1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 52 #include "internal.h" 53 54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 56 enum rw_hint hint, struct writeback_control *wbc); 57 58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 59 60 inline void touch_buffer(struct buffer_head *bh) 61 { 62 trace_block_touch_buffer(bh); 63 mark_page_accessed(bh->b_page); 64 } 65 EXPORT_SYMBOL(touch_buffer); 66 67 void __lock_buffer(struct buffer_head *bh) 68 { 69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 70 } 71 EXPORT_SYMBOL(__lock_buffer); 72 73 void unlock_buffer(struct buffer_head *bh) 74 { 75 clear_bit_unlock(BH_Lock, &bh->b_state); 76 smp_mb__after_atomic(); 77 wake_up_bit(&bh->b_state, BH_Lock); 78 } 79 EXPORT_SYMBOL(unlock_buffer); 80 81 /* 82 * Returns if the page has dirty or writeback buffers. If all the buffers 83 * are unlocked and clean then the PageDirty information is stale. If 84 * any of the pages are locked, it is assumed they are locked for IO. 85 */ 86 void buffer_check_dirty_writeback(struct page *page, 87 bool *dirty, bool *writeback) 88 { 89 struct buffer_head *head, *bh; 90 *dirty = false; 91 *writeback = false; 92 93 BUG_ON(!PageLocked(page)); 94 95 if (!page_has_buffers(page)) 96 return; 97 98 if (PageWriteback(page)) 99 *writeback = true; 100 101 head = page_buffers(page); 102 bh = head; 103 do { 104 if (buffer_locked(bh)) 105 *writeback = true; 106 107 if (buffer_dirty(bh)) 108 *dirty = true; 109 110 bh = bh->b_this_page; 111 } while (bh != head); 112 } 113 EXPORT_SYMBOL(buffer_check_dirty_writeback); 114 115 /* 116 * Block until a buffer comes unlocked. This doesn't stop it 117 * from becoming locked again - you have to lock it yourself 118 * if you want to preserve its state. 119 */ 120 void __wait_on_buffer(struct buffer_head * bh) 121 { 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 123 } 124 EXPORT_SYMBOL(__wait_on_buffer); 125 126 static void buffer_io_error(struct buffer_head *bh, char *msg) 127 { 128 if (!test_bit(BH_Quiet, &bh->b_state)) 129 printk_ratelimited(KERN_ERR 130 "Buffer I/O error on dev %pg, logical block %llu%s\n", 131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 132 } 133 134 /* 135 * End-of-IO handler helper function which does not touch the bh after 136 * unlocking it. 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 138 * a race there is benign: unlock_buffer() only use the bh's address for 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh 140 * itself. 141 */ 142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 143 { 144 if (uptodate) { 145 set_buffer_uptodate(bh); 146 } else { 147 /* This happens, due to failed read-ahead attempts. */ 148 clear_buffer_uptodate(bh); 149 } 150 unlock_buffer(bh); 151 } 152 153 /* 154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 155 * unlock the buffer. This is what ll_rw_block uses too. 156 */ 157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 158 { 159 __end_buffer_read_notouch(bh, uptodate); 160 put_bh(bh); 161 } 162 EXPORT_SYMBOL(end_buffer_read_sync); 163 164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 165 { 166 if (uptodate) { 167 set_buffer_uptodate(bh); 168 } else { 169 buffer_io_error(bh, ", lost sync page write"); 170 mark_buffer_write_io_error(bh); 171 clear_buffer_uptodate(bh); 172 } 173 unlock_buffer(bh); 174 put_bh(bh); 175 } 176 EXPORT_SYMBOL(end_buffer_write_sync); 177 178 /* 179 * Various filesystems appear to want __find_get_block to be non-blocking. 