1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/iomap.h> 25 #include <linux/mm.h> 26 #include <linux/percpu.h> 27 #include <linux/slab.h> 28 #include <linux/capability.h> 29 #include <linux/blkdev.h> 30 #include <linux/file.h> 31 #include <linux/quotaops.h> 32 #include <linux/highmem.h> 33 #include <linux/export.h> 34 #include <linux/backing-dev.h> 35 #include <linux/writeback.h> 36 #include <linux/hash.h> 37 #include <linux/suspend.h> 38 #include <linux/buffer_head.h> 39 #include <linux/task_io_accounting_ops.h> 40 #include <linux/bio.h> 41 #include <linux/notifier.h> 42 #include <linux/cpu.h> 43 #include <linux/bitops.h> 44 #include <linux/mpage.h> 45 #include <linux/bit_spinlock.h> 46 #include <linux/pagevec.h> 47 #include <trace/events/block.h> 48 49 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 50 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 51 unsigned long bio_flags, 52 struct writeback_control *wbc); 53 54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 55 56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 57 { 58 bh->b_end_io = handler; 59 bh->b_private = private; 60 } 61 EXPORT_SYMBOL(init_buffer); 62 63 inline void touch_buffer(struct buffer_head *bh) 64 { 65 trace_block_touch_buffer(bh); 66 mark_page_accessed(bh->b_page); 67 } 68 EXPORT_SYMBOL(touch_buffer); 69 70 void __lock_buffer(struct buffer_head *bh) 71 { 72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 73 } 74 EXPORT_SYMBOL(__lock_buffer); 75 76 void unlock_buffer(struct buffer_head *bh) 77 { 78 clear_bit_unlock(BH_Lock, &bh->b_state); 79 smp_mb__after_atomic(); 80 wake_up_bit(&bh->b_state, BH_Lock); 81 } 82 EXPORT_SYMBOL(unlock_buffer); 83 84 /* 85 * Returns if the page has dirty or writeback buffers. If all the buffers 86 * are unlocked and clean then the PageDirty information is stale. If 87 * any of the pages are locked, it is assumed they are locked for IO. 88 */ 89 void buffer_check_dirty_writeback(struct page *page, 90 bool *dirty, bool *writeback) 91 { 92 struct buffer_head *head, *bh; 93 *dirty = false; 94 *writeback = false; 95 96 BUG_ON(!PageLocked(page)); 97 98 if (!page_has_buffers(page)) 99 return; 100 101 if (PageWriteback(page)) 102 *writeback = true; 103 104 head = page_buffers(page); 105 bh = head; 106 do { 107 if (buffer_locked(bh)) 108 *writeback = true; 109 110 if (buffer_dirty(bh)) 111 *dirty = true; 112 113 bh = bh->b_this_page; 114 } while (bh != head); 115 } 116 EXPORT_SYMBOL(buffer_check_dirty_writeback); 117 118 /* 119 * Block until a buffer comes unlocked. This doesn't stop it 120 * from becoming locked again - you have to lock it yourself 121 * if you want to preserve its state. 122 */ 123 void __wait_on_buffer(struct buffer_head * bh) 124 { 125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 126 } 127 EXPORT_SYMBOL(__wait_on_buffer); 128 129 static void 130 __clear_page_buffers(struct page *page) 131 { 132 ClearPagePrivate(page); 133 set_page_private(page, 0); 134 put_page(page); 135 } 136 137 static void buffer_io_error(struct buffer_head *bh, char *msg) 138 { 139 if (!test_bit(BH_Quiet, &bh->b_state)) 140 printk_ratelimited(KERN_ERR 141 "Buffer I/O error on dev %pg, logical block %llu%s\n", 142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 143 } 144 145 /* 146 * End-of-IO handler helper function which does not touch the bh after 147 * unlocking it. 148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 149 * a race there is benign: unlock_buffer() only use the bh's address for 150 * hashing after unlocking the buffer, so it doesn't actually touch the bh 151 * itself. 152 */ 153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 154 { 155 if (uptodate) { 156 set_buffer_uptodate(bh); 157 } else { 158 /* This happens, due to failed read-ahead attempts. */ 159 clear_buffer_uptodate(bh); 160 } 161 unlock_buffer(bh); 162 } 163 164 /* 165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 166 * unlock the buffer. This is what ll_rw_block uses too. 167 */ 168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 169 { 170 __end_buffer_read_notouch(bh, uptodate); 171 put_bh(bh); 172 } 173 EXPORT_SYMBOL(end_buffer_read_sync); 174 175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 176 { 177 if (uptodate) { 178 set_buffer_uptodate(bh); 179 } else { 180 buffer_io_error(bh, ", lost sync page write"); 181 set_buffer_write_io_error(bh); 182 clear_buffer_uptodate(bh); 183 } 184 unlock_buffer(bh); 185 put_bh(bh); 186 } 187 EXPORT_SYMBOL(end_buffer_write_sync); 188 189 /* 190 * Various filesystems appear to want __find_get_block to be non-blocking. 191 * But it's the page lock which protects the buffers. To get around this, 192 * we get exclusion from try_to_free_buffers with the blockdev mapping's 193 * private_lock. 194 * 195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 196 * may be quite high. This code could TryLock the page, and if that 197 * succeeds, there is no need to take private_lock. (But if 198 * private_lock is contended then so is mapping->tree_lock). 199 */ 200 static struct buffer_head * 201 __find_get_block_slow(struct block_device *bdev, sector_t block) 202 { 203 struct inode *bd_inode = bdev->bd_inode; 204 struct address_space *bd_mapping = bd_inode->i_mapping; 205 struct buffer_head *ret = NULL; 206 pgoff_t index; 207 struct buffer_head *bh; 208 struct buffer_head *head; 209 struct page *page; 210 int all_mapped = 1; 211 212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 214 if (!page) 215 goto out; 216 217 spin_lock(&bd_mapping->private_lock); 218 if (!page_has_buffers(page)) 219 goto out_unlock; 220 head = page_buffers(page); 221 bh = head; 222 do { 223 if (!buffer_mapped(bh)) 224 all_mapped = 0; 225 else if (bh->b_blocknr == block) { 226 ret = bh; 227 get_bh(bh); 228 goto out_unlock; 229 } 230 bh = bh->b_this_page; 231 } while (bh != head); 232 233 /* we might be here because some of the buffers on this page are 234 * not mapped. This is due to various races between 235 * file io on the block device and getblk. It gets dealt with 236 * elsewhere, don't buffer_error if we had some unmapped buffers 237 */ 238 if (all_mapped) { 239 printk("__find_get_block_slow() failed. " 240 "block=%llu, b_blocknr=%llu\n", 241 (unsigned long long)block, 242 (unsigned long long)bh->b_blocknr); 243 printk("b_state=0x%08lx, b_size=%zu\n", 244 bh->b_state, bh->b_size); 245 printk("device %pg blocksize: %d\n", bdev, 246 1 << bd_inode->i_blkbits); 247 } 248 out_unlock: 249 spin_unlock(&bd_mapping->private_lock); 250 put_page(page); 251 out: 252 return ret; 253 } 254 255 /* 256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 257 */ 258 static void free_more_memory(void) 259 { 260 struct zoneref *z; 261 int nid; 262 263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 264 yield(); 265 266 for_each_online_node(nid) { 267 268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 269 gfp_zone(GFP_NOFS), NULL); 270 if (z->zone) 271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 272 GFP_NOFS, NULL); 273 } 274 } 275 276 /* 277 * I/O completion handler for block_read_full_page() - pages 278 * which come unlocked at the end of I/O. 279 */ 280 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 281 { 282 unsigned long flags; 283 struct buffer_head *first; 284 struct buffer_head *tmp; 285 struct page *page; 286 int page_uptodate = 1; 287 288 BUG_ON(!buffer_async_read(bh)); 289 290 page = bh->b_page; 291 if (uptodate) { 292 set_buffer_uptodate(bh); 293 } else { 294 clear_buffer_uptodate(bh); 295 buffer_io_error(bh, ", async page read"); 296 SetPageError(page); 297 } 298 299 /* 300 * Be _very_ careful from here on. Bad things can happen if 301 * two buffer heads end IO at almost the same time and both 302 * decide that the page is now completely done. 303 */ 304 first = page_buffers(page); 305 local_irq_save(flags); 306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 307 clear_buffer_async_read(bh); 308 unlock_buffer(bh); 309 tmp = bh; 310 do { 311 if (!buffer_uptodate(tmp)) 312 page_uptodate = 0; 313 if (buffer_async_read(tmp)) { 314 BUG_ON(!buffer_locked(tmp)); 315 goto still_busy; 316 } 317 tmp = tmp->b_this_page; 318 } while (tmp != bh); 319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 320 local_irq_restore(flags); 321 322 /* 323 * If none of the buffers had errors and they are all 324 * uptodate then we can set the page uptodate. 325 */ 326 if (page_uptodate && !PageError(page)) 327 SetPageUptodate(page); 328 unlock_page(page); 329 return; 330 331 still_busy: 332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 333 local_irq_restore(flags); 334 return; 335 } 336 337 /* 338 * Completion handler for block_write_full_page() - pages which are unlocked 339 * during I/O, and which have PageWriteback cleared upon I/O completion. 340 */ 341 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 342 { 343 unsigned long flags; 344 struct buffer_head *first; 345 struct buffer_head *tmp; 346 struct page *page; 347 348 BUG_ON(!buffer_async_write(bh)); 349 350 page = bh->b_page; 351 if (uptodate) { 352 set_buffer_uptodate(bh); 353 } else { 354 buffer_io_error(bh, ", lost async page write"); 355 mapping_set_error(page->mapping, -EIO); 356 set_buffer_write_io_error(bh); 357 clear_buffer_uptodate(bh); 358 SetPageError(page); 359 } 360 361 first = page_buffers(page); 362 local_irq_save(flags); 363 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 364 365 clear_buffer_async_write(bh); 366 unlock_buffer(bh); 367 tmp = bh->b_this_page; 368 while (tmp != bh) { 369 if (buffer_async_write(tmp)) { 370 BUG_ON(!buffer_locked(tmp)); 371 goto still_busy; 372 } 373 tmp = tmp->b_this_page; 374 } 375 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 376 local_irq_restore(flags); 377 end_page_writeback(page); 378 return; 379 380 still_busy: 381 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 382 local_irq_restore(flags); 383 return; 384 } 385 EXPORT_SYMBOL(end_buffer_async_write); 386 387 /* 388 * If a page's buffers are under async readin (end_buffer_async_read 389 * completion) then there is a possibility that another thread of 390 * control could lock one of the buffers after it has completed 391 * but while some of the other buffers have not completed. This 392 * locked buffer would confuse end_buffer_async_read() into not unlocking 393 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 394 * that this buffer is not under async I/O. 395 * 396 * The page comes unlocked when it has no locked buffer_async buffers 397 * left. 398 * 399 * PageLocked prevents anyone starting new async I/O reads any of 400 * the buffers. 401 * 402 * PageWriteback is used to prevent simultaneous writeout of the same 403 * page. 404 * 405 * PageLocked prevents anyone from starting writeback of a page which is 406 * under read I/O (PageWriteback is only ever set against a locked page). 407 */ 408 static void mark_buffer_async_read(struct buffer_head *bh) 409 { 410 bh->b_end_io = end_buffer_async_read; 411 set_buffer_async_read(bh); 412 } 413 414 static void mark_buffer_async_write_endio(struct buffer_head *bh, 415 bh_end_io_t *handler) 416 { 417 bh->b_end_io = handler; 418 set_buffer_async_write(bh); 419 } 420 421 void mark_buffer_async_write(struct buffer_head *bh) 422 { 423 mark_buffer_async_write_endio(bh, end_buffer_async_write); 424 } 425 EXPORT_SYMBOL(mark_buffer_async_write); 426 427 428 /* 429 * fs/buffer.c contains helper functions for buffer-backed address space's 430 * fsync functions. A common requirement for buffer-based filesystems is 431 * that certain data from the backing blockdev needs to be written out for 432 * a successful fsync(). For example, ext2 indirect blocks need to be 433 * written back and waited upon before fsync() returns. 434 * 435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 437 * management of a list of dependent buffers at ->i_mapping->private_list. 438 * 439 * Locking is a little subtle: try_to_free_buffers() will remove buffers 440 * from their controlling inode's queue when they are being freed. But 441 * try_to_free_buffers() will be operating against the *blockdev* mapping 442 * at the time, not against the S_ISREG file which depends on those buffers. 443 * So the locking for private_list is via the private_lock in the address_space 444 * which backs the buffers. Which is different from the address_space 445 * against which the buffers are listed. So for a particular address_space, 446 * mapping->private_lock does *not* protect mapping->private_list! In fact, 447 * mapping->private_list will always be protected by the backing blockdev's 448 * ->private_lock. 449 * 450 * Which introduces a requirement: all buffers on an address_space's 451 * ->private_list must be from the same address_space: the blockdev's. 452 * 453 * address_spaces which do not place buffers at ->private_list via these 454 * utility functions are free to use private_lock and private_list for 455 * whatever they want. The only requirement is that list_empty(private_list) 456 * be true at clear_inode() time. 457 * 458 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 459 * filesystems should do that. invalidate_inode_buffers() should just go 460 * BUG_ON(!list_empty). 