1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 52 #include "internal.h" 53 54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 56 enum rw_hint hint, struct writeback_control *wbc); 57 58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 59 60 inline void touch_buffer(struct buffer_head *bh) 61 { 62 trace_block_touch_buffer(bh); 63 mark_page_accessed(bh->b_page); 64 } 65 EXPORT_SYMBOL(touch_buffer); 66 67 void __lock_buffer(struct buffer_head *bh) 68 { 69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 70 } 71 EXPORT_SYMBOL(__lock_buffer); 72 73 void unlock_buffer(struct buffer_head *bh) 74 { 75 clear_bit_unlock(BH_Lock, &bh->b_state); 76 smp_mb__after_atomic(); 77 wake_up_bit(&bh->b_state, BH_Lock); 78 } 79 EXPORT_SYMBOL(unlock_buffer); 80 81 /* 82 * Returns if the page has dirty or writeback buffers. If all the buffers 83 * are unlocked and clean then the PageDirty information is stale. If 84 * any of the pages are locked, it is assumed they are locked for IO. 85 */ 86 void buffer_check_dirty_writeback(struct page *page, 87 bool *dirty, bool *writeback) 88 { 89 struct buffer_head *head, *bh; 90 *dirty = false; 91 *writeback = false; 92 93 BUG_ON(!PageLocked(page)); 94 95 if (!page_has_buffers(page)) 96 return; 97 98 if (PageWriteback(page)) 99 *writeback = true; 100 101 head = page_buffers(page); 102 bh = head; 103 do { 104 if (buffer_locked(bh)) 105 *writeback = true; 106 107 if (buffer_dirty(bh)) 108 *dirty = true; 109 110 bh = bh->b_this_page; 111 } while (bh != head); 112 } 113 EXPORT_SYMBOL(buffer_check_dirty_writeback); 114 115 /* 116 * Block until a buffer comes unlocked. This doesn't stop it 117 * from becoming locked again - you have to lock it yourself 118 * if you want to preserve its state. 119 */ 120 void __wait_on_buffer(struct buffer_head * bh) 121 { 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 123 } 124 EXPORT_SYMBOL(__wait_on_buffer); 125 126 static void buffer_io_error(struct buffer_head *bh, char *msg) 127 { 128 if (!test_bit(BH_Quiet, &bh->b_state)) 129 printk_ratelimited(KERN_ERR 130 "Buffer I/O error on dev %pg, logical block %llu%s\n", 131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 132 } 133 134 /* 135 * End-of-IO handler helper function which does not touch the bh after 136 * unlocking it. 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 138 * a race there is benign: unlock_buffer() only use the bh's address for 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh 140 * itself. 141 */ 142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 143 { 144 if (uptodate) { 145 set_buffer_uptodate(bh); 146 } else { 147 /* This happens, due to failed read-ahead attempts. */ 148 clear_buffer_uptodate(bh); 149 } 150 unlock_buffer(bh); 151 } 152 153 /* 154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 155 * unlock the buffer. This is what ll_rw_block uses too. 156 */ 157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 158 { 159 __end_buffer_read_notouch(bh, uptodate); 160 put_bh(bh); 161 } 162 EXPORT_SYMBOL(end_buffer_read_sync); 163 164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 165 { 166 if (uptodate) { 167 set_buffer_uptodate(bh); 168 } else { 169 buffer_io_error(bh, ", lost sync page write"); 170 mark_buffer_write_io_error(bh); 171 clear_buffer_uptodate(bh); 172 } 173 unlock_buffer(bh); 174 put_bh(bh); 175 } 176 EXPORT_SYMBOL(end_buffer_write_sync); 177 178 /* 179 * Various filesystems appear to want __find_get_block to be non-blocking. 180 * But it's the page lock which protects the buffers. To get around this, 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's 182 * private_lock. 183 * 184 * Hack idea: for the blockdev mapping, private_lock contention 185 * may be quite high. This code could TryLock the page, and if that 186 * succeeds, there is no need to take private_lock. 187 */ 188 static struct buffer_head * 189 __find_get_block_slow(struct block_device *bdev, sector_t block) 190 { 191 struct inode *bd_inode = bdev->bd_inode; 192 struct address_space *bd_mapping = bd_inode->i_mapping; 193 struct buffer_head *ret = NULL; 194 pgoff_t index; 195 struct buffer_head *bh; 196 struct buffer_head *head; 197 struct page *page; 198 int all_mapped = 1; 199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 200 201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 203 if (!page) 204 goto out; 205 206 spin_lock(&bd_mapping->private_lock); 207 if (!page_has_buffers(page)) 208 goto out_unlock; 209 head = page_buffers(page); 210 bh = head; 211 do { 212 if (!buffer_mapped(bh)) 213 all_mapped = 0; 214 else if (bh->b_blocknr == block) { 215 ret = bh; 216 get_bh(bh); 217 goto out_unlock; 218 } 219 bh = bh->b_this_page; 220 } while (bh != head); 221 222 /* we might be here because some of the buffers on this page are 223 * not mapped. This is due to various races between 224 * file io on the block device and getblk. It gets dealt with 225 * elsewhere, don't buffer_error if we had some unmapped buffers 226 */ 227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 228 if (all_mapped && __ratelimit(&last_warned)) { 229 printk("__find_get_block_slow() failed. block=%llu, " 230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 231 "device %pg blocksize: %d\n", 232 (unsigned long long)block, 233 (unsigned long long)bh->b_blocknr, 234 bh->b_state, bh->b_size, bdev, 235 1 << bd_inode->i_blkbits); 236 } 237 out_unlock: 238 spin_unlock(&bd_mapping->private_lock); 239 put_page(page); 240 out: 241 return ret; 242 } 243 244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 245 { 246 unsigned long flags; 247 struct buffer_head *first; 248 struct buffer_head *tmp; 249 struct page *page; 250 int page_uptodate = 1; 251 252 BUG_ON(!buffer_async_read(bh)); 253 254 page = bh->b_page; 255 if (uptodate) { 256 set_buffer_uptodate(bh); 257 } else { 258 clear_buffer_uptodate(bh); 259 buffer_io_error(bh, ", async page read"); 260 SetPageError(page); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = page_buffers(page); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 page_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 /* 285 * If none of the buffers had errors and they are all 286 * uptodate then we can set the page uptodate. 287 */ 288 if (page_uptodate && !PageError(page)) 289 SetPageUptodate(page); 290 unlock_page(page); 291 return; 292 293 still_busy: 294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 295 return; 296 } 297 298 struct decrypt_bh_ctx { 299 struct work_struct work; 300 struct buffer_head *bh; 301 }; 302 303 static void decrypt_bh(struct work_struct *work) 304 { 305 struct decrypt_bh_ctx *ctx = 306 container_of(work, struct decrypt_bh_ctx, work); 307 struct buffer_head *bh = ctx->bh; 308 int err; 309 310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size, 311 bh_offset(bh)); 312 end_buffer_async_read(bh, err == 0); 313 kfree(ctx); 314 } 315 316 /* 317 * I/O completion handler for block_read_full_page() - pages 318 * which come unlocked at the end of I/O. 319 */ 320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 321 { 322 /* Decrypt if needed */ 323 if (uptodate && 324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) { 325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 326 327 if (ctx) { 328 INIT_WORK(&ctx->work, decrypt_bh); 329 ctx->bh = bh; 330 fscrypt_enqueue_decrypt_work(&ctx->work); 331 return; 332 } 333 uptodate = 0; 334 } 335 end_buffer_async_read(bh, uptodate); 336 } 337 338 /* 339 * Completion handler for block_write_full_page() - pages which are unlocked 340 * during I/O, and which have PageWriteback cleared upon I/O completion. 341 */ 342 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 343 { 344 unsigned long flags; 345 struct buffer_head *first; 346 struct buffer_head *tmp; 347 struct page *page; 348 349 BUG_ON(!buffer_async_write(bh)); 350 351 page = bh->b_page; 352 if (uptodate) { 353 set_buffer_uptodate(bh); 354 } else { 355 buffer_io_error(bh, ", lost async page write"); 356 mark_buffer_write_io_error(bh); 357 clear_buffer_uptodate(bh); 358 SetPageError(page); 359 } 360 361 first = page_buffers(page); 362 spin_lock_irqsave(&first->b_uptodate_lock, flags); 363 364 clear_buffer_async_write(bh); 365 unlock_buffer(bh); 366 tmp = bh->b_this_page; 367 while (tmp != bh) { 368 if (buffer_async_write(tmp)) { 369 BUG_ON(!buffer_locked(tmp)); 370 goto still_busy; 371 } 372 tmp = tmp->b_this_page; 373 } 374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 375 end_page_writeback(page); 376 return; 377 378 still_busy: 379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 380 return; 381 } 382 EXPORT_SYMBOL(end_buffer_async_write); 383 384 /* 385 * If a page's buffers are under async readin (end_buffer_async_read 386 * completion) then there is a possibility that another thread of 387 * control could lock one of the buffers after it has completed 388 * but while some of the other buffers have not completed. This 389 * locked buffer would confuse end_buffer_async_read() into not unlocking 390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 391 * that this buffer is not under async I/O. 392 * 393 * The page comes unlocked when it has no locked buffer_async buffers 394 * left. 395 * 396 * PageLocked prevents anyone starting new async I/O reads any of 397 * the buffers. 398 * 399 * PageWriteback is used to prevent simultaneous writeout of the same 400 * page. 401 * 402 * PageLocked prevents anyone from starting writeback of a page which is 403 * under read I/O (PageWriteback is only ever set against a locked page). 404 */ 405 static void mark_buffer_async_read(struct buffer_head *bh) 406 { 407 bh->b_end_io = end_buffer_async_read_io; 408 set_buffer_async_read(bh); 409 } 410 411 static void mark_buffer_async_write_endio(struct buffer_head *bh, 412 bh_end_io_t *handler) 413 { 414 bh->b_end_io = handler; 415 set_buffer_async_write(bh); 416 } 417 418 void mark_buffer_async_write(struct buffer_head *bh) 419 { 420 mark_buffer_async_write_endio(bh, end_buffer_async_write); 421 } 422 EXPORT_SYMBOL(mark_buffer_async_write); 423 424 425 /* 426 * fs/buffer.c contains helper functions for buffer-backed address space's 427 * fsync functions. A common requirement for buffer-based filesystems is 428 * that certain data from the backing blockdev needs to be written out for 429 * a successful fsync(). For example, ext2 indirect blocks need to be 430 * written back and waited upon before fsync() returns. 431 * 432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 434 * management of a list of dependent buffers at ->i_mapping->private_list. 435 * 436 * Locking is a little subtle: try_to_free_buffers() will remove buffers 437 * from their controlling inode's queue when they are being freed. But 438 * try_to_free_buffers() will be operating against the *blockdev* mapping 439 * at the time, not against the S_ISREG file which depends on those buffers. 440 * So the locking for private_list is via the private_lock in the address_space 441 * which backs the buffers. Which is different from the address_space 442 * against which the buffers are listed. So for a particular address_space, 443 * mapping->private_lock does *not* protect mapping->private_list! In fact, 444 * mapping->private_list will always be protected by the backing blockdev's 445 * ->private_lock. 446 * 447 * Which introduces a requirement: all buffers on an address_space's 448 * ->private_list must be from the same address_space: the blockdev's. 449 * 450 * address_spaces which do not place buffers at ->private_list via these 451 * utility functions are free to use private_lock and private_list for 452 * whatever they want. The only requirement is that list_empty(private_list) 453 * be true at clear_inode() time. 454 * 455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 456 * filesystems should do that. invalidate_inode_buffers() should just go 457 * BUG_ON(!list_empty). 