1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/backing-dev.h> 34 #include <linux/writeback.h> 35 #include <linux/hash.h> 36 #include <linux/suspend.h> 37 #include <linux/buffer_head.h> 38 #include <linux/task_io_accounting_ops.h> 39 #include <linux/bio.h> 40 #include <linux/notifier.h> 41 #include <linux/cpu.h> 42 #include <linux/bitops.h> 43 #include <linux/mpage.h> 44 #include <linux/bit_spinlock.h> 45 #include <trace/events/block.h> 46 47 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 48 static int submit_bh_wbc(int rw, struct buffer_head *bh, 49 unsigned long bio_flags, 50 struct writeback_control *wbc); 51 52 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 53 54 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 55 { 56 bh->b_end_io = handler; 57 bh->b_private = private; 58 } 59 EXPORT_SYMBOL(init_buffer); 60 61 inline void touch_buffer(struct buffer_head *bh) 62 { 63 trace_block_touch_buffer(bh); 64 mark_page_accessed(bh->b_page); 65 } 66 EXPORT_SYMBOL(touch_buffer); 67 68 void __lock_buffer(struct buffer_head *bh) 69 { 70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 71 } 72 EXPORT_SYMBOL(__lock_buffer); 73 74 void unlock_buffer(struct buffer_head *bh) 75 { 76 clear_bit_unlock(BH_Lock, &bh->b_state); 77 smp_mb__after_atomic(); 78 wake_up_bit(&bh->b_state, BH_Lock); 79 } 80 EXPORT_SYMBOL(unlock_buffer); 81 82 /* 83 * Returns if the page has dirty or writeback buffers. If all the buffers 84 * are unlocked and clean then the PageDirty information is stale. If 85 * any of the pages are locked, it is assumed they are locked for IO. 86 */ 87 void buffer_check_dirty_writeback(struct page *page, 88 bool *dirty, bool *writeback) 89 { 90 struct buffer_head *head, *bh; 91 *dirty = false; 92 *writeback = false; 93 94 BUG_ON(!PageLocked(page)); 95 96 if (!page_has_buffers(page)) 97 return; 98 99 if (PageWriteback(page)) 100 *writeback = true; 101 102 head = page_buffers(page); 103 bh = head; 104 do { 105 if (buffer_locked(bh)) 106 *writeback = true; 107 108 if (buffer_dirty(bh)) 109 *dirty = true; 110 111 bh = bh->b_this_page; 112 } while (bh != head); 113 } 114 EXPORT_SYMBOL(buffer_check_dirty_writeback); 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void 128 __clear_page_buffers(struct page *page) 129 { 130 ClearPagePrivate(page); 131 set_page_private(page, 0); 132 page_cache_release(page); 133 } 134 135 static void buffer_io_error(struct buffer_head *bh, char *msg) 136 { 137 if (!test_bit(BH_Quiet, &bh->b_state)) 138 printk_ratelimited(KERN_ERR 139 "Buffer I/O error on dev %pg, logical block %llu%s\n", 140 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 141 } 142 143 /* 144 * End-of-IO handler helper function which does not touch the bh after 145 * unlocking it. 146 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 147 * a race there is benign: unlock_buffer() only use the bh's address for 148 * hashing after unlocking the buffer, so it doesn't actually touch the bh 149 * itself. 150 */ 151 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 152 { 153 if (uptodate) { 154 set_buffer_uptodate(bh); 155 } else { 156 /* This happens, due to failed READA attempts. */ 157 clear_buffer_uptodate(bh); 158 } 159 unlock_buffer(bh); 160 } 161 162 /* 163 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 164 * unlock the buffer. This is what ll_rw_block uses too. 165 */ 166 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 167 { 168 __end_buffer_read_notouch(bh, uptodate); 169 put_bh(bh); 170 } 171 EXPORT_SYMBOL(end_buffer_read_sync); 172 173 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 174 { 175 if (uptodate) { 176 set_buffer_uptodate(bh); 177 } else { 178 buffer_io_error(bh, ", lost sync page write"); 179 set_buffer_write_io_error(bh); 180 clear_buffer_uptodate(bh); 181 } 182 unlock_buffer(bh); 183 put_bh(bh); 184 } 185 EXPORT_SYMBOL(end_buffer_write_sync); 186 187 /* 188 * Various filesystems appear to want __find_get_block to be non-blocking. 189 * But it's the page lock which protects the buffers. To get around this, 190 * we get exclusion from try_to_free_buffers with the blockdev mapping's 191 * private_lock. 192 * 193 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 194 * may be quite high. This code could TryLock the page, and if that 195 * succeeds, there is no need to take private_lock. (But if 196 * private_lock is contended then so is mapping->tree_lock). 197 */ 198 static struct buffer_head * 199 __find_get_block_slow(struct block_device *bdev, sector_t block) 200 { 201 struct inode *bd_inode = bdev->bd_inode; 202 struct address_space *bd_mapping = bd_inode->i_mapping; 203 struct buffer_head *ret = NULL; 204 pgoff_t index; 205 struct buffer_head *bh; 206 struct buffer_head *head; 207 struct page *page; 208 int all_mapped = 1; 209 210 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 211 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 212 if (!page) 213 goto out; 214 215 spin_lock(&bd_mapping->private_lock); 216 if (!page_has_buffers(page)) 217 goto out_unlock; 218 head = page_buffers(page); 219 bh = head; 220 do { 221 if (!buffer_mapped(bh)) 222 all_mapped = 0; 223 else if (bh->b_blocknr == block) { 224 ret = bh; 225 get_bh(bh); 226 goto out_unlock; 227 } 228 bh = bh->b_this_page; 229 } while (bh != head); 230 231 /* we might be here because some of the buffers on this page are 232 * not mapped. This is due to various races between 233 * file io on the block device and getblk. It gets dealt with 234 * elsewhere, don't buffer_error if we had some unmapped buffers 235 */ 236 if (all_mapped) { 237 printk("__find_get_block_slow() failed. " 238 "block=%llu, b_blocknr=%llu\n", 239 (unsigned long long)block, 240 (unsigned long long)bh->b_blocknr); 241 printk("b_state=0x%08lx, b_size=%zu\n", 242 bh->b_state, bh->b_size); 243 printk("device %pg blocksize: %d\n", bdev, 244 1 << bd_inode->i_blkbits); 245 } 246 out_unlock: 247 spin_unlock(&bd_mapping->private_lock); 248 page_cache_release(page); 249 out: 250 return ret; 251 } 252 253 /* 254 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 255 */ 256 static void free_more_memory(void) 257 { 258 struct zone *zone; 259 int nid; 260 261 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 262 yield(); 263 264 for_each_online_node(nid) { 265 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 266 gfp_zone(GFP_NOFS), NULL, 267 &zone); 268 if (zone) 269 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 270 GFP_NOFS, NULL); 271 } 272 } 273 274 /* 275 * I/O completion handler for block_read_full_page() - pages 276 * which come unlocked at the end of I/O. 277 */ 278 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 279 { 280 unsigned long flags; 281 struct buffer_head *first; 282 struct buffer_head *tmp; 283 struct page *page; 284 int page_uptodate = 1; 285 286 BUG_ON(!buffer_async_read(bh)); 287 288 page = bh->b_page; 289 if (uptodate) { 290 set_buffer_uptodate(bh); 291 } else { 292 clear_buffer_uptodate(bh); 293 buffer_io_error(bh, ", async page read"); 294 SetPageError(page); 295 } 296 297 /* 298 * Be _very_ careful from here on. Bad things can happen if 299 * two buffer heads end IO at almost the same time and both 300 * decide that the page is now completely done. 301 */ 302 first = page_buffers(page); 303 local_irq_save(flags); 304 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 305 clear_buffer_async_read(bh); 306 unlock_buffer(bh); 307 tmp = bh; 308 do { 309 if (!buffer_uptodate(tmp)) 310 page_uptodate = 0; 311 if (buffer_async_read(tmp)) { 312 BUG_ON(!buffer_locked(tmp)); 313 goto still_busy; 314 } 315 tmp = tmp->b_this_page; 316 } while (tmp != bh); 317 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 318 local_irq_restore(flags); 319 320 /* 321 * If none of the buffers had errors and they are all 322 * uptodate then we can set the page uptodate. 323 */ 324 if (page_uptodate && !PageError(page)) 325 SetPageUptodate(page); 326 unlock_page(page); 327 return; 328 329 still_busy: 330 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 331 local_irq_restore(flags); 332 return; 333 } 334 335 /* 336 * Completion handler for block_write_full_page() - pages which are unlocked 337 * during I/O, and which have PageWriteback cleared upon I/O completion. 338 */ 339 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 340 { 341 unsigned long flags; 342 struct buffer_head *first; 343 struct buffer_head *tmp; 344 struct page *page; 345 346 BUG_ON(!buffer_async_write(bh)); 347 348 page = bh->b_page; 349 if (uptodate) { 350 set_buffer_uptodate(bh); 351 } else { 352 buffer_io_error(bh, ", lost async page write"); 353 set_bit(AS_EIO, &page->mapping->flags); 354 set_buffer_write_io_error(bh); 355 clear_buffer_uptodate(bh); 356 SetPageError(page); 357 } 358 359 first = page_buffers(page); 360 local_irq_save(flags); 361 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 362 363 clear_buffer_async_write(bh); 364 unlock_buffer(bh); 365 tmp = bh->b_this_page; 366 while (tmp != bh) { 367 if (buffer_async_write(tmp)) { 368 BUG_ON(!buffer_locked(tmp)); 369 goto still_busy; 370 } 371 tmp = tmp->b_this_page; 372 } 373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 374 local_irq_restore(flags); 375 end_page_writeback(page); 376 return; 377 378 still_busy: 379 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 380 local_irq_restore(flags); 381 return; 382 } 383 EXPORT_SYMBOL(end_buffer_async_write); 384 385 /* 386 * If a page's buffers are under async readin (end_buffer_async_read 387 * completion) then there is a possibility that another thread of 388 * control could lock one of the buffers after it has completed 389 * but while some of the other buffers have not completed. This 390 * locked buffer would confuse end_buffer_async_read() into not unlocking 391 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 392 * that this buffer is not under async I/O. 393 * 394 * The page comes unlocked when it has no locked buffer_async buffers 395 * left. 396 * 397 * PageLocked prevents anyone starting new async I/O reads any of 398 * the buffers. 399 * 400 * PageWriteback is used to prevent simultaneous writeout of the same 401 * page. 402 * 403 * PageLocked prevents anyone from starting writeback of a page which is 404 * under read I/O (PageWriteback is only ever set against a locked page). 405 */ 406 static void mark_buffer_async_read(struct buffer_head *bh) 407 { 408 bh->b_end_io = end_buffer_async_read; 409 set_buffer_async_read(bh); 410 } 411 412 static void mark_buffer_async_write_endio(struct buffer_head *bh, 413 bh_end_io_t *handler) 414 { 415 bh->b_end_io = handler; 416 set_buffer_async_write(bh); 417 } 418 419 void mark_buffer_async_write(struct buffer_head *bh) 420 { 421 mark_buffer_async_write_endio(bh, end_buffer_async_write); 422 } 423 EXPORT_SYMBOL(mark_buffer_async_write); 424 425 426 /* 427 * fs/buffer.c contains helper functions for buffer-backed address space's 428 * fsync functions. A common requirement for buffer-based filesystems is 429 * that certain data from the backing blockdev needs to be written out for 430 * a successful fsync(). For example, ext2 indirect blocks need to be 431 * written back and waited upon before fsync() returns. 432 * 433 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 434 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 435 * management of a list of dependent buffers at ->i_mapping->private_list. 436 * 437 * Locking is a little subtle: try_to_free_buffers() will remove buffers 438 * from their controlling inode's queue when they are being freed. But 439 * try_to_free_buffers() will be operating against the *blockdev* mapping 440 * at the time, not against the S_ISREG file which depends on those buffers. 441 * So the locking for private_list is via the private_lock in the address_space 442 * which backs the buffers. Which is different from the address_space 443 * against which the buffers are listed. So for a particular address_space, 444 * mapping->private_lock does *not* protect mapping->private_list! In fact, 445 * mapping->private_list will always be protected by the backing blockdev's 446 * ->private_lock. 447 * 448 * Which introduces a requirement: all buffers on an address_space's 449 * ->private_list must be from the same address_space: the blockdev's. 450 * 451 * address_spaces which do not place buffers at ->private_list via these 452 * utility functions are free to use private_lock and private_list for 453 * whatever they want. The only requirement is that list_empty(private_list) 454 * be true at clear_inode() time. 455 * 456 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 457 * filesystems should do that. invalidate_inode_buffers() should just go 458 * BUG_ON(!list_empty). 