1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 static int sleep_on_buffer(void *word) 58 { 59 io_schedule(); 60 return 0; 61 } 62 63 void __lock_buffer(struct buffer_head *bh) 64 { 65 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer, 66 TASK_UNINTERRUPTIBLE); 67 } 68 EXPORT_SYMBOL(__lock_buffer); 69 70 void unlock_buffer(struct buffer_head *bh) 71 { 72 clear_bit_unlock(BH_Lock, &bh->b_state); 73 smp_mb__after_clear_bit(); 74 wake_up_bit(&bh->b_state, BH_Lock); 75 } 76 EXPORT_SYMBOL(unlock_buffer); 77 78 /* 79 * Block until a buffer comes unlocked. This doesn't stop it 80 * from becoming locked again - you have to lock it yourself 81 * if you want to preserve its state. 82 */ 83 void __wait_on_buffer(struct buffer_head * bh) 84 { 85 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE); 86 } 87 EXPORT_SYMBOL(__wait_on_buffer); 88 89 static void 90 __clear_page_buffers(struct page *page) 91 { 92 ClearPagePrivate(page); 93 set_page_private(page, 0); 94 page_cache_release(page); 95 } 96 97 98 static int quiet_error(struct buffer_head *bh) 99 { 100 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 101 return 0; 102 return 1; 103 } 104 105 106 static void buffer_io_error(struct buffer_head *bh) 107 { 108 char b[BDEVNAME_SIZE]; 109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 110 bdevname(bh->b_bdev, b), 111 (unsigned long long)bh->b_blocknr); 112 } 113 114 /* 115 * End-of-IO handler helper function which does not touch the bh after 116 * unlocking it. 117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 118 * a race there is benign: unlock_buffer() only use the bh's address for 119 * hashing after unlocking the buffer, so it doesn't actually touch the bh 120 * itself. 121 */ 122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 123 { 124 if (uptodate) { 125 set_buffer_uptodate(bh); 126 } else { 127 /* This happens, due to failed READA attempts. */ 128 clear_buffer_uptodate(bh); 129 } 130 unlock_buffer(bh); 131 } 132 133 /* 134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 135 * unlock the buffer. This is what ll_rw_block uses too. 136 */ 137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 138 { 139 __end_buffer_read_notouch(bh, uptodate); 140 put_bh(bh); 141 } 142 EXPORT_SYMBOL(end_buffer_read_sync); 143 144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 145 { 146 char b[BDEVNAME_SIZE]; 147 148 if (uptodate) { 149 set_buffer_uptodate(bh); 150 } else { 151 if (!quiet_error(bh)) { 152 buffer_io_error(bh); 153 printk(KERN_WARNING "lost page write due to " 154 "I/O error on %s\n", 155 bdevname(bh->b_bdev, b)); 156 } 157 set_buffer_write_io_error(bh); 158 clear_buffer_uptodate(bh); 159 } 160 unlock_buffer(bh); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_write_sync); 164 165 /* 166 * Various filesystems appear to want __find_get_block to be non-blocking. 167 * But it's the page lock which protects the buffers. To get around this, 168 * we get exclusion from try_to_free_buffers with the blockdev mapping's 169 * private_lock. 170 * 171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 172 * may be quite high. This code could TryLock the page, and if that 173 * succeeds, there is no need to take private_lock. (But if 174 * private_lock is contended then so is mapping->tree_lock). 175 */ 176 static struct buffer_head * 177 __find_get_block_slow(struct block_device *bdev, sector_t block) 178 { 179 struct inode *bd_inode = bdev->bd_inode; 180 struct address_space *bd_mapping = bd_inode->i_mapping; 181 struct buffer_head *ret = NULL; 182 pgoff_t index; 183 struct buffer_head *bh; 184 struct buffer_head *head; 185 struct page *page; 186 int all_mapped = 1; 187 188 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 189 page = find_get_page(bd_mapping, index); 190 if (!page) 191 goto out; 192 193 spin_lock(&bd_mapping->private_lock); 194 if (!page_has_buffers(page)) 195 goto out_unlock; 196 head = page_buffers(page); 197 bh = head; 198 do { 199 if (!buffer_mapped(bh)) 200 all_mapped = 0; 201 else if (bh->b_blocknr == block) { 202 ret = bh; 203 get_bh(bh); 204 goto out_unlock; 205 } 206 bh = bh->b_this_page; 207 } while (bh != head); 208 209 /* we might be here because some of the buffers on this page are 210 * not mapped. This is due to various races between 211 * file io on the block device and getblk. It gets dealt with 212 * elsewhere, don't buffer_error if we had some unmapped buffers 213 */ 214 if (all_mapped) { 215 char b[BDEVNAME_SIZE]; 216 217 printk("__find_get_block_slow() failed. " 218 "block=%llu, b_blocknr=%llu\n", 219 (unsigned long long)block, 220 (unsigned long long)bh->b_blocknr); 221 printk("b_state=0x%08lx, b_size=%zu\n", 222 bh->b_state, bh->b_size); 223 printk("device %s blocksize: %d\n", bdevname(bdev, b), 224 1 << bd_inode->i_blkbits); 225 } 226 out_unlock: 227 spin_unlock(&bd_mapping->private_lock); 228 page_cache_release(page); 229 out: 230 return ret; 231 } 232 233 /* 234 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 235 */ 236 static void free_more_memory(void) 237 { 238 struct zone *zone; 239 int nid; 240 241 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 242 yield(); 243 244 for_each_online_node(nid) { 245 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 246 gfp_zone(GFP_NOFS), NULL, 247 &zone); 248 if (zone) 249 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 250 GFP_NOFS, NULL); 251 } 252 } 253 254 /* 255 * I/O completion handler for block_read_full_page() - pages 256 * which come unlocked at the end of I/O. 257 */ 258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 259 { 260 unsigned long flags; 261 struct buffer_head *first; 262 struct buffer_head *tmp; 263 struct page *page; 264 int page_uptodate = 1; 265 266 BUG_ON(!buffer_async_read(bh)); 267 268 page = bh->b_page; 269 if (uptodate) { 270 set_buffer_uptodate(bh); 271 } else { 272 clear_buffer_uptodate(bh); 273 if (!quiet_error(bh)) 274 buffer_io_error(bh); 275 SetPageError(page); 276 } 277 278 /* 279 * Be _very_ careful from here on. Bad things can happen if 280 * two buffer heads end IO at almost the same time and both 281 * decide that the page is now completely done. 282 */ 283 first = page_buffers(page); 284 local_irq_save(flags); 285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 286 clear_buffer_async_read(bh); 287 unlock_buffer(bh); 288 tmp = bh; 289 do { 290 if (!buffer_uptodate(tmp)) 291 page_uptodate = 0; 292 if (buffer_async_read(tmp)) { 293 BUG_ON(!buffer_locked(tmp)); 294 goto still_busy; 295 } 296 tmp = tmp->b_this_page; 297 } while (tmp != bh); 298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 299 local_irq_restore(flags); 300 301 /* 302 * If none of the buffers had errors and they are all 303 * uptodate then we can set the page uptodate. 304 */ 305 if (page_uptodate && !PageError(page)) 306 SetPageUptodate(page); 307 unlock_page(page); 308 return; 309 310 still_busy: 311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 312 local_irq_restore(flags); 313 return; 314 } 315 316 /* 317 * Completion handler for block_write_full_page() - pages which are unlocked 318 * during I/O, and which have PageWriteback cleared upon I/O completion. 319 */ 320 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 321 { 322 char b[BDEVNAME_SIZE]; 323 unsigned long flags; 324 struct buffer_head *first; 325 struct buffer_head *tmp; 326 struct page *page; 327 328 BUG_ON(!buffer_async_write(bh)); 329 330 page = bh->b_page; 331 if (uptodate) { 332 set_buffer_uptodate(bh); 333 } else { 334 if (!quiet_error(bh)) { 335 buffer_io_error(bh); 336 printk(KERN_WARNING "lost page write due to " 337 "I/O error on %s\n", 338 bdevname(bh->b_bdev, b)); 339 } 340 set_bit(AS_EIO, &page->mapping->flags); 341 set_buffer_write_io_error(bh); 342 clear_buffer_uptodate(bh); 343 SetPageError(page); 344 } 345 346 first = page_buffers(page); 347 local_irq_save(flags); 348 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 349 350 clear_buffer_async_write(bh); 351 unlock_buffer(bh); 352 tmp = bh->b_this_page; 353 while (tmp != bh) { 354 if (buffer_async_write(tmp)) { 355 BUG_ON(!buffer_locked(tmp)); 356 goto still_busy; 357 } 358 tmp = tmp->b_this_page; 359 } 360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 361 local_irq_restore(flags); 362 end_page_writeback(page); 363 return; 364 365 still_busy: 366 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 367 local_irq_restore(flags); 368 return; 369 } 370 EXPORT_SYMBOL(end_buffer_async_write); 371 372 /* 373 * If a page's buffers are under async readin (end_buffer_async_read 374 * completion) then there is a possibility that another thread of 375 * control could lock one of the buffers after it has completed 376 * but while some of the other buffers have not completed. This 377 * locked buffer would confuse end_buffer_async_read() into not unlocking 378 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 379 * that this buffer is not under async I/O. 380 * 381 * The page comes unlocked when it has no locked buffer_async buffers 382 * left. 383 * 384 * PageLocked prevents anyone starting new async I/O reads any of 385 * the buffers. 386 * 387 * PageWriteback is used to prevent simultaneous writeout of the same 388 * page. 389 * 390 * PageLocked prevents anyone from starting writeback of a page which is 391 * under read I/O (PageWriteback is only ever set against a locked page). 392 */ 393 static void mark_buffer_async_read(struct buffer_head *bh) 394 { 395 bh->b_end_io = end_buffer_async_read; 396 set_buffer_async_read(bh); 397 } 398 399 static void mark_buffer_async_write_endio(struct buffer_head *bh, 400 bh_end_io_t *handler) 401 { 402 bh->b_end_io = handler; 403 set_buffer_async_write(bh); 404 } 405 406 void mark_buffer_async_write(struct buffer_head *bh) 407 { 408 mark_buffer_async_write_endio(bh, end_buffer_async_write); 409 } 410 EXPORT_SYMBOL(mark_buffer_async_write); 411 412 413 /* 414 * fs/buffer.c contains helper functions for buffer-backed address space's 415 * fsync functions. A common requirement for buffer-based filesystems is 416 * that certain data from the backing blockdev needs to be written out for 417 * a successful fsync(). For example, ext2 indirect blocks need to be 418 * written back and waited upon before fsync() returns. 419 * 420 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 421 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 422 * management of a list of dependent buffers at ->i_mapping->private_list. 423 * 424 * Locking is a little subtle: try_to_free_buffers() will remove buffers 425 * from their controlling inode's queue when they are being freed. But 426 * try_to_free_buffers() will be operating against the *blockdev* mapping 427 * at the time, not against the S_ISREG file which depends on those buffers. 428 * So the locking for private_list is via the private_lock in the address_space 429 * which backs the buffers. Which is different from the address_space 430 * against which the buffers are listed. So for a particular address_space, 431 * mapping->private_lock does *not* protect mapping->private_list! In fact, 432 * mapping->private_list will always be protected by the backing blockdev's 433 * ->private_lock. 434 * 435 * Which introduces a requirement: all buffers on an address_space's 436 * ->private_list must be from the same address_space: the blockdev's. 437 * 438 * address_spaces which do not place buffers at ->private_list via these 439 * utility functions are free to use private_lock and private_list for 440 * whatever they want. The only requirement is that list_empty(private_list) 441 * be true at clear_inode() time. 442 * 443 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 444 * filesystems should do that. invalidate_inode_buffers() should just go 445 * BUG_ON(!list_empty). 