458 * 459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 460 * take an address_space, not an inode. And it should be called 461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 462 * queued up. 463 * 464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 465 * list if it is already on a list. Because if the buffer is on a list, 466 * it *must* already be on the right one. If not, the filesystem is being 467 * silly. This will save a ton of locking. But first we have to ensure 468 * that buffers are taken *off* the old inode's list when they are freed 469 * (presumably in truncate). That requires careful auditing of all 470 * filesystems (do it inside bforget()). It could also be done by bringing 471 * b_inode back. 472 */ 473 474 /* 475 * The buffer's backing address_space's private_lock must be held 476 */ 477 static void __remove_assoc_queue(struct buffer_head *bh) 478 { 479 list_del_init(&bh->b_assoc_buffers); 480 WARN_ON(!bh->b_assoc_map); 481 bh->b_assoc_map = NULL; 482 } 483 484 int inode_has_buffers(struct inode *inode) 485 { 486 return !list_empty(&inode->i_data.private_list); 487 } 488 489 /* 490 * osync is designed to support O_SYNC io. It waits synchronously for 491 * all already-submitted IO to complete, but does not queue any new 492 * writes to the disk. 493 * 494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 495 * you dirty the buffers, and then use osync_inode_buffers to wait for 496 * completion. Any other dirty buffers which are not yet queued for 497 * write will not be flushed to disk by the osync. 498 */ 499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 500 { 501 struct buffer_head *bh; 502 struct list_head *p; 503 int err = 0; 504 505 spin_lock(lock); 506 repeat: 507 list_for_each_prev(p, list) { 508 bh = BH_ENTRY(p); 509 if (buffer_locked(bh)) { 510 get_bh(bh); 511 spin_unlock(lock); 512 wait_on_buffer(bh); 513 if (!buffer_uptodate(bh)) 514 err = -EIO; 515 brelse(bh); 516 spin_lock(lock); 517 goto repeat; 518 } 519 } 520 spin_unlock(lock); 521 return err; 522 } 523 524 void emergency_thaw_bdev(struct super_block *sb) 525 { 526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 528 } 529 530 /** 531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 532 * @mapping: the mapping which wants those buffers written 533 * 534 * Starts I/O against the buffers at mapping->private_list, and waits upon 535 * that I/O. 536 * 537 * Basically, this is a convenience function for fsync(). 538 * @mapping is a file or directory which needs those buffers to be written for 539 * a successful fsync(). 540 */ 541 int sync_mapping_buffers(struct address_space *mapping) 542 { 543 struct address_space *buffer_mapping = mapping->private_data; 544 545 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 546 return 0; 547 548 return fsync_buffers_list(&buffer_mapping->private_lock, 549 &mapping->private_list); 550 } 551 EXPORT_SYMBOL(sync_mapping_buffers); 552 553 /* 554 * Called when we've recently written block `bblock', and it is known that 555 * `bblock' was for a buffer_boundary() buffer. This means that the block at 556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 557 * dirty, schedule it for IO. So that indirects merge nicely with their data. 558 */ 559 void write_boundary_block(struct block_device *bdev, 560 sector_t bblock, unsigned blocksize) 561 { 562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 563 if (bh) { 564 if (buffer_dirty(bh)) 565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 566 put_bh(bh); 567 } 568 } 569 570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 571 { 572 struct address_space *mapping = inode->i_mapping; 573 struct address_space *buffer_mapping = bh->b_page->mapping; 574 575 mark_buffer_dirty(bh); 576 if (!mapping->private_data) { 577 mapping->private_data = buffer_mapping; 578 } else { 579 BUG_ON(mapping->private_data != buffer_mapping); 580 } 581 if (!bh->b_assoc_map) { 582 spin_lock(&buffer_mapping->private_lock); 583 list_move_tail(&bh->b_assoc_buffers, 584 &mapping->private_list); 585 bh->b_assoc_map = mapping; 586 spin_unlock(&buffer_mapping->private_lock); 587 } 588 } 589 EXPORT_SYMBOL(mark_buffer_dirty_inode); 590 591 /* 592 * Add a page to the dirty page list. 593 * 594 * It is a sad fact of life that this function is called from several places 595 * deeply under spinlocking. It may not sleep. 596 * 597 * If the page has buffers, the uptodate buffers are set dirty, to preserve 598 * dirty-state coherency between the page and the buffers. It the page does 599 * not have buffers then when they are later attached they will all be set 600 * dirty. 601 * 602 * The buffers are dirtied before the page is dirtied. There's a small race 603 * window in which a writepage caller may see the page cleanness but not the 604 * buffer dirtiness. That's fine. If this code were to set the page dirty 605 * before the buffers, a concurrent writepage caller could clear the page dirty 606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 607 * page on the dirty page list. 608 * 609 * We use private_lock to lock against try_to_free_buffers while using the 610 * page's buffer list. Also use this to protect against clean buffers being 611 * added to the page after it was set dirty. 612 * 613 * FIXME: may need to call ->reservepage here as well. That's rather up to the 614 * address_space though. 615 */ 616 int __set_page_dirty_buffers(struct page *page) 617 { 618 int newly_dirty; 619 struct address_space *mapping = page_mapping(page); 620 621 if (unlikely(!mapping)) 622 return !TestSetPageDirty(page); 623 624 spin_lock(&mapping->private_lock); 625 if (page_has_buffers(page)) { 626 struct buffer_head *head = page_buffers(page); 627 struct buffer_head *bh = head; 628 629 do { 630 set_buffer_dirty(bh); 631 bh = bh->b_this_page; 632 } while (bh != head); 633 } 634 /* 635 * Lock out page's memcg migration to keep PageDirty 636 * synchronized with per-memcg dirty page counters. 637 */ 638 lock_page_memcg(page); 639 newly_dirty = !TestSetPageDirty(page); 640 spin_unlock(&mapping->private_lock); 641 642 if (newly_dirty) 643 __set_page_dirty(page, mapping, 1); 644 645 unlock_page_memcg(page); 646 647 if (newly_dirty) 648 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 649 650 return newly_dirty; 651 } 652 EXPORT_SYMBOL(__set_page_dirty_buffers); 653 654 /* 655 * Write out and wait upon a list of buffers. 656 * 657 * We have conflicting pressures: we want to make sure that all 658 * initially dirty buffers get waited on, but that any subsequently 659 * dirtied buffers don't. After all, we don't want fsync to last 660 * forever if somebody is actively writing to the file. 661 * 662 * Do this in two main stages: first we copy dirty buffers to a 663 * temporary inode list, queueing the writes as we go. Then we clean 664 * up, waiting for those writes to complete. 665 * 666 * During this second stage, any subsequent updates to the file may end 667 * up refiling the buffer on the original inode's dirty list again, so 668 * there is a chance we will end up with a buffer queued for write but 669 * not yet completed on that list. So, as a final cleanup we go through 670 * the osync code to catch these locked, dirty buffers without requeuing 671 * any newly dirty buffers for write. 672 */ 673 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 674 { 675 struct buffer_head *bh; 676 struct list_head tmp; 677 struct address_space *mapping; 678 int err = 0, err2; 679 struct blk_plug plug; 680 681 INIT_LIST_HEAD(&tmp); 682 blk_start_plug(&plug); 683 684 spin_lock(lock); 685 while (!list_empty(list)) { 686 bh = BH_ENTRY(list->next); 687 mapping = bh->b_assoc_map; 688 __remove_assoc_queue(bh); 689 /* Avoid race with mark_buffer_dirty_inode() which does 690 * a lockless check and we rely on seeing the dirty bit */ 691 smp_mb(); 692 if (buffer_dirty(bh) || buffer_locked(bh)) { 693 list_add(&bh->b_assoc_buffers, &tmp); 694 bh->b_assoc_map = mapping; 695 if (buffer_dirty(bh)) { 696 get_bh(bh); 697 spin_unlock(lock); 698 /* 699 * Ensure any pending I/O completes so that 700 * write_dirty_buffer() actually writes the 701 * current contents - it is a noop if I/O is 702 * still in flight on potentially older 703 * contents. 704 */ 705 write_dirty_buffer(bh, REQ_SYNC); 706 707 /* 708 * Kick off IO for the previous mapping. Note 709 * that we will not run the very last mapping, 710 * wait_on_buffer() will do that for us 711 * through sync_buffer(). 712 */ 713 brelse(bh); 714 spin_lock(lock); 715 } 716 } 717 } 718 719 spin_unlock(lock); 720 blk_finish_plug(&plug); 721 spin_lock(lock); 722 723 while (!list_empty(&tmp)) { 724 bh = BH_ENTRY(tmp.prev); 725 get_bh(bh); 726 mapping = bh->b_assoc_map; 727 __remove_assoc_queue(bh); 728 /* Avoid race with mark_buffer_dirty_inode() which does 729 * a lockless check and we rely on seeing the dirty bit */ 730 smp_mb(); 731 if (buffer_dirty(bh)) { 732 list_add(&bh->b_assoc_buffers, 733 &mapping->private_list); 734 bh->b_assoc_map = mapping; 735 } 736 spin_unlock(lock); 737 wait_on_buffer(bh); 738 if (!buffer_uptodate(bh)) 739 err = -EIO; 740 brelse(bh); 741 spin_lock(lock); 742 } 743 744 spin_unlock(lock); 745 err2 = osync_buffers_list(lock, list); 746 if (err) 747 return err; 748 else 749 return err2; 750 } 751 752 /* 753 * Invalidate any and all dirty buffers on a given inode. We are 754 * probably unmounting the fs, but that doesn't mean we have already 755 * done a sync(). Just drop the buffers from the inode list. 756 * 757 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 758 * assumes that all the buffers are against the blockdev. Not true 759 * for reiserfs. 760 */ 761 void invalidate_inode_buffers(struct inode *inode) 762 { 763 if (inode_has_buffers(inode)) { 764 struct address_space *mapping = &inode->i_data; 765 struct list_head *list = &mapping->private_list; 766 struct address_space *buffer_mapping = mapping->private_data; 767 768 spin_lock(&buffer_mapping->private_lock); 769 while (!list_empty(list)) 770 __remove_assoc_queue(BH_ENTRY(list->next)); 771 spin_unlock(&buffer_mapping->private_lock); 772 } 773 } 774 EXPORT_SYMBOL(invalidate_inode_buffers); 775 776 /* 777 * Remove any clean buffers from the inode's buffer list. This is called 778 * when we're trying to free the inode itself. Those buffers can pin it. 779 * 780 * Returns true if all buffers were removed. 781 */ 782 int remove_inode_buffers(struct inode *inode) 783 { 784 int ret = 1; 785 786 if (inode_has_buffers(inode)) { 787 struct address_space *mapping = &inode->i_data; 788 struct list_head *list = &mapping->private_list; 789 struct address_space *buffer_mapping = mapping->private_data; 790 791 spin_lock(&buffer_mapping->private_lock); 792 while (!list_empty(list)) { 793 struct buffer_head *bh = BH_ENTRY(list->next); 794 if (buffer_dirty(bh)) { 795 ret = 0; 796 break; 797 } 798 __remove_assoc_queue(bh); 799 } 800 spin_unlock(&buffer_mapping->private_lock); 801 } 802 return ret; 803 } 804 805 /* 806 * Create the appropriate buffers when given a page for data area and 807 * the size of each buffer.. Use the bh->b_this_page linked list to 808 * follow the buffers created. Return NULL if unable to create more 809 * buffers. 810 * 811 * The retry flag is used to differentiate async IO (paging, swapping) 812 * which may not fail from ordinary buffer allocations. 813 */ 814 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 815 bool retry) 816 { 817 struct buffer_head *bh, *head; 818 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 819 long offset; 820 struct mem_cgroup *memcg, *old_memcg; 821 822 if (retry) 823 gfp |= __GFP_NOFAIL; 824 825 /* The page lock pins the memcg */ 826 memcg = page_memcg(page); 827 old_memcg = set_active_memcg(memcg); 828 829 head = NULL; 830 offset = PAGE_SIZE; 831 while ((offset -= size) >= 0) { 832 bh = alloc_buffer_head(gfp); 833 if (!bh) 834 goto no_grow; 835 836 bh->b_this_page = head; 837 bh->b_blocknr = -1; 838 head = bh; 839 840 bh->b_size = size; 841 842 /* Link the buffer to its page */ 843 set_bh_page(bh, page, offset); 844 } 845 out: 846 set_active_memcg(old_memcg); 847 return head; 848 /* 849 * In case anything failed, we just free everything we got. 850 */ 851 no_grow: 852 if (head) { 853 do { 854 bh = head; 855 head = head->b_this_page; 856 free_buffer_head(bh); 857 } while (head); 858 } 859 860 goto out; 861 } 862 EXPORT_SYMBOL_GPL(alloc_page_buffers); 863 864 static inline void 865 link_dev_buffers(struct page *page, struct buffer_head *head) 866 { 867 struct buffer_head *bh, *tail; 868 869 bh = head; 870 do { 871 tail = bh; 872 bh = bh->b_this_page; 873 } while (bh); 874 tail->b_this_page = head; 875 attach_page_private(page, head); 876 } 877 878 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 879 { 880 sector_t retval = ~((sector_t)0); 881 loff_t sz = bdev_nr_bytes(bdev); 882 883 if (sz) { 884 unsigned int sizebits = blksize_bits(size); 885 retval = (sz >> sizebits); 886 } 887 return retval; 888 } 889 890 /* 891 * Initialise the state of a blockdev page's buffers. 