459 * 460 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 461 * take an address_space, not an inode. And it should be called 462 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 463 * queued up. 464 * 465 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 466 * list if it is already on a list. Because if the buffer is on a list, 467 * it *must* already be on the right one. If not, the filesystem is being 468 * silly. This will save a ton of locking. But first we have to ensure 469 * that buffers are taken *off* the old inode's list when they are freed 470 * (presumably in truncate). That requires careful auditing of all 471 * filesystems (do it inside bforget()). It could also be done by bringing 472 * b_inode back. 473 */ 474 475 /* 476 * The buffer's backing address_space's private_lock must be held 477 */ 478 static void __remove_assoc_queue(struct buffer_head *bh) 479 { 480 list_del_init(&bh->b_assoc_buffers); 481 WARN_ON(!bh->b_assoc_map); 482 if (buffer_write_io_error(bh)) 483 set_bit(AS_EIO, &bh->b_assoc_map->flags); 484 bh->b_assoc_map = NULL; 485 } 486 487 int inode_has_buffers(struct inode *inode) 488 { 489 return !list_empty(&inode->i_data.private_list); 490 } 491 492 /* 493 * osync is designed to support O_SYNC io. It waits synchronously for 494 * all already-submitted IO to complete, but does not queue any new 495 * writes to the disk. 496 * 497 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 498 * you dirty the buffers, and then use osync_inode_buffers to wait for 499 * completion. Any other dirty buffers which are not yet queued for 500 * write will not be flushed to disk by the osync. 501 */ 502 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 503 { 504 struct buffer_head *bh; 505 struct list_head *p; 506 int err = 0; 507 508 spin_lock(lock); 509 repeat: 510 list_for_each_prev(p, list) { 511 bh = BH_ENTRY(p); 512 if (buffer_locked(bh)) { 513 get_bh(bh); 514 spin_unlock(lock); 515 wait_on_buffer(bh); 516 if (!buffer_uptodate(bh)) 517 err = -EIO; 518 brelse(bh); 519 spin_lock(lock); 520 goto repeat; 521 } 522 } 523 spin_unlock(lock); 524 return err; 525 } 526 527 static void do_thaw_one(struct super_block *sb, void *unused) 528 { 529 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 530 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 531 } 532 533 static void do_thaw_all(struct work_struct *work) 534 { 535 iterate_supers(do_thaw_one, NULL); 536 kfree(work); 537 printk(KERN_WARNING "Emergency Thaw complete\n"); 538 } 539 540 /** 541 * emergency_thaw_all -- forcibly thaw every frozen filesystem 542 * 543 * Used for emergency unfreeze of all filesystems via SysRq 544 */ 545 void emergency_thaw_all(void) 546 { 547 struct work_struct *work; 548 549 work = kmalloc(sizeof(*work), GFP_ATOMIC); 550 if (work) { 551 INIT_WORK(work, do_thaw_all); 552 schedule_work(work); 553 } 554 } 555 556 /** 557 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 558 * @mapping: the mapping which wants those buffers written 559 * 560 * Starts I/O against the buffers at mapping->private_list, and waits upon 561 * that I/O. 562 * 563 * Basically, this is a convenience function for fsync(). 564 * @mapping is a file or directory which needs those buffers to be written for 565 * a successful fsync(). 566 */ 567 int sync_mapping_buffers(struct address_space *mapping) 568 { 569 struct address_space *buffer_mapping = mapping->private_data; 570 571 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 572 return 0; 573 574 return fsync_buffers_list(&buffer_mapping->private_lock, 575 &mapping->private_list); 576 } 577 EXPORT_SYMBOL(sync_mapping_buffers); 578 579 /* 580 * Called when we've recently written block `bblock', and it is known that 581 * `bblock' was for a buffer_boundary() buffer. This means that the block at 582 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 583 * dirty, schedule it for IO. So that indirects merge nicely with their data. 584 */ 585 void write_boundary_block(struct block_device *bdev, 586 sector_t bblock, unsigned blocksize) 587 { 588 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 589 if (bh) { 590 if (buffer_dirty(bh)) 591 ll_rw_block(WRITE, 1, &bh); 592 put_bh(bh); 593 } 594 } 595 596 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 597 { 598 struct address_space *mapping = inode->i_mapping; 599 struct address_space *buffer_mapping = bh->b_page->mapping; 600 601 mark_buffer_dirty(bh); 602 if (!mapping->private_data) { 603 mapping->private_data = buffer_mapping; 604 } else { 605 BUG_ON(mapping->private_data != buffer_mapping); 606 } 607 if (!bh->b_assoc_map) { 608 spin_lock(&buffer_mapping->private_lock); 609 list_move_tail(&bh->b_assoc_buffers, 610 &mapping->private_list); 611 bh->b_assoc_map = mapping; 612 spin_unlock(&buffer_mapping->private_lock); 613 } 614 } 615 EXPORT_SYMBOL(mark_buffer_dirty_inode); 616 617 /* 618 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 619 * dirty. 620 * 621 * If warn is true, then emit a warning if the page is not uptodate and has 622 * not been truncated. 623 * 624 * The caller must hold mem_cgroup_begin_page_stat() lock. 625 */ 626 static void __set_page_dirty(struct page *page, struct address_space *mapping, 627 struct mem_cgroup *memcg, int warn) 628 { 629 unsigned long flags; 630 631 spin_lock_irqsave(&mapping->tree_lock, flags); 632 if (page->mapping) { /* Race with truncate? */ 633 WARN_ON_ONCE(warn && !PageUptodate(page)); 634 account_page_dirtied(page, mapping, memcg); 635 radix_tree_tag_set(&mapping->page_tree, 636 page_index(page), PAGECACHE_TAG_DIRTY); 637 } 638 spin_unlock_irqrestore(&mapping->tree_lock, flags); 639 } 640 641 /* 642 * Add a page to the dirty page list. 643 * 644 * It is a sad fact of life that this function is called from several places 645 * deeply under spinlocking. It may not sleep. 646 * 647 * If the page has buffers, the uptodate buffers are set dirty, to preserve 648 * dirty-state coherency between the page and the buffers. It the page does 649 * not have buffers then when they are later attached they will all be set 650 * dirty. 651 * 652 * The buffers are dirtied before the page is dirtied. There's a small race 653 * window in which a writepage caller may see the page cleanness but not the 654 * buffer dirtiness. That's fine. If this code were to set the page dirty 655 * before the buffers, a concurrent writepage caller could clear the page dirty 656 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 657 * page on the dirty page list. 658 * 659 * We use private_lock to lock against try_to_free_buffers while using the 660 * page's buffer list. Also use this to protect against clean buffers being 661 * added to the page after it was set dirty. 662 * 663 * FIXME: may need to call ->reservepage here as well. That's rather up to the 664 * address_space though. 665 */ 666 int __set_page_dirty_buffers(struct page *page) 667 { 668 int newly_dirty; 669 struct mem_cgroup *memcg; 670 struct address_space *mapping = page_mapping(page); 671 672 if (unlikely(!mapping)) 673 return !TestSetPageDirty(page); 674 675 spin_lock(&mapping->private_lock); 676 if (page_has_buffers(page)) { 677 struct buffer_head *head = page_buffers(page); 678 struct buffer_head *bh = head; 679 680 do { 681 set_buffer_dirty(bh); 682 bh = bh->b_this_page; 683 } while (bh != head); 684 } 685 /* 686 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with 687 * per-memcg dirty page counters. 688 */ 689 memcg = mem_cgroup_begin_page_stat(page); 690 newly_dirty = !TestSetPageDirty(page); 691 spin_unlock(&mapping->private_lock); 692 693 if (newly_dirty) 694 __set_page_dirty(page, mapping, memcg, 1); 695 696 mem_cgroup_end_page_stat(memcg); 697 698 if (newly_dirty) 699 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 700 701 return newly_dirty; 702 } 703 EXPORT_SYMBOL(__set_page_dirty_buffers); 704 705 /* 706 * Write out and wait upon a list of buffers. 707 * 708 * We have conflicting pressures: we want to make sure that all 709 * initially dirty buffers get waited on, but that any subsequently 710 * dirtied buffers don't. After all, we don't want fsync to last 711 * forever if somebody is actively writing to the file. 712 * 713 * Do this in two main stages: first we copy dirty buffers to a 714 * temporary inode list, queueing the writes as we go. Then we clean 715 * up, waiting for those writes to complete. 716 * 717 * During this second stage, any subsequent updates to the file may end 718 * up refiling the buffer on the original inode's dirty list again, so 719 * there is a chance we will end up with a buffer queued for write but 720 * not yet completed on that list. So, as a final cleanup we go through 721 * the osync code to catch these locked, dirty buffers without requeuing 722 * any newly dirty buffers for write. 723 */ 724 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 725 { 726 struct buffer_head *bh; 727 struct list_head tmp; 728 struct address_space *mapping; 729 int err = 0, err2; 730 struct blk_plug plug; 731 732 INIT_LIST_HEAD(&tmp); 733 blk_start_plug(&plug); 734 735 spin_lock(lock); 736 while (!list_empty(list)) { 737 bh = BH_ENTRY(list->next); 738 mapping = bh->b_assoc_map; 739 __remove_assoc_queue(bh); 740 /* Avoid race with mark_buffer_dirty_inode() which does 741 * a lockless check and we rely on seeing the dirty bit */ 742 smp_mb(); 743 if (buffer_dirty(bh) || buffer_locked(bh)) { 744 list_add(&bh->b_assoc_buffers, &tmp); 745 bh->b_assoc_map = mapping; 746 if (buffer_dirty(bh)) { 747 get_bh(bh); 748 spin_unlock(lock); 749 /* 750 * Ensure any pending I/O completes so that 751 * write_dirty_buffer() actually writes the 752 * current contents - it is a noop if I/O is 753 * still in flight on potentially older 754 * contents. 755 */ 756 write_dirty_buffer(bh, WRITE_SYNC); 757 758 /* 759 * Kick off IO for the previous mapping. Note 760 * that we will not run the very last mapping, 761 * wait_on_buffer() will do that for us 762 * through sync_buffer(). 763 */ 764 brelse(bh); 765 spin_lock(lock); 766 } 767 } 768 } 769 770 spin_unlock(lock); 771 blk_finish_plug(&plug); 772 spin_lock(lock); 773 774 while (!list_empty(&tmp)) { 775 bh = BH_ENTRY(tmp.prev); 776 get_bh(bh); 777 mapping = bh->b_assoc_map; 778 __remove_assoc_queue(bh); 779 /* Avoid race with mark_buffer_dirty_inode() which does 780 * a lockless check and we rely on seeing the dirty bit */ 781 smp_mb(); 782 if (buffer_dirty(bh)) { 783 list_add(&bh->b_assoc_buffers, 784 &mapping->private_list); 785 bh->b_assoc_map = mapping; 786 } 787 spin_unlock(lock); 788 wait_on_buffer(bh); 789 if (!buffer_uptodate(bh)) 790 err = -EIO; 791 brelse(bh); 792 spin_lock(lock); 793 } 794 795 spin_unlock(lock); 796 err2 = osync_buffers_list(lock, list); 797 if (err) 798 return err; 799 else 800 return err2; 801 } 802 803 /* 804 * Invalidate any and all dirty buffers on a given inode. We are 805 * probably unmounting the fs, but that doesn't mean we have already 806 * done a sync(). Just drop the buffers from the inode list. 807 * 808 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 809 * assumes that all the buffers are against the blockdev. Not true 810 * for reiserfs. 811 */ 812 void invalidate_inode_buffers(struct inode *inode) 813 { 814 if (inode_has_buffers(inode)) { 815 struct address_space *mapping = &inode->i_data; 816 struct list_head *list = &mapping->private_list; 817 struct address_space *buffer_mapping = mapping->private_data; 818 819 spin_lock(&buffer_mapping->private_lock); 820 while (!list_empty(list)) 821 __remove_assoc_queue(BH_ENTRY(list->next)); 822 spin_unlock(&buffer_mapping->private_lock); 823 } 824 } 825 EXPORT_SYMBOL(invalidate_inode_buffers); 826 827 /* 828 * Remove any clean buffers from the inode's buffer list. This is called 829 * when we're trying to free the inode itself. Those buffers can pin it. 830 * 831 * Returns true if all buffers were removed. 