1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 52 #include "internal.h" 53 54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 56 enum rw_hint hint, struct writeback_control *wbc); 57 58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 59 60 inline void touch_buffer(struct buffer_head *bh) 61 { 62 trace_block_touch_buffer(bh); 63 mark_page_accessed(bh->b_page); 64 } 65 EXPORT_SYMBOL(touch_buffer); 66 67 void __lock_buffer(struct buffer_head *bh) 68 { 69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 70 } 71 EXPORT_SYMBOL(__lock_buffer); 72 73 void unlock_buffer(struct buffer_head *bh) 74 { 75 clear_bit_unlock(BH_Lock, &bh->b_state); 76 smp_mb__after_atomic(); 77 wake_up_bit(&bh->b_state, BH_Lock); 78 } 79 EXPORT_SYMBOL(unlock_buffer); 80 81 /* 82 * Returns if the page has dirty or writeback buffers. If all the buffers 83 * are unlocked and clean then the PageDirty information is stale. If 84 * any of the pages are locked, it is assumed they are locked for IO. 85 */ 86 void buffer_check_dirty_writeback(struct page *page, 87 bool *dirty, bool *writeback) 88 { 89 struct buffer_head *head, *bh; 90 *dirty = false; 91 *writeback = false; 92 93 BUG_ON(!PageLocked(page)); 94 95 if (!page_has_buffers(page)) 96 return; 97 98 if (PageWriteback(page)) 99 *writeback = true; 100 101 head = page_buffers(page); 102 bh = head; 103 do { 104 if (buffer_locked(bh)) 105 *writeback = true; 106 107 if (buffer_dirty(bh)) 108 *dirty = true; 109 110 bh = bh->b_this_page; 111 } while (bh != head); 112 } 113 EXPORT_SYMBOL(buffer_check_dirty_writeback); 114 115 /* 116 * Block until a buffer comes unlocked. This doesn't stop it 117 * from becoming locked again - you have to lock it yourself 118 * if you want to preserve its state. 119 */ 120 void __wait_on_buffer(struct buffer_head * bh) 121 { 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 123 } 124 EXPORT_SYMBOL(__wait_on_buffer); 125 126 static void 127 __clear_page_buffers(struct page *page) 128 { 129 ClearPagePrivate(page); 130 set_page_private(page, 0); 131 put_page(page); 132 } 133 134 static void buffer_io_error(struct buffer_head *bh, char *msg) 135 { 136 if (!test_bit(BH_Quiet, &bh->b_state)) 137 printk_ratelimited(KERN_ERR 138 "Buffer I/O error on dev %pg, logical block %llu%s\n", 139 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 140 } 141 142 /* 143 * End-of-IO handler helper function which does not touch the bh after 144 * unlocking it. 145 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 146 * a race there is benign: unlock_buffer() only use the bh's address for 147 * hashing after unlocking the buffer, so it doesn't actually touch the bh 148 * itself. 149 */ 150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 151 { 152 if (uptodate) { 153 set_buffer_uptodate(bh); 154 } else { 155 /* This happens, due to failed read-ahead attempts. */ 156 clear_buffer_uptodate(bh); 157 } 158 unlock_buffer(bh); 159 } 160 161 /* 162 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 163 * unlock the buffer. This is what ll_rw_block uses too. 164 */ 165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 166 { 167 __end_buffer_read_notouch(bh, uptodate); 168 put_bh(bh); 169 } 170 EXPORT_SYMBOL(end_buffer_read_sync); 171 172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 173 { 174 if (uptodate) { 175 set_buffer_uptodate(bh); 176 } else { 177 buffer_io_error(bh, ", lost sync page write"); 178 mark_buffer_write_io_error(bh); 179 clear_buffer_uptodate(bh); 180 } 181 unlock_buffer(bh); 182 put_bh(bh); 183 } 184 EXPORT_SYMBOL(end_buffer_write_sync); 185 186 /* 187 * Various filesystems appear to want __find_get_block to be non-blocking. 188 * But it's the page lock which protects the buffers. To get around this, 189 * we get exclusion from try_to_free_buffers with the blockdev mapping's 190 * private_lock. 191 * 192 * Hack idea: for the blockdev mapping, private_lock contention 193 * may be quite high. This code could TryLock the page, and if that 194 * succeeds, there is no need to take private_lock. 195 */ 196 static struct buffer_head * 197 __find_get_block_slow(struct block_device *bdev, sector_t block) 198 { 199 struct inode *bd_inode = bdev->bd_inode; 200 struct address_space *bd_mapping = bd_inode->i_mapping; 201 struct buffer_head *ret = NULL; 202 pgoff_t index; 203 struct buffer_head *bh; 204 struct buffer_head *head; 205 struct page *page; 206 int all_mapped = 1; 207 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 208 209 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 210 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 211 if (!page) 212 goto out; 213 214 spin_lock(&bd_mapping->private_lock); 215 if (!page_has_buffers(page)) 216 goto out_unlock; 217 head = page_buffers(page); 218 bh = head; 219 do { 220 if (!buffer_mapped(bh)) 221 all_mapped = 0; 222 else if (bh->b_blocknr == block) { 223 ret = bh; 224 get_bh(bh); 225 goto out_unlock; 226 } 227 bh = bh->b_this_page; 228 } while (bh != head); 229 230 /* we might be here because some of the buffers on this page are 231 * not mapped. This is due to various races between 232 * file io on the block device and getblk. It gets dealt with 233 * elsewhere, don't buffer_error if we had some unmapped buffers 234 */ 235 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 236 if (all_mapped && __ratelimit(&last_warned)) { 237 printk("__find_get_block_slow() failed. block=%llu, " 238 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 239 "device %pg blocksize: %d\n", 240 (unsigned long long)block, 241 (unsigned long long)bh->b_blocknr, 242 bh->b_state, bh->b_size, bdev, 243 1 << bd_inode->i_blkbits); 244 } 245 out_unlock: 246 spin_unlock(&bd_mapping->private_lock); 247 put_page(page); 248 out: 249 return ret; 250 } 251 252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 253 { 254 unsigned long flags; 255 struct buffer_head *first; 256 struct buffer_head *tmp; 257 struct page *page; 258 int page_uptodate = 1; 259 260 BUG_ON(!buffer_async_read(bh)); 261 262 page = bh->b_page; 263 if (uptodate) { 264 set_buffer_uptodate(bh); 265 } else { 266 clear_buffer_uptodate(bh); 267 buffer_io_error(bh, ", async page read"); 268 SetPageError(page); 269 } 270 271 /* 272 * Be _very_ careful from here on. Bad things can happen if 273 * two buffer heads end IO at almost the same time and both 274 * decide that the page is now completely done. 275 */ 276 first = page_buffers(page); 277 spin_lock_irqsave(&first->b_uptodate_lock, flags); 278 clear_buffer_async_read(bh); 279 unlock_buffer(bh); 280 tmp = bh; 281 do { 282 if (!buffer_uptodate(tmp)) 283 page_uptodate = 0; 284 if (buffer_async_read(tmp)) { 285 BUG_ON(!buffer_locked(tmp)); 286 goto still_busy; 287 } 288 tmp = tmp->b_this_page; 289 } while (tmp != bh); 290 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 291 292 /* 293 * If none of the buffers had errors and they are all 294 * uptodate then we can set the page uptodate. 295 */ 296 if (page_uptodate && !PageError(page)) 297 SetPageUptodate(page); 298 unlock_page(page); 299 return; 300 301 still_busy: 302 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 303 return; 304 } 305 306 struct decrypt_bh_ctx { 307 struct work_struct work; 308 struct buffer_head *bh; 309 }; 310 311 static void decrypt_bh(struct work_struct *work) 312 { 313 struct decrypt_bh_ctx *ctx = 314 container_of(work, struct decrypt_bh_ctx, work); 315 struct buffer_head *bh = ctx->bh; 316 int err; 317 318 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size, 319 bh_offset(bh)); 320 end_buffer_async_read(bh, err == 0); 321 kfree(ctx); 322 } 323 324 /* 325 * I/O completion handler for block_read_full_page() - pages 326 * which come unlocked at the end of I/O. 327 */ 328 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 329 { 330 /* Decrypt if needed */ 331 if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) && 332 IS_ENCRYPTED(bh->b_page->mapping->host) && 333 S_ISREG(bh->b_page->mapping->host->i_mode)) { 334 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 335 336 if (ctx) { 337 INIT_WORK(&ctx->work, decrypt_bh); 338 ctx->bh = bh; 339 fscrypt_enqueue_decrypt_work(&ctx->work); 340 return; 341 } 342 uptodate = 0; 343 } 344 end_buffer_async_read(bh, uptodate); 345 } 346 347 /* 348 * Completion handler for block_write_full_page() - pages which are unlocked 349 * during I/O, and which have PageWriteback cleared upon I/O completion. 350 */ 351 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 352 { 353 unsigned long flags; 354 struct buffer_head *first; 355 struct buffer_head *tmp; 356 struct page *page; 357 358 BUG_ON(!buffer_async_write(bh)); 359 360 page = bh->b_page; 361 if (uptodate) { 362 set_buffer_uptodate(bh); 363 } else { 364 buffer_io_error(bh, ", lost async page write"); 365 mark_buffer_write_io_error(bh); 366 clear_buffer_uptodate(bh); 367 SetPageError(page); 368 } 369 370 first = page_buffers(page); 371 spin_lock_irqsave(&first->b_uptodate_lock, flags); 372 373 clear_buffer_async_write(bh); 374 unlock_buffer(bh); 375 tmp = bh->b_this_page; 376 while (tmp != bh) { 377 if (buffer_async_write(tmp)) { 378 BUG_ON(!buffer_locked(tmp)); 379 goto still_busy; 380 } 381 tmp = tmp->b_this_page; 382 } 383 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 384 end_page_writeback(page); 385 return; 386 387 still_busy: 388 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 389 return; 390 } 391 EXPORT_SYMBOL(end_buffer_async_write); 392 393 /* 394 * If a page's buffers are under async readin (end_buffer_async_read 395 * completion) then there is a possibility that another thread of 396 * control could lock one of the buffers after it has completed 397 * but while some of the other buffers have not completed. This 398 * locked buffer would confuse end_buffer_async_read() into not unlocking 399 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 400 * that this buffer is not under async I/O. 401 * 402 * The page comes unlocked when it has no locked buffer_async buffers 403 * left. 404 * 405 * PageLocked prevents anyone starting new async I/O reads any of 406 * the buffers. 407 * 408 * PageWriteback is used to prevent simultaneous writeout of the same 409 * page. 410 * 411 * PageLocked prevents anyone from starting writeback of a page which is 412 * under read I/O (PageWriteback is only ever set against a locked page). 413 */ 414 static void mark_buffer_async_read(struct buffer_head *bh) 415 { 416 bh->b_end_io = end_buffer_async_read_io; 417 set_buffer_async_read(bh); 418 } 419 420 static void mark_buffer_async_write_endio(struct buffer_head *bh, 421 bh_end_io_t *handler) 422 { 423 bh->b_end_io = handler; 424 set_buffer_async_write(bh); 425 } 426 427 void mark_buffer_async_write(struct buffer_head *bh) 428 { 429 mark_buffer_async_write_endio(bh, end_buffer_async_write); 430 } 431 EXPORT_SYMBOL(mark_buffer_async_write); 432 433 434 /* 435 * fs/buffer.c contains helper functions for buffer-backed address space's 436 * fsync functions. A common requirement for buffer-based filesystems is 437 * that certain data from the backing blockdev needs to be written out for 438 * a successful fsync(). For example, ext2 indirect blocks need to be 439 * written back and waited upon before fsync() returns. 440 * 441 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 442 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 443 * management of a list of dependent buffers at ->i_mapping->private_list. 444 * 445 * Locking is a little subtle: try_to_free_buffers() will remove buffers 446 * from their controlling inode's queue when they are being freed. But 447 * try_to_free_buffers() will be operating against the *blockdev* mapping 448 * at the time, not against the S_ISREG file which depends on those buffers. 449 * So the locking for private_list is via the private_lock in the address_space 450 * which backs the buffers. Which is different from the address_space 451 * against which the buffers are listed. So for a particular address_space, 452 * mapping->private_lock does *not* protect mapping->private_list! In fact, 453 * mapping->private_list will always be protected by the backing blockdev's 454 * ->private_lock. 455 * 456 * Which introduces a requirement: all buffers on an address_space's 457 * ->private_list must be from the same address_space: the blockdev's. 458 * 459 * address_spaces which do not place buffers at ->private_list via these 460 * utility functions are free to use private_lock and private_list for 461 * whatever they want. The only requirement is that list_empty(private_list) 462 * be true at clear_inode() time. 463 * 464 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 465 * filesystems should do that. invalidate_inode_buffers() should just go 466 * BUG_ON(!list_empty). 