892 */ 893 static sector_t 894 init_page_buffers(struct page *page, struct block_device *bdev, 895 sector_t block, int size) 896 { 897 struct buffer_head *head = page_buffers(page); 898 struct buffer_head *bh = head; 899 int uptodate = PageUptodate(page); 900 sector_t end_block = blkdev_max_block(bdev, size); 901 902 do { 903 if (!buffer_mapped(bh)) { 904 bh->b_end_io = NULL; 905 bh->b_private = NULL; 906 bh->b_bdev = bdev; 907 bh->b_blocknr = block; 908 if (uptodate) 909 set_buffer_uptodate(bh); 910 if (block < end_block) 911 set_buffer_mapped(bh); 912 } 913 block++; 914 bh = bh->b_this_page; 915 } while (bh != head); 916 917 /* 918 * Caller needs to validate requested block against end of device. 919 */ 920 return end_block; 921 } 922 923 /* 924 * Create the page-cache page that contains the requested block. 925 * 926 * This is used purely for blockdev mappings. 927 */ 928 static int 929 grow_dev_page(struct block_device *bdev, sector_t block, 930 pgoff_t index, int size, int sizebits, gfp_t gfp) 931 { 932 struct inode *inode = bdev->bd_inode; 933 struct page *page; 934 struct buffer_head *bh; 935 sector_t end_block; 936 int ret = 0; 937 gfp_t gfp_mask; 938 939 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 940 941 /* 942 * XXX: __getblk_slow() can not really deal with failure and 943 * will endlessly loop on improvised global reclaim. Prefer 944 * looping in the allocator rather than here, at least that 945 * code knows what it's doing. 946 */ 947 gfp_mask |= __GFP_NOFAIL; 948 949 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 950 951 BUG_ON(!PageLocked(page)); 952 953 if (page_has_buffers(page)) { 954 bh = page_buffers(page); 955 if (bh->b_size == size) { 956 end_block = init_page_buffers(page, bdev, 957 (sector_t)index << sizebits, 958 size); 959 goto done; 960 } 961 if (!try_to_free_buffers(page)) 962 goto failed; 963 } 964 965 /* 966 * Allocate some buffers for this page 967 */ 968 bh = alloc_page_buffers(page, size, true); 969 970 /* 971 * Link the page to the buffers and initialise them. Take the 972 * lock to be atomic wrt __find_get_block(), which does not 973 * run under the page lock. 974 */ 975 spin_lock(&inode->i_mapping->private_lock); 976 link_dev_buffers(page, bh); 977 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 978 size); 979 spin_unlock(&inode->i_mapping->private_lock); 980 done: 981 ret = (block < end_block) ? 1 : -ENXIO; 982 failed: 983 unlock_page(page); 984 put_page(page); 985 return ret; 986 } 987 988 /* 989 * Create buffers for the specified block device block's page. If 990 * that page was dirty, the buffers are set dirty also. 991 */ 992 static int 993 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 994 { 995 pgoff_t index; 996 int sizebits; 997 998 sizebits = PAGE_SHIFT - __ffs(size); 999 index = block >> sizebits; 1000 1001 /* 1002 * Check for a block which wants to lie outside our maximum possible 1003 * pagecache index. (this comparison is done using sector_t types). 1004 */ 1005 if (unlikely(index != block >> sizebits)) { 1006 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1007 "device %pg\n", 1008 __func__, (unsigned long long)block, 1009 bdev); 1010 return -EIO; 1011 } 1012 1013 /* Create a page with the proper size buffers.. */ 1014 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1015 } 1016 1017 static struct buffer_head * 1018 __getblk_slow(struct block_device *bdev, sector_t block, 1019 unsigned size, gfp_t gfp) 1020 { 1021 /* Size must be multiple of hard sectorsize */ 1022 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1023 (size < 512 || size > PAGE_SIZE))) { 1024 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1025 size); 1026 printk(KERN_ERR "logical block size: %d\n", 1027 bdev_logical_block_size(bdev)); 1028 1029 dump_stack(); 1030 return NULL; 1031 } 1032 1033 for (;;) { 1034 struct buffer_head *bh; 1035 int ret; 1036 1037 bh = __find_get_block(bdev, block, size); 1038 if (bh) 1039 return bh; 1040 1041 ret = grow_buffers(bdev, block, size, gfp); 1042 if (ret < 0) 1043 return NULL; 1044 } 1045 } 1046 1047 /* 1048 * The relationship between dirty buffers and dirty pages: 1049 * 1050 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1051 * the page is tagged dirty in the page cache. 1052 * 1053 * At all times, the dirtiness of the buffers represents the dirtiness of 1054 * subsections of the page. If the page has buffers, the page dirty bit is 1055 * merely a hint about the true dirty state. 1056 * 1057 * When a page is set dirty in its entirety, all its buffers are marked dirty 1058 * (if the page has buffers). 1059 * 1060 * When a buffer is marked dirty, its page is dirtied, but the page's other 1061 * buffers are not. 1062 * 1063 * Also. When blockdev buffers are explicitly read with bread(), they 1064 * individually become uptodate. But their backing page remains not 1065 * uptodate - even if all of its buffers are uptodate. A subsequent 1066 * block_read_full_page() against that page will discover all the uptodate 1067 * buffers, will set the page uptodate and will perform no I/O. 1068 */ 1069 1070 /** 1071 * mark_buffer_dirty - mark a buffer_head as needing writeout 1072 * @bh: the buffer_head to mark dirty 1073 * 1074 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1075 * its backing page dirty, then tag the page as dirty in the page cache 1076 * and then attach the address_space's inode to its superblock's dirty 1077 * inode list. 1078 * 1079 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1080 * i_pages lock and mapping->host->i_lock. 1081 */ 1082 void mark_buffer_dirty(struct buffer_head *bh) 1083 { 1084 WARN_ON_ONCE(!buffer_uptodate(bh)); 1085 1086 trace_block_dirty_buffer(bh); 1087 1088 /* 1089 * Very *carefully* optimize the it-is-already-dirty case. 1090 * 1091 * Don't let the final "is it dirty" escape to before we 1092 * perhaps modified the buffer. 1093 */ 1094 if (buffer_dirty(bh)) { 1095 smp_mb(); 1096 if (buffer_dirty(bh)) 1097 return; 1098 } 1099 1100 if (!test_set_buffer_dirty(bh)) { 1101 struct page *page = bh->b_page; 1102 struct address_space *mapping = NULL; 1103 1104 lock_page_memcg(page); 1105 if (!TestSetPageDirty(page)) { 1106 mapping = page_mapping(page); 1107 if (mapping) 1108 __set_page_dirty(page, mapping, 0); 1109 } 1110 unlock_page_memcg(page); 1111 if (mapping) 1112 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1113 } 1114 } 1115 EXPORT_SYMBOL(mark_buffer_dirty); 1116 1117 void mark_buffer_write_io_error(struct buffer_head *bh) 1118 { 1119 struct super_block *sb; 1120 1121 set_buffer_write_io_error(bh); 1122 /* FIXME: do we need to set this in both places? */ 1123 if (bh->b_page && bh->b_page->mapping) 1124 mapping_set_error(bh->b_page->mapping, -EIO); 1125 if (bh->b_assoc_map) 1126 mapping_set_error(bh->b_assoc_map, -EIO); 1127 rcu_read_lock(); 1128 sb = READ_ONCE(bh->b_bdev->bd_super); 1129 if (sb) 1130 errseq_set(&sb->s_wb_err, -EIO); 1131 rcu_read_unlock(); 1132 } 1133 EXPORT_SYMBOL(mark_buffer_write_io_error); 1134 1135 /* 1136 * Decrement a buffer_head's reference count. If all buffers against a page 1137 * have zero reference count, are clean and unlocked, and if the page is clean 1138 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1139 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1140 * a page but it ends up not being freed, and buffers may later be reattached). 1141 */ 1142 void __brelse(struct buffer_head * buf) 1143 { 1144 if (atomic_read(&buf->b_count)) { 1145 put_bh(buf); 1146 return; 1147 } 1148 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1149 } 1150 EXPORT_SYMBOL(__brelse); 1151 1152 /* 1153 * bforget() is like brelse(), except it discards any 1154 * potentially dirty data. 1155 */ 1156 void __bforget(struct buffer_head *bh) 1157 { 1158 clear_buffer_dirty(bh); 1159 if (bh->b_assoc_map) { 1160 struct address_space *buffer_mapping = bh->b_page->mapping; 1161 1162 spin_lock(&buffer_mapping->private_lock); 1163 list_del_init(&bh->b_assoc_buffers); 1164 bh->b_assoc_map = NULL; 1165 spin_unlock(&buffer_mapping->private_lock); 1166 } 1167 __brelse(bh); 1168 } 1169 EXPORT_SYMBOL(__bforget); 1170 1171 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1172 { 1173 lock_buffer(bh); 1174 if (buffer_uptodate(bh)) { 1175 unlock_buffer(bh); 1176 return bh; 1177 } else { 1178 get_bh(bh); 1179 bh->b_end_io = end_buffer_read_sync; 1180 submit_bh(REQ_OP_READ, 0, bh); 1181 wait_on_buffer(bh); 1182 if (buffer_uptodate(bh)) 1183 return bh; 1184 } 1185 brelse(bh); 1186 return NULL; 1187 } 1188 1189 /* 1190 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1191 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1192 * refcount elevated by one when they're in an LRU. A buffer can only appear 1193 * once in a particular CPU's LRU. A single buffer can be present in multiple 1194 * CPU's LRUs at the same time. 1195 * 1196 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1197 * sb_find_get_block(). 1198 * 1199 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1200 * a local interrupt disable for that. 1201 */ 1202 1203 #define BH_LRU_SIZE 16 1204 1205 struct bh_lru { 1206 struct buffer_head *bhs[BH_LRU_SIZE]; 1207 }; 1208 1209 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1210 1211 #ifdef CONFIG_SMP 1212 #define bh_lru_lock() local_irq_disable() 1213 #define bh_lru_unlock() local_irq_enable() 1214 #else 1215 #define bh_lru_lock() preempt_disable() 1216 #define bh_lru_unlock() preempt_enable() 1217 #endif 1218 1219 static inline void check_irqs_on(void) 1220 { 1221 #ifdef irqs_disabled 1222 BUG_ON(irqs_disabled()); 1223 #endif 1224 } 1225 1226 /* 1227 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1228 * inserted at the front, and the buffer_head at the back if any is evicted. 1229 * Or, if already in the LRU it is moved to the front. 1230 */ 1231 static void bh_lru_install(struct buffer_head *bh) 1232 { 1233 struct buffer_head *evictee = bh; 1234 struct bh_lru *b; 1235 int i; 1236 1237 check_irqs_on(); 1238 /* 1239 * the refcount of buffer_head in bh_lru prevents dropping the 1240 * attached page(i.e., try_to_free_buffers) so it could cause 1241 * failing page migration. 1242 * Skip putting upcoming bh into bh_lru until migration is done. 1243 */ 1244 if (lru_cache_disabled()) 1245 return; 1246 1247 bh_lru_lock(); 1248 1249 b = this_cpu_ptr(&bh_lrus); 1250 for (i = 0; i < BH_LRU_SIZE; i++) { 1251 swap(evictee, b->bhs[i]); 1252 if (evictee == bh) { 1253 bh_lru_unlock(); 1254 return; 1255 } 1256 } 1257 1258 get_bh(bh); 1259 bh_lru_unlock(); 1260 brelse(evictee); 1261 } 1262 1263 /* 1264 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1265 */ 1266 static struct buffer_head * 1267 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1268 { 1269 struct buffer_head *ret = NULL; 1270 unsigned int i; 1271 1272 check_irqs_on(); 1273 bh_lru_lock(); 1274 for (i = 0; i < BH_LRU_SIZE; i++) { 1275 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1276 1277 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1278 bh->b_size == size) { 1279 if (i) { 1280 while (i) { 1281 __this_cpu_write(bh_lrus.bhs[i], 1282 __this_cpu_read(bh_lrus.bhs[i - 1])); 1283 i--; 1284 } 1285 __this_cpu_write(bh_lrus.bhs[0], bh); 1286 } 1287 get_bh(bh); 1288 ret = bh; 1289 break; 1290 } 1291 } 1292 bh_lru_unlock(); 1293 return ret; 1294 } 1295 1296 /* 1297 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1298 * it in the LRU and mark it as accessed. If it is not present then return 1299 * NULL 1300 */ 1301 struct buffer_head * 1302 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1303 { 1304 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1305 1306 if (bh == NULL) { 1307 /* __find_get_block_slow will mark the page accessed */ 1308 bh = __find_get_block_slow(bdev, block); 1309 if (bh) 1310 bh_lru_install(bh); 1311 } else 1312 touch_buffer(bh); 1313 1314 return bh; 1315 } 1316 EXPORT_SYMBOL(__find_get_block); 1317 1318 /* 1319 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1320 * which corresponds to the passed block_device, block and size. The 1321 * returned buffer has its reference count incremented. 