mapping->private_data;
765 
766 		spin_lock(&buffer_mapping->private_lock);
767 		while (!list_empty(list))
768 			__remove_assoc_queue(BH_ENTRY(list->next));
769 		spin_unlock(&buffer_mapping->private_lock);
770 	}
771 }
772 EXPORT_SYMBOL(invalidate_inode_buffers);
773 
774 /*
775  * Remove any clean buffers from the inode's buffer list.  This is called
776  * when we're trying to free the inode itself.  Those buffers can pin it.
777  *
778  * Returns true if all buffers were removed.
779  */
780 int remove_inode_buffers(struct inode *inode)
781 {
782 	int ret = 1;
783 
784 	if (inode_has_buffers(inode)) {
785 		struct address_space *mapping = &inode->i_data;
786 		struct list_head *list = &mapping->private_list;
787 		struct address_space *buffer_mapping = mapping->private_data;
788 
789 		spin_lock(&buffer_mapping->private_lock);
790 		while (!list_empty(list)) {
791 			struct buffer_head *bh = BH_ENTRY(list->next);
792 			if (buffer_dirty(bh)) {
793 				ret = 0;
794 				break;
795 			}
796 			__remove_assoc_queue(bh);
797 		}
798 		spin_unlock(&buffer_mapping->private_lock);
799 	}
800 	return ret;
801 }
802 
803 /*
804  * Create the appropriate buffers when given a page for data area and
805  * the size of each buffer.. Use the bh->b_this_page linked list to
806  * follow the buffers created.  Return NULL if unable to create more
807  * buffers.
808  *
809  * The retry flag is used to differentiate async IO (paging, swapping)
810  * which may not fail from ordinary buffer allocations.
811  */
812 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
813 		bool retry)
814 {
815 	struct buffer_head *bh, *head;
816 	gfp_t gfp = GFP_NOFS;
817 	long offset;
818 
819 	if (retry)
820 		gfp |= __GFP_NOFAIL;
821 
822 	head = NULL;
823 	offset = PAGE_SIZE;
824 	while ((offset -= size) >= 0) {
825 		bh = alloc_buffer_head(gfp);
826 		if (!bh)
827 			goto no_grow;
828 
829 		bh->b_this_page = head;
830 		bh->b_blocknr = -1;
831 		head = bh;
832 
833 		bh->b_size = size;
834 
835 		/* Link the buffer to its page */
836 		set_bh_page(bh, page, offset);
837 	}
838 	return head;
839 /*
840  * In case anything failed, we just free everything we got.
841  */
842 no_grow:
843 	if (head) {
844 		do {
845 			bh = head;
846 			head = head->b_this_page;
847 			free_buffer_head(bh);
848 		} while (head);
849 	}
850 
851 	return NULL;
852 }
853 EXPORT_SYMBOL_GPL(alloc_page_buffers);
854 
855 static inline void
856 link_dev_buffers(struct page *page, struct buffer_head *head)
857 {
858 	struct buffer_head *bh, *tail;
859 
860 	bh = head;
861 	do {
862 		tail = bh;
863 		bh = bh->b_this_page;
864 	} while (bh);
865 	tail->b_this_page = head;
866 	attach_page_buffers(page, head);
867 }
868 
869 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
870 {
871 	sector_t retval = ~((sector_t)0);
872 	loff_t sz = i_size_read(bdev->bd_inode);
873 
874 	if (sz) {
875 		unsigned int sizebits = blksize_bits(size);
876 		retval = (sz >> sizebits);
877 	}
878 	return retval;
879 }
880 
881 /*
882  * Initialise the state of a blockdev page's buffers.
883  */
884 static sector_t
885 init_page_buffers(struct page *page, struct block_device *bdev,
886 			sector_t block, int size)
887 {
888 	struct buffer_head *head = page_buffers(page);
889 	struct buffer_head *bh = head;
890 	int uptodate = PageUptodate(page);
891 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
892 
893 	do {
894 		if (!buffer_mapped(bh)) {
895 			bh->b_end_io = NULL;
896 			bh->b_private = NULL;
897 			bh->b_bdev = bdev;
898 			bh->b_blocknr = block;
899 			if (uptodate)
900 				set_buffer_uptodate(bh);
901 			if (block < end_block)
902 				set_buffer_mapped(bh);
903 		}
904 		block++;
905 		bh = bh->b_this_page;
906 	} while (bh != head);
907 
908 	/*
909 	 * Caller needs to validate requested block against end of device.
910 	 */
911 	return end_block;
912 }
913 
914 /*
915  * Create the page-cache page that contains the requested block.
916  *
917  * This is used purely for blockdev mappings.
918  */
919 static int
920 grow_dev_page(struct block_device *bdev, sector_t block,
921 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
922 {
923 	struct inode *inode = bdev->bd_inode;
924 	struct page *page;
925 	struct buffer_head *bh;
926 	sector_t end_block;
927 	int ret = 0;		/* Will call free_more_memory() */
928 	gfp_t gfp_mask;
929 
930 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
931 
932 	/*
933 	 * XXX: __getblk_slow() can not really deal with failure and
934 	 * will endlessly loop on improvised global reclaim.  Prefer
935 	 * looping in the allocator rather than here, at least that
936 	 * code knows what it's doing.
937 	 */
938 	gfp_mask |= __GFP_NOFAIL;
939 
940 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
941 
942 	BUG_ON(!PageLocked(page));
943 
944 	if (page_has_buffers(page)) {
945 		bh = page_buffers(page);
946 		if (bh->b_size == size) {
947 			end_block = init_page_buffers(page, bdev,
948 						(sector_t)index << sizebits,
949 						size);
950 			goto done;
951 		}
952 		if (!try_to_free_buffers(page))
953 			goto failed;
954 	}
955 
956 	/*
957 	 * Allocate some buffers for this page
958 	 */
959 	bh = alloc_page_buffers(page, size, true);
960 
961 	/*
962 	 * Link the page to the buffers and initialise them.  Take the
963 	 * lock to be atomic wrt __find_get_block(), which does not
964 	 * run under the page lock.
965 	 */
966 	spin_lock(&inode->i_mapping->private_lock);
967 	link_dev_buffers(page, bh);
968 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
969 			size);
970 	spin_unlock(&inode->i_mapping->private_lock);
971 done:
972 	ret = (block < end_block) ? 1 : -ENXIO;
973 failed:
974 	unlock_page(page);
975 	put_page(page);
976 	return ret;
977 }
978 
979 /*
980  * Create buffers for the specified block device block's page.  If
981  * that page was dirty, the buffers are set dirty also.
982  */
983 static int
984 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
985 {
986 	pgoff_t index;
987 	int sizebits;
988 
989 	sizebits = -1;
990 	do {
991 		sizebits++;
992 	} while ((size << sizebits) < PAGE_SIZE);
993 
994 	index = block >> sizebits;
995 
996 	/*
997 	 * Check for a block which wants to lie outside our maximum possible
998 	 * pagecache index.  (this comparison is done using sector_t types).
999 	 */
1000 	if (unlikely(index != block >> sizebits)) {
1001 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1002 			"device %pg\n",
1003 			__func__, (unsigned long long)block,
1004 			bdev);
1005 		return -EIO;
1006 	}
1007 
1008 	/* Create a page with the proper size buffers.. */
1009 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1010 }
1011 
1012 static struct buffer_head *
1013 __getblk_slow(struct block_device *bdev, sector_t block,
1014 	     unsigned size, gfp_t gfp)
1015 {
1016 	/* Size must be multiple of hard sectorsize */
1017 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1018 			(size < 512 || size > PAGE_SIZE))) {
1019 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1020 					size);
1021 		printk(KERN_ERR "logical block size: %d\n",
1022 					bdev_logical_block_size(bdev));
1023 
1024 		dump_stack();
1025 		return NULL;
1026 	}
1027 
1028 	for (;;) {
1029 		struct buffer_head *bh;
1030 		int ret;
1031 
1032 		bh = __find_get_block(bdev, block, size);
1033 		if (bh)
1034 			return bh;
1035 
1036 		ret = grow_buffers(bdev, block, size, gfp);
1037 		if (ret < 0)
1038 			return NULL;
1039 	}
1040 }
1041 
1042 /*
1043  * The relationship between dirty buffers and dirty pages:
1044  *
1045  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1046  * the page is tagged dirty in its radix tree.
1047  *
1048  * At all times, the dirtiness of the buffers represents the dirtiness of
1049  * subsections of the page.  If the page has buffers, the page dirty bit is
1050  * merely a hint about the true dirty state.
1051  *
1052  * When a page is set dirty in its entirety, all its buffers are marked dirty
1053  * (if the page has buffers).
1054  *
1055  * When a buffer is marked dirty, its page is dirtied, but the page's other
1056  * buffers are not.
1057  *
1058  * Also.  When blockdev buffers are explicitly read with bread(), they
1059  * individually become uptodate.  But their backing page remains not
1060  * uptodate - even if all of its buffers are uptodate.  A subsequent
1061  * block_read_full_page() against that page will discover all the uptodate
1062  * buffers, will set the page uptodate and will perform no I/O.
1063  */
1064 
1065 /**
1066  * mark_buffer_dirty - mark a buffer_head as needing writeout
1067  * @bh: the buffer_head to mark dirty
1068  *
1069  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1070  * backing page dirty, then tag the page as dirty in its address_space's radix
1071  * tree and then attach the address_space's inode to its superblock's dirty
1072  * inode list.
1073  *
1074  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1075  * i_pages lock and mapping->host->i_lock.
1076  */
1077 void mark_buffer_dirty(struct buffer_head *bh)
1078 {
1079 	WARN_ON_ONCE(!buffer_uptodate(bh));
1080 
1081 	trace_block_dirty_buffer(bh);
1082 
1083 	/*
1084 	 * Very *carefully* optimize the it-is-already-dirty case.
1085 	 *
1086 	 * Don't let the final "is it dirty" escape to before we
1087 	 * perhaps modified the buffer.
1088 	 */
1089 	if (buffer_dirty(bh)) {
1090 		smp_mb();
1091 		if (buffer_dirty(bh))
1092 			return;
1093 	}
1094 
1095 	if (!test_set_buffer_dirty(bh)) {
1096 		struct page *page = bh->b_page;
1097 		struct address_space *mapping = NULL;
1098 
1099 		lock_page_memcg(page);
1100 		if (!TestSetPageDirty(page)) {
1101 			mapping = page_mapping(page);
1102 			if (mapping)
1103 				__set_page_dirty(page, mapping, 0);
1104 		}
1105 		unlock_page_memcg(page);
1106 		if (mapping)
1107 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1108 	}
1109 }
1110 EXPORT_SYMBOL(mark_buffer_dirty);
1111 
1112 void mark_buffer_write_io_error(struct buffer_head *bh)
1113 {
1114 	set_buffer_write_io_error(bh);
1115 	/* FIXME: do we need to set this in both places? */
1116 	if (bh->b_page && bh->b_page->mapping)
1117 		mapping_set_error(bh->b_page->mapping, -EIO);
1118 	if (bh->b_assoc_map)
1119 		mapping_set_error(bh->b_assoc_map, -EIO);
1120 }
1121 EXPORT_SYMBOL(mark_buffer_write_io_error);
1122 
1123 /*
1124  * Decrement a buffer_head's reference count.  If all buffers against a page
1125  * have zero reference count, are clean and unlocked, and if the page is clean
1126  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1127  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1128  * a page but it ends up not being freed, and buffers may later be reattached).