180 * But it's the page lock which protects the buffers. To get around this, 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's 182 * private_lock. 183 * 184 * Hack idea: for the blockdev mapping, private_lock contention 185 * may be quite high. This code could TryLock the page, and if that 186 * succeeds, there is no need to take private_lock. 187 */ 188 static struct buffer_head * 189 __find_get_block_slow(struct block_device *bdev, sector_t block) 190 { 191 struct inode *bd_inode = bdev->bd_inode; 192 struct address_space *bd_mapping = bd_inode->i_mapping; 193 struct buffer_head *ret = NULL; 194 pgoff_t index; 195 struct buffer_head *bh; 196 struct buffer_head *head; 197 struct page *page; 198 int all_mapped = 1; 199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 200 201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 203 if (!page) 204 goto out; 205 206 spin_lock(&bd_mapping->private_lock); 207 if (!page_has_buffers(page)) 208 goto out_unlock; 209 head = page_buffers(page); 210 bh = head; 211 do { 212 if (!buffer_mapped(bh)) 213 all_mapped = 0; 214 else if (bh->b_blocknr == block) { 215 ret = bh; 216 get_bh(bh); 217 goto out_unlock; 218 } 219 bh = bh->b_this_page; 220 } while (bh != head); 221 222 /* we might be here because some of the buffers on this page are 223 * not mapped. This is due to various races between 224 * file io on the block device and getblk. It gets dealt with 225 * elsewhere, don't buffer_error if we had some unmapped buffers 226 */ 227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 228 if (all_mapped && __ratelimit(&last_warned)) { 229 printk("__find_get_block_slow() failed. block=%llu, " 230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 231 "device %pg blocksize: %d\n", 232 (unsigned long long)block, 233 (unsigned long long)bh->b_blocknr, 234 bh->b_state, bh->b_size, bdev, 235 1 << bd_inode->i_blkbits); 236 } 237 out_unlock: 238 spin_unlock(&bd_mapping->private_lock); 239 put_page(page); 240 out: 241 return ret; 242 } 243 244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 245 { 246 unsigned long flags; 247 struct buffer_head *first; 248 struct buffer_head *tmp; 249 struct page *page; 250 int page_uptodate = 1; 251 252 BUG_ON(!buffer_async_read(bh)); 253 254 page = bh->b_page; 255 if (uptodate) { 256 set_buffer_uptodate(bh); 257 } else { 258 clear_buffer_uptodate(bh); 259 buffer_io_error(bh, ", async page read"); 260 SetPageError(page); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = page_buffers(page); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 page_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 /* 285 * If none of the buffers had errors and they are all 286 * uptodate then we can set the page uptodate. 287 */ 288 if (page_uptodate && !PageError(page)) 289 SetPageUptodate(page); 290 unlock_page(page); 291 return; 292 293 still_busy: 294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 295 return; 296 } 297 298 struct decrypt_bh_ctx { 299 struct work_struct work; 300 struct buffer_head *bh; 301 }; 302 303 static void decrypt_bh(struct work_struct *work) 304 { 305 struct decrypt_bh_ctx *ctx = 306 container_of(work, struct decrypt_bh_ctx, work); 307 struct buffer_head *bh = ctx->bh; 308 int err; 309 310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size, 311 bh_offset(bh)); 312 end_buffer_async_read(bh, err == 0); 313 kfree(ctx); 314 } 315 316 /* 317 * I/O completion handler for block_read_full_page() - pages 318 * which come unlocked at the end of I/O. 319 */ 320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 321 { 322 /* Decrypt if needed */ 323 if (uptodate && 324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) { 325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 326 327 if (ctx) { 328 INIT_WORK(&ctx->work, decrypt_bh); 329 ctx->bh = bh; 330 fscrypt_enqueue_decrypt_work(&ctx->work); 331 return; 332 } 333 uptodate = 0; 334 } 335 end_buffer_async_read(bh, uptodate); 336 } 337 338 /* 339 * Completion handler for block_write_full_page() - pages which are unlocked 340 * during I/O, and which have PageWriteback cleared upon I/O completion. 