1322 * 1323 * __getblk_gfp() will lock up the machine if grow_dev_page's 1324 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1325 */ 1326 struct buffer_head * 1327 __getblk_gfp(struct block_device *bdev, sector_t block, 1328 unsigned size, gfp_t gfp) 1329 { 1330 struct buffer_head *bh = __find_get_block(bdev, block, size); 1331 1332 might_sleep(); 1333 if (bh == NULL) 1334 bh = __getblk_slow(bdev, block, size, gfp); 1335 return bh; 1336 } 1337 EXPORT_SYMBOL(__getblk_gfp); 1338 1339 /* 1340 * Do async read-ahead on a buffer.. 1341 */ 1342 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1343 { 1344 struct buffer_head *bh = __getblk(bdev, block, size); 1345 if (likely(bh)) { 1346 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1347 brelse(bh); 1348 } 1349 } 1350 EXPORT_SYMBOL(__breadahead); 1351 1352 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size, 1353 gfp_t gfp) 1354 { 1355 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1356 if (likely(bh)) { 1357 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1358 brelse(bh); 1359 } 1360 } 1361 EXPORT_SYMBOL(__breadahead_gfp); 1362 1363 /** 1364 * __bread_gfp() - reads a specified block and returns the bh 1365 * @bdev: the block_device to read from 1366 * @block: number of block 1367 * @size: size (in bytes) to read 1368 * @gfp: page allocation flag 1369 * 1370 * Reads a specified block, and returns buffer head that contains it. 1371 * The page cache can be allocated from non-movable area 1372 * not to prevent page migration if you set gfp to zero. 1373 * It returns NULL if the block was unreadable. 1374 */ 1375 struct buffer_head * 1376 __bread_gfp(struct block_device *bdev, sector_t block, 1377 unsigned size, gfp_t gfp) 1378 { 1379 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1380 1381 if (likely(bh) && !buffer_uptodate(bh)) 1382 bh = __bread_slow(bh); 1383 return bh; 1384 } 1385 EXPORT_SYMBOL(__bread_gfp); 1386 1387 static void __invalidate_bh_lrus(struct bh_lru *b) 1388 { 1389 int i; 1390 1391 for (i = 0; i < BH_LRU_SIZE; i++) { 1392 brelse(b->bhs[i]); 1393 b->bhs[i] = NULL; 1394 } 1395 } 1396 /* 1397 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1398 * This doesn't race because it runs in each cpu either in irq 1399 * or with preempt disabled. 1400 */ 1401 static void invalidate_bh_lru(void *arg) 1402 { 1403 struct bh_lru *b = &get_cpu_var(bh_lrus); 1404 1405 __invalidate_bh_lrus(b); 1406 put_cpu_var(bh_lrus); 1407 } 1408 1409 bool has_bh_in_lru(int cpu, void *dummy) 1410 { 1411 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1412 int i; 1413 1414 for (i = 0; i < BH_LRU_SIZE; i++) { 1415 if (b->bhs[i]) 1416 return true; 1417 } 1418 1419 return false; 1420 } 1421 1422 void invalidate_bh_lrus(void) 1423 { 1424 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1425 } 1426 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1427 1428 /* 1429 * It's called from workqueue context so we need a bh_lru_lock to close 1430 * the race with preemption/irq. 1431 */ 1432 void invalidate_bh_lrus_cpu(void) 1433 { 1434 struct bh_lru *b; 1435 1436 bh_lru_lock(); 1437 b = this_cpu_ptr(&bh_lrus); 1438 __invalidate_bh_lrus(b); 1439 bh_lru_unlock(); 1440 } 1441 1442 void set_bh_page(struct buffer_head *bh, 1443 struct page *page, unsigned long offset) 1444 { 1445 bh->b_page = page; 1446 BUG_ON(offset >= PAGE_SIZE); 1447 if (PageHighMem(page)) 1448 /* 1449 * This catches illegal uses and preserves the offset: 1450 */ 1451 bh->b_data = (char *)(0 + offset); 1452 else 1453 bh->b_data = page_address(page) + offset; 1454 } 1455 EXPORT_SYMBOL(set_bh_page); 1456 1457 /* 1458 * Called when truncating a buffer on a page completely. 1459 */ 1460 1461 /* Bits that are cleared during an invalidate */ 1462 #define BUFFER_FLAGS_DISCARD \ 1463 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1464 1 << BH_Delay | 1 << BH_Unwritten) 1465 1466 static void discard_buffer(struct buffer_head * bh) 1467 { 1468 unsigned long b_state, b_state_old; 1469 1470 lock_buffer(bh); 1471 clear_buffer_dirty(bh); 1472 bh->b_bdev = NULL; 1473 b_state = bh->b_state; 1474 for (;;) { 1475 b_state_old = cmpxchg(&bh->b_state, b_state, 1476 (b_state & ~BUFFER_FLAGS_DISCARD)); 1477 if (b_state_old == b_state) 1478 break; 1479 b_state = b_state_old; 1480 } 1481 unlock_buffer(bh); 1482 } 1483 1484 /** 1485 * block_invalidatepage - invalidate part or all of a buffer-backed page 1486 * 1487 * @page: the page which is affected 1488 * @offset: start of the range to invalidate 1489 * @length: length of the range to invalidate 1490 * 1491 * block_invalidatepage() is called when all or part of the page has become 1492 * invalidated by a truncate operation. 1493 * 1494 * block_invalidatepage() does not have to release all buffers, but it must 1495 * ensure that no dirty buffer is left outside @offset and that no I/O 1496 * is underway against any of the blocks which are outside the truncation 1497 * point. Because the caller is about to free (and possibly reuse) those 1498 * blocks on-disk. 1499 */ 1500 void block_invalidatepage(struct page *page, unsigned int offset, 1501 unsigned int length) 1502 { 1503 struct buffer_head *head, *bh, *next; 1504 unsigned int curr_off = 0; 1505 unsigned int stop = length + offset; 1506 1507 BUG_ON(!PageLocked(page)); 1508 if (!page_has_buffers(page)) 1509 goto out; 1510 1511 /* 1512 * Check for overflow 1513 */ 1514 BUG_ON(stop > PAGE_SIZE || stop < length); 1515 1516 head = page_buffers(page); 1517 bh = head; 1518 do { 1519 unsigned int next_off = curr_off + bh->b_size; 1520 next = bh->b_this_page; 1521 1522 /* 1523 * Are we still fully in range ? 1524 */ 1525 if (next_off > stop) 1526 goto out; 1527 1528 /* 1529 * is this block fully invalidated? 1530 */ 1531 if (offset <= curr_off) 1532 discard_buffer(bh); 1533 curr_off = next_off; 1534 bh = next; 1535 } while (bh != head); 1536 1537 /* 1538 * We release buffers only if the entire page is being invalidated. 1539 * The get_block cached value has been unconditionally invalidated, 1540 * so real IO is not possible anymore. 1541 */ 1542 if (length == PAGE_SIZE) 1543 try_to_release_page(page, 0); 1544 out: 1545 return; 1546 } 1547 EXPORT_SYMBOL(block_invalidatepage); 1548 1549 1550 /* 1551 * We attach and possibly dirty the buffers atomically wrt 1552 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1553 * is already excluded via the page lock. 1554 */ 1555 void create_empty_buffers(struct page *page, 1556 unsigned long blocksize, unsigned long b_state) 1557 { 1558 struct buffer_head *bh, *head, *tail; 1559 1560 head = alloc_page_buffers(page, blocksize, true); 1561 bh = head; 1562 do { 1563 bh->b_state |= b_state; 1564 tail = bh; 1565 bh = bh->b_this_page; 1566 } while (bh); 1567 tail->b_this_page = head; 1568 1569 spin_lock(&page->mapping->private_lock); 1570 if (PageUptodate(page) || PageDirty(page)) { 1571 bh = head; 1572 do { 1573 if (PageDirty(page)) 1574 set_buffer_dirty(bh); 1575 if (PageUptodate(page)) 1576 set_buffer_uptodate(bh); 1577 bh = bh->b_this_page; 1578 } while (bh != head); 1579 } 1580 attach_page_private(page, head); 1581 spin_unlock(&page->mapping->private_lock); 1582 } 1583 EXPORT_SYMBOL(create_empty_buffers); 1584 1585 /** 1586 * clean_bdev_aliases: clean a range of buffers in block device 1587 * @bdev: Block device to clean buffers in 1588 * @block: Start of a range of blocks to clean 1589 * @len: Number of blocks to clean 1590 * 1591 * We are taking a range of blocks for data and we don't want writeback of any 1592 * buffer-cache aliases starting from return from this function and until the 1593 * moment when something will explicitly mark the buffer dirty (hopefully that 1594 * will not happen until we will free that block ;-) We don't even need to mark 1595 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1596 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1597 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1598 * would confuse anyone who might pick it with bread() afterwards... 1599 * 1600 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1601 * writeout I/O going on against recently-freed buffers. We don't wait on that 1602 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1603 * need to. That happens here. 1604 */ 1605 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1606 { 1607 struct inode *bd_inode = bdev->bd_inode; 1608 struct address_space *bd_mapping = bd_inode->i_mapping; 1609 struct pagevec pvec; 1610 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1611 pgoff_t end; 1612 int i, count; 1613 struct buffer_head *bh; 1614 struct buffer_head *head; 1615 1616 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1617 pagevec_init(&pvec); 1618 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1619 count = pagevec_count(&pvec); 1620 for (i = 0; i < count; i++) { 1621 struct page *page = pvec.pages[i]; 1622 1623 if (!page_has_buffers(page)) 1624 continue; 1625 /* 1626 * We use page lock instead of bd_mapping->private_lock 1627 * to pin buffers here since we can afford to sleep and 1628 * it scales better than a global spinlock lock. 1629 */ 1630 lock_page(page); 1631 /* Recheck when the page is locked which pins bhs */ 1632 if (!page_has_buffers(page)) 1633 goto unlock_page; 1634 head = page_buffers(page); 1635 bh = head; 1636 do { 1637 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1638 goto next; 1639 if (bh->b_blocknr >= block + len) 1640 break; 1641 clear_buffer_dirty(bh); 1642 wait_on_buffer(bh); 1643 clear_buffer_req(bh); 1644 next: 1645 bh = bh->b_this_page; 1646 } while (bh != head); 1647 unlock_page: 1648 unlock_page(page); 1649 } 1650 pagevec_release(&pvec); 1651 cond_resched(); 1652 /* End of range already reached? */ 1653 if (index > end || !index) 1654 break; 1655 } 1656 } 1657 EXPORT_SYMBOL(clean_bdev_aliases); 1658 1659 /* 1660 * Size is a power-of-two in the range 512..PAGE_SIZE, 1661 * and the case we care about most is PAGE_SIZE. 1662 * 1663 * So this *could* possibly be written with those 1664 * constraints in mind (relevant mostly if some 1665 * architecture has a slow bit-scan instruction) 1666 */ 1667 static inline int block_size_bits(unsigned int blocksize) 1668 { 1669 return ilog2(blocksize); 1670 } 1671 1672 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1673 { 1674 BUG_ON(!PageLocked(page)); 1675 1676 if (!page_has_buffers(page)) 1677 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1678 b_state); 1679 return page_buffers(page); 1680 } 1681 1682 /* 1683 * NOTE! All mapped/uptodate combinations are valid: 1684 * 1685 * Mapped Uptodate Meaning 1686 * 1687 * No No "unknown" - must do get_block() 1688 * No Yes "hole" - zero-filled 1689 * Yes No "allocated" - allocated on disk, not read in 1690 * Yes Yes "valid" - allocated and up-to-date in memory. 1691 * 1692 * "Dirty" is valid only with the last case (mapped+uptodate). 1693 */ 1694 1695 /* 1696 * While block_write_full_page is writing back the dirty buffers under 1697 * the page lock, whoever dirtied the buffers may decide to clean them 1698 * again at any time. We handle that by only looking at the buffer 1699 * state inside lock_buffer(). 1700 * 1701 * If block_write_full_page() is called for regular writeback 1702 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1703 * locked buffer. This only can happen if someone has written the buffer 1704 * directly, with submit_bh(). At the address_space level PageWriteback 1705 * prevents this contention from occurring. 1706 * 1707 * If block_write_full_page() is called with wbc->sync_mode == 1708 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1709 * causes the writes to be flagged as synchronous writes. 