1129  */
1130 void __brelse(struct buffer_head * buf)
1131 {
1132 	if (atomic_read(&buf->b_count)) {
1133 		put_bh(buf);
1134 		return;
1135 	}
1136 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1137 }
1138 EXPORT_SYMBOL(__brelse);
1139 
1140 /*
1141  * bforget() is like brelse(), except it discards any
1142  * potentially dirty data.
1143  */
1144 void __bforget(struct buffer_head *bh)
1145 {
1146 	clear_buffer_dirty(bh);
1147 	if (bh->b_assoc_map) {
1148 		struct address_space *buffer_mapping = bh->b_page->mapping;
1149 
1150 		spin_lock(&buffer_mapping->private_lock);
1151 		list_del_init(&bh->b_assoc_buffers);
1152 		bh->b_assoc_map = NULL;
1153 		spin_unlock(&buffer_mapping->private_lock);
1154 	}
1155 	__brelse(bh);
1156 }
1157 EXPORT_SYMBOL(__bforget);
1158 
1159 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1160 {
1161 	lock_buffer(bh);
1162 	if (buffer_uptodate(bh)) {
1163 		unlock_buffer(bh);
1164 		return bh;
1165 	} else {
1166 		get_bh(bh);
1167 		bh->b_end_io = end_buffer_read_sync;
1168 		submit_bh(REQ_OP_READ, 0, bh);
1169 		wait_on_buffer(bh);
1170 		if (buffer_uptodate(bh))
1171 			return bh;
1172 	}
1173 	brelse(bh);
1174 	return NULL;
1175 }
1176 
1177 /*
1178  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1179  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1180  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1181  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1182  * CPU's LRUs at the same time.
1183  *
1184  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1185  * sb_find_get_block().
1186  *
1187  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1188  * a local interrupt disable for that.
1189  */
1190 
1191 #define BH_LRU_SIZE	16
1192 
1193 struct bh_lru {
1194 	struct buffer_head *bhs[BH_LRU_SIZE];
1195 };
1196 
1197 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1198 
1199 #ifdef CONFIG_SMP
1200 #define bh_lru_lock()	local_irq_disable()
1201 #define bh_lru_unlock()	local_irq_enable()
1202 #else
1203 #define bh_lru_lock()	preempt_disable()
1204 #define bh_lru_unlock()	preempt_enable()
1205 #endif
1206 
1207 static inline void check_irqs_on(void)
1208 {
1209 #ifdef irqs_disabled
1210 	BUG_ON(irqs_disabled());
1211 #endif
1212 }
1213 
1214 /*
1215  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1216  * inserted at the front, and the buffer_head at the back if any is evicted.
1217  * Or, if already in the LRU it is moved to the front.
1218  */
1219 static void bh_lru_install(struct buffer_head *bh)
1220 {
1221 	struct buffer_head *evictee = bh;
1222 	struct bh_lru *b;
1223 	int i;
1224 
1225 	check_irqs_on();
1226 	bh_lru_lock();
1227 
1228 	b = this_cpu_ptr(&bh_lrus);
1229 	for (i = 0; i < BH_LRU_SIZE; i++) {
1230 		swap(evictee, b->bhs[i]);
1231 		if (evictee == bh) {
1232 			bh_lru_unlock();
1233 			return;
1234 		}
1235 	}
1236 
1237 	get_bh(bh);
1238 	bh_lru_unlock();
1239 	brelse(evictee);
1240 }
1241 
1242 /*
1243  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1244  */
1245 static struct buffer_head *
1246 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1247 {
1248 	struct buffer_head *ret = NULL;
1249 	unsigned int i;
1250 
1251 	check_irqs_on();
1252 	bh_lru_lock();
1253 	for (i = 0; i < BH_LRU_SIZE; i++) {
1254 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1255 
1256 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1257 		    bh->b_size == size) {
1258 			if (i) {
1259 				while (i) {
1260 					__this_cpu_write(bh_lrus.bhs[i],
1261 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1262 					i--;
1263 				}
1264 				__this_cpu_write(bh_lrus.bhs[0], bh);
1265 			}
1266 			get_bh(bh);
1267 			ret = bh;
1268 			break;
1269 		}
1270 	}
1271 	bh_lru_unlock();
1272 	return ret;
1273 }
1274 
1275 /*
1276  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1277  * it in the LRU and mark it as accessed.  If it is not present then return
1278  * NULL
1279  */
1280 struct buffer_head *
1281 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1282 {
1283 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1284 
1285 	if (bh == NULL) {
1286 		/* __find_get_block_slow will mark the page accessed */
1287 		bh = __find_get_block_slow(bdev, block);
1288 		if (bh)
1289 			bh_lru_install(bh);
1290 	} else
1291 		touch_buffer(bh);
1292 
1293 	return bh;
1294 }
1295 EXPORT_SYMBOL(__find_get_block);
1296 
1297 /*
1298  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1299  * which corresponds to the passed block_device, block and size. The
1300  * returned buffer has its reference count incremented.
1301  *
1302  * __getblk_gfp() will lock up the machine if grow_dev_page's
1303  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1304  */
1305 struct buffer_head *
1306 __getblk_gfp(struct block_device *bdev, sector_t block,
1307 	     unsigned size, gfp_t gfp)
1308 {
1309 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1310 
1311 	might_sleep();
1312 	if (bh == NULL)
1313 		bh = __getblk_slow(bdev, block, size, gfp);
1314 	return bh;
1315 }
1316 EXPORT_SYMBOL(__getblk_gfp);
1317 
1318 /*
1319  * Do async read-ahead on a buffer..
1320  */
1321 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1322 {
1323 	struct buffer_head *bh = __getblk(bdev, block, size);
1324 	if (likely(bh)) {
1325 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1326 		brelse(bh);
1327 	}
1328 }
1329 EXPORT_SYMBOL(__breadahead);
1330 
1331 /**
1332  *  __bread_gfp() - reads a specified block and returns the bh
1333  *  @bdev: the block_device to read from
1334  *  @block: number of block
1335  *  @size: size (in bytes) to read
1336  *  @gfp: page allocation flag
1337  *
1338  *  Reads a specified block, and returns buffer head that contains it.
1339  *  The page cache can be allocated from non-movable area
1340  *  not to prevent page migration if you set gfp to zero.
1341  *  It returns NULL if the block was unreadable.
1342  */
1343 struct buffer_head *
1344 __bread_gfp(struct block_device *bdev, sector_t block,
1345 		   unsigned size, gfp_t gfp)
1346 {
1347 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1348 
1349 	if (likely(bh) && !buffer_uptodate(bh))
1350 		bh = __bread_slow(bh);
1351 	return bh;
1352 }
1353 EXPORT_SYMBOL(__bread_gfp);
1354 
1355 /*
1356  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1357  * This doesn't race because it runs in each cpu either in irq
1358  * or with preempt disabled.
1359  */
1360 static void invalidate_bh_lru(void *arg)
1361 {
1362 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1363 	int i;
1364 
1365 	for (i = 0; i < BH_LRU_SIZE; i++) {
1366 		brelse(b->bhs[i]);
1367 		b->bhs[i] = NULL;
1368 	}
1369 	put_cpu_var(bh_lrus);
1370 }
1371 
1372 static bool has_bh_in_lru(int cpu, void *dummy)
1373 {
1374 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1375 	int i;
1376 
1377 	for (i = 0; i < BH_LRU_SIZE; i++) {
1378 		if (b->bhs[i])
1379 			return 1;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 void invalidate_bh_lrus(void)
1386 {
1387 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1388 }
1389 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1390 
1391 void set_bh_page(struct buffer_head *bh,
1392 		struct page *page, unsigned long offset)
1393 {
1394 	bh->b_page = page;
1395 	BUG_ON(offset >= PAGE_SIZE);
1396 	if (PageHighMem(page))
1397 		/*
1398 		 * This catches illegal uses and preserves the offset:
1399 		 */
1400 		bh->b_data = (char *)(0 + offset);
1401 	else
1402 		bh->b_data = page_address(page) + offset;
1403 }
1404 EXPORT_SYMBOL(set_bh_page);
1405 
1406 /*
1407  * Called when truncating a buffer on a page completely.
1408  */
1409 
1410 /* Bits that are cleared during an invalidate */
1411 #define BUFFER_FLAGS_DISCARD \
1412 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1413 	 1 << BH_Delay | 1 << BH_Unwritten)
1414 
1415 static void discard_buffer(struct buffer_head * bh)
1416 {
1417 	unsigned long b_state, b_state_old;
1418 
1419 	lock_buffer(bh);
1420 	clear_buffer_dirty(bh);
1421 	bh->b_bdev = NULL;
1422 	b_state = bh->b_state;
1423 	for (;;) {
1424 		b_state_old = cmpxchg(&bh->b_state, b_state,
1425 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1426 		if (b_state_old == b_state)
1427 			break;
1428 		b_state = b_state_old;
1429 	}
1430 	unlock_buffer(bh);
1431 }
1432 
1433 /**
1434  * block_invalidatepage - invalidate part or all of a buffer-backed page
1435  *
1436  * @page: the page which is affected
1437  * @offset: start of the range to invalidate
1438  * @length: length of the range to invalidate
1439  *
1440  * block_invalidatepage() is called when all or part of the page has become
1441  * invalidated by a truncate operation.
1442  *
1443  * block_invalidatepage() does not have to release all buffers, but it must
1444  * ensure that no dirty buffer is left outside @offset and that no I/O
1445  * is underway against any of the blocks which are outside the truncation
1446  * point.  Because the caller is about to free (and possibly reuse) those
1447  * blocks on-disk.
1448  */
1449 void block_invalidatepage(struct page *page, unsigned int offset,
1450 			  unsigned int length)
1451 {
1452 	struct buffer_head *head, *bh, *next;
1453 	unsigned int curr_off = 0;
1454 	unsigned int stop = length + offset;
1455 
1456 	BUG_ON(!PageLocked(page));
1457 	if (!page_has_buffers(page))
1458 		goto out;
1459 
1460 	/*
1461 	 * Check for overflow
1462 	 */
1463 	BUG_ON(stop > PAGE_SIZE || stop < length);
1464 
1465 	head = page_buffers(page);
1466 	bh = head;
1467 	do {
1468 		unsigned int next_off = curr_off + bh->b_size;
1469 		next = bh->b_this_page;
1470 
1471 		/*
1472 		 * Are we still fully in range ?
1473 		 */
1474 		if (next_off > stop)
1475 			goto out;
1476 
1477 		/*
1478 		 * is this block fully invalidated?