832 */ 833 int remove_inode_buffers(struct inode *inode) 834 { 835 int ret = 1; 836 837 if (inode_has_buffers(inode)) { 838 struct address_space *mapping = &inode->i_data; 839 struct list_head *list = &mapping->private_list; 840 struct address_space *buffer_mapping = mapping->private_data; 841 842 spin_lock(&buffer_mapping->private_lock); 843 while (!list_empty(list)) { 844 struct buffer_head *bh = BH_ENTRY(list->next); 845 if (buffer_dirty(bh)) { 846 ret = 0; 847 break; 848 } 849 __remove_assoc_queue(bh); 850 } 851 spin_unlock(&buffer_mapping->private_lock); 852 } 853 return ret; 854 } 855 856 /* 857 * Create the appropriate buffers when given a page for data area and 858 * the size of each buffer.. Use the bh->b_this_page linked list to 859 * follow the buffers created. Return NULL if unable to create more 860 * buffers. 861 * 862 * The retry flag is used to differentiate async IO (paging, swapping) 863 * which may not fail from ordinary buffer allocations. 864 */ 865 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 866 int retry) 867 { 868 struct buffer_head *bh, *head; 869 long offset; 870 871 try_again: 872 head = NULL; 873 offset = PAGE_SIZE; 874 while ((offset -= size) >= 0) { 875 bh = alloc_buffer_head(GFP_NOFS); 876 if (!bh) 877 goto no_grow; 878 879 bh->b_this_page = head; 880 bh->b_blocknr = -1; 881 head = bh; 882 883 bh->b_size = size; 884 885 /* Link the buffer to its page */ 886 set_bh_page(bh, page, offset); 887 } 888 return head; 889 /* 890 * In case anything failed, we just free everything we got. 891 */ 892 no_grow: 893 if (head) { 894 do { 895 bh = head; 896 head = head->b_this_page; 897 free_buffer_head(bh); 898 } while (head); 899 } 900 901 /* 902 * Return failure for non-async IO requests. Async IO requests 903 * are not allowed to fail, so we have to wait until buffer heads 904 * become available. But we don't want tasks sleeping with 905 * partially complete buffers, so all were released above. 906 */ 907 if (!retry) 908 return NULL; 909 910 /* We're _really_ low on memory. Now we just 911 * wait for old buffer heads to become free due to 912 * finishing IO. Since this is an async request and 913 * the reserve list is empty, we're sure there are 914 * async buffer heads in use. 915 */ 916 free_more_memory(); 917 goto try_again; 918 } 919 EXPORT_SYMBOL_GPL(alloc_page_buffers); 920 921 static inline void 922 link_dev_buffers(struct page *page, struct buffer_head *head) 923 { 924 struct buffer_head *bh, *tail; 925 926 bh = head; 927 do { 928 tail = bh; 929 bh = bh->b_this_page; 930 } while (bh); 931 tail->b_this_page = head; 932 attach_page_buffers(page, head); 933 } 934 935 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 936 { 937 sector_t retval = ~((sector_t)0); 938 loff_t sz = i_size_read(bdev->bd_inode); 939 940 if (sz) { 941 unsigned int sizebits = blksize_bits(size); 942 retval = (sz >> sizebits); 943 } 944 return retval; 945 } 946 947 /* 948 * Initialise the state of a blockdev page's buffers. 949 */ 950 static sector_t 951 init_page_buffers(struct page *page, struct block_device *bdev, 952 sector_t block, int size) 953 { 954 struct buffer_head *head = page_buffers(page); 955 struct buffer_head *bh = head; 956 int uptodate = PageUptodate(page); 957 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 958 959 do { 960 if (!buffer_mapped(bh)) { 961 init_buffer(bh, NULL, NULL); 962 bh->b_bdev = bdev; 963 bh->b_blocknr = block; 964 if (uptodate) 965 set_buffer_uptodate(bh); 966 if (block < end_block) 967 set_buffer_mapped(bh); 968 } 969 block++; 970 bh = bh->b_this_page; 971 } while (bh != head); 972 973 /* 974 * Caller needs to validate requested block against end of device. 975 */ 976 return end_block; 977 } 978 979 /* 980 * Create the page-cache page that contains the requested block. 981 * 982 * This is used purely for blockdev mappings. 983 */ 984 static int 985 grow_dev_page(struct block_device *bdev, sector_t block, 986 pgoff_t index, int size, int sizebits, gfp_t gfp) 987 { 988 struct inode *inode = bdev->bd_inode; 989 struct page *page; 990 struct buffer_head *bh; 991 sector_t end_block; 992 int ret = 0; /* Will call free_more_memory() */ 993 gfp_t gfp_mask; 994 995 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 996 997 /* 998 * XXX: __getblk_slow() can not really deal with failure and 999 * will endlessly loop on improvised global reclaim. Prefer 1000 * looping in the allocator rather than here, at least that 1001 * code knows what it's doing. 1002 */ 1003 gfp_mask |= __GFP_NOFAIL; 1004 1005 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 1006 if (!page) 1007 return ret; 1008 1009 BUG_ON(!PageLocked(page)); 1010 1011 if (page_has_buffers(page)) { 1012 bh = page_buffers(page); 1013 if (bh->b_size == size) { 1014 end_block = init_page_buffers(page, bdev, 1015 (sector_t)index << sizebits, 1016 size); 1017 goto done; 1018 } 1019 if (!try_to_free_buffers(page)) 1020 goto failed; 1021 } 1022 1023 /* 1024 * Allocate some buffers for this page 1025 */ 1026 bh = alloc_page_buffers(page, size, 0); 1027 if (!bh) 1028 goto failed; 1029 1030 /* 1031 * Link the page to the buffers and initialise them. Take the 1032 * lock to be atomic wrt __find_get_block(), which does not 1033 * run under the page lock. 1034 */ 1035 spin_lock(&inode->i_mapping->private_lock); 1036 link_dev_buffers(page, bh); 1037 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1038 size); 1039 spin_unlock(&inode->i_mapping->private_lock); 1040 done: 1041 ret = (block < end_block) ? 1 : -ENXIO; 1042 failed: 1043 unlock_page(page); 1044 page_cache_release(page); 1045 return ret; 1046 } 1047 1048 /* 1049 * Create buffers for the specified block device block's page. If 1050 * that page was dirty, the buffers are set dirty also. 1051 */ 1052 static int 1053 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1054 { 1055 pgoff_t index; 1056 int sizebits; 1057 1058 sizebits = -1; 1059 do { 1060 sizebits++; 1061 } while ((size << sizebits) < PAGE_SIZE); 1062 1063 index = block >> sizebits; 1064 1065 /* 1066 * Check for a block which wants to lie outside our maximum possible 1067 * pagecache index. (this comparison is done using sector_t types). 1068 */ 1069 if (unlikely(index != block >> sizebits)) { 1070 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1071 "device %pg\n", 1072 __func__, (unsigned long long)block, 1073 bdev); 1074 return -EIO; 1075 } 1076 1077 /* Create a page with the proper size buffers.. */ 1078 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1079 } 1080 1081 struct buffer_head * 1082 __getblk_slow(struct block_device *bdev, sector_t block, 1083 unsigned size, gfp_t gfp) 1084 { 1085 /* Size must be multiple of hard sectorsize */ 1086 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1087 (size < 512 || size > PAGE_SIZE))) { 1088 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1089 size); 1090 printk(KERN_ERR "logical block size: %d\n", 1091 bdev_logical_block_size(bdev)); 1092 1093 dump_stack(); 1094 return NULL; 1095 } 1096 1097 for (;;) { 1098 struct buffer_head *bh; 1099 int ret; 1100 1101 bh = __find_get_block(bdev, block, size); 1102 if (bh) 1103 return bh; 1104 1105 ret = grow_buffers(bdev, block, size, gfp); 1106 if (ret < 0) 1107 return NULL; 1108 if (ret == 0) 1109 free_more_memory(); 1110 } 1111 } 1112 EXPORT_SYMBOL(__getblk_slow); 1113 1114 /* 1115 * The relationship between dirty buffers and dirty pages: 1116 * 1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1118 * the page is tagged dirty in its radix tree. 1119 * 1120 * At all times, the dirtiness of the buffers represents the dirtiness of 1121 * subsections of the page. If the page has buffers, the page dirty bit is 1122 * merely a hint about the true dirty state. 1123 * 1124 * When a page is set dirty in its entirety, all its buffers are marked dirty 1125 * (if the page has buffers). 1126 * 1127 * When a buffer is marked dirty, its page is dirtied, but the page's other 1128 * buffers are not. 1129 * 1130 * Also. When blockdev buffers are explicitly read with bread(), they 1131 * individually become uptodate. But their backing page remains not 1132 * uptodate - even if all of its buffers are uptodate. A subsequent 1133 * block_read_full_page() against that page will discover all the uptodate 1134 * buffers, will set the page uptodate and will perform no I/O. 1135 */ 1136 1137 /** 1138 * mark_buffer_dirty - mark a buffer_head as needing writeout 1139 * @bh: the buffer_head to mark dirty 1140 * 1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1142 * backing page dirty, then tag the page as dirty in its address_space's radix 1143 * tree and then attach the address_space's inode to its superblock's dirty 1144 * inode list. 1145 * 1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1147 * mapping->tree_lock and mapping->host->i_lock. 1148 */ 1149 void mark_buffer_dirty(struct buffer_head *bh) 1150 { 1151 WARN_ON_ONCE(!buffer_uptodate(bh)); 1152 1153 trace_block_dirty_buffer(bh); 1154 1155 /* 1156 * Very *carefully* optimize the it-is-already-dirty case. 1157 * 1158 * Don't let the final "is it dirty" escape to before we 1159 * perhaps modified the buffer. 1160 */ 1161 if (buffer_dirty(bh)) { 1162 smp_mb(); 1163 if (buffer_dirty(bh)) 1164 return; 1165 } 1166 1167 if (!test_set_buffer_dirty(bh)) { 1168 struct page *page = bh->b_page; 1169 struct address_space *mapping = NULL; 1170 struct mem_cgroup *memcg; 1171 1172 memcg = mem_cgroup_begin_page_stat(page); 1173 if (!TestSetPageDirty(page)) { 1174 mapping = page_mapping(page); 1175 if (mapping) 1176 __set_page_dirty(page, mapping, memcg, 0); 1177 } 1178 mem_cgroup_end_page_stat(memcg); 1179 if (mapping) 1180 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1181 } 1182 } 1183 EXPORT_SYMBOL(mark_buffer_dirty); 1184 1185 /* 1186 * Decrement a buffer_head's reference count. If all buffers against a page 1187 * have zero reference count, are clean and unlocked, and if the page is clean 1188 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1189 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1190 * a page but it ends up not being freed, and buffers may later be reattached). 1191 */ 1192 void __brelse(struct buffer_head * buf) 1193 { 1194 if (atomic_read(&buf->b_count)) { 1195 put_bh(buf); 1196 return; 1197 } 1198 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1199 } 1200 EXPORT_SYMBOL(__brelse); 1201 1202 /* 1203 * bforget() is like brelse(), except it discards any 1204 * potentially dirty data. 1205 */ 1206 void __bforget(struct buffer_head *bh) 1207 { 1208 clear_buffer_dirty(bh); 1209 if (bh->b_assoc_map) { 1210 struct address_space *buffer_mapping = bh->b_page->mapping; 1211 1212 spin_lock(&buffer_mapping->private_lock); 1213 list_del_init(&bh->b_assoc_buffers); 1214 bh->b_assoc_map = NULL; 1215 spin_unlock(&buffer_mapping->private_lock); 1216 } 1217 __brelse(bh); 1218 } 1219 EXPORT_SYMBOL(__bforget); 1220 1221 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1222 { 1223 lock_buffer(bh); 1224 if (buffer_uptodate(bh)) { 1225 unlock_buffer(bh); 1226 return bh; 1227 } else { 1228 get_bh(bh); 1229 bh->b_end_io = end_buffer_read_sync; 1230 submit_bh(READ, bh); 1231 wait_on_buffer(bh); 1232 if (buffer_uptodate(bh)) 1233 return bh; 1234 } 1235 brelse(bh); 1236 return NULL; 1237 } 1238 1239 /* 1240 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1241 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1242 * refcount elevated by one when they're in an LRU. A buffer can only appear 1243 * once in a particular CPU's LRU. A single buffer can be present in multiple 1244 * CPU's LRUs at the same time. 1245 * 1246 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1247 * sb_find_get_block(). 1248 * 1249 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1250 * a local interrupt disable for that. 1251 */ 1252 1253 #define BH_LRU_SIZE 16 1254 1255 struct bh_lru { 1256 struct buffer_head *bhs[BH_LRU_SIZE]; 1257 }; 1258 1259 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1260 1261 #ifdef CONFIG_SMP 1262 #define bh_lru_lock() local_irq_disable() 1263 #define bh_lru_unlock() local_irq_enable() 1264 #else 1265 #define bh_lru_lock() preempt_disable() 1266 #define bh_lru_unlock() preempt_enable() 1267 #endif 1268 1269 static inline void check_irqs_on(void) 1270 { 1271 #ifdef irqs_disabled 1272 BUG_ON(irqs_disabled()); 1273 #endif 1274 } 1275 1276 /* 1277 * The LRU management algorithm is dopey-but-simple. Sorry. 