446 * 447 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 448 * take an address_space, not an inode. And it should be called 449 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 450 * queued up. 451 * 452 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 453 * list if it is already on a list. Because if the buffer is on a list, 454 * it *must* already be on the right one. If not, the filesystem is being 455 * silly. This will save a ton of locking. But first we have to ensure 456 * that buffers are taken *off* the old inode's list when they are freed 457 * (presumably in truncate). That requires careful auditing of all 458 * filesystems (do it inside bforget()). It could also be done by bringing 459 * b_inode back. 460 */ 461 462 /* 463 * The buffer's backing address_space's private_lock must be held 464 */ 465 static void __remove_assoc_queue(struct buffer_head *bh) 466 { 467 list_del_init(&bh->b_assoc_buffers); 468 WARN_ON(!bh->b_assoc_map); 469 if (buffer_write_io_error(bh)) 470 set_bit(AS_EIO, &bh->b_assoc_map->flags); 471 bh->b_assoc_map = NULL; 472 } 473 474 int inode_has_buffers(struct inode *inode) 475 { 476 return !list_empty(&inode->i_data.private_list); 477 } 478 479 /* 480 * osync is designed to support O_SYNC io. It waits synchronously for 481 * all already-submitted IO to complete, but does not queue any new 482 * writes to the disk. 483 * 484 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 485 * you dirty the buffers, and then use osync_inode_buffers to wait for 486 * completion. Any other dirty buffers which are not yet queued for 487 * write will not be flushed to disk by the osync. 488 */ 489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 490 { 491 struct buffer_head *bh; 492 struct list_head *p; 493 int err = 0; 494 495 spin_lock(lock); 496 repeat: 497 list_for_each_prev(p, list) { 498 bh = BH_ENTRY(p); 499 if (buffer_locked(bh)) { 500 get_bh(bh); 501 spin_unlock(lock); 502 wait_on_buffer(bh); 503 if (!buffer_uptodate(bh)) 504 err = -EIO; 505 brelse(bh); 506 spin_lock(lock); 507 goto repeat; 508 } 509 } 510 spin_unlock(lock); 511 return err; 512 } 513 514 static void do_thaw_one(struct super_block *sb, void *unused) 515 { 516 char b[BDEVNAME_SIZE]; 517 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 518 printk(KERN_WARNING "Emergency Thaw on %s\n", 519 bdevname(sb->s_bdev, b)); 520 } 521 522 static void do_thaw_all(struct work_struct *work) 523 { 524 iterate_supers(do_thaw_one, NULL); 525 kfree(work); 526 printk(KERN_WARNING "Emergency Thaw complete\n"); 527 } 528 529 /** 530 * emergency_thaw_all -- forcibly thaw every frozen filesystem 531 * 532 * Used for emergency unfreeze of all filesystems via SysRq 533 */ 534 void emergency_thaw_all(void) 535 { 536 struct work_struct *work; 537 538 work = kmalloc(sizeof(*work), GFP_ATOMIC); 539 if (work) { 540 INIT_WORK(work, do_thaw_all); 541 schedule_work(work); 542 } 543 } 544 545 /** 546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 547 * @mapping: the mapping which wants those buffers written 548 * 549 * Starts I/O against the buffers at mapping->private_list, and waits upon 550 * that I/O. 551 * 552 * Basically, this is a convenience function for fsync(). 553 * @mapping is a file or directory which needs those buffers to be written for 554 * a successful fsync(). 555 */ 556 int sync_mapping_buffers(struct address_space *mapping) 557 { 558 struct address_space *buffer_mapping = mapping->assoc_mapping; 559 560 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 561 return 0; 562 563 return fsync_buffers_list(&buffer_mapping->private_lock, 564 &mapping->private_list); 565 } 566 EXPORT_SYMBOL(sync_mapping_buffers); 567 568 /* 569 * Called when we've recently written block `bblock', and it is known that 570 * `bblock' was for a buffer_boundary() buffer. This means that the block at 571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 572 * dirty, schedule it for IO. So that indirects merge nicely with their data. 573 */ 574 void write_boundary_block(struct block_device *bdev, 575 sector_t bblock, unsigned blocksize) 576 { 577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 578 if (bh) { 579 if (buffer_dirty(bh)) 580 ll_rw_block(WRITE, 1, &bh); 581 put_bh(bh); 582 } 583 } 584 585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 586 { 587 struct address_space *mapping = inode->i_mapping; 588 struct address_space *buffer_mapping = bh->b_page->mapping; 589 590 mark_buffer_dirty(bh); 591 if (!mapping->assoc_mapping) { 592 mapping->assoc_mapping = buffer_mapping; 593 } else { 594 BUG_ON(mapping->assoc_mapping != buffer_mapping); 595 } 596 if (!bh->b_assoc_map) { 597 spin_lock(&buffer_mapping->private_lock); 598 list_move_tail(&bh->b_assoc_buffers, 599 &mapping->private_list); 600 bh->b_assoc_map = mapping; 601 spin_unlock(&buffer_mapping->private_lock); 602 } 603 } 604 EXPORT_SYMBOL(mark_buffer_dirty_inode); 605 606 /* 607 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 608 * dirty. 609 * 610 * If warn is true, then emit a warning if the page is not uptodate and has 611 * not been truncated. 612 */ 613 static void __set_page_dirty(struct page *page, 614 struct address_space *mapping, int warn) 615 { 616 spin_lock_irq(&mapping->tree_lock); 617 if (page->mapping) { /* Race with truncate? */ 618 WARN_ON_ONCE(warn && !PageUptodate(page)); 619 account_page_dirtied(page, mapping); 620 radix_tree_tag_set(&mapping->page_tree, 621 page_index(page), PAGECACHE_TAG_DIRTY); 622 } 623 spin_unlock_irq(&mapping->tree_lock); 624 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 625 } 626 627 /* 628 * Add a page to the dirty page list. 629 * 630 * It is a sad fact of life that this function is called from several places 631 * deeply under spinlocking. It may not sleep. 632 * 633 * If the page has buffers, the uptodate buffers are set dirty, to preserve 634 * dirty-state coherency between the page and the buffers. It the page does 635 * not have buffers then when they are later attached they will all be set 636 * dirty. 637 * 638 * The buffers are dirtied before the page is dirtied. There's a small race 639 * window in which a writepage caller may see the page cleanness but not the 640 * buffer dirtiness. That's fine. If this code were to set the page dirty 641 * before the buffers, a concurrent writepage caller could clear the page dirty 642 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 643 * page on the dirty page list. 644 * 645 * We use private_lock to lock against try_to_free_buffers while using the 646 * page's buffer list. Also use this to protect against clean buffers being 647 * added to the page after it was set dirty. 648 * 649 * FIXME: may need to call ->reservepage here as well. That's rather up to the 650 * address_space though. 651 */ 652 int __set_page_dirty_buffers(struct page *page) 653 { 654 int newly_dirty; 655 struct address_space *mapping = page_mapping(page); 656 657 if (unlikely(!mapping)) 658 return !TestSetPageDirty(page); 659 660 spin_lock(&mapping->private_lock); 661 if (page_has_buffers(page)) { 662 struct buffer_head *head = page_buffers(page); 663 struct buffer_head *bh = head; 664 665 do { 666 set_buffer_dirty(bh); 667 bh = bh->b_this_page; 668 } while (bh != head); 669 } 670 newly_dirty = !TestSetPageDirty(page); 671 spin_unlock(&mapping->private_lock); 672 673 if (newly_dirty) 674 __set_page_dirty(page, mapping, 1); 675 return newly_dirty; 676 } 677 EXPORT_SYMBOL(__set_page_dirty_buffers); 678 679 /* 680 * Write out and wait upon a list of buffers. 681 * 682 * We have conflicting pressures: we want to make sure that all 683 * initially dirty buffers get waited on, but that any subsequently 684 * dirtied buffers don't. After all, we don't want fsync to last 685 * forever if somebody is actively writing to the file. 686 * 687 * Do this in two main stages: first we copy dirty buffers to a 688 * temporary inode list, queueing the writes as we go. Then we clean 689 * up, waiting for those writes to complete. 690 * 691 * During this second stage, any subsequent updates to the file may end 692 * up refiling the buffer on the original inode's dirty list again, so 693 * there is a chance we will end up with a buffer queued for write but 694 * not yet completed on that list. So, as a final cleanup we go through 695 * the osync code to catch these locked, dirty buffers without requeuing 696 * any newly dirty buffers for write. 697 */ 698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 699 { 700 struct buffer_head *bh; 701 struct list_head tmp; 702 struct address_space *mapping; 703 int err = 0, err2; 704 struct blk_plug plug; 705 706 INIT_LIST_HEAD(&tmp); 707 blk_start_plug(&plug); 708 709 spin_lock(lock); 710 while (!list_empty(list)) { 711 bh = BH_ENTRY(list->next); 712 mapping = bh->b_assoc_map; 713 __remove_assoc_queue(bh); 714 /* Avoid race with mark_buffer_dirty_inode() which does 715 * a lockless check and we rely on seeing the dirty bit */ 716 smp_mb(); 717 if (buffer_dirty(bh) || buffer_locked(bh)) { 718 list_add(&bh->b_assoc_buffers, &tmp); 719 bh->b_assoc_map = mapping; 720 if (buffer_dirty(bh)) { 721 get_bh(bh); 722 spin_unlock(lock); 723 /* 724 * Ensure any pending I/O completes so that 725 * write_dirty_buffer() actually writes the 726 * current contents - it is a noop if I/O is 727 * still in flight on potentially older 728 * contents. 729 */ 730 write_dirty_buffer(bh, WRITE_SYNC); 731 732 /* 733 * Kick off IO for the previous mapping. Note 734 * that we will not run the very last mapping, 735 * wait_on_buffer() will do that for us 736 * through sync_buffer(). 737 */ 738 brelse(bh); 739 spin_lock(lock); 740 } 741 } 742 } 743 744 spin_unlock(lock); 745 blk_finish_plug(&plug); 746 spin_lock(lock); 747 748 while (!list_empty(&tmp)) { 749 bh = BH_ENTRY(tmp.prev); 750 get_bh(bh); 751 mapping = bh->b_assoc_map; 752 __remove_assoc_queue(bh); 753 /* Avoid race with mark_buffer_dirty_inode() which does 754 * a lockless check and we rely on seeing the dirty bit */ 755 smp_mb(); 756 if (buffer_dirty(bh)) { 757 list_add(&bh->b_assoc_buffers, 758 &mapping->private_list); 759 bh->b_assoc_map = mapping; 760 } 761 spin_unlock(lock); 762 wait_on_buffer(bh); 763 if (!buffer_uptodate(bh)) 764 err = -EIO; 765 brelse(bh); 766 spin_lock(lock); 767 } 768 769 spin_unlock(lock); 770 err2 = osync_buffers_list(lock, list); 771 if (err) 772 return err; 773 else 774 return err2; 775 } 776 777 /* 778 * Invalidate any and all dirty buffers on a given inode. We are 779 * probably unmounting the fs, but that doesn't mean we have already 780 * done a sync(). Just drop the buffers from the inode list. 781 * 782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 783 * assumes that all the buffers are against the blockdev. Not true 784 * for reiserfs. 785 */ 786 void invalidate_inode_buffers(struct inode *inode) 787 { 788 if (inode_has_buffers(inode)) { 789 struct address_space *mapping = &inode->i_data; 790 struct list_head *list = &mapping->private_list; 791 struct address_space *buffer_mapping = mapping->assoc_mapping; 792 793 spin_lock(&buffer_mapping->private_lock); 794 while (!list_empty(list)) 795 __remove_assoc_queue(BH_ENTRY(list->next)); 796 spin_unlock(&buffer_mapping->private_lock); 797 } 798 } 799 EXPORT_SYMBOL(invalidate_inode_buffers); 800 801 /* 802 * Remove any clean buffers from the inode's buffer list. This is called 803 * when we're trying to free the inode itself. Those buffers can pin it. 804 * 805 * Returns true if all buffers were removed. 806 */ 807 int remove_inode_buffers(struct inode *inode) 808 { 809 int ret = 1; 810 811 if (inode_has_buffers(inode)) { 812 struct address_space *mapping = &inode->i_data; 813 struct list_head *list = &mapping->private_list; 814 struct address_space *buffer_mapping = mapping->assoc_mapping; 815 816 spin_lock(&buffer_mapping->private_lock); 817 while (!list_empty(list)) { 818 struct buffer_head *bh = BH_ENTRY(list->next); 819 if (buffer_dirty(bh)) { 820 ret = 0; 821 break; 822 } 823 __remove_assoc_queue(bh); 824 } 825 spin_unlock(&buffer_mapping->private_lock); 826 } 827 return ret; 828 } 829 830 /* 831 * Create the appropriate buffers when given a page for data area and 832 * the size of each buffer.. Use the bh->b_this_page linked list to 833 * follow the buffers created. Return NULL if unable to create more 834 * buffers. 