1479 		 */
1480 		if (offset <= curr_off)
1481 			discard_buffer(bh);
1482 		curr_off = next_off;
1483 		bh = next;
1484 	} while (bh != head);
1485 
1486 	/*
1487 	 * We release buffers only if the entire page is being invalidated.
1488 	 * The get_block cached value has been unconditionally invalidated,
1489 	 * so real IO is not possible anymore.
1490 	 */
1491 	if (length == PAGE_SIZE)
1492 		try_to_release_page(page, 0);
1493 out:
1494 	return;
1495 }
1496 EXPORT_SYMBOL(block_invalidatepage);
1497 
1498 
1499 /*
1500  * We attach and possibly dirty the buffers atomically wrt
1501  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1502  * is already excluded via the page lock.
1503  */
1504 void create_empty_buffers(struct page *page,
1505 			unsigned long blocksize, unsigned long b_state)
1506 {
1507 	struct buffer_head *bh, *head, *tail;
1508 
1509 	head = alloc_page_buffers(page, blocksize, true);
1510 	bh = head;
1511 	do {
1512 		bh->b_state |= b_state;
1513 		tail = bh;
1514 		bh = bh->b_this_page;
1515 	} while (bh);
1516 	tail->b_this_page = head;
1517 
1518 	spin_lock(&page->mapping->private_lock);
1519 	if (PageUptodate(page) || PageDirty(page)) {
1520 		bh = head;
1521 		do {
1522 			if (PageDirty(page))
1523 				set_buffer_dirty(bh);
1524 			if (PageUptodate(page))
1525 				set_buffer_uptodate(bh);
1526 			bh = bh->b_this_page;
1527 		} while (bh != head);
1528 	}
1529 	attach_page_buffers(page, head);
1530 	spin_unlock(&page->mapping->private_lock);
1531 }
1532 EXPORT_SYMBOL(create_empty_buffers);
1533 
1534 /**
1535  * clean_bdev_aliases: clean a range of buffers in block device
1536  * @bdev: Block device to clean buffers in
1537  * @block: Start of a range of blocks to clean
1538  * @len: Number of blocks to clean
1539  *
1540  * We are taking a range of blocks for data and we don't want writeback of any
1541  * buffer-cache aliases starting from return from this function and until the
1542  * moment when something will explicitly mark the buffer dirty (hopefully that
1543  * will not happen until we will free that block ;-) We don't even need to mark
1544  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1545  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1546  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1547  * would confuse anyone who might pick it with bread() afterwards...
1548  *
1549  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1550  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1551  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1552  * need to.  That happens here.
1553  */
1554 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1555 {
1556 	struct inode *bd_inode = bdev->bd_inode;
1557 	struct address_space *bd_mapping = bd_inode->i_mapping;
1558 	struct pagevec pvec;
1559 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1560 	pgoff_t end;
1561 	int i, count;
1562 	struct buffer_head *bh;
1563 	struct buffer_head *head;
1564 
1565 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1566 	pagevec_init(&pvec);
1567 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1568 		count = pagevec_count(&pvec);
1569 		for (i = 0; i < count; i++) {
1570 			struct page *page = pvec.pages[i];
1571 
1572 			if (!page_has_buffers(page))
1573 				continue;
1574 			/*
1575 			 * We use page lock instead of bd_mapping->private_lock
1576 			 * to pin buffers here since we can afford to sleep and
1577 			 * it scales better than a global spinlock lock.
1578 			 */
1579 			lock_page(page);
1580 			/* Recheck when the page is locked which pins bhs */
1581 			if (!page_has_buffers(page))
1582 				goto unlock_page;
1583 			head = page_buffers(page);
1584 			bh = head;
1585 			do {
1586 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1587 					goto next;
1588 				if (bh->b_blocknr >= block + len)
1589 					break;
1590 				clear_buffer_dirty(bh);
1591 				wait_on_buffer(bh);
1592 				clear_buffer_req(bh);
1593 next:
1594 				bh = bh->b_this_page;
1595 			} while (bh != head);
1596 unlock_page:
1597 			unlock_page(page);
1598 		}
1599 		pagevec_release(&pvec);
1600 		cond_resched();
1601 		/* End of range already reached? */
1602 		if (index > end || !index)
1603 			break;
1604 	}
1605 }
1606 EXPORT_SYMBOL(clean_bdev_aliases);
1607 
1608 /*
1609  * Size is a power-of-two in the range 512..PAGE_SIZE,
1610  * and the case we care about most is PAGE_SIZE.
1611  *
1612  * So this *could* possibly be written with those
1613  * constraints in mind (relevant mostly if some
1614  * architecture has a slow bit-scan instruction)
1615  */
1616 static inline int block_size_bits(unsigned int blocksize)
1617 {
1618 	return ilog2(blocksize);
1619 }
1620 
1621 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1622 {
1623 	BUG_ON(!PageLocked(page));
1624 
1625 	if (!page_has_buffers(page))
1626 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1627 				     b_state);
1628 	return page_buffers(page);
1629 }
1630 
1631 /*
1632  * NOTE! All mapped/uptodate combinations are valid:
1633  *
1634  *	Mapped	Uptodate	Meaning
1635  *
1636  *	No	No		"unknown" - must do get_block()
1637  *	No	Yes		"hole" - zero-filled
1638  *	Yes	No		"allocated" - allocated on disk, not read in
1639  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1640  *
1641  * "Dirty" is valid only with the last case (mapped+uptodate).
1642  */
1643 
1644 /*
1645  * While block_write_full_page is writing back the dirty buffers under
1646  * the page lock, whoever dirtied the buffers may decide to clean them
1647  * again at any time.  We handle that by only looking at the buffer
1648  * state inside lock_buffer().
1649  *
1650  * If block_write_full_page() is called for regular writeback
1651  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1652  * locked buffer.   This only can happen if someone has written the buffer
1653  * directly, with submit_bh().  At the address_space level PageWriteback
1654  * prevents this contention from occurring.
1655  *
1656  * If block_write_full_page() is called with wbc->sync_mode ==
1657  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1658  * causes the writes to be flagged as synchronous writes.
1659  */
1660 int __block_write_full_page(struct inode *inode, struct page *page,
1661 			get_block_t *get_block, struct writeback_control *wbc,
1662 			bh_end_io_t *handler)
1663 {
1664 	int err;
1665 	sector_t block;
1666 	sector_t last_block;
1667 	struct buffer_head *bh, *head;
1668 	unsigned int blocksize, bbits;
1669 	int nr_underway = 0;
1670 	int write_flags = wbc_to_write_flags(wbc);
1671 
1672 	head = create_page_buffers(page, inode,
1673 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1674 
1675 	/*
1676 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1677 	 * here, and the (potentially unmapped) buffers may become dirty at
1678 	 * any time.  If a buffer becomes dirty here after we've inspected it
1679 	 * then we just miss that fact, and the page stays dirty.
1680 	 *
1681 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1682 	 * handle that here by just cleaning them.
1683 	 */
1684 
1685 	bh = head;
1686 	blocksize = bh->b_size;
1687 	bbits = block_size_bits(blocksize);
1688 
1689 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1690 	last_block = (i_size_read(inode) - 1) >> bbits;
1691 
1692 	/*
1693 	 * Get all the dirty buffers mapped to disk addresses and
1694 	 * handle any aliases from the underlying blockdev's mapping.
1695 	 */
1696 	do {
1697 		if (block > last_block) {
1698 			/*
1699 			 * mapped buffers outside i_size will occur, because
1700 			 * this page can be outside i_size when there is a
1701 			 * truncate in progress.
1702 			 */
1703 			/*
1704 			 * The buffer was zeroed by block_write_full_page()
1705 			 */
1706 			clear_buffer_dirty(bh);
1707 			set_buffer_uptodate(bh);
1708 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1709 			   buffer_dirty(bh)) {
1710 			WARN_ON(bh->b_size != blocksize);
1711 			err = get_block(inode, block, bh, 1);
1712 			if (err)
1713 				goto recover;
1714 			clear_buffer_delay(bh);
1715 			if (buffer_new(bh)) {
1716 				/* blockdev mappings never come here */
1717 				clear_buffer_new(bh);
1718 				clean_bdev_bh_alias(bh);
1719 			}
1720 		}
1721 		bh = bh->b_this_page;
1722 		block++;
1723 	} while (bh != head);
1724 
1725 	do {
1726 		if (!buffer_mapped(bh))
1727 			continue;
1728 		/*
1729 		 * If it's a fully non-blocking write attempt and we cannot
1730 		 * lock the buffer then redirty the page.  Note that this can
1731 		 * potentially cause a busy-wait loop from writeback threads
1732 		 * and kswapd activity, but those code paths have their own
1733 		 * higher-level throttling.
1734 		 */
1735 		if (wbc->sync_mode != WB_SYNC_NONE) {
1736 			lock_buffer(bh);
1737 		} else if (!trylock_buffer(bh)) {
1738 			redirty_page_for_writepage(wbc, page);
1739 			continue;
1740 		}
1741 		if (test_clear_buffer_dirty(bh)) {
1742 			mark_buffer_async_write_endio(bh, handler);
1743 		} else {
1744 			unlock_buffer(bh);
1745 		}
1746 	} while ((bh = bh->b_this_page) != head);
1747 
1748 	/*
1749 	 * The page and its buffers are protected by PageWriteback(), so we can
1750 	 * drop the bh refcounts early.
1751 	 */
1752 	BUG_ON(PageWriteback(page));
1753 	set_page_writeback(page);
1754 
1755 	do {
1756 		struct buffer_head *next = bh->b_this_page;
1757 		if (buffer_async_write(bh)) {
1758 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1759 					inode->i_write_hint, wbc);
1760 			nr_underway++;
1761 		}
1762 		bh = next;
1763 	} while (bh != head);
1764 	unlock_page(page);
1765 
1766 	err = 0;
1767 done:
1768 	if (nr_underway == 0) {
1769 		/*
1770 		 * The page was marked dirty, but the buffers were
1771 		 * clean.  Someone wrote them back by hand with
1772 		 * ll_rw_block/submit_bh.  A rare case.
1773 		 */
1774 		end_page_writeback(page);
1775 
1776 		/*
1777 		 * The page and buffer_heads can be released at any time from
1778 		 * here on.
1779 		 */
1780 	}
1781 	return err;
1782 
1783 recover:
1784 	/*
1785 	 * ENOSPC, or some other error.  We may already have added some
1786 	 * blocks to the file, so we need to write these out to avoid
1787 	 * exposing stale data.
1788 	 * The page is currently locked and not marked for writeback
1789 	 */
1790 	bh = head;
1791 	/* Recovery: lock and submit the mapped buffers */
1792 	do {
1793 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1794 		    !buffer_delay(bh)) {
1795 			lock_buffer(bh);
1796 			mark_buffer_async_write_endio(bh, handler);
1797 		} else {
1798 			/*
1799 			 * The buffer may have been set dirty during
1800 			 * attachment to a dirty page.