467 * 468 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 469 * take an address_space, not an inode. And it should be called 470 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 471 * queued up. 472 * 473 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 474 * list if it is already on a list. Because if the buffer is on a list, 475 * it *must* already be on the right one. If not, the filesystem is being 476 * silly. This will save a ton of locking. But first we have to ensure 477 * that buffers are taken *off* the old inode's list when they are freed 478 * (presumably in truncate). That requires careful auditing of all 479 * filesystems (do it inside bforget()). It could also be done by bringing 480 * b_inode back. 481 */ 482 483 /* 484 * The buffer's backing address_space's private_lock must be held 485 */ 486 static void __remove_assoc_queue(struct buffer_head *bh) 487 { 488 list_del_init(&bh->b_assoc_buffers); 489 WARN_ON(!bh->b_assoc_map); 490 bh->b_assoc_map = NULL; 491 } 492 493 int inode_has_buffers(struct inode *inode) 494 { 495 return !list_empty(&inode->i_data.private_list); 496 } 497 498 /* 499 * osync is designed to support O_SYNC io. It waits synchronously for 500 * all already-submitted IO to complete, but does not queue any new 501 * writes to the disk. 502 * 503 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 504 * you dirty the buffers, and then use osync_inode_buffers to wait for 505 * completion. Any other dirty buffers which are not yet queued for 506 * write will not be flushed to disk by the osync. 507 */ 508 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 509 { 510 struct buffer_head *bh; 511 struct list_head *p; 512 int err = 0; 513 514 spin_lock(lock); 515 repeat: 516 list_for_each_prev(p, list) { 517 bh = BH_ENTRY(p); 518 if (buffer_locked(bh)) { 519 get_bh(bh); 520 spin_unlock(lock); 521 wait_on_buffer(bh); 522 if (!buffer_uptodate(bh)) 523 err = -EIO; 524 brelse(bh); 525 spin_lock(lock); 526 goto repeat; 527 } 528 } 529 spin_unlock(lock); 530 return err; 531 } 532 533 void emergency_thaw_bdev(struct super_block *sb) 534 { 535 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 536 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 537 } 538 539 /** 540 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 541 * @mapping: the mapping which wants those buffers written 542 * 543 * Starts I/O against the buffers at mapping->private_list, and waits upon 544 * that I/O. 545 * 546 * Basically, this is a convenience function for fsync(). 547 * @mapping is a file or directory which needs those buffers to be written for 548 * a successful fsync(). 549 */ 550 int sync_mapping_buffers(struct address_space *mapping) 551 { 552 struct address_space *buffer_mapping = mapping->private_data; 553 554 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 555 return 0; 556 557 return fsync_buffers_list(&buffer_mapping->private_lock, 558 &mapping->private_list); 559 } 560 EXPORT_SYMBOL(sync_mapping_buffers); 561 562 /* 563 * Called when we've recently written block `bblock', and it is known that 564 * `bblock' was for a buffer_boundary() buffer. This means that the block at 565 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 566 * dirty, schedule it for IO. So that indirects merge nicely with their data. 567 */ 568 void write_boundary_block(struct block_device *bdev, 569 sector_t bblock, unsigned blocksize) 570 { 571 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 572 if (bh) { 573 if (buffer_dirty(bh)) 574 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 575 put_bh(bh); 576 } 577 } 578 579 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 580 { 581 struct address_space *mapping = inode->i_mapping; 582 struct address_space *buffer_mapping = bh->b_page->mapping; 583 584 mark_buffer_dirty(bh); 585 if (!mapping->private_data) { 586 mapping->private_data = buffer_mapping; 587 } else { 588 BUG_ON(mapping->private_data != buffer_mapping); 589 } 590 if (!bh->b_assoc_map) { 591 spin_lock(&buffer_mapping->private_lock); 592 list_move_tail(&bh->b_assoc_buffers, 593 &mapping->private_list); 594 bh->b_assoc_map = mapping; 595 spin_unlock(&buffer_mapping->private_lock); 596 } 597 } 598 EXPORT_SYMBOL(mark_buffer_dirty_inode); 599 600 /* 601 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 602 * dirty. 603 * 604 * If warn is true, then emit a warning if the page is not uptodate and has 605 * not been truncated. 606 * 607 * The caller must hold lock_page_memcg(). 608 */ 609 void __set_page_dirty(struct page *page, struct address_space *mapping, 610 int warn) 611 { 612 unsigned long flags; 613 614 xa_lock_irqsave(&mapping->i_pages, flags); 615 if (page->mapping) { /* Race with truncate? */ 616 WARN_ON_ONCE(warn && !PageUptodate(page)); 617 account_page_dirtied(page, mapping); 618 __xa_set_mark(&mapping->i_pages, page_index(page), 619 PAGECACHE_TAG_DIRTY); 620 } 621 xa_unlock_irqrestore(&mapping->i_pages, flags); 622 } 623 EXPORT_SYMBOL_GPL(__set_page_dirty); 624 625 /* 626 * Add a page to the dirty page list. 627 * 628 * It is a sad fact of life that this function is called from several places 629 * deeply under spinlocking. It may not sleep. 630 * 631 * If the page has buffers, the uptodate buffers are set dirty, to preserve 632 * dirty-state coherency between the page and the buffers. It the page does 633 * not have buffers then when they are later attached they will all be set 634 * dirty. 635 * 636 * The buffers are dirtied before the page is dirtied. There's a small race 637 * window in which a writepage caller may see the page cleanness but not the 638 * buffer dirtiness. That's fine. If this code were to set the page dirty 639 * before the buffers, a concurrent writepage caller could clear the page dirty 640 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 641 * page on the dirty page list. 642 * 643 * We use private_lock to lock against try_to_free_buffers while using the 644 * page's buffer list. Also use this to protect against clean buffers being 645 * added to the page after it was set dirty. 646 * 647 * FIXME: may need to call ->reservepage here as well. That's rather up to the 648 * address_space though. 649 */ 650 int __set_page_dirty_buffers(struct page *page) 651 { 652 int newly_dirty; 653 struct address_space *mapping = page_mapping(page); 654 655 if (unlikely(!mapping)) 656 return !TestSetPageDirty(page); 657 658 spin_lock(&mapping->private_lock); 659 if (page_has_buffers(page)) { 660 struct buffer_head *head = page_buffers(page); 661 struct buffer_head *bh = head; 662 663 do { 664 set_buffer_dirty(bh); 665 bh = bh->b_this_page; 666 } while (bh != head); 667 } 668 /* 669 * Lock out page->mem_cgroup migration to keep PageDirty 670 * synchronized with per-memcg dirty page counters. 671 */ 672 lock_page_memcg(page); 673 newly_dirty = !TestSetPageDirty(page); 674 spin_unlock(&mapping->private_lock); 675 676 if (newly_dirty) 677 __set_page_dirty(page, mapping, 1); 678 679 unlock_page_memcg(page); 680 681 if (newly_dirty) 682 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 683 684 return newly_dirty; 685 } 686 EXPORT_SYMBOL(__set_page_dirty_buffers); 687 688 /* 689 * Write out and wait upon a list of buffers. 690 * 691 * We have conflicting pressures: we want to make sure that all 692 * initially dirty buffers get waited on, but that any subsequently 693 * dirtied buffers don't. After all, we don't want fsync to last 694 * forever if somebody is actively writing to the file. 695 * 696 * Do this in two main stages: first we copy dirty buffers to a 697 * temporary inode list, queueing the writes as we go. Then we clean 698 * up, waiting for those writes to complete. 699 * 700 * During this second stage, any subsequent updates to the file may end 701 * up refiling the buffer on the original inode's dirty list again, so 702 * there is a chance we will end up with a buffer queued for write but 703 * not yet completed on that list. So, as a final cleanup we go through 704 * the osync code to catch these locked, dirty buffers without requeuing 705 * any newly dirty buffers for write. 706 */ 707 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 708 { 709 struct buffer_head *bh; 710 struct list_head tmp; 711 struct address_space *mapping; 712 int err = 0, err2; 713 struct blk_plug plug; 714 715 INIT_LIST_HEAD(&tmp); 716 blk_start_plug(&plug); 717 718 spin_lock(lock); 719 while (!list_empty(list)) { 720 bh = BH_ENTRY(list->next); 721 mapping = bh->b_assoc_map; 722 __remove_assoc_queue(bh); 723 /* Avoid race with mark_buffer_dirty_inode() which does 724 * a lockless check and we rely on seeing the dirty bit */ 725 smp_mb(); 726 if (buffer_dirty(bh) || buffer_locked(bh)) { 727 list_add(&bh->b_assoc_buffers, &tmp); 728 bh->b_assoc_map = mapping; 729 if (buffer_dirty(bh)) { 730 get_bh(bh); 731 spin_unlock(lock); 732 /* 733 * Ensure any pending I/O completes so that 734 * write_dirty_buffer() actually writes the 735 * current contents - it is a noop if I/O is 736 * still in flight on potentially older 737 * contents. 738 */ 739 write_dirty_buffer(bh, REQ_SYNC); 740 741 /* 742 * Kick off IO for the previous mapping. Note 743 * that we will not run the very last mapping, 744 * wait_on_buffer() will do that for us 745 * through sync_buffer(). 746 */ 747 brelse(bh); 748 spin_lock(lock); 749 } 750 } 751 } 752 753 spin_unlock(lock); 754 blk_finish_plug(&plug); 755 spin_lock(lock); 756 757 while (!list_empty(&tmp)) { 758 bh = BH_ENTRY(tmp.prev); 759 get_bh(bh); 760 mapping = bh->b_assoc_map; 761 __remove_assoc_queue(bh); 762 /* Avoid race with mark_buffer_dirty_inode() which does 763 * a lockless check and we rely on seeing the dirty bit */ 764 smp_mb(); 765 if (buffer_dirty(bh)) { 766 list_add(&bh->b_assoc_buffers, 767 &mapping->private_list); 768 bh->b_assoc_map = mapping; 769 } 770 spin_unlock(lock); 771 wait_on_buffer(bh); 772 if (!buffer_uptodate(bh)) 773 err = -EIO; 774 brelse(bh); 775 spin_lock(lock); 776 } 777 778 spin_unlock(lock); 779 err2 = osync_buffers_list(lock, list); 780 if (err) 781 return err; 782 else 783 return err2; 784 } 785 786 /* 787 * Invalidate any and all dirty buffers on a given inode. We are 788 * probably unmounting the fs, but that doesn't mean we have already 789 * done a sync(). Just drop the buffers from the inode list. 790 * 791 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 792 * assumes that all the buffers are against the blockdev. Not true 793 * for reiserfs. 794 */ 795 void invalidate_inode_buffers(struct inode *inode) 796 { 797 if (inode_has_buffers(inode)) { 798 struct address_space *mapping = &inode->i_data; 799 struct list_head *list = &mapping->private_list; 800 struct address_space *buffer_mapping = mapping->private_data; 801 802 spin_lock(&buffer_mapping->private_lock); 803 while (!list_empty(list)) 804 __remove_assoc_queue(BH_ENTRY(list->next)); 805 spin_unlock(&buffer_mapping->private_lock); 806 } 807 } 808 EXPORT_SYMBOL(invalidate_inode_buffers); 809 810 /* 811 * Remove any clean buffers from the inode's buffer list. This is called 812 * when we're trying to free the inode itself. Those buffers can pin it. 813 * 814 * Returns true if all buffers were removed. 815 */ 816 int remove_inode_buffers(struct inode *inode) 817 { 818 int ret = 1; 819 820 if (inode_has_buffers(inode)) { 821 struct address_space *mapping = &inode->i_data; 822 struct list_head *list = &mapping->private_list; 823 struct address_space *buffer_mapping = mapping->private_data; 824 825 spin_lock(&buffer_mapping->private_lock); 826 while (!list_empty(list)) { 827 struct buffer_head *bh = BH_ENTRY(list->next); 828 if (buffer_dirty(bh)) { 829 ret = 0; 830 break; 831 } 832 __remove_assoc_queue(bh); 833 } 834 spin_unlock(&buffer_mapping->private_lock); 835 } 836 return ret; 837 } 838 839 /* 840 * Create the appropriate buffers when given a page for data area and 841 * the size of each buffer.. Use the bh->b_this_page linked list to 842 * follow the buffers created. Return NULL if unable to create more 843 * buffers. 