835 * 836 * The retry flag is used to differentiate async IO (paging, swapping) 837 * which may not fail from ordinary buffer allocations. 838 */ 839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 840 int retry) 841 { 842 struct buffer_head *bh, *head; 843 long offset; 844 845 try_again: 846 head = NULL; 847 offset = PAGE_SIZE; 848 while ((offset -= size) >= 0) { 849 bh = alloc_buffer_head(GFP_NOFS); 850 if (!bh) 851 goto no_grow; 852 853 bh->b_bdev = NULL; 854 bh->b_this_page = head; 855 bh->b_blocknr = -1; 856 head = bh; 857 858 bh->b_state = 0; 859 atomic_set(&bh->b_count, 0); 860 bh->b_size = size; 861 862 /* Link the buffer to its page */ 863 set_bh_page(bh, page, offset); 864 865 init_buffer(bh, NULL, NULL); 866 } 867 return head; 868 /* 869 * In case anything failed, we just free everything we got. 870 */ 871 no_grow: 872 if (head) { 873 do { 874 bh = head; 875 head = head->b_this_page; 876 free_buffer_head(bh); 877 } while (head); 878 } 879 880 /* 881 * Return failure for non-async IO requests. Async IO requests 882 * are not allowed to fail, so we have to wait until buffer heads 883 * become available. But we don't want tasks sleeping with 884 * partially complete buffers, so all were released above. 885 */ 886 if (!retry) 887 return NULL; 888 889 /* We're _really_ low on memory. Now we just 890 * wait for old buffer heads to become free due to 891 * finishing IO. Since this is an async request and 892 * the reserve list is empty, we're sure there are 893 * async buffer heads in use. 894 */ 895 free_more_memory(); 896 goto try_again; 897 } 898 EXPORT_SYMBOL_GPL(alloc_page_buffers); 899 900 static inline void 901 link_dev_buffers(struct page *page, struct buffer_head *head) 902 { 903 struct buffer_head *bh, *tail; 904 905 bh = head; 906 do { 907 tail = bh; 908 bh = bh->b_this_page; 909 } while (bh); 910 tail->b_this_page = head; 911 attach_page_buffers(page, head); 912 } 913 914 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 915 { 916 sector_t retval = ~((sector_t)0); 917 loff_t sz = i_size_read(bdev->bd_inode); 918 919 if (sz) { 920 unsigned int sizebits = blksize_bits(size); 921 retval = (sz >> sizebits); 922 } 923 return retval; 924 } 925 926 /* 927 * Initialise the state of a blockdev page's buffers. 928 */ 929 static sector_t 930 init_page_buffers(struct page *page, struct block_device *bdev, 931 sector_t block, int size) 932 { 933 struct buffer_head *head = page_buffers(page); 934 struct buffer_head *bh = head; 935 int uptodate = PageUptodate(page); 936 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 937 938 do { 939 if (!buffer_mapped(bh)) { 940 init_buffer(bh, NULL, NULL); 941 bh->b_bdev = bdev; 942 bh->b_blocknr = block; 943 if (uptodate) 944 set_buffer_uptodate(bh); 945 if (block < end_block) 946 set_buffer_mapped(bh); 947 } 948 block++; 949 bh = bh->b_this_page; 950 } while (bh != head); 951 952 /* 953 * Caller needs to validate requested block against end of device. 954 */ 955 return end_block; 956 } 957 958 /* 959 * Create the page-cache page that contains the requested block. 960 * 961 * This is used purely for blockdev mappings. 962 */ 963 static int 964 grow_dev_page(struct block_device *bdev, sector_t block, 965 pgoff_t index, int size, int sizebits) 966 { 967 struct inode *inode = bdev->bd_inode; 968 struct page *page; 969 struct buffer_head *bh; 970 sector_t end_block; 971 int ret = 0; /* Will call free_more_memory() */ 972 973 page = find_or_create_page(inode->i_mapping, index, 974 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 975 if (!page) 976 return ret; 977 978 BUG_ON(!PageLocked(page)); 979 980 if (page_has_buffers(page)) { 981 bh = page_buffers(page); 982 if (bh->b_size == size) { 983 end_block = init_page_buffers(page, bdev, 984 index << sizebits, size); 985 goto done; 986 } 987 if (!try_to_free_buffers(page)) 988 goto failed; 989 } 990 991 /* 992 * Allocate some buffers for this page 993 */ 994 bh = alloc_page_buffers(page, size, 0); 995 if (!bh) 996 goto failed; 997 998 /* 999 * Link the page to the buffers and initialise them. Take the 1000 * lock to be atomic wrt __find_get_block(), which does not 1001 * run under the page lock. 1002 */ 1003 spin_lock(&inode->i_mapping->private_lock); 1004 link_dev_buffers(page, bh); 1005 end_block = init_page_buffers(page, bdev, index << sizebits, size); 1006 spin_unlock(&inode->i_mapping->private_lock); 1007 done: 1008 ret = (block < end_block) ? 1 : -ENXIO; 1009 failed: 1010 unlock_page(page); 1011 page_cache_release(page); 1012 return ret; 1013 } 1014 1015 /* 1016 * Create buffers for the specified block device block's page. If 1017 * that page was dirty, the buffers are set dirty also. 1018 */ 1019 static int 1020 grow_buffers(struct block_device *bdev, sector_t block, int size) 1021 { 1022 pgoff_t index; 1023 int sizebits; 1024 1025 sizebits = -1; 1026 do { 1027 sizebits++; 1028 } while ((size << sizebits) < PAGE_SIZE); 1029 1030 index = block >> sizebits; 1031 1032 /* 1033 * Check for a block which wants to lie outside our maximum possible 1034 * pagecache index. (this comparison is done using sector_t types). 1035 */ 1036 if (unlikely(index != block >> sizebits)) { 1037 char b[BDEVNAME_SIZE]; 1038 1039 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1040 "device %s\n", 1041 __func__, (unsigned long long)block, 1042 bdevname(bdev, b)); 1043 return -EIO; 1044 } 1045 1046 /* Create a page with the proper size buffers.. */ 1047 return grow_dev_page(bdev, block, index, size, sizebits); 1048 } 1049 1050 static struct buffer_head * 1051 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1052 { 1053 /* Size must be multiple of hard sectorsize */ 1054 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1055 (size < 512 || size > PAGE_SIZE))) { 1056 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1057 size); 1058 printk(KERN_ERR "logical block size: %d\n", 1059 bdev_logical_block_size(bdev)); 1060 1061 dump_stack(); 1062 return NULL; 1063 } 1064 1065 for (;;) { 1066 struct buffer_head *bh; 1067 int ret; 1068 1069 bh = __find_get_block(bdev, block, size); 1070 if (bh) 1071 return bh; 1072 1073 ret = grow_buffers(bdev, block, size); 1074 if (ret < 0) 1075 return NULL; 1076 if (ret == 0) 1077 free_more_memory(); 1078 } 1079 } 1080 1081 /* 1082 * The relationship between dirty buffers and dirty pages: 1083 * 1084 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1085 * the page is tagged dirty in its radix tree. 1086 * 1087 * At all times, the dirtiness of the buffers represents the dirtiness of 1088 * subsections of the page. If the page has buffers, the page dirty bit is 1089 * merely a hint about the true dirty state. 1090 * 1091 * When a page is set dirty in its entirety, all its buffers are marked dirty 1092 * (if the page has buffers). 1093 * 1094 * When a buffer is marked dirty, its page is dirtied, but the page's other 1095 * buffers are not. 1096 * 1097 * Also. When blockdev buffers are explicitly read with bread(), they 1098 * individually become uptodate. But their backing page remains not 1099 * uptodate - even if all of its buffers are uptodate. A subsequent 1100 * block_read_full_page() against that page will discover all the uptodate 1101 * buffers, will set the page uptodate and will perform no I/O. 1102 */ 1103 1104 /** 1105 * mark_buffer_dirty - mark a buffer_head as needing writeout 1106 * @bh: the buffer_head to mark dirty 1107 * 1108 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1109 * backing page dirty, then tag the page as dirty in its address_space's radix 1110 * tree and then attach the address_space's inode to its superblock's dirty 1111 * inode list. 1112 * 1113 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1114 * mapping->tree_lock and mapping->host->i_lock. 1115 */ 1116 void mark_buffer_dirty(struct buffer_head *bh) 1117 { 1118 WARN_ON_ONCE(!buffer_uptodate(bh)); 1119 1120 /* 1121 * Very *carefully* optimize the it-is-already-dirty case. 1122 * 1123 * Don't let the final "is it dirty" escape to before we 1124 * perhaps modified the buffer. 1125 */ 1126 if (buffer_dirty(bh)) { 1127 smp_mb(); 1128 if (buffer_dirty(bh)) 1129 return; 1130 } 1131 1132 if (!test_set_buffer_dirty(bh)) { 1133 struct page *page = bh->b_page; 1134 if (!TestSetPageDirty(page)) { 1135 struct address_space *mapping = page_mapping(page); 1136 if (mapping) 1137 __set_page_dirty(page, mapping, 0); 1138 } 1139 } 1140 } 1141 EXPORT_SYMBOL(mark_buffer_dirty); 1142 1143 /* 1144 * Decrement a buffer_head's reference count. If all buffers against a page 1145 * have zero reference count, are clean and unlocked, and if the page is clean 1146 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1147 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1148 * a page but it ends up not being freed, and buffers may later be reattached). 1149 */ 1150 void __brelse(struct buffer_head * buf) 1151 { 1152 if (atomic_read(&buf->b_count)) { 1153 put_bh(buf); 1154 return; 1155 } 1156 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1157 } 1158 EXPORT_SYMBOL(__brelse); 1159 1160 /* 1161 * bforget() is like brelse(), except it discards any 1162 * potentially dirty data. 1163 */ 1164 void __bforget(struct buffer_head *bh) 1165 { 1166 clear_buffer_dirty(bh); 1167 if (bh->b_assoc_map) { 1168 struct address_space *buffer_mapping = bh->b_page->mapping; 1169 1170 spin_lock(&buffer_mapping->private_lock); 1171 list_del_init(&bh->b_assoc_buffers); 1172 bh->b_assoc_map = NULL; 1173 spin_unlock(&buffer_mapping->private_lock); 1174 } 1175 __brelse(bh); 1176 } 1177 EXPORT_SYMBOL(__bforget); 1178 1179 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1180 { 1181 lock_buffer(bh); 1182 if (buffer_uptodate(bh)) { 1183 unlock_buffer(bh); 1184 return bh; 1185 } else { 1186 get_bh(bh); 1187 bh->b_end_io = end_buffer_read_sync; 1188 submit_bh(READ, bh); 1189 wait_on_buffer(bh); 1190 if (buffer_uptodate(bh)) 1191 return bh; 1192 } 1193 brelse(bh); 1194 return NULL; 1195 } 1196 1197 /* 1198 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1199 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1200 * refcount elevated by one when they're in an LRU. A buffer can only appear 1201 * once in a particular CPU's LRU. A single buffer can be present in multiple 1202 * CPU's LRUs at the same time. 1203 * 1204 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1205 * sb_find_get_block(). 1206 * 1207 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1208 * a local interrupt disable for that. 1209 */ 1210 1211 #define BH_LRU_SIZE 8 1212 1213 struct bh_lru { 1214 struct buffer_head *bhs[BH_LRU_SIZE]; 1215 }; 1216 1217 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1218 1219 #ifdef CONFIG_SMP 1220 #define bh_lru_lock() local_irq_disable() 1221 #define bh_lru_unlock() local_irq_enable() 1222 #else 1223 #define bh_lru_lock() preempt_disable() 1224 #define bh_lru_unlock() preempt_enable() 1225 #endif 1226 1227 static inline void check_irqs_on(void) 1228 { 1229 #ifdef irqs_disabled 1230 BUG_ON(irqs_disabled()); 1231 #endif 1232 } 1233 1234 /* 1235 * The LRU management algorithm is dopey-but-simple. Sorry. 