1801 			 */
1802 			clear_buffer_dirty(bh);
1803 		}
1804 	} while ((bh = bh->b_this_page) != head);
1805 	SetPageError(page);
1806 	BUG_ON(PageWriteback(page));
1807 	mapping_set_error(page->mapping, err);
1808 	set_page_writeback(page);
1809 	do {
1810 		struct buffer_head *next = bh->b_this_page;
1811 		if (buffer_async_write(bh)) {
1812 			clear_buffer_dirty(bh);
1813 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1814 					inode->i_write_hint, wbc);
1815 			nr_underway++;
1816 		}
1817 		bh = next;
1818 	} while (bh != head);
1819 	unlock_page(page);
1820 	goto done;
1821 }
1822 EXPORT_SYMBOL(__block_write_full_page);
1823 
1824 /*
1825  * If a page has any new buffers, zero them out here, and mark them uptodate
1826  * and dirty so they'll be written out (in order to prevent uninitialised
1827  * block data from leaking). And clear the new bit.
1828  */
1829 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1830 {
1831 	unsigned int block_start, block_end;
1832 	struct buffer_head *head, *bh;
1833 
1834 	BUG_ON(!PageLocked(page));
1835 	if (!page_has_buffers(page))
1836 		return;
1837 
1838 	bh = head = page_buffers(page);
1839 	block_start = 0;
1840 	do {
1841 		block_end = block_start + bh->b_size;
1842 
1843 		if (buffer_new(bh)) {
1844 			if (block_end > from && block_start < to) {
1845 				if (!PageUptodate(page)) {
1846 					unsigned start, size;
1847 
1848 					start = max(from, block_start);
1849 					size = min(to, block_end) - start;
1850 
1851 					zero_user(page, start, size);
1852 					set_buffer_uptodate(bh);
1853 				}
1854 
1855 				clear_buffer_new(bh);
1856 				mark_buffer_dirty(bh);
1857 			}
1858 		}
1859 
1860 		block_start = block_end;
1861 		bh = bh->b_this_page;
1862 	} while (bh != head);
1863 }
1864 EXPORT_SYMBOL(page_zero_new_buffers);
1865 
1866 static void
1867 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1868 		struct iomap *iomap)
1869 {
1870 	loff_t offset = block << inode->i_blkbits;
1871 
1872 	bh->b_bdev = iomap->bdev;
1873 
1874 	/*
1875 	 * Block points to offset in file we need to map, iomap contains
1876 	 * the offset at which the map starts. If the map ends before the
1877 	 * current block, then do not map the buffer and let the caller
1878 	 * handle it.
1879 	 */
1880 	BUG_ON(offset >= iomap->offset + iomap->length);
1881 
1882 	switch (iomap->type) {
1883 	case IOMAP_HOLE:
1884 		/*
1885 		 * If the buffer is not up to date or beyond the current EOF,
1886 		 * we need to mark it as new to ensure sub-block zeroing is
1887 		 * executed if necessary.
1888 		 */
1889 		if (!buffer_uptodate(bh) ||
1890 		    (offset >= i_size_read(inode)))
1891 			set_buffer_new(bh);
1892 		break;
1893 	case IOMAP_DELALLOC:
1894 		if (!buffer_uptodate(bh) ||
1895 		    (offset >= i_size_read(inode)))
1896 			set_buffer_new(bh);
1897 		set_buffer_uptodate(bh);
1898 		set_buffer_mapped(bh);
1899 		set_buffer_delay(bh);
1900 		break;
1901 	case IOMAP_UNWRITTEN:
1902 		/*
1903 		 * For unwritten regions, we always need to ensure that regions
1904 		 * in the block we are not writing to are zeroed. Mark the
1905 		 * buffer as new to ensure this.
1906 		 */
1907 		set_buffer_new(bh);
1908 		set_buffer_unwritten(bh);
1909 		/* FALLTHRU */
1910 	case IOMAP_MAPPED:
1911 		if ((iomap->flags & IOMAP_F_NEW) ||
1912 		    offset >= i_size_read(inode))
1913 			set_buffer_new(bh);
1914 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1915 				inode->i_blkbits;
1916 		set_buffer_mapped(bh);
1917 		break;
1918 	}
1919 }
1920 
1921 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1922 		get_block_t *get_block, struct iomap *iomap)
1923 {
1924 	unsigned from = pos & (PAGE_SIZE - 1);
1925 	unsigned to = from + len;
1926 	struct inode *inode = page->mapping->host;
1927 	unsigned block_start, block_end;
1928 	sector_t block;
1929 	int err = 0;
1930 	unsigned blocksize, bbits;
1931 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1932 
1933 	BUG_ON(!PageLocked(page));
1934 	BUG_ON(from > PAGE_SIZE);
1935 	BUG_ON(to > PAGE_SIZE);
1936 	BUG_ON(from > to);
1937 
1938 	head = create_page_buffers(page, inode, 0);
1939 	blocksize = head->b_size;
1940 	bbits = block_size_bits(blocksize);
1941 
1942 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1943 
1944 	for(bh = head, block_start = 0; bh != head || !block_start;
1945 	    block++, block_start=block_end, bh = bh->b_this_page) {
1946 		block_end = block_start + blocksize;
1947 		if (block_end <= from || block_start >= to) {
1948 			if (PageUptodate(page)) {
1949 				if (!buffer_uptodate(bh))
1950 					set_buffer_uptodate(bh);
1951 			}
1952 			continue;
1953 		}
1954 		if (buffer_new(bh))
1955 			clear_buffer_new(bh);
1956 		if (!buffer_mapped(bh)) {
1957 			WARN_ON(bh->b_size != blocksize);
1958 			if (get_block) {
1959 				err = get_block(inode, block, bh, 1);
1960 				if (err)
1961 					break;
1962 			} else {
1963 				iomap_to_bh(inode, block, bh, iomap);
1964 			}
1965 
1966 			if (buffer_new(bh)) {
1967 				clean_bdev_bh_alias(bh);
1968 				if (PageUptodate(page)) {
1969 					clear_buffer_new(bh);
1970 					set_buffer_uptodate(bh);
1971 					mark_buffer_dirty(bh);
1972 					continue;
1973 				}
1974 				if (block_end > to || block_start < from)
1975 					zero_user_segments(page,
1976 						to, block_end,
1977 						block_start, from);
1978 				continue;
1979 			}
1980 		}
1981 		if (PageUptodate(page)) {
1982 			if (!buffer_uptodate(bh))
1983 				set_buffer_uptodate(bh);
1984 			continue;
1985 		}
1986 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1987 		    !buffer_unwritten(bh) &&
1988 		     (block_start < from || block_end > to)) {
1989 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1990 			*wait_bh++=bh;
1991 		}
1992 	}
1993 	/*
1994 	 * If we issued read requests - let them complete.
1995 	 */
1996 	while(wait_bh > wait) {
1997 		wait_on_buffer(*--wait_bh);
1998 		if (!buffer_uptodate(*wait_bh))
1999 			err = -EIO;
2000 	}
2001 	if (unlikely(err))
2002 		page_zero_new_buffers(page, from, to);
2003 	return err;
2004 }
2005 
2006 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2007 		get_block_t *get_block)
2008 {
2009 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2010 }
2011 EXPORT_SYMBOL(__block_write_begin);
2012 
2013 static int __block_commit_write(struct inode *inode, struct page *page,
2014 		unsigned from, unsigned to)
2015 {
2016 	unsigned block_start, block_end;
2017 	int partial = 0;
2018 	unsigned blocksize;
2019 	struct buffer_head *bh, *head;
2020 
2021 	bh = head = page_buffers(page);
2022 	blocksize = bh->b_size;
2023 
2024 	block_start = 0;
2025 	do {
2026 		block_end = block_start + blocksize;
2027 		if (block_end <= from || block_start >= to) {
2028 			if (!buffer_uptodate(bh))
2029 				partial = 1;
2030 		} else {
2031 			set_buffer_uptodate(bh);
2032 			mark_buffer_dirty(bh);
2033 		}
2034 		clear_buffer_new(bh);
2035 
2036 		block_start = block_end;
2037 		bh = bh->b_this_page;
2038 	} while (bh != head);
2039 
2040 	/*
2041 	 * If this is a partial write which happened to make all buffers
2042 	 * uptodate then we can optimize away a bogus readpage() for
2043 	 * the next read(). Here we 'discover' whether the page went
2044 	 * uptodate as a result of this (potentially partial) write.
2045 	 */
2046 	if (!partial)
2047 		SetPageUptodate(page);
2048 	return 0;
2049 }
2050 
2051 /*
2052  * block_write_begin takes care of the basic task of block allocation and
2053  * bringing partial write blocks uptodate first.
2054  *
2055  * The filesystem needs to handle block truncation upon failure.
2056  */
2057 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2058 		unsigned flags, struct page **pagep, get_block_t *get_block)
2059 {
2060 	pgoff_t index = pos >> PAGE_SHIFT;
2061 	struct page *page;
2062 	int status;
2063 
2064 	page = grab_cache_page_write_begin(mapping, index, flags);
2065 	if (!page)
2066 		return -ENOMEM;
2067 
2068 	status = __block_write_begin(page, pos, len, get_block);
2069 	if (unlikely(status)) {
2070 		unlock_page(page);
2071 		put_page(page);
2072 		page = NULL;
2073 	}
2074 
2075 	*pagep = page;
2076 	return status;
2077 }
2078 EXPORT_SYMBOL(block_write_begin);
2079 
2080 int __generic_write_end(struct inode *inode, loff_t pos, unsigned copied,
2081 		struct page *page)
2082 {
2083 	loff_t old_size = inode->i_size;
2084 	bool i_size_changed = false;
2085 
2086 	/*
2087 	 * No need to use i_size_read() here, the i_size cannot change under us
2088 	 * because we hold i_rwsem.
2089 	 *
2090 	 * But it's important to update i_size while still holding page lock:
2091 	 * page writeout could otherwise come in and zero beyond i_size.
2092 	 */
2093 	if (pos + copied > inode->i_size) {
2094 		i_size_write(inode, pos + copied);
2095 		i_size_changed = true;
2096 	}
2097 
2098 	unlock_page(page);
2099 	put_page(page);
2100 
2101 	if (old_size < pos)
2102 		pagecache_isize_extended(inode, old_size, pos);
2103 	/*
2104 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2105 	 * makes the holding time of page lock longer. Second, it forces lock
2106 	 * ordering of page lock and transaction start for journaling
2107 	 * filesystems.
2108 	 */
2109 	if (i_size_changed)
2110 		mark_inode_dirty(inode);
2111 	return copied;
2112 }
2113 
2114 int block_write_end(struct file *file, struct address_space *mapping,
2115 			loff_t pos, unsigned len, unsigned copied,
2116 			struct page *page, void *fsdata)
2117 {
2118 	struct inode *inode = mapping->host;
2119 	unsigned start;
2120 
2121 	start = pos & (PAGE_SIZE - 1);
2122 
2123 	if (unlikely(copied < len)) {
2124 		/*
2125 		 * The buffers that were written will now be uptodate, so we
2126 		 * don't have to worry about a readpage reading them and
2127 		 * overwriting a partial write. However if we have encountered
2128 		 * a short write and only partially written into a buffer, it
2129 		 * will not be marked uptodate, so a readpage might come in and
2130 		 * destroy our partial write.