341 */ 342 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 343 { 344 unsigned long flags; 345 struct buffer_head *first; 346 struct buffer_head *tmp; 347 struct page *page; 348 349 BUG_ON(!buffer_async_write(bh)); 350 351 page = bh->b_page; 352 if (uptodate) { 353 set_buffer_uptodate(bh); 354 } else { 355 buffer_io_error(bh, ", lost async page write"); 356 mark_buffer_write_io_error(bh); 357 clear_buffer_uptodate(bh); 358 SetPageError(page); 359 } 360 361 first = page_buffers(page); 362 spin_lock_irqsave(&first->b_uptodate_lock, flags); 363 364 clear_buffer_async_write(bh); 365 unlock_buffer(bh); 366 tmp = bh->b_this_page; 367 while (tmp != bh) { 368 if (buffer_async_write(tmp)) { 369 BUG_ON(!buffer_locked(tmp)); 370 goto still_busy; 371 } 372 tmp = tmp->b_this_page; 373 } 374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 375 end_page_writeback(page); 376 return; 377 378 still_busy: 379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 380 return; 381 } 382 EXPORT_SYMBOL(end_buffer_async_write); 383 384 /* 385 * If a page's buffers are under async readin (end_buffer_async_read 386 * completion) then there is a possibility that another thread of 387 * control could lock one of the buffers after it has completed 388 * but while some of the other buffers have not completed. This 389 * locked buffer would confuse end_buffer_async_read() into not unlocking 390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 391 * that this buffer is not under async I/O. 392 * 393 * The page comes unlocked when it has no locked buffer_async buffers 394 * left. 395 * 396 * PageLocked prevents anyone starting new async I/O reads any of 397 * the buffers. 398 * 399 * PageWriteback is used to prevent simultaneous writeout of the same 400 * page. 401 * 402 * PageLocked prevents anyone from starting writeback of a page which is 403 * under read I/O (PageWriteback is only ever set against a locked page). 404 */ 405 static void mark_buffer_async_read(struct buffer_head *bh) 406 { 407 bh->b_end_io = end_buffer_async_read_io; 408 set_buffer_async_read(bh); 409 } 410 411 static void mark_buffer_async_write_endio(struct buffer_head *bh, 412 bh_end_io_t *handler) 413 { 414 bh->b_end_io = handler; 415 set_buffer_async_write(bh); 416 } 417 418 void mark_buffer_async_write(struct buffer_head *bh) 419 { 420 mark_buffer_async_write_endio(bh, end_buffer_async_write); 421 } 422 EXPORT_SYMBOL(mark_buffer_async_write); 423 424 425 /* 426 * fs/buffer.c contains helper functions for buffer-backed address space's 427 * fsync functions. A common requirement for buffer-based filesystems is 428 * that certain data from the backing blockdev needs to be written out for 429 * a successful fsync(). For example, ext2 indirect blocks need to be 430 * written back and waited upon before fsync() returns. 431 * 432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 434 * management of a list of dependent buffers at ->i_mapping->private_list. 435 * 436 * Locking is a little subtle: try_to_free_buffers() will remove buffers 437 * from their controlling inode's queue when they are being freed. But 438 * try_to_free_buffers() will be operating against the *blockdev* mapping 439 * at the time, not against the S_ISREG file which depends on those buffers. 440 * So the locking for private_list is via the private_lock in the address_space 441 * which backs the buffers. Which is different from the address_space 442 * against which the buffers are listed. So for a particular address_space, 443 * mapping->private_lock does *not* protect mapping->private_list! In fact, 444 * mapping->private_list will always be protected by the backing blockdev's 445 * ->private_lock. 446 * 447 * Which introduces a requirement: all buffers on an address_space's 448 * ->private_list must be from the same address_space: the blockdev's. 449 * 450 * address_spaces which do not place buffers at ->private_list via these 451 * utility functions are free to use private_lock and private_list for 452 * whatever they want. The only requirement is that list_empty(private_list) 453 * be true at clear_inode() time. 454 * 455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 456 * filesystems should do that. invalidate_inode_buffers() should just go 457 * BUG_ON(!list_empty). 