461 * 462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 463 * take an address_space, not an inode. And it should be called 464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 465 * queued up. 466 * 467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 468 * list if it is already on a list. Because if the buffer is on a list, 469 * it *must* already be on the right one. If not, the filesystem is being 470 * silly. This will save a ton of locking. But first we have to ensure 471 * that buffers are taken *off* the old inode's list when they are freed 472 * (presumably in truncate). That requires careful auditing of all 473 * filesystems (do it inside bforget()). It could also be done by bringing 474 * b_inode back. 475 */ 476 477 /* 478 * The buffer's backing address_space's private_lock must be held 479 */ 480 static void __remove_assoc_queue(struct buffer_head *bh) 481 { 482 list_del_init(&bh->b_assoc_buffers); 483 WARN_ON(!bh->b_assoc_map); 484 if (buffer_write_io_error(bh)) 485 set_bit(AS_EIO, &bh->b_assoc_map->flags); 486 bh->b_assoc_map = NULL; 487 } 488 489 int inode_has_buffers(struct inode *inode) 490 { 491 return !list_empty(&inode->i_data.private_list); 492 } 493 494 /* 495 * osync is designed to support O_SYNC io. It waits synchronously for 496 * all already-submitted IO to complete, but does not queue any new 497 * writes to the disk. 498 * 499 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 500 * you dirty the buffers, and then use osync_inode_buffers to wait for 501 * completion. Any other dirty buffers which are not yet queued for 502 * write will not be flushed to disk by the osync. 503 */ 504 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 505 { 506 struct buffer_head *bh; 507 struct list_head *p; 508 int err = 0; 509 510 spin_lock(lock); 511 repeat: 512 list_for_each_prev(p, list) { 513 bh = BH_ENTRY(p); 514 if (buffer_locked(bh)) { 515 get_bh(bh); 516 spin_unlock(lock); 517 wait_on_buffer(bh); 518 if (!buffer_uptodate(bh)) 519 err = -EIO; 520 brelse(bh); 521 spin_lock(lock); 522 goto repeat; 523 } 524 } 525 spin_unlock(lock); 526 return err; 527 } 528 529 static void do_thaw_one(struct super_block *sb, void *unused) 530 { 531 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 532 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 533 } 534 535 static void do_thaw_all(struct work_struct *work) 536 { 537 iterate_supers(do_thaw_one, NULL); 538 kfree(work); 539 printk(KERN_WARNING "Emergency Thaw complete\n"); 540 } 541 542 /** 543 * emergency_thaw_all -- forcibly thaw every frozen filesystem 544 * 545 * Used for emergency unfreeze of all filesystems via SysRq 546 */ 547 void emergency_thaw_all(void) 548 { 549 struct work_struct *work; 550 551 work = kmalloc(sizeof(*work), GFP_ATOMIC); 552 if (work) { 553 INIT_WORK(work, do_thaw_all); 554 schedule_work(work); 555 } 556 } 557 558 /** 559 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 560 * @mapping: the mapping which wants those buffers written 561 * 562 * Starts I/O against the buffers at mapping->private_list, and waits upon 563 * that I/O. 564 * 565 * Basically, this is a convenience function for fsync(). 566 * @mapping is a file or directory which needs those buffers to be written for 567 * a successful fsync(). 568 */ 569 int sync_mapping_buffers(struct address_space *mapping) 570 { 571 struct address_space *buffer_mapping = mapping->private_data; 572 573 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 574 return 0; 575 576 return fsync_buffers_list(&buffer_mapping->private_lock, 577 &mapping->private_list); 578 } 579 EXPORT_SYMBOL(sync_mapping_buffers); 580 581 /* 582 * Called when we've recently written block `bblock', and it is known that 583 * `bblock' was for a buffer_boundary() buffer. This means that the block at 584 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 585 * dirty, schedule it for IO. So that indirects merge nicely with their data. 586 */ 587 void write_boundary_block(struct block_device *bdev, 588 sector_t bblock, unsigned blocksize) 589 { 590 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 591 if (bh) { 592 if (buffer_dirty(bh)) 593 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 594 put_bh(bh); 595 } 596 } 597 598 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 599 { 600 struct address_space *mapping = inode->i_mapping; 601 struct address_space *buffer_mapping = bh->b_page->mapping; 602 603 mark_buffer_dirty(bh); 604 if (!mapping->private_data) { 605 mapping->private_data = buffer_mapping; 606 } else { 607 BUG_ON(mapping->private_data != buffer_mapping); 608 } 609 if (!bh->b_assoc_map) { 610 spin_lock(&buffer_mapping->private_lock); 611 list_move_tail(&bh->b_assoc_buffers, 612 &mapping->private_list); 613 bh->b_assoc_map = mapping; 614 spin_unlock(&buffer_mapping->private_lock); 615 } 616 } 617 EXPORT_SYMBOL(mark_buffer_dirty_inode); 618 619 /* 620 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 621 * dirty. 622 * 623 * If warn is true, then emit a warning if the page is not uptodate and has 624 * not been truncated. 625 * 626 * The caller must hold lock_page_memcg(). 627 */ 628 static void __set_page_dirty(struct page *page, struct address_space *mapping, 629 int warn) 630 { 631 unsigned long flags; 632 633 spin_lock_irqsave(&mapping->tree_lock, flags); 634 if (page->mapping) { /* Race with truncate? */ 635 WARN_ON_ONCE(warn && !PageUptodate(page)); 636 account_page_dirtied(page, mapping); 637 radix_tree_tag_set(&mapping->page_tree, 638 page_index(page), PAGECACHE_TAG_DIRTY); 639 } 640 spin_unlock_irqrestore(&mapping->tree_lock, flags); 641 } 642 643 /* 644 * Add a page to the dirty page list. 645 * 646 * It is a sad fact of life that this function is called from several places 647 * deeply under spinlocking. It may not sleep. 648 * 649 * If the page has buffers, the uptodate buffers are set dirty, to preserve 650 * dirty-state coherency between the page and the buffers. It the page does 651 * not have buffers then when they are later attached they will all be set 652 * dirty. 653 * 654 * The buffers are dirtied before the page is dirtied. There's a small race 655 * window in which a writepage caller may see the page cleanness but not the 656 * buffer dirtiness. That's fine. If this code were to set the page dirty 657 * before the buffers, a concurrent writepage caller could clear the page dirty 658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 659 * page on the dirty page list. 660 * 661 * We use private_lock to lock against try_to_free_buffers while using the 662 * page's buffer list. Also use this to protect against clean buffers being 663 * added to the page after it was set dirty. 664 * 665 * FIXME: may need to call ->reservepage here as well. That's rather up to the 666 * address_space though. 667 */ 668 int __set_page_dirty_buffers(struct page *page) 669 { 670 int newly_dirty; 671 struct address_space *mapping = page_mapping(page); 672 673 if (unlikely(!mapping)) 674 return !TestSetPageDirty(page); 675 676 spin_lock(&mapping->private_lock); 677 if (page_has_buffers(page)) { 678 struct buffer_head *head = page_buffers(page); 679 struct buffer_head *bh = head; 680 681 do { 682 set_buffer_dirty(bh); 683 bh = bh->b_this_page; 684 } while (bh != head); 685 } 686 /* 687 * Lock out page->mem_cgroup migration to keep PageDirty 688 * synchronized with per-memcg dirty page counters. 689 */ 690 lock_page_memcg(page); 691 newly_dirty = !TestSetPageDirty(page); 692 spin_unlock(&mapping->private_lock); 693 694 if (newly_dirty) 695 __set_page_dirty(page, mapping, 1); 696 697 unlock_page_memcg(page); 698 699 if (newly_dirty) 700 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 701 702 return newly_dirty; 703 } 704 EXPORT_SYMBOL(__set_page_dirty_buffers); 705 706 /* 707 * Write out and wait upon a list of buffers. 708 * 709 * We have conflicting pressures: we want to make sure that all 710 * initially dirty buffers get waited on, but that any subsequently 711 * dirtied buffers don't. After all, we don't want fsync to last 712 * forever if somebody is actively writing to the file. 713 * 714 * Do this in two main stages: first we copy dirty buffers to a 715 * temporary inode list, queueing the writes as we go. Then we clean 716 * up, waiting for those writes to complete. 717 * 718 * During this second stage, any subsequent updates to the file may end 719 * up refiling the buffer on the original inode's dirty list again, so 720 * there is a chance we will end up with a buffer queued for write but 721 * not yet completed on that list. So, as a final cleanup we go through 722 * the osync code to catch these locked, dirty buffers without requeuing 723 * any newly dirty buffers for write. 724 */ 725 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 726 { 727 struct buffer_head *bh; 728 struct list_head tmp; 729 struct address_space *mapping; 730 int err = 0, err2; 731 struct blk_plug plug; 732 733 INIT_LIST_HEAD(&tmp); 734 blk_start_plug(&plug); 735 736 spin_lock(lock); 737 while (!list_empty(list)) { 738 bh = BH_ENTRY(list->next); 739 mapping = bh->b_assoc_map; 740 __remove_assoc_queue(bh); 741 /* Avoid race with mark_buffer_dirty_inode() which does 742 * a lockless check and we rely on seeing the dirty bit */ 743 smp_mb(); 744 if (buffer_dirty(bh) || buffer_locked(bh)) { 745 list_add(&bh->b_assoc_buffers, &tmp); 746 bh->b_assoc_map = mapping; 747 if (buffer_dirty(bh)) { 748 get_bh(bh); 749 spin_unlock(lock); 750 /* 751 * Ensure any pending I/O completes so that 752 * write_dirty_buffer() actually writes the 753 * current contents - it is a noop if I/O is 754 * still in flight on potentially older 755 * contents. 756 */ 757 write_dirty_buffer(bh, REQ_SYNC); 758 759 /* 760 * Kick off IO for the previous mapping. Note 761 * that we will not run the very last mapping, 762 * wait_on_buffer() will do that for us 763 * through sync_buffer(). 764 */ 765 brelse(bh); 766 spin_lock(lock); 767 } 768 } 769 } 770 771 spin_unlock(lock); 772 blk_finish_plug(&plug); 773 spin_lock(lock); 774 775 while (!list_empty(&tmp)) { 776 bh = BH_ENTRY(tmp.prev); 777 get_bh(bh); 778 mapping = bh->b_assoc_map; 779 __remove_assoc_queue(bh); 780 /* Avoid race with mark_buffer_dirty_inode() which does 781 * a lockless check and we rely on seeing the dirty bit */ 782 smp_mb(); 783 if (buffer_dirty(bh)) { 784 list_add(&bh->b_assoc_buffers, 785 &mapping->private_list); 786 bh->b_assoc_map = mapping; 787 } 788 spin_unlock(lock); 789 wait_on_buffer(bh); 790 if (!buffer_uptodate(bh)) 791 err = -EIO; 792 brelse(bh); 793 spin_lock(lock); 794 } 795 796 spin_unlock(lock); 797 err2 = osync_buffers_list(lock, list); 798 if (err) 799 return err; 800 else 801 return err2; 802 } 803 804 /* 805 * Invalidate any and all dirty buffers on a given inode. We are 806 * probably unmounting the fs, but that doesn't mean we have already 807 * done a sync(). Just drop the buffers from the inode list. 808 * 809 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 810 * assumes that all the buffers are against the blockdev. Not true 811 * for reiserfs. 812 */ 813 void invalidate_inode_buffers(struct inode *inode) 814 { 815 if (inode_has_buffers(inode)) { 816 struct address_space *mapping = &inode->i_data; 817 struct list_head *list = &mapping->private_list; 818 struct address_space *buffer_mapping = mapping->private_data; 819 820 spin_lock(&buffer_mapping->private_lock); 821 while (!list_empty(list)) 822 __remove_assoc_queue(BH_ENTRY(list->next)); 823 spin_unlock(&buffer_mapping->private_lock); 824 } 825 } 826 EXPORT_SYMBOL(invalidate_inode_buffers); 827 828 /* 829 * Remove any clean buffers from the inode's buffer list. This is called 830 * when we're trying to free the inode itself. Those buffers can pin it. 831 * 832 * Returns true if all buffers were removed. 833 */ 834 int remove_inode_buffers(struct inode *inode) 835 { 836 int ret = 1; 837 838 if (inode_has_buffers(inode)) { 839 struct address_space *mapping = &inode->i_data; 840 struct list_head *list = &mapping->private_list; 841 struct address_space *buffer_mapping = mapping->private_data; 842 843 spin_lock(&buffer_mapping->private_lock); 844 while (!list_empty(list)) { 845 struct buffer_head *bh = BH_ENTRY(list->next); 846 if (buffer_dirty(bh)) { 847 ret = 0; 848 break; 849 } 850 __remove_assoc_queue(bh); 851 } 852 spin_unlock(&buffer_mapping->private_lock); 853 } 854 return ret; 855 } 856 857 /* 858 * Create the appropriate buffers when given a page for data area and 859 * the size of each buffer.. Use the bh->b_this_page linked list to 860 * follow the buffers created. Return NULL if unable to create more 861 * buffers. 