2131 		 *
2132 		 * Do the simplest thing, and just treat any short write to a
2133 		 * non uptodate page as a zero-length write, and force the
2134 		 * caller to redo the whole thing.
2135 		 */
2136 		if (!PageUptodate(page))
2137 			copied = 0;
2138 
2139 		page_zero_new_buffers(page, start+copied, start+len);
2140 	}
2141 	flush_dcache_page(page);
2142 
2143 	/* This could be a short (even 0-length) commit */
2144 	__block_commit_write(inode, page, start, start+copied);
2145 
2146 	return copied;
2147 }
2148 EXPORT_SYMBOL(block_write_end);
2149 
2150 int generic_write_end(struct file *file, struct address_space *mapping,
2151 			loff_t pos, unsigned len, unsigned copied,
2152 			struct page *page, void *fsdata)
2153 {
2154 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2155 	return __generic_write_end(mapping->host, pos, copied, page);
2156 }
2157 EXPORT_SYMBOL(generic_write_end);
2158 
2159 /*
2160  * block_is_partially_uptodate checks whether buffers within a page are
2161  * uptodate or not.
2162  *
2163  * Returns true if all buffers which correspond to a file portion
2164  * we want to read are uptodate.
2165  */
2166 int block_is_partially_uptodate(struct page *page, unsigned long from,
2167 					unsigned long count)
2168 {
2169 	unsigned block_start, block_end, blocksize;
2170 	unsigned to;
2171 	struct buffer_head *bh, *head;
2172 	int ret = 1;
2173 
2174 	if (!page_has_buffers(page))
2175 		return 0;
2176 
2177 	head = page_buffers(page);
2178 	blocksize = head->b_size;
2179 	to = min_t(unsigned, PAGE_SIZE - from, count);
2180 	to = from + to;
2181 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2182 		return 0;
2183 
2184 	bh = head;
2185 	block_start = 0;
2186 	do {
2187 		block_end = block_start + blocksize;
2188 		if (block_end > from && block_start < to) {
2189 			if (!buffer_uptodate(bh)) {
2190 				ret = 0;
2191 				break;
2192 			}
2193 			if (block_end >= to)
2194 				break;
2195 		}
2196 		block_start = block_end;
2197 		bh = bh->b_this_page;
2198 	} while (bh != head);
2199 
2200 	return ret;
2201 }
2202 EXPORT_SYMBOL(block_is_partially_uptodate);
2203 
2204 /*
2205  * Generic "read page" function for block devices that have the normal
2206  * get_block functionality. This is most of the block device filesystems.
2207  * Reads the page asynchronously --- the unlock_buffer() and
2208  * set/clear_buffer_uptodate() functions propagate buffer state into the
2209  * page struct once IO has completed.
2210  */
2211 int block_read_full_page(struct page *page, get_block_t *get_block)
2212 {
2213 	struct inode *inode = page->mapping->host;
2214 	sector_t iblock, lblock;
2215 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2216 	unsigned int blocksize, bbits;
2217 	int nr, i;
2218 	int fully_mapped = 1;
2219 
2220 	head = create_page_buffers(page, inode, 0);
2221 	blocksize = head->b_size;
2222 	bbits = block_size_bits(blocksize);
2223 
2224 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2225 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2226 	bh = head;
2227 	nr = 0;
2228 	i = 0;
2229 
2230 	do {
2231 		if (buffer_uptodate(bh))
2232 			continue;
2233 
2234 		if (!buffer_mapped(bh)) {
2235 			int err = 0;
2236 
2237 			fully_mapped = 0;
2238 			if (iblock < lblock) {
2239 				WARN_ON(bh->b_size != blocksize);
2240 				err = get_block(inode, iblock, bh, 0);
2241 				if (err)
2242 					SetPageError(page);
2243 			}
2244 			if (!buffer_mapped(bh)) {
2245 				zero_user(page, i * blocksize, blocksize);
2246 				if (!err)
2247 					set_buffer_uptodate(bh);
2248 				continue;
2249 			}
2250 			/*
2251 			 * get_block() might have updated the buffer
2252 			 * synchronously
2253 			 */
2254 			if (buffer_uptodate(bh))
2255 				continue;
2256 		}
2257 		arr[nr++] = bh;
2258 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2259 
2260 	if (fully_mapped)
2261 		SetPageMappedToDisk(page);
2262 
2263 	if (!nr) {
2264 		/*
2265 		 * All buffers are uptodate - we can set the page uptodate
2266 		 * as well. But not if get_block() returned an error.
2267 		 */
2268 		if (!PageError(page))
2269 			SetPageUptodate(page);
2270 		unlock_page(page);
2271 		return 0;
2272 	}
2273 
2274 	/* Stage two: lock the buffers */
2275 	for (i = 0; i < nr; i++) {
2276 		bh = arr[i];
2277 		lock_buffer(bh);
2278 		mark_buffer_async_read(bh);
2279 	}
2280 
2281 	/*
2282 	 * Stage 3: start the IO.  Check for uptodateness
2283 	 * inside the buffer lock in case another process reading
2284 	 * the underlying blockdev brought it uptodate (the sct fix).
2285 	 */
2286 	for (i = 0; i < nr; i++) {
2287 		bh = arr[i];
2288 		if (buffer_uptodate(bh))
2289 			end_buffer_async_read(bh, 1);
2290 		else
2291 			submit_bh(REQ_OP_READ, 0, bh);
2292 	}
2293 	return 0;
2294 }
2295 EXPORT_SYMBOL(block_read_full_page);
2296 
2297 /* utility function for filesystems that need to do work on expanding
2298  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2299  * deal with the hole.
2300  */
2301 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2302 {
2303 	struct address_space *mapping = inode->i_mapping;
2304 	struct page *page;
2305 	void *fsdata;
2306 	int err;
2307 
2308 	err = inode_newsize_ok(inode, size);
2309 	if (err)
2310 		goto out;
2311 
2312 	err = pagecache_write_begin(NULL, mapping, size, 0,
2313 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2314 	if (err)
2315 		goto out;
2316 
2317 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2318 	BUG_ON(err > 0);
2319 
2320 out:
2321 	return err;
2322 }
2323 EXPORT_SYMBOL(generic_cont_expand_simple);
2324 
2325 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2326 			    loff_t pos, loff_t *bytes)
2327 {
2328 	struct inode *inode = mapping->host;
2329 	unsigned int blocksize = i_blocksize(inode);
2330 	struct page *page;
2331 	void *fsdata;
2332 	pgoff_t index, curidx;
2333 	loff_t curpos;
2334 	unsigned zerofrom, offset, len;
2335 	int err = 0;
2336 
2337 	index = pos >> PAGE_SHIFT;
2338 	offset = pos & ~PAGE_MASK;
2339 
2340 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2341 		zerofrom = curpos & ~PAGE_MASK;
2342 		if (zerofrom & (blocksize-1)) {
2343 			*bytes |= (blocksize-1);
2344 			(*bytes)++;
2345 		}
2346 		len = PAGE_SIZE - zerofrom;
2347 
2348 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2349 					    &page, &fsdata);
2350 		if (err)
2351 			goto out;
2352 		zero_user(page, zerofrom, len);
2353 		err = pagecache_write_end(file, mapping, curpos, len, len,
2354 						page, fsdata);
2355 		if (err < 0)
2356 			goto out;
2357 		BUG_ON(err != len);
2358 		err = 0;
2359 
2360 		balance_dirty_pages_ratelimited(mapping);
2361 
2362 		if (unlikely(fatal_signal_pending(current))) {
2363 			err = -EINTR;
2364 			goto out;
2365 		}
2366 	}
2367 
2368 	/* page covers the boundary, find the boundary offset */
2369 	if (index == curidx) {
2370 		zerofrom = curpos & ~PAGE_MASK;
2371 		/* if we will expand the thing last block will be filled */
2372 		if (offset <= zerofrom) {
2373 			goto out;
2374 		}
2375 		if (zerofrom & (blocksize-1)) {
2376 			*bytes |= (blocksize-1);
2377 			(*bytes)++;
2378 		}
2379 		len = offset - zerofrom;
2380 
2381 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2382 					    &page, &fsdata);
2383 		if (err)
2384 			goto out;
2385 		zero_user(page, zerofrom, len);
2386 		err = pagecache_write_end(file, mapping, curpos, len, len,
2387 						page, fsdata);
2388 		if (err < 0)
2389 			goto out;
2390 		BUG_ON(err != len);
2391 		err = 0;
2392 	}
2393 out:
2394 	return err;
2395 }
2396 
2397 /*
2398  * For moronic filesystems that do not allow holes in file.
2399  * We may have to extend the file.
2400  */
2401 int cont_write_begin(struct file *file, struct address_space *mapping,
2402 			loff_t pos, unsigned len, unsigned flags,
2403 			struct page **pagep, void **fsdata,
2404 			get_block_t *get_block, loff_t *bytes)
2405 {
2406 	struct inode *inode = mapping->host;
2407 	unsigned int blocksize = i_blocksize(inode);
2408 	unsigned int zerofrom;
2409 	int err;
2410 
2411 	err = cont_expand_zero(file, mapping, pos, bytes);
2412 	if (err)
2413 		return err;
2414 
2415 	zerofrom = *bytes & ~PAGE_MASK;
2416 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2417 		*bytes |= (blocksize-1);
2418 		(*bytes)++;
2419 	}
2420 
2421 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2422 }
2423 EXPORT_SYMBOL(cont_write_begin);
2424 
2425 int block_commit_write(struct page *page, unsigned from, unsigned to)
2426 {
2427 	struct inode *inode = page->mapping->host;
2428 	__block_commit_write(inode,page,from,to);
2429 	return 0;
2430 }
2431 EXPORT_SYMBOL(block_commit_write);
2432 
2433 /*
2434  * block_page_mkwrite() is not allowed to change the file size as it gets
2435  * called from a page fault handler when a page is first dirtied. Hence we must
2436  * be careful to check for EOF conditions here. We set the page up correctly
2437  * for a written page which means we get ENOSPC checking when writing into
2438  * holes and correct delalloc and unwritten extent mapping on filesystems that
2439  * support these features.
2440  *
2441  * We are not allowed to take the i_mutex here so we have to play games to
2442  * protect against truncate races as the page could now be beyond EOF.  Because
2443  * truncate writes the inode size before removing pages, once we have the
2444  * page lock we can determine safely if the page is beyond EOF. If it is not
2445  * beyond EOF, then the page is guaranteed safe against truncation until we
2446  * unlock the page.
2447  *
2448  * Direct callers of this function should protect against filesystem freezing
2449  * using sb_start_pagefault() - sb_end_pagefault() functions.