844 * 845 * The retry flag is used to differentiate async IO (paging, swapping) 846 * which may not fail from ordinary buffer allocations. 847 */ 848 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 849 bool retry) 850 { 851 struct buffer_head *bh, *head; 852 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 853 long offset; 854 struct mem_cgroup *memcg; 855 856 if (retry) 857 gfp |= __GFP_NOFAIL; 858 859 memcg = get_mem_cgroup_from_page(page); 860 memalloc_use_memcg(memcg); 861 862 head = NULL; 863 offset = PAGE_SIZE; 864 while ((offset -= size) >= 0) { 865 bh = alloc_buffer_head(gfp); 866 if (!bh) 867 goto no_grow; 868 869 bh->b_this_page = head; 870 bh->b_blocknr = -1; 871 head = bh; 872 873 bh->b_size = size; 874 875 /* Link the buffer to its page */ 876 set_bh_page(bh, page, offset); 877 } 878 out: 879 memalloc_unuse_memcg(); 880 mem_cgroup_put(memcg); 881 return head; 882 /* 883 * In case anything failed, we just free everything we got. 884 */ 885 no_grow: 886 if (head) { 887 do { 888 bh = head; 889 head = head->b_this_page; 890 free_buffer_head(bh); 891 } while (head); 892 } 893 894 goto out; 895 } 896 EXPORT_SYMBOL_GPL(alloc_page_buffers); 897 898 static inline void 899 link_dev_buffers(struct page *page, struct buffer_head *head) 900 { 901 struct buffer_head *bh, *tail; 902 903 bh = head; 904 do { 905 tail = bh; 906 bh = bh->b_this_page; 907 } while (bh); 908 tail->b_this_page = head; 909 attach_page_buffers(page, head); 910 } 911 912 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 913 { 914 sector_t retval = ~((sector_t)0); 915 loff_t sz = i_size_read(bdev->bd_inode); 916 917 if (sz) { 918 unsigned int sizebits = blksize_bits(size); 919 retval = (sz >> sizebits); 920 } 921 return retval; 922 } 923 924 /* 925 * Initialise the state of a blockdev page's buffers. 926 */ 927 static sector_t 928 init_page_buffers(struct page *page, struct block_device *bdev, 929 sector_t block, int size) 930 { 931 struct buffer_head *head = page_buffers(page); 932 struct buffer_head *bh = head; 933 int uptodate = PageUptodate(page); 934 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 935 936 do { 937 if (!buffer_mapped(bh)) { 938 bh->b_end_io = NULL; 939 bh->b_private = NULL; 940 bh->b_bdev = bdev; 941 bh->b_blocknr = block; 942 if (uptodate) 943 set_buffer_uptodate(bh); 944 if (block < end_block) 945 set_buffer_mapped(bh); 946 } 947 block++; 948 bh = bh->b_this_page; 949 } while (bh != head); 950 951 /* 952 * Caller needs to validate requested block against end of device. 953 */ 954 return end_block; 955 } 956 957 /* 958 * Create the page-cache page that contains the requested block. 959 * 960 * This is used purely for blockdev mappings. 961 */ 962 static int 963 grow_dev_page(struct block_device *bdev, sector_t block, 964 pgoff_t index, int size, int sizebits, gfp_t gfp) 965 { 966 struct inode *inode = bdev->bd_inode; 967 struct page *page; 968 struct buffer_head *bh; 969 sector_t end_block; 970 int ret = 0; /* Will call free_more_memory() */ 971 gfp_t gfp_mask; 972 973 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 974 975 /* 976 * XXX: __getblk_slow() can not really deal with failure and 977 * will endlessly loop on improvised global reclaim. Prefer 978 * looping in the allocator rather than here, at least that 979 * code knows what it's doing. 980 */ 981 gfp_mask |= __GFP_NOFAIL; 982 983 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 984 985 BUG_ON(!PageLocked(page)); 986 987 if (page_has_buffers(page)) { 988 bh = page_buffers(page); 989 if (bh->b_size == size) { 990 end_block = init_page_buffers(page, bdev, 991 (sector_t)index << sizebits, 992 size); 993 goto done; 994 } 995 if (!try_to_free_buffers(page)) 996 goto failed; 997 } 998 999 /* 1000 * Allocate some buffers for this page 1001 */ 1002 bh = alloc_page_buffers(page, size, true); 1003 1004 /* 1005 * Link the page to the buffers and initialise them. Take the 1006 * lock to be atomic wrt __find_get_block(), which does not 1007 * run under the page lock. 1008 */ 1009 spin_lock(&inode->i_mapping->private_lock); 1010 link_dev_buffers(page, bh); 1011 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1012 size); 1013 spin_unlock(&inode->i_mapping->private_lock); 1014 done: 1015 ret = (block < end_block) ? 1 : -ENXIO; 1016 failed: 1017 unlock_page(page); 1018 put_page(page); 1019 return ret; 1020 } 1021 1022 /* 1023 * Create buffers for the specified block device block's page. If 1024 * that page was dirty, the buffers are set dirty also. 1025 */ 1026 static int 1027 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1028 { 1029 pgoff_t index; 1030 int sizebits; 1031 1032 sizebits = -1; 1033 do { 1034 sizebits++; 1035 } while ((size << sizebits) < PAGE_SIZE); 1036 1037 index = block >> sizebits; 1038 1039 /* 1040 * Check for a block which wants to lie outside our maximum possible 1041 * pagecache index. (this comparison is done using sector_t types). 1042 */ 1043 if (unlikely(index != block >> sizebits)) { 1044 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1045 "device %pg\n", 1046 __func__, (unsigned long long)block, 1047 bdev); 1048 return -EIO; 1049 } 1050 1051 /* Create a page with the proper size buffers.. */ 1052 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1053 } 1054 1055 static struct buffer_head * 1056 __getblk_slow(struct block_device *bdev, sector_t block, 1057 unsigned size, gfp_t gfp) 1058 { 1059 /* Size must be multiple of hard sectorsize */ 1060 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1061 (size < 512 || size > PAGE_SIZE))) { 1062 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1063 size); 1064 printk(KERN_ERR "logical block size: %d\n", 1065 bdev_logical_block_size(bdev)); 1066 1067 dump_stack(); 1068 return NULL; 1069 } 1070 1071 for (;;) { 1072 struct buffer_head *bh; 1073 int ret; 1074 1075 bh = __find_get_block(bdev, block, size); 1076 if (bh) 1077 return bh; 1078 1079 ret = grow_buffers(bdev, block, size, gfp); 1080 if (ret < 0) 1081 return NULL; 1082 } 1083 } 1084 1085 /* 1086 * The relationship between dirty buffers and dirty pages: 1087 * 1088 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1089 * the page is tagged dirty in the page cache. 1090 * 1091 * At all times, the dirtiness of the buffers represents the dirtiness of 1092 * subsections of the page. If the page has buffers, the page dirty bit is 1093 * merely a hint about the true dirty state. 1094 * 1095 * When a page is set dirty in its entirety, all its buffers are marked dirty 1096 * (if the page has buffers). 1097 * 1098 * When a buffer is marked dirty, its page is dirtied, but the page's other 1099 * buffers are not. 1100 * 1101 * Also. When blockdev buffers are explicitly read with bread(), they 1102 * individually become uptodate. But their backing page remains not 1103 * uptodate - even if all of its buffers are uptodate. A subsequent 1104 * block_read_full_page() against that page will discover all the uptodate 1105 * buffers, will set the page uptodate and will perform no I/O. 1106 */ 1107 1108 /** 1109 * mark_buffer_dirty - mark a buffer_head as needing writeout 1110 * @bh: the buffer_head to mark dirty 1111 * 1112 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1113 * its backing page dirty, then tag the page as dirty in the page cache 1114 * and then attach the address_space's inode to its superblock's dirty 1115 * inode list. 1116 * 1117 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1118 * i_pages lock and mapping->host->i_lock. 1119 */ 1120 void mark_buffer_dirty(struct buffer_head *bh) 1121 { 1122 WARN_ON_ONCE(!buffer_uptodate(bh)); 1123 1124 trace_block_dirty_buffer(bh); 1125 1126 /* 1127 * Very *carefully* optimize the it-is-already-dirty case. 1128 * 1129 * Don't let the final "is it dirty" escape to before we 1130 * perhaps modified the buffer. 1131 */ 1132 if (buffer_dirty(bh)) { 1133 smp_mb(); 1134 if (buffer_dirty(bh)) 1135 return; 1136 } 1137 1138 if (!test_set_buffer_dirty(bh)) { 1139 struct page *page = bh->b_page; 1140 struct address_space *mapping = NULL; 1141 1142 lock_page_memcg(page); 1143 if (!TestSetPageDirty(page)) { 1144 mapping = page_mapping(page); 1145 if (mapping) 1146 __set_page_dirty(page, mapping, 0); 1147 } 1148 unlock_page_memcg(page); 1149 if (mapping) 1150 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1151 } 1152 } 1153 EXPORT_SYMBOL(mark_buffer_dirty); 1154 1155 void mark_buffer_write_io_error(struct buffer_head *bh) 1156 { 1157 set_buffer_write_io_error(bh); 1158 /* FIXME: do we need to set this in both places? */ 1159 if (bh->b_page && bh->b_page->mapping) 1160 mapping_set_error(bh->b_page->mapping, -EIO); 1161 if (bh->b_assoc_map) 1162 mapping_set_error(bh->b_assoc_map, -EIO); 1163 } 1164 EXPORT_SYMBOL(mark_buffer_write_io_error); 1165 1166 /* 1167 * Decrement a buffer_head's reference count. If all buffers against a page 1168 * have zero reference count, are clean and unlocked, and if the page is clean 1169 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1170 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1171 * a page but it ends up not being freed, and buffers may later be reattached). 1172 */ 1173 void __brelse(struct buffer_head * buf) 1174 { 1175 if (atomic_read(&buf->b_count)) { 1176 put_bh(buf); 1177 return; 1178 } 1179 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1180 } 1181 EXPORT_SYMBOL(__brelse); 1182 1183 /* 1184 * bforget() is like brelse(), except it discards any 1185 * potentially dirty data. 1186 */ 1187 void __bforget(struct buffer_head *bh) 1188 { 1189 clear_buffer_dirty(bh); 1190 if (bh->b_assoc_map) { 1191 struct address_space *buffer_mapping = bh->b_page->mapping; 1192 1193 spin_lock(&buffer_mapping->private_lock); 1194 list_del_init(&bh->b_assoc_buffers); 1195 bh->b_assoc_map = NULL; 1196 spin_unlock(&buffer_mapping->private_lock); 1197 } 1198 __brelse(bh); 1199 } 1200 EXPORT_SYMBOL(__bforget); 1201 1202 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1203 { 1204 lock_buffer(bh); 1205 if (buffer_uptodate(bh)) { 1206 unlock_buffer(bh); 1207 return bh; 1208 } else { 1209 get_bh(bh); 1210 bh->b_end_io = end_buffer_read_sync; 1211 submit_bh(REQ_OP_READ, 0, bh); 1212 wait_on_buffer(bh); 1213 if (buffer_uptodate(bh)) 1214 return bh; 1215 } 1216 brelse(bh); 1217 return NULL; 1218 } 1219 1220 /* 1221 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1222 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1223 * refcount elevated by one when they're in an LRU. A buffer can only appear 1224 * once in a particular CPU's LRU. A single buffer can be present in multiple 1225 * CPU's LRUs at the same time. 1226 * 1227 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1228 * sb_find_get_block(). 1229 * 1230 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1231 * a local interrupt disable for that. 1232 */ 1233 1234 #define BH_LRU_SIZE 16 1235 1236 struct bh_lru { 1237 struct buffer_head *bhs[BH_LRU_SIZE]; 1238 }; 1239 1240 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1241 1242 #ifdef CONFIG_SMP 1243 #define bh_lru_lock() local_irq_disable() 1244 #define bh_lru_unlock() local_irq_enable() 1245 #else 1246 #define bh_lru_lock() preempt_disable() 1247 #define bh_lru_unlock() preempt_enable() 1248 #endif 1249 1250 static inline void check_irqs_on(void) 1251 { 1252 #ifdef irqs_disabled 1253 BUG_ON(irqs_disabled()); 1254 #endif 1255 } 1256 1257 /* 1258 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1259 * inserted at the front, and the buffer_head at the back if any is evicted. 1260 * Or, if already in the LRU it is moved to the front. 