1278 */ 1279 static void bh_lru_install(struct buffer_head *bh) 1280 { 1281 struct buffer_head *evictee = NULL; 1282 1283 check_irqs_on(); 1284 bh_lru_lock(); 1285 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1286 struct buffer_head *bhs[BH_LRU_SIZE]; 1287 int in; 1288 int out = 0; 1289 1290 get_bh(bh); 1291 bhs[out++] = bh; 1292 for (in = 0; in < BH_LRU_SIZE; in++) { 1293 struct buffer_head *bh2 = 1294 __this_cpu_read(bh_lrus.bhs[in]); 1295 1296 if (bh2 == bh) { 1297 __brelse(bh2); 1298 } else { 1299 if (out >= BH_LRU_SIZE) { 1300 BUG_ON(evictee != NULL); 1301 evictee = bh2; 1302 } else { 1303 bhs[out++] = bh2; 1304 } 1305 } 1306 } 1307 while (out < BH_LRU_SIZE) 1308 bhs[out++] = NULL; 1309 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1310 } 1311 bh_lru_unlock(); 1312 1313 if (evictee) 1314 __brelse(evictee); 1315 } 1316 1317 /* 1318 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1319 */ 1320 static struct buffer_head * 1321 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1322 { 1323 struct buffer_head *ret = NULL; 1324 unsigned int i; 1325 1326 check_irqs_on(); 1327 bh_lru_lock(); 1328 for (i = 0; i < BH_LRU_SIZE; i++) { 1329 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1330 1331 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1332 bh->b_size == size) { 1333 if (i) { 1334 while (i) { 1335 __this_cpu_write(bh_lrus.bhs[i], 1336 __this_cpu_read(bh_lrus.bhs[i - 1])); 1337 i--; 1338 } 1339 __this_cpu_write(bh_lrus.bhs[0], bh); 1340 } 1341 get_bh(bh); 1342 ret = bh; 1343 break; 1344 } 1345 } 1346 bh_lru_unlock(); 1347 return ret; 1348 } 1349 1350 /* 1351 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1352 * it in the LRU and mark it as accessed. If it is not present then return 1353 * NULL 1354 */ 1355 struct buffer_head * 1356 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1357 { 1358 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1359 1360 if (bh == NULL) { 1361 /* __find_get_block_slow will mark the page accessed */ 1362 bh = __find_get_block_slow(bdev, block); 1363 if (bh) 1364 bh_lru_install(bh); 1365 } else 1366 touch_buffer(bh); 1367 1368 return bh; 1369 } 1370 EXPORT_SYMBOL(__find_get_block); 1371 1372 /* 1373 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1374 * which corresponds to the passed block_device, block and size. The 1375 * returned buffer has its reference count incremented. 1376 * 1377 * __getblk_gfp() will lock up the machine if grow_dev_page's 1378 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1379 */ 1380 struct buffer_head * 1381 __getblk_gfp(struct block_device *bdev, sector_t block, 1382 unsigned size, gfp_t gfp) 1383 { 1384 struct buffer_head *bh = __find_get_block(bdev, block, size); 1385 1386 might_sleep(); 1387 if (bh == NULL) 1388 bh = __getblk_slow(bdev, block, size, gfp); 1389 return bh; 1390 } 1391 EXPORT_SYMBOL(__getblk_gfp); 1392 1393 /* 1394 * Do async read-ahead on a buffer.. 1395 */ 1396 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1397 { 1398 struct buffer_head *bh = __getblk(bdev, block, size); 1399 if (likely(bh)) { 1400 ll_rw_block(READA, 1, &bh); 1401 brelse(bh); 1402 } 1403 } 1404 EXPORT_SYMBOL(__breadahead); 1405 1406 /** 1407 * __bread_gfp() - reads a specified block and returns the bh 1408 * @bdev: the block_device to read from 1409 * @block: number of block 1410 * @size: size (in bytes) to read 1411 * @gfp: page allocation flag 1412 * 1413 * Reads a specified block, and returns buffer head that contains it. 1414 * The page cache can be allocated from non-movable area 1415 * not to prevent page migration if you set gfp to zero. 1416 * It returns NULL if the block was unreadable. 1417 */ 1418 struct buffer_head * 1419 __bread_gfp(struct block_device *bdev, sector_t block, 1420 unsigned size, gfp_t gfp) 1421 { 1422 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1423 1424 if (likely(bh) && !buffer_uptodate(bh)) 1425 bh = __bread_slow(bh); 1426 return bh; 1427 } 1428 EXPORT_SYMBOL(__bread_gfp); 1429 1430 /* 1431 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1432 * This doesn't race because it runs in each cpu either in irq 1433 * or with preempt disabled. 1434 */ 1435 static void invalidate_bh_lru(void *arg) 1436 { 1437 struct bh_lru *b = &get_cpu_var(bh_lrus); 1438 int i; 1439 1440 for (i = 0; i < BH_LRU_SIZE; i++) { 1441 brelse(b->bhs[i]); 1442 b->bhs[i] = NULL; 1443 } 1444 put_cpu_var(bh_lrus); 1445 } 1446 1447 static bool has_bh_in_lru(int cpu, void *dummy) 1448 { 1449 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1450 int i; 1451 1452 for (i = 0; i < BH_LRU_SIZE; i++) { 1453 if (b->bhs[i]) 1454 return 1; 1455 } 1456 1457 return 0; 1458 } 1459 1460 void invalidate_bh_lrus(void) 1461 { 1462 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1463 } 1464 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1465 1466 void set_bh_page(struct buffer_head *bh, 1467 struct page *page, unsigned long offset) 1468 { 1469 bh->b_page = page; 1470 BUG_ON(offset >= PAGE_SIZE); 1471 if (PageHighMem(page)) 1472 /* 1473 * This catches illegal uses and preserves the offset: 1474 */ 1475 bh->b_data = (char *)(0 + offset); 1476 else 1477 bh->b_data = page_address(page) + offset; 1478 } 1479 EXPORT_SYMBOL(set_bh_page); 1480 1481 /* 1482 * Called when truncating a buffer on a page completely. 1483 */ 1484 1485 /* Bits that are cleared during an invalidate */ 1486 #define BUFFER_FLAGS_DISCARD \ 1487 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1488 1 << BH_Delay | 1 << BH_Unwritten) 1489 1490 static void discard_buffer(struct buffer_head * bh) 1491 { 1492 unsigned long b_state, b_state_old; 1493 1494 lock_buffer(bh); 1495 clear_buffer_dirty(bh); 1496 bh->b_bdev = NULL; 1497 b_state = bh->b_state; 1498 for (;;) { 1499 b_state_old = cmpxchg(&bh->b_state, b_state, 1500 (b_state & ~BUFFER_FLAGS_DISCARD)); 1501 if (b_state_old == b_state) 1502 break; 1503 b_state = b_state_old; 1504 } 1505 unlock_buffer(bh); 1506 } 1507 1508 /** 1509 * block_invalidatepage - invalidate part or all of a buffer-backed page 1510 * 1511 * @page: the page which is affected 1512 * @offset: start of the range to invalidate 1513 * @length: length of the range to invalidate 1514 * 1515 * block_invalidatepage() is called when all or part of the page has become 1516 * invalidated by a truncate operation. 1517 * 1518 * block_invalidatepage() does not have to release all buffers, but it must 1519 * ensure that no dirty buffer is left outside @offset and that no I/O 1520 * is underway against any of the blocks which are outside the truncation 1521 * point. Because the caller is about to free (and possibly reuse) those 1522 * blocks on-disk. 1523 */ 1524 void block_invalidatepage(struct page *page, unsigned int offset, 1525 unsigned int length) 1526 { 1527 struct buffer_head *head, *bh, *next; 1528 unsigned int curr_off = 0; 1529 unsigned int stop = length + offset; 1530 1531 BUG_ON(!PageLocked(page)); 1532 if (!page_has_buffers(page)) 1533 goto out; 1534 1535 /* 1536 * Check for overflow 1537 */ 1538 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1539 1540 head = page_buffers(page); 1541 bh = head; 1542 do { 1543 unsigned int next_off = curr_off + bh->b_size; 1544 next = bh->b_this_page; 1545 1546 /* 1547 * Are we still fully in range ? 1548 */ 1549 if (next_off > stop) 1550 goto out; 1551 1552 /* 1553 * is this block fully invalidated? 1554 */ 1555 if (offset <= curr_off) 1556 discard_buffer(bh); 1557 curr_off = next_off; 1558 bh = next; 1559 } while (bh != head); 1560 1561 /* 1562 * We release buffers only if the entire page is being invalidated. 1563 * The get_block cached value has been unconditionally invalidated, 1564 * so real IO is not possible anymore. 1565 */ 1566 if (offset == 0) 1567 try_to_release_page(page, 0); 1568 out: 1569 return; 1570 } 1571 EXPORT_SYMBOL(block_invalidatepage); 1572 1573 1574 /* 1575 * We attach and possibly dirty the buffers atomically wrt 1576 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1577 * is already excluded via the page lock. 1578 */ 1579 void create_empty_buffers(struct page *page, 1580 unsigned long blocksize, unsigned long b_state) 1581 { 1582 struct buffer_head *bh, *head, *tail; 1583 1584 head = alloc_page_buffers(page, blocksize, 1); 1585 bh = head; 1586 do { 1587 bh->b_state |= b_state; 1588 tail = bh; 1589 bh = bh->b_this_page; 1590 } while (bh); 1591 tail->b_this_page = head; 1592 1593 spin_lock(&page->mapping->private_lock); 1594 if (PageUptodate(page) || PageDirty(page)) { 1595 bh = head; 1596 do { 1597 if (PageDirty(page)) 1598 set_buffer_dirty(bh); 1599 if (PageUptodate(page)) 1600 set_buffer_uptodate(bh); 1601 bh = bh->b_this_page; 1602 } while (bh != head); 1603 } 1604 attach_page_buffers(page, head); 1605 spin_unlock(&page->mapping->private_lock); 1606 } 1607 EXPORT_SYMBOL(create_empty_buffers); 1608 1609 /* 1610 * We are taking a block for data and we don't want any output from any 1611 * buffer-cache aliases starting from return from that function and 1612 * until the moment when something will explicitly mark the buffer 1613 * dirty (hopefully that will not happen until we will free that block ;-) 1614 * We don't even need to mark it not-uptodate - nobody can expect 1615 * anything from a newly allocated buffer anyway. We used to used 1616 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1617 * don't want to mark the alias unmapped, for example - it would confuse 1618 * anyone who might pick it with bread() afterwards... 1619 * 1620 * Also.. Note that bforget() doesn't lock the buffer. So there can 1621 * be writeout I/O going on against recently-freed buffers. We don't 1622 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1623 * only if we really need to. That happens here. 1624 */ 1625 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1626 { 1627 struct buffer_head *old_bh; 1628 1629 might_sleep(); 1630 1631 old_bh = __find_get_block_slow(bdev, block); 1632 if (old_bh) { 1633 clear_buffer_dirty(old_bh); 1634 wait_on_buffer(old_bh); 1635 clear_buffer_req(old_bh); 1636 __brelse(old_bh); 1637 } 1638 } 1639 EXPORT_SYMBOL(unmap_underlying_metadata); 1640 1641 /* 1642 * Size is a power-of-two in the range 512..PAGE_SIZE, 1643 * and the case we care about most is PAGE_SIZE. 1644 * 1645 * So this *could* possibly be written with those 1646 * constraints in mind (relevant mostly if some 1647 * architecture has a slow bit-scan instruction) 1648 */ 1649 static inline int block_size_bits(unsigned int blocksize) 1650 { 1651 return ilog2(blocksize); 1652 } 1653 1654 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1655 { 1656 BUG_ON(!PageLocked(page)); 1657 1658 if (!page_has_buffers(page)) 1659 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1660 return page_buffers(page); 1661 } 1662 1663 /* 1664 * NOTE! All mapped/uptodate combinations are valid: 1665 * 1666 * Mapped Uptodate Meaning 1667 * 1668 * No No "unknown" - must do get_block() 1669 * No Yes "hole" - zero-filled 1670 * Yes No "allocated" - allocated on disk, not read in 1671 * Yes Yes "valid" - allocated and up-to-date in memory. 1672 * 1673 * "Dirty" is valid only with the last case (mapped+uptodate). 1674 */ 1675 1676 /* 1677 * While block_write_full_page is writing back the dirty buffers under 1678 * the page lock, whoever dirtied the buffers may decide to clean them 1679 * again at any time. We handle that by only looking at the buffer 1680 * state inside lock_buffer(). 1681 * 1682 * If block_write_full_page() is called for regular writeback 1683 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1684 * locked buffer. This only can happen if someone has written the buffer 1685 * directly, with submit_bh(). At the address_space level PageWriteback 1686 * prevents this contention from occurring. 1687 * 1688 * If block_write_full_page() is called with wbc->sync_mode == 1689 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1690 * causes the writes to be flagged as synchronous writes. 1691 */ 1692 static int __block_write_full_page(struct inode *inode, struct page *page, 1693 get_block_t *get_block, struct writeback_control *wbc, 1694 bh_end_io_t *handler) 1695 { 1696 int err; 1697 sector_t block; 1698 sector_t last_block; 1699 struct buffer_head *bh, *head; 1700 unsigned int blocksize, bbits; 1701 int nr_underway = 0; 1702 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE); 1703 1704 head = create_page_buffers(page, inode, 1705 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1706 1707 /* 1708 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1709 * here, and the (potentially unmapped) buffers may become dirty at 1710 * any time. If a buffer becomes dirty here after we've inspected it 1711 * then we just miss that fact, and the page stays dirty. 