1710 */ 1711 int __block_write_full_page(struct inode *inode, struct page *page, 1712 get_block_t *get_block, struct writeback_control *wbc, 1713 bh_end_io_t *handler) 1714 { 1715 int err; 1716 sector_t block; 1717 sector_t last_block; 1718 struct buffer_head *bh, *head; 1719 unsigned int blocksize, bbits; 1720 int nr_underway = 0; 1721 int write_flags = wbc_to_write_flags(wbc); 1722 1723 head = create_page_buffers(page, inode, 1724 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1725 1726 /* 1727 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1728 * here, and the (potentially unmapped) buffers may become dirty at 1729 * any time. If a buffer becomes dirty here after we've inspected it 1730 * then we just miss that fact, and the page stays dirty. 1731 * 1732 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1733 * handle that here by just cleaning them. 1734 */ 1735 1736 bh = head; 1737 blocksize = bh->b_size; 1738 bbits = block_size_bits(blocksize); 1739 1740 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1741 last_block = (i_size_read(inode) - 1) >> bbits; 1742 1743 /* 1744 * Get all the dirty buffers mapped to disk addresses and 1745 * handle any aliases from the underlying blockdev's mapping. 1746 */ 1747 do { 1748 if (block > last_block) { 1749 /* 1750 * mapped buffers outside i_size will occur, because 1751 * this page can be outside i_size when there is a 1752 * truncate in progress. 1753 */ 1754 /* 1755 * The buffer was zeroed by block_write_full_page() 1756 */ 1757 clear_buffer_dirty(bh); 1758 set_buffer_uptodate(bh); 1759 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1760 buffer_dirty(bh)) { 1761 WARN_ON(bh->b_size != blocksize); 1762 err = get_block(inode, block, bh, 1); 1763 if (err) 1764 goto recover; 1765 clear_buffer_delay(bh); 1766 if (buffer_new(bh)) { 1767 /* blockdev mappings never come here */ 1768 clear_buffer_new(bh); 1769 clean_bdev_bh_alias(bh); 1770 } 1771 } 1772 bh = bh->b_this_page; 1773 block++; 1774 } while (bh != head); 1775 1776 do { 1777 if (!buffer_mapped(bh)) 1778 continue; 1779 /* 1780 * If it's a fully non-blocking write attempt and we cannot 1781 * lock the buffer then redirty the page. Note that this can 1782 * potentially cause a busy-wait loop from writeback threads 1783 * and kswapd activity, but those code paths have their own 1784 * higher-level throttling. 1785 */ 1786 if (wbc->sync_mode != WB_SYNC_NONE) { 1787 lock_buffer(bh); 1788 } else if (!trylock_buffer(bh)) { 1789 redirty_page_for_writepage(wbc, page); 1790 continue; 1791 } 1792 if (test_clear_buffer_dirty(bh)) { 1793 mark_buffer_async_write_endio(bh, handler); 1794 } else { 1795 unlock_buffer(bh); 1796 } 1797 } while ((bh = bh->b_this_page) != head); 1798 1799 /* 1800 * The page and its buffers are protected by PageWriteback(), so we can 1801 * drop the bh refcounts early. 1802 */ 1803 BUG_ON(PageWriteback(page)); 1804 set_page_writeback(page); 1805 1806 do { 1807 struct buffer_head *next = bh->b_this_page; 1808 if (buffer_async_write(bh)) { 1809 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1810 inode->i_write_hint, wbc); 1811 nr_underway++; 1812 } 1813 bh = next; 1814 } while (bh != head); 1815 unlock_page(page); 1816 1817 err = 0; 1818 done: 1819 if (nr_underway == 0) { 1820 /* 1821 * The page was marked dirty, but the buffers were 1822 * clean. Someone wrote them back by hand with 1823 * ll_rw_block/submit_bh. A rare case. 1824 */ 1825 end_page_writeback(page); 1826 1827 /* 1828 * The page and buffer_heads can be released at any time from 1829 * here on. 1830 */ 1831 } 1832 return err; 1833 1834 recover: 1835 /* 1836 * ENOSPC, or some other error. We may already have added some 1837 * blocks to the file, so we need to write these out to avoid 1838 * exposing stale data. 1839 * The page is currently locked and not marked for writeback 1840 */ 1841 bh = head; 1842 /* Recovery: lock and submit the mapped buffers */ 1843 do { 1844 if (buffer_mapped(bh) && buffer_dirty(bh) && 1845 !buffer_delay(bh)) { 1846 lock_buffer(bh); 1847 mark_buffer_async_write_endio(bh, handler); 1848 } else { 1849 /* 1850 * The buffer may have been set dirty during 1851 * attachment to a dirty page. 1852 */ 1853 clear_buffer_dirty(bh); 1854 } 1855 } while ((bh = bh->b_this_page) != head); 1856 SetPageError(page); 1857 BUG_ON(PageWriteback(page)); 1858 mapping_set_error(page->mapping, err); 1859 set_page_writeback(page); 1860 do { 1861 struct buffer_head *next = bh->b_this_page; 1862 if (buffer_async_write(bh)) { 1863 clear_buffer_dirty(bh); 1864 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1865 inode->i_write_hint, wbc); 1866 nr_underway++; 1867 } 1868 bh = next; 1869 } while (bh != head); 1870 unlock_page(page); 1871 goto done; 1872 } 1873 EXPORT_SYMBOL(__block_write_full_page); 1874 1875 /* 1876 * If a page has any new buffers, zero them out here, and mark them uptodate 1877 * and dirty so they'll be written out (in order to prevent uninitialised 1878 * block data from leaking). And clear the new bit. 1879 */ 1880 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1881 { 1882 unsigned int block_start, block_end; 1883 struct buffer_head *head, *bh; 1884 1885 BUG_ON(!PageLocked(page)); 1886 if (!page_has_buffers(page)) 1887 return; 1888 1889 bh = head = page_buffers(page); 1890 block_start = 0; 1891 do { 1892 block_end = block_start + bh->b_size; 1893 1894 if (buffer_new(bh)) { 1895 if (block_end > from && block_start < to) { 1896 if (!PageUptodate(page)) { 1897 unsigned start, size; 1898 1899 start = max(from, block_start); 1900 size = min(to, block_end) - start; 1901 1902 zero_user(page, start, size); 1903 set_buffer_uptodate(bh); 1904 } 1905 1906 clear_buffer_new(bh); 1907 mark_buffer_dirty(bh); 1908 } 1909 } 1910 1911 block_start = block_end; 1912 bh = bh->b_this_page; 1913 } while (bh != head); 1914 } 1915 EXPORT_SYMBOL(page_zero_new_buffers); 1916 1917 static void 1918 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1919 const struct iomap *iomap) 1920 { 1921 loff_t offset = block << inode->i_blkbits; 1922 1923 bh->b_bdev = iomap->bdev; 1924 1925 /* 1926 * Block points to offset in file we need to map, iomap contains 1927 * the offset at which the map starts. If the map ends before the 1928 * current block, then do not map the buffer and let the caller 1929 * handle it. 1930 */ 1931 BUG_ON(offset >= iomap->offset + iomap->length); 1932 1933 switch (iomap->type) { 1934 case IOMAP_HOLE: 1935 /* 1936 * If the buffer is not up to date or beyond the current EOF, 1937 * we need to mark it as new to ensure sub-block zeroing is 1938 * executed if necessary. 1939 */ 1940 if (!buffer_uptodate(bh) || 1941 (offset >= i_size_read(inode))) 1942 set_buffer_new(bh); 1943 break; 1944 case IOMAP_DELALLOC: 1945 if (!buffer_uptodate(bh) || 1946 (offset >= i_size_read(inode))) 1947 set_buffer_new(bh); 1948 set_buffer_uptodate(bh); 1949 set_buffer_mapped(bh); 1950 set_buffer_delay(bh); 1951 break; 1952 case IOMAP_UNWRITTEN: 1953 /* 1954 * For unwritten regions, we always need to ensure that regions 1955 * in the block we are not writing to are zeroed. Mark the 1956 * buffer as new to ensure this. 1957 */ 1958 set_buffer_new(bh); 1959 set_buffer_unwritten(bh); 1960 fallthrough; 1961 case IOMAP_MAPPED: 1962 if ((iomap->flags & IOMAP_F_NEW) || 1963 offset >= i_size_read(inode)) 1964 set_buffer_new(bh); 1965 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1966 inode->i_blkbits; 1967 set_buffer_mapped(bh); 1968 break; 1969 } 1970 } 1971 1972 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1973 get_block_t *get_block, const struct iomap *iomap) 1974 { 1975 unsigned from = pos & (PAGE_SIZE - 1); 1976 unsigned to = from + len; 1977 struct inode *inode = page->mapping->host; 1978 unsigned block_start, block_end; 1979 sector_t block; 1980 int err = 0; 1981 unsigned blocksize, bbits; 1982 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1983 1984 BUG_ON(!PageLocked(page)); 1985 BUG_ON(from > PAGE_SIZE); 1986 BUG_ON(to > PAGE_SIZE); 1987 BUG_ON(from > to); 1988 1989 head = create_page_buffers(page, inode, 0); 1990 blocksize = head->b_size; 1991 bbits = block_size_bits(blocksize); 1992 1993 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1994 1995 for(bh = head, block_start = 0; bh != head || !block_start; 1996 block++, block_start=block_end, bh = bh->b_this_page) { 1997 block_end = block_start + blocksize; 1998 if (block_end <= from || block_start >= to) { 1999 if (PageUptodate(page)) { 2000 if (!buffer_uptodate(bh)) 2001 set_buffer_uptodate(bh); 2002 } 2003 continue; 2004 } 2005 if (buffer_new(bh)) 2006 clear_buffer_new(bh); 2007 if (!buffer_mapped(bh)) { 2008 WARN_ON(bh->b_size != blocksize); 2009 if (get_block) { 2010 err = get_block(inode, block, bh, 1); 2011 if (err) 2012 break; 2013 } else { 2014 iomap_to_bh(inode, block, bh, iomap); 2015 } 2016 2017 if (buffer_new(bh)) { 2018 clean_bdev_bh_alias(bh); 2019 if (PageUptodate(page)) { 2020 clear_buffer_new(bh); 2021 set_buffer_uptodate(bh); 2022 mark_buffer_dirty(bh); 2023 continue; 2024 } 2025 if (block_end > to || block_start < from) 2026 zero_user_segments(page, 2027 to, block_end, 2028 block_start, from); 2029 continue; 2030 } 2031 } 2032 if (PageUptodate(page)) { 2033 if (!buffer_uptodate(bh)) 2034 set_buffer_uptodate(bh); 2035 continue; 2036 } 2037 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2038 !buffer_unwritten(bh) && 2039 (block_start < from || block_end > to)) { 2040 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2041 *wait_bh++=bh; 2042 } 2043 } 2044 /* 2045 * If we issued read requests - let them complete. 2046 */ 2047 while(wait_bh > wait) { 2048 wait_on_buffer(*--wait_bh); 2049 if (!buffer_uptodate(*wait_bh)) 2050 err = -EIO; 2051 } 2052 if (unlikely(err)) 2053 page_zero_new_buffers(page, from, to); 2054 return err; 2055 } 2056 2057 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2058 get_block_t *get_block) 2059 { 2060 return __block_write_begin_int(page, pos, len, get_block, NULL); 2061 } 2062 EXPORT_SYMBOL(__block_write_begin); 2063 2064 static int __block_commit_write(struct inode *inode, struct page *page, 2065 unsigned from, unsigned to) 2066 { 2067 unsigned block_start, block_end; 2068 int partial = 0; 2069 unsigned blocksize; 2070 struct buffer_head *bh, *head; 2071 2072 bh = head = page_buffers(page); 2073 blocksize = bh->b_size; 2074 2075 block_start = 0; 2076 do { 2077 block_end = block_start + blocksize; 2078 if (block_end <= from || block_start >= to) { 2079 if (!buffer_uptodate(bh)) 2080 partial = 1; 2081 } else { 2082 set_buffer_uptodate(bh); 2083 mark_buffer_dirty(bh); 2084 } 2085 if (buffer_new(bh)) 2086 clear_buffer_new(bh); 2087 2088 block_start = block_end; 2089 bh = bh->b_this_page; 2090 } while (bh != head); 2091 2092 /* 2093 * If this is a partial write which happened to make all buffers 2094 * uptodate then we can optimize away a bogus readpage() for 2095 * the next read(). Here we 'discover' whether the page went 2096 * uptodate as a result of this (potentially partial) write. 2097 */ 2098 if (!partial) 2099 SetPageUptodate(page); 2100 return 0; 2101 } 2102 2103 /* 2104 * block_write_begin takes care of the basic task of block allocation and 2105 * bringing partial write blocks uptodate first. 2106 * 2107 * The filesystem needs to handle block truncation upon failure. 2108 */ 2109 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2110 unsigned flags, struct page **pagep, get_block_t *get_block) 2111 { 2112 pgoff_t index = pos >> PAGE_SHIFT; 2113 struct page *page; 2114 int status; 2115 2116 page = grab_cache_page_write_begin(mapping, index, flags); 2117 if (!page) 2118 return -ENOMEM; 2119 2120 status = __block_write_begin(page, pos, len, get_block); 2121 if (unlikely(status)) { 2122 unlock_page(page); 2123 put_page(page); 2124 page = NULL; 2125 } 2126 2127 *pagep = page; 2128 return status; 2129 } 2130 EXPORT_SYMBOL(block_write_begin); 2131 2132 int block_write_end(struct file *file, struct address_space *mapping, 2133 loff_t pos, unsigned len, unsigned copied, 2134 struct page *page, void *fsdata) 2135 { 2136 struct inode *inode = mapping->host; 2137 unsigned start; 2138 2139 start = pos & (PAGE_SIZE - 1); 2140 2141 if (unlikely(copied < len)) { 2142 /* 2143 * The buffers that were written will now be uptodate, so we 2144 * don't have to worry about a readpage reading them and 2145 * overwriting a partial write. However if we have encountered 2146 * a short write and only partially written into a buffer, it 2147 * will not be marked uptodate, so a readpage might come in and 2148 * destroy our partial write. 