1261 */ 1262 static void bh_lru_install(struct buffer_head *bh) 1263 { 1264 struct buffer_head *evictee = bh; 1265 struct bh_lru *b; 1266 int i; 1267 1268 check_irqs_on(); 1269 bh_lru_lock(); 1270 1271 b = this_cpu_ptr(&bh_lrus); 1272 for (i = 0; i < BH_LRU_SIZE; i++) { 1273 swap(evictee, b->bhs[i]); 1274 if (evictee == bh) { 1275 bh_lru_unlock(); 1276 return; 1277 } 1278 } 1279 1280 get_bh(bh); 1281 bh_lru_unlock(); 1282 brelse(evictee); 1283 } 1284 1285 /* 1286 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1287 */ 1288 static struct buffer_head * 1289 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1290 { 1291 struct buffer_head *ret = NULL; 1292 unsigned int i; 1293 1294 check_irqs_on(); 1295 bh_lru_lock(); 1296 for (i = 0; i < BH_LRU_SIZE; i++) { 1297 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1298 1299 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1300 bh->b_size == size) { 1301 if (i) { 1302 while (i) { 1303 __this_cpu_write(bh_lrus.bhs[i], 1304 __this_cpu_read(bh_lrus.bhs[i - 1])); 1305 i--; 1306 } 1307 __this_cpu_write(bh_lrus.bhs[0], bh); 1308 } 1309 get_bh(bh); 1310 ret = bh; 1311 break; 1312 } 1313 } 1314 bh_lru_unlock(); 1315 return ret; 1316 } 1317 1318 /* 1319 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1320 * it in the LRU and mark it as accessed. If it is not present then return 1321 * NULL 1322 */ 1323 struct buffer_head * 1324 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1325 { 1326 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1327 1328 if (bh == NULL) { 1329 /* __find_get_block_slow will mark the page accessed */ 1330 bh = __find_get_block_slow(bdev, block); 1331 if (bh) 1332 bh_lru_install(bh); 1333 } else 1334 touch_buffer(bh); 1335 1336 return bh; 1337 } 1338 EXPORT_SYMBOL(__find_get_block); 1339 1340 /* 1341 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1342 * which corresponds to the passed block_device, block and size. The 1343 * returned buffer has its reference count incremented. 1344 * 1345 * __getblk_gfp() will lock up the machine if grow_dev_page's 1346 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1347 */ 1348 struct buffer_head * 1349 __getblk_gfp(struct block_device *bdev, sector_t block, 1350 unsigned size, gfp_t gfp) 1351 { 1352 struct buffer_head *bh = __find_get_block(bdev, block, size); 1353 1354 might_sleep(); 1355 if (bh == NULL) 1356 bh = __getblk_slow(bdev, block, size, gfp); 1357 return bh; 1358 } 1359 EXPORT_SYMBOL(__getblk_gfp); 1360 1361 /* 1362 * Do async read-ahead on a buffer.. 1363 */ 1364 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1365 { 1366 struct buffer_head *bh = __getblk(bdev, block, size); 1367 if (likely(bh)) { 1368 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1369 brelse(bh); 1370 } 1371 } 1372 EXPORT_SYMBOL(__breadahead); 1373 1374 /** 1375 * __bread_gfp() - reads a specified block and returns the bh 1376 * @bdev: the block_device to read from 1377 * @block: number of block 1378 * @size: size (in bytes) to read 1379 * @gfp: page allocation flag 1380 * 1381 * Reads a specified block, and returns buffer head that contains it. 1382 * The page cache can be allocated from non-movable area 1383 * not to prevent page migration if you set gfp to zero. 1384 * It returns NULL if the block was unreadable. 1385 */ 1386 struct buffer_head * 1387 __bread_gfp(struct block_device *bdev, sector_t block, 1388 unsigned size, gfp_t gfp) 1389 { 1390 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1391 1392 if (likely(bh) && !buffer_uptodate(bh)) 1393 bh = __bread_slow(bh); 1394 return bh; 1395 } 1396 EXPORT_SYMBOL(__bread_gfp); 1397 1398 /* 1399 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1400 * This doesn't race because it runs in each cpu either in irq 1401 * or with preempt disabled. 1402 */ 1403 static void invalidate_bh_lru(void *arg) 1404 { 1405 struct bh_lru *b = &get_cpu_var(bh_lrus); 1406 int i; 1407 1408 for (i = 0; i < BH_LRU_SIZE; i++) { 1409 brelse(b->bhs[i]); 1410 b->bhs[i] = NULL; 1411 } 1412 put_cpu_var(bh_lrus); 1413 } 1414 1415 static bool has_bh_in_lru(int cpu, void *dummy) 1416 { 1417 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1418 int i; 1419 1420 for (i = 0; i < BH_LRU_SIZE; i++) { 1421 if (b->bhs[i]) 1422 return true; 1423 } 1424 1425 return false; 1426 } 1427 1428 void invalidate_bh_lrus(void) 1429 { 1430 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1431 } 1432 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1433 1434 void set_bh_page(struct buffer_head *bh, 1435 struct page *page, unsigned long offset) 1436 { 1437 bh->b_page = page; 1438 BUG_ON(offset >= PAGE_SIZE); 1439 if (PageHighMem(page)) 1440 /* 1441 * This catches illegal uses and preserves the offset: 1442 */ 1443 bh->b_data = (char *)(0 + offset); 1444 else 1445 bh->b_data = page_address(page) + offset; 1446 } 1447 EXPORT_SYMBOL(set_bh_page); 1448 1449 /* 1450 * Called when truncating a buffer on a page completely. 1451 */ 1452 1453 /* Bits that are cleared during an invalidate */ 1454 #define BUFFER_FLAGS_DISCARD \ 1455 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1456 1 << BH_Delay | 1 << BH_Unwritten) 1457 1458 static void discard_buffer(struct buffer_head * bh) 1459 { 1460 unsigned long b_state, b_state_old; 1461 1462 lock_buffer(bh); 1463 clear_buffer_dirty(bh); 1464 bh->b_bdev = NULL; 1465 b_state = bh->b_state; 1466 for (;;) { 1467 b_state_old = cmpxchg(&bh->b_state, b_state, 1468 (b_state & ~BUFFER_FLAGS_DISCARD)); 1469 if (b_state_old == b_state) 1470 break; 1471 b_state = b_state_old; 1472 } 1473 unlock_buffer(bh); 1474 } 1475 1476 /** 1477 * block_invalidatepage - invalidate part or all of a buffer-backed page 1478 * 1479 * @page: the page which is affected 1480 * @offset: start of the range to invalidate 1481 * @length: length of the range to invalidate 1482 * 1483 * block_invalidatepage() is called when all or part of the page has become 1484 * invalidated by a truncate operation. 1485 * 1486 * block_invalidatepage() does not have to release all buffers, but it must 1487 * ensure that no dirty buffer is left outside @offset and that no I/O 1488 * is underway against any of the blocks which are outside the truncation 1489 * point. Because the caller is about to free (and possibly reuse) those 1490 * blocks on-disk. 1491 */ 1492 void block_invalidatepage(struct page *page, unsigned int offset, 1493 unsigned int length) 1494 { 1495 struct buffer_head *head, *bh, *next; 1496 unsigned int curr_off = 0; 1497 unsigned int stop = length + offset; 1498 1499 BUG_ON(!PageLocked(page)); 1500 if (!page_has_buffers(page)) 1501 goto out; 1502 1503 /* 1504 * Check for overflow 1505 */ 1506 BUG_ON(stop > PAGE_SIZE || stop < length); 1507 1508 head = page_buffers(page); 1509 bh = head; 1510 do { 1511 unsigned int next_off = curr_off + bh->b_size; 1512 next = bh->b_this_page; 1513 1514 /* 1515 * Are we still fully in range ? 1516 */ 1517 if (next_off > stop) 1518 goto out; 1519 1520 /* 1521 * is this block fully invalidated? 1522 */ 1523 if (offset <= curr_off) 1524 discard_buffer(bh); 1525 curr_off = next_off; 1526 bh = next; 1527 } while (bh != head); 1528 1529 /* 1530 * We release buffers only if the entire page is being invalidated. 1531 * The get_block cached value has been unconditionally invalidated, 1532 * so real IO is not possible anymore. 1533 */ 1534 if (length == PAGE_SIZE) 1535 try_to_release_page(page, 0); 1536 out: 1537 return; 1538 } 1539 EXPORT_SYMBOL(block_invalidatepage); 1540 1541 1542 /* 1543 * We attach and possibly dirty the buffers atomically wrt 1544 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1545 * is already excluded via the page lock. 1546 */ 1547 void create_empty_buffers(struct page *page, 1548 unsigned long blocksize, unsigned long b_state) 1549 { 1550 struct buffer_head *bh, *head, *tail; 1551 1552 head = alloc_page_buffers(page, blocksize, true); 1553 bh = head; 1554 do { 1555 bh->b_state |= b_state; 1556 tail = bh; 1557 bh = bh->b_this_page; 1558 } while (bh); 1559 tail->b_this_page = head; 1560 1561 spin_lock(&page->mapping->private_lock); 1562 if (PageUptodate(page) || PageDirty(page)) { 1563 bh = head; 1564 do { 1565 if (PageDirty(page)) 1566 set_buffer_dirty(bh); 1567 if (PageUptodate(page)) 1568 set_buffer_uptodate(bh); 1569 bh = bh->b_this_page; 1570 } while (bh != head); 1571 } 1572 attach_page_buffers(page, head); 1573 spin_unlock(&page->mapping->private_lock); 1574 } 1575 EXPORT_SYMBOL(create_empty_buffers); 1576 1577 /** 1578 * clean_bdev_aliases: clean a range of buffers in block device 1579 * @bdev: Block device to clean buffers in 1580 * @block: Start of a range of blocks to clean 1581 * @len: Number of blocks to clean 1582 * 1583 * We are taking a range of blocks for data and we don't want writeback of any 1584 * buffer-cache aliases starting from return from this function and until the 1585 * moment when something will explicitly mark the buffer dirty (hopefully that 1586 * will not happen until we will free that block ;-) We don't even need to mark 1587 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1588 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1589 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1590 * would confuse anyone who might pick it with bread() afterwards... 1591 * 1592 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1593 * writeout I/O going on against recently-freed buffers. We don't wait on that 1594 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1595 * need to. That happens here. 1596 */ 1597 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1598 { 1599 struct inode *bd_inode = bdev->bd_inode; 1600 struct address_space *bd_mapping = bd_inode->i_mapping; 1601 struct pagevec pvec; 1602 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1603 pgoff_t end; 1604 int i, count; 1605 struct buffer_head *bh; 1606 struct buffer_head *head; 1607 1608 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1609 pagevec_init(&pvec); 1610 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1611 count = pagevec_count(&pvec); 1612 for (i = 0; i < count; i++) { 1613 struct page *page = pvec.pages[i]; 1614 1615 if (!page_has_buffers(page)) 1616 continue; 1617 /* 1618 * We use page lock instead of bd_mapping->private_lock 1619 * to pin buffers here since we can afford to sleep and 1620 * it scales better than a global spinlock lock. 1621 */ 1622 lock_page(page); 1623 /* Recheck when the page is locked which pins bhs */ 1624 if (!page_has_buffers(page)) 1625 goto unlock_page; 1626 head = page_buffers(page); 1627 bh = head; 1628 do { 1629 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1630 goto next; 1631 if (bh->b_blocknr >= block + len) 1632 break; 1633 clear_buffer_dirty(bh); 1634 wait_on_buffer(bh); 1635 clear_buffer_req(bh); 1636 next: 1637 bh = bh->b_this_page; 1638 } while (bh != head); 1639 unlock_page: 1640 unlock_page(page); 1641 } 1642 pagevec_release(&pvec); 1643 cond_resched(); 1644 /* End of range already reached? */ 1645 if (index > end || !index) 1646 break; 1647 } 1648 } 1649 EXPORT_SYMBOL(clean_bdev_aliases); 1650 1651 /* 1652 * Size is a power-of-two in the range 512..PAGE_SIZE, 1653 * and the case we care about most is PAGE_SIZE. 1654 * 1655 * So this *could* possibly be written with those 1656 * constraints in mind (relevant mostly if some 1657 * architecture has a slow bit-scan instruction) 1658 */ 1659 static inline int block_size_bits(unsigned int blocksize) 1660 { 1661 return ilog2(blocksize); 1662 } 1663 1664 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1665 { 1666 BUG_ON(!PageLocked(page)); 1667 1668 if (!page_has_buffers(page)) 1669 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1670 b_state); 1671 return page_buffers(page); 1672 } 1673 1674 /* 1675 * NOTE! All mapped/uptodate combinations are valid: 1676 * 1677 * Mapped Uptodate Meaning 1678 * 1679 * No No "unknown" - must do get_block() 1680 * No Yes "hole" - zero-filled 1681 * Yes No "allocated" - allocated on disk, not read in 1682 * Yes Yes "valid" - allocated and up-to-date in memory. 1683 * 1684 * "Dirty" is valid only with the last case (mapped+uptodate). 1685 */ 1686 1687 /* 1688 * While block_write_full_page is writing back the dirty buffers under 1689 * the page lock, whoever dirtied the buffers may decide to clean them 1690 * again at any time. We handle that by only looking at the buffer 1691 * state inside lock_buffer(). 1692 * 1693 * If block_write_full_page() is called for regular writeback 1694 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1695 * locked buffer. This only can happen if someone has written the buffer 1696 * directly, with submit_bh(). At the address_space level PageWriteback 1697 * prevents this contention from occurring. 1698 * 1699 * If block_write_full_page() is called with wbc->sync_mode == 1700 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1701 * causes the writes to be flagged as synchronous writes. 