2450  */
2451 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2452 			 get_block_t get_block)
2453 {
2454 	struct page *page = vmf->page;
2455 	struct inode *inode = file_inode(vma->vm_file);
2456 	unsigned long end;
2457 	loff_t size;
2458 	int ret;
2459 
2460 	lock_page(page);
2461 	size = i_size_read(inode);
2462 	if ((page->mapping != inode->i_mapping) ||
2463 	    (page_offset(page) > size)) {
2464 		/* We overload EFAULT to mean page got truncated */
2465 		ret = -EFAULT;
2466 		goto out_unlock;
2467 	}
2468 
2469 	/* page is wholly or partially inside EOF */
2470 	if (((page->index + 1) << PAGE_SHIFT) > size)
2471 		end = size & ~PAGE_MASK;
2472 	else
2473 		end = PAGE_SIZE;
2474 
2475 	ret = __block_write_begin(page, 0, end, get_block);
2476 	if (!ret)
2477 		ret = block_commit_write(page, 0, end);
2478 
2479 	if (unlikely(ret < 0))
2480 		goto out_unlock;
2481 	set_page_dirty(page);
2482 	wait_for_stable_page(page);
2483 	return 0;
2484 out_unlock:
2485 	unlock_page(page);
2486 	return ret;
2487 }
2488 EXPORT_SYMBOL(block_page_mkwrite);
2489 
2490 /*
2491  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2492  * immediately, while under the page lock.  So it needs a special end_io
2493  * handler which does not touch the bh after unlocking it.
2494  */
2495 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2496 {
2497 	__end_buffer_read_notouch(bh, uptodate);
2498 }
2499 
2500 /*
2501  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2502  * the page (converting it to circular linked list and taking care of page
2503  * dirty races).
2504  */
2505 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2506 {
2507 	struct buffer_head *bh;
2508 
2509 	BUG_ON(!PageLocked(page));
2510 
2511 	spin_lock(&page->mapping->private_lock);
2512 	bh = head;
2513 	do {
2514 		if (PageDirty(page))
2515 			set_buffer_dirty(bh);
2516 		if (!bh->b_this_page)
2517 			bh->b_this_page = head;
2518 		bh = bh->b_this_page;
2519 	} while (bh != head);
2520 	attach_page_buffers(page, head);
2521 	spin_unlock(&page->mapping->private_lock);
2522 }
2523 
2524 /*
2525  * On entry, the page is fully not uptodate.
2526  * On exit the page is fully uptodate in the areas outside (from,to)
2527  * The filesystem needs to handle block truncation upon failure.
2528  */
2529 int nobh_write_begin(struct address_space *mapping,
2530 			loff_t pos, unsigned len, unsigned flags,
2531 			struct page **pagep, void **fsdata,
2532 			get_block_t *get_block)
2533 {
2534 	struct inode *inode = mapping->host;
2535 	const unsigned blkbits = inode->i_blkbits;
2536 	const unsigned blocksize = 1 << blkbits;
2537 	struct buffer_head *head, *bh;
2538 	struct page *page;
2539 	pgoff_t index;
2540 	unsigned from, to;
2541 	unsigned block_in_page;
2542 	unsigned block_start, block_end;
2543 	sector_t block_in_file;
2544 	int nr_reads = 0;
2545 	int ret = 0;
2546 	int is_mapped_to_disk = 1;
2547 
2548 	index = pos >> PAGE_SHIFT;
2549 	from = pos & (PAGE_SIZE - 1);
2550 	to = from + len;
2551 
2552 	page = grab_cache_page_write_begin(mapping, index, flags);
2553 	if (!page)
2554 		return -ENOMEM;
2555 	*pagep = page;
2556 	*fsdata = NULL;
2557 
2558 	if (page_has_buffers(page)) {
2559 		ret = __block_write_begin(page, pos, len, get_block);
2560 		if (unlikely(ret))
2561 			goto out_release;
2562 		return ret;
2563 	}
2564 
2565 	if (PageMappedToDisk(page))
2566 		return 0;
2567 
2568 	/*
2569 	 * Allocate buffers so that we can keep track of state, and potentially
2570 	 * attach them to the page if an error occurs. In the common case of
2571 	 * no error, they will just be freed again without ever being attached
2572 	 * to the page (which is all OK, because we're under the page lock).
2573 	 *
2574 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2575 	 * than the circular one we're used to.
2576 	 */
2577 	head = alloc_page_buffers(page, blocksize, false);
2578 	if (!head) {
2579 		ret = -ENOMEM;
2580 		goto out_release;
2581 	}
2582 
2583 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2584 
2585 	/*
2586 	 * We loop across all blocks in the page, whether or not they are
2587 	 * part of the affected region.  This is so we can discover if the
2588 	 * page is fully mapped-to-disk.
2589 	 */
2590 	for (block_start = 0, block_in_page = 0, bh = head;
2591 		  block_start < PAGE_SIZE;
2592 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2593 		int create;
2594 
2595 		block_end = block_start + blocksize;
2596 		bh->b_state = 0;
2597 		create = 1;
2598 		if (block_start >= to)
2599 			create = 0;
2600 		ret = get_block(inode, block_in_file + block_in_page,
2601 					bh, create);
2602 		if (ret)
2603 			goto failed;
2604 		if (!buffer_mapped(bh))
2605 			is_mapped_to_disk = 0;
2606 		if (buffer_new(bh))
2607 			clean_bdev_bh_alias(bh);
2608 		if (PageUptodate(page)) {
2609 			set_buffer_uptodate(bh);
2610 			continue;
2611 		}
2612 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2613 			zero_user_segments(page, block_start, from,
2614 							to, block_end);
2615 			continue;
2616 		}
2617 		if (buffer_uptodate(bh))
2618 			continue;	/* reiserfs does this */
2619 		if (block_start < from || block_end > to) {
2620 			lock_buffer(bh);
2621 			bh->b_end_io = end_buffer_read_nobh;
2622 			submit_bh(REQ_OP_READ, 0, bh);
2623 			nr_reads++;
2624 		}
2625 	}
2626 
2627 	if (nr_reads) {
2628 		/*
2629 		 * The page is locked, so these buffers are protected from
2630 		 * any VM or truncate activity.  Hence we don't need to care
2631 		 * for the buffer_head refcounts.
2632 		 */
2633 		for (bh = head; bh; bh = bh->b_this_page) {
2634 			wait_on_buffer(bh);
2635 			if (!buffer_uptodate(bh))
2636 				ret = -EIO;
2637 		}
2638 		if (ret)
2639 			goto failed;
2640 	}
2641 
2642 	if (is_mapped_to_disk)
2643 		SetPageMappedToDisk(page);
2644 
2645 	*fsdata = head; /* to be released by nobh_write_end */
2646 
2647 	return 0;
2648 
2649 failed:
2650 	BUG_ON(!ret);
2651 	/*
2652 	 * Error recovery is a bit difficult. We need to zero out blocks that
2653 	 * were newly allocated, and dirty them to ensure they get written out.
2654 	 * Buffers need to be attached to the page at this point, otherwise
2655 	 * the handling of potential IO errors during writeout would be hard
2656 	 * (could try doing synchronous writeout, but what if that fails too?)
2657 	 */
2658 	attach_nobh_buffers(page, head);
2659 	page_zero_new_buffers(page, from, to);
2660 
2661 out_release:
2662 	unlock_page(page);
2663 	put_page(page);
2664 	*pagep = NULL;
2665 
2666 	return ret;
2667 }
2668 EXPORT_SYMBOL(nobh_write_begin);
2669 
2670 int nobh_write_end(struct file *file, struct address_space *mapping,
2671 			loff_t pos, unsigned len, unsigned copied,
2672 			struct page *page, void *fsdata)
2673 {
2674 	struct inode *inode = page->mapping->host;
2675 	struct buffer_head *head = fsdata;
2676 	struct buffer_head *bh;
2677 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2678 
2679 	if (unlikely(copied < len) && head)
2680 		attach_nobh_buffers(page, head);
2681 	if (page_has_buffers(page))
2682 		return generic_write_end(file, mapping, pos, len,
2683 					copied, page, fsdata);
2684 
2685 	SetPageUptodate(page);
2686 	set_page_dirty(page);
2687 	if (pos+copied > inode->i_size) {
2688 		i_size_write(inode, pos+copied);
2689 		mark_inode_dirty(inode);
2690 	}
2691 
2692 	unlock_page(page);
2693 	put_page(page);
2694 
2695 	while (head) {
2696 		bh = head;
2697 		head = head->b_this_page;
2698 		free_buffer_head(bh);
2699 	}
2700 
2701 	return copied;
2702 }
2703 EXPORT_SYMBOL(nobh_write_end);
2704 
2705 /*
2706  * nobh_writepage() - based on block_full_write_page() except
2707  * that it tries to operate without attaching bufferheads to
2708  * the page.
2709  */
2710 int nobh_writepage(struct page *page, get_block_t *get_block,
2711 			struct writeback_control *wbc)
2712 {
2713 	struct inode * const inode = page->mapping->host;
2714 	loff_t i_size = i_size_read(inode);
2715 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2716 	unsigned offset;
2717 	int ret;
2718 
2719 	/* Is the page fully inside i_size? */
2720 	if (page->index < end_index)
2721 		goto out;
2722 
2723 	/* Is the page fully outside i_size? (truncate in progress) */
2724 	offset = i_size & (PAGE_SIZE-1);
2725 	if (page->index >= end_index+1 || !offset) {
2726 		/*
2727 		 * The page may have dirty, unmapped buffers.  For example,
2728 		 * they may have been added in ext3_writepage().  Make them
2729 		 * freeable here, so the page does not leak.
2730 		 */
2731 #if 0
2732 		/* Not really sure about this  - do we need this ? */
2733 		if (page->mapping->a_ops->invalidatepage)
2734 			page->mapping->a_ops->invalidatepage(page, offset);
2735 #endif
2736 		unlock_page(page);
2737 		return 0; /* don't care */
2738 	}
2739 
2740 	/*
2741 	 * The page straddles i_size.  It must be zeroed out on each and every
2742 	 * writepage invocation because it may be mmapped.  "A file is mapped
2743 	 * in multiples of the page size.  For a file that is not a multiple of
2744 	 * the  page size, the remaining memory is zeroed when mapped, and
2745 	 * writes to that region are not written out to the file."