862 * 863 * The retry flag is used to differentiate async IO (paging, swapping) 864 * which may not fail from ordinary buffer allocations. 865 */ 866 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 867 int retry) 868 { 869 struct buffer_head *bh, *head; 870 long offset; 871 872 try_again: 873 head = NULL; 874 offset = PAGE_SIZE; 875 while ((offset -= size) >= 0) { 876 bh = alloc_buffer_head(GFP_NOFS); 877 if (!bh) 878 goto no_grow; 879 880 bh->b_this_page = head; 881 bh->b_blocknr = -1; 882 head = bh; 883 884 bh->b_size = size; 885 886 /* Link the buffer to its page */ 887 set_bh_page(bh, page, offset); 888 } 889 return head; 890 /* 891 * In case anything failed, we just free everything we got. 892 */ 893 no_grow: 894 if (head) { 895 do { 896 bh = head; 897 head = head->b_this_page; 898 free_buffer_head(bh); 899 } while (head); 900 } 901 902 /* 903 * Return failure for non-async IO requests. Async IO requests 904 * are not allowed to fail, so we have to wait until buffer heads 905 * become available. But we don't want tasks sleeping with 906 * partially complete buffers, so all were released above. 907 */ 908 if (!retry) 909 return NULL; 910 911 /* We're _really_ low on memory. Now we just 912 * wait for old buffer heads to become free due to 913 * finishing IO. Since this is an async request and 914 * the reserve list is empty, we're sure there are 915 * async buffer heads in use. 916 */ 917 free_more_memory(); 918 goto try_again; 919 } 920 EXPORT_SYMBOL_GPL(alloc_page_buffers); 921 922 static inline void 923 link_dev_buffers(struct page *page, struct buffer_head *head) 924 { 925 struct buffer_head *bh, *tail; 926 927 bh = head; 928 do { 929 tail = bh; 930 bh = bh->b_this_page; 931 } while (bh); 932 tail->b_this_page = head; 933 attach_page_buffers(page, head); 934 } 935 936 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 937 { 938 sector_t retval = ~((sector_t)0); 939 loff_t sz = i_size_read(bdev->bd_inode); 940 941 if (sz) { 942 unsigned int sizebits = blksize_bits(size); 943 retval = (sz >> sizebits); 944 } 945 return retval; 946 } 947 948 /* 949 * Initialise the state of a blockdev page's buffers. 950 */ 951 static sector_t 952 init_page_buffers(struct page *page, struct block_device *bdev, 953 sector_t block, int size) 954 { 955 struct buffer_head *head = page_buffers(page); 956 struct buffer_head *bh = head; 957 int uptodate = PageUptodate(page); 958 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 959 960 do { 961 if (!buffer_mapped(bh)) { 962 init_buffer(bh, NULL, NULL); 963 bh->b_bdev = bdev; 964 bh->b_blocknr = block; 965 if (uptodate) 966 set_buffer_uptodate(bh); 967 if (block < end_block) 968 set_buffer_mapped(bh); 969 } 970 block++; 971 bh = bh->b_this_page; 972 } while (bh != head); 973 974 /* 975 * Caller needs to validate requested block against end of device. 976 */ 977 return end_block; 978 } 979 980 /* 981 * Create the page-cache page that contains the requested block. 982 * 983 * This is used purely for blockdev mappings. 984 */ 985 static int 986 grow_dev_page(struct block_device *bdev, sector_t block, 987 pgoff_t index, int size, int sizebits, gfp_t gfp) 988 { 989 struct inode *inode = bdev->bd_inode; 990 struct page *page; 991 struct buffer_head *bh; 992 sector_t end_block; 993 int ret = 0; /* Will call free_more_memory() */ 994 gfp_t gfp_mask; 995 996 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 997 998 /* 999 * XXX: __getblk_slow() can not really deal with failure and 1000 * will endlessly loop on improvised global reclaim. Prefer 1001 * looping in the allocator rather than here, at least that 1002 * code knows what it's doing. 1003 */ 1004 gfp_mask |= __GFP_NOFAIL; 1005 1006 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 1007 if (!page) 1008 return ret; 1009 1010 BUG_ON(!PageLocked(page)); 1011 1012 if (page_has_buffers(page)) { 1013 bh = page_buffers(page); 1014 if (bh->b_size == size) { 1015 end_block = init_page_buffers(page, bdev, 1016 (sector_t)index << sizebits, 1017 size); 1018 goto done; 1019 } 1020 if (!try_to_free_buffers(page)) 1021 goto failed; 1022 } 1023 1024 /* 1025 * Allocate some buffers for this page 1026 */ 1027 bh = alloc_page_buffers(page, size, 0); 1028 if (!bh) 1029 goto failed; 1030 1031 /* 1032 * Link the page to the buffers and initialise them. Take the 1033 * lock to be atomic wrt __find_get_block(), which does not 1034 * run under the page lock. 1035 */ 1036 spin_lock(&inode->i_mapping->private_lock); 1037 link_dev_buffers(page, bh); 1038 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1039 size); 1040 spin_unlock(&inode->i_mapping->private_lock); 1041 done: 1042 ret = (block < end_block) ? 1 : -ENXIO; 1043 failed: 1044 unlock_page(page); 1045 put_page(page); 1046 return ret; 1047 } 1048 1049 /* 1050 * Create buffers for the specified block device block's page. If 1051 * that page was dirty, the buffers are set dirty also. 1052 */ 1053 static int 1054 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1055 { 1056 pgoff_t index; 1057 int sizebits; 1058 1059 sizebits = -1; 1060 do { 1061 sizebits++; 1062 } while ((size << sizebits) < PAGE_SIZE); 1063 1064 index = block >> sizebits; 1065 1066 /* 1067 * Check for a block which wants to lie outside our maximum possible 1068 * pagecache index. (this comparison is done using sector_t types). 1069 */ 1070 if (unlikely(index != block >> sizebits)) { 1071 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1072 "device %pg\n", 1073 __func__, (unsigned long long)block, 1074 bdev); 1075 return -EIO; 1076 } 1077 1078 /* Create a page with the proper size buffers.. */ 1079 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1080 } 1081 1082 static struct buffer_head * 1083 __getblk_slow(struct block_device *bdev, sector_t block, 1084 unsigned size, gfp_t gfp) 1085 { 1086 /* Size must be multiple of hard sectorsize */ 1087 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1088 (size < 512 || size > PAGE_SIZE))) { 1089 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1090 size); 1091 printk(KERN_ERR "logical block size: %d\n", 1092 bdev_logical_block_size(bdev)); 1093 1094 dump_stack(); 1095 return NULL; 1096 } 1097 1098 for (;;) { 1099 struct buffer_head *bh; 1100 int ret; 1101 1102 bh = __find_get_block(bdev, block, size); 1103 if (bh) 1104 return bh; 1105 1106 ret = grow_buffers(bdev, block, size, gfp); 1107 if (ret < 0) 1108 return NULL; 1109 if (ret == 0) 1110 free_more_memory(); 1111 } 1112 } 1113 1114 /* 1115 * The relationship between dirty buffers and dirty pages: 1116 * 1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1118 * the page is tagged dirty in its radix tree. 1119 * 1120 * At all times, the dirtiness of the buffers represents the dirtiness of 1121 * subsections of the page. If the page has buffers, the page dirty bit is 1122 * merely a hint about the true dirty state. 1123 * 1124 * When a page is set dirty in its entirety, all its buffers are marked dirty 1125 * (if the page has buffers). 1126 * 1127 * When a buffer is marked dirty, its page is dirtied, but the page's other 1128 * buffers are not. 1129 * 1130 * Also. When blockdev buffers are explicitly read with bread(), they 1131 * individually become uptodate. But their backing page remains not 1132 * uptodate - even if all of its buffers are uptodate. A subsequent 1133 * block_read_full_page() against that page will discover all the uptodate 1134 * buffers, will set the page uptodate and will perform no I/O. 1135 */ 1136 1137 /** 1138 * mark_buffer_dirty - mark a buffer_head as needing writeout 1139 * @bh: the buffer_head to mark dirty 1140 * 1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1142 * backing page dirty, then tag the page as dirty in its address_space's radix 1143 * tree and then attach the address_space's inode to its superblock's dirty 1144 * inode list. 1145 * 1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1147 * mapping->tree_lock and mapping->host->i_lock. 1148 */ 1149 void mark_buffer_dirty(struct buffer_head *bh) 1150 { 1151 WARN_ON_ONCE(!buffer_uptodate(bh)); 1152 1153 trace_block_dirty_buffer(bh); 1154 1155 /* 1156 * Very *carefully* optimize the it-is-already-dirty case. 1157 * 1158 * Don't let the final "is it dirty" escape to before we 1159 * perhaps modified the buffer. 1160 */ 1161 if (buffer_dirty(bh)) { 1162 smp_mb(); 1163 if (buffer_dirty(bh)) 1164 return; 1165 } 1166 1167 if (!test_set_buffer_dirty(bh)) { 1168 struct page *page = bh->b_page; 1169 struct address_space *mapping = NULL; 1170 1171 lock_page_memcg(page); 1172 if (!TestSetPageDirty(page)) { 1173 mapping = page_mapping(page); 1174 if (mapping) 1175 __set_page_dirty(page, mapping, 0); 1176 } 1177 unlock_page_memcg(page); 1178 if (mapping) 1179 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1180 } 1181 } 1182 EXPORT_SYMBOL(mark_buffer_dirty); 1183 1184 /* 1185 * Decrement a buffer_head's reference count. If all buffers against a page 1186 * have zero reference count, are clean and unlocked, and if the page is clean 1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1189 * a page but it ends up not being freed, and buffers may later be reattached). 1190 */ 1191 void __brelse(struct buffer_head * buf) 1192 { 1193 if (atomic_read(&buf->b_count)) { 1194 put_bh(buf); 1195 return; 1196 } 1197 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1198 } 1199 EXPORT_SYMBOL(__brelse); 1200 1201 /* 1202 * bforget() is like brelse(), except it discards any 1203 * potentially dirty data. 1204 */ 1205 void __bforget(struct buffer_head *bh) 1206 { 1207 clear_buffer_dirty(bh); 1208 if (bh->b_assoc_map) { 1209 struct address_space *buffer_mapping = bh->b_page->mapping; 1210 1211 spin_lock(&buffer_mapping->private_lock); 1212 list_del_init(&bh->b_assoc_buffers); 1213 bh->b_assoc_map = NULL; 1214 spin_unlock(&buffer_mapping->private_lock); 1215 } 1216 __brelse(bh); 1217 } 1218 EXPORT_SYMBOL(__bforget); 1219 1220 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1221 { 1222 lock_buffer(bh); 1223 if (buffer_uptodate(bh)) { 1224 unlock_buffer(bh); 1225 return bh; 1226 } else { 1227 get_bh(bh); 1228 bh->b_end_io = end_buffer_read_sync; 1229 submit_bh(REQ_OP_READ, 0, bh); 1230 wait_on_buffer(bh); 1231 if (buffer_uptodate(bh)) 1232 return bh; 1233 } 1234 brelse(bh); 1235 return NULL; 1236 } 1237 1238 /* 1239 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1240 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1241 * refcount elevated by one when they're in an LRU. A buffer can only appear 1242 * once in a particular CPU's LRU. A single buffer can be present in multiple 1243 * CPU's LRUs at the same time. 1244 * 1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1246 * sb_find_get_block(). 1247 * 1248 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1249 * a local interrupt disable for that. 1250 */ 1251 1252 #define BH_LRU_SIZE 16 1253 1254 struct bh_lru { 1255 struct buffer_head *bhs[BH_LRU_SIZE]; 1256 }; 1257 1258 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1259 1260 #ifdef CONFIG_SMP 1261 #define bh_lru_lock() local_irq_disable() 1262 #define bh_lru_unlock() local_irq_enable() 1263 #else 1264 #define bh_lru_lock() preempt_disable() 1265 #define bh_lru_unlock() preempt_enable() 1266 #endif 1267 1268 static inline void check_irqs_on(void) 1269 { 1270 #ifdef irqs_disabled 1271 BUG_ON(irqs_disabled()); 1272 #endif 1273 } 1274 1275 /* 1276 * The LRU management algorithm is dopey-but-simple. Sorry. 