1702 */ 1703 int __block_write_full_page(struct inode *inode, struct page *page, 1704 get_block_t *get_block, struct writeback_control *wbc, 1705 bh_end_io_t *handler) 1706 { 1707 int err; 1708 sector_t block; 1709 sector_t last_block; 1710 struct buffer_head *bh, *head; 1711 unsigned int blocksize, bbits; 1712 int nr_underway = 0; 1713 int write_flags = wbc_to_write_flags(wbc); 1714 1715 head = create_page_buffers(page, inode, 1716 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1717 1718 /* 1719 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1720 * here, and the (potentially unmapped) buffers may become dirty at 1721 * any time. If a buffer becomes dirty here after we've inspected it 1722 * then we just miss that fact, and the page stays dirty. 1723 * 1724 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1725 * handle that here by just cleaning them. 1726 */ 1727 1728 bh = head; 1729 blocksize = bh->b_size; 1730 bbits = block_size_bits(blocksize); 1731 1732 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1733 last_block = (i_size_read(inode) - 1) >> bbits; 1734 1735 /* 1736 * Get all the dirty buffers mapped to disk addresses and 1737 * handle any aliases from the underlying blockdev's mapping. 1738 */ 1739 do { 1740 if (block > last_block) { 1741 /* 1742 * mapped buffers outside i_size will occur, because 1743 * this page can be outside i_size when there is a 1744 * truncate in progress. 1745 */ 1746 /* 1747 * The buffer was zeroed by block_write_full_page() 1748 */ 1749 clear_buffer_dirty(bh); 1750 set_buffer_uptodate(bh); 1751 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1752 buffer_dirty(bh)) { 1753 WARN_ON(bh->b_size != blocksize); 1754 err = get_block(inode, block, bh, 1); 1755 if (err) 1756 goto recover; 1757 clear_buffer_delay(bh); 1758 if (buffer_new(bh)) { 1759 /* blockdev mappings never come here */ 1760 clear_buffer_new(bh); 1761 clean_bdev_bh_alias(bh); 1762 } 1763 } 1764 bh = bh->b_this_page; 1765 block++; 1766 } while (bh != head); 1767 1768 do { 1769 if (!buffer_mapped(bh)) 1770 continue; 1771 /* 1772 * If it's a fully non-blocking write attempt and we cannot 1773 * lock the buffer then redirty the page. Note that this can 1774 * potentially cause a busy-wait loop from writeback threads 1775 * and kswapd activity, but those code paths have their own 1776 * higher-level throttling. 1777 */ 1778 if (wbc->sync_mode != WB_SYNC_NONE) { 1779 lock_buffer(bh); 1780 } else if (!trylock_buffer(bh)) { 1781 redirty_page_for_writepage(wbc, page); 1782 continue; 1783 } 1784 if (test_clear_buffer_dirty(bh)) { 1785 mark_buffer_async_write_endio(bh, handler); 1786 } else { 1787 unlock_buffer(bh); 1788 } 1789 } while ((bh = bh->b_this_page) != head); 1790 1791 /* 1792 * The page and its buffers are protected by PageWriteback(), so we can 1793 * drop the bh refcounts early. 1794 */ 1795 BUG_ON(PageWriteback(page)); 1796 set_page_writeback(page); 1797 1798 do { 1799 struct buffer_head *next = bh->b_this_page; 1800 if (buffer_async_write(bh)) { 1801 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1802 inode->i_write_hint, wbc); 1803 nr_underway++; 1804 } 1805 bh = next; 1806 } while (bh != head); 1807 unlock_page(page); 1808 1809 err = 0; 1810 done: 1811 if (nr_underway == 0) { 1812 /* 1813 * The page was marked dirty, but the buffers were 1814 * clean. Someone wrote them back by hand with 1815 * ll_rw_block/submit_bh. A rare case. 1816 */ 1817 end_page_writeback(page); 1818 1819 /* 1820 * The page and buffer_heads can be released at any time from 1821 * here on. 1822 */ 1823 } 1824 return err; 1825 1826 recover: 1827 /* 1828 * ENOSPC, or some other error. We may already have added some 1829 * blocks to the file, so we need to write these out to avoid 1830 * exposing stale data. 1831 * The page is currently locked and not marked for writeback 1832 */ 1833 bh = head; 1834 /* Recovery: lock and submit the mapped buffers */ 1835 do { 1836 if (buffer_mapped(bh) && buffer_dirty(bh) && 1837 !buffer_delay(bh)) { 1838 lock_buffer(bh); 1839 mark_buffer_async_write_endio(bh, handler); 1840 } else { 1841 /* 1842 * The buffer may have been set dirty during 1843 * attachment to a dirty page. 1844 */ 1845 clear_buffer_dirty(bh); 1846 } 1847 } while ((bh = bh->b_this_page) != head); 1848 SetPageError(page); 1849 BUG_ON(PageWriteback(page)); 1850 mapping_set_error(page->mapping, err); 1851 set_page_writeback(page); 1852 do { 1853 struct buffer_head *next = bh->b_this_page; 1854 if (buffer_async_write(bh)) { 1855 clear_buffer_dirty(bh); 1856 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1857 inode->i_write_hint, wbc); 1858 nr_underway++; 1859 } 1860 bh = next; 1861 } while (bh != head); 1862 unlock_page(page); 1863 goto done; 1864 } 1865 EXPORT_SYMBOL(__block_write_full_page); 1866 1867 /* 1868 * If a page has any new buffers, zero them out here, and mark them uptodate 1869 * and dirty so they'll be written out (in order to prevent uninitialised 1870 * block data from leaking). And clear the new bit. 1871 */ 1872 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1873 { 1874 unsigned int block_start, block_end; 1875 struct buffer_head *head, *bh; 1876 1877 BUG_ON(!PageLocked(page)); 1878 if (!page_has_buffers(page)) 1879 return; 1880 1881 bh = head = page_buffers(page); 1882 block_start = 0; 1883 do { 1884 block_end = block_start + bh->b_size; 1885 1886 if (buffer_new(bh)) { 1887 if (block_end > from && block_start < to) { 1888 if (!PageUptodate(page)) { 1889 unsigned start, size; 1890 1891 start = max(from, block_start); 1892 size = min(to, block_end) - start; 1893 1894 zero_user(page, start, size); 1895 set_buffer_uptodate(bh); 1896 } 1897 1898 clear_buffer_new(bh); 1899 mark_buffer_dirty(bh); 1900 } 1901 } 1902 1903 block_start = block_end; 1904 bh = bh->b_this_page; 1905 } while (bh != head); 1906 } 1907 EXPORT_SYMBOL(page_zero_new_buffers); 1908 1909 static void 1910 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1911 struct iomap *iomap) 1912 { 1913 loff_t offset = block << inode->i_blkbits; 1914 1915 bh->b_bdev = iomap->bdev; 1916 1917 /* 1918 * Block points to offset in file we need to map, iomap contains 1919 * the offset at which the map starts. If the map ends before the 1920 * current block, then do not map the buffer and let the caller 1921 * handle it. 1922 */ 1923 BUG_ON(offset >= iomap->offset + iomap->length); 1924 1925 switch (iomap->type) { 1926 case IOMAP_HOLE: 1927 /* 1928 * If the buffer is not up to date or beyond the current EOF, 1929 * we need to mark it as new to ensure sub-block zeroing is 1930 * executed if necessary. 1931 */ 1932 if (!buffer_uptodate(bh) || 1933 (offset >= i_size_read(inode))) 1934 set_buffer_new(bh); 1935 break; 1936 case IOMAP_DELALLOC: 1937 if (!buffer_uptodate(bh) || 1938 (offset >= i_size_read(inode))) 1939 set_buffer_new(bh); 1940 set_buffer_uptodate(bh); 1941 set_buffer_mapped(bh); 1942 set_buffer_delay(bh); 1943 break; 1944 case IOMAP_UNWRITTEN: 1945 /* 1946 * For unwritten regions, we always need to ensure that regions 1947 * in the block we are not writing to are zeroed. Mark the 1948 * buffer as new to ensure this. 1949 */ 1950 set_buffer_new(bh); 1951 set_buffer_unwritten(bh); 1952 /* FALLTHRU */ 1953 case IOMAP_MAPPED: 1954 if ((iomap->flags & IOMAP_F_NEW) || 1955 offset >= i_size_read(inode)) 1956 set_buffer_new(bh); 1957 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1958 inode->i_blkbits; 1959 set_buffer_mapped(bh); 1960 break; 1961 } 1962 } 1963 1964 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1965 get_block_t *get_block, struct iomap *iomap) 1966 { 1967 unsigned from = pos & (PAGE_SIZE - 1); 1968 unsigned to = from + len; 1969 struct inode *inode = page->mapping->host; 1970 unsigned block_start, block_end; 1971 sector_t block; 1972 int err = 0; 1973 unsigned blocksize, bbits; 1974 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1975 1976 BUG_ON(!PageLocked(page)); 1977 BUG_ON(from > PAGE_SIZE); 1978 BUG_ON(to > PAGE_SIZE); 1979 BUG_ON(from > to); 1980 1981 head = create_page_buffers(page, inode, 0); 1982 blocksize = head->b_size; 1983 bbits = block_size_bits(blocksize); 1984 1985 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1986 1987 for(bh = head, block_start = 0; bh != head || !block_start; 1988 block++, block_start=block_end, bh = bh->b_this_page) { 1989 block_end = block_start + blocksize; 1990 if (block_end <= from || block_start >= to) { 1991 if (PageUptodate(page)) { 1992 if (!buffer_uptodate(bh)) 1993 set_buffer_uptodate(bh); 1994 } 1995 continue; 1996 } 1997 if (buffer_new(bh)) 1998 clear_buffer_new(bh); 1999 if (!buffer_mapped(bh)) { 2000 WARN_ON(bh->b_size != blocksize); 2001 if (get_block) { 2002 err = get_block(inode, block, bh, 1); 2003 if (err) 2004 break; 2005 } else { 2006 iomap_to_bh(inode, block, bh, iomap); 2007 } 2008 2009 if (buffer_new(bh)) { 2010 clean_bdev_bh_alias(bh); 2011 if (PageUptodate(page)) { 2012 clear_buffer_new(bh); 2013 set_buffer_uptodate(bh); 2014 mark_buffer_dirty(bh); 2015 continue; 2016 } 2017 if (block_end > to || block_start < from) 2018 zero_user_segments(page, 2019 to, block_end, 2020 block_start, from); 2021 continue; 2022 } 2023 } 2024 if (PageUptodate(page)) { 2025 if (!buffer_uptodate(bh)) 2026 set_buffer_uptodate(bh); 2027 continue; 2028 } 2029 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2030 !buffer_unwritten(bh) && 2031 (block_start < from || block_end > to)) { 2032 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2033 *wait_bh++=bh; 2034 } 2035 } 2036 /* 2037 * If we issued read requests - let them complete. 2038 */ 2039 while(wait_bh > wait) { 2040 wait_on_buffer(*--wait_bh); 2041 if (!buffer_uptodate(*wait_bh)) 2042 err = -EIO; 2043 } 2044 if (unlikely(err)) 2045 page_zero_new_buffers(page, from, to); 2046 return err; 2047 } 2048 2049 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2050 get_block_t *get_block) 2051 { 2052 return __block_write_begin_int(page, pos, len, get_block, NULL); 2053 } 2054 EXPORT_SYMBOL(__block_write_begin); 2055 2056 static int __block_commit_write(struct inode *inode, struct page *page, 2057 unsigned from, unsigned to) 2058 { 2059 unsigned block_start, block_end; 2060 int partial = 0; 2061 unsigned blocksize; 2062 struct buffer_head *bh, *head; 2063 2064 bh = head = page_buffers(page); 2065 blocksize = bh->b_size; 2066 2067 block_start = 0; 2068 do { 2069 block_end = block_start + blocksize; 2070 if (block_end <= from || block_start >= to) { 2071 if (!buffer_uptodate(bh)) 2072 partial = 1; 2073 } else { 2074 set_buffer_uptodate(bh); 2075 mark_buffer_dirty(bh); 2076 } 2077 clear_buffer_new(bh); 2078 2079 block_start = block_end; 2080 bh = bh->b_this_page; 2081 } while (bh != head); 2082 2083 /* 2084 * If this is a partial write which happened to make all buffers 2085 * uptodate then we can optimize away a bogus readpage() for 2086 * the next read(). Here we 'discover' whether the page went 2087 * uptodate as a result of this (potentially partial) write. 2088 */ 2089 if (!partial) 2090 SetPageUptodate(page); 2091 return 0; 2092 } 2093 2094 /* 2095 * block_write_begin takes care of the basic task of block allocation and 2096 * bringing partial write blocks uptodate first. 2097 * 2098 * The filesystem needs to handle block truncation upon failure. 2099 */ 2100 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2101 unsigned flags, struct page **pagep, get_block_t *get_block) 2102 { 2103 pgoff_t index = pos >> PAGE_SHIFT; 2104 struct page *page; 2105 int status; 2106 2107 page = grab_cache_page_write_begin(mapping, index, flags); 2108 if (!page) 2109 return -ENOMEM; 2110 2111 status = __block_write_begin(page, pos, len, get_block); 2112 if (unlikely(status)) { 2113 unlock_page(page); 2114 put_page(page); 2115 page = NULL; 2116 } 2117 2118 *pagep = page; 2119 return status; 2120 } 2121 EXPORT_SYMBOL(block_write_begin); 2122 2123 int block_write_end(struct file *file, struct address_space *mapping, 2124 loff_t pos, unsigned len, unsigned copied, 2125 struct page *page, void *fsdata) 2126 { 2127 struct inode *inode = mapping->host; 2128 unsigned start; 2129 2130 start = pos & (PAGE_SIZE - 1); 2131 2132 if (unlikely(copied < len)) { 2133 /* 2134 * The buffers that were written will now be uptodate, so we 2135 * don't have to worry about a readpage reading them and 2136 * overwriting a partial write. However if we have encountered 2137 * a short write and only partially written into a buffer, it 2138 * will not be marked uptodate, so a readpage might come in and 2139 * destroy our partial write. 