1712 * 1713 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1714 * handle that here by just cleaning them. 1715 */ 1716 1717 bh = head; 1718 blocksize = bh->b_size; 1719 bbits = block_size_bits(blocksize); 1720 1721 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1722 last_block = (i_size_read(inode) - 1) >> bbits; 1723 1724 /* 1725 * Get all the dirty buffers mapped to disk addresses and 1726 * handle any aliases from the underlying blockdev's mapping. 1727 */ 1728 do { 1729 if (block > last_block) { 1730 /* 1731 * mapped buffers outside i_size will occur, because 1732 * this page can be outside i_size when there is a 1733 * truncate in progress. 1734 */ 1735 /* 1736 * The buffer was zeroed by block_write_full_page() 1737 */ 1738 clear_buffer_dirty(bh); 1739 set_buffer_uptodate(bh); 1740 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1741 buffer_dirty(bh)) { 1742 WARN_ON(bh->b_size != blocksize); 1743 err = get_block(inode, block, bh, 1); 1744 if (err) 1745 goto recover; 1746 clear_buffer_delay(bh); 1747 if (buffer_new(bh)) { 1748 /* blockdev mappings never come here */ 1749 clear_buffer_new(bh); 1750 unmap_underlying_metadata(bh->b_bdev, 1751 bh->b_blocknr); 1752 } 1753 } 1754 bh = bh->b_this_page; 1755 block++; 1756 } while (bh != head); 1757 1758 do { 1759 if (!buffer_mapped(bh)) 1760 continue; 1761 /* 1762 * If it's a fully non-blocking write attempt and we cannot 1763 * lock the buffer then redirty the page. Note that this can 1764 * potentially cause a busy-wait loop from writeback threads 1765 * and kswapd activity, but those code paths have their own 1766 * higher-level throttling. 1767 */ 1768 if (wbc->sync_mode != WB_SYNC_NONE) { 1769 lock_buffer(bh); 1770 } else if (!trylock_buffer(bh)) { 1771 redirty_page_for_writepage(wbc, page); 1772 continue; 1773 } 1774 if (test_clear_buffer_dirty(bh)) { 1775 mark_buffer_async_write_endio(bh, handler); 1776 } else { 1777 unlock_buffer(bh); 1778 } 1779 } while ((bh = bh->b_this_page) != head); 1780 1781 /* 1782 * The page and its buffers are protected by PageWriteback(), so we can 1783 * drop the bh refcounts early. 1784 */ 1785 BUG_ON(PageWriteback(page)); 1786 set_page_writeback(page); 1787 1788 do { 1789 struct buffer_head *next = bh->b_this_page; 1790 if (buffer_async_write(bh)) { 1791 submit_bh_wbc(write_op, bh, 0, wbc); 1792 nr_underway++; 1793 } 1794 bh = next; 1795 } while (bh != head); 1796 unlock_page(page); 1797 1798 err = 0; 1799 done: 1800 if (nr_underway == 0) { 1801 /* 1802 * The page was marked dirty, but the buffers were 1803 * clean. Someone wrote them back by hand with 1804 * ll_rw_block/submit_bh. A rare case. 1805 */ 1806 end_page_writeback(page); 1807 1808 /* 1809 * The page and buffer_heads can be released at any time from 1810 * here on. 1811 */ 1812 } 1813 return err; 1814 1815 recover: 1816 /* 1817 * ENOSPC, or some other error. We may already have added some 1818 * blocks to the file, so we need to write these out to avoid 1819 * exposing stale data. 1820 * The page is currently locked and not marked for writeback 1821 */ 1822 bh = head; 1823 /* Recovery: lock and submit the mapped buffers */ 1824 do { 1825 if (buffer_mapped(bh) && buffer_dirty(bh) && 1826 !buffer_delay(bh)) { 1827 lock_buffer(bh); 1828 mark_buffer_async_write_endio(bh, handler); 1829 } else { 1830 /* 1831 * The buffer may have been set dirty during 1832 * attachment to a dirty page. 1833 */ 1834 clear_buffer_dirty(bh); 1835 } 1836 } while ((bh = bh->b_this_page) != head); 1837 SetPageError(page); 1838 BUG_ON(PageWriteback(page)); 1839 mapping_set_error(page->mapping, err); 1840 set_page_writeback(page); 1841 do { 1842 struct buffer_head *next = bh->b_this_page; 1843 if (buffer_async_write(bh)) { 1844 clear_buffer_dirty(bh); 1845 submit_bh_wbc(write_op, bh, 0, wbc); 1846 nr_underway++; 1847 } 1848 bh = next; 1849 } while (bh != head); 1850 unlock_page(page); 1851 goto done; 1852 } 1853 1854 /* 1855 * If a page has any new buffers, zero them out here, and mark them uptodate 1856 * and dirty so they'll be written out (in order to prevent uninitialised 1857 * block data from leaking). And clear the new bit. 1858 */ 1859 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1860 { 1861 unsigned int block_start, block_end; 1862 struct buffer_head *head, *bh; 1863 1864 BUG_ON(!PageLocked(page)); 1865 if (!page_has_buffers(page)) 1866 return; 1867 1868 bh = head = page_buffers(page); 1869 block_start = 0; 1870 do { 1871 block_end = block_start + bh->b_size; 1872 1873 if (buffer_new(bh)) { 1874 if (block_end > from && block_start < to) { 1875 if (!PageUptodate(page)) { 1876 unsigned start, size; 1877 1878 start = max(from, block_start); 1879 size = min(to, block_end) - start; 1880 1881 zero_user(page, start, size); 1882 set_buffer_uptodate(bh); 1883 } 1884 1885 clear_buffer_new(bh); 1886 mark_buffer_dirty(bh); 1887 } 1888 } 1889 1890 block_start = block_end; 1891 bh = bh->b_this_page; 1892 } while (bh != head); 1893 } 1894 EXPORT_SYMBOL(page_zero_new_buffers); 1895 1896 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1897 get_block_t *get_block) 1898 { 1899 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1900 unsigned to = from + len; 1901 struct inode *inode = page->mapping->host; 1902 unsigned block_start, block_end; 1903 sector_t block; 1904 int err = 0; 1905 unsigned blocksize, bbits; 1906 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1907 1908 BUG_ON(!PageLocked(page)); 1909 BUG_ON(from > PAGE_CACHE_SIZE); 1910 BUG_ON(to > PAGE_CACHE_SIZE); 1911 BUG_ON(from > to); 1912 1913 head = create_page_buffers(page, inode, 0); 1914 blocksize = head->b_size; 1915 bbits = block_size_bits(blocksize); 1916 1917 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1918 1919 for(bh = head, block_start = 0; bh != head || !block_start; 1920 block++, block_start=block_end, bh = bh->b_this_page) { 1921 block_end = block_start + blocksize; 1922 if (block_end <= from || block_start >= to) { 1923 if (PageUptodate(page)) { 1924 if (!buffer_uptodate(bh)) 1925 set_buffer_uptodate(bh); 1926 } 1927 continue; 1928 } 1929 if (buffer_new(bh)) 1930 clear_buffer_new(bh); 1931 if (!buffer_mapped(bh)) { 1932 WARN_ON(bh->b_size != blocksize); 1933 err = get_block(inode, block, bh, 1); 1934 if (err) 1935 break; 1936 if (buffer_new(bh)) { 1937 unmap_underlying_metadata(bh->b_bdev, 1938 bh->b_blocknr); 1939 if (PageUptodate(page)) { 1940 clear_buffer_new(bh); 1941 set_buffer_uptodate(bh); 1942 mark_buffer_dirty(bh); 1943 continue; 1944 } 1945 if (block_end > to || block_start < from) 1946 zero_user_segments(page, 1947 to, block_end, 1948 block_start, from); 1949 continue; 1950 } 1951 } 1952 if (PageUptodate(page)) { 1953 if (!buffer_uptodate(bh)) 1954 set_buffer_uptodate(bh); 1955 continue; 1956 } 1957 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1958 !buffer_unwritten(bh) && 1959 (block_start < from || block_end > to)) { 1960 ll_rw_block(READ, 1, &bh); 1961 *wait_bh++=bh; 1962 } 1963 } 1964 /* 1965 * If we issued read requests - let them complete. 1966 */ 1967 while(wait_bh > wait) { 1968 wait_on_buffer(*--wait_bh); 1969 if (!buffer_uptodate(*wait_bh)) 1970 err = -EIO; 1971 } 1972 if (unlikely(err)) 1973 page_zero_new_buffers(page, from, to); 1974 return err; 1975 } 1976 EXPORT_SYMBOL(__block_write_begin); 1977 1978 static int __block_commit_write(struct inode *inode, struct page *page, 1979 unsigned from, unsigned to) 1980 { 1981 unsigned block_start, block_end; 1982 int partial = 0; 1983 unsigned blocksize; 1984 struct buffer_head *bh, *head; 1985 1986 bh = head = page_buffers(page); 1987 blocksize = bh->b_size; 1988 1989 block_start = 0; 1990 do { 1991 block_end = block_start + blocksize; 1992 if (block_end <= from || block_start >= to) { 1993 if (!buffer_uptodate(bh)) 1994 partial = 1; 1995 } else { 1996 set_buffer_uptodate(bh); 1997 mark_buffer_dirty(bh); 1998 } 1999 clear_buffer_new(bh); 2000 2001 block_start = block_end; 2002 bh = bh->b_this_page; 2003 } while (bh != head); 2004 2005 /* 2006 * If this is a partial write which happened to make all buffers 2007 * uptodate then we can optimize away a bogus readpage() for 2008 * the next read(). Here we 'discover' whether the page went 2009 * uptodate as a result of this (potentially partial) write. 2010 */ 2011 if (!partial) 2012 SetPageUptodate(page); 2013 return 0; 2014 } 2015 2016 /* 2017 * block_write_begin takes care of the basic task of block allocation and 2018 * bringing partial write blocks uptodate first. 2019 * 2020 * The filesystem needs to handle block truncation upon failure. 2021 */ 2022 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2023 unsigned flags, struct page **pagep, get_block_t *get_block) 2024 { 2025 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2026 struct page *page; 2027 int status; 2028 2029 page = grab_cache_page_write_begin(mapping, index, flags); 2030 if (!page) 2031 return -ENOMEM; 2032 2033 status = __block_write_begin(page, pos, len, get_block); 2034 if (unlikely(status)) { 2035 unlock_page(page); 2036 page_cache_release(page); 2037 page = NULL; 2038 } 2039 2040 *pagep = page; 2041 return status; 2042 } 2043 EXPORT_SYMBOL(block_write_begin); 2044 2045 int block_write_end(struct file *file, struct address_space *mapping, 2046 loff_t pos, unsigned len, unsigned copied, 2047 struct page *page, void *fsdata) 2048 { 2049 struct inode *inode = mapping->host; 2050 unsigned start; 2051 2052 start = pos & (PAGE_CACHE_SIZE - 1); 2053 2054 if (unlikely(copied < len)) { 2055 /* 2056 * The buffers that were written will now be uptodate, so we 2057 * don't have to worry about a readpage reading them and 2058 * overwriting a partial write. However if we have encountered 2059 * a short write and only partially written into a buffer, it 2060 * will not be marked uptodate, so a readpage might come in and 2061 * destroy our partial write. 2062 * 2063 * Do the simplest thing, and just treat any short write to a 2064 * non uptodate page as a zero-length write, and force the 2065 * caller to redo the whole thing. 2066 */ 2067 if (!PageUptodate(page)) 2068 copied = 0; 2069 2070 page_zero_new_buffers(page, start+copied, start+len); 2071 } 2072 flush_dcache_page(page); 2073 2074 /* This could be a short (even 0-length) commit */ 2075 __block_commit_write(inode, page, start, start+copied); 2076 2077 return copied; 2078 } 2079 EXPORT_SYMBOL(block_write_end); 2080 2081 int generic_write_end(struct file *file, struct address_space *mapping, 2082 loff_t pos, unsigned len, unsigned copied, 2083 struct page *page, void *fsdata) 2084 { 2085 struct inode *inode = mapping->host; 2086 loff_t old_size = inode->i_size; 2087 int i_size_changed = 0; 2088 2089 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2090 2091 /* 2092 * No need to use i_size_read() here, the i_size 2093 * cannot change under us because we hold i_mutex. 2094 * 2095 * But it's important to update i_size while still holding page lock: 2096 * page writeout could otherwise come in and zero beyond i_size. 2097 */ 2098 if (pos+copied > inode->i_size) { 2099 i_size_write(inode, pos+copied); 2100 i_size_changed = 1; 2101 } 2102 2103 unlock_page(page); 2104 page_cache_release(page); 2105 2106 if (old_size < pos) 2107 pagecache_isize_extended(inode, old_size, pos); 2108 /* 2109 * Don't mark the inode dirty under page lock. First, it unnecessarily 2110 * makes the holding time of page lock longer. Second, it forces lock 2111 * ordering of page lock and transaction start for journaling 2112 * filesystems. 2113 */ 2114 if (i_size_changed) 2115 mark_inode_dirty(inode); 2116 2117 return copied; 2118 } 2119 EXPORT_SYMBOL(generic_write_end); 2120 2121 /* 2122 * block_is_partially_uptodate checks whether buffers within a page are 2123 * uptodate or not. 2124 * 2125 * Returns true if all buffers which correspond to a file portion 2126 * we want to read are uptodate. 