1277 */ 1278 static void bh_lru_install(struct buffer_head *bh) 1279 { 1280 struct buffer_head *evictee = NULL; 1281 1282 check_irqs_on(); 1283 bh_lru_lock(); 1284 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1285 struct buffer_head *bhs[BH_LRU_SIZE]; 1286 int in; 1287 int out = 0; 1288 1289 get_bh(bh); 1290 bhs[out++] = bh; 1291 for (in = 0; in < BH_LRU_SIZE; in++) { 1292 struct buffer_head *bh2 = 1293 __this_cpu_read(bh_lrus.bhs[in]); 1294 1295 if (bh2 == bh) { 1296 __brelse(bh2); 1297 } else { 1298 if (out >= BH_LRU_SIZE) { 1299 BUG_ON(evictee != NULL); 1300 evictee = bh2; 1301 } else { 1302 bhs[out++] = bh2; 1303 } 1304 } 1305 } 1306 while (out < BH_LRU_SIZE) 1307 bhs[out++] = NULL; 1308 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1309 } 1310 bh_lru_unlock(); 1311 1312 if (evictee) 1313 __brelse(evictee); 1314 } 1315 1316 /* 1317 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1318 */ 1319 static struct buffer_head * 1320 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1321 { 1322 struct buffer_head *ret = NULL; 1323 unsigned int i; 1324 1325 check_irqs_on(); 1326 bh_lru_lock(); 1327 for (i = 0; i < BH_LRU_SIZE; i++) { 1328 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1329 1330 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1331 bh->b_size == size) { 1332 if (i) { 1333 while (i) { 1334 __this_cpu_write(bh_lrus.bhs[i], 1335 __this_cpu_read(bh_lrus.bhs[i - 1])); 1336 i--; 1337 } 1338 __this_cpu_write(bh_lrus.bhs[0], bh); 1339 } 1340 get_bh(bh); 1341 ret = bh; 1342 break; 1343 } 1344 } 1345 bh_lru_unlock(); 1346 return ret; 1347 } 1348 1349 /* 1350 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1351 * it in the LRU and mark it as accessed. If it is not present then return 1352 * NULL 1353 */ 1354 struct buffer_head * 1355 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1356 { 1357 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1358 1359 if (bh == NULL) { 1360 /* __find_get_block_slow will mark the page accessed */ 1361 bh = __find_get_block_slow(bdev, block); 1362 if (bh) 1363 bh_lru_install(bh); 1364 } else 1365 touch_buffer(bh); 1366 1367 return bh; 1368 } 1369 EXPORT_SYMBOL(__find_get_block); 1370 1371 /* 1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1373 * which corresponds to the passed block_device, block and size. The 1374 * returned buffer has its reference count incremented. 1375 * 1376 * __getblk_gfp() will lock up the machine if grow_dev_page's 1377 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1378 */ 1379 struct buffer_head * 1380 __getblk_gfp(struct block_device *bdev, sector_t block, 1381 unsigned size, gfp_t gfp) 1382 { 1383 struct buffer_head *bh = __find_get_block(bdev, block, size); 1384 1385 might_sleep(); 1386 if (bh == NULL) 1387 bh = __getblk_slow(bdev, block, size, gfp); 1388 return bh; 1389 } 1390 EXPORT_SYMBOL(__getblk_gfp); 1391 1392 /* 1393 * Do async read-ahead on a buffer.. 1394 */ 1395 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1396 { 1397 struct buffer_head *bh = __getblk(bdev, block, size); 1398 if (likely(bh)) { 1399 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1400 brelse(bh); 1401 } 1402 } 1403 EXPORT_SYMBOL(__breadahead); 1404 1405 /** 1406 * __bread_gfp() - reads a specified block and returns the bh 1407 * @bdev: the block_device to read from 1408 * @block: number of block 1409 * @size: size (in bytes) to read 1410 * @gfp: page allocation flag 1411 * 1412 * Reads a specified block, and returns buffer head that contains it. 1413 * The page cache can be allocated from non-movable area 1414 * not to prevent page migration if you set gfp to zero. 1415 * It returns NULL if the block was unreadable. 1416 */ 1417 struct buffer_head * 1418 __bread_gfp(struct block_device *bdev, sector_t block, 1419 unsigned size, gfp_t gfp) 1420 { 1421 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1422 1423 if (likely(bh) && !buffer_uptodate(bh)) 1424 bh = __bread_slow(bh); 1425 return bh; 1426 } 1427 EXPORT_SYMBOL(__bread_gfp); 1428 1429 /* 1430 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1431 * This doesn't race because it runs in each cpu either in irq 1432 * or with preempt disabled. 1433 */ 1434 static void invalidate_bh_lru(void *arg) 1435 { 1436 struct bh_lru *b = &get_cpu_var(bh_lrus); 1437 int i; 1438 1439 for (i = 0; i < BH_LRU_SIZE; i++) { 1440 brelse(b->bhs[i]); 1441 b->bhs[i] = NULL; 1442 } 1443 put_cpu_var(bh_lrus); 1444 } 1445 1446 static bool has_bh_in_lru(int cpu, void *dummy) 1447 { 1448 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1449 int i; 1450 1451 for (i = 0; i < BH_LRU_SIZE; i++) { 1452 if (b->bhs[i]) 1453 return 1; 1454 } 1455 1456 return 0; 1457 } 1458 1459 void invalidate_bh_lrus(void) 1460 { 1461 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1462 } 1463 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1464 1465 void set_bh_page(struct buffer_head *bh, 1466 struct page *page, unsigned long offset) 1467 { 1468 bh->b_page = page; 1469 BUG_ON(offset >= PAGE_SIZE); 1470 if (PageHighMem(page)) 1471 /* 1472 * This catches illegal uses and preserves the offset: 1473 */ 1474 bh->b_data = (char *)(0 + offset); 1475 else 1476 bh->b_data = page_address(page) + offset; 1477 } 1478 EXPORT_SYMBOL(set_bh_page); 1479 1480 /* 1481 * Called when truncating a buffer on a page completely. 1482 */ 1483 1484 /* Bits that are cleared during an invalidate */ 1485 #define BUFFER_FLAGS_DISCARD \ 1486 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1487 1 << BH_Delay | 1 << BH_Unwritten) 1488 1489 static void discard_buffer(struct buffer_head * bh) 1490 { 1491 unsigned long b_state, b_state_old; 1492 1493 lock_buffer(bh); 1494 clear_buffer_dirty(bh); 1495 bh->b_bdev = NULL; 1496 b_state = bh->b_state; 1497 for (;;) { 1498 b_state_old = cmpxchg(&bh->b_state, b_state, 1499 (b_state & ~BUFFER_FLAGS_DISCARD)); 1500 if (b_state_old == b_state) 1501 break; 1502 b_state = b_state_old; 1503 } 1504 unlock_buffer(bh); 1505 } 1506 1507 /** 1508 * block_invalidatepage - invalidate part or all of a buffer-backed page 1509 * 1510 * @page: the page which is affected 1511 * @offset: start of the range to invalidate 1512 * @length: length of the range to invalidate 1513 * 1514 * block_invalidatepage() is called when all or part of the page has become 1515 * invalidated by a truncate operation. 1516 * 1517 * block_invalidatepage() does not have to release all buffers, but it must 1518 * ensure that no dirty buffer is left outside @offset and that no I/O 1519 * is underway against any of the blocks which are outside the truncation 1520 * point. Because the caller is about to free (and possibly reuse) those 1521 * blocks on-disk. 1522 */ 1523 void block_invalidatepage(struct page *page, unsigned int offset, 1524 unsigned int length) 1525 { 1526 struct buffer_head *head, *bh, *next; 1527 unsigned int curr_off = 0; 1528 unsigned int stop = length + offset; 1529 1530 BUG_ON(!PageLocked(page)); 1531 if (!page_has_buffers(page)) 1532 goto out; 1533 1534 /* 1535 * Check for overflow 1536 */ 1537 BUG_ON(stop > PAGE_SIZE || stop < length); 1538 1539 head = page_buffers(page); 1540 bh = head; 1541 do { 1542 unsigned int next_off = curr_off + bh->b_size; 1543 next = bh->b_this_page; 1544 1545 /* 1546 * Are we still fully in range ? 1547 */ 1548 if (next_off > stop) 1549 goto out; 1550 1551 /* 1552 * is this block fully invalidated? 1553 */ 1554 if (offset <= curr_off) 1555 discard_buffer(bh); 1556 curr_off = next_off; 1557 bh = next; 1558 } while (bh != head); 1559 1560 /* 1561 * We release buffers only if the entire page is being invalidated. 1562 * The get_block cached value has been unconditionally invalidated, 1563 * so real IO is not possible anymore. 1564 */ 1565 if (offset == 0) 1566 try_to_release_page(page, 0); 1567 out: 1568 return; 1569 } 1570 EXPORT_SYMBOL(block_invalidatepage); 1571 1572 1573 /* 1574 * We attach and possibly dirty the buffers atomically wrt 1575 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1576 * is already excluded via the page lock. 1577 */ 1578 void create_empty_buffers(struct page *page, 1579 unsigned long blocksize, unsigned long b_state) 1580 { 1581 struct buffer_head *bh, *head, *tail; 1582 1583 head = alloc_page_buffers(page, blocksize, 1); 1584 bh = head; 1585 do { 1586 bh->b_state |= b_state; 1587 tail = bh; 1588 bh = bh->b_this_page; 1589 } while (bh); 1590 tail->b_this_page = head; 1591 1592 spin_lock(&page->mapping->private_lock); 1593 if (PageUptodate(page) || PageDirty(page)) { 1594 bh = head; 1595 do { 1596 if (PageDirty(page)) 1597 set_buffer_dirty(bh); 1598 if (PageUptodate(page)) 1599 set_buffer_uptodate(bh); 1600 bh = bh->b_this_page; 1601 } while (bh != head); 1602 } 1603 attach_page_buffers(page, head); 1604 spin_unlock(&page->mapping->private_lock); 1605 } 1606 EXPORT_SYMBOL(create_empty_buffers); 1607 1608 /** 1609 * clean_bdev_aliases: clean a range of buffers in block device 1610 * @bdev: Block device to clean buffers in 1611 * @block: Start of a range of blocks to clean 1612 * @len: Number of blocks to clean 1613 * 1614 * We are taking a range of blocks for data and we don't want writeback of any 1615 * buffer-cache aliases starting from return from this function and until the 1616 * moment when something will explicitly mark the buffer dirty (hopefully that 1617 * will not happen until we will free that block ;-) We don't even need to mark 1618 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1619 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1620 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1621 * would confuse anyone who might pick it with bread() afterwards... 1622 * 1623 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1624 * writeout I/O going on against recently-freed buffers. We don't wait on that 1625 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1626 * need to. That happens here. 1627 */ 1628 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1629 { 1630 struct inode *bd_inode = bdev->bd_inode; 1631 struct address_space *bd_mapping = bd_inode->i_mapping; 1632 struct pagevec pvec; 1633 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1634 pgoff_t end; 1635 int i; 1636 struct buffer_head *bh; 1637 struct buffer_head *head; 1638 1639 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1640 pagevec_init(&pvec, 0); 1641 while (index <= end && pagevec_lookup(&pvec, bd_mapping, index, 1642 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 1643 for (i = 0; i < pagevec_count(&pvec); i++) { 1644 struct page *page = pvec.pages[i]; 1645 1646 index = page->index; 1647 if (index > end) 1648 break; 1649 if (!page_has_buffers(page)) 1650 continue; 1651 /* 1652 * We use page lock instead of bd_mapping->private_lock 1653 * to pin buffers here since we can afford to sleep and 1654 * it scales better than a global spinlock lock. 1655 */ 1656 lock_page(page); 1657 /* Recheck when the page is locked which pins bhs */ 1658 if (!page_has_buffers(page)) 1659 goto unlock_page; 1660 head = page_buffers(page); 1661 bh = head; 1662 do { 1663 if (!buffer_mapped(bh)) 1664 goto next; 1665 if (bh->b_blocknr >= block + len) 1666 break; 1667 clear_buffer_dirty(bh); 1668 wait_on_buffer(bh); 1669 clear_buffer_req(bh); 1670 next: 1671 bh = bh->b_this_page; 1672 } while (bh != head); 1673 unlock_page: 1674 unlock_page(page); 1675 } 1676 pagevec_release(&pvec); 1677 cond_resched(); 1678 index++; 1679 } 1680 } 1681 EXPORT_SYMBOL(clean_bdev_aliases); 1682 1683 /* 1684 * Size is a power-of-two in the range 512..PAGE_SIZE, 1685 * and the case we care about most is PAGE_SIZE. 1686 * 1687 * So this *could* possibly be written with those 1688 * constraints in mind (relevant mostly if some 1689 * architecture has a slow bit-scan instruction) 1690 */ 1691 static inline int block_size_bits(unsigned int blocksize) 1692 { 1693 return ilog2(blocksize); 1694 } 1695 1696 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1697 { 1698 BUG_ON(!PageLocked(page)); 1699 1700 if (!page_has_buffers(page)) 1701 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1702 return page_buffers(page); 1703 } 1704 1705 /* 1706 * NOTE! All mapped/uptodate combinations are valid: 1707 * 1708 * Mapped Uptodate Meaning 1709 * 1710 * No No "unknown" - must do get_block() 1711 * No Yes "hole" - zero-filled 1712 * Yes No "allocated" - allocated on disk, not read in 1713 * Yes Yes "valid" - allocated and up-to-date in memory. 1714 * 1715 * "Dirty" is valid only with the last case (mapped+uptodate). 1716 */ 1717 1718 /* 1719 * While block_write_full_page is writing back the dirty buffers under 1720 * the page lock, whoever dirtied the buffers may decide to clean them 1721 * again at any time. We handle that by only looking at the buffer 1722 * state inside lock_buffer(). 1723 * 1724 * If block_write_full_page() is called for regular writeback 1725 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1726 * locked buffer. This only can happen if someone has written the buffer 1727 * directly, with submit_bh(). At the address_space level PageWriteback 1728 * prevents this contention from occurring. 1729 * 1730 * If block_write_full_page() is called with wbc->sync_mode == 1731 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1732 * causes the writes to be flagged as synchronous writes. 1733 */ 1734 int __block_write_full_page(struct inode *inode, struct page *page, 1735 get_block_t *get_block, struct writeback_control *wbc, 1736 bh_end_io_t *handler) 1737 { 1738 int err; 1739 sector_t block; 1740 sector_t last_block; 1741 struct buffer_head *bh, *head; 1742 unsigned int blocksize, bbits; 1743 int nr_underway = 0; 1744 int write_flags = wbc_to_write_flags(wbc); 1745 1746 head = create_page_buffers(page, inode, 1747 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1748 1749 /* 1750 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1751 * here, and the (potentially unmapped) buffers may become dirty at 1752 * any time. If a buffer becomes dirty here after we've inspected it 1753 * then we just miss that fact, and the page stays dirty. 