2140 * 2141 * Do the simplest thing, and just treat any short write to a 2142 * non uptodate page as a zero-length write, and force the 2143 * caller to redo the whole thing. 2144 */ 2145 if (!PageUptodate(page)) 2146 copied = 0; 2147 2148 page_zero_new_buffers(page, start+copied, start+len); 2149 } 2150 flush_dcache_page(page); 2151 2152 /* This could be a short (even 0-length) commit */ 2153 __block_commit_write(inode, page, start, start+copied); 2154 2155 return copied; 2156 } 2157 EXPORT_SYMBOL(block_write_end); 2158 2159 int generic_write_end(struct file *file, struct address_space *mapping, 2160 loff_t pos, unsigned len, unsigned copied, 2161 struct page *page, void *fsdata) 2162 { 2163 struct inode *inode = mapping->host; 2164 loff_t old_size = inode->i_size; 2165 bool i_size_changed = false; 2166 2167 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2168 2169 /* 2170 * No need to use i_size_read() here, the i_size cannot change under us 2171 * because we hold i_rwsem. 2172 * 2173 * But it's important to update i_size while still holding page lock: 2174 * page writeout could otherwise come in and zero beyond i_size. 2175 */ 2176 if (pos + copied > inode->i_size) { 2177 i_size_write(inode, pos + copied); 2178 i_size_changed = true; 2179 } 2180 2181 unlock_page(page); 2182 put_page(page); 2183 2184 if (old_size < pos) 2185 pagecache_isize_extended(inode, old_size, pos); 2186 /* 2187 * Don't mark the inode dirty under page lock. First, it unnecessarily 2188 * makes the holding time of page lock longer. Second, it forces lock 2189 * ordering of page lock and transaction start for journaling 2190 * filesystems. 2191 */ 2192 if (i_size_changed) 2193 mark_inode_dirty(inode); 2194 return copied; 2195 } 2196 EXPORT_SYMBOL(generic_write_end); 2197 2198 /* 2199 * block_is_partially_uptodate checks whether buffers within a page are 2200 * uptodate or not. 2201 * 2202 * Returns true if all buffers which correspond to a file portion 2203 * we want to read are uptodate. 2204 */ 2205 int block_is_partially_uptodate(struct page *page, unsigned long from, 2206 unsigned long count) 2207 { 2208 unsigned block_start, block_end, blocksize; 2209 unsigned to; 2210 struct buffer_head *bh, *head; 2211 int ret = 1; 2212 2213 if (!page_has_buffers(page)) 2214 return 0; 2215 2216 head = page_buffers(page); 2217 blocksize = head->b_size; 2218 to = min_t(unsigned, PAGE_SIZE - from, count); 2219 to = from + to; 2220 if (from < blocksize && to > PAGE_SIZE - blocksize) 2221 return 0; 2222 2223 bh = head; 2224 block_start = 0; 2225 do { 2226 block_end = block_start + blocksize; 2227 if (block_end > from && block_start < to) { 2228 if (!buffer_uptodate(bh)) { 2229 ret = 0; 2230 break; 2231 } 2232 if (block_end >= to) 2233 break; 2234 } 2235 block_start = block_end; 2236 bh = bh->b_this_page; 2237 } while (bh != head); 2238 2239 return ret; 2240 } 2241 EXPORT_SYMBOL(block_is_partially_uptodate); 2242 2243 /* 2244 * Generic "read page" function for block devices that have the normal 2245 * get_block functionality. This is most of the block device filesystems. 2246 * Reads the page asynchronously --- the unlock_buffer() and 2247 * set/clear_buffer_uptodate() functions propagate buffer state into the 2248 * page struct once IO has completed. 2249 */ 2250 int block_read_full_page(struct page *page, get_block_t *get_block) 2251 { 2252 struct inode *inode = page->mapping->host; 2253 sector_t iblock, lblock; 2254 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2255 unsigned int blocksize, bbits; 2256 int nr, i; 2257 int fully_mapped = 1; 2258 2259 head = create_page_buffers(page, inode, 0); 2260 blocksize = head->b_size; 2261 bbits = block_size_bits(blocksize); 2262 2263 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2264 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2265 bh = head; 2266 nr = 0; 2267 i = 0; 2268 2269 do { 2270 if (buffer_uptodate(bh)) 2271 continue; 2272 2273 if (!buffer_mapped(bh)) { 2274 int err = 0; 2275 2276 fully_mapped = 0; 2277 if (iblock < lblock) { 2278 WARN_ON(bh->b_size != blocksize); 2279 err = get_block(inode, iblock, bh, 0); 2280 if (err) 2281 SetPageError(page); 2282 } 2283 if (!buffer_mapped(bh)) { 2284 zero_user(page, i * blocksize, blocksize); 2285 if (!err) 2286 set_buffer_uptodate(bh); 2287 continue; 2288 } 2289 /* 2290 * get_block() might have updated the buffer 2291 * synchronously 2292 */ 2293 if (buffer_uptodate(bh)) 2294 continue; 2295 } 2296 arr[nr++] = bh; 2297 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2298 2299 if (fully_mapped) 2300 SetPageMappedToDisk(page); 2301 2302 if (!nr) { 2303 /* 2304 * All buffers are uptodate - we can set the page uptodate 2305 * as well. But not if get_block() returned an error. 2306 */ 2307 if (!PageError(page)) 2308 SetPageUptodate(page); 2309 unlock_page(page); 2310 return 0; 2311 } 2312 2313 /* Stage two: lock the buffers */ 2314 for (i = 0; i < nr; i++) { 2315 bh = arr[i]; 2316 lock_buffer(bh); 2317 mark_buffer_async_read(bh); 2318 } 2319 2320 /* 2321 * Stage 3: start the IO. Check for uptodateness 2322 * inside the buffer lock in case another process reading 2323 * the underlying blockdev brought it uptodate (the sct fix). 2324 */ 2325 for (i = 0; i < nr; i++) { 2326 bh = arr[i]; 2327 if (buffer_uptodate(bh)) 2328 end_buffer_async_read(bh, 1); 2329 else 2330 submit_bh(REQ_OP_READ, 0, bh); 2331 } 2332 return 0; 2333 } 2334 EXPORT_SYMBOL(block_read_full_page); 2335 2336 /* utility function for filesystems that need to do work on expanding 2337 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2338 * deal with the hole. 2339 */ 2340 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2341 { 2342 struct address_space *mapping = inode->i_mapping; 2343 struct page *page; 2344 void *fsdata; 2345 int err; 2346 2347 err = inode_newsize_ok(inode, size); 2348 if (err) 2349 goto out; 2350 2351 err = pagecache_write_begin(NULL, mapping, size, 0, 2352 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2353 if (err) 2354 goto out; 2355 2356 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2357 BUG_ON(err > 0); 2358 2359 out: 2360 return err; 2361 } 2362 EXPORT_SYMBOL(generic_cont_expand_simple); 2363 2364 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2365 loff_t pos, loff_t *bytes) 2366 { 2367 struct inode *inode = mapping->host; 2368 unsigned int blocksize = i_blocksize(inode); 2369 struct page *page; 2370 void *fsdata; 2371 pgoff_t index, curidx; 2372 loff_t curpos; 2373 unsigned zerofrom, offset, len; 2374 int err = 0; 2375 2376 index = pos >> PAGE_SHIFT; 2377 offset = pos & ~PAGE_MASK; 2378 2379 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2380 zerofrom = curpos & ~PAGE_MASK; 2381 if (zerofrom & (blocksize-1)) { 2382 *bytes |= (blocksize-1); 2383 (*bytes)++; 2384 } 2385 len = PAGE_SIZE - zerofrom; 2386 2387 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2388 &page, &fsdata); 2389 if (err) 2390 goto out; 2391 zero_user(page, zerofrom, len); 2392 err = pagecache_write_end(file, mapping, curpos, len, len, 2393 page, fsdata); 2394 if (err < 0) 2395 goto out; 2396 BUG_ON(err != len); 2397 err = 0; 2398 2399 balance_dirty_pages_ratelimited(mapping); 2400 2401 if (fatal_signal_pending(current)) { 2402 err = -EINTR; 2403 goto out; 2404 } 2405 } 2406 2407 /* page covers the boundary, find the boundary offset */ 2408 if (index == curidx) { 2409 zerofrom = curpos & ~PAGE_MASK; 2410 /* if we will expand the thing last block will be filled */ 2411 if (offset <= zerofrom) { 2412 goto out; 2413 } 2414 if (zerofrom & (blocksize-1)) { 2415 *bytes |= (blocksize-1); 2416 (*bytes)++; 2417 } 2418 len = offset - zerofrom; 2419 2420 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2421 &page, &fsdata); 2422 if (err) 2423 goto out; 2424 zero_user(page, zerofrom, len); 2425 err = pagecache_write_end(file, mapping, curpos, len, len, 2426 page, fsdata); 2427 if (err < 0) 2428 goto out; 2429 BUG_ON(err != len); 2430 err = 0; 2431 } 2432 out: 2433 return err; 2434 } 2435 2436 /* 2437 * For moronic filesystems that do not allow holes in file. 2438 * We may have to extend the file. 2439 */ 2440 int cont_write_begin(struct file *file, struct address_space *mapping, 2441 loff_t pos, unsigned len, unsigned flags, 2442 struct page **pagep, void **fsdata, 2443 get_block_t *get_block, loff_t *bytes) 2444 { 2445 struct inode *inode = mapping->host; 2446 unsigned int blocksize = i_blocksize(inode); 2447 unsigned int zerofrom; 2448 int err; 2449 2450 err = cont_expand_zero(file, mapping, pos, bytes); 2451 if (err) 2452 return err; 2453 2454 zerofrom = *bytes & ~PAGE_MASK; 2455 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2456 *bytes |= (blocksize-1); 2457 (*bytes)++; 2458 } 2459 2460 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2461 } 2462 EXPORT_SYMBOL(cont_write_begin); 2463 2464 int block_commit_write(struct page *page, unsigned from, unsigned to) 2465 { 2466 struct inode *inode = page->mapping->host; 2467 __block_commit_write(inode,page,from,to); 2468 return 0; 2469 } 2470 EXPORT_SYMBOL(block_commit_write); 2471 2472 /* 2473 * block_page_mkwrite() is not allowed to change the file size as it gets 2474 * called from a page fault handler when a page is first dirtied. Hence we must 2475 * be careful to check for EOF conditions here. We set the page up correctly 2476 * for a written page which means we get ENOSPC checking when writing into 2477 * holes and correct delalloc and unwritten extent mapping on filesystems that 2478 * support these features. 2479 * 2480 * We are not allowed to take the i_mutex here so we have to play games to 2481 * protect against truncate races as the page could now be beyond EOF. Because 2482 * truncate writes the inode size before removing pages, once we have the 2483 * page lock we can determine safely if the page is beyond EOF. If it is not 2484 * beyond EOF, then the page is guaranteed safe against truncation until we 2485 * unlock the page. 2486 * 2487 * Direct callers of this function should protect against filesystem freezing 2488 * using sb_start_pagefault() - sb_end_pagefault() functions. 2489 */ 2490 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2491 get_block_t get_block) 2492 { 2493 struct page *page = vmf->page; 2494 struct inode *inode = file_inode(vma->vm_file); 2495 unsigned long end; 2496 loff_t size; 2497 int ret; 2498 2499 lock_page(page); 2500 size = i_size_read(inode); 2501 if ((page->mapping != inode->i_mapping) || 2502 (page_offset(page) > size)) { 2503 /* We overload EFAULT to mean page got truncated */ 2504 ret = -EFAULT; 2505 goto out_unlock; 2506 } 2507 2508 /* page is wholly or partially inside EOF */ 2509 if (((page->index + 1) << PAGE_SHIFT) > size) 2510 end = size & ~PAGE_MASK; 2511 else 2512 end = PAGE_SIZE; 2513 2514 ret = __block_write_begin(page, 0, end, get_block); 2515 if (!ret) 2516 ret = block_commit_write(page, 0, end); 2517 2518 if (unlikely(ret < 0)) 2519 goto out_unlock; 2520 set_page_dirty(page); 2521 wait_for_stable_page(page); 2522 return 0; 2523 out_unlock: 2524 unlock_page(page); 2525 return ret; 2526 } 2527 EXPORT_SYMBOL(block_page_mkwrite); 2528 2529 /* 2530 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2531 * immediately, while under the page lock. So it needs a special end_io 2532 * handler which does not touch the bh after unlocking it. 2533 */ 2534 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2535 { 2536 __end_buffer_read_notouch(bh, uptodate); 2537 } 2538 2539 /* 2540 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2541 * the page (converting it to circular linked list and taking care of page 2542 * dirty races). 2543 */ 2544 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2545 { 2546 struct buffer_head *bh; 2547 2548 BUG_ON(!PageLocked(page)); 2549 2550 spin_lock(&page->mapping->private_lock); 2551 bh = head; 2552 do { 2553 if (PageDirty(page)) 2554 set_buffer_dirty(bh); 2555 if (!bh->b_this_page) 2556 bh->b_this_page = head; 2557 bh = bh->b_this_page; 2558 } while (bh != head); 2559 attach_page_buffers(page, head); 2560 spin_unlock(&page->mapping->private_lock); 2561 } 2562 2563 /* 2564 * On entry, the page is fully not uptodate. 2565 * On exit the page is fully uptodate in the areas outside (from,to) 2566 * The filesystem needs to handle block truncation upon failure. 