2127 */ 2128 int block_is_partially_uptodate(struct page *page, unsigned long from, 2129 unsigned long count) 2130 { 2131 unsigned block_start, block_end, blocksize; 2132 unsigned to; 2133 struct buffer_head *bh, *head; 2134 int ret = 1; 2135 2136 if (!page_has_buffers(page)) 2137 return 0; 2138 2139 head = page_buffers(page); 2140 blocksize = head->b_size; 2141 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count); 2142 to = from + to; 2143 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2144 return 0; 2145 2146 bh = head; 2147 block_start = 0; 2148 do { 2149 block_end = block_start + blocksize; 2150 if (block_end > from && block_start < to) { 2151 if (!buffer_uptodate(bh)) { 2152 ret = 0; 2153 break; 2154 } 2155 if (block_end >= to) 2156 break; 2157 } 2158 block_start = block_end; 2159 bh = bh->b_this_page; 2160 } while (bh != head); 2161 2162 return ret; 2163 } 2164 EXPORT_SYMBOL(block_is_partially_uptodate); 2165 2166 /* 2167 * Generic "read page" function for block devices that have the normal 2168 * get_block functionality. This is most of the block device filesystems. 2169 * Reads the page asynchronously --- the unlock_buffer() and 2170 * set/clear_buffer_uptodate() functions propagate buffer state into the 2171 * page struct once IO has completed. 2172 */ 2173 int block_read_full_page(struct page *page, get_block_t *get_block) 2174 { 2175 struct inode *inode = page->mapping->host; 2176 sector_t iblock, lblock; 2177 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2178 unsigned int blocksize, bbits; 2179 int nr, i; 2180 int fully_mapped = 1; 2181 2182 head = create_page_buffers(page, inode, 0); 2183 blocksize = head->b_size; 2184 bbits = block_size_bits(blocksize); 2185 2186 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 2187 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2188 bh = head; 2189 nr = 0; 2190 i = 0; 2191 2192 do { 2193 if (buffer_uptodate(bh)) 2194 continue; 2195 2196 if (!buffer_mapped(bh)) { 2197 int err = 0; 2198 2199 fully_mapped = 0; 2200 if (iblock < lblock) { 2201 WARN_ON(bh->b_size != blocksize); 2202 err = get_block(inode, iblock, bh, 0); 2203 if (err) 2204 SetPageError(page); 2205 } 2206 if (!buffer_mapped(bh)) { 2207 zero_user(page, i * blocksize, blocksize); 2208 if (!err) 2209 set_buffer_uptodate(bh); 2210 continue; 2211 } 2212 /* 2213 * get_block() might have updated the buffer 2214 * synchronously 2215 */ 2216 if (buffer_uptodate(bh)) 2217 continue; 2218 } 2219 arr[nr++] = bh; 2220 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2221 2222 if (fully_mapped) 2223 SetPageMappedToDisk(page); 2224 2225 if (!nr) { 2226 /* 2227 * All buffers are uptodate - we can set the page uptodate 2228 * as well. But not if get_block() returned an error. 2229 */ 2230 if (!PageError(page)) 2231 SetPageUptodate(page); 2232 unlock_page(page); 2233 return 0; 2234 } 2235 2236 /* Stage two: lock the buffers */ 2237 for (i = 0; i < nr; i++) { 2238 bh = arr[i]; 2239 lock_buffer(bh); 2240 mark_buffer_async_read(bh); 2241 } 2242 2243 /* 2244 * Stage 3: start the IO. Check for uptodateness 2245 * inside the buffer lock in case another process reading 2246 * the underlying blockdev brought it uptodate (the sct fix). 2247 */ 2248 for (i = 0; i < nr; i++) { 2249 bh = arr[i]; 2250 if (buffer_uptodate(bh)) 2251 end_buffer_async_read(bh, 1); 2252 else 2253 submit_bh(READ, bh); 2254 } 2255 return 0; 2256 } 2257 EXPORT_SYMBOL(block_read_full_page); 2258 2259 /* utility function for filesystems that need to do work on expanding 2260 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2261 * deal with the hole. 2262 */ 2263 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2264 { 2265 struct address_space *mapping = inode->i_mapping; 2266 struct page *page; 2267 void *fsdata; 2268 int err; 2269 2270 err = inode_newsize_ok(inode, size); 2271 if (err) 2272 goto out; 2273 2274 err = pagecache_write_begin(NULL, mapping, size, 0, 2275 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2276 &page, &fsdata); 2277 if (err) 2278 goto out; 2279 2280 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2281 BUG_ON(err > 0); 2282 2283 out: 2284 return err; 2285 } 2286 EXPORT_SYMBOL(generic_cont_expand_simple); 2287 2288 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2289 loff_t pos, loff_t *bytes) 2290 { 2291 struct inode *inode = mapping->host; 2292 unsigned blocksize = 1 << inode->i_blkbits; 2293 struct page *page; 2294 void *fsdata; 2295 pgoff_t index, curidx; 2296 loff_t curpos; 2297 unsigned zerofrom, offset, len; 2298 int err = 0; 2299 2300 index = pos >> PAGE_CACHE_SHIFT; 2301 offset = pos & ~PAGE_CACHE_MASK; 2302 2303 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2304 zerofrom = curpos & ~PAGE_CACHE_MASK; 2305 if (zerofrom & (blocksize-1)) { 2306 *bytes |= (blocksize-1); 2307 (*bytes)++; 2308 } 2309 len = PAGE_CACHE_SIZE - zerofrom; 2310 2311 err = pagecache_write_begin(file, mapping, curpos, len, 2312 AOP_FLAG_UNINTERRUPTIBLE, 2313 &page, &fsdata); 2314 if (err) 2315 goto out; 2316 zero_user(page, zerofrom, len); 2317 err = pagecache_write_end(file, mapping, curpos, len, len, 2318 page, fsdata); 2319 if (err < 0) 2320 goto out; 2321 BUG_ON(err != len); 2322 err = 0; 2323 2324 balance_dirty_pages_ratelimited(mapping); 2325 2326 if (unlikely(fatal_signal_pending(current))) { 2327 err = -EINTR; 2328 goto out; 2329 } 2330 } 2331 2332 /* page covers the boundary, find the boundary offset */ 2333 if (index == curidx) { 2334 zerofrom = curpos & ~PAGE_CACHE_MASK; 2335 /* if we will expand the thing last block will be filled */ 2336 if (offset <= zerofrom) { 2337 goto out; 2338 } 2339 if (zerofrom & (blocksize-1)) { 2340 *bytes |= (blocksize-1); 2341 (*bytes)++; 2342 } 2343 len = offset - zerofrom; 2344 2345 err = pagecache_write_begin(file, mapping, curpos, len, 2346 AOP_FLAG_UNINTERRUPTIBLE, 2347 &page, &fsdata); 2348 if (err) 2349 goto out; 2350 zero_user(page, zerofrom, len); 2351 err = pagecache_write_end(file, mapping, curpos, len, len, 2352 page, fsdata); 2353 if (err < 0) 2354 goto out; 2355 BUG_ON(err != len); 2356 err = 0; 2357 } 2358 out: 2359 return err; 2360 } 2361 2362 /* 2363 * For moronic filesystems that do not allow holes in file. 2364 * We may have to extend the file. 2365 */ 2366 int cont_write_begin(struct file *file, struct address_space *mapping, 2367 loff_t pos, unsigned len, unsigned flags, 2368 struct page **pagep, void **fsdata, 2369 get_block_t *get_block, loff_t *bytes) 2370 { 2371 struct inode *inode = mapping->host; 2372 unsigned blocksize = 1 << inode->i_blkbits; 2373 unsigned zerofrom; 2374 int err; 2375 2376 err = cont_expand_zero(file, mapping, pos, bytes); 2377 if (err) 2378 return err; 2379 2380 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2381 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2382 *bytes |= (blocksize-1); 2383 (*bytes)++; 2384 } 2385 2386 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2387 } 2388 EXPORT_SYMBOL(cont_write_begin); 2389 2390 int block_commit_write(struct page *page, unsigned from, unsigned to) 2391 { 2392 struct inode *inode = page->mapping->host; 2393 __block_commit_write(inode,page,from,to); 2394 return 0; 2395 } 2396 EXPORT_SYMBOL(block_commit_write); 2397 2398 /* 2399 * block_page_mkwrite() is not allowed to change the file size as it gets 2400 * called from a page fault handler when a page is first dirtied. Hence we must 2401 * be careful to check for EOF conditions here. We set the page up correctly 2402 * for a written page which means we get ENOSPC checking when writing into 2403 * holes and correct delalloc and unwritten extent mapping on filesystems that 2404 * support these features. 2405 * 2406 * We are not allowed to take the i_mutex here so we have to play games to 2407 * protect against truncate races as the page could now be beyond EOF. Because 2408 * truncate writes the inode size before removing pages, once we have the 2409 * page lock we can determine safely if the page is beyond EOF. If it is not 2410 * beyond EOF, then the page is guaranteed safe against truncation until we 2411 * unlock the page. 2412 * 2413 * Direct callers of this function should protect against filesystem freezing 2414 * using sb_start_pagefault() - sb_end_pagefault() functions. 2415 */ 2416 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2417 get_block_t get_block) 2418 { 2419 struct page *page = vmf->page; 2420 struct inode *inode = file_inode(vma->vm_file); 2421 unsigned long end; 2422 loff_t size; 2423 int ret; 2424 2425 lock_page(page); 2426 size = i_size_read(inode); 2427 if ((page->mapping != inode->i_mapping) || 2428 (page_offset(page) > size)) { 2429 /* We overload EFAULT to mean page got truncated */ 2430 ret = -EFAULT; 2431 goto out_unlock; 2432 } 2433 2434 /* page is wholly or partially inside EOF */ 2435 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2436 end = size & ~PAGE_CACHE_MASK; 2437 else 2438 end = PAGE_CACHE_SIZE; 2439 2440 ret = __block_write_begin(page, 0, end, get_block); 2441 if (!ret) 2442 ret = block_commit_write(page, 0, end); 2443 2444 if (unlikely(ret < 0)) 2445 goto out_unlock; 2446 set_page_dirty(page); 2447 wait_for_stable_page(page); 2448 return 0; 2449 out_unlock: 2450 unlock_page(page); 2451 return ret; 2452 } 2453 EXPORT_SYMBOL(block_page_mkwrite); 2454 2455 /* 2456 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2457 * immediately, while under the page lock. So it needs a special end_io 2458 * handler which does not touch the bh after unlocking it. 2459 */ 2460 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2461 { 2462 __end_buffer_read_notouch(bh, uptodate); 2463 } 2464 2465 /* 2466 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2467 * the page (converting it to circular linked list and taking care of page 2468 * dirty races). 2469 */ 2470 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2471 { 2472 struct buffer_head *bh; 2473 2474 BUG_ON(!PageLocked(page)); 2475 2476 spin_lock(&page->mapping->private_lock); 2477 bh = head; 2478 do { 2479 if (PageDirty(page)) 2480 set_buffer_dirty(bh); 2481 if (!bh->b_this_page) 2482 bh->b_this_page = head; 2483 bh = bh->b_this_page; 2484 } while (bh != head); 2485 attach_page_buffers(page, head); 2486 spin_unlock(&page->mapping->private_lock); 2487 } 2488 2489 /* 2490 * On entry, the page is fully not uptodate. 2491 * On exit the page is fully uptodate in the areas outside (from,to) 2492 * The filesystem needs to handle block truncation upon failure. 2493 */ 2494 int nobh_write_begin(struct address_space *mapping, 2495 loff_t pos, unsigned len, unsigned flags, 2496 struct page **pagep, void **fsdata, 2497 get_block_t *get_block) 2498 { 2499 struct inode *inode = mapping->host; 2500 const unsigned blkbits = inode->i_blkbits; 2501 const unsigned blocksize = 1 << blkbits; 2502 struct buffer_head *head, *bh; 2503 struct page *page; 2504 pgoff_t index; 2505 unsigned from, to; 2506 unsigned block_in_page; 2507 unsigned block_start, block_end; 2508 sector_t block_in_file; 2509 int nr_reads = 0; 2510 int ret = 0; 2511 int is_mapped_to_disk = 1; 2512 2513 index = pos >> PAGE_CACHE_SHIFT; 2514 from = pos & (PAGE_CACHE_SIZE - 1); 2515 to = from + len; 2516 2517 page = grab_cache_page_write_begin(mapping, index, flags); 2518 if (!page) 2519 return -ENOMEM; 2520 *pagep = page; 2521 *fsdata = NULL; 2522 2523 if (page_has_buffers(page)) { 2524 ret = __block_write_begin(page, pos, len, get_block); 2525 if (unlikely(ret)) 2526 goto out_release; 2527 return ret; 2528 } 2529 2530 if (PageMappedToDisk(page)) 2531 return 0; 2532 2533 /* 2534 * Allocate buffers so that we can keep track of state, and potentially 2535 * attach them to the page if an error occurs. In the common case of 2536 * no error, they will just be freed again without ever being attached 2537 * to the page (which is all OK, because we're under the page lock). 