1754 * 1755 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1756 * handle that here by just cleaning them. 1757 */ 1758 1759 bh = head; 1760 blocksize = bh->b_size; 1761 bbits = block_size_bits(blocksize); 1762 1763 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1764 last_block = (i_size_read(inode) - 1) >> bbits; 1765 1766 /* 1767 * Get all the dirty buffers mapped to disk addresses and 1768 * handle any aliases from the underlying blockdev's mapping. 1769 */ 1770 do { 1771 if (block > last_block) { 1772 /* 1773 * mapped buffers outside i_size will occur, because 1774 * this page can be outside i_size when there is a 1775 * truncate in progress. 1776 */ 1777 /* 1778 * The buffer was zeroed by block_write_full_page() 1779 */ 1780 clear_buffer_dirty(bh); 1781 set_buffer_uptodate(bh); 1782 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1783 buffer_dirty(bh)) { 1784 WARN_ON(bh->b_size != blocksize); 1785 err = get_block(inode, block, bh, 1); 1786 if (err) 1787 goto recover; 1788 clear_buffer_delay(bh); 1789 if (buffer_new(bh)) { 1790 /* blockdev mappings never come here */ 1791 clear_buffer_new(bh); 1792 clean_bdev_bh_alias(bh); 1793 } 1794 } 1795 bh = bh->b_this_page; 1796 block++; 1797 } while (bh != head); 1798 1799 do { 1800 if (!buffer_mapped(bh)) 1801 continue; 1802 /* 1803 * If it's a fully non-blocking write attempt and we cannot 1804 * lock the buffer then redirty the page. Note that this can 1805 * potentially cause a busy-wait loop from writeback threads 1806 * and kswapd activity, but those code paths have their own 1807 * higher-level throttling. 1808 */ 1809 if (wbc->sync_mode != WB_SYNC_NONE) { 1810 lock_buffer(bh); 1811 } else if (!trylock_buffer(bh)) { 1812 redirty_page_for_writepage(wbc, page); 1813 continue; 1814 } 1815 if (test_clear_buffer_dirty(bh)) { 1816 mark_buffer_async_write_endio(bh, handler); 1817 } else { 1818 unlock_buffer(bh); 1819 } 1820 } while ((bh = bh->b_this_page) != head); 1821 1822 /* 1823 * The page and its buffers are protected by PageWriteback(), so we can 1824 * drop the bh refcounts early. 1825 */ 1826 BUG_ON(PageWriteback(page)); 1827 set_page_writeback(page); 1828 1829 do { 1830 struct buffer_head *next = bh->b_this_page; 1831 if (buffer_async_write(bh)) { 1832 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc); 1833 nr_underway++; 1834 } 1835 bh = next; 1836 } while (bh != head); 1837 unlock_page(page); 1838 1839 err = 0; 1840 done: 1841 if (nr_underway == 0) { 1842 /* 1843 * The page was marked dirty, but the buffers were 1844 * clean. Someone wrote them back by hand with 1845 * ll_rw_block/submit_bh. A rare case. 1846 */ 1847 end_page_writeback(page); 1848 1849 /* 1850 * The page and buffer_heads can be released at any time from 1851 * here on. 1852 */ 1853 } 1854 return err; 1855 1856 recover: 1857 /* 1858 * ENOSPC, or some other error. We may already have added some 1859 * blocks to the file, so we need to write these out to avoid 1860 * exposing stale data. 1861 * The page is currently locked and not marked for writeback 1862 */ 1863 bh = head; 1864 /* Recovery: lock and submit the mapped buffers */ 1865 do { 1866 if (buffer_mapped(bh) && buffer_dirty(bh) && 1867 !buffer_delay(bh)) { 1868 lock_buffer(bh); 1869 mark_buffer_async_write_endio(bh, handler); 1870 } else { 1871 /* 1872 * The buffer may have been set dirty during 1873 * attachment to a dirty page. 1874 */ 1875 clear_buffer_dirty(bh); 1876 } 1877 } while ((bh = bh->b_this_page) != head); 1878 SetPageError(page); 1879 BUG_ON(PageWriteback(page)); 1880 mapping_set_error(page->mapping, err); 1881 set_page_writeback(page); 1882 do { 1883 struct buffer_head *next = bh->b_this_page; 1884 if (buffer_async_write(bh)) { 1885 clear_buffer_dirty(bh); 1886 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc); 1887 nr_underway++; 1888 } 1889 bh = next; 1890 } while (bh != head); 1891 unlock_page(page); 1892 goto done; 1893 } 1894 EXPORT_SYMBOL(__block_write_full_page); 1895 1896 /* 1897 * If a page has any new buffers, zero them out here, and mark them uptodate 1898 * and dirty so they'll be written out (in order to prevent uninitialised 1899 * block data from leaking). And clear the new bit. 1900 */ 1901 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1902 { 1903 unsigned int block_start, block_end; 1904 struct buffer_head *head, *bh; 1905 1906 BUG_ON(!PageLocked(page)); 1907 if (!page_has_buffers(page)) 1908 return; 1909 1910 bh = head = page_buffers(page); 1911 block_start = 0; 1912 do { 1913 block_end = block_start + bh->b_size; 1914 1915 if (buffer_new(bh)) { 1916 if (block_end > from && block_start < to) { 1917 if (!PageUptodate(page)) { 1918 unsigned start, size; 1919 1920 start = max(from, block_start); 1921 size = min(to, block_end) - start; 1922 1923 zero_user(page, start, size); 1924 set_buffer_uptodate(bh); 1925 } 1926 1927 clear_buffer_new(bh); 1928 mark_buffer_dirty(bh); 1929 } 1930 } 1931 1932 block_start = block_end; 1933 bh = bh->b_this_page; 1934 } while (bh != head); 1935 } 1936 EXPORT_SYMBOL(page_zero_new_buffers); 1937 1938 static void 1939 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1940 struct iomap *iomap) 1941 { 1942 loff_t offset = block << inode->i_blkbits; 1943 1944 bh->b_bdev = iomap->bdev; 1945 1946 /* 1947 * Block points to offset in file we need to map, iomap contains 1948 * the offset at which the map starts. If the map ends before the 1949 * current block, then do not map the buffer and let the caller 1950 * handle it. 1951 */ 1952 BUG_ON(offset >= iomap->offset + iomap->length); 1953 1954 switch (iomap->type) { 1955 case IOMAP_HOLE: 1956 /* 1957 * If the buffer is not up to date or beyond the current EOF, 1958 * we need to mark it as new to ensure sub-block zeroing is 1959 * executed if necessary. 1960 */ 1961 if (!buffer_uptodate(bh) || 1962 (offset >= i_size_read(inode))) 1963 set_buffer_new(bh); 1964 break; 1965 case IOMAP_DELALLOC: 1966 if (!buffer_uptodate(bh) || 1967 (offset >= i_size_read(inode))) 1968 set_buffer_new(bh); 1969 set_buffer_uptodate(bh); 1970 set_buffer_mapped(bh); 1971 set_buffer_delay(bh); 1972 break; 1973 case IOMAP_UNWRITTEN: 1974 /* 1975 * For unwritten regions, we always need to ensure that 1976 * sub-block writes cause the regions in the block we are not 1977 * writing to are zeroed. Set the buffer as new to ensure this. 1978 */ 1979 set_buffer_new(bh); 1980 set_buffer_unwritten(bh); 1981 /* FALLTHRU */ 1982 case IOMAP_MAPPED: 1983 if (offset >= i_size_read(inode)) 1984 set_buffer_new(bh); 1985 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) + 1986 ((offset - iomap->offset) >> inode->i_blkbits); 1987 set_buffer_mapped(bh); 1988 break; 1989 } 1990 } 1991 1992 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1993 get_block_t *get_block, struct iomap *iomap) 1994 { 1995 unsigned from = pos & (PAGE_SIZE - 1); 1996 unsigned to = from + len; 1997 struct inode *inode = page->mapping->host; 1998 unsigned block_start, block_end; 1999 sector_t block; 2000 int err = 0; 2001 unsigned blocksize, bbits; 2002 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2003 2004 BUG_ON(!PageLocked(page)); 2005 BUG_ON(from > PAGE_SIZE); 2006 BUG_ON(to > PAGE_SIZE); 2007 BUG_ON(from > to); 2008 2009 head = create_page_buffers(page, inode, 0); 2010 blocksize = head->b_size; 2011 bbits = block_size_bits(blocksize); 2012 2013 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 2014 2015 for(bh = head, block_start = 0; bh != head || !block_start; 2016 block++, block_start=block_end, bh = bh->b_this_page) { 2017 block_end = block_start + blocksize; 2018 if (block_end <= from || block_start >= to) { 2019 if (PageUptodate(page)) { 2020 if (!buffer_uptodate(bh)) 2021 set_buffer_uptodate(bh); 2022 } 2023 continue; 2024 } 2025 if (buffer_new(bh)) 2026 clear_buffer_new(bh); 2027 if (!buffer_mapped(bh)) { 2028 WARN_ON(bh->b_size != blocksize); 2029 if (get_block) { 2030 err = get_block(inode, block, bh, 1); 2031 if (err) 2032 break; 2033 } else { 2034 iomap_to_bh(inode, block, bh, iomap); 2035 } 2036 2037 if (buffer_new(bh)) { 2038 clean_bdev_bh_alias(bh); 2039 if (PageUptodate(page)) { 2040 clear_buffer_new(bh); 2041 set_buffer_uptodate(bh); 2042 mark_buffer_dirty(bh); 2043 continue; 2044 } 2045 if (block_end > to || block_start < from) 2046 zero_user_segments(page, 2047 to, block_end, 2048 block_start, from); 2049 continue; 2050 } 2051 } 2052 if (PageUptodate(page)) { 2053 if (!buffer_uptodate(bh)) 2054 set_buffer_uptodate(bh); 2055 continue; 2056 } 2057 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2058 !buffer_unwritten(bh) && 2059 (block_start < from || block_end > to)) { 2060 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2061 *wait_bh++=bh; 2062 } 2063 } 2064 /* 2065 * If we issued read requests - let them complete. 2066 */ 2067 while(wait_bh > wait) { 2068 wait_on_buffer(*--wait_bh); 2069 if (!buffer_uptodate(*wait_bh)) 2070 err = -EIO; 2071 } 2072 if (unlikely(err)) 2073 page_zero_new_buffers(page, from, to); 2074 return err; 2075 } 2076 2077 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2078 get_block_t *get_block) 2079 { 2080 return __block_write_begin_int(page, pos, len, get_block, NULL); 2081 } 2082 EXPORT_SYMBOL(__block_write_begin); 2083 2084 static int __block_commit_write(struct inode *inode, struct page *page, 2085 unsigned from, unsigned to) 2086 { 2087 unsigned block_start, block_end; 2088 int partial = 0; 2089 unsigned blocksize; 2090 struct buffer_head *bh, *head; 2091 2092 bh = head = page_buffers(page); 2093 blocksize = bh->b_size; 2094 2095 block_start = 0; 2096 do { 2097 block_end = block_start + blocksize; 2098 if (block_end <= from || block_start >= to) { 2099 if (!buffer_uptodate(bh)) 2100 partial = 1; 2101 } else { 2102 set_buffer_uptodate(bh); 2103 mark_buffer_dirty(bh); 2104 } 2105 clear_buffer_new(bh); 2106 2107 block_start = block_end; 2108 bh = bh->b_this_page; 2109 } while (bh != head); 2110 2111 /* 2112 * If this is a partial write which happened to make all buffers 2113 * uptodate then we can optimize away a bogus readpage() for 2114 * the next read(). Here we 'discover' whether the page went 2115 * uptodate as a result of this (potentially partial) write. 2116 */ 2117 if (!partial) 2118 SetPageUptodate(page); 2119 return 0; 2120 } 2121 2122 /* 2123 * block_write_begin takes care of the basic task of block allocation and 2124 * bringing partial write blocks uptodate first. 2125 * 2126 * The filesystem needs to handle block truncation upon failure. 2127 */ 2128 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2129 unsigned flags, struct page **pagep, get_block_t *get_block) 2130 { 2131 pgoff_t index = pos >> PAGE_SHIFT; 2132 struct page *page; 2133 int status; 2134 2135 page = grab_cache_page_write_begin(mapping, index, flags); 2136 if (!page) 2137 return -ENOMEM; 2138 2139 status = __block_write_begin(page, pos, len, get_block); 2140 if (unlikely(status)) { 2141 unlock_page(page); 2142 put_page(page); 2143 page = NULL; 2144 } 2145 2146 *pagep = page; 2147 return status; 2148 } 2149 EXPORT_SYMBOL(block_write_begin); 2150 2151 int block_write_end(struct file *file, struct address_space *mapping, 2152 loff_t pos, unsigned len, unsigned copied, 2153 struct page *page, void *fsdata) 2154 { 2155 struct inode *inode = mapping->host; 2156 unsigned start; 2157 2158 start = pos & (PAGE_SIZE - 1); 2159 2160 if (unlikely(copied < len)) { 2161 /* 2162 * The buffers that were written will now be uptodate, so we 2163 * don't have to worry about a readpage reading them and 2164 * overwriting a partial write. However if we have encountered 2165 * a short write and only partially written into a buffer, it 2166 * will not be marked uptodate, so a readpage might come in and 2167 * destroy our partial write. 2168 * 2169 * Do the simplest thing, and just treat any short write to a 2170 * non uptodate page as a zero-length write, and force the 2171 * caller to redo the whole thing. 2172 */ 2173 if (!PageUptodate(page)) 2174 copied = 0; 2175 2176 page_zero_new_buffers(page, start+copied, start+len); 2177 } 2178 flush_dcache_page(page); 2179 2180 /* This could be a short (even 0-length) commit */ 2181 __block_commit_write(inode, page, start, start+copied); 2182 2183 return copied; 2184 } 2185 EXPORT_SYMBOL(block_write_end); 2186 2187 int generic_write_end(struct file *file, struct address_space *mapping, 2188 loff_t pos, unsigned len, unsigned copied, 2189 struct page *page, void *fsdata) 2190 { 2191 struct inode *inode = mapping->host; 2192 loff_t old_size = inode->i_size; 2193 int i_size_changed = 0; 2194 2195 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2196 2197 /* 2198 * No need to use i_size_read() here, the i_size 2199 * cannot change under us because we hold i_mutex. 