2746 	 */
2747 	zero_user_segment(page, offset, PAGE_SIZE);
2748 out:
2749 	ret = mpage_writepage(page, get_block, wbc);
2750 	if (ret == -EAGAIN)
2751 		ret = __block_write_full_page(inode, page, get_block, wbc,
2752 					      end_buffer_async_write);
2753 	return ret;
2754 }
2755 EXPORT_SYMBOL(nobh_writepage);
2756 
2757 int nobh_truncate_page(struct address_space *mapping,
2758 			loff_t from, get_block_t *get_block)
2759 {
2760 	pgoff_t index = from >> PAGE_SHIFT;
2761 	unsigned offset = from & (PAGE_SIZE-1);
2762 	unsigned blocksize;
2763 	sector_t iblock;
2764 	unsigned length, pos;
2765 	struct inode *inode = mapping->host;
2766 	struct page *page;
2767 	struct buffer_head map_bh;
2768 	int err;
2769 
2770 	blocksize = i_blocksize(inode);
2771 	length = offset & (blocksize - 1);
2772 
2773 	/* Block boundary? Nothing to do */
2774 	if (!length)
2775 		return 0;
2776 
2777 	length = blocksize - length;
2778 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2779 
2780 	page = grab_cache_page(mapping, index);
2781 	err = -ENOMEM;
2782 	if (!page)
2783 		goto out;
2784 
2785 	if (page_has_buffers(page)) {
2786 has_buffers:
2787 		unlock_page(page);
2788 		put_page(page);
2789 		return block_truncate_page(mapping, from, get_block);
2790 	}
2791 
2792 	/* Find the buffer that contains "offset" */
2793 	pos = blocksize;
2794 	while (offset >= pos) {
2795 		iblock++;
2796 		pos += blocksize;
2797 	}
2798 
2799 	map_bh.b_size = blocksize;
2800 	map_bh.b_state = 0;
2801 	err = get_block(inode, iblock, &map_bh, 0);
2802 	if (err)
2803 		goto unlock;
2804 	/* unmapped? It's a hole - nothing to do */
2805 	if (!buffer_mapped(&map_bh))
2806 		goto unlock;
2807 
2808 	/* Ok, it's mapped. Make sure it's up-to-date */
2809 	if (!PageUptodate(page)) {
2810 		err = mapping->a_ops->readpage(NULL, page);
2811 		if (err) {
2812 			put_page(page);
2813 			goto out;
2814 		}
2815 		lock_page(page);
2816 		if (!PageUptodate(page)) {
2817 			err = -EIO;
2818 			goto unlock;
2819 		}
2820 		if (page_has_buffers(page))
2821 			goto has_buffers;
2822 	}
2823 	zero_user(page, offset, length);
2824 	set_page_dirty(page);
2825 	err = 0;
2826 
2827 unlock:
2828 	unlock_page(page);
2829 	put_page(page);
2830 out:
2831 	return err;
2832 }
2833 EXPORT_SYMBOL(nobh_truncate_page);
2834 
2835 int block_truncate_page(struct address_space *mapping,
2836 			loff_t from, get_block_t *get_block)
2837 {
2838 	pgoff_t index = from >> PAGE_SHIFT;
2839 	unsigned offset = from & (PAGE_SIZE-1);
2840 	unsigned blocksize;
2841 	sector_t iblock;
2842 	unsigned length, pos;
2843 	struct inode *inode = mapping->host;
2844 	struct page *page;
2845 	struct buffer_head *bh;
2846 	int err;
2847 
2848 	blocksize = i_blocksize(inode);
2849 	length = offset & (blocksize - 1);
2850 
2851 	/* Block boundary? Nothing to do */
2852 	if (!length)
2853 		return 0;
2854 
2855 	length = blocksize - length;
2856 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2857 
2858 	page = grab_cache_page(mapping, index);
2859 	err = -ENOMEM;
2860 	if (!page)
2861 		goto out;
2862 
2863 	if (!page_has_buffers(page))
2864 		create_empty_buffers(page, blocksize, 0);
2865 
2866 	/* Find the buffer that contains "offset" */
2867 	bh = page_buffers(page);
2868 	pos = blocksize;
2869 	while (offset >= pos) {
2870 		bh = bh->b_this_page;
2871 		iblock++;
2872 		pos += blocksize;
2873 	}
2874 
2875 	err = 0;
2876 	if (!buffer_mapped(bh)) {
2877 		WARN_ON(bh->b_size != blocksize);
2878 		err = get_block(inode, iblock, bh, 0);
2879 		if (err)
2880 			goto unlock;
2881 		/* unmapped? It's a hole - nothing to do */
2882 		if (!buffer_mapped(bh))
2883 			goto unlock;
2884 	}
2885 
2886 	/* Ok, it's mapped. Make sure it's up-to-date */
2887 	if (PageUptodate(page))
2888 		set_buffer_uptodate(bh);
2889 
2890 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2891 		err = -EIO;
2892 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2893 		wait_on_buffer(bh);
2894 		/* Uhhuh. Read error. Complain and punt. */
2895 		if (!buffer_uptodate(bh))
2896 			goto unlock;
2897 	}
2898 
2899 	zero_user(page, offset, length);
2900 	mark_buffer_dirty(bh);
2901 	err = 0;
2902 
2903 unlock:
2904 	unlock_page(page);
2905 	put_page(page);
2906 out:
2907 	return err;
2908 }
2909 EXPORT_SYMBOL(block_truncate_page);
2910 
2911 /*
2912  * The generic ->writepage function for buffer-backed address_spaces
2913  */
2914 int block_write_full_page(struct page *page, get_block_t *get_block,
2915 			struct writeback_control *wbc)
2916 {
2917 	struct inode * const inode = page->mapping->host;
2918 	loff_t i_size = i_size_read(inode);
2919 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2920 	unsigned offset;
2921 
2922 	/* Is the page fully inside i_size? */
2923 	if (page->index < end_index)
2924 		return __block_write_full_page(inode, page, get_block, wbc,
2925 					       end_buffer_async_write);
2926 
2927 	/* Is the page fully outside i_size? (truncate in progress) */
2928 	offset = i_size & (PAGE_SIZE-1);
2929 	if (page->index >= end_index+1 || !offset) {
2930 		/*
2931 		 * The page may have dirty, unmapped buffers.  For example,
2932 		 * they may have been added in ext3_writepage().  Make them
2933 		 * freeable here, so the page does not leak.
2934 		 */
2935 		do_invalidatepage(page, 0, PAGE_SIZE);
2936 		unlock_page(page);
2937 		return 0; /* don't care */
2938 	}
2939 
2940 	/*
2941 	 * The page straddles i_size.  It must be zeroed out on each and every
2942 	 * writepage invocation because it may be mmapped.  "A file is mapped
2943 	 * in multiples of the page size.  For a file that is not a multiple of
2944 	 * the  page size, the remaining memory is zeroed when mapped, and
2945 	 * writes to that region are not written out to the file."
2946 	 */
2947 	zero_user_segment(page, offset, PAGE_SIZE);
2948 	return __block_write_full_page(inode, page, get_block, wbc,
2949 							end_buffer_async_write);
2950 }
2951 EXPORT_SYMBOL(block_write_full_page);
2952 
2953 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2954 			    get_block_t *get_block)
2955 {
2956 	struct inode *inode = mapping->host;
2957 	struct buffer_head tmp = {
2958 		.b_size = i_blocksize(inode),
2959 	};
2960 
2961 	get_block(inode, block, &tmp, 0);
2962 	return tmp.b_blocknr;
2963 }
2964 EXPORT_SYMBOL(generic_block_bmap);
2965 
2966 static void end_bio_bh_io_sync(struct bio *bio)
2967 {
2968 	struct buffer_head *bh = bio->bi_private;
2969 
2970 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2971 		set_bit(BH_Quiet, &bh->b_state);
2972 
2973 	bh->b_end_io(bh, !bio->bi_status);
2974 	bio_put(bio);
2975 }
2976 
2977 /*
2978  * This allows us to do IO even on the odd last sectors
2979  * of a device, even if the block size is some multiple
2980  * of the physical sector size.
2981  *
2982  * We'll just truncate the bio to the size of the device,
2983  * and clear the end of the buffer head manually.
2984  *
2985  * Truly out-of-range accesses will turn into actual IO
2986  * errors, this only handles the "we need to be able to
2987  * do IO at the final sector" case.
2988  */
2989 void guard_bio_eod(int op, struct bio *bio)
2990 {
2991 	sector_t maxsector;
2992 	struct bio_vec *bvec = bio_last_bvec_all(bio);
2993 	unsigned truncated_bytes;
2994 	struct hd_struct *part;
2995 
2996 	rcu_read_lock();
2997 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
2998 	if (part)
2999 		maxsector = part_nr_sects_read(part);
3000 	else
3001 		maxsector = get_capacity(bio->bi_disk);
3002 	rcu_read_unlock();
3003 
3004 	if (!maxsector)
3005 		return;
3006 
3007 	/*
3008 	 * If the *whole* IO is past the end of the device,
3009 	 * let it through, and the IO layer will turn it into
3010 	 * an EIO.
3011 	 */
3012 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3013 		return;
3014 
3015 	maxsector -= bio->bi_iter.bi_sector;
3016 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3017 		return;
3018 
3019 	/* Uhhuh. We've got a bio that straddles the device size! */
3020 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3021 
3022 	/* Truncate the bio.. */
3023 	bio->bi_iter.bi_size -= truncated_bytes;
3024 	bvec->bv_len -= truncated_bytes;
3025 
3026 	/* ..and clear the end of the buffer for reads */
3027 	if (op == REQ_OP_READ) {
3028 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3029 				truncated_bytes);
3030 	}
3031 }
3032 
3033 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3034 			 enum rw_hint write_hint, struct writeback_control *wbc)
3035 {
3036 	struct bio *bio;
3037 
3038 	BUG_ON(!buffer_locked(bh));
3039 	BUG_ON(!buffer_mapped(bh));
3040 	BUG_ON(!bh->b_end_io);
3041 	BUG_ON(buffer_delay(bh));
3042 	BUG_ON(buffer_unwritten(bh));
3043 
3044 	/*
3045 	 * Only clear out a write error when rewriting
3046 	 */
3047 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3048 		clear_buffer_write_io_error(bh);
3049 
3050 	/*
3051 	 * from here on down, it's all bio -- do the initial mapping,
3052 	 * submit_bio -> generic_make_request may further map this bio around
3053 	 */
3054 	bio = bio_alloc(GFP_NOIO, 1);
3055 
3056 	if (wbc) {
3057 		wbc_init_bio(wbc, bio);
3058 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3059 	}
3060 
3061 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3062 	bio_set_dev(bio, bh->b_bdev);
3063 	bio->bi_write_hint = write_hint;
3064 
3065 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3066 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3067 
3068 	bio->bi_end_io = end_bio_bh_io_sync;
3069 	bio->bi_private = bh;
3070 
3071 	/* Take care of bh's that straddle the end of the device */
3072 	guard_bio_eod(op, bio);
3073 
3074 	if (buffer_meta(bh))
3075 		op_flags |= REQ_META;
3076 	if (buffer_prio(bh))
3077 		op_flags |= REQ_PRIO;
3078 	bio_set_op_attrs(bio, op, op_flags);
3079 
3080 	submit_bio(bio);
3081 	return 0;
3082 }
3083 
3084 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3085 {
3086 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3087 }
3088 EXPORT_SYMBOL(submit_bh);
3089 
3090 /**
3091  * ll_rw_block: low-level access to block devices (DEPRECATED)
3092  * @op: whether to %READ or %WRITE
3093  * @op_flags: req_flag_bits
3094  * @nr: number of &struct buffer_heads in the array
3095  * @bhs: array of pointers to &struct buffer_head
3096  *
3097  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3098  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3099  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3100  * %REQ_RAHEAD.
3101  *
3102  * This function drops any buffer that it cannot get a lock on (with the
3103  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3104  * request, and any buffer that appears to be up-to-date when doing read
3105  * request.  Further it marks as clean buffers that are processed for
3106  * writing (the buffer cache won't assume that they are actually clean
3107  * until the buffer gets unlocked).