2538 * 2539 * Be careful: the buffer linked list is a NULL terminated one, rather 2540 * than the circular one we're used to. 2541 */ 2542 head = alloc_page_buffers(page, blocksize, 0); 2543 if (!head) { 2544 ret = -ENOMEM; 2545 goto out_release; 2546 } 2547 2548 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2549 2550 /* 2551 * We loop across all blocks in the page, whether or not they are 2552 * part of the affected region. This is so we can discover if the 2553 * page is fully mapped-to-disk. 2554 */ 2555 for (block_start = 0, block_in_page = 0, bh = head; 2556 block_start < PAGE_CACHE_SIZE; 2557 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2558 int create; 2559 2560 block_end = block_start + blocksize; 2561 bh->b_state = 0; 2562 create = 1; 2563 if (block_start >= to) 2564 create = 0; 2565 ret = get_block(inode, block_in_file + block_in_page, 2566 bh, create); 2567 if (ret) 2568 goto failed; 2569 if (!buffer_mapped(bh)) 2570 is_mapped_to_disk = 0; 2571 if (buffer_new(bh)) 2572 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2573 if (PageUptodate(page)) { 2574 set_buffer_uptodate(bh); 2575 continue; 2576 } 2577 if (buffer_new(bh) || !buffer_mapped(bh)) { 2578 zero_user_segments(page, block_start, from, 2579 to, block_end); 2580 continue; 2581 } 2582 if (buffer_uptodate(bh)) 2583 continue; /* reiserfs does this */ 2584 if (block_start < from || block_end > to) { 2585 lock_buffer(bh); 2586 bh->b_end_io = end_buffer_read_nobh; 2587 submit_bh(READ, bh); 2588 nr_reads++; 2589 } 2590 } 2591 2592 if (nr_reads) { 2593 /* 2594 * The page is locked, so these buffers are protected from 2595 * any VM or truncate activity. Hence we don't need to care 2596 * for the buffer_head refcounts. 2597 */ 2598 for (bh = head; bh; bh = bh->b_this_page) { 2599 wait_on_buffer(bh); 2600 if (!buffer_uptodate(bh)) 2601 ret = -EIO; 2602 } 2603 if (ret) 2604 goto failed; 2605 } 2606 2607 if (is_mapped_to_disk) 2608 SetPageMappedToDisk(page); 2609 2610 *fsdata = head; /* to be released by nobh_write_end */ 2611 2612 return 0; 2613 2614 failed: 2615 BUG_ON(!ret); 2616 /* 2617 * Error recovery is a bit difficult. We need to zero out blocks that 2618 * were newly allocated, and dirty them to ensure they get written out. 2619 * Buffers need to be attached to the page at this point, otherwise 2620 * the handling of potential IO errors during writeout would be hard 2621 * (could try doing synchronous writeout, but what if that fails too?) 2622 */ 2623 attach_nobh_buffers(page, head); 2624 page_zero_new_buffers(page, from, to); 2625 2626 out_release: 2627 unlock_page(page); 2628 page_cache_release(page); 2629 *pagep = NULL; 2630 2631 return ret; 2632 } 2633 EXPORT_SYMBOL(nobh_write_begin); 2634 2635 int nobh_write_end(struct file *file, struct address_space *mapping, 2636 loff_t pos, unsigned len, unsigned copied, 2637 struct page *page, void *fsdata) 2638 { 2639 struct inode *inode = page->mapping->host; 2640 struct buffer_head *head = fsdata; 2641 struct buffer_head *bh; 2642 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2643 2644 if (unlikely(copied < len) && head) 2645 attach_nobh_buffers(page, head); 2646 if (page_has_buffers(page)) 2647 return generic_write_end(file, mapping, pos, len, 2648 copied, page, fsdata); 2649 2650 SetPageUptodate(page); 2651 set_page_dirty(page); 2652 if (pos+copied > inode->i_size) { 2653 i_size_write(inode, pos+copied); 2654 mark_inode_dirty(inode); 2655 } 2656 2657 unlock_page(page); 2658 page_cache_release(page); 2659 2660 while (head) { 2661 bh = head; 2662 head = head->b_this_page; 2663 free_buffer_head(bh); 2664 } 2665 2666 return copied; 2667 } 2668 EXPORT_SYMBOL(nobh_write_end); 2669 2670 /* 2671 * nobh_writepage() - based on block_full_write_page() except 2672 * that it tries to operate without attaching bufferheads to 2673 * the page. 2674 */ 2675 int nobh_writepage(struct page *page, get_block_t *get_block, 2676 struct writeback_control *wbc) 2677 { 2678 struct inode * const inode = page->mapping->host; 2679 loff_t i_size = i_size_read(inode); 2680 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2681 unsigned offset; 2682 int ret; 2683 2684 /* Is the page fully inside i_size? */ 2685 if (page->index < end_index) 2686 goto out; 2687 2688 /* Is the page fully outside i_size? (truncate in progress) */ 2689 offset = i_size & (PAGE_CACHE_SIZE-1); 2690 if (page->index >= end_index+1 || !offset) { 2691 /* 2692 * The page may have dirty, unmapped buffers. For example, 2693 * they may have been added in ext3_writepage(). Make them 2694 * freeable here, so the page does not leak. 2695 */ 2696 #if 0 2697 /* Not really sure about this - do we need this ? */ 2698 if (page->mapping->a_ops->invalidatepage) 2699 page->mapping->a_ops->invalidatepage(page, offset); 2700 #endif 2701 unlock_page(page); 2702 return 0; /* don't care */ 2703 } 2704 2705 /* 2706 * The page straddles i_size. It must be zeroed out on each and every 2707 * writepage invocation because it may be mmapped. "A file is mapped 2708 * in multiples of the page size. For a file that is not a multiple of 2709 * the page size, the remaining memory is zeroed when mapped, and 2710 * writes to that region are not written out to the file." 2711 */ 2712 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2713 out: 2714 ret = mpage_writepage(page, get_block, wbc); 2715 if (ret == -EAGAIN) 2716 ret = __block_write_full_page(inode, page, get_block, wbc, 2717 end_buffer_async_write); 2718 return ret; 2719 } 2720 EXPORT_SYMBOL(nobh_writepage); 2721 2722 int nobh_truncate_page(struct address_space *mapping, 2723 loff_t from, get_block_t *get_block) 2724 { 2725 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2726 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2727 unsigned blocksize; 2728 sector_t iblock; 2729 unsigned length, pos; 2730 struct inode *inode = mapping->host; 2731 struct page *page; 2732 struct buffer_head map_bh; 2733 int err; 2734 2735 blocksize = 1 << inode->i_blkbits; 2736 length = offset & (blocksize - 1); 2737 2738 /* Block boundary? Nothing to do */ 2739 if (!length) 2740 return 0; 2741 2742 length = blocksize - length; 2743 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2744 2745 page = grab_cache_page(mapping, index); 2746 err = -ENOMEM; 2747 if (!page) 2748 goto out; 2749 2750 if (page_has_buffers(page)) { 2751 has_buffers: 2752 unlock_page(page); 2753 page_cache_release(page); 2754 return block_truncate_page(mapping, from, get_block); 2755 } 2756 2757 /* Find the buffer that contains "offset" */ 2758 pos = blocksize; 2759 while (offset >= pos) { 2760 iblock++; 2761 pos += blocksize; 2762 } 2763 2764 map_bh.b_size = blocksize; 2765 map_bh.b_state = 0; 2766 err = get_block(inode, iblock, &map_bh, 0); 2767 if (err) 2768 goto unlock; 2769 /* unmapped? It's a hole - nothing to do */ 2770 if (!buffer_mapped(&map_bh)) 2771 goto unlock; 2772 2773 /* Ok, it's mapped. Make sure it's up-to-date */ 2774 if (!PageUptodate(page)) { 2775 err = mapping->a_ops->readpage(NULL, page); 2776 if (err) { 2777 page_cache_release(page); 2778 goto out; 2779 } 2780 lock_page(page); 2781 if (!PageUptodate(page)) { 2782 err = -EIO; 2783 goto unlock; 2784 } 2785 if (page_has_buffers(page)) 2786 goto has_buffers; 2787 } 2788 zero_user(page, offset, length); 2789 set_page_dirty(page); 2790 err = 0; 2791 2792 unlock: 2793 unlock_page(page); 2794 page_cache_release(page); 2795 out: 2796 return err; 2797 } 2798 EXPORT_SYMBOL(nobh_truncate_page); 2799 2800 int block_truncate_page(struct address_space *mapping, 2801 loff_t from, get_block_t *get_block) 2802 { 2803 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2804 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2805 unsigned blocksize; 2806 sector_t iblock; 2807 unsigned length, pos; 2808 struct inode *inode = mapping->host; 2809 struct page *page; 2810 struct buffer_head *bh; 2811 int err; 2812 2813 blocksize = 1 << inode->i_blkbits; 2814 length = offset & (blocksize - 1); 2815 2816 /* Block boundary? Nothing to do */ 2817 if (!length) 2818 return 0; 2819 2820 length = blocksize - length; 2821 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2822 2823 page = grab_cache_page(mapping, index); 2824 err = -ENOMEM; 2825 if (!page) 2826 goto out; 2827 2828 if (!page_has_buffers(page)) 2829 create_empty_buffers(page, blocksize, 0); 2830 2831 /* Find the buffer that contains "offset" */ 2832 bh = page_buffers(page); 2833 pos = blocksize; 2834 while (offset >= pos) { 2835 bh = bh->b_this_page; 2836 iblock++; 2837 pos += blocksize; 2838 } 2839 2840 err = 0; 2841 if (!buffer_mapped(bh)) { 2842 WARN_ON(bh->b_size != blocksize); 2843 err = get_block(inode, iblock, bh, 0); 2844 if (err) 2845 goto unlock; 2846 /* unmapped? It's a hole - nothing to do */ 2847 if (!buffer_mapped(bh)) 2848 goto unlock; 2849 } 2850 2851 /* Ok, it's mapped. Make sure it's up-to-date */ 2852 if (PageUptodate(page)) 2853 set_buffer_uptodate(bh); 2854 2855 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2856 err = -EIO; 2857 ll_rw_block(READ, 1, &bh); 2858 wait_on_buffer(bh); 2859 /* Uhhuh. Read error. Complain and punt. */ 2860 if (!buffer_uptodate(bh)) 2861 goto unlock; 2862 } 2863 2864 zero_user(page, offset, length); 2865 mark_buffer_dirty(bh); 2866 err = 0; 2867 2868 unlock: 2869 unlock_page(page); 2870 page_cache_release(page); 2871 out: 2872 return err; 2873 } 2874 EXPORT_SYMBOL(block_truncate_page); 2875 2876 /* 2877 * The generic ->writepage function for buffer-backed address_spaces 2878 */ 2879 int block_write_full_page(struct page *page, get_block_t *get_block, 2880 struct writeback_control *wbc) 2881 { 2882 struct inode * const inode = page->mapping->host; 2883 loff_t i_size = i_size_read(inode); 2884 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2885 unsigned offset; 2886 2887 /* Is the page fully inside i_size? */ 2888 if (page->index < end_index) 2889 return __block_write_full_page(inode, page, get_block, wbc, 2890 end_buffer_async_write); 2891 2892 /* Is the page fully outside i_size? (truncate in progress) */ 2893 offset = i_size & (PAGE_CACHE_SIZE-1); 2894 if (page->index >= end_index+1 || !offset) { 2895 /* 2896 * The page may have dirty, unmapped buffers. For example, 2897 * they may have been added in ext3_writepage(). Make them 2898 * freeable here, so the page does not leak. 2899 */ 2900 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 2901 unlock_page(page); 2902 return 0; /* don't care */ 2903 } 2904 2905 /* 2906 * The page straddles i_size. It must be zeroed out on each and every 2907 * writepage invocation because it may be mmapped. "A file is mapped 2908 * in multiples of the page size. For a file that is not a multiple of 2909 * the page size, the remaining memory is zeroed when mapped, and 2910 * writes to that region are not written out to the file." 2911 */ 2912 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2913 return __block_write_full_page(inode, page, get_block, wbc, 2914 end_buffer_async_write); 2915 } 2916 EXPORT_SYMBOL(block_write_full_page); 2917 2918 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2919 get_block_t *get_block) 2920 { 2921 struct buffer_head tmp; 2922 struct inode *inode = mapping->host; 2923 tmp.b_state = 0; 2924 tmp.b_blocknr = 0; 2925 tmp.b_size = 1 << inode->i_blkbits; 2926 get_block(inode, block, &tmp, 0); 2927 return tmp.b_blocknr; 2928 } 2929 EXPORT_SYMBOL(generic_block_bmap); 2930 2931 static void end_bio_bh_io_sync(struct bio *bio) 2932 { 2933 struct buffer_head *bh = bio->bi_private; 2934 2935 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2936 set_bit(BH_Quiet, &bh->b_state); 2937 2938 bh->b_end_io(bh, !bio->bi_error); 2939 bio_put(bio); 2940 } 2941 2942 /* 2943 * This allows us to do IO even on the odd last sectors 2944 * of a device, even if the block size is some multiple 2945 * of the physical sector size. 2946 * 2947 * We'll just truncate the bio to the size of the device, 2948 * and clear the end of the buffer head manually. 