1236 */ 1237 static void bh_lru_install(struct buffer_head *bh) 1238 { 1239 struct buffer_head *evictee = NULL; 1240 1241 check_irqs_on(); 1242 bh_lru_lock(); 1243 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1244 struct buffer_head *bhs[BH_LRU_SIZE]; 1245 int in; 1246 int out = 0; 1247 1248 get_bh(bh); 1249 bhs[out++] = bh; 1250 for (in = 0; in < BH_LRU_SIZE; in++) { 1251 struct buffer_head *bh2 = 1252 __this_cpu_read(bh_lrus.bhs[in]); 1253 1254 if (bh2 == bh) { 1255 __brelse(bh2); 1256 } else { 1257 if (out >= BH_LRU_SIZE) { 1258 BUG_ON(evictee != NULL); 1259 evictee = bh2; 1260 } else { 1261 bhs[out++] = bh2; 1262 } 1263 } 1264 } 1265 while (out < BH_LRU_SIZE) 1266 bhs[out++] = NULL; 1267 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1268 } 1269 bh_lru_unlock(); 1270 1271 if (evictee) 1272 __brelse(evictee); 1273 } 1274 1275 /* 1276 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1277 */ 1278 static struct buffer_head * 1279 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1280 { 1281 struct buffer_head *ret = NULL; 1282 unsigned int i; 1283 1284 check_irqs_on(); 1285 bh_lru_lock(); 1286 for (i = 0; i < BH_LRU_SIZE; i++) { 1287 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1288 1289 if (bh && bh->b_bdev == bdev && 1290 bh->b_blocknr == block && bh->b_size == size) { 1291 if (i) { 1292 while (i) { 1293 __this_cpu_write(bh_lrus.bhs[i], 1294 __this_cpu_read(bh_lrus.bhs[i - 1])); 1295 i--; 1296 } 1297 __this_cpu_write(bh_lrus.bhs[0], bh); 1298 } 1299 get_bh(bh); 1300 ret = bh; 1301 break; 1302 } 1303 } 1304 bh_lru_unlock(); 1305 return ret; 1306 } 1307 1308 /* 1309 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1310 * it in the LRU and mark it as accessed. If it is not present then return 1311 * NULL 1312 */ 1313 struct buffer_head * 1314 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1315 { 1316 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1317 1318 if (bh == NULL) { 1319 bh = __find_get_block_slow(bdev, block); 1320 if (bh) 1321 bh_lru_install(bh); 1322 } 1323 if (bh) 1324 touch_buffer(bh); 1325 return bh; 1326 } 1327 EXPORT_SYMBOL(__find_get_block); 1328 1329 /* 1330 * __getblk will locate (and, if necessary, create) the buffer_head 1331 * which corresponds to the passed block_device, block and size. The 1332 * returned buffer has its reference count incremented. 1333 * 1334 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1335 * attempt is failing. FIXME, perhaps? 1336 */ 1337 struct buffer_head * 1338 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1339 { 1340 struct buffer_head *bh = __find_get_block(bdev, block, size); 1341 1342 might_sleep(); 1343 if (bh == NULL) 1344 bh = __getblk_slow(bdev, block, size); 1345 return bh; 1346 } 1347 EXPORT_SYMBOL(__getblk); 1348 1349 /* 1350 * Do async read-ahead on a buffer.. 1351 */ 1352 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1353 { 1354 struct buffer_head *bh = __getblk(bdev, block, size); 1355 if (likely(bh)) { 1356 ll_rw_block(READA, 1, &bh); 1357 brelse(bh); 1358 } 1359 } 1360 EXPORT_SYMBOL(__breadahead); 1361 1362 /** 1363 * __bread() - reads a specified block and returns the bh 1364 * @bdev: the block_device to read from 1365 * @block: number of block 1366 * @size: size (in bytes) to read 1367 * 1368 * Reads a specified block, and returns buffer head that contains it. 1369 * It returns NULL if the block was unreadable. 1370 */ 1371 struct buffer_head * 1372 __bread(struct block_device *bdev, sector_t block, unsigned size) 1373 { 1374 struct buffer_head *bh = __getblk(bdev, block, size); 1375 1376 if (likely(bh) && !buffer_uptodate(bh)) 1377 bh = __bread_slow(bh); 1378 return bh; 1379 } 1380 EXPORT_SYMBOL(__bread); 1381 1382 /* 1383 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1384 * This doesn't race because it runs in each cpu either in irq 1385 * or with preempt disabled. 1386 */ 1387 static void invalidate_bh_lru(void *arg) 1388 { 1389 struct bh_lru *b = &get_cpu_var(bh_lrus); 1390 int i; 1391 1392 for (i = 0; i < BH_LRU_SIZE; i++) { 1393 brelse(b->bhs[i]); 1394 b->bhs[i] = NULL; 1395 } 1396 put_cpu_var(bh_lrus); 1397 } 1398 1399 static bool has_bh_in_lru(int cpu, void *dummy) 1400 { 1401 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1402 int i; 1403 1404 for (i = 0; i < BH_LRU_SIZE; i++) { 1405 if (b->bhs[i]) 1406 return 1; 1407 } 1408 1409 return 0; 1410 } 1411 1412 void invalidate_bh_lrus(void) 1413 { 1414 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1415 } 1416 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1417 1418 void set_bh_page(struct buffer_head *bh, 1419 struct page *page, unsigned long offset) 1420 { 1421 bh->b_page = page; 1422 BUG_ON(offset >= PAGE_SIZE); 1423 if (PageHighMem(page)) 1424 /* 1425 * This catches illegal uses and preserves the offset: 1426 */ 1427 bh->b_data = (char *)(0 + offset); 1428 else 1429 bh->b_data = page_address(page) + offset; 1430 } 1431 EXPORT_SYMBOL(set_bh_page); 1432 1433 /* 1434 * Called when truncating a buffer on a page completely. 1435 */ 1436 static void discard_buffer(struct buffer_head * bh) 1437 { 1438 lock_buffer(bh); 1439 clear_buffer_dirty(bh); 1440 bh->b_bdev = NULL; 1441 clear_buffer_mapped(bh); 1442 clear_buffer_req(bh); 1443 clear_buffer_new(bh); 1444 clear_buffer_delay(bh); 1445 clear_buffer_unwritten(bh); 1446 unlock_buffer(bh); 1447 } 1448 1449 /** 1450 * block_invalidatepage - invalidate part or all of a buffer-backed page 1451 * 1452 * @page: the page which is affected 1453 * @offset: the index of the truncation point 1454 * 1455 * block_invalidatepage() is called when all or part of the page has become 1456 * invalidated by a truncate operation. 1457 * 1458 * block_invalidatepage() does not have to release all buffers, but it must 1459 * ensure that no dirty buffer is left outside @offset and that no I/O 1460 * is underway against any of the blocks which are outside the truncation 1461 * point. Because the caller is about to free (and possibly reuse) those 1462 * blocks on-disk. 1463 */ 1464 void block_invalidatepage(struct page *page, unsigned long offset) 1465 { 1466 struct buffer_head *head, *bh, *next; 1467 unsigned int curr_off = 0; 1468 1469 BUG_ON(!PageLocked(page)); 1470 if (!page_has_buffers(page)) 1471 goto out; 1472 1473 head = page_buffers(page); 1474 bh = head; 1475 do { 1476 unsigned int next_off = curr_off + bh->b_size; 1477 next = bh->b_this_page; 1478 1479 /* 1480 * is this block fully invalidated? 1481 */ 1482 if (offset <= curr_off) 1483 discard_buffer(bh); 1484 curr_off = next_off; 1485 bh = next; 1486 } while (bh != head); 1487 1488 /* 1489 * We release buffers only if the entire page is being invalidated. 1490 * The get_block cached value has been unconditionally invalidated, 1491 * so real IO is not possible anymore. 1492 */ 1493 if (offset == 0) 1494 try_to_release_page(page, 0); 1495 out: 1496 return; 1497 } 1498 EXPORT_SYMBOL(block_invalidatepage); 1499 1500 /* 1501 * We attach and possibly dirty the buffers atomically wrt 1502 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1503 * is already excluded via the page lock. 1504 */ 1505 void create_empty_buffers(struct page *page, 1506 unsigned long blocksize, unsigned long b_state) 1507 { 1508 struct buffer_head *bh, *head, *tail; 1509 1510 head = alloc_page_buffers(page, blocksize, 1); 1511 bh = head; 1512 do { 1513 bh->b_state |= b_state; 1514 tail = bh; 1515 bh = bh->b_this_page; 1516 } while (bh); 1517 tail->b_this_page = head; 1518 1519 spin_lock(&page->mapping->private_lock); 1520 if (PageUptodate(page) || PageDirty(page)) { 1521 bh = head; 1522 do { 1523 if (PageDirty(page)) 1524 set_buffer_dirty(bh); 1525 if (PageUptodate(page)) 1526 set_buffer_uptodate(bh); 1527 bh = bh->b_this_page; 1528 } while (bh != head); 1529 } 1530 attach_page_buffers(page, head); 1531 spin_unlock(&page->mapping->private_lock); 1532 } 1533 EXPORT_SYMBOL(create_empty_buffers); 1534 1535 /* 1536 * We are taking a block for data and we don't want any output from any 1537 * buffer-cache aliases starting from return from that function and 1538 * until the moment when something will explicitly mark the buffer 1539 * dirty (hopefully that will not happen until we will free that block ;-) 1540 * We don't even need to mark it not-uptodate - nobody can expect 1541 * anything from a newly allocated buffer anyway. We used to used 1542 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1543 * don't want to mark the alias unmapped, for example - it would confuse 1544 * anyone who might pick it with bread() afterwards... 1545 * 1546 * Also.. Note that bforget() doesn't lock the buffer. So there can 1547 * be writeout I/O going on against recently-freed buffers. We don't 1548 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1549 * only if we really need to. That happens here. 1550 */ 1551 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1552 { 1553 struct buffer_head *old_bh; 1554 1555 might_sleep(); 1556 1557 old_bh = __find_get_block_slow(bdev, block); 1558 if (old_bh) { 1559 clear_buffer_dirty(old_bh); 1560 wait_on_buffer(old_bh); 1561 clear_buffer_req(old_bh); 1562 __brelse(old_bh); 1563 } 1564 } 1565 EXPORT_SYMBOL(unmap_underlying_metadata); 1566 1567 /* 1568 * Size is a power-of-two in the range 512..PAGE_SIZE, 1569 * and the case we care about most is PAGE_SIZE. 1570 * 1571 * So this *could* possibly be written with those 1572 * constraints in mind (relevant mostly if some 1573 * architecture has a slow bit-scan instruction) 1574 */ 1575 static inline int block_size_bits(unsigned int blocksize) 1576 { 1577 return ilog2(blocksize); 1578 } 1579 1580 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1581 { 1582 BUG_ON(!PageLocked(page)); 1583 1584 if (!page_has_buffers(page)) 1585 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1586 return page_buffers(page); 1587 } 1588 1589 /* 1590 * NOTE! All mapped/uptodate combinations are valid: 1591 * 1592 * Mapped Uptodate Meaning 1593 * 1594 * No No "unknown" - must do get_block() 1595 * No Yes "hole" - zero-filled 1596 * Yes No "allocated" - allocated on disk, not read in 1597 * Yes Yes "valid" - allocated and up-to-date in memory. 1598 * 1599 * "Dirty" is valid only with the last case (mapped+uptodate). 1600 */ 1601 1602 /* 1603 * While block_write_full_page is writing back the dirty buffers under 1604 * the page lock, whoever dirtied the buffers may decide to clean them 1605 * again at any time. We handle that by only looking at the buffer 1606 * state inside lock_buffer(). 1607 * 1608 * If block_write_full_page() is called for regular writeback 1609 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1610 * locked buffer. This only can happen if someone has written the buffer 1611 * directly, with submit_bh(). At the address_space level PageWriteback 1612 * prevents this contention from occurring. 1613 * 1614 * If block_write_full_page() is called with wbc->sync_mode == 1615 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1616 * causes the writes to be flagged as synchronous writes. 1617 */ 1618 static int __block_write_full_page(struct inode *inode, struct page *page, 1619 get_block_t *get_block, struct writeback_control *wbc, 1620 bh_end_io_t *handler) 1621 { 1622 int err; 1623 sector_t block; 1624 sector_t last_block; 1625 struct buffer_head *bh, *head; 1626 unsigned int blocksize, bbits; 1627 int nr_underway = 0; 1628 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1629 WRITE_SYNC : WRITE); 1630 1631 head = create_page_buffers(page, inode, 1632 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1633 1634 /* 1635 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1636 * here, and the (potentially unmapped) buffers may become dirty at 1637 * any time. If a buffer becomes dirty here after we've inspected it 1638 * then we just miss that fact, and the page stays dirty. 1639 * 1640 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1641 * handle that here by just cleaning them. 1642 */ 1643 1644 bh = head; 1645 blocksize = bh->b_size; 1646 bbits = block_size_bits(blocksize); 1647 1648 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1649 last_block = (i_size_read(inode) - 1) >> bbits; 1650 1651 /* 1652 * Get all the dirty buffers mapped to disk addresses and 1653 * handle any aliases from the underlying blockdev's mapping. 1654 */ 1655 do { 1656 if (block > last_block) { 1657 /* 1658 * mapped buffers outside i_size will occur, because 1659 * this page can be outside i_size when there is a 1660 * truncate in progress. 1661 */ 1662 /* 1663 * The buffer was zeroed by block_write_full_page() 1664 */ 1665 clear_buffer_dirty(bh); 1666 set_buffer_uptodate(bh); 1667 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1668 buffer_dirty(bh)) { 1669 WARN_ON(bh->b_size != blocksize); 1670 err = get_block(inode, block, bh, 1); 1671 if (err) 1672 goto recover; 1673 clear_buffer_delay(bh); 1674 if (buffer_new(bh)) { 1675 /* blockdev mappings never come here */ 1676 clear_buffer_new(bh); 1677 unmap_underlying_metadata(bh->b_bdev, 1678 bh->b_blocknr); 1679 } 1680 } 1681 bh = bh->b_this_page; 1682 block++; 1683 } while (bh != head); 1684 1685 do { 1686 if (!buffer_mapped(bh)) 1687 continue; 1688 /* 1689 * If it's a fully non-blocking write attempt and we cannot 1690 * lock the buffer then redirty the page. Note that this can 1691 * potentially cause a busy-wait loop from writeback threads 1692 * and kswapd activity, but those code paths have their own 1693 * higher-level throttling. 