2149 * 2150 * Do the simplest thing, and just treat any short write to a 2151 * non uptodate page as a zero-length write, and force the 2152 * caller to redo the whole thing. 2153 */ 2154 if (!PageUptodate(page)) 2155 copied = 0; 2156 2157 page_zero_new_buffers(page, start+copied, start+len); 2158 } 2159 flush_dcache_page(page); 2160 2161 /* This could be a short (even 0-length) commit */ 2162 __block_commit_write(inode, page, start, start+copied); 2163 2164 return copied; 2165 } 2166 EXPORT_SYMBOL(block_write_end); 2167 2168 int generic_write_end(struct file *file, struct address_space *mapping, 2169 loff_t pos, unsigned len, unsigned copied, 2170 struct page *page, void *fsdata) 2171 { 2172 struct inode *inode = mapping->host; 2173 loff_t old_size = inode->i_size; 2174 bool i_size_changed = false; 2175 2176 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2177 2178 /* 2179 * No need to use i_size_read() here, the i_size cannot change under us 2180 * because we hold i_rwsem. 2181 * 2182 * But it's important to update i_size while still holding page lock: 2183 * page writeout could otherwise come in and zero beyond i_size. 2184 */ 2185 if (pos + copied > inode->i_size) { 2186 i_size_write(inode, pos + copied); 2187 i_size_changed = true; 2188 } 2189 2190 unlock_page(page); 2191 put_page(page); 2192 2193 if (old_size < pos) 2194 pagecache_isize_extended(inode, old_size, pos); 2195 /* 2196 * Don't mark the inode dirty under page lock. First, it unnecessarily 2197 * makes the holding time of page lock longer. Second, it forces lock 2198 * ordering of page lock and transaction start for journaling 2199 * filesystems. 2200 */ 2201 if (i_size_changed) 2202 mark_inode_dirty(inode); 2203 return copied; 2204 } 2205 EXPORT_SYMBOL(generic_write_end); 2206 2207 /* 2208 * block_is_partially_uptodate checks whether buffers within a page are 2209 * uptodate or not. 2210 * 2211 * Returns true if all buffers which correspond to a file portion 2212 * we want to read are uptodate. 2213 */ 2214 int block_is_partially_uptodate(struct page *page, unsigned long from, 2215 unsigned long count) 2216 { 2217 unsigned block_start, block_end, blocksize; 2218 unsigned to; 2219 struct buffer_head *bh, *head; 2220 int ret = 1; 2221 2222 if (!page_has_buffers(page)) 2223 return 0; 2224 2225 head = page_buffers(page); 2226 blocksize = head->b_size; 2227 to = min_t(unsigned, PAGE_SIZE - from, count); 2228 to = from + to; 2229 if (from < blocksize && to > PAGE_SIZE - blocksize) 2230 return 0; 2231 2232 bh = head; 2233 block_start = 0; 2234 do { 2235 block_end = block_start + blocksize; 2236 if (block_end > from && block_start < to) { 2237 if (!buffer_uptodate(bh)) { 2238 ret = 0; 2239 break; 2240 } 2241 if (block_end >= to) 2242 break; 2243 } 2244 block_start = block_end; 2245 bh = bh->b_this_page; 2246 } while (bh != head); 2247 2248 return ret; 2249 } 2250 EXPORT_SYMBOL(block_is_partially_uptodate); 2251 2252 /* 2253 * Generic "read page" function for block devices that have the normal 2254 * get_block functionality. This is most of the block device filesystems. 2255 * Reads the page asynchronously --- the unlock_buffer() and 2256 * set/clear_buffer_uptodate() functions propagate buffer state into the 2257 * page struct once IO has completed. 2258 */ 2259 int block_read_full_page(struct page *page, get_block_t *get_block) 2260 { 2261 struct inode *inode = page->mapping->host; 2262 sector_t iblock, lblock; 2263 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2264 unsigned int blocksize, bbits; 2265 int nr, i; 2266 int fully_mapped = 1; 2267 2268 head = create_page_buffers(page, inode, 0); 2269 blocksize = head->b_size; 2270 bbits = block_size_bits(blocksize); 2271 2272 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2273 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2274 bh = head; 2275 nr = 0; 2276 i = 0; 2277 2278 do { 2279 if (buffer_uptodate(bh)) 2280 continue; 2281 2282 if (!buffer_mapped(bh)) { 2283 int err = 0; 2284 2285 fully_mapped = 0; 2286 if (iblock < lblock) { 2287 WARN_ON(bh->b_size != blocksize); 2288 err = get_block(inode, iblock, bh, 0); 2289 if (err) 2290 SetPageError(page); 2291 } 2292 if (!buffer_mapped(bh)) { 2293 zero_user(page, i * blocksize, blocksize); 2294 if (!err) 2295 set_buffer_uptodate(bh); 2296 continue; 2297 } 2298 /* 2299 * get_block() might have updated the buffer 2300 * synchronously 2301 */ 2302 if (buffer_uptodate(bh)) 2303 continue; 2304 } 2305 arr[nr++] = bh; 2306 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2307 2308 if (fully_mapped) 2309 SetPageMappedToDisk(page); 2310 2311 if (!nr) { 2312 /* 2313 * All buffers are uptodate - we can set the page uptodate 2314 * as well. But not if get_block() returned an error. 2315 */ 2316 if (!PageError(page)) 2317 SetPageUptodate(page); 2318 unlock_page(page); 2319 return 0; 2320 } 2321 2322 /* Stage two: lock the buffers */ 2323 for (i = 0; i < nr; i++) { 2324 bh = arr[i]; 2325 lock_buffer(bh); 2326 mark_buffer_async_read(bh); 2327 } 2328 2329 /* 2330 * Stage 3: start the IO. Check for uptodateness 2331 * inside the buffer lock in case another process reading 2332 * the underlying blockdev brought it uptodate (the sct fix). 2333 */ 2334 for (i = 0; i < nr; i++) { 2335 bh = arr[i]; 2336 if (buffer_uptodate(bh)) 2337 end_buffer_async_read(bh, 1); 2338 else 2339 submit_bh(REQ_OP_READ, 0, bh); 2340 } 2341 return 0; 2342 } 2343 EXPORT_SYMBOL(block_read_full_page); 2344 2345 /* utility function for filesystems that need to do work on expanding 2346 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2347 * deal with the hole. 2348 */ 2349 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2350 { 2351 struct address_space *mapping = inode->i_mapping; 2352 struct page *page; 2353 void *fsdata; 2354 int err; 2355 2356 err = inode_newsize_ok(inode, size); 2357 if (err) 2358 goto out; 2359 2360 err = pagecache_write_begin(NULL, mapping, size, 0, 2361 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2362 if (err) 2363 goto out; 2364 2365 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2366 BUG_ON(err > 0); 2367 2368 out: 2369 return err; 2370 } 2371 EXPORT_SYMBOL(generic_cont_expand_simple); 2372 2373 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2374 loff_t pos, loff_t *bytes) 2375 { 2376 struct inode *inode = mapping->host; 2377 unsigned int blocksize = i_blocksize(inode); 2378 struct page *page; 2379 void *fsdata; 2380 pgoff_t index, curidx; 2381 loff_t curpos; 2382 unsigned zerofrom, offset, len; 2383 int err = 0; 2384 2385 index = pos >> PAGE_SHIFT; 2386 offset = pos & ~PAGE_MASK; 2387 2388 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2389 zerofrom = curpos & ~PAGE_MASK; 2390 if (zerofrom & (blocksize-1)) { 2391 *bytes |= (blocksize-1); 2392 (*bytes)++; 2393 } 2394 len = PAGE_SIZE - zerofrom; 2395 2396 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2397 &page, &fsdata); 2398 if (err) 2399 goto out; 2400 zero_user(page, zerofrom, len); 2401 err = pagecache_write_end(file, mapping, curpos, len, len, 2402 page, fsdata); 2403 if (err < 0) 2404 goto out; 2405 BUG_ON(err != len); 2406 err = 0; 2407 2408 balance_dirty_pages_ratelimited(mapping); 2409 2410 if (fatal_signal_pending(current)) { 2411 err = -EINTR; 2412 goto out; 2413 } 2414 } 2415 2416 /* page covers the boundary, find the boundary offset */ 2417 if (index == curidx) { 2418 zerofrom = curpos & ~PAGE_MASK; 2419 /* if we will expand the thing last block will be filled */ 2420 if (offset <= zerofrom) { 2421 goto out; 2422 } 2423 if (zerofrom & (blocksize-1)) { 2424 *bytes |= (blocksize-1); 2425 (*bytes)++; 2426 } 2427 len = offset - zerofrom; 2428 2429 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2430 &page, &fsdata); 2431 if (err) 2432 goto out; 2433 zero_user(page, zerofrom, len); 2434 err = pagecache_write_end(file, mapping, curpos, len, len, 2435 page, fsdata); 2436 if (err < 0) 2437 goto out; 2438 BUG_ON(err != len); 2439 err = 0; 2440 } 2441 out: 2442 return err; 2443 } 2444 2445 /* 2446 * For moronic filesystems that do not allow holes in file. 2447 * We may have to extend the file. 2448 */ 2449 int cont_write_begin(struct file *file, struct address_space *mapping, 2450 loff_t pos, unsigned len, unsigned flags, 2451 struct page **pagep, void **fsdata, 2452 get_block_t *get_block, loff_t *bytes) 2453 { 2454 struct inode *inode = mapping->host; 2455 unsigned int blocksize = i_blocksize(inode); 2456 unsigned int zerofrom; 2457 int err; 2458 2459 err = cont_expand_zero(file, mapping, pos, bytes); 2460 if (err) 2461 return err; 2462 2463 zerofrom = *bytes & ~PAGE_MASK; 2464 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2465 *bytes |= (blocksize-1); 2466 (*bytes)++; 2467 } 2468 2469 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2470 } 2471 EXPORT_SYMBOL(cont_write_begin); 2472 2473 int block_commit_write(struct page *page, unsigned from, unsigned to) 2474 { 2475 struct inode *inode = page->mapping->host; 2476 __block_commit_write(inode,page,from,to); 2477 return 0; 2478 } 2479 EXPORT_SYMBOL(block_commit_write); 2480 2481 /* 2482 * block_page_mkwrite() is not allowed to change the file size as it gets 2483 * called from a page fault handler when a page is first dirtied. Hence we must 2484 * be careful to check for EOF conditions here. We set the page up correctly 2485 * for a written page which means we get ENOSPC checking when writing into 2486 * holes and correct delalloc and unwritten extent mapping on filesystems that 2487 * support these features. 2488 * 2489 * We are not allowed to take the i_mutex here so we have to play games to 2490 * protect against truncate races as the page could now be beyond EOF. Because 2491 * truncate writes the inode size before removing pages, once we have the 2492 * page lock we can determine safely if the page is beyond EOF. If it is not 2493 * beyond EOF, then the page is guaranteed safe against truncation until we 2494 * unlock the page. 2495 * 2496 * Direct callers of this function should protect against filesystem freezing 2497 * using sb_start_pagefault() - sb_end_pagefault() functions. 2498 */ 2499 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2500 get_block_t get_block) 2501 { 2502 struct page *page = vmf->page; 2503 struct inode *inode = file_inode(vma->vm_file); 2504 unsigned long end; 2505 loff_t size; 2506 int ret; 2507 2508 lock_page(page); 2509 size = i_size_read(inode); 2510 if ((page->mapping != inode->i_mapping) || 2511 (page_offset(page) > size)) { 2512 /* We overload EFAULT to mean page got truncated */ 2513 ret = -EFAULT; 2514 goto out_unlock; 2515 } 2516 2517 /* page is wholly or partially inside EOF */ 2518 if (((page->index + 1) << PAGE_SHIFT) > size) 2519 end = size & ~PAGE_MASK; 2520 else 2521 end = PAGE_SIZE; 2522 2523 ret = __block_write_begin(page, 0, end, get_block); 2524 if (!ret) 2525 ret = block_commit_write(page, 0, end); 2526 2527 if (unlikely(ret < 0)) 2528 goto out_unlock; 2529 set_page_dirty(page); 2530 wait_for_stable_page(page); 2531 return 0; 2532 out_unlock: 2533 unlock_page(page); 2534 return ret; 2535 } 2536 EXPORT_SYMBOL(block_page_mkwrite); 2537 2538 /* 2539 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2540 * immediately, while under the page lock. So it needs a special end_io 2541 * handler which does not touch the bh after unlocking it. 2542 */ 2543 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2544 { 2545 __end_buffer_read_notouch(bh, uptodate); 2546 } 2547 2548 /* 2549 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2550 * the page (converting it to circular linked list and taking care of page 2551 * dirty races). 