2949 * 2950 * Truly out-of-range accesses will turn into actual IO 2951 * errors, this only handles the "we need to be able to 2952 * do IO at the final sector" case. 2953 */ 2954 void guard_bio_eod(int rw, struct bio *bio) 2955 { 2956 sector_t maxsector; 2957 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 2958 unsigned truncated_bytes; 2959 2960 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 2961 if (!maxsector) 2962 return; 2963 2964 /* 2965 * If the *whole* IO is past the end of the device, 2966 * let it through, and the IO layer will turn it into 2967 * an EIO. 2968 */ 2969 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 2970 return; 2971 2972 maxsector -= bio->bi_iter.bi_sector; 2973 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 2974 return; 2975 2976 /* Uhhuh. We've got a bio that straddles the device size! */ 2977 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 2978 2979 /* Truncate the bio.. */ 2980 bio->bi_iter.bi_size -= truncated_bytes; 2981 bvec->bv_len -= truncated_bytes; 2982 2983 /* ..and clear the end of the buffer for reads */ 2984 if ((rw & RW_MASK) == READ) { 2985 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 2986 truncated_bytes); 2987 } 2988 } 2989 2990 static int submit_bh_wbc(int rw, struct buffer_head *bh, 2991 unsigned long bio_flags, struct writeback_control *wbc) 2992 { 2993 struct bio *bio; 2994 2995 BUG_ON(!buffer_locked(bh)); 2996 BUG_ON(!buffer_mapped(bh)); 2997 BUG_ON(!bh->b_end_io); 2998 BUG_ON(buffer_delay(bh)); 2999 BUG_ON(buffer_unwritten(bh)); 3000 3001 /* 3002 * Only clear out a write error when rewriting 3003 */ 3004 if (test_set_buffer_req(bh) && (rw & WRITE)) 3005 clear_buffer_write_io_error(bh); 3006 3007 /* 3008 * from here on down, it's all bio -- do the initial mapping, 3009 * submit_bio -> generic_make_request may further map this bio around 3010 */ 3011 bio = bio_alloc(GFP_NOIO, 1); 3012 3013 if (wbc) { 3014 wbc_init_bio(wbc, bio); 3015 wbc_account_io(wbc, bh->b_page, bh->b_size); 3016 } 3017 3018 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3019 bio->bi_bdev = bh->b_bdev; 3020 3021 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3022 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3023 3024 bio->bi_end_io = end_bio_bh_io_sync; 3025 bio->bi_private = bh; 3026 bio->bi_flags |= bio_flags; 3027 3028 /* Take care of bh's that straddle the end of the device */ 3029 guard_bio_eod(rw, bio); 3030 3031 if (buffer_meta(bh)) 3032 rw |= REQ_META; 3033 if (buffer_prio(bh)) 3034 rw |= REQ_PRIO; 3035 3036 submit_bio(rw, bio); 3037 return 0; 3038 } 3039 3040 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags) 3041 { 3042 return submit_bh_wbc(rw, bh, bio_flags, NULL); 3043 } 3044 EXPORT_SYMBOL_GPL(_submit_bh); 3045 3046 int submit_bh(int rw, struct buffer_head *bh) 3047 { 3048 return submit_bh_wbc(rw, bh, 0, NULL); 3049 } 3050 EXPORT_SYMBOL(submit_bh); 3051 3052 /** 3053 * ll_rw_block: low-level access to block devices (DEPRECATED) 3054 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 3055 * @nr: number of &struct buffer_heads in the array 3056 * @bhs: array of pointers to &struct buffer_head 3057 * 3058 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3059 * requests an I/O operation on them, either a %READ or a %WRITE. The third 3060 * %READA option is described in the documentation for generic_make_request() 3061 * which ll_rw_block() calls. 3062 * 3063 * This function drops any buffer that it cannot get a lock on (with the 3064 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3065 * request, and any buffer that appears to be up-to-date when doing read 3066 * request. Further it marks as clean buffers that are processed for 3067 * writing (the buffer cache won't assume that they are actually clean 3068 * until the buffer gets unlocked). 3069 * 3070 * ll_rw_block sets b_end_io to simple completion handler that marks 3071 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3072 * any waiters. 3073 * 3074 * All of the buffers must be for the same device, and must also be a 3075 * multiple of the current approved size for the device. 3076 */ 3077 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 3078 { 3079 int i; 3080 3081 for (i = 0; i < nr; i++) { 3082 struct buffer_head *bh = bhs[i]; 3083 3084 if (!trylock_buffer(bh)) 3085 continue; 3086 if (rw == WRITE) { 3087 if (test_clear_buffer_dirty(bh)) { 3088 bh->b_end_io = end_buffer_write_sync; 3089 get_bh(bh); 3090 submit_bh(WRITE, bh); 3091 continue; 3092 } 3093 } else { 3094 if (!buffer_uptodate(bh)) { 3095 bh->b_end_io = end_buffer_read_sync; 3096 get_bh(bh); 3097 submit_bh(rw, bh); 3098 continue; 3099 } 3100 } 3101 unlock_buffer(bh); 3102 } 3103 } 3104 EXPORT_SYMBOL(ll_rw_block); 3105 3106 void write_dirty_buffer(struct buffer_head *bh, int rw) 3107 { 3108 lock_buffer(bh); 3109 if (!test_clear_buffer_dirty(bh)) { 3110 unlock_buffer(bh); 3111 return; 3112 } 3113 bh->b_end_io = end_buffer_write_sync; 3114 get_bh(bh); 3115 submit_bh(rw, bh); 3116 } 3117 EXPORT_SYMBOL(write_dirty_buffer); 3118 3119 /* 3120 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3121 * and then start new I/O and then wait upon it. The caller must have a ref on 3122 * the buffer_head. 3123 */ 3124 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3125 { 3126 int ret = 0; 3127 3128 WARN_ON(atomic_read(&bh->b_count) < 1); 3129 lock_buffer(bh); 3130 if (test_clear_buffer_dirty(bh)) { 3131 get_bh(bh); 3132 bh->b_end_io = end_buffer_write_sync; 3133 ret = submit_bh(rw, bh); 3134 wait_on_buffer(bh); 3135 if (!ret && !buffer_uptodate(bh)) 3136 ret = -EIO; 3137 } else { 3138 unlock_buffer(bh); 3139 } 3140 return ret; 3141 } 3142 EXPORT_SYMBOL(__sync_dirty_buffer); 3143 3144 int sync_dirty_buffer(struct buffer_head *bh) 3145 { 3146 return __sync_dirty_buffer(bh, WRITE_SYNC); 3147 } 3148 EXPORT_SYMBOL(sync_dirty_buffer); 3149 3150 /* 3151 * try_to_free_buffers() checks if all the buffers on this particular page 3152 * are unused, and releases them if so. 3153 * 3154 * Exclusion against try_to_free_buffers may be obtained by either 3155 * locking the page or by holding its mapping's private_lock. 3156 * 3157 * If the page is dirty but all the buffers are clean then we need to 3158 * be sure to mark the page clean as well. This is because the page 3159 * may be against a block device, and a later reattachment of buffers 3160 * to a dirty page will set *all* buffers dirty. Which would corrupt 3161 * filesystem data on the same device. 3162 * 3163 * The same applies to regular filesystem pages: if all the buffers are 3164 * clean then we set the page clean and proceed. To do that, we require 3165 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3166 * private_lock. 3167 * 3168 * try_to_free_buffers() is non-blocking. 3169 */ 3170 static inline int buffer_busy(struct buffer_head *bh) 3171 { 3172 return atomic_read(&bh->b_count) | 3173 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3174 } 3175 3176 static int 3177 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3178 { 3179 struct buffer_head *head = page_buffers(page); 3180 struct buffer_head *bh; 3181 3182 bh = head; 3183 do { 3184 if (buffer_write_io_error(bh) && page->mapping) 3185 set_bit(AS_EIO, &page->mapping->flags); 3186 if (buffer_busy(bh)) 3187 goto failed; 3188 bh = bh->b_this_page; 3189 } while (bh != head); 3190 3191 do { 3192 struct buffer_head *next = bh->b_this_page; 3193 3194 if (bh->b_assoc_map) 3195 __remove_assoc_queue(bh); 3196 bh = next; 3197 } while (bh != head); 3198 *buffers_to_free = head; 3199 __clear_page_buffers(page); 3200 return 1; 3201 failed: 3202 return 0; 3203 } 3204 3205 int try_to_free_buffers(struct page *page) 3206 { 3207 struct address_space * const mapping = page->mapping; 3208 struct buffer_head *buffers_to_free = NULL; 3209 int ret = 0; 3210 3211 BUG_ON(!PageLocked(page)); 3212 if (PageWriteback(page)) 3213 return 0; 3214 3215 if (mapping == NULL) { /* can this still happen? */ 3216 ret = drop_buffers(page, &buffers_to_free); 3217 goto out; 3218 } 3219 3220 spin_lock(&mapping->private_lock); 3221 ret = drop_buffers(page, &buffers_to_free); 3222 3223 /* 3224 * If the filesystem writes its buffers by hand (eg ext3) 3225 * then we can have clean buffers against a dirty page. We 3226 * clean the page here; otherwise the VM will never notice 3227 * that the filesystem did any IO at all. 3228 * 3229 * Also, during truncate, discard_buffer will have marked all 3230 * the page's buffers clean. We discover that here and clean 3231 * the page also. 3232 * 3233 * private_lock must be held over this entire operation in order 3234 * to synchronise against __set_page_dirty_buffers and prevent the 3235 * dirty bit from being lost. 3236 */ 3237 if (ret) 3238 cancel_dirty_page(page); 3239 spin_unlock(&mapping->private_lock); 3240 out: 3241 if (buffers_to_free) { 3242 struct buffer_head *bh = buffers_to_free; 3243 3244 do { 3245 struct buffer_head *next = bh->b_this_page; 3246 free_buffer_head(bh); 3247 bh = next; 3248 } while (bh != buffers_to_free); 3249 } 3250 return ret; 3251 } 3252 EXPORT_SYMBOL(try_to_free_buffers); 3253 3254 /* 3255 * There are no bdflush tunables left. But distributions are 3256 * still running obsolete flush daemons, so we terminate them here. 3257 * 3258 * Use of bdflush() is deprecated and will be removed in a future kernel. 3259 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3260 */ 3261 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3262 { 3263 static int msg_count; 3264 3265 if (!capable(CAP_SYS_ADMIN)) 3266 return -EPERM; 3267 3268 if (msg_count < 5) { 3269 msg_count++; 3270 printk(KERN_INFO 3271 "warning: process `%s' used the obsolete bdflush" 3272 " system call\n", current->comm); 3273 printk(KERN_INFO "Fix your initscripts?\n"); 3274 } 3275 3276 if (func == 1) 3277 do_exit(0); 3278 return 0; 3279 } 3280 3281 /* 3282 * Buffer-head allocation 3283 */ 3284 static struct kmem_cache *bh_cachep __read_mostly; 3285 3286 /* 3287 * Once the number of bh's in the machine exceeds this level, we start 3288 * stripping them in writeback. 3289 */ 3290 static unsigned long max_buffer_heads; 3291 3292 int buffer_heads_over_limit; 3293 3294 struct bh_accounting { 3295 int nr; /* Number of live bh's */ 3296 int ratelimit; /* Limit cacheline bouncing */ 3297 }; 3298 3299 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3300 3301 static void recalc_bh_state(void) 3302 { 3303 int i; 3304 int tot = 0; 3305 3306 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3307 return; 3308 __this_cpu_write(bh_accounting.ratelimit, 0); 3309 for_each_online_cpu(i) 3310 tot += per_cpu(bh_accounting, i).nr; 3311 buffer_heads_over_limit = (tot > max_buffer_heads); 3312 } 3313 3314 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3315 { 3316 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3317 if (ret) { 3318 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3319 preempt_disable(); 3320 __this_cpu_inc(bh_accounting.nr); 3321 recalc_bh_state(); 3322 preempt_enable(); 3323 } 3324 return ret; 3325 } 3326 EXPORT_SYMBOL(alloc_buffer_head); 3327 3328 void free_buffer_head(struct buffer_head *bh) 3329 { 3330 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3331 kmem_cache_free(bh_cachep, bh); 3332 preempt_disable(); 3333 __this_cpu_dec(bh_accounting.nr); 3334 recalc_bh_state(); 3335 preempt_enable(); 3336 } 3337 EXPORT_SYMBOL(free_buffer_head); 3338 3339 static void buffer_exit_cpu(int cpu) 3340 { 3341 int i; 3342 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3343 3344 for (i = 0; i < BH_LRU_SIZE; i++) { 3345 brelse(b->bhs[i]); 3346 b->bhs[i] = NULL; 3347 } 3348 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3349 per_cpu(bh_accounting, cpu).nr = 0; 3350 } 3351 3352 static int buffer_cpu_notify(struct notifier_block *self, 3353 unsigned long action, void *hcpu) 3354 { 3355 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3356 buffer_exit_cpu((unsigned long)hcpu); 3357 return NOTIFY_OK; 3358 } 3359 3360 /** 3361 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3362 * @bh: struct buffer_head 3363 * 3364 * Return true if the buffer is up-to-date and false, 3365 * with the buffer locked, if not. 3366 */ 3367 int bh_uptodate_or_lock(struct buffer_head *bh) 3368 { 3369 if (!buffer_uptodate(bh)) { 3370 lock_buffer(bh); 3371 if (!buffer_uptodate(bh)) 3372 return 0; 3373 unlock_buffer(bh); 3374 } 3375 return 1; 3376 } 3377 EXPORT_SYMBOL(bh_uptodate_or_lock); 3378 3379 /** 3380 * bh_submit_read - Submit a locked buffer for reading 3381 * @bh: struct buffer_head 3382 * 3383 * Returns zero on success and -EIO on error. 3384 */ 3385 int bh_submit_read(struct buffer_head *bh) 3386 { 3387 BUG_ON(!buffer_locked(bh)); 3388 3389 if (buffer_uptodate(bh)) { 3390 unlock_buffer(bh); 3391 return 0; 3392 } 3393 3394 get_bh(bh); 3395 bh->b_end_io = end_buffer_read_sync; 3396 submit_bh(READ, bh); 3397 wait_on_buffer(bh); 3398 if (buffer_uptodate(bh)) 3399 return 0; 3400 return -EIO; 3401 } 3402 EXPORT_SYMBOL(bh_submit_read); 3403 3404 void __init buffer_init(void) 3405 { 3406 unsigned long nrpages; 3407 3408 bh_cachep = kmem_cache_create("buffer_head", 3409 sizeof(struct buffer_head), 0, 3410 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3411 SLAB_MEM_SPREAD), 3412 NULL); 3413 3414 /* 3415 * Limit the bh occupancy to 10% of ZONE_NORMAL 3416 */ 3417 nrpages = (nr_free_buffer_pages() * 10) / 100; 3418 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3419 hotcpu_notifier(buffer_cpu_notify, 0); 3420 } 3421