1694 */ 1695 if (wbc->sync_mode != WB_SYNC_NONE) { 1696 lock_buffer(bh); 1697 } else if (!trylock_buffer(bh)) { 1698 redirty_page_for_writepage(wbc, page); 1699 continue; 1700 } 1701 if (test_clear_buffer_dirty(bh)) { 1702 mark_buffer_async_write_endio(bh, handler); 1703 } else { 1704 unlock_buffer(bh); 1705 } 1706 } while ((bh = bh->b_this_page) != head); 1707 1708 /* 1709 * The page and its buffers are protected by PageWriteback(), so we can 1710 * drop the bh refcounts early. 1711 */ 1712 BUG_ON(PageWriteback(page)); 1713 set_page_writeback(page); 1714 1715 do { 1716 struct buffer_head *next = bh->b_this_page; 1717 if (buffer_async_write(bh)) { 1718 submit_bh(write_op, bh); 1719 nr_underway++; 1720 } 1721 bh = next; 1722 } while (bh != head); 1723 unlock_page(page); 1724 1725 err = 0; 1726 done: 1727 if (nr_underway == 0) { 1728 /* 1729 * The page was marked dirty, but the buffers were 1730 * clean. Someone wrote them back by hand with 1731 * ll_rw_block/submit_bh. A rare case. 1732 */ 1733 end_page_writeback(page); 1734 1735 /* 1736 * The page and buffer_heads can be released at any time from 1737 * here on. 1738 */ 1739 } 1740 return err; 1741 1742 recover: 1743 /* 1744 * ENOSPC, or some other error. We may already have added some 1745 * blocks to the file, so we need to write these out to avoid 1746 * exposing stale data. 1747 * The page is currently locked and not marked for writeback 1748 */ 1749 bh = head; 1750 /* Recovery: lock and submit the mapped buffers */ 1751 do { 1752 if (buffer_mapped(bh) && buffer_dirty(bh) && 1753 !buffer_delay(bh)) { 1754 lock_buffer(bh); 1755 mark_buffer_async_write_endio(bh, handler); 1756 } else { 1757 /* 1758 * The buffer may have been set dirty during 1759 * attachment to a dirty page. 1760 */ 1761 clear_buffer_dirty(bh); 1762 } 1763 } while ((bh = bh->b_this_page) != head); 1764 SetPageError(page); 1765 BUG_ON(PageWriteback(page)); 1766 mapping_set_error(page->mapping, err); 1767 set_page_writeback(page); 1768 do { 1769 struct buffer_head *next = bh->b_this_page; 1770 if (buffer_async_write(bh)) { 1771 clear_buffer_dirty(bh); 1772 submit_bh(write_op, bh); 1773 nr_underway++; 1774 } 1775 bh = next; 1776 } while (bh != head); 1777 unlock_page(page); 1778 goto done; 1779 } 1780 1781 /* 1782 * If a page has any new buffers, zero them out here, and mark them uptodate 1783 * and dirty so they'll be written out (in order to prevent uninitialised 1784 * block data from leaking). And clear the new bit. 1785 */ 1786 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1787 { 1788 unsigned int block_start, block_end; 1789 struct buffer_head *head, *bh; 1790 1791 BUG_ON(!PageLocked(page)); 1792 if (!page_has_buffers(page)) 1793 return; 1794 1795 bh = head = page_buffers(page); 1796 block_start = 0; 1797 do { 1798 block_end = block_start + bh->b_size; 1799 1800 if (buffer_new(bh)) { 1801 if (block_end > from && block_start < to) { 1802 if (!PageUptodate(page)) { 1803 unsigned start, size; 1804 1805 start = max(from, block_start); 1806 size = min(to, block_end) - start; 1807 1808 zero_user(page, start, size); 1809 set_buffer_uptodate(bh); 1810 } 1811 1812 clear_buffer_new(bh); 1813 mark_buffer_dirty(bh); 1814 } 1815 } 1816 1817 block_start = block_end; 1818 bh = bh->b_this_page; 1819 } while (bh != head); 1820 } 1821 EXPORT_SYMBOL(page_zero_new_buffers); 1822 1823 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1824 get_block_t *get_block) 1825 { 1826 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1827 unsigned to = from + len; 1828 struct inode *inode = page->mapping->host; 1829 unsigned block_start, block_end; 1830 sector_t block; 1831 int err = 0; 1832 unsigned blocksize, bbits; 1833 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1834 1835 BUG_ON(!PageLocked(page)); 1836 BUG_ON(from > PAGE_CACHE_SIZE); 1837 BUG_ON(to > PAGE_CACHE_SIZE); 1838 BUG_ON(from > to); 1839 1840 head = create_page_buffers(page, inode, 0); 1841 blocksize = head->b_size; 1842 bbits = block_size_bits(blocksize); 1843 1844 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1845 1846 for(bh = head, block_start = 0; bh != head || !block_start; 1847 block++, block_start=block_end, bh = bh->b_this_page) { 1848 block_end = block_start + blocksize; 1849 if (block_end <= from || block_start >= to) { 1850 if (PageUptodate(page)) { 1851 if (!buffer_uptodate(bh)) 1852 set_buffer_uptodate(bh); 1853 } 1854 continue; 1855 } 1856 if (buffer_new(bh)) 1857 clear_buffer_new(bh); 1858 if (!buffer_mapped(bh)) { 1859 WARN_ON(bh->b_size != blocksize); 1860 err = get_block(inode, block, bh, 1); 1861 if (err) 1862 break; 1863 if (buffer_new(bh)) { 1864 unmap_underlying_metadata(bh->b_bdev, 1865 bh->b_blocknr); 1866 if (PageUptodate(page)) { 1867 clear_buffer_new(bh); 1868 set_buffer_uptodate(bh); 1869 mark_buffer_dirty(bh); 1870 continue; 1871 } 1872 if (block_end > to || block_start < from) 1873 zero_user_segments(page, 1874 to, block_end, 1875 block_start, from); 1876 continue; 1877 } 1878 } 1879 if (PageUptodate(page)) { 1880 if (!buffer_uptodate(bh)) 1881 set_buffer_uptodate(bh); 1882 continue; 1883 } 1884 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1885 !buffer_unwritten(bh) && 1886 (block_start < from || block_end > to)) { 1887 ll_rw_block(READ, 1, &bh); 1888 *wait_bh++=bh; 1889 } 1890 } 1891 /* 1892 * If we issued read requests - let them complete. 1893 */ 1894 while(wait_bh > wait) { 1895 wait_on_buffer(*--wait_bh); 1896 if (!buffer_uptodate(*wait_bh)) 1897 err = -EIO; 1898 } 1899 if (unlikely(err)) 1900 page_zero_new_buffers(page, from, to); 1901 return err; 1902 } 1903 EXPORT_SYMBOL(__block_write_begin); 1904 1905 static int __block_commit_write(struct inode *inode, struct page *page, 1906 unsigned from, unsigned to) 1907 { 1908 unsigned block_start, block_end; 1909 int partial = 0; 1910 unsigned blocksize; 1911 struct buffer_head *bh, *head; 1912 1913 bh = head = page_buffers(page); 1914 blocksize = bh->b_size; 1915 1916 block_start = 0; 1917 do { 1918 block_end = block_start + blocksize; 1919 if (block_end <= from || block_start >= to) { 1920 if (!buffer_uptodate(bh)) 1921 partial = 1; 1922 } else { 1923 set_buffer_uptodate(bh); 1924 mark_buffer_dirty(bh); 1925 } 1926 clear_buffer_new(bh); 1927 1928 block_start = block_end; 1929 bh = bh->b_this_page; 1930 } while (bh != head); 1931 1932 /* 1933 * If this is a partial write which happened to make all buffers 1934 * uptodate then we can optimize away a bogus readpage() for 1935 * the next read(). Here we 'discover' whether the page went 1936 * uptodate as a result of this (potentially partial) write. 1937 */ 1938 if (!partial) 1939 SetPageUptodate(page); 1940 return 0; 1941 } 1942 1943 /* 1944 * block_write_begin takes care of the basic task of block allocation and 1945 * bringing partial write blocks uptodate first. 1946 * 1947 * The filesystem needs to handle block truncation upon failure. 1948 */ 1949 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 1950 unsigned flags, struct page **pagep, get_block_t *get_block) 1951 { 1952 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1953 struct page *page; 1954 int status; 1955 1956 page = grab_cache_page_write_begin(mapping, index, flags); 1957 if (!page) 1958 return -ENOMEM; 1959 1960 status = __block_write_begin(page, pos, len, get_block); 1961 if (unlikely(status)) { 1962 unlock_page(page); 1963 page_cache_release(page); 1964 page = NULL; 1965 } 1966 1967 *pagep = page; 1968 return status; 1969 } 1970 EXPORT_SYMBOL(block_write_begin); 1971 1972 int block_write_end(struct file *file, struct address_space *mapping, 1973 loff_t pos, unsigned len, unsigned copied, 1974 struct page *page, void *fsdata) 1975 { 1976 struct inode *inode = mapping->host; 1977 unsigned start; 1978 1979 start = pos & (PAGE_CACHE_SIZE - 1); 1980 1981 if (unlikely(copied < len)) { 1982 /* 1983 * The buffers that were written will now be uptodate, so we 1984 * don't have to worry about a readpage reading them and 1985 * overwriting a partial write. However if we have encountered 1986 * a short write and only partially written into a buffer, it 1987 * will not be marked uptodate, so a readpage might come in and 1988 * destroy our partial write. 1989 * 1990 * Do the simplest thing, and just treat any short write to a 1991 * non uptodate page as a zero-length write, and force the 1992 * caller to redo the whole thing. 1993 */ 1994 if (!PageUptodate(page)) 1995 copied = 0; 1996 1997 page_zero_new_buffers(page, start+copied, start+len); 1998 } 1999 flush_dcache_page(page); 2000 2001 /* This could be a short (even 0-length) commit */ 2002 __block_commit_write(inode, page, start, start+copied); 2003 2004 return copied; 2005 } 2006 EXPORT_SYMBOL(block_write_end); 2007 2008 int generic_write_end(struct file *file, struct address_space *mapping, 2009 loff_t pos, unsigned len, unsigned copied, 2010 struct page *page, void *fsdata) 2011 { 2012 struct inode *inode = mapping->host; 2013 int i_size_changed = 0; 2014 2015 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2016 2017 /* 2018 * No need to use i_size_read() here, the i_size 2019 * cannot change under us because we hold i_mutex. 2020 * 2021 * But it's important to update i_size while still holding page lock: 2022 * page writeout could otherwise come in and zero beyond i_size. 2023 */ 2024 if (pos+copied > inode->i_size) { 2025 i_size_write(inode, pos+copied); 2026 i_size_changed = 1; 2027 } 2028 2029 unlock_page(page); 2030 page_cache_release(page); 2031 2032 /* 2033 * Don't mark the inode dirty under page lock. First, it unnecessarily 2034 * makes the holding time of page lock longer. Second, it forces lock 2035 * ordering of page lock and transaction start for journaling 2036 * filesystems. 2037 */ 2038 if (i_size_changed) 2039 mark_inode_dirty(inode); 2040 2041 return copied; 2042 } 2043 EXPORT_SYMBOL(generic_write_end); 2044 2045 /* 2046 * block_is_partially_uptodate checks whether buffers within a page are 2047 * uptodate or not. 2048 * 2049 * Returns true if all buffers which correspond to a file portion 2050 * we want to read are uptodate. 2051 */ 2052 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2053 unsigned long from) 2054 { 2055 unsigned block_start, block_end, blocksize; 2056 unsigned to; 2057 struct buffer_head *bh, *head; 2058 int ret = 1; 2059 2060 if (!page_has_buffers(page)) 2061 return 0; 2062 2063 head = page_buffers(page); 2064 blocksize = head->b_size; 2065 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2066 to = from + to; 2067 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2068 return 0; 2069 2070 bh = head; 2071 block_start = 0; 2072 do { 2073 block_end = block_start + blocksize; 2074 if (block_end > from && block_start < to) { 2075 if (!buffer_uptodate(bh)) { 2076 ret = 0; 2077 break; 2078 } 2079 if (block_end >= to) 2080 break; 2081 } 2082 block_start = block_end; 2083 bh = bh->b_this_page; 2084 } while (bh != head); 2085 2086 return ret; 2087 } 2088 EXPORT_SYMBOL(block_is_partially_uptodate); 2089 2090 /* 2091 * Generic "read page" function for block devices that have the normal 2092 * get_block functionality. This is most of the block device filesystems. 2093 * Reads the page asynchronously --- the unlock_buffer() and 2094 * set/clear_buffer_uptodate() functions propagate buffer state into the 2095 * page struct once IO has completed. 