2200 * 2201 * But it's important to update i_size while still holding page lock: 2202 * page writeout could otherwise come in and zero beyond i_size. 2203 */ 2204 if (pos+copied > inode->i_size) { 2205 i_size_write(inode, pos+copied); 2206 i_size_changed = 1; 2207 } 2208 2209 unlock_page(page); 2210 put_page(page); 2211 2212 if (old_size < pos) 2213 pagecache_isize_extended(inode, old_size, pos); 2214 /* 2215 * Don't mark the inode dirty under page lock. First, it unnecessarily 2216 * makes the holding time of page lock longer. Second, it forces lock 2217 * ordering of page lock and transaction start for journaling 2218 * filesystems. 2219 */ 2220 if (i_size_changed) 2221 mark_inode_dirty(inode); 2222 2223 return copied; 2224 } 2225 EXPORT_SYMBOL(generic_write_end); 2226 2227 /* 2228 * block_is_partially_uptodate checks whether buffers within a page are 2229 * uptodate or not. 2230 * 2231 * Returns true if all buffers which correspond to a file portion 2232 * we want to read are uptodate. 2233 */ 2234 int block_is_partially_uptodate(struct page *page, unsigned long from, 2235 unsigned long count) 2236 { 2237 unsigned block_start, block_end, blocksize; 2238 unsigned to; 2239 struct buffer_head *bh, *head; 2240 int ret = 1; 2241 2242 if (!page_has_buffers(page)) 2243 return 0; 2244 2245 head = page_buffers(page); 2246 blocksize = head->b_size; 2247 to = min_t(unsigned, PAGE_SIZE - from, count); 2248 to = from + to; 2249 if (from < blocksize && to > PAGE_SIZE - blocksize) 2250 return 0; 2251 2252 bh = head; 2253 block_start = 0; 2254 do { 2255 block_end = block_start + blocksize; 2256 if (block_end > from && block_start < to) { 2257 if (!buffer_uptodate(bh)) { 2258 ret = 0; 2259 break; 2260 } 2261 if (block_end >= to) 2262 break; 2263 } 2264 block_start = block_end; 2265 bh = bh->b_this_page; 2266 } while (bh != head); 2267 2268 return ret; 2269 } 2270 EXPORT_SYMBOL(block_is_partially_uptodate); 2271 2272 /* 2273 * Generic "read page" function for block devices that have the normal 2274 * get_block functionality. This is most of the block device filesystems. 2275 * Reads the page asynchronously --- the unlock_buffer() and 2276 * set/clear_buffer_uptodate() functions propagate buffer state into the 2277 * page struct once IO has completed. 2278 */ 2279 int block_read_full_page(struct page *page, get_block_t *get_block) 2280 { 2281 struct inode *inode = page->mapping->host; 2282 sector_t iblock, lblock; 2283 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2284 unsigned int blocksize, bbits; 2285 int nr, i; 2286 int fully_mapped = 1; 2287 2288 head = create_page_buffers(page, inode, 0); 2289 blocksize = head->b_size; 2290 bbits = block_size_bits(blocksize); 2291 2292 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2293 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2294 bh = head; 2295 nr = 0; 2296 i = 0; 2297 2298 do { 2299 if (buffer_uptodate(bh)) 2300 continue; 2301 2302 if (!buffer_mapped(bh)) { 2303 int err = 0; 2304 2305 fully_mapped = 0; 2306 if (iblock < lblock) { 2307 WARN_ON(bh->b_size != blocksize); 2308 err = get_block(inode, iblock, bh, 0); 2309 if (err) 2310 SetPageError(page); 2311 } 2312 if (!buffer_mapped(bh)) { 2313 zero_user(page, i * blocksize, blocksize); 2314 if (!err) 2315 set_buffer_uptodate(bh); 2316 continue; 2317 } 2318 /* 2319 * get_block() might have updated the buffer 2320 * synchronously 2321 */ 2322 if (buffer_uptodate(bh)) 2323 continue; 2324 } 2325 arr[nr++] = bh; 2326 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2327 2328 if (fully_mapped) 2329 SetPageMappedToDisk(page); 2330 2331 if (!nr) { 2332 /* 2333 * All buffers are uptodate - we can set the page uptodate 2334 * as well. But not if get_block() returned an error. 2335 */ 2336 if (!PageError(page)) 2337 SetPageUptodate(page); 2338 unlock_page(page); 2339 return 0; 2340 } 2341 2342 /* Stage two: lock the buffers */ 2343 for (i = 0; i < nr; i++) { 2344 bh = arr[i]; 2345 lock_buffer(bh); 2346 mark_buffer_async_read(bh); 2347 } 2348 2349 /* 2350 * Stage 3: start the IO. Check for uptodateness 2351 * inside the buffer lock in case another process reading 2352 * the underlying blockdev brought it uptodate (the sct fix). 2353 */ 2354 for (i = 0; i < nr; i++) { 2355 bh = arr[i]; 2356 if (buffer_uptodate(bh)) 2357 end_buffer_async_read(bh, 1); 2358 else 2359 submit_bh(REQ_OP_READ, 0, bh); 2360 } 2361 return 0; 2362 } 2363 EXPORT_SYMBOL(block_read_full_page); 2364 2365 /* utility function for filesystems that need to do work on expanding 2366 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2367 * deal with the hole. 2368 */ 2369 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2370 { 2371 struct address_space *mapping = inode->i_mapping; 2372 struct page *page; 2373 void *fsdata; 2374 int err; 2375 2376 err = inode_newsize_ok(inode, size); 2377 if (err) 2378 goto out; 2379 2380 err = pagecache_write_begin(NULL, mapping, size, 0, 2381 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2382 &page, &fsdata); 2383 if (err) 2384 goto out; 2385 2386 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2387 BUG_ON(err > 0); 2388 2389 out: 2390 return err; 2391 } 2392 EXPORT_SYMBOL(generic_cont_expand_simple); 2393 2394 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2395 loff_t pos, loff_t *bytes) 2396 { 2397 struct inode *inode = mapping->host; 2398 unsigned blocksize = 1 << inode->i_blkbits; 2399 struct page *page; 2400 void *fsdata; 2401 pgoff_t index, curidx; 2402 loff_t curpos; 2403 unsigned zerofrom, offset, len; 2404 int err = 0; 2405 2406 index = pos >> PAGE_SHIFT; 2407 offset = pos & ~PAGE_MASK; 2408 2409 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2410 zerofrom = curpos & ~PAGE_MASK; 2411 if (zerofrom & (blocksize-1)) { 2412 *bytes |= (blocksize-1); 2413 (*bytes)++; 2414 } 2415 len = PAGE_SIZE - zerofrom; 2416 2417 err = pagecache_write_begin(file, mapping, curpos, len, 2418 AOP_FLAG_UNINTERRUPTIBLE, 2419 &page, &fsdata); 2420 if (err) 2421 goto out; 2422 zero_user(page, zerofrom, len); 2423 err = pagecache_write_end(file, mapping, curpos, len, len, 2424 page, fsdata); 2425 if (err < 0) 2426 goto out; 2427 BUG_ON(err != len); 2428 err = 0; 2429 2430 balance_dirty_pages_ratelimited(mapping); 2431 2432 if (unlikely(fatal_signal_pending(current))) { 2433 err = -EINTR; 2434 goto out; 2435 } 2436 } 2437 2438 /* page covers the boundary, find the boundary offset */ 2439 if (index == curidx) { 2440 zerofrom = curpos & ~PAGE_MASK; 2441 /* if we will expand the thing last block will be filled */ 2442 if (offset <= zerofrom) { 2443 goto out; 2444 } 2445 if (zerofrom & (blocksize-1)) { 2446 *bytes |= (blocksize-1); 2447 (*bytes)++; 2448 } 2449 len = offset - zerofrom; 2450 2451 err = pagecache_write_begin(file, mapping, curpos, len, 2452 AOP_FLAG_UNINTERRUPTIBLE, 2453 &page, &fsdata); 2454 if (err) 2455 goto out; 2456 zero_user(page, zerofrom, len); 2457 err = pagecache_write_end(file, mapping, curpos, len, len, 2458 page, fsdata); 2459 if (err < 0) 2460 goto out; 2461 BUG_ON(err != len); 2462 err = 0; 2463 } 2464 out: 2465 return err; 2466 } 2467 2468 /* 2469 * For moronic filesystems that do not allow holes in file. 2470 * We may have to extend the file. 2471 */ 2472 int cont_write_begin(struct file *file, struct address_space *mapping, 2473 loff_t pos, unsigned len, unsigned flags, 2474 struct page **pagep, void **fsdata, 2475 get_block_t *get_block, loff_t *bytes) 2476 { 2477 struct inode *inode = mapping->host; 2478 unsigned blocksize = 1 << inode->i_blkbits; 2479 unsigned zerofrom; 2480 int err; 2481 2482 err = cont_expand_zero(file, mapping, pos, bytes); 2483 if (err) 2484 return err; 2485 2486 zerofrom = *bytes & ~PAGE_MASK; 2487 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2488 *bytes |= (blocksize-1); 2489 (*bytes)++; 2490 } 2491 2492 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2493 } 2494 EXPORT_SYMBOL(cont_write_begin); 2495 2496 int block_commit_write(struct page *page, unsigned from, unsigned to) 2497 { 2498 struct inode *inode = page->mapping->host; 2499 __block_commit_write(inode,page,from,to); 2500 return 0; 2501 } 2502 EXPORT_SYMBOL(block_commit_write); 2503 2504 /* 2505 * block_page_mkwrite() is not allowed to change the file size as it gets 2506 * called from a page fault handler when a page is first dirtied. Hence we must 2507 * be careful to check for EOF conditions here. We set the page up correctly 2508 * for a written page which means we get ENOSPC checking when writing into 2509 * holes and correct delalloc and unwritten extent mapping on filesystems that 2510 * support these features. 2511 * 2512 * We are not allowed to take the i_mutex here so we have to play games to 2513 * protect against truncate races as the page could now be beyond EOF. Because 2514 * truncate writes the inode size before removing pages, once we have the 2515 * page lock we can determine safely if the page is beyond EOF. If it is not 2516 * beyond EOF, then the page is guaranteed safe against truncation until we 2517 * unlock the page. 2518 * 2519 * Direct callers of this function should protect against filesystem freezing 2520 * using sb_start_pagefault() - sb_end_pagefault() functions. 2521 */ 2522 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2523 get_block_t get_block) 2524 { 2525 struct page *page = vmf->page; 2526 struct inode *inode = file_inode(vma->vm_file); 2527 unsigned long end; 2528 loff_t size; 2529 int ret; 2530 2531 lock_page(page); 2532 size = i_size_read(inode); 2533 if ((page->mapping != inode->i_mapping) || 2534 (page_offset(page) > size)) { 2535 /* We overload EFAULT to mean page got truncated */ 2536 ret = -EFAULT; 2537 goto out_unlock; 2538 } 2539 2540 /* page is wholly or partially inside EOF */ 2541 if (((page->index + 1) << PAGE_SHIFT) > size) 2542 end = size & ~PAGE_MASK; 2543 else 2544 end = PAGE_SIZE; 2545 2546 ret = __block_write_begin(page, 0, end, get_block); 2547 if (!ret) 2548 ret = block_commit_write(page, 0, end); 2549 2550 if (unlikely(ret < 0)) 2551 goto out_unlock; 2552 set_page_dirty(page); 2553 wait_for_stable_page(page); 2554 return 0; 2555 out_unlock: 2556 unlock_page(page); 2557 return ret; 2558 } 2559 EXPORT_SYMBOL(block_page_mkwrite); 2560 2561 /* 2562 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2563 * immediately, while under the page lock. So it needs a special end_io 2564 * handler which does not touch the bh after unlocking it. 2565 */ 2566 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2567 { 2568 __end_buffer_read_notouch(bh, uptodate); 2569 } 2570 2571 /* 2572 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2573 * the page (converting it to circular linked list and taking care of page 2574 * dirty races). 2575 */ 2576 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2577 { 2578 struct buffer_head *bh; 2579 2580 BUG_ON(!PageLocked(page)); 2581 2582 spin_lock(&page->mapping->private_lock); 2583 bh = head; 2584 do { 2585 if (PageDirty(page)) 2586 set_buffer_dirty(bh); 2587 if (!bh->b_this_page) 2588 bh->b_this_page = head; 2589 bh = bh->b_this_page; 2590 } while (bh != head); 2591 attach_page_buffers(page, head); 2592 spin_unlock(&page->mapping->private_lock); 2593 } 2594 2595 /* 2596 * On entry, the page is fully not uptodate. 2597 * On exit the page is fully uptodate in the areas outside (from,to) 2598 * The filesystem needs to handle block truncation upon failure. 2599 */ 2600 int nobh_write_begin(struct address_space *mapping, 2601 loff_t pos, unsigned len, unsigned flags, 2602 struct page **pagep, void **fsdata, 2603 get_block_t *get_block) 2604 { 2605 struct inode *inode = mapping->host; 2606 const unsigned blkbits = inode->i_blkbits; 2607 const unsigned blocksize = 1 << blkbits; 2608 struct buffer_head *head, *bh; 2609 struct page *page; 2610 pgoff_t index; 2611 unsigned from, to; 2612 unsigned block_in_page; 2613 unsigned block_start, block_end; 2614 sector_t block_in_file; 2615 int nr_reads = 0; 2616 int ret = 0; 2617 int is_mapped_to_disk = 1; 2618 2619 index = pos >> PAGE_SHIFT; 2620 from = pos & (PAGE_SIZE - 1); 2621 to = from + len; 2622 2623 page = grab_cache_page_write_begin(mapping, index, flags); 2624 if (!page) 2625 return -ENOMEM; 2626 *pagep = page; 2627 *fsdata = NULL; 2628 2629 if (page_has_buffers(page)) { 2630 ret = __block_write_begin(page, pos, len, get_block); 2631 if (unlikely(ret)) 2632 goto out_release; 2633 return ret; 2634 } 2635 2636 if (PageMappedToDisk(page)) 2637 return 0; 2638 2639 /* 2640 * Allocate buffers so that we can keep track of state, and potentially 2641 * attach them to the page if an error occurs. In the common case of 2642 * no error, they will just be freed again without ever being attached 2643 * to the page (which is all OK, because we're under the page lock). 