458 * 459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 460 * take an address_space, not an inode. And it should be called 461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 462 * queued up. 463 * 464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 465 * list if it is already on a list. Because if the buffer is on a list, 466 * it *must* already be on the right one. If not, the filesystem is being 467 * silly. This will save a ton of locking. But first we have to ensure 468 * that buffers are taken *off* the old inode's list when they are freed 469 * (presumably in truncate). That requires careful auditing of all 470 * filesystems (do it inside bforget()). It could also be done by bringing 471 * b_inode back. 472 */ 473 474 /* 475 * The buffer's backing address_space's private_lock must be held 476 */ 477 static void __remove_assoc_queue(struct buffer_head *bh) 478 { 479 list_del_init(&bh->b_assoc_buffers); 480 WARN_ON(!bh->b_assoc_map); 481 bh->b_assoc_map = NULL; 482 } 483 484 int inode_has_buffers(struct inode *inode) 485 { 486 return !list_empty(&inode->i_data.private_list); 487 } 488 489 /* 490 * osync is designed to support O_SYNC io. It waits synchronously for 491 * all already-submitted IO to complete, but does not queue any new 492 * writes to the disk. 493 * 494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 495 * you dirty the buffers, and then use osync_inode_buffers to wait for 496 * completion. Any other dirty buffers which are not yet queued for 497 * write will not be flushed to disk by the osync. 498 */ 499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 500 { 501 struct buffer_head *bh; 502 struct list_head *p; 503 int err = 0; 504 505 spin_lock(lock); 506 repeat: 507 list_for_each_prev(p, list) { 508 bh = BH_ENTRY(p); 509 if (buffer_locked(bh)) { 510 get_bh(bh); 511 spin_unlock(lock); 512 wait_on_buffer(bh); 513 if (!buffer_uptodate(bh)) 514 err = -EIO; 515 brelse(bh); 516 spin_lock(lock); 517 goto repeat; 518 } 519 } 520 spin_unlock(lock); 521 return err; 522 } 523 524 void emergency_thaw_bdev(struct super_block *sb) 525 { 526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 528 } 529 530 /** 531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 532 * @mapping: the mapping which wants those buffers written 533 * 534 * Starts I/O against the buffers at mapping->private_list, and waits upon 535 * that I/O. 536 * 537 * Basically, this is a convenience function for fsync(). 538 * @mapping is a file or directory which needs those buffers to be written for 539 * a successful fsync(). 540 */ 541 int sync_mapping_buffers(struct address_space *mapping) 542 { 543 struct address_space *buffer_mapping = mapping->private_data; 544 545 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 546 return 0; 547 548 return fsync_buffers_list(&buffer_mapping->private_lock, 549 &mapping->private_list); 550 } 551 EXPORT_SYMBOL(sync_mapping_buffers); 552 553 /* 554 * Called when we've recently written block `bblock', and it is known that 555 * `bblock' was for a buffer_boundary() buffer. This means that the block at 556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 557 * dirty, schedule it for IO. So that indirects merge nicely with their data. 558 */ 559 void write_boundary_block(struct block_device *bdev, 560 sector_t bblock, unsigned blocksize) 561 { 562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 563 if (bh) { 564 if (buffer_dirty(bh)) 565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 566 put_bh(bh); 567 } 568 } 569 570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 571 { 572 struct address_space *mapping = inode->i_mapping; 573 struct address_space *buffer_mapping = bh->b_page->mapping; 574 575 mark_buffer_dirty(bh); 576 if (!mapping->private_data) { 577 mapping->private_data = buffer_mapping; 578 } else { 579 BUG_ON(mapping->private_data != buffer_mapping); 580 } 581 if (!bh->b_assoc_map) { 582 spin_lock(&buffer_mapping->private_lock); 583 list_move_tail(&bh->b_assoc_buffers, 584 &mapping->private_list); 585 bh->b_assoc_map = mapping; 586 spin_unlock(&buffer_mapping->private_lock); 587 } 588 } 589 EXPORT_SYMBOL(mark_buffer_dirty_inode); 590 591 /* 592 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 593 * dirty. 594 * 595 * If warn is true, then emit a warning if the page is not uptodate and has 596 * not been truncated. 597 * 598 * The caller must hold lock_page_memcg(). 599 */ 600 void __set_page_dirty(struct page *page, struct address_space *mapping, 601 int warn) 602 { 603 unsigned long flags; 604 605 xa_lock_irqsave(&mapping->i_pages, flags); 606 if (page->mapping) { /* Race with truncate? */ 607 WARN_ON_ONCE(warn && !PageUptodate(page)); 608 account_page_dirtied(page, mapping); 609 __xa_set_mark(&mapping->i_pages, page_index(page), 610 PAGECACHE_TAG_DIRTY); 611 } 612 xa_unlock_irqrestore(&mapping->i_pages, flags); 613 } 614 EXPORT_SYMBOL_GPL(__set_page_dirty); 615 616 /* 617 * Add a page to the dirty page list. 618 * 619 * It is a sad fact of life that this function is called from several places 620 * deeply under spinlocking. It may not sleep. 621 * 622 * If the page has buffers, the uptodate buffers are set dirty, to preserve 623 * dirty-state coherency between the page and the buffers. It the page does 624 * not have buffers then when they are later attached they will all be set 625 * dirty. 626 * 627 * The buffers are dirtied before the page is dirtied. There's a small race 628 * window in which a writepage caller may see the page cleanness but not the 629 * buffer dirtiness. That's fine. If this code were to set the page dirty 630 * before the buffers, a concurrent writepage caller could clear the page dirty 631 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 632 * page on the dirty page list. 633 * 634 * We use private_lock to lock against try_to_free_buffers while using the 635 * page's buffer list. Also use this to protect against clean buffers being 636 * added to the page after it was set dirty. 637 * 638 * FIXME: may need to call ->reservepage here as well. That's rather up to the 639 * address_space though. 640 */ 641 int __set_page_dirty_buffers(struct page *page) 642 { 643 int newly_dirty; 644 struct address_space *mapping = page_mapping(page); 645 646 if (unlikely(!mapping)) 647 return !TestSetPageDirty(page); 648 649 spin_lock(&mapping->private_lock); 650 if (page_has_buffers(page)) { 651 struct buffer_head *head = page_buffers(page); 652 struct buffer_head *bh = head; 653 654 do { 655 set_buffer_dirty(bh); 656 bh = bh->b_this_page; 657 } while (bh != head); 658 } 659 /* 660 * Lock out page's memcg migration to keep PageDirty 661 * synchronized with per-memcg dirty page counters. 662 */ 663 lock_page_memcg(page); 664 newly_dirty = !TestSetPageDirty(page); 665 spin_unlock(&mapping->private_lock); 666 667 if (newly_dirty) 668 __set_page_dirty(page, mapping, 1); 669 670 unlock_page_memcg(page); 671 672 if (newly_dirty) 673 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 674 675 return newly_dirty; 676 } 677 EXPORT_SYMBOL(__set_page_dirty_buffers); 678 679 /* 680 * Write out and wait upon a list of buffers. 681 * 682 * We have conflicting pressures: we want to make sure that all 683 * initially dirty buffers get waited on, but that any subsequently 684 * dirtied buffers don't. After all, we don't want fsync to last 685 * forever if somebody is actively writing to the file. 686 * 687 * Do this in two main stages: first we copy dirty buffers to a 688 * temporary inode list, queueing the writes as we go. Then we clean 689 * up, waiting for those writes to complete. 