2552 */ 2553 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2554 { 2555 struct buffer_head *bh; 2556 2557 BUG_ON(!PageLocked(page)); 2558 2559 spin_lock(&page->mapping->private_lock); 2560 bh = head; 2561 do { 2562 if (PageDirty(page)) 2563 set_buffer_dirty(bh); 2564 if (!bh->b_this_page) 2565 bh->b_this_page = head; 2566 bh = bh->b_this_page; 2567 } while (bh != head); 2568 attach_page_private(page, head); 2569 spin_unlock(&page->mapping->private_lock); 2570 } 2571 2572 /* 2573 * On entry, the page is fully not uptodate. 2574 * On exit the page is fully uptodate in the areas outside (from,to) 2575 * The filesystem needs to handle block truncation upon failure. 2576 */ 2577 int nobh_write_begin(struct address_space *mapping, 2578 loff_t pos, unsigned len, unsigned flags, 2579 struct page **pagep, void **fsdata, 2580 get_block_t *get_block) 2581 { 2582 struct inode *inode = mapping->host; 2583 const unsigned blkbits = inode->i_blkbits; 2584 const unsigned blocksize = 1 << blkbits; 2585 struct buffer_head *head, *bh; 2586 struct page *page; 2587 pgoff_t index; 2588 unsigned from, to; 2589 unsigned block_in_page; 2590 unsigned block_start, block_end; 2591 sector_t block_in_file; 2592 int nr_reads = 0; 2593 int ret = 0; 2594 int is_mapped_to_disk = 1; 2595 2596 index = pos >> PAGE_SHIFT; 2597 from = pos & (PAGE_SIZE - 1); 2598 to = from + len; 2599 2600 page = grab_cache_page_write_begin(mapping, index, flags); 2601 if (!page) 2602 return -ENOMEM; 2603 *pagep = page; 2604 *fsdata = NULL; 2605 2606 if (page_has_buffers(page)) { 2607 ret = __block_write_begin(page, pos, len, get_block); 2608 if (unlikely(ret)) 2609 goto out_release; 2610 return ret; 2611 } 2612 2613 if (PageMappedToDisk(page)) 2614 return 0; 2615 2616 /* 2617 * Allocate buffers so that we can keep track of state, and potentially 2618 * attach them to the page if an error occurs. In the common case of 2619 * no error, they will just be freed again without ever being attached 2620 * to the page (which is all OK, because we're under the page lock). 2621 * 2622 * Be careful: the buffer linked list is a NULL terminated one, rather 2623 * than the circular one we're used to. 2624 */ 2625 head = alloc_page_buffers(page, blocksize, false); 2626 if (!head) { 2627 ret = -ENOMEM; 2628 goto out_release; 2629 } 2630 2631 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2632 2633 /* 2634 * We loop across all blocks in the page, whether or not they are 2635 * part of the affected region. This is so we can discover if the 2636 * page is fully mapped-to-disk. 2637 */ 2638 for (block_start = 0, block_in_page = 0, bh = head; 2639 block_start < PAGE_SIZE; 2640 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2641 int create; 2642 2643 block_end = block_start + blocksize; 2644 bh->b_state = 0; 2645 create = 1; 2646 if (block_start >= to) 2647 create = 0; 2648 ret = get_block(inode, block_in_file + block_in_page, 2649 bh, create); 2650 if (ret) 2651 goto failed; 2652 if (!buffer_mapped(bh)) 2653 is_mapped_to_disk = 0; 2654 if (buffer_new(bh)) 2655 clean_bdev_bh_alias(bh); 2656 if (PageUptodate(page)) { 2657 set_buffer_uptodate(bh); 2658 continue; 2659 } 2660 if (buffer_new(bh) || !buffer_mapped(bh)) { 2661 zero_user_segments(page, block_start, from, 2662 to, block_end); 2663 continue; 2664 } 2665 if (buffer_uptodate(bh)) 2666 continue; /* reiserfs does this */ 2667 if (block_start < from || block_end > to) { 2668 lock_buffer(bh); 2669 bh->b_end_io = end_buffer_read_nobh; 2670 submit_bh(REQ_OP_READ, 0, bh); 2671 nr_reads++; 2672 } 2673 } 2674 2675 if (nr_reads) { 2676 /* 2677 * The page is locked, so these buffers are protected from 2678 * any VM or truncate activity. Hence we don't need to care 2679 * for the buffer_head refcounts. 2680 */ 2681 for (bh = head; bh; bh = bh->b_this_page) { 2682 wait_on_buffer(bh); 2683 if (!buffer_uptodate(bh)) 2684 ret = -EIO; 2685 } 2686 if (ret) 2687 goto failed; 2688 } 2689 2690 if (is_mapped_to_disk) 2691 SetPageMappedToDisk(page); 2692 2693 *fsdata = head; /* to be released by nobh_write_end */ 2694 2695 return 0; 2696 2697 failed: 2698 BUG_ON(!ret); 2699 /* 2700 * Error recovery is a bit difficult. We need to zero out blocks that 2701 * were newly allocated, and dirty them to ensure they get written out. 2702 * Buffers need to be attached to the page at this point, otherwise 2703 * the handling of potential IO errors during writeout would be hard 2704 * (could try doing synchronous writeout, but what if that fails too?) 2705 */ 2706 attach_nobh_buffers(page, head); 2707 page_zero_new_buffers(page, from, to); 2708 2709 out_release: 2710 unlock_page(page); 2711 put_page(page); 2712 *pagep = NULL; 2713 2714 return ret; 2715 } 2716 EXPORT_SYMBOL(nobh_write_begin); 2717 2718 int nobh_write_end(struct file *file, struct address_space *mapping, 2719 loff_t pos, unsigned len, unsigned copied, 2720 struct page *page, void *fsdata) 2721 { 2722 struct inode *inode = page->mapping->host; 2723 struct buffer_head *head = fsdata; 2724 struct buffer_head *bh; 2725 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2726 2727 if (unlikely(copied < len) && head) 2728 attach_nobh_buffers(page, head); 2729 if (page_has_buffers(page)) 2730 return generic_write_end(file, mapping, pos, len, 2731 copied, page, fsdata); 2732 2733 SetPageUptodate(page); 2734 set_page_dirty(page); 2735 if (pos+copied > inode->i_size) { 2736 i_size_write(inode, pos+copied); 2737 mark_inode_dirty(inode); 2738 } 2739 2740 unlock_page(page); 2741 put_page(page); 2742 2743 while (head) { 2744 bh = head; 2745 head = head->b_this_page; 2746 free_buffer_head(bh); 2747 } 2748 2749 return copied; 2750 } 2751 EXPORT_SYMBOL(nobh_write_end); 2752 2753 /* 2754 * nobh_writepage() - based on block_full_write_page() except 2755 * that it tries to operate without attaching bufferheads to 2756 * the page. 2757 */ 2758 int nobh_writepage(struct page *page, get_block_t *get_block, 2759 struct writeback_control *wbc) 2760 { 2761 struct inode * const inode = page->mapping->host; 2762 loff_t i_size = i_size_read(inode); 2763 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2764 unsigned offset; 2765 int ret; 2766 2767 /* Is the page fully inside i_size? */ 2768 if (page->index < end_index) 2769 goto out; 2770 2771 /* Is the page fully outside i_size? (truncate in progress) */ 2772 offset = i_size & (PAGE_SIZE-1); 2773 if (page->index >= end_index+1 || !offset) { 2774 unlock_page(page); 2775 return 0; /* don't care */ 2776 } 2777 2778 /* 2779 * The page straddles i_size. It must be zeroed out on each and every 2780 * writepage invocation because it may be mmapped. "A file is mapped 2781 * in multiples of the page size. For a file that is not a multiple of 2782 * the page size, the remaining memory is zeroed when mapped, and 2783 * writes to that region are not written out to the file." 2784 */ 2785 zero_user_segment(page, offset, PAGE_SIZE); 2786 out: 2787 ret = mpage_writepage(page, get_block, wbc); 2788 if (ret == -EAGAIN) 2789 ret = __block_write_full_page(inode, page, get_block, wbc, 2790 end_buffer_async_write); 2791 return ret; 2792 } 2793 EXPORT_SYMBOL(nobh_writepage); 2794 2795 int nobh_truncate_page(struct address_space *mapping, 2796 loff_t from, get_block_t *get_block) 2797 { 2798 pgoff_t index = from >> PAGE_SHIFT; 2799 unsigned offset = from & (PAGE_SIZE-1); 2800 unsigned blocksize; 2801 sector_t iblock; 2802 unsigned length, pos; 2803 struct inode *inode = mapping->host; 2804 struct page *page; 2805 struct buffer_head map_bh; 2806 int err; 2807 2808 blocksize = i_blocksize(inode); 2809 length = offset & (blocksize - 1); 2810 2811 /* Block boundary? Nothing to do */ 2812 if (!length) 2813 return 0; 2814 2815 length = blocksize - length; 2816 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2817 2818 page = grab_cache_page(mapping, index); 2819 err = -ENOMEM; 2820 if (!page) 2821 goto out; 2822 2823 if (page_has_buffers(page)) { 2824 has_buffers: 2825 unlock_page(page); 2826 put_page(page); 2827 return block_truncate_page(mapping, from, get_block); 2828 } 2829 2830 /* Find the buffer that contains "offset" */ 2831 pos = blocksize; 2832 while (offset >= pos) { 2833 iblock++; 2834 pos += blocksize; 2835 } 2836 2837 map_bh.b_size = blocksize; 2838 map_bh.b_state = 0; 2839 err = get_block(inode, iblock, &map_bh, 0); 2840 if (err) 2841 goto unlock; 2842 /* unmapped? It's a hole - nothing to do */ 2843 if (!buffer_mapped(&map_bh)) 2844 goto unlock; 2845 2846 /* Ok, it's mapped. Make sure it's up-to-date */ 2847 if (!PageUptodate(page)) { 2848 err = mapping->a_ops->readpage(NULL, page); 2849 if (err) { 2850 put_page(page); 2851 goto out; 2852 } 2853 lock_page(page); 2854 if (!PageUptodate(page)) { 2855 err = -EIO; 2856 goto unlock; 2857 } 2858 if (page_has_buffers(page)) 2859 goto has_buffers; 2860 } 2861 zero_user(page, offset, length); 2862 set_page_dirty(page); 2863 err = 0; 2864 2865 unlock: 2866 unlock_page(page); 2867 put_page(page); 2868 out: 2869 return err; 2870 } 2871 EXPORT_SYMBOL(nobh_truncate_page); 2872 2873 int block_truncate_page(struct address_space *mapping, 2874 loff_t from, get_block_t *get_block) 2875 { 2876 pgoff_t index = from >> PAGE_SHIFT; 2877 unsigned offset = from & (PAGE_SIZE-1); 2878 unsigned blocksize; 2879 sector_t iblock; 2880 unsigned length, pos; 2881 struct inode *inode = mapping->host; 2882 struct page *page; 2883 struct buffer_head *bh; 2884 int err; 2885 2886 blocksize = i_blocksize(inode); 2887 length = offset & (blocksize - 1); 2888 2889 /* Block boundary? Nothing to do */ 2890 if (!length) 2891 return 0; 2892 2893 length = blocksize - length; 2894 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2895 2896 page = grab_cache_page(mapping, index); 2897 err = -ENOMEM; 2898 if (!page) 2899 goto out; 2900 2901 if (!page_has_buffers(page)) 2902 create_empty_buffers(page, blocksize, 0); 2903 2904 /* Find the buffer that contains "offset" */ 2905 bh = page_buffers(page); 2906 pos = blocksize; 2907 while (offset >= pos) { 2908 bh = bh->b_this_page; 2909 iblock++; 2910 pos += blocksize; 2911 } 2912 2913 err = 0; 2914 if (!buffer_mapped(bh)) { 2915 WARN_ON(bh->b_size != blocksize); 2916 err = get_block(inode, iblock, bh, 0); 2917 if (err) 2918 goto unlock; 2919 /* unmapped? It's a hole - nothing to do */ 2920 if (!buffer_mapped(bh)) 2921 goto unlock; 2922 } 2923 2924 /* Ok, it's mapped. Make sure it's up-to-date */ 2925 if (PageUptodate(page)) 2926 set_buffer_uptodate(bh); 2927 2928 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2929 err = -EIO; 2930 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2931 wait_on_buffer(bh); 2932 /* Uhhuh. Read error. Complain and punt. */ 2933 if (!buffer_uptodate(bh)) 2934 goto unlock; 2935 } 2936 2937 zero_user(page, offset, length); 2938 mark_buffer_dirty(bh); 2939 err = 0; 2940 2941 unlock: 2942 unlock_page(page); 2943 put_page(page); 2944 out: 2945 return err; 2946 } 2947 EXPORT_SYMBOL(block_truncate_page); 2948 2949 /* 2950 * The generic ->writepage function for buffer-backed address_spaces 2951 */ 2952 int block_write_full_page(struct page *page, get_block_t *get_block, 2953 struct writeback_control *wbc) 2954 { 2955 struct inode * const inode = page->mapping->host; 2956 loff_t i_size = i_size_read(inode); 2957 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2958 unsigned offset; 2959 2960 /* Is the page fully inside i_size? */ 2961 if (page->index < end_index) 2962 return __block_write_full_page(inode, page, get_block, wbc, 2963 end_buffer_async_write); 2964 2965 /* Is the page fully outside i_size? (truncate in progress) */ 2966 offset = i_size & (PAGE_SIZE-1); 2967 if (page->index >= end_index+1 || !offset) { 2968 unlock_page(page); 2969 return 0; /* don't care */ 2970 } 2971 2972 /* 2973 * The page straddles i_size. It must be zeroed out on each and every 2974 * writepage invocation because it may be mmapped. "A file is mapped 2975 * in multiples of the page size. For a file that is not a multiple of 2976 * the page size, the remaining memory is zeroed when mapped, and 2977 * writes to that region are not written out to the file." 2978 */ 2979 zero_user_segment(page, offset, PAGE_SIZE); 2980 return __block_write_full_page(inode, page, get_block, wbc, 