2644 * 2645 * Be careful: the buffer linked list is a NULL terminated one, rather 2646 * than the circular one we're used to. 2647 */ 2648 head = alloc_page_buffers(page, blocksize, 0); 2649 if (!head) { 2650 ret = -ENOMEM; 2651 goto out_release; 2652 } 2653 2654 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2655 2656 /* 2657 * We loop across all blocks in the page, whether or not they are 2658 * part of the affected region. This is so we can discover if the 2659 * page is fully mapped-to-disk. 2660 */ 2661 for (block_start = 0, block_in_page = 0, bh = head; 2662 block_start < PAGE_SIZE; 2663 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2664 int create; 2665 2666 block_end = block_start + blocksize; 2667 bh->b_state = 0; 2668 create = 1; 2669 if (block_start >= to) 2670 create = 0; 2671 ret = get_block(inode, block_in_file + block_in_page, 2672 bh, create); 2673 if (ret) 2674 goto failed; 2675 if (!buffer_mapped(bh)) 2676 is_mapped_to_disk = 0; 2677 if (buffer_new(bh)) 2678 clean_bdev_bh_alias(bh); 2679 if (PageUptodate(page)) { 2680 set_buffer_uptodate(bh); 2681 continue; 2682 } 2683 if (buffer_new(bh) || !buffer_mapped(bh)) { 2684 zero_user_segments(page, block_start, from, 2685 to, block_end); 2686 continue; 2687 } 2688 if (buffer_uptodate(bh)) 2689 continue; /* reiserfs does this */ 2690 if (block_start < from || block_end > to) { 2691 lock_buffer(bh); 2692 bh->b_end_io = end_buffer_read_nobh; 2693 submit_bh(REQ_OP_READ, 0, bh); 2694 nr_reads++; 2695 } 2696 } 2697 2698 if (nr_reads) { 2699 /* 2700 * The page is locked, so these buffers are protected from 2701 * any VM or truncate activity. Hence we don't need to care 2702 * for the buffer_head refcounts. 2703 */ 2704 for (bh = head; bh; bh = bh->b_this_page) { 2705 wait_on_buffer(bh); 2706 if (!buffer_uptodate(bh)) 2707 ret = -EIO; 2708 } 2709 if (ret) 2710 goto failed; 2711 } 2712 2713 if (is_mapped_to_disk) 2714 SetPageMappedToDisk(page); 2715 2716 *fsdata = head; /* to be released by nobh_write_end */ 2717 2718 return 0; 2719 2720 failed: 2721 BUG_ON(!ret); 2722 /* 2723 * Error recovery is a bit difficult. We need to zero out blocks that 2724 * were newly allocated, and dirty them to ensure they get written out. 2725 * Buffers need to be attached to the page at this point, otherwise 2726 * the handling of potential IO errors during writeout would be hard 2727 * (could try doing synchronous writeout, but what if that fails too?) 2728 */ 2729 attach_nobh_buffers(page, head); 2730 page_zero_new_buffers(page, from, to); 2731 2732 out_release: 2733 unlock_page(page); 2734 put_page(page); 2735 *pagep = NULL; 2736 2737 return ret; 2738 } 2739 EXPORT_SYMBOL(nobh_write_begin); 2740 2741 int nobh_write_end(struct file *file, struct address_space *mapping, 2742 loff_t pos, unsigned len, unsigned copied, 2743 struct page *page, void *fsdata) 2744 { 2745 struct inode *inode = page->mapping->host; 2746 struct buffer_head *head = fsdata; 2747 struct buffer_head *bh; 2748 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2749 2750 if (unlikely(copied < len) && head) 2751 attach_nobh_buffers(page, head); 2752 if (page_has_buffers(page)) 2753 return generic_write_end(file, mapping, pos, len, 2754 copied, page, fsdata); 2755 2756 SetPageUptodate(page); 2757 set_page_dirty(page); 2758 if (pos+copied > inode->i_size) { 2759 i_size_write(inode, pos+copied); 2760 mark_inode_dirty(inode); 2761 } 2762 2763 unlock_page(page); 2764 put_page(page); 2765 2766 while (head) { 2767 bh = head; 2768 head = head->b_this_page; 2769 free_buffer_head(bh); 2770 } 2771 2772 return copied; 2773 } 2774 EXPORT_SYMBOL(nobh_write_end); 2775 2776 /* 2777 * nobh_writepage() - based on block_full_write_page() except 2778 * that it tries to operate without attaching bufferheads to 2779 * the page. 2780 */ 2781 int nobh_writepage(struct page *page, get_block_t *get_block, 2782 struct writeback_control *wbc) 2783 { 2784 struct inode * const inode = page->mapping->host; 2785 loff_t i_size = i_size_read(inode); 2786 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2787 unsigned offset; 2788 int ret; 2789 2790 /* Is the page fully inside i_size? */ 2791 if (page->index < end_index) 2792 goto out; 2793 2794 /* Is the page fully outside i_size? (truncate in progress) */ 2795 offset = i_size & (PAGE_SIZE-1); 2796 if (page->index >= end_index+1 || !offset) { 2797 /* 2798 * The page may have dirty, unmapped buffers. For example, 2799 * they may have been added in ext3_writepage(). Make them 2800 * freeable here, so the page does not leak. 2801 */ 2802 #if 0 2803 /* Not really sure about this - do we need this ? */ 2804 if (page->mapping->a_ops->invalidatepage) 2805 page->mapping->a_ops->invalidatepage(page, offset); 2806 #endif 2807 unlock_page(page); 2808 return 0; /* don't care */ 2809 } 2810 2811 /* 2812 * The page straddles i_size. It must be zeroed out on each and every 2813 * writepage invocation because it may be mmapped. "A file is mapped 2814 * in multiples of the page size. For a file that is not a multiple of 2815 * the page size, the remaining memory is zeroed when mapped, and 2816 * writes to that region are not written out to the file." 2817 */ 2818 zero_user_segment(page, offset, PAGE_SIZE); 2819 out: 2820 ret = mpage_writepage(page, get_block, wbc); 2821 if (ret == -EAGAIN) 2822 ret = __block_write_full_page(inode, page, get_block, wbc, 2823 end_buffer_async_write); 2824 return ret; 2825 } 2826 EXPORT_SYMBOL(nobh_writepage); 2827 2828 int nobh_truncate_page(struct address_space *mapping, 2829 loff_t from, get_block_t *get_block) 2830 { 2831 pgoff_t index = from >> PAGE_SHIFT; 2832 unsigned offset = from & (PAGE_SIZE-1); 2833 unsigned blocksize; 2834 sector_t iblock; 2835 unsigned length, pos; 2836 struct inode *inode = mapping->host; 2837 struct page *page; 2838 struct buffer_head map_bh; 2839 int err; 2840 2841 blocksize = 1 << inode->i_blkbits; 2842 length = offset & (blocksize - 1); 2843 2844 /* Block boundary? Nothing to do */ 2845 if (!length) 2846 return 0; 2847 2848 length = blocksize - length; 2849 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2850 2851 page = grab_cache_page(mapping, index); 2852 err = -ENOMEM; 2853 if (!page) 2854 goto out; 2855 2856 if (page_has_buffers(page)) { 2857 has_buffers: 2858 unlock_page(page); 2859 put_page(page); 2860 return block_truncate_page(mapping, from, get_block); 2861 } 2862 2863 /* Find the buffer that contains "offset" */ 2864 pos = blocksize; 2865 while (offset >= pos) { 2866 iblock++; 2867 pos += blocksize; 2868 } 2869 2870 map_bh.b_size = blocksize; 2871 map_bh.b_state = 0; 2872 err = get_block(inode, iblock, &map_bh, 0); 2873 if (err) 2874 goto unlock; 2875 /* unmapped? It's a hole - nothing to do */ 2876 if (!buffer_mapped(&map_bh)) 2877 goto unlock; 2878 2879 /* Ok, it's mapped. Make sure it's up-to-date */ 2880 if (!PageUptodate(page)) { 2881 err = mapping->a_ops->readpage(NULL, page); 2882 if (err) { 2883 put_page(page); 2884 goto out; 2885 } 2886 lock_page(page); 2887 if (!PageUptodate(page)) { 2888 err = -EIO; 2889 goto unlock; 2890 } 2891 if (page_has_buffers(page)) 2892 goto has_buffers; 2893 } 2894 zero_user(page, offset, length); 2895 set_page_dirty(page); 2896 err = 0; 2897 2898 unlock: 2899 unlock_page(page); 2900 put_page(page); 2901 out: 2902 return err; 2903 } 2904 EXPORT_SYMBOL(nobh_truncate_page); 2905 2906 int block_truncate_page(struct address_space *mapping, 2907 loff_t from, get_block_t *get_block) 2908 { 2909 pgoff_t index = from >> PAGE_SHIFT; 2910 unsigned offset = from & (PAGE_SIZE-1); 2911 unsigned blocksize; 2912 sector_t iblock; 2913 unsigned length, pos; 2914 struct inode *inode = mapping->host; 2915 struct page *page; 2916 struct buffer_head *bh; 2917 int err; 2918 2919 blocksize = 1 << inode->i_blkbits; 2920 length = offset & (blocksize - 1); 2921 2922 /* Block boundary? Nothing to do */ 2923 if (!length) 2924 return 0; 2925 2926 length = blocksize - length; 2927 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2928 2929 page = grab_cache_page(mapping, index); 2930 err = -ENOMEM; 2931 if (!page) 2932 goto out; 2933 2934 if (!page_has_buffers(page)) 2935 create_empty_buffers(page, blocksize, 0); 2936 2937 /* Find the buffer that contains "offset" */ 2938 bh = page_buffers(page); 2939 pos = blocksize; 2940 while (offset >= pos) { 2941 bh = bh->b_this_page; 2942 iblock++; 2943 pos += blocksize; 2944 } 2945 2946 err = 0; 2947 if (!buffer_mapped(bh)) { 2948 WARN_ON(bh->b_size != blocksize); 2949 err = get_block(inode, iblock, bh, 0); 2950 if (err) 2951 goto unlock; 2952 /* unmapped? It's a hole - nothing to do */ 2953 if (!buffer_mapped(bh)) 2954 goto unlock; 2955 } 2956 2957 /* Ok, it's mapped. Make sure it's up-to-date */ 2958 if (PageUptodate(page)) 2959 set_buffer_uptodate(bh); 2960 2961 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2962 err = -EIO; 2963 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2964 wait_on_buffer(bh); 2965 /* Uhhuh. Read error. Complain and punt. */ 2966 if (!buffer_uptodate(bh)) 2967 goto unlock; 2968 } 2969 2970 zero_user(page, offset, length); 2971 mark_buffer_dirty(bh); 2972 err = 0; 2973 2974 unlock: 2975 unlock_page(page); 2976 put_page(page); 2977 out: 2978 return err; 2979 } 2980 EXPORT_SYMBOL(block_truncate_page); 2981 2982 /* 2983 * The generic ->writepage function for buffer-backed address_spaces 2984 */ 2985 int block_write_full_page(struct page *page, get_block_t *get_block, 2986 struct writeback_control *wbc) 2987 { 2988 struct inode * const inode = page->mapping->host; 2989 loff_t i_size = i_size_read(inode); 2990 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2991 unsigned offset; 2992 2993 /* Is the page fully inside i_size? */ 2994 if (page->index < end_index) 2995 return __block_write_full_page(inode, page, get_block, wbc, 2996 end_buffer_async_write); 2997 2998 /* Is the page fully outside i_size? (truncate in progress) */ 2999 offset = i_size & (PAGE_SIZE-1); 3000 if (page->index >= end_index+1 || !offset) { 3001 /* 3002 * The page may have dirty, unmapped buffers. For example, 3003 * they may have been added in ext3_writepage(). Make them 3004 * freeable here, so the page does not leak. 3005 */ 3006 do_invalidatepage(page, 0, PAGE_SIZE); 3007 unlock_page(page); 3008 return 0; /* don't care */ 3009 } 3010 3011 /* 3012 * The page straddles i_size. It must be zeroed out on each and every 3013 * writepage invocation because it may be mmapped. "A file is mapped 3014 * in multiples of the page size. For a file that is not a multiple of 3015 * the page size, the remaining memory is zeroed when mapped, and 3016 * writes to that region are not written out to the file." 3017 */ 3018 zero_user_segment(page, offset, PAGE_SIZE); 3019 return __block_write_full_page(inode, page, get_block, wbc, 3020 end_buffer_async_write); 3021 } 3022 EXPORT_SYMBOL(block_write_full_page); 3023 3024 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 3025 get_block_t *get_block) 3026 { 3027 struct buffer_head tmp; 3028 struct inode *inode = mapping->host; 3029 tmp.b_state = 0; 3030 tmp.b_blocknr = 0; 3031 tmp.b_size = 1 << inode->i_blkbits; 3032 get_block(inode, block, &tmp, 0); 3033 return tmp.b_blocknr; 3034 } 3035 EXPORT_SYMBOL(generic_block_bmap); 3036 3037 static void end_bio_bh_io_sync(struct bio *bio) 3038 { 3039 struct buffer_head *bh = bio->bi_private; 3040 3041 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3042 set_bit(BH_Quiet, &bh->b_state); 3043 3044 bh->b_end_io(bh, !bio->bi_error); 3045 bio_put(bio); 3046 } 3047 3048 /* 3049 * This allows us to do IO even on the odd last sectors 3050 * of a device, even if the block size is some multiple 3051 * of the physical sector size. 3052 * 3053 * We'll just truncate the bio to the size of the device, 3054 * and clear the end of the buffer head manually. 