3108  *
3109  * ll_rw_block sets b_end_io to simple completion handler that marks
3110  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3111  * any waiters.
3112  *
3113  * All of the buffers must be for the same device, and must also be a
3114  * multiple of the current approved size for the device.
3115  */
3116 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3117 {
3118 	int i;
3119 
3120 	for (i = 0; i < nr; i++) {
3121 		struct buffer_head *bh = bhs[i];
3122 
3123 		if (!trylock_buffer(bh))
3124 			continue;
3125 		if (op == WRITE) {
3126 			if (test_clear_buffer_dirty(bh)) {
3127 				bh->b_end_io = end_buffer_write_sync;
3128 				get_bh(bh);
3129 				submit_bh(op, op_flags, bh);
3130 				continue;
3131 			}
3132 		} else {
3133 			if (!buffer_uptodate(bh)) {
3134 				bh->b_end_io = end_buffer_read_sync;
3135 				get_bh(bh);
3136 				submit_bh(op, op_flags, bh);
3137 				continue;
3138 			}
3139 		}
3140 		unlock_buffer(bh);
3141 	}
3142 }
3143 EXPORT_SYMBOL(ll_rw_block);
3144 
3145 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3146 {
3147 	lock_buffer(bh);
3148 	if (!test_clear_buffer_dirty(bh)) {
3149 		unlock_buffer(bh);
3150 		return;
3151 	}
3152 	bh->b_end_io = end_buffer_write_sync;
3153 	get_bh(bh);
3154 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3155 }
3156 EXPORT_SYMBOL(write_dirty_buffer);
3157 
3158 /*
3159  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3160  * and then start new I/O and then wait upon it.  The caller must have a ref on
3161  * the buffer_head.
3162  */
3163 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3164 {
3165 	int ret = 0;
3166 
3167 	WARN_ON(atomic_read(&bh->b_count) < 1);
3168 	lock_buffer(bh);
3169 	if (test_clear_buffer_dirty(bh)) {
3170 		get_bh(bh);
3171 		bh->b_end_io = end_buffer_write_sync;
3172 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3173 		wait_on_buffer(bh);
3174 		if (!ret && !buffer_uptodate(bh))
3175 			ret = -EIO;
3176 	} else {
3177 		unlock_buffer(bh);
3178 	}
3179 	return ret;
3180 }
3181 EXPORT_SYMBOL(__sync_dirty_buffer);
3182 
3183 int sync_dirty_buffer(struct buffer_head *bh)
3184 {
3185 	return __sync_dirty_buffer(bh, REQ_SYNC);
3186 }
3187 EXPORT_SYMBOL(sync_dirty_buffer);
3188 
3189 /*
3190  * try_to_free_buffers() checks if all the buffers on this particular page
3191  * are unused, and releases them if so.
3192  *
3193  * Exclusion against try_to_free_buffers may be obtained by either
3194  * locking the page or by holding its mapping's private_lock.
3195  *
3196  * If the page is dirty but all the buffers are clean then we need to
3197  * be sure to mark the page clean as well.  This is because the page
3198  * may be against a block device, and a later reattachment of buffers
3199  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3200  * filesystem data on the same device.
3201  *
3202  * The same applies to regular filesystem pages: if all the buffers are
3203  * clean then we set the page clean and proceed.  To do that, we require
3204  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3205  * private_lock.
3206  *
3207  * try_to_free_buffers() is non-blocking.
3208  */
3209 static inline int buffer_busy(struct buffer_head *bh)
3210 {
3211 	return atomic_read(&bh->b_count) |
3212 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3213 }
3214 
3215 static int
3216 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3217 {
3218 	struct buffer_head *head = page_buffers(page);
3219 	struct buffer_head *bh;
3220 
3221 	bh = head;
3222 	do {
3223 		if (buffer_busy(bh))
3224 			goto failed;
3225 		bh = bh->b_this_page;
3226 	} while (bh != head);
3227 
3228 	do {
3229 		struct buffer_head *next = bh->b_this_page;
3230 
3231 		if (bh->b_assoc_map)
3232 			__remove_assoc_queue(bh);
3233 		bh = next;
3234 	} while (bh != head);
3235 	*buffers_to_free = head;
3236 	__clear_page_buffers(page);
3237 	return 1;
3238 failed:
3239 	return 0;
3240 }
3241 
3242 int try_to_free_buffers(struct page *page)
3243 {
3244 	struct address_space * const mapping = page->mapping;
3245 	struct buffer_head *buffers_to_free = NULL;
3246 	int ret = 0;
3247 
3248 	BUG_ON(!PageLocked(page));
3249 	if (PageWriteback(page))
3250 		return 0;
3251 
3252 	if (mapping == NULL) {		/* can this still happen? */
3253 		ret = drop_buffers(page, &buffers_to_free);
3254 		goto out;
3255 	}
3256 
3257 	spin_lock(&mapping->private_lock);
3258 	ret = drop_buffers(page, &buffers_to_free);
3259 
3260 	/*
3261 	 * If the filesystem writes its buffers by hand (eg ext3)
3262 	 * then we can have clean buffers against a dirty page.  We
3263 	 * clean the page here; otherwise the VM will never notice
3264 	 * that the filesystem did any IO at all.
3265 	 *
3266 	 * Also, during truncate, discard_buffer will have marked all
3267 	 * the page's buffers clean.  We discover that here and clean
3268 	 * the page also.
3269 	 *
3270 	 * private_lock must be held over this entire operation in order
3271 	 * to synchronise against __set_page_dirty_buffers and prevent the
3272 	 * dirty bit from being lost.
3273 	 */
3274 	if (ret)
3275 		cancel_dirty_page(page);
3276 	spin_unlock(&mapping->private_lock);
3277 out:
3278 	if (buffers_to_free) {
3279 		struct buffer_head *bh = buffers_to_free;
3280 
3281 		do {
3282 			struct buffer_head *next = bh->b_this_page;
3283 			free_buffer_head(bh);
3284 			bh = next;
3285 		} while (bh != buffers_to_free);
3286 	}
3287 	return ret;
3288 }
3289 EXPORT_SYMBOL(try_to_free_buffers);
3290 
3291 /*
3292  * There are no bdflush tunables left.  But distributions are
3293  * still running obsolete flush daemons, so we terminate them here.
3294  *
3295  * Use of bdflush() is deprecated and will be removed in a future kernel.
3296  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3297  */
3298 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3299 {
3300 	static int msg_count;
3301 
3302 	if (!capable(CAP_SYS_ADMIN))
3303 		return -EPERM;
3304 
3305 	if (msg_count < 5) {
3306 		msg_count++;
3307 		printk(KERN_INFO
3308 			"warning: process `%s' used the obsolete bdflush"
3309 			" system call\n", current->comm);
3310 		printk(KERN_INFO "Fix your initscripts?\n");
3311 	}
3312 
3313 	if (func == 1)
3314 		do_exit(0);
3315 	return 0;
3316 }
3317 
3318 /*
3319  * Buffer-head allocation
3320  */
3321 static struct kmem_cache *bh_cachep __read_mostly;
3322 
3323 /*
3324  * Once the number of bh's in the machine exceeds this level, we start
3325  * stripping them in writeback.
3326  */
3327 static unsigned long max_buffer_heads;
3328 
3329 int buffer_heads_over_limit;
3330 
3331 struct bh_accounting {
3332 	int nr;			/* Number of live bh's */
3333 	int ratelimit;		/* Limit cacheline bouncing */
3334 };
3335 
3336 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3337 
3338 static void recalc_bh_state(void)
3339 {
3340 	int i;
3341 	int tot = 0;
3342 
3343 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3344 		return;
3345 	__this_cpu_write(bh_accounting.ratelimit, 0);
3346 	for_each_online_cpu(i)
3347 		tot += per_cpu(bh_accounting, i).nr;
3348 	buffer_heads_over_limit = (tot > max_buffer_heads);
3349 }
3350 
3351 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3352 {
3353 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3354 	if (ret) {
3355 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3356 		preempt_disable();
3357 		__this_cpu_inc(bh_accounting.nr);
3358 		recalc_bh_state();
3359 		preempt_enable();
3360 	}
3361 	return ret;
3362 }
3363 EXPORT_SYMBOL(alloc_buffer_head);
3364 
3365 void free_buffer_head(struct buffer_head *bh)
3366 {
3367 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3368 	kmem_cache_free(bh_cachep, bh);
3369 	preempt_disable();
3370 	__this_cpu_dec(bh_accounting.nr);
3371 	recalc_bh_state();
3372 	preempt_enable();
3373 }
3374 EXPORT_SYMBOL(free_buffer_head);
3375 
3376 static int buffer_exit_cpu_dead(unsigned int cpu)
3377 {
3378 	int i;
3379 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3380 
3381 	for (i = 0; i < BH_LRU_SIZE; i++) {
3382 		brelse(b->bhs[i]);
3383 		b->bhs[i] = NULL;
3384 	}
3385 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3386 	per_cpu(bh_accounting, cpu).nr = 0;
3387 	return 0;
3388 }
3389 
3390 /**
3391  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3392  * @bh: struct buffer_head
3393  *
3394  * Return true if the buffer is up-to-date and false,
3395  * with the buffer locked, if not.
3396  */
3397 int bh_uptodate_or_lock(struct buffer_head *bh)
3398 {
3399 	if (!buffer_uptodate(bh)) {
3400 		lock_buffer(bh);
3401 		if (!buffer_uptodate(bh))
3402 			return 0;
3403 		unlock_buffer(bh);
3404 	}
3405 	return 1;
3406 }
3407 EXPORT_SYMBOL(bh_uptodate_or_lock);
3408 
3409 /**
3410  * bh_submit_read - Submit a locked buffer for reading
3411  * @bh: struct buffer_head
3412  *
3413  * Returns zero on success and -EIO on error.
3414  */
3415 int bh_submit_read(struct buffer_head *bh)
3416 {
3417 	BUG_ON(!buffer_locked(bh));
3418 
3419 	if (buffer_uptodate(bh)) {
3420 		unlock_buffer(bh);
3421 		return 0;
3422 	}
3423 
3424 	get_bh(bh);
3425 	bh->b_end_io = end_buffer_read_sync;
3426 	submit_bh(REQ_OP_READ, 0, bh);
3427 	wait_on_buffer(bh);
3428 	if (buffer_uptodate(bh))
3429 		return 0;
3430 	return -EIO;
3431 }
3432 EXPORT_SYMBOL(bh_submit_read);
3433 
3434 void __init buffer_init(void)
3435 {
3436 	unsigned long nrpages;
3437 	int ret;
3438 
3439 	bh_cachep = kmem_cache_create("buffer_head",
3440 			sizeof(struct buffer_head), 0,
3441 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3442 				SLAB_MEM_SPREAD),
3443 				NULL);
3444 
3445 	/*
3446 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3447 	 */
3448 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3449 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3450 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3451 					NULL, buffer_exit_cpu_dead);
3452 	WARN_ON(ret < 0);
3453 }
3454