2096 */ 2097 int block_read_full_page(struct page *page, get_block_t *get_block) 2098 { 2099 struct inode *inode = page->mapping->host; 2100 sector_t iblock, lblock; 2101 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2102 unsigned int blocksize, bbits; 2103 int nr, i; 2104 int fully_mapped = 1; 2105 2106 head = create_page_buffers(page, inode, 0); 2107 blocksize = head->b_size; 2108 bbits = block_size_bits(blocksize); 2109 2110 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 2111 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2112 bh = head; 2113 nr = 0; 2114 i = 0; 2115 2116 do { 2117 if (buffer_uptodate(bh)) 2118 continue; 2119 2120 if (!buffer_mapped(bh)) { 2121 int err = 0; 2122 2123 fully_mapped = 0; 2124 if (iblock < lblock) { 2125 WARN_ON(bh->b_size != blocksize); 2126 err = get_block(inode, iblock, bh, 0); 2127 if (err) 2128 SetPageError(page); 2129 } 2130 if (!buffer_mapped(bh)) { 2131 zero_user(page, i * blocksize, blocksize); 2132 if (!err) 2133 set_buffer_uptodate(bh); 2134 continue; 2135 } 2136 /* 2137 * get_block() might have updated the buffer 2138 * synchronously 2139 */ 2140 if (buffer_uptodate(bh)) 2141 continue; 2142 } 2143 arr[nr++] = bh; 2144 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2145 2146 if (fully_mapped) 2147 SetPageMappedToDisk(page); 2148 2149 if (!nr) { 2150 /* 2151 * All buffers are uptodate - we can set the page uptodate 2152 * as well. But not if get_block() returned an error. 2153 */ 2154 if (!PageError(page)) 2155 SetPageUptodate(page); 2156 unlock_page(page); 2157 return 0; 2158 } 2159 2160 /* Stage two: lock the buffers */ 2161 for (i = 0; i < nr; i++) { 2162 bh = arr[i]; 2163 lock_buffer(bh); 2164 mark_buffer_async_read(bh); 2165 } 2166 2167 /* 2168 * Stage 3: start the IO. Check for uptodateness 2169 * inside the buffer lock in case another process reading 2170 * the underlying blockdev brought it uptodate (the sct fix). 2171 */ 2172 for (i = 0; i < nr; i++) { 2173 bh = arr[i]; 2174 if (buffer_uptodate(bh)) 2175 end_buffer_async_read(bh, 1); 2176 else 2177 submit_bh(READ, bh); 2178 } 2179 return 0; 2180 } 2181 EXPORT_SYMBOL(block_read_full_page); 2182 2183 /* utility function for filesystems that need to do work on expanding 2184 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2185 * deal with the hole. 2186 */ 2187 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2188 { 2189 struct address_space *mapping = inode->i_mapping; 2190 struct page *page; 2191 void *fsdata; 2192 int err; 2193 2194 err = inode_newsize_ok(inode, size); 2195 if (err) 2196 goto out; 2197 2198 err = pagecache_write_begin(NULL, mapping, size, 0, 2199 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2200 &page, &fsdata); 2201 if (err) 2202 goto out; 2203 2204 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2205 BUG_ON(err > 0); 2206 2207 out: 2208 return err; 2209 } 2210 EXPORT_SYMBOL(generic_cont_expand_simple); 2211 2212 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2213 loff_t pos, loff_t *bytes) 2214 { 2215 struct inode *inode = mapping->host; 2216 unsigned blocksize = 1 << inode->i_blkbits; 2217 struct page *page; 2218 void *fsdata; 2219 pgoff_t index, curidx; 2220 loff_t curpos; 2221 unsigned zerofrom, offset, len; 2222 int err = 0; 2223 2224 index = pos >> PAGE_CACHE_SHIFT; 2225 offset = pos & ~PAGE_CACHE_MASK; 2226 2227 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2228 zerofrom = curpos & ~PAGE_CACHE_MASK; 2229 if (zerofrom & (blocksize-1)) { 2230 *bytes |= (blocksize-1); 2231 (*bytes)++; 2232 } 2233 len = PAGE_CACHE_SIZE - zerofrom; 2234 2235 err = pagecache_write_begin(file, mapping, curpos, len, 2236 AOP_FLAG_UNINTERRUPTIBLE, 2237 &page, &fsdata); 2238 if (err) 2239 goto out; 2240 zero_user(page, zerofrom, len); 2241 err = pagecache_write_end(file, mapping, curpos, len, len, 2242 page, fsdata); 2243 if (err < 0) 2244 goto out; 2245 BUG_ON(err != len); 2246 err = 0; 2247 2248 balance_dirty_pages_ratelimited(mapping); 2249 } 2250 2251 /* page covers the boundary, find the boundary offset */ 2252 if (index == curidx) { 2253 zerofrom = curpos & ~PAGE_CACHE_MASK; 2254 /* if we will expand the thing last block will be filled */ 2255 if (offset <= zerofrom) { 2256 goto out; 2257 } 2258 if (zerofrom & (blocksize-1)) { 2259 *bytes |= (blocksize-1); 2260 (*bytes)++; 2261 } 2262 len = offset - zerofrom; 2263 2264 err = pagecache_write_begin(file, mapping, curpos, len, 2265 AOP_FLAG_UNINTERRUPTIBLE, 2266 &page, &fsdata); 2267 if (err) 2268 goto out; 2269 zero_user(page, zerofrom, len); 2270 err = pagecache_write_end(file, mapping, curpos, len, len, 2271 page, fsdata); 2272 if (err < 0) 2273 goto out; 2274 BUG_ON(err != len); 2275 err = 0; 2276 } 2277 out: 2278 return err; 2279 } 2280 2281 /* 2282 * For moronic filesystems that do not allow holes in file. 2283 * We may have to extend the file. 2284 */ 2285 int cont_write_begin(struct file *file, struct address_space *mapping, 2286 loff_t pos, unsigned len, unsigned flags, 2287 struct page **pagep, void **fsdata, 2288 get_block_t *get_block, loff_t *bytes) 2289 { 2290 struct inode *inode = mapping->host; 2291 unsigned blocksize = 1 << inode->i_blkbits; 2292 unsigned zerofrom; 2293 int err; 2294 2295 err = cont_expand_zero(file, mapping, pos, bytes); 2296 if (err) 2297 return err; 2298 2299 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2300 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2301 *bytes |= (blocksize-1); 2302 (*bytes)++; 2303 } 2304 2305 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2306 } 2307 EXPORT_SYMBOL(cont_write_begin); 2308 2309 int block_commit_write(struct page *page, unsigned from, unsigned to) 2310 { 2311 struct inode *inode = page->mapping->host; 2312 __block_commit_write(inode,page,from,to); 2313 return 0; 2314 } 2315 EXPORT_SYMBOL(block_commit_write); 2316 2317 /* 2318 * block_page_mkwrite() is not allowed to change the file size as it gets 2319 * called from a page fault handler when a page is first dirtied. Hence we must 2320 * be careful to check for EOF conditions here. We set the page up correctly 2321 * for a written page which means we get ENOSPC checking when writing into 2322 * holes and correct delalloc and unwritten extent mapping on filesystems that 2323 * support these features. 2324 * 2325 * We are not allowed to take the i_mutex here so we have to play games to 2326 * protect against truncate races as the page could now be beyond EOF. Because 2327 * truncate writes the inode size before removing pages, once we have the 2328 * page lock we can determine safely if the page is beyond EOF. If it is not 2329 * beyond EOF, then the page is guaranteed safe against truncation until we 2330 * unlock the page. 2331 * 2332 * Direct callers of this function should protect against filesystem freezing 2333 * using sb_start_write() - sb_end_write() functions. 2334 */ 2335 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2336 get_block_t get_block) 2337 { 2338 struct page *page = vmf->page; 2339 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2340 unsigned long end; 2341 loff_t size; 2342 int ret; 2343 2344 lock_page(page); 2345 size = i_size_read(inode); 2346 if ((page->mapping != inode->i_mapping) || 2347 (page_offset(page) > size)) { 2348 /* We overload EFAULT to mean page got truncated */ 2349 ret = -EFAULT; 2350 goto out_unlock; 2351 } 2352 2353 /* page is wholly or partially inside EOF */ 2354 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2355 end = size & ~PAGE_CACHE_MASK; 2356 else 2357 end = PAGE_CACHE_SIZE; 2358 2359 ret = __block_write_begin(page, 0, end, get_block); 2360 if (!ret) 2361 ret = block_commit_write(page, 0, end); 2362 2363 if (unlikely(ret < 0)) 2364 goto out_unlock; 2365 set_page_dirty(page); 2366 wait_on_page_writeback(page); 2367 return 0; 2368 out_unlock: 2369 unlock_page(page); 2370 return ret; 2371 } 2372 EXPORT_SYMBOL(__block_page_mkwrite); 2373 2374 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2375 get_block_t get_block) 2376 { 2377 int ret; 2378 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb; 2379 2380 sb_start_pagefault(sb); 2381 2382 /* 2383 * Update file times before taking page lock. We may end up failing the 2384 * fault so this update may be superfluous but who really cares... 2385 */ 2386 file_update_time(vma->vm_file); 2387 2388 ret = __block_page_mkwrite(vma, vmf, get_block); 2389 sb_end_pagefault(sb); 2390 return block_page_mkwrite_return(ret); 2391 } 2392 EXPORT_SYMBOL(block_page_mkwrite); 2393 2394 /* 2395 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2396 * immediately, while under the page lock. So it needs a special end_io 2397 * handler which does not touch the bh after unlocking it. 2398 */ 2399 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2400 { 2401 __end_buffer_read_notouch(bh, uptodate); 2402 } 2403 2404 /* 2405 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2406 * the page (converting it to circular linked list and taking care of page 2407 * dirty races). 2408 */ 2409 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2410 { 2411 struct buffer_head *bh; 2412 2413 BUG_ON(!PageLocked(page)); 2414 2415 spin_lock(&page->mapping->private_lock); 2416 bh = head; 2417 do { 2418 if (PageDirty(page)) 2419 set_buffer_dirty(bh); 2420 if (!bh->b_this_page) 2421 bh->b_this_page = head; 2422 bh = bh->b_this_page; 2423 } while (bh != head); 2424 attach_page_buffers(page, head); 2425 spin_unlock(&page->mapping->private_lock); 2426 } 2427 2428 /* 2429 * On entry, the page is fully not uptodate. 2430 * On exit the page is fully uptodate in the areas outside (from,to) 2431 * The filesystem needs to handle block truncation upon failure. 2432 */ 2433 int nobh_write_begin(struct address_space *mapping, 2434 loff_t pos, unsigned len, unsigned flags, 2435 struct page **pagep, void **fsdata, 2436 get_block_t *get_block) 2437 { 2438 struct inode *inode = mapping->host; 2439 const unsigned blkbits = inode->i_blkbits; 2440 const unsigned blocksize = 1 << blkbits; 2441 struct buffer_head *head, *bh; 2442 struct page *page; 2443 pgoff_t index; 2444 unsigned from, to; 2445 unsigned block_in_page; 2446 unsigned block_start, block_end; 2447 sector_t block_in_file; 2448 int nr_reads = 0; 2449 int ret = 0; 2450 int is_mapped_to_disk = 1; 2451 2452 index = pos >> PAGE_CACHE_SHIFT; 2453 from = pos & (PAGE_CACHE_SIZE - 1); 2454 to = from + len; 2455 2456 page = grab_cache_page_write_begin(mapping, index, flags); 2457 if (!page) 2458 return -ENOMEM; 2459 *pagep = page; 2460 *fsdata = NULL; 2461 2462 if (page_has_buffers(page)) { 2463 ret = __block_write_begin(page, pos, len, get_block); 2464 if (unlikely(ret)) 2465 goto out_release; 2466 return ret; 2467 } 2468 2469 if (PageMappedToDisk(page)) 2470 return 0; 2471 2472 /* 2473 * Allocate buffers so that we can keep track of state, and potentially 2474 * attach them to the page if an error occurs. In the common case of 2475 * no error, they will just be freed again without ever being attached 2476 * to the page (which is all OK, because we're under the page lock). 2477 * 2478 * Be careful: the buffer linked list is a NULL terminated one, rather 2479 * than the circular one we're used to. 2480 */ 2481 head = alloc_page_buffers(page, blocksize, 0); 2482 if (!head) { 2483 ret = -ENOMEM; 2484 goto out_release; 2485 } 2486 2487 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2488 2489 /* 2490 * We loop across all blocks in the page, whether or not they are 2491 * part of the affected region. This is so we can discover if the 2492 * page is fully mapped-to-disk. 2493 */ 2494 for (block_start = 0, block_in_page = 0, bh = head; 2495 block_start < PAGE_CACHE_SIZE; 2496 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2497 int create; 2498 2499 block_end = block_start + blocksize; 2500 bh->b_state = 0; 2501 create = 1; 2502 if (block_start >= to) 2503 create = 0; 2504 ret = get_block(inode, block_in_file + block_in_page, 2505 bh, create); 2506 if (ret) 2507 goto failed; 2508 if (!buffer_mapped(bh)) 2509 is_mapped_to_disk = 0; 2510 if (buffer_new(bh)) 2511 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2512 if (PageUptodate(page)) { 2513 set_buffer_uptodate(bh); 2514 continue; 2515 } 2516 if (buffer_new(bh) || !buffer_mapped(bh)) { 2517 zero_user_segments(page, block_start, from, 2518 to, block_end); 2519 continue; 2520 } 2521 if (buffer_uptodate(bh)) 2522 continue; /* reiserfs does this */ 2523 if (block_start < from || block_end > to) { 2524 lock_buffer(bh); 2525 bh->b_end_io = end_buffer_read_nobh; 2526 submit_bh(READ, bh); 2527 nr_reads++; 2528 } 2529 } 2530 2531 if (nr_reads) { 2532 /* 2533 * The page is locked, so these buffers are protected from 2534 * any VM or truncate activity. Hence we don't need to care 2535 * for the buffer_head refcounts. 