3055 * 3056 * Truly out-of-range accesses will turn into actual IO 3057 * errors, this only handles the "we need to be able to 3058 * do IO at the final sector" case. 3059 */ 3060 void guard_bio_eod(int op, struct bio *bio) 3061 { 3062 sector_t maxsector; 3063 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 3064 unsigned truncated_bytes; 3065 3066 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 3067 if (!maxsector) 3068 return; 3069 3070 /* 3071 * If the *whole* IO is past the end of the device, 3072 * let it through, and the IO layer will turn it into 3073 * an EIO. 3074 */ 3075 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3076 return; 3077 3078 maxsector -= bio->bi_iter.bi_sector; 3079 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3080 return; 3081 3082 /* Uhhuh. We've got a bio that straddles the device size! */ 3083 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3084 3085 /* Truncate the bio.. */ 3086 bio->bi_iter.bi_size -= truncated_bytes; 3087 bvec->bv_len -= truncated_bytes; 3088 3089 /* ..and clear the end of the buffer for reads */ 3090 if (op == REQ_OP_READ) { 3091 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 3092 truncated_bytes); 3093 } 3094 } 3095 3096 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3097 unsigned long bio_flags, struct writeback_control *wbc) 3098 { 3099 struct bio *bio; 3100 3101 BUG_ON(!buffer_locked(bh)); 3102 BUG_ON(!buffer_mapped(bh)); 3103 BUG_ON(!bh->b_end_io); 3104 BUG_ON(buffer_delay(bh)); 3105 BUG_ON(buffer_unwritten(bh)); 3106 3107 /* 3108 * Only clear out a write error when rewriting 3109 */ 3110 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3111 clear_buffer_write_io_error(bh); 3112 3113 /* 3114 * from here on down, it's all bio -- do the initial mapping, 3115 * submit_bio -> generic_make_request may further map this bio around 3116 */ 3117 bio = bio_alloc(GFP_NOIO, 1); 3118 3119 if (wbc) { 3120 wbc_init_bio(wbc, bio); 3121 wbc_account_io(wbc, bh->b_page, bh->b_size); 3122 } 3123 3124 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3125 bio->bi_bdev = bh->b_bdev; 3126 3127 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3128 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3129 3130 bio->bi_end_io = end_bio_bh_io_sync; 3131 bio->bi_private = bh; 3132 bio->bi_flags |= bio_flags; 3133 3134 /* Take care of bh's that straddle the end of the device */ 3135 guard_bio_eod(op, bio); 3136 3137 if (buffer_meta(bh)) 3138 op_flags |= REQ_META; 3139 if (buffer_prio(bh)) 3140 op_flags |= REQ_PRIO; 3141 bio_set_op_attrs(bio, op, op_flags); 3142 3143 submit_bio(bio); 3144 return 0; 3145 } 3146 3147 int _submit_bh(int op, int op_flags, struct buffer_head *bh, 3148 unsigned long bio_flags) 3149 { 3150 return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL); 3151 } 3152 EXPORT_SYMBOL_GPL(_submit_bh); 3153 3154 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3155 { 3156 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3157 } 3158 EXPORT_SYMBOL(submit_bh); 3159 3160 /** 3161 * ll_rw_block: low-level access to block devices (DEPRECATED) 3162 * @op: whether to %READ or %WRITE 3163 * @op_flags: req_flag_bits 3164 * @nr: number of &struct buffer_heads in the array 3165 * @bhs: array of pointers to &struct buffer_head 3166 * 3167 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3168 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3169 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3170 * %REQ_RAHEAD. 3171 * 3172 * This function drops any buffer that it cannot get a lock on (with the 3173 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3174 * request, and any buffer that appears to be up-to-date when doing read 3175 * request. Further it marks as clean buffers that are processed for 3176 * writing (the buffer cache won't assume that they are actually clean 3177 * until the buffer gets unlocked). 3178 * 3179 * ll_rw_block sets b_end_io to simple completion handler that marks 3180 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3181 * any waiters. 3182 * 3183 * All of the buffers must be for the same device, and must also be a 3184 * multiple of the current approved size for the device. 3185 */ 3186 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3187 { 3188 int i; 3189 3190 for (i = 0; i < nr; i++) { 3191 struct buffer_head *bh = bhs[i]; 3192 3193 if (!trylock_buffer(bh)) 3194 continue; 3195 if (op == WRITE) { 3196 if (test_clear_buffer_dirty(bh)) { 3197 bh->b_end_io = end_buffer_write_sync; 3198 get_bh(bh); 3199 submit_bh(op, op_flags, bh); 3200 continue; 3201 } 3202 } else { 3203 if (!buffer_uptodate(bh)) { 3204 bh->b_end_io = end_buffer_read_sync; 3205 get_bh(bh); 3206 submit_bh(op, op_flags, bh); 3207 continue; 3208 } 3209 } 3210 unlock_buffer(bh); 3211 } 3212 } 3213 EXPORT_SYMBOL(ll_rw_block); 3214 3215 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3216 { 3217 lock_buffer(bh); 3218 if (!test_clear_buffer_dirty(bh)) { 3219 unlock_buffer(bh); 3220 return; 3221 } 3222 bh->b_end_io = end_buffer_write_sync; 3223 get_bh(bh); 3224 submit_bh(REQ_OP_WRITE, op_flags, bh); 3225 } 3226 EXPORT_SYMBOL(write_dirty_buffer); 3227 3228 /* 3229 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3230 * and then start new I/O and then wait upon it. The caller must have a ref on 3231 * the buffer_head. 3232 */ 3233 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3234 { 3235 int ret = 0; 3236 3237 WARN_ON(atomic_read(&bh->b_count) < 1); 3238 lock_buffer(bh); 3239 if (test_clear_buffer_dirty(bh)) { 3240 get_bh(bh); 3241 bh->b_end_io = end_buffer_write_sync; 3242 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3243 wait_on_buffer(bh); 3244 if (!ret && !buffer_uptodate(bh)) 3245 ret = -EIO; 3246 } else { 3247 unlock_buffer(bh); 3248 } 3249 return ret; 3250 } 3251 EXPORT_SYMBOL(__sync_dirty_buffer); 3252 3253 int sync_dirty_buffer(struct buffer_head *bh) 3254 { 3255 return __sync_dirty_buffer(bh, REQ_SYNC); 3256 } 3257 EXPORT_SYMBOL(sync_dirty_buffer); 3258 3259 /* 3260 * try_to_free_buffers() checks if all the buffers on this particular page 3261 * are unused, and releases them if so. 3262 * 3263 * Exclusion against try_to_free_buffers may be obtained by either 3264 * locking the page or by holding its mapping's private_lock. 3265 * 3266 * If the page is dirty but all the buffers are clean then we need to 3267 * be sure to mark the page clean as well. This is because the page 3268 * may be against a block device, and a later reattachment of buffers 3269 * to a dirty page will set *all* buffers dirty. Which would corrupt 3270 * filesystem data on the same device. 3271 * 3272 * The same applies to regular filesystem pages: if all the buffers are 3273 * clean then we set the page clean and proceed. To do that, we require 3274 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3275 * private_lock. 3276 * 3277 * try_to_free_buffers() is non-blocking. 3278 */ 3279 static inline int buffer_busy(struct buffer_head *bh) 3280 { 3281 return atomic_read(&bh->b_count) | 3282 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3283 } 3284 3285 static int 3286 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3287 { 3288 struct buffer_head *head = page_buffers(page); 3289 struct buffer_head *bh; 3290 3291 bh = head; 3292 do { 3293 if (buffer_write_io_error(bh) && page->mapping) 3294 mapping_set_error(page->mapping, -EIO); 3295 if (buffer_busy(bh)) 3296 goto failed; 3297 bh = bh->b_this_page; 3298 } while (bh != head); 3299 3300 do { 3301 struct buffer_head *next = bh->b_this_page; 3302 3303 if (bh->b_assoc_map) 3304 __remove_assoc_queue(bh); 3305 bh = next; 3306 } while (bh != head); 3307 *buffers_to_free = head; 3308 __clear_page_buffers(page); 3309 return 1; 3310 failed: 3311 return 0; 3312 } 3313 3314 int try_to_free_buffers(struct page *page) 3315 { 3316 struct address_space * const mapping = page->mapping; 3317 struct buffer_head *buffers_to_free = NULL; 3318 int ret = 0; 3319 3320 BUG_ON(!PageLocked(page)); 3321 if (PageWriteback(page)) 3322 return 0; 3323 3324 if (mapping == NULL) { /* can this still happen? */ 3325 ret = drop_buffers(page, &buffers_to_free); 3326 goto out; 3327 } 3328 3329 spin_lock(&mapping->private_lock); 3330 ret = drop_buffers(page, &buffers_to_free); 3331 3332 /* 3333 * If the filesystem writes its buffers by hand (eg ext3) 3334 * then we can have clean buffers against a dirty page. We 3335 * clean the page here; otherwise the VM will never notice 3336 * that the filesystem did any IO at all. 3337 * 3338 * Also, during truncate, discard_buffer will have marked all 3339 * the page's buffers clean. We discover that here and clean 3340 * the page also. 3341 * 3342 * private_lock must be held over this entire operation in order 3343 * to synchronise against __set_page_dirty_buffers and prevent the 3344 * dirty bit from being lost. 3345 */ 3346 if (ret) 3347 cancel_dirty_page(page); 3348 spin_unlock(&mapping->private_lock); 3349 out: 3350 if (buffers_to_free) { 3351 struct buffer_head *bh = buffers_to_free; 3352 3353 do { 3354 struct buffer_head *next = bh->b_this_page; 3355 free_buffer_head(bh); 3356 bh = next; 3357 } while (bh != buffers_to_free); 3358 } 3359 return ret; 3360 } 3361 EXPORT_SYMBOL(try_to_free_buffers); 3362 3363 /* 3364 * There are no bdflush tunables left. But distributions are 3365 * still running obsolete flush daemons, so we terminate them here. 3366 * 3367 * Use of bdflush() is deprecated and will be removed in a future kernel. 3368 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3369 */ 3370 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3371 { 3372 static int msg_count; 3373 3374 if (!capable(CAP_SYS_ADMIN)) 3375 return -EPERM; 3376 3377 if (msg_count < 5) { 3378 msg_count++; 3379 printk(KERN_INFO 3380 "warning: process `%s' used the obsolete bdflush" 3381 " system call\n", current->comm); 3382 printk(KERN_INFO "Fix your initscripts?\n"); 3383 } 3384 3385 if (func == 1) 3386 do_exit(0); 3387 return 0; 3388 } 3389 3390 /* 3391 * Buffer-head allocation 3392 */ 3393 static struct kmem_cache *bh_cachep __read_mostly; 3394 3395 /* 3396 * Once the number of bh's in the machine exceeds this level, we start 3397 * stripping them in writeback. 3398 */ 3399 static unsigned long max_buffer_heads; 3400 3401 int buffer_heads_over_limit; 3402 3403 struct bh_accounting { 3404 int nr; /* Number of live bh's */ 3405 int ratelimit; /* Limit cacheline bouncing */ 3406 }; 3407 3408 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3409 3410 static void recalc_bh_state(void) 3411 { 3412 int i; 3413 int tot = 0; 3414 3415 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3416 return; 3417 __this_cpu_write(bh_accounting.ratelimit, 0); 3418 for_each_online_cpu(i) 3419 tot += per_cpu(bh_accounting, i).nr; 3420 buffer_heads_over_limit = (tot > max_buffer_heads); 3421 } 3422 3423 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3424 { 3425 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3426 if (ret) { 3427 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3428 preempt_disable(); 3429 __this_cpu_inc(bh_accounting.nr); 3430 recalc_bh_state(); 3431 preempt_enable(); 3432 } 3433 return ret; 3434 } 3435 EXPORT_SYMBOL(alloc_buffer_head); 3436 3437 void free_buffer_head(struct buffer_head *bh) 3438 { 3439 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3440 kmem_cache_free(bh_cachep, bh); 3441 preempt_disable(); 3442 __this_cpu_dec(bh_accounting.nr); 3443 recalc_bh_state(); 3444 preempt_enable(); 3445 } 3446 EXPORT_SYMBOL(free_buffer_head); 3447 3448 static int buffer_exit_cpu_dead(unsigned int cpu) 3449 { 3450 int i; 3451 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3452 3453 for (i = 0; i < BH_LRU_SIZE; i++) { 3454 brelse(b->bhs[i]); 3455 b->bhs[i] = NULL; 3456 } 3457 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3458 per_cpu(bh_accounting, cpu).nr = 0; 3459 return 0; 3460 } 3461 3462 /** 3463 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3464 * @bh: struct buffer_head 3465 * 3466 * Return true if the buffer is up-to-date and false, 3467 * with the buffer locked, if not. 3468 */ 3469 int bh_uptodate_or_lock(struct buffer_head *bh) 3470 { 3471 if (!buffer_uptodate(bh)) { 3472 lock_buffer(bh); 3473 if (!buffer_uptodate(bh)) 3474 return 0; 3475 unlock_buffer(bh); 3476 } 3477 return 1; 3478 } 3479 EXPORT_SYMBOL(bh_uptodate_or_lock); 3480 3481 /** 3482 * bh_submit_read - Submit a locked buffer for reading 3483 * @bh: struct buffer_head 3484 * 3485 * Returns zero on success and -EIO on error. 3486 */ 3487 int bh_submit_read(struct buffer_head *bh) 3488 { 3489 BUG_ON(!buffer_locked(bh)); 3490 3491 if (buffer_uptodate(bh)) { 3492 unlock_buffer(bh); 3493 return 0; 3494 } 3495 3496 get_bh(bh); 3497 bh->b_end_io = end_buffer_read_sync; 3498 submit_bh(REQ_OP_READ, 0, bh); 3499 wait_on_buffer(bh); 3500 if (buffer_uptodate(bh)) 3501 return 0; 3502 return -EIO; 3503 } 3504 EXPORT_SYMBOL(bh_submit_read); 3505 3506 void __init buffer_init(void) 3507 { 3508 unsigned long nrpages; 3509 int ret; 3510 3511 bh_cachep = kmem_cache_create("buffer_head", 3512 sizeof(struct buffer_head), 0, 3513 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3514 SLAB_MEM_SPREAD), 3515 NULL); 3516 3517 /* 3518 * Limit the bh occupancy to 10% of ZONE_NORMAL 3519 */ 3520 nrpages = (nr_free_buffer_pages() * 10) / 100; 3521 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3522 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3523 NULL, buffer_exit_cpu_dead); 3524 WARN_ON(ret < 0); 3525 } 3526