2567 */ 2568 int nobh_write_begin(struct address_space *mapping, 2569 loff_t pos, unsigned len, unsigned flags, 2570 struct page **pagep, void **fsdata, 2571 get_block_t *get_block) 2572 { 2573 struct inode *inode = mapping->host; 2574 const unsigned blkbits = inode->i_blkbits; 2575 const unsigned blocksize = 1 << blkbits; 2576 struct buffer_head *head, *bh; 2577 struct page *page; 2578 pgoff_t index; 2579 unsigned from, to; 2580 unsigned block_in_page; 2581 unsigned block_start, block_end; 2582 sector_t block_in_file; 2583 int nr_reads = 0; 2584 int ret = 0; 2585 int is_mapped_to_disk = 1; 2586 2587 index = pos >> PAGE_SHIFT; 2588 from = pos & (PAGE_SIZE - 1); 2589 to = from + len; 2590 2591 page = grab_cache_page_write_begin(mapping, index, flags); 2592 if (!page) 2593 return -ENOMEM; 2594 *pagep = page; 2595 *fsdata = NULL; 2596 2597 if (page_has_buffers(page)) { 2598 ret = __block_write_begin(page, pos, len, get_block); 2599 if (unlikely(ret)) 2600 goto out_release; 2601 return ret; 2602 } 2603 2604 if (PageMappedToDisk(page)) 2605 return 0; 2606 2607 /* 2608 * Allocate buffers so that we can keep track of state, and potentially 2609 * attach them to the page if an error occurs. In the common case of 2610 * no error, they will just be freed again without ever being attached 2611 * to the page (which is all OK, because we're under the page lock). 2612 * 2613 * Be careful: the buffer linked list is a NULL terminated one, rather 2614 * than the circular one we're used to. 2615 */ 2616 head = alloc_page_buffers(page, blocksize, false); 2617 if (!head) { 2618 ret = -ENOMEM; 2619 goto out_release; 2620 } 2621 2622 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2623 2624 /* 2625 * We loop across all blocks in the page, whether or not they are 2626 * part of the affected region. This is so we can discover if the 2627 * page is fully mapped-to-disk. 2628 */ 2629 for (block_start = 0, block_in_page = 0, bh = head; 2630 block_start < PAGE_SIZE; 2631 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2632 int create; 2633 2634 block_end = block_start + blocksize; 2635 bh->b_state = 0; 2636 create = 1; 2637 if (block_start >= to) 2638 create = 0; 2639 ret = get_block(inode, block_in_file + block_in_page, 2640 bh, create); 2641 if (ret) 2642 goto failed; 2643 if (!buffer_mapped(bh)) 2644 is_mapped_to_disk = 0; 2645 if (buffer_new(bh)) 2646 clean_bdev_bh_alias(bh); 2647 if (PageUptodate(page)) { 2648 set_buffer_uptodate(bh); 2649 continue; 2650 } 2651 if (buffer_new(bh) || !buffer_mapped(bh)) { 2652 zero_user_segments(page, block_start, from, 2653 to, block_end); 2654 continue; 2655 } 2656 if (buffer_uptodate(bh)) 2657 continue; /* reiserfs does this */ 2658 if (block_start < from || block_end > to) { 2659 lock_buffer(bh); 2660 bh->b_end_io = end_buffer_read_nobh; 2661 submit_bh(REQ_OP_READ, 0, bh); 2662 nr_reads++; 2663 } 2664 } 2665 2666 if (nr_reads) { 2667 /* 2668 * The page is locked, so these buffers are protected from 2669 * any VM or truncate activity. Hence we don't need to care 2670 * for the buffer_head refcounts. 2671 */ 2672 for (bh = head; bh; bh = bh->b_this_page) { 2673 wait_on_buffer(bh); 2674 if (!buffer_uptodate(bh)) 2675 ret = -EIO; 2676 } 2677 if (ret) 2678 goto failed; 2679 } 2680 2681 if (is_mapped_to_disk) 2682 SetPageMappedToDisk(page); 2683 2684 *fsdata = head; /* to be released by nobh_write_end */ 2685 2686 return 0; 2687 2688 failed: 2689 BUG_ON(!ret); 2690 /* 2691 * Error recovery is a bit difficult. We need to zero out blocks that 2692 * were newly allocated, and dirty them to ensure they get written out. 2693 * Buffers need to be attached to the page at this point, otherwise 2694 * the handling of potential IO errors during writeout would be hard 2695 * (could try doing synchronous writeout, but what if that fails too?) 2696 */ 2697 attach_nobh_buffers(page, head); 2698 page_zero_new_buffers(page, from, to); 2699 2700 out_release: 2701 unlock_page(page); 2702 put_page(page); 2703 *pagep = NULL; 2704 2705 return ret; 2706 } 2707 EXPORT_SYMBOL(nobh_write_begin); 2708 2709 int nobh_write_end(struct file *file, struct address_space *mapping, 2710 loff_t pos, unsigned len, unsigned copied, 2711 struct page *page, void *fsdata) 2712 { 2713 struct inode *inode = page->mapping->host; 2714 struct buffer_head *head = fsdata; 2715 struct buffer_head *bh; 2716 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2717 2718 if (unlikely(copied < len) && head) 2719 attach_nobh_buffers(page, head); 2720 if (page_has_buffers(page)) 2721 return generic_write_end(file, mapping, pos, len, 2722 copied, page, fsdata); 2723 2724 SetPageUptodate(page); 2725 set_page_dirty(page); 2726 if (pos+copied > inode->i_size) { 2727 i_size_write(inode, pos+copied); 2728 mark_inode_dirty(inode); 2729 } 2730 2731 unlock_page(page); 2732 put_page(page); 2733 2734 while (head) { 2735 bh = head; 2736 head = head->b_this_page; 2737 free_buffer_head(bh); 2738 } 2739 2740 return copied; 2741 } 2742 EXPORT_SYMBOL(nobh_write_end); 2743 2744 /* 2745 * nobh_writepage() - based on block_full_write_page() except 2746 * that it tries to operate without attaching bufferheads to 2747 * the page. 2748 */ 2749 int nobh_writepage(struct page *page, get_block_t *get_block, 2750 struct writeback_control *wbc) 2751 { 2752 struct inode * const inode = page->mapping->host; 2753 loff_t i_size = i_size_read(inode); 2754 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2755 unsigned offset; 2756 int ret; 2757 2758 /* Is the page fully inside i_size? */ 2759 if (page->index < end_index) 2760 goto out; 2761 2762 /* Is the page fully outside i_size? (truncate in progress) */ 2763 offset = i_size & (PAGE_SIZE-1); 2764 if (page->index >= end_index+1 || !offset) { 2765 /* 2766 * The page may have dirty, unmapped buffers. For example, 2767 * they may have been added in ext3_writepage(). Make them 2768 * freeable here, so the page does not leak. 2769 */ 2770 #if 0 2771 /* Not really sure about this - do we need this ? */ 2772 if (page->mapping->a_ops->invalidatepage) 2773 page->mapping->a_ops->invalidatepage(page, offset); 2774 #endif 2775 unlock_page(page); 2776 return 0; /* don't care */ 2777 } 2778 2779 /* 2780 * The page straddles i_size. It must be zeroed out on each and every 2781 * writepage invocation because it may be mmapped. "A file is mapped 2782 * in multiples of the page size. For a file that is not a multiple of 2783 * the page size, the remaining memory is zeroed when mapped, and 2784 * writes to that region are not written out to the file." 2785 */ 2786 zero_user_segment(page, offset, PAGE_SIZE); 2787 out: 2788 ret = mpage_writepage(page, get_block, wbc); 2789 if (ret == -EAGAIN) 2790 ret = __block_write_full_page(inode, page, get_block, wbc, 2791 end_buffer_async_write); 2792 return ret; 2793 } 2794 EXPORT_SYMBOL(nobh_writepage); 2795 2796 int nobh_truncate_page(struct address_space *mapping, 2797 loff_t from, get_block_t *get_block) 2798 { 2799 pgoff_t index = from >> PAGE_SHIFT; 2800 unsigned offset = from & (PAGE_SIZE-1); 2801 unsigned blocksize; 2802 sector_t iblock; 2803 unsigned length, pos; 2804 struct inode *inode = mapping->host; 2805 struct page *page; 2806 struct buffer_head map_bh; 2807 int err; 2808 2809 blocksize = i_blocksize(inode); 2810 length = offset & (blocksize - 1); 2811 2812 /* Block boundary? Nothing to do */ 2813 if (!length) 2814 return 0; 2815 2816 length = blocksize - length; 2817 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2818 2819 page = grab_cache_page(mapping, index); 2820 err = -ENOMEM; 2821 if (!page) 2822 goto out; 2823 2824 if (page_has_buffers(page)) { 2825 has_buffers: 2826 unlock_page(page); 2827 put_page(page); 2828 return block_truncate_page(mapping, from, get_block); 2829 } 2830 2831 /* Find the buffer that contains "offset" */ 2832 pos = blocksize; 2833 while (offset >= pos) { 2834 iblock++; 2835 pos += blocksize; 2836 } 2837 2838 map_bh.b_size = blocksize; 2839 map_bh.b_state = 0; 2840 err = get_block(inode, iblock, &map_bh, 0); 2841 if (err) 2842 goto unlock; 2843 /* unmapped? It's a hole - nothing to do */ 2844 if (!buffer_mapped(&map_bh)) 2845 goto unlock; 2846 2847 /* Ok, it's mapped. Make sure it's up-to-date */ 2848 if (!PageUptodate(page)) { 2849 err = mapping->a_ops->readpage(NULL, page); 2850 if (err) { 2851 put_page(page); 2852 goto out; 2853 } 2854 lock_page(page); 2855 if (!PageUptodate(page)) { 2856 err = -EIO; 2857 goto unlock; 2858 } 2859 if (page_has_buffers(page)) 2860 goto has_buffers; 2861 } 2862 zero_user(page, offset, length); 2863 set_page_dirty(page); 2864 err = 0; 2865 2866 unlock: 2867 unlock_page(page); 2868 put_page(page); 2869 out: 2870 return err; 2871 } 2872 EXPORT_SYMBOL(nobh_truncate_page); 2873 2874 int block_truncate_page(struct address_space *mapping, 2875 loff_t from, get_block_t *get_block) 2876 { 2877 pgoff_t index = from >> PAGE_SHIFT; 2878 unsigned offset = from & (PAGE_SIZE-1); 2879 unsigned blocksize; 2880 sector_t iblock; 2881 unsigned length, pos; 2882 struct inode *inode = mapping->host; 2883 struct page *page; 2884 struct buffer_head *bh; 2885 int err; 2886 2887 blocksize = i_blocksize(inode); 2888 length = offset & (blocksize - 1); 2889 2890 /* Block boundary? Nothing to do */ 2891 if (!length) 2892 return 0; 2893 2894 length = blocksize - length; 2895 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2896 2897 page = grab_cache_page(mapping, index); 2898 err = -ENOMEM; 2899 if (!page) 2900 goto out; 2901 2902 if (!page_has_buffers(page)) 2903 create_empty_buffers(page, blocksize, 0); 2904 2905 /* Find the buffer that contains "offset" */ 2906 bh = page_buffers(page); 2907 pos = blocksize; 2908 while (offset >= pos) { 2909 bh = bh->b_this_page; 2910 iblock++; 2911 pos += blocksize; 2912 } 2913 2914 err = 0; 2915 if (!buffer_mapped(bh)) { 2916 WARN_ON(bh->b_size != blocksize); 2917 err = get_block(inode, iblock, bh, 0); 2918 if (err) 2919 goto unlock; 2920 /* unmapped? It's a hole - nothing to do */ 2921 if (!buffer_mapped(bh)) 2922 goto unlock; 2923 } 2924 2925 /* Ok, it's mapped. Make sure it's up-to-date */ 2926 if (PageUptodate(page)) 2927 set_buffer_uptodate(bh); 2928 2929 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2930 err = -EIO; 2931 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2932 wait_on_buffer(bh); 2933 /* Uhhuh. Read error. Complain and punt. */ 2934 if (!buffer_uptodate(bh)) 2935 goto unlock; 2936 } 2937 2938 zero_user(page, offset, length); 2939 mark_buffer_dirty(bh); 2940 err = 0; 2941 2942 unlock: 2943 unlock_page(page); 2944 put_page(page); 2945 out: 2946 return err; 2947 } 2948 EXPORT_SYMBOL(block_truncate_page); 2949 2950 /* 2951 * The generic ->writepage function for buffer-backed address_spaces 2952 */ 2953 int block_write_full_page(struct page *page, get_block_t *get_block, 2954 struct writeback_control *wbc) 2955 { 2956 struct inode * const inode = page->mapping->host; 2957 loff_t i_size = i_size_read(inode); 2958 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2959 unsigned offset; 2960 2961 /* Is the page fully inside i_size? */ 2962 if (page->index < end_index) 2963 return __block_write_full_page(inode, page, get_block, wbc, 2964 end_buffer_async_write); 2965 2966 /* Is the page fully outside i_size? (truncate in progress) */ 2967 offset = i_size & (PAGE_SIZE-1); 2968 if (page->index >= end_index+1 || !offset) { 2969 /* 2970 * The page may have dirty, unmapped buffers. For example, 2971 * they may have been added in ext3_writepage(). Make them 2972 * freeable here, so the page does not leak. 2973 */ 2974 do_invalidatepage(page, 0, PAGE_SIZE); 2975 unlock_page(page); 2976 return 0; /* don't care */ 2977 } 2978 2979 /* 2980 * The page straddles i_size. It must be zeroed out on each and every 2981 * writepage invocation because it may be mmapped. "A file is mapped 2982 * in multiples of the page size. For a file that is not a multiple of 2983 * the page size, the remaining memory is zeroed when mapped, and 2984 * writes to that region are not written out to the file." 2985 */ 2986 zero_user_segment(page, offset, PAGE_SIZE); 2987 return __block_write_full_page(inode, page, get_block, wbc, 2988 end_buffer_async_write); 2989 } 2990 EXPORT_SYMBOL(block_write_full_page); 2991 2992 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2993 get_block_t *get_block) 2994 { 2995 struct inode *inode = mapping->host; 2996 struct buffer_head tmp = { 2997 .b_size = i_blocksize(inode), 2998 }; 2999 3000 get_block(inode, block, &tmp, 0); 3001 return