2536 */ 2537 for (bh = head; bh; bh = bh->b_this_page) { 2538 wait_on_buffer(bh); 2539 if (!buffer_uptodate(bh)) 2540 ret = -EIO; 2541 } 2542 if (ret) 2543 goto failed; 2544 } 2545 2546 if (is_mapped_to_disk) 2547 SetPageMappedToDisk(page); 2548 2549 *fsdata = head; /* to be released by nobh_write_end */ 2550 2551 return 0; 2552 2553 failed: 2554 BUG_ON(!ret); 2555 /* 2556 * Error recovery is a bit difficult. We need to zero out blocks that 2557 * were newly allocated, and dirty them to ensure they get written out. 2558 * Buffers need to be attached to the page at this point, otherwise 2559 * the handling of potential IO errors during writeout would be hard 2560 * (could try doing synchronous writeout, but what if that fails too?) 2561 */ 2562 attach_nobh_buffers(page, head); 2563 page_zero_new_buffers(page, from, to); 2564 2565 out_release: 2566 unlock_page(page); 2567 page_cache_release(page); 2568 *pagep = NULL; 2569 2570 return ret; 2571 } 2572 EXPORT_SYMBOL(nobh_write_begin); 2573 2574 int nobh_write_end(struct file *file, struct address_space *mapping, 2575 loff_t pos, unsigned len, unsigned copied, 2576 struct page *page, void *fsdata) 2577 { 2578 struct inode *inode = page->mapping->host; 2579 struct buffer_head *head = fsdata; 2580 struct buffer_head *bh; 2581 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2582 2583 if (unlikely(copied < len) && head) 2584 attach_nobh_buffers(page, head); 2585 if (page_has_buffers(page)) 2586 return generic_write_end(file, mapping, pos, len, 2587 copied, page, fsdata); 2588 2589 SetPageUptodate(page); 2590 set_page_dirty(page); 2591 if (pos+copied > inode->i_size) { 2592 i_size_write(inode, pos+copied); 2593 mark_inode_dirty(inode); 2594 } 2595 2596 unlock_page(page); 2597 page_cache_release(page); 2598 2599 while (head) { 2600 bh = head; 2601 head = head->b_this_page; 2602 free_buffer_head(bh); 2603 } 2604 2605 return copied; 2606 } 2607 EXPORT_SYMBOL(nobh_write_end); 2608 2609 /* 2610 * nobh_writepage() - based on block_full_write_page() except 2611 * that it tries to operate without attaching bufferheads to 2612 * the page. 2613 */ 2614 int nobh_writepage(struct page *page, get_block_t *get_block, 2615 struct writeback_control *wbc) 2616 { 2617 struct inode * const inode = page->mapping->host; 2618 loff_t i_size = i_size_read(inode); 2619 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2620 unsigned offset; 2621 int ret; 2622 2623 /* Is the page fully inside i_size? */ 2624 if (page->index < end_index) 2625 goto out; 2626 2627 /* Is the page fully outside i_size? (truncate in progress) */ 2628 offset = i_size & (PAGE_CACHE_SIZE-1); 2629 if (page->index >= end_index+1 || !offset) { 2630 /* 2631 * The page may have dirty, unmapped buffers. For example, 2632 * they may have been added in ext3_writepage(). Make them 2633 * freeable here, so the page does not leak. 2634 */ 2635 #if 0 2636 /* Not really sure about this - do we need this ? */ 2637 if (page->mapping->a_ops->invalidatepage) 2638 page->mapping->a_ops->invalidatepage(page, offset); 2639 #endif 2640 unlock_page(page); 2641 return 0; /* don't care */ 2642 } 2643 2644 /* 2645 * The page straddles i_size. It must be zeroed out on each and every 2646 * writepage invocation because it may be mmapped. "A file is mapped 2647 * in multiples of the page size. For a file that is not a multiple of 2648 * the page size, the remaining memory is zeroed when mapped, and 2649 * writes to that region are not written out to the file." 2650 */ 2651 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2652 out: 2653 ret = mpage_writepage(page, get_block, wbc); 2654 if (ret == -EAGAIN) 2655 ret = __block_write_full_page(inode, page, get_block, wbc, 2656 end_buffer_async_write); 2657 return ret; 2658 } 2659 EXPORT_SYMBOL(nobh_writepage); 2660 2661 int nobh_truncate_page(struct address_space *mapping, 2662 loff_t from, get_block_t *get_block) 2663 { 2664 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2665 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2666 unsigned blocksize; 2667 sector_t iblock; 2668 unsigned length, pos; 2669 struct inode *inode = mapping->host; 2670 struct page *page; 2671 struct buffer_head map_bh; 2672 int err; 2673 2674 blocksize = 1 << inode->i_blkbits; 2675 length = offset & (blocksize - 1); 2676 2677 /* Block boundary? Nothing to do */ 2678 if (!length) 2679 return 0; 2680 2681 length = blocksize - length; 2682 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2683 2684 page = grab_cache_page(mapping, index); 2685 err = -ENOMEM; 2686 if (!page) 2687 goto out; 2688 2689 if (page_has_buffers(page)) { 2690 has_buffers: 2691 unlock_page(page); 2692 page_cache_release(page); 2693 return block_truncate_page(mapping, from, get_block); 2694 } 2695 2696 /* Find the buffer that contains "offset" */ 2697 pos = blocksize; 2698 while (offset >= pos) { 2699 iblock++; 2700 pos += blocksize; 2701 } 2702 2703 map_bh.b_size = blocksize; 2704 map_bh.b_state = 0; 2705 err = get_block(inode, iblock, &map_bh, 0); 2706 if (err) 2707 goto unlock; 2708 /* unmapped? It's a hole - nothing to do */ 2709 if (!buffer_mapped(&map_bh)) 2710 goto unlock; 2711 2712 /* Ok, it's mapped. Make sure it's up-to-date */ 2713 if (!PageUptodate(page)) { 2714 err = mapping->a_ops->readpage(NULL, page); 2715 if (err) { 2716 page_cache_release(page); 2717 goto out; 2718 } 2719 lock_page(page); 2720 if (!PageUptodate(page)) { 2721 err = -EIO; 2722 goto unlock; 2723 } 2724 if (page_has_buffers(page)) 2725 goto has_buffers; 2726 } 2727 zero_user(page, offset, length); 2728 set_page_dirty(page); 2729 err = 0; 2730 2731 unlock: 2732 unlock_page(page); 2733 page_cache_release(page); 2734 out: 2735 return err; 2736 } 2737 EXPORT_SYMBOL(nobh_truncate_page); 2738 2739 int block_truncate_page(struct address_space *mapping, 2740 loff_t from, get_block_t *get_block) 2741 { 2742 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2743 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2744 unsigned blocksize; 2745 sector_t iblock; 2746 unsigned length, pos; 2747 struct inode *inode = mapping->host; 2748 struct page *page; 2749 struct buffer_head *bh; 2750 int err; 2751 2752 blocksize = 1 << inode->i_blkbits; 2753 length = offset & (blocksize - 1); 2754 2755 /* Block boundary? Nothing to do */ 2756 if (!length) 2757 return 0; 2758 2759 length = blocksize - length; 2760 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2761 2762 page = grab_cache_page(mapping, index); 2763 err = -ENOMEM; 2764 if (!page) 2765 goto out; 2766 2767 if (!page_has_buffers(page)) 2768 create_empty_buffers(page, blocksize, 0); 2769 2770 /* Find the buffer that contains "offset" */ 2771 bh = page_buffers(page); 2772 pos = blocksize; 2773 while (offset >= pos) { 2774 bh = bh->b_this_page; 2775 iblock++; 2776 pos += blocksize; 2777 } 2778 2779 err = 0; 2780 if (!buffer_mapped(bh)) { 2781 WARN_ON(bh->b_size != blocksize); 2782 err = get_block(inode, iblock, bh, 0); 2783 if (err) 2784 goto unlock; 2785 /* unmapped? It's a hole - nothing to do */ 2786 if (!buffer_mapped(bh)) 2787 goto unlock; 2788 } 2789 2790 /* Ok, it's mapped. Make sure it's up-to-date */ 2791 if (PageUptodate(page)) 2792 set_buffer_uptodate(bh); 2793 2794 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2795 err = -EIO; 2796 ll_rw_block(READ, 1, &bh); 2797 wait_on_buffer(bh); 2798 /* Uhhuh. Read error. Complain and punt. */ 2799 if (!buffer_uptodate(bh)) 2800 goto unlock; 2801 } 2802 2803 zero_user(page, offset, length); 2804 mark_buffer_dirty(bh); 2805 err = 0; 2806 2807 unlock: 2808 unlock_page(page); 2809 page_cache_release(page); 2810 out: 2811 return err; 2812 } 2813 EXPORT_SYMBOL(block_truncate_page); 2814 2815 /* 2816 * The generic ->writepage function for buffer-backed address_spaces 2817 * this form passes in the end_io handler used to finish the IO. 2818 */ 2819 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2820 struct writeback_control *wbc, bh_end_io_t *handler) 2821 { 2822 struct inode * const inode = page->mapping->host; 2823 loff_t i_size = i_size_read(inode); 2824 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2825 unsigned offset; 2826 2827 /* Is the page fully inside i_size? */ 2828 if (page->index < end_index) 2829 return __block_write_full_page(inode, page, get_block, wbc, 2830 handler); 2831 2832 /* Is the page fully outside i_size? (truncate in progress) */ 2833 offset = i_size & (PAGE_CACHE_SIZE-1); 2834 if (page->index >= end_index+1 || !offset) { 2835 /* 2836 * The page may have dirty, unmapped buffers. For example, 2837 * they may have been added in ext3_writepage(). Make them 2838 * freeable here, so the page does not leak. 2839 */ 2840 do_invalidatepage(page, 0); 2841 unlock_page(page); 2842 return 0; /* don't care */ 2843 } 2844 2845 /* 2846 * The page straddles i_size. It must be zeroed out on each and every 2847 * writepage invocation because it may be mmapped. "A file is mapped 2848 * in multiples of the page size. For a file that is not a multiple of 2849 * the page size, the remaining memory is zeroed when mapped, and 2850 * writes to that region are not written out to the file." 2851 */ 2852 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2853 return __block_write_full_page(inode, page, get_block, wbc, handler); 2854 } 2855 EXPORT_SYMBOL(block_write_full_page_endio); 2856 2857 /* 2858 * The generic ->writepage function for buffer-backed address_spaces 2859 */ 2860 int block_write_full_page(struct page *page, get_block_t *get_block, 2861 struct writeback_control *wbc) 2862 { 2863 return block_write_full_page_endio(page, get_block, wbc, 2864 end_buffer_async_write); 2865 } 2866 EXPORT_SYMBOL(block_write_full_page); 2867 2868 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2869 get_block_t *get_block) 2870 { 2871 struct buffer_head tmp; 2872 struct inode *inode = mapping->host; 2873 tmp.b_state = 0; 2874 tmp.b_blocknr = 0; 2875 tmp.b_size = 1 << inode->i_blkbits; 2876 get_block(inode, block, &tmp, 0); 2877 return tmp.b_blocknr; 2878 } 2879 EXPORT_SYMBOL(generic_block_bmap); 2880 2881 static void end_bio_bh_io_sync(struct bio *bio, int err) 2882 { 2883 struct buffer_head *bh = bio->bi_private; 2884 2885 if (err == -EOPNOTSUPP) { 2886 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2887 } 2888 2889 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2890 set_bit(BH_Quiet, &bh->b_state); 2891 2892 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2893 bio_put(bio); 2894 } 2895 2896 /* 2897 * This allows us to do IO even on the odd last sectors 2898 * of a device, even if the bh block size is some multiple 2899 * of the physical sector size. 2900 * 2901 * We'll just truncate the bio to the size of the device, 2902 * and clear the end of the buffer head manually. 