690 * 691 * During this second stage, any subsequent updates to the file may end 692 * up refiling the buffer on the original inode's dirty list again, so 693 * there is a chance we will end up with a buffer queued for write but 694 * not yet completed on that list. So, as a final cleanup we go through 695 * the osync code to catch these locked, dirty buffers without requeuing 696 * any newly dirty buffers for write. 697 */ 698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 699 { 700 struct buffer_head *bh; 701 struct list_head tmp; 702 struct address_space *mapping; 703 int err = 0, err2; 704 struct blk_plug plug; 705 706 INIT_LIST_HEAD(&tmp); 707 blk_start_plug(&plug); 708 709 spin_lock(lock); 710 while (!list_empty(list)) { 711 bh = BH_ENTRY(list->next); 712 mapping = bh->b_assoc_map; 713 __remove_assoc_queue(bh); 714 /* Avoid race with mark_buffer_dirty_inode() which does 715 * a lockless check and we rely on seeing the dirty bit */ 716 smp_mb(); 717 if (buffer_dirty(bh) || buffer_locked(bh)) { 718 list_add(&bh->b_assoc_buffers, &tmp); 719 bh->b_assoc_map = mapping; 720 if (buffer_dirty(bh)) { 721 get_bh(bh); 722 spin_unlock(lock); 723 /* 724 * Ensure any pending I/O completes so that 725 * write_dirty_buffer() actually writes the 726 * current contents - it is a noop if I/O is 727 * still in flight on potentially older 728 * contents. 729 */ 730 write_dirty_buffer(bh, REQ_SYNC); 731 732 /* 733 * Kick off IO for the previous mapping. Note 734 * that we will not run the very last mapping, 735 * wait_on_buffer() will do that for us 736 * through sync_buffer(). 737 */ 738 brelse(bh); 739 spin_lock(lock); 740 } 741 } 742 } 743 744 spin_unlock(lock); 745 blk_finish_plug(&plug); 746 spin_lock(lock); 747 748 while (!list_empty(&tmp)) { 749 bh = BH_ENTRY(tmp.prev); 750 get_bh(bh); 751 mapping = bh->b_assoc_map; 752 __remove_assoc_queue(bh); 753 /* Avoid race with mark_buffer_dirty_inode() which does 754 * a lockless check and we rely on seeing the dirty bit */ 755 smp_mb(); 756 if (buffer_dirty(bh)) { 757 list_add(&bh->b_assoc_buffers, 758 &mapping->private_list); 759 bh->b_assoc_map = mapping; 760 } 761 spin_unlock(lock); 762 wait_on_buffer(bh); 763 if (!buffer_uptodate(bh)) 764 err = -EIO; 765 brelse(bh); 766 spin_lock(lock); 767 } 768 769 spin_unlock(lock); 770 err2 = osync_buffers_list(lock, list); 771 if (err) 772 return err; 773 else 774 return err2; 775 } 776 777 /* 778 * Invalidate any and all dirty buffers on a given inode. We are 779 * probably unmounting the fs, but that doesn't mean we have already 780 * done a sync(). Just drop the buffers from the inode list. 781 * 782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 783 * assumes that all the buffers are against the blockdev. Not true 784 * for reiserfs. 785 */ 786 void invalidate_inode_buffers(struct inode *inode) 787 { 788 if (inode_has_buffers(inode)) { 789 struct address_space *mapping = &inode->i_data; 790 struct list_head *list = &mapping->private_list; 791 struct address_space *buffer_mapping = mapping->private_data; 792 793 spin_lock(&buffer_mapping->private_lock); 794 while (!list_empty(list)) 795 __remove_assoc_queue(BH_ENTRY(list->next)); 796 spin_unlock(&buffer_mapping->private_lock); 797 } 798 } 799 EXPORT_SYMBOL(invalidate_inode_buffers); 800 801 /* 802 * Remove any clean buffers from the inode's buffer list. This is called 803 * when we're trying to free the inode itself. Those buffers can pin it. 804 * 805 * Returns true if all buffers were removed. 806 */ 807 int remove_inode_buffers(struct inode *inode) 808 { 809 int ret = 1; 810 811 if (inode_has_buffers(inode)) { 812