tmp.b_blocknr; 3002 } 3003 EXPORT_SYMBOL(generic_block_bmap); 3004 3005 static void end_bio_bh_io_sync(struct bio *bio) 3006 { 3007 struct buffer_head *bh = bio->bi_private; 3008 3009 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3010 set_bit(BH_Quiet, &bh->b_state); 3011 3012 bh->b_end_io(bh, !bio->bi_status); 3013 bio_put(bio); 3014 } 3015 3016 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3017 enum rw_hint write_hint, struct writeback_control *wbc) 3018 { 3019 struct bio *bio; 3020 3021 BUG_ON(!buffer_locked(bh)); 3022 BUG_ON(!buffer_mapped(bh)); 3023 BUG_ON(!bh->b_end_io); 3024 BUG_ON(buffer_delay(bh)); 3025 BUG_ON(buffer_unwritten(bh)); 3026 3027 /* 3028 * Only clear out a write error when rewriting 3029 */ 3030 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3031 clear_buffer_write_io_error(bh); 3032 3033 /* 3034 * from here on down, it's all bio -- do the initial mapping, 3035 * submit_bio -> generic_make_request may further map this bio around 3036 */ 3037 bio = bio_alloc(GFP_NOIO, 1); 3038 3039 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3040 bio_set_dev(bio, bh->b_bdev); 3041 bio->bi_write_hint = write_hint; 3042 3043 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3044 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3045 3046 bio->bi_end_io = end_bio_bh_io_sync; 3047 bio->bi_private = bh; 3048 3049 if (buffer_meta(bh)) 3050 op_flags |= REQ_META; 3051 if (buffer_prio(bh)) 3052 op_flags |= REQ_PRIO; 3053 bio_set_op_attrs(bio, op, op_flags); 3054 3055 /* Take care of bh's that straddle the end of the device */ 3056 guard_bio_eod(bio); 3057 3058 if (wbc) { 3059 wbc_init_bio(wbc, bio); 3060 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 3061 } 3062 3063 submit_bio(bio); 3064 return 0; 3065 } 3066 3067 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3068 { 3069 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3070 } 3071 EXPORT_SYMBOL(submit_bh); 3072 3073 /** 3074 * ll_rw_block: low-level access to block devices (DEPRECATED) 3075 * @op: whether to %READ or %WRITE 3076 * @op_flags: req_flag_bits 3077 * @nr: number of &struct buffer_heads in the array 3078 * @bhs: array of pointers to &struct buffer_head 3079 * 3080 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3081 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3082 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3083 * %REQ_RAHEAD. 3084 * 3085 * This function drops any buffer that it cannot get a lock on (with the 3086 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3087 * request, and any buffer that appears to be up-to-date when doing read 3088 * request. Further it marks as clean buffers that are processed for 3089 * writing (the buffer cache won't assume that they are actually clean 3090 * until the buffer gets unlocked). 3091 * 3092 * ll_rw_block sets b_end_io to simple completion handler that marks 3093 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3094 * any waiters. 3095 * 3096 * All of the buffers must be for the same device, and must also be a 3097 * multiple of the current approved size for the device. 3098 */ 3099 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3100 { 3101 int i; 3102 3103 for (i = 0; i < nr; i++) { 3104 struct buffer_head *bh = bhs[i]; 3105 3106 if (!trylock_buffer(bh)) 3107 continue; 3108 if (op == WRITE) { 3109 if (test_clear_buffer_dirty(bh)) { 3110 bh->b_end_io = end_buffer_write_sync; 3111 get_bh(bh); 3112 submit_bh(op, op_flags, bh); 3113 continue; 3114 } 3115 } else { 3116 if (!buffer_uptodate(bh)) { 3117 bh->b_end_io = end_buffer_read_sync; 3118 get_bh(bh); 3119 submit_bh(op, op_flags, bh); 3120 continue; 3121 } 3122 } 3123 unlock_buffer(bh); 3124 } 3125 } 3126 EXPORT_SYMBOL(ll_rw_block); 3127 3128 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3129 { 3130 lock_buffer(bh); 3131 if (!test_clear_buffer_dirty(bh)) { 3132 unlock_buffer(bh); 3133 return; 3134 } 3135 bh->b_end_io = end_buffer_write_sync; 3136 get_bh(bh); 3137 submit_bh(REQ_OP_WRITE, op_flags, bh); 3138 } 3139 EXPORT_SYMBOL(write_dirty_buffer); 3140 3141 /* 3142 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3143 * and then start new I/O and then wait upon it. The caller must have a ref on 3144 * the buffer_head. 3145 */ 3146 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3147 { 3148 int ret = 0; 3149 3150 WARN_ON(atomic_read(&bh->b_count) < 1); 3151 lock_buffer(bh); 3152 if (test_clear_buffer_dirty(bh)) { 3153 get_bh(bh); 3154 bh->b_end_io = end_buffer_write_sync; 3155 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3156 wait_on_buffer(bh); 3157 if (!ret && !buffer_uptodate(bh)) 3158 ret = -EIO; 3159 } else { 3160 unlock_buffer(bh); 3161 } 3162 return ret; 3163 } 3164 EXPORT_SYMBOL(__sync_dirty_buffer); 3165 3166 int sync_dirty_buffer(struct buffer_head *bh) 3167 { 3168 return __sync_dirty_buffer(bh, REQ_SYNC); 3169 } 3170 EXPORT_SYMBOL(sync_dirty_buffer); 3171 3172 /* 3173 * try_to_free_buffers() checks if all the buffers on this particular page 3174 * are unused, and releases them if so. 3175 * 3176 * Exclusion against try_to_free_buffers may be obtained by either 3177 * locking the page or by holding its mapping's private_lock. 3178 * 3179 * If the page is dirty but all the buffers are clean then we need to 3180 * be sure to mark the page clean as well. This is because the page 3181 * may be against a block device, and a later reattachment of buffers 3182 * to a dirty page will set *all* buffers dirty. Which would corrupt 3183 * filesystem data on the same device. 3184 * 3185 * The same applies to regular filesystem pages: if all the buffers are 3186 * clean then we set the page clean and proceed. To do that, we require 3187 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3188 * private_lock. 3189 * 3190 * try_to_free_buffers() is non-blocking. 3191 */ 3192 static inline int buffer_busy(struct buffer_head *bh) 3193 { 3194 return atomic_read(&bh->b_count) | 3195 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3196 } 3197 3198 static int 3199 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3200 { 3201 struct buffer_head *head = page_buffers(page); 3202 struct buffer_head *bh; 3203 3204 bh = head; 3205 do { 3206 if (buffer_busy(bh)) 3207 goto failed; 3208 bh = bh->b_this_page; 3209 } while (bh != head); 3210 3211 do { 3212 struct buffer_head *next = bh->b_this_page; 3213 3214 if (bh->b_assoc_map) 3215 __remove_assoc_queue(bh); 3216 bh = next; 3217 } while (bh != head); 3218 *buffers_to_free = head; 3219 __clear_page_buffers(page); 3220 return 1; 3221 failed: 3222 return 0; 3223 } 3224 3225 int try_to_free_buffers(struct page *page) 3226 { 3227 struct address_space * const mapping = page->mapping; 3228 struct buffer_head *buffers_to_free = NULL; 3229 int ret = 0; 3230 3231 BUG_ON(!PageLocked(page)); 3232 if (PageWriteback(page)) 3233 return 0; 3234 3235 if (mapping == NULL) { /* can this still happen? */ 3236 ret = drop_buffers(page, &buffers_to_free); 3237 goto out; 3238 } 3239 3240 spin_lock(&mapping->private_lock); 3241 ret = drop_buffers(page, &buffers_to_free); 3242 3243 /* 3244 * If the filesystem writes its buffers by hand (eg ext3) 3245 * then we can have clean buffers against a dirty page. We 3246 * clean the page here; otherwise the VM will never notice 3247 * that the filesystem did any IO at all. 3248 * 3249 * Also, during truncate, discard_buffer will have marked all 3250 * the page's buffers clean. We discover that here and clean 3251 * the page also. 3252 * 3253 * private_lock must be held over this entire operation in order 3254 * to synchronise against __set_page_dirty_buffers and prevent the 3255 * dirty bit from being lost. 3256 */ 3257 if (ret) 3258 cancel_dirty_page(page); 3259 spin_unlock(&mapping->private_lock); 3260 out: 3261 if (buffers_to_free) { 3262 struct buffer_head *bh = buffers_to_free; 3263 3264 do { 3265 struct buffer_head *next = bh->b_this_page; 3266 free_buffer_head(bh); 3267 bh = next; 3268 } while (bh != buffers_to_free); 3269 } 3270 return ret; 3271 } 3272 EXPORT_SYMBOL(try_to_free_buffers); 3273 3274 /* 3275 * There are no bdflush tunables left. But distributions are 3276 * still running obsolete flush daemons, so we terminate them here. 3277 * 3278 * Use of bdflush() is deprecated and will be removed in a future kernel. 3279 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3280 */ 3281 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3282 { 3283 static int msg_count; 3284 3285 if (!capable(CAP_SYS_ADMIN)) 3286 return -EPERM; 3287 3288 if (msg_count < 5) { 3289 msg_count++; 3290 printk(KERN_INFO 3291 "warning: process `%s' used the obsolete bdflush" 3292 " system call\n", current->comm); 3293 printk(KERN_INFO "Fix your initscripts?\n"); 3294 } 3295 3296 if (func == 1) 3297 do_exit(0); 3298 return 0; 3299 } 3300 3301 /* 3302 * Buffer-head allocation 3303 */ 3304 static struct kmem_cache *bh_cachep __read_mostly; 3305 3306 /* 3307 * Once the number of bh's in the machine exceeds this level, we start 3308 * stripping them in writeback. 3309 */ 3310 static unsigned long max_buffer_heads; 3311 3312 int buffer_heads_over_limit; 3313 3314 struct bh_accounting { 3315 int nr; /* Number of live bh's */ 3316 int ratelimit; /* Limit cacheline bouncing */ 3317 }; 3318 3319 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3320 3321 static void recalc_bh_state(void) 3322 { 3323 int i; 3324 int tot = 0; 3325 3326 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3327 return; 3328 __this_cpu_write(bh_accounting.ratelimit, 0); 3329 for_each_online_cpu(i) 3330 tot += per_cpu(bh_accounting, i).nr; 3331 buffer_heads_over_limit = (tot > max_buffer_heads); 3332 } 3333 3334 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3335 { 3336 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3337 if (ret) { 3338 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3339 spin_lock_init(&ret->b_uptodate_lock); 3340 preempt_disable(); 3341 __this_cpu_inc(bh_accounting.nr); 3342 recalc_bh_state(); 3343 preempt_enable(); 3344 } 3345 return ret; 3346 } 3347 EXPORT_SYMBOL(alloc_buffer_head); 3348 3349 void free_buffer_head(struct buffer_head *bh) 3350 { 3351 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3352 kmem_cache_free(bh_cachep, bh); 3353 preempt_disable(); 3354 __this_cpu_dec(bh_accounting.nr); 3355 recalc_bh_state(); 3356 preempt_enable(); 3357 } 3358 EXPORT_SYMBOL(free_buffer_head); 3359 3360 static int buffer_exit_cpu_dead(unsigned int cpu) 3361 { 3362 int i; 3363 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3364 3365 for (i = 0; i < BH_LRU_SIZE; i++) { 3366 brelse(b->bhs[i]); 3367 b->bhs[i] = NULL; 3368 } 3369 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3370 per_cpu(bh_accounting, cpu).nr = 0; 3371 return 0; 3372 } 3373 3374 /** 3375 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3376 * @bh: struct buffer_head 3377 * 3378 * Return true if the buffer is up-to-date and false, 3379 * with the buffer locked, if not. 3380 */ 3381 int bh_uptodate_or_lock(struct buffer_head *bh) 3382 { 3383 if (!buffer_uptodate(bh)) { 3384 lock_buffer(bh); 3385 if (!buffer_uptodate(bh)) 3386 return 0; 3387 unlock_buffer(bh); 3388 } 3389 return 1; 3390 } 3391 EXPORT_SYMBOL(bh_uptodate_or_lock); 3392 3393 /** 3394 * bh_submit_read - Submit a locked buffer for reading 3395 * @bh: struct buffer_head 3396 * 3397 * Returns zero on success and -EIO on error. 3398 */ 3399 int bh_submit_read(struct buffer_head *bh) 3400 { 3401 BUG_ON(!buffer_locked(bh)); 3402 3403 if (buffer_uptodate(bh)) { 3404 unlock_buffer(bh); 3405 return 0; 3406 } 3407 3408 get_bh(bh); 3409 bh->b_end_io = end_buffer_read_sync; 3410 submit_bh(REQ_OP_READ, 0, bh); 3411 wait_on_buffer(bh); 3412 if (buffer_uptodate(bh)) 3413 return 0; 3414 return -EIO; 3415 } 3416 EXPORT_SYMBOL(bh_submit_read); 3417 3418 void __init buffer_init(void) 3419 { 3420 unsigned long nrpages; 3421 int ret; 3422 3423 bh_cachep = kmem_cache_create("buffer_head", 3424 sizeof(struct buffer_head), 0, 3425 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3426 SLAB_MEM_SPREAD), 3427 NULL); 3428 3429 /* 3430 * Limit the bh occupancy to 10% of ZONE_NORMAL 3431 */ 3432 nrpages = (nr_free_buffer_pages() * 10) / 100; 3433 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3434 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3435 NULL, buffer_exit_cpu_dead); 3436 WARN_ON(ret < 0); 3437 } 3438