2981 end_buffer_async_write); 2982 } 2983 EXPORT_SYMBOL(block_write_full_page); 2984 2985 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2986 get_block_t *get_block) 2987 { 2988 struct inode *inode = mapping->host; 2989 struct buffer_head tmp = { 2990 .b_size = i_blocksize(inode), 2991 }; 2992 2993 get_block(inode, block, &tmp, 0); 2994 return tmp.b_blocknr; 2995 } 2996 EXPORT_SYMBOL(generic_block_bmap); 2997 2998 static void end_bio_bh_io_sync(struct bio *bio) 2999 { 3000 struct buffer_head *bh = bio->bi_private; 3001 3002 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3003 set_bit(BH_Quiet, &bh->b_state); 3004 3005 bh->b_end_io(bh, !bio->bi_status); 3006 bio_put(bio); 3007 } 3008 3009 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3010 enum rw_hint write_hint, struct writeback_control *wbc) 3011 { 3012 struct bio *bio; 3013 3014 BUG_ON(!buffer_locked(bh)); 3015 BUG_ON(!buffer_mapped(bh)); 3016 BUG_ON(!bh->b_end_io); 3017 BUG_ON(buffer_delay(bh)); 3018 BUG_ON(buffer_unwritten(bh)); 3019 3020 /* 3021 * Only clear out a write error when rewriting 3022 */ 3023 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3024 clear_buffer_write_io_error(bh); 3025 3026 bio = bio_alloc(GFP_NOIO, 1); 3027 3028 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 3029 3030 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3031 bio_set_dev(bio, bh->b_bdev); 3032 bio->bi_write_hint = write_hint; 3033 3034 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3035 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3036 3037 bio->bi_end_io = end_bio_bh_io_sync; 3038 bio->bi_private = bh; 3039 3040 if (buffer_meta(bh)) 3041 op_flags |= REQ_META; 3042 if (buffer_prio(bh)) 3043 op_flags |= REQ_PRIO; 3044 bio_set_op_attrs(bio, op, op_flags); 3045 3046 /* Take care of bh's that straddle the end of the device */ 3047 guard_bio_eod(bio); 3048 3049 if (wbc) { 3050 wbc_init_bio(wbc, bio); 3051 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 3052 } 3053 3054 submit_bio(bio); 3055 return 0; 3056 } 3057 3058 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3059 { 3060 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3061 } 3062 EXPORT_SYMBOL(submit_bh); 3063 3064 /** 3065 * ll_rw_block: low-level access to block devices (DEPRECATED) 3066 * @op: whether to %READ or %WRITE 3067 * @op_flags: req_flag_bits 3068 * @nr: number of &struct buffer_heads in the array 3069 * @bhs: array of pointers to &struct buffer_head 3070 * 3071 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3072 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3073 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3074 * %REQ_RAHEAD. 3075 * 3076 * This function drops any buffer that it cannot get a lock on (with the 3077 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3078 * request, and any buffer that appears to be up-to-date when doing read 3079 * request. Further it marks as clean buffers that are processed for 3080 * writing (the buffer cache won't assume that they are actually clean 3081 * until the buffer gets unlocked). 3082 * 3083 * ll_rw_block sets b_end_io to simple completion handler that marks 3084 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3085 * any waiters. 3086 * 3087 * All of the buffers must be for the same device, and must also be a 3088 * multiple of the current approved size for the device. 3089 */ 3090 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3091 { 3092 int i; 3093 3094 for (i = 0; i < nr; i++) { 3095 struct buffer_head *bh = bhs[i]; 3096 3097 if (!trylock_buffer(bh)) 3098 continue; 3099 if (op == WRITE) { 3100 if (test_clear_buffer_dirty(bh)) { 3101 bh->b_end_io = end_buffer_write_sync; 3102 get_bh(bh); 3103 submit_bh(op, op_flags, bh); 3104 continue; 3105 } 3106 } else { 3107 if (!buffer_uptodate(bh)) { 3108 bh->b_end_io = end_buffer_read_sync; 3109 get_bh(bh); 3110 submit_bh(op, op_flags, bh); 3111 continue; 3112 } 3113 } 3114 unlock_buffer(bh); 3115 } 3116 } 3117 EXPORT_SYMBOL(ll_rw_block); 3118 3119 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3120 { 3121 lock_buffer(bh); 3122 if (!test_clear_buffer_dirty(bh)) { 3123 unlock_buffer(bh); 3124 return; 3125 } 3126 bh->b_end_io = end_buffer_write_sync; 3127 get_bh(bh); 3128 submit_bh(REQ_OP_WRITE, op_flags, bh); 3129 } 3130 EXPORT_SYMBOL(write_dirty_buffer); 3131 3132 /* 3133 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3134 * and then start new I/O and then wait upon it. The caller must have a ref on 3135 * the buffer_head. 3136 */ 3137 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3138 { 3139 int ret = 0; 3140 3141 WARN_ON(atomic_read(&bh->b_count) < 1); 3142 lock_buffer(bh); 3143 if (test_clear_buffer_dirty(bh)) { 3144 /* 3145 * The bh should be mapped, but it might not be if the 3146 * device was hot-removed. Not much we can do but fail the I/O. 3147 */ 3148 if (!buffer_mapped(bh)) { 3149 unlock_buffer(bh); 3150 return -EIO; 3151 } 3152 3153 get_bh(bh); 3154 bh->b_end_io = end_buffer_write_sync; 3155 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3156 wait_on_buffer(bh); 3157 if (!ret && !buffer_uptodate(bh)) 3158 ret = -EIO; 3159 } else { 3160 unlock_buffer(bh); 3161 } 3162 return ret; 3163 } 3164 EXPORT_SYMBOL(__sync_dirty_buffer); 3165 3166 int sync_dirty_buffer(struct buffer_head *bh) 3167 { 3168 return __sync_dirty_buffer(bh, REQ_SYNC); 3169 } 3170 EXPORT_SYMBOL(sync_dirty_buffer); 3171 3172 /* 3173 * try_to_free_buffers() checks if all the buffers on this particular page 3174 * are unused, and releases them if so. 3175 * 3176 * Exclusion against try_to_free_buffers may be obtained by either 3177 * locking the page or by holding its mapping's private_lock. 3178 * 3179 * If the page is dirty but all the buffers are clean then we need to 3180 * be sure to mark the page clean as well. This is because the page 3181 * may be against a block device, and a later reattachment of buffers 3182 * to a dirty page will set *all* buffers dirty. Which would corrupt 3183 * filesystem data on the same device. 3184 * 3185 * The same applies to regular filesystem pages: if all the buffers are 3186 * clean then we set the page clean and proceed. To do that, we require 3187 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3188 * private_lock. 3189 * 3190 * try_to_free_buffers() is non-blocking. 3191 */ 3192 static inline int buffer_busy(struct buffer_head *bh) 3193 { 3194 return atomic_read(&bh->b_count) | 3195 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3196 } 3197 3198 static int 3199 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3200 { 3201 struct buffer_head *head = page_buffers(page); 3202 struct buffer_head *bh; 3203 3204 bh = head; 3205 do { 3206 if (buffer_busy(bh)) 3207 goto failed; 3208 bh = bh->b_this_page; 3209 } while (bh != head); 3210 3211 do { 3212 struct buffer_head *next = bh->b_this_page; 3213 3214 if (bh->b_assoc_map) 3215 __remove_assoc_queue(bh); 3216 bh = next; 3217 } while (bh != head); 3218 *buffers_to_free = head; 3219 detach_page_private(page); 3220 return 1; 3221 failed: 3222 return 0; 3223 } 3224 3225 int try_to_free_buffers(struct page *page) 3226 { 3227 struct address_space * const mapping = page->mapping; 3228 struct buffer_head *buffers_to_free = NULL; 3229 int ret = 0; 3230 3231 BUG_ON(!PageLocked(page)); 3232 if (PageWriteback(page)) 3233 return 0; 3234 3235 if (mapping == NULL) { /* can this still happen? */ 3236 ret = drop_buffers(page, &buffers_to_free); 3237 goto out; 3238 } 3239 3240 spin_lock(&mapping->private_lock); 3241 ret = drop_buffers(page, &buffers_to_free); 3242 3243 /* 3244 * If the filesystem writes its buffers by hand (eg ext3) 3245 * then we can have clean buffers against a dirty page. We 3246 * clean the page here; otherwise the VM will never notice 3247 * that the filesystem did any IO at all. 3248 * 3249 * Also, during truncate, discard_buffer will have marked all 3250 * the page's buffers clean. We discover that here and clean 3251 * the page also. 3252 * 3253 * private_lock must be held over this entire operation in order 3254 * to synchronise against __set_page_dirty_buffers and prevent the 3255 * dirty bit from being lost. 3256 */ 3257 if (ret) 3258 cancel_dirty_page(page); 3259 spin_unlock(&mapping->private_lock); 3260 out: 3261 if (buffers_to_free) { 3262 struct buffer_head *bh = buffers_to_free; 3263 3264 do { 3265 struct buffer_head *next = bh->b_this_page; 3266 free_buffer_head(bh); 3267 bh = next; 3268 } while (bh != buffers_to_free); 3269 } 3270 return ret; 3271 } 3272 EXPORT_SYMBOL(try_to_free_buffers); 3273 3274 /* 3275 * Buffer-head allocation 3276 */ 3277 static struct kmem_cache *bh_cachep __read_mostly; 3278 3279 /* 3280 * Once the number of bh's in the machine exceeds this level, we start 3281 * stripping them in writeback. 3282 */ 3283 static unsigned long max_buffer_heads; 3284 3285 int buffer_heads_over_limit; 3286 3287 struct bh_accounting { 3288 int nr; /* Number of live bh's */ 3289 int ratelimit; /* Limit cacheline bouncing */ 3290 }; 3291 3292 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3293 3294 static void recalc_bh_state(void) 3295 { 3296 int i; 3297 int tot = 0; 3298 3299 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3300 return; 3301 __this_cpu_write(bh_accounting.ratelimit, 0); 3302 for_each_online_cpu(i) 3303 tot += per_cpu(bh_accounting, i).nr; 3304 buffer_heads_over_limit = (tot > max_buffer_heads); 3305 } 3306 3307 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3308 { 3309 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3310 if (ret) { 3311 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3312 spin_lock_init(&ret->b_uptodate_lock); 3313 preempt_disable(); 3314 __this_cpu_inc(bh_accounting.nr); 3315 recalc_bh_state(); 3316 preempt_enable(); 3317 } 3318 return ret; 3319 } 3320 EXPORT_SYMBOL(alloc_buffer_head); 3321 3322 void free_buffer_head(struct buffer_head *bh) 3323 { 3324 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3325 kmem_cache_free(bh_cachep, bh); 3326 preempt_disable(); 3327 __this_cpu_dec(bh_accounting.nr); 3328 recalc_bh_state(); 3329 preempt_enable(); 3330 } 3331 EXPORT_SYMBOL(free_buffer_head); 3332 3333 static int buffer_exit_cpu_dead(unsigned int cpu) 3334 { 3335 int i; 3336 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3337 3338 for (i = 0; i < BH_LRU_SIZE; i++) { 3339 brelse(b->bhs[i]); 3340 b->bhs[i] = NULL; 3341 } 3342 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3343 per_cpu(bh_accounting, cpu).nr = 0; 3344 return 0; 3345 } 3346 3347 /** 3348 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3349 * @bh: struct buffer_head 3350 * 3351 * Return true if the buffer is up-to-date and false, 3352 * with the buffer locked, if not. 3353 */ 3354 int bh_uptodate_or_lock(struct buffer_head *bh) 3355 { 3356 if (!buffer_uptodate(bh)) { 3357 lock_buffer(bh); 3358 if (!buffer_uptodate(bh)) 3359 return 0; 3360 unlock_buffer(bh); 3361 } 3362 return 1; 3363 } 3364 EXPORT_SYMBOL(bh_uptodate_or_lock); 3365 3366 /** 3367 * bh_submit_read - Submit a locked buffer for reading 3368 * @bh: struct buffer_head 3369 * 3370 * Returns zero on success and -EIO on error. 3371 */ 3372 int bh_submit_read(struct buffer_head *bh) 3373 { 3374 BUG_ON(!buffer_locked(bh)); 3375 3376 if (buffer_uptodate(bh)) { 3377 unlock_buffer(bh); 3378 return 0; 3379 } 3380 3381 get_bh(bh); 3382 bh->b_end_io = end_buffer_read_sync; 3383 submit_bh(REQ_OP_READ, 0, bh); 3384 wait_on_buffer(bh); 3385 if (buffer_uptodate(bh)) 3386 return 0; 3387 return -EIO; 3388 } 3389 EXPORT_SYMBOL(bh_submit_read); 3390 3391 void __init buffer_init(void) 3392 { 3393 unsigned long nrpages; 3394 int ret; 3395 3396 bh_cachep = kmem_cache_create("buffer_head", 3397 sizeof(struct buffer_head), 0, 3398 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3399 SLAB_MEM_SPREAD), 3400 NULL); 3401 3402 /* 3403 * Limit the bh occupancy to 10% of ZONE_NORMAL 3404 */ 3405 nrpages = (nr_free_buffer_pages() * 10) / 100; 3406 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3407 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3408 NULL, buffer_exit_cpu_dead); 3409 WARN_ON(ret < 0); 3410 } 3411