2903 * 2904 * Truly out-of-range accesses will turn into actual IO 2905 * errors, this only handles the "we need to be able to 2906 * do IO at the final sector" case. 2907 */ 2908 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh) 2909 { 2910 sector_t maxsector; 2911 unsigned bytes; 2912 2913 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 2914 if (!maxsector) 2915 return; 2916 2917 /* 2918 * If the *whole* IO is past the end of the device, 2919 * let it through, and the IO layer will turn it into 2920 * an EIO. 2921 */ 2922 if (unlikely(bio->bi_sector >= maxsector)) 2923 return; 2924 2925 maxsector -= bio->bi_sector; 2926 bytes = bio->bi_size; 2927 if (likely((bytes >> 9) <= maxsector)) 2928 return; 2929 2930 /* Uhhuh. We've got a bh that straddles the device size! */ 2931 bytes = maxsector << 9; 2932 2933 /* Truncate the bio.. */ 2934 bio->bi_size = bytes; 2935 bio->bi_io_vec[0].bv_len = bytes; 2936 2937 /* ..and clear the end of the buffer for reads */ 2938 if ((rw & RW_MASK) == READ) { 2939 void *kaddr = kmap_atomic(bh->b_page); 2940 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes); 2941 kunmap_atomic(kaddr); 2942 } 2943 } 2944 2945 int submit_bh(int rw, struct buffer_head * bh) 2946 { 2947 struct bio *bio; 2948 int ret = 0; 2949 2950 BUG_ON(!buffer_locked(bh)); 2951 BUG_ON(!buffer_mapped(bh)); 2952 BUG_ON(!bh->b_end_io); 2953 BUG_ON(buffer_delay(bh)); 2954 BUG_ON(buffer_unwritten(bh)); 2955 2956 /* 2957 * Only clear out a write error when rewriting 2958 */ 2959 if (test_set_buffer_req(bh) && (rw & WRITE)) 2960 clear_buffer_write_io_error(bh); 2961 2962 /* 2963 * from here on down, it's all bio -- do the initial mapping, 2964 * submit_bio -> generic_make_request may further map this bio around 2965 */ 2966 bio = bio_alloc(GFP_NOIO, 1); 2967 2968 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2969 bio->bi_bdev = bh->b_bdev; 2970 bio->bi_io_vec[0].bv_page = bh->b_page; 2971 bio->bi_io_vec[0].bv_len = bh->b_size; 2972 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2973 2974 bio->bi_vcnt = 1; 2975 bio->bi_idx = 0; 2976 bio->bi_size = bh->b_size; 2977 2978 bio->bi_end_io = end_bio_bh_io_sync; 2979 bio->bi_private = bh; 2980 2981 /* Take care of bh's that straddle the end of the device */ 2982 guard_bh_eod(rw, bio, bh); 2983 2984 bio_get(bio); 2985 submit_bio(rw, bio); 2986 2987 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2988 ret = -EOPNOTSUPP; 2989 2990 bio_put(bio); 2991 return ret; 2992 } 2993 EXPORT_SYMBOL(submit_bh); 2994 2995 /** 2996 * ll_rw_block: low-level access to block devices (DEPRECATED) 2997 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 2998 * @nr: number of &struct buffer_heads in the array 2999 * @bhs: array of pointers to &struct buffer_head 3000 * 3001 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3002 * requests an I/O operation on them, either a %READ or a %WRITE. The third 3003 * %READA option is described in the documentation for generic_make_request() 3004 * which ll_rw_block() calls. 3005 * 3006 * This function drops any buffer that it cannot get a lock on (with the 3007 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3008 * request, and any buffer that appears to be up-to-date when doing read 3009 * request. Further it marks as clean buffers that are processed for 3010 * writing (the buffer cache won't assume that they are actually clean 3011 * until the buffer gets unlocked). 3012 * 3013 * ll_rw_block sets b_end_io to simple completion handler that marks 3014 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 3015 * any waiters. 3016 * 3017 * All of the buffers must be for the same device, and must also be a 3018 * multiple of the current approved size for the device. 3019 */ 3020 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 3021 { 3022 int i; 3023 3024 for (i = 0; i < nr; i++) { 3025 struct buffer_head *bh = bhs[i]; 3026 3027 if (!trylock_buffer(bh)) 3028 continue; 3029 if (rw == WRITE) { 3030 if (test_clear_buffer_dirty(bh)) { 3031 bh->b_end_io = end_buffer_write_sync; 3032 get_bh(bh); 3033 submit_bh(WRITE, bh); 3034 continue; 3035 } 3036 } else { 3037 if (!buffer_uptodate(bh)) { 3038 bh->b_end_io = end_buffer_read_sync; 3039 get_bh(bh); 3040 submit_bh(rw, bh); 3041 continue; 3042 } 3043 } 3044 unlock_buffer(bh); 3045 } 3046 } 3047 EXPORT_SYMBOL(ll_rw_block); 3048 3049 void write_dirty_buffer(struct buffer_head *bh, int rw) 3050 { 3051 lock_buffer(bh); 3052 if (!test_clear_buffer_dirty(bh)) { 3053 unlock_buffer(bh); 3054 return; 3055 } 3056 bh->b_end_io = end_buffer_write_sync; 3057 get_bh(bh); 3058 submit_bh(rw, bh); 3059 } 3060 EXPORT_SYMBOL(write_dirty_buffer); 3061 3062 /* 3063 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3064 * and then start new I/O and then wait upon it. The caller must have a ref on 3065 * the buffer_head. 3066 */ 3067 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3068 { 3069 int ret = 0; 3070 3071 WARN_ON(atomic_read(&bh->b_count) < 1); 3072 lock_buffer(bh); 3073 if (test_clear_buffer_dirty(bh)) { 3074 get_bh(bh); 3075 bh->b_end_io = end_buffer_write_sync; 3076 ret = submit_bh(rw, bh); 3077 wait_on_buffer(bh); 3078 if (!ret && !buffer_uptodate(bh)) 3079 ret = -EIO; 3080 } else { 3081 unlock_buffer(bh); 3082 } 3083 return ret; 3084 } 3085 EXPORT_SYMBOL(__sync_dirty_buffer); 3086 3087 int sync_dirty_buffer(struct buffer_head *bh) 3088 { 3089 return __sync_dirty_buffer(bh, WRITE_SYNC); 3090 } 3091 EXPORT_SYMBOL(sync_dirty_buffer); 3092 3093 /* 3094 * try_to_free_buffers() checks if all the buffers on this particular page 3095 * are unused, and releases them if so. 3096 * 3097 * Exclusion against try_to_free_buffers may be obtained by either 3098 * locking the page or by holding its mapping's private_lock. 3099 * 3100 * If the page is dirty but all the buffers are clean then we need to 3101 * be sure to mark the page clean as well. This is because the page 3102 * may be against a block device, and a later reattachment of buffers 3103 * to a dirty page will set *all* buffers dirty. Which would corrupt 3104 * filesystem data on the same device. 3105 * 3106 * The same applies to regular filesystem pages: if all the buffers are 3107 * clean then we set the page clean and proceed. To do that, we require 3108 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3109 * private_lock. 3110 * 3111 * try_to_free_buffers() is non-blocking. 3112 */ 3113 static inline int buffer_busy(struct buffer_head *bh) 3114 { 3115 return atomic_read(&bh->b_count) | 3116 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3117 } 3118 3119 static int 3120 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3121 { 3122 struct buffer_head *head = page_buffers(page); 3123 struct buffer_head *bh; 3124 3125 bh = head; 3126 do { 3127 if (buffer_write_io_error(bh) && page->mapping) 3128 set_bit(AS_EIO, &page->mapping->flags); 3129 if (buffer_busy(bh)) 3130 goto failed; 3131 bh = bh->b_this_page; 3132 } while (bh != head); 3133 3134 do { 3135 struct buffer_head *next = bh->b_this_page; 3136 3137 if (bh->b_assoc_map) 3138 __remove_assoc_queue(bh); 3139 bh = next; 3140 } while (bh != head); 3141 *buffers_to_free = head; 3142 __clear_page_buffers(page); 3143 return 1; 3144 failed: 3145 return 0; 3146 } 3147 3148 int try_to_free_buffers(struct page *page) 3149 { 3150 struct address_space * const mapping = page->mapping; 3151 struct buffer_head *buffers_to_free = NULL; 3152 int ret = 0; 3153 3154 BUG_ON(!PageLocked(page)); 3155 if (PageWriteback(page)) 3156 return 0; 3157 3158 if (mapping == NULL) { /* can this still happen? */ 3159 ret = drop_buffers(page, &buffers_to_free); 3160 goto out; 3161 } 3162 3163 spin_lock(&mapping->private_lock); 3164 ret = drop_buffers(page, &buffers_to_free); 3165 3166 /* 3167 * If the filesystem writes its buffers by hand (eg ext3) 3168 * then we can have clean buffers against a dirty page. We 3169 * clean the page here; otherwise the VM will never notice 3170 * that the filesystem did any IO at all. 3171 * 3172 * Also, during truncate, discard_buffer will have marked all 3173 * the page's buffers clean. We discover that here and clean 3174 * the page also. 3175 * 3176 * private_lock must be held over this entire operation in order 3177 * to synchronise against __set_page_dirty_buffers and prevent the 3178 * dirty bit from being lost. 3179 */ 3180 if (ret) 3181 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3182 spin_unlock(&mapping->private_lock); 3183 out: 3184 if (buffers_to_free) { 3185 struct buffer_head *bh = buffers_to_free; 3186 3187 do { 3188 struct buffer_head *next = bh->b_this_page; 3189 free_buffer_head(bh); 3190 bh = next; 3191 } while (bh != buffers_to_free); 3192 } 3193 return ret; 3194 } 3195 EXPORT_SYMBOL(try_to_free_buffers); 3196 3197 /* 3198 * There are no bdflush tunables left. But distributions are 3199 * still running obsolete flush daemons, so we terminate them here. 3200 * 3201 * Use of bdflush() is deprecated and will be removed in a future kernel. 3202 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3203 */ 3204 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3205 { 3206 static int msg_count; 3207 3208 if (!capable(CAP_SYS_ADMIN)) 3209 return -EPERM; 3210 3211 if (msg_count < 5) { 3212 msg_count++; 3213 printk(KERN_INFO 3214 "warning: process `%s' used the obsolete bdflush" 3215 " system call\n", current->comm); 3216 printk(KERN_INFO "Fix your initscripts?\n"); 3217 } 3218 3219 if (func == 1) 3220 do_exit(0); 3221 return 0; 3222 } 3223 3224 /* 3225 * Buffer-head allocation 3226 */ 3227 static struct kmem_cache *bh_cachep __read_mostly; 3228 3229 /* 3230 * Once the number of bh's in the machine exceeds this level, we start 3231 * stripping them in writeback. 3232 */ 3233 static int max_buffer_heads; 3234 3235 int buffer_heads_over_limit; 3236 3237 struct bh_accounting { 3238 int nr; /* Number of live bh's */ 3239 int ratelimit; /* Limit cacheline bouncing */ 3240 }; 3241 3242 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3243 3244 static void recalc_bh_state(void) 3245 { 3246 int i; 3247 int tot = 0; 3248 3249 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3250 return; 3251 __this_cpu_write(bh_accounting.ratelimit, 0); 3252 for_each_online_cpu(i) 3253 tot += per_cpu(bh_accounting, i).nr; 3254 buffer_heads_over_limit = (tot > max_buffer_heads); 3255 } 3256 3257 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3258 { 3259 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3260 if (ret) { 3261 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3262 preempt_disable(); 3263 __this_cpu_inc(bh_accounting.nr); 3264 recalc_bh_state(); 3265 preempt_enable(); 3266 } 3267 return ret; 3268 } 3269 EXPORT_SYMBOL(alloc_buffer_head); 3270 3271 void free_buffer_head(struct buffer_head *bh) 3272 { 3273 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3274 kmem_cache_free(bh_cachep, bh); 3275 preempt_disable(); 3276 __this_cpu_dec(bh_accounting.nr); 3277 recalc_bh_state(); 3278 preempt_enable(); 3279 } 3280 EXPORT_SYMBOL(free_buffer_head); 3281 3282 static void buffer_exit_cpu(int cpu) 3283 { 3284 int i; 3285 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3286 3287 for (i = 0; i < BH_LRU_SIZE; i++) { 3288 brelse(b->bhs[i]); 3289 b->bhs[i] = NULL; 3290 } 3291 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3292 per_cpu(bh_accounting, cpu).nr = 0; 3293 } 3294 3295 static int buffer_cpu_notify(struct notifier_block *self, 3296 unsigned long action, void *hcpu) 3297 { 3298 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3299 buffer_exit_cpu((unsigned long)hcpu); 3300 return NOTIFY_OK; 3301 } 3302 3303 /** 3304 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3305 * @bh: struct buffer_head 3306 * 3307 * Return true if the buffer is up-to-date and false, 3308 * with the buffer locked, if not. 3309 */ 3310 int bh_uptodate_or_lock(struct buffer_head *bh) 3311 { 3312 if (!buffer_uptodate(bh)) { 3313 lock_buffer(bh); 3314 if (!buffer_uptodate(bh)) 3315 return 0; 3316 unlock_buffer(bh); 3317 } 3318 return 1; 3319 } 3320 EXPORT_SYMBOL(bh_uptodate_or_lock); 3321 3322 /** 3323 * bh_submit_read - Submit a locked buffer for reading 3324 * @bh: struct buffer_head 3325 * 3326 * Returns zero on success and -EIO on error. 3327 */ 3328 int bh_submit_read(struct buffer_head *bh) 3329 { 3330 BUG_ON(!buffer_locked(bh)); 3331 3332 if (buffer_uptodate(bh)) { 3333 unlock_buffer(bh); 3334 return 0; 3335 } 3336 3337 get_bh(bh); 3338 bh->b_end_io = end_buffer_read_sync; 3339 submit_bh(READ, bh); 3340 wait_on_buffer(bh); 3341 if (buffer_uptodate(bh)) 3342 return 0; 3343 return -EIO; 3344 } 3345 EXPORT_SYMBOL(bh_submit_read); 3346 3347 void __init buffer_init(void) 3348 { 3349 int nrpages; 3350 3351 bh_cachep = kmem_cache_create("buffer_head", 3352 sizeof(struct buffer_head), 0, 3353 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3354 SLAB_MEM_SPREAD), 3355 NULL); 3356 3357 /* 3358 * Limit the bh occupancy to 10% of ZONE_NORMAL 3359 */ 3360 nrpages = (nr_free_buffer_pages() * 10) / 100; 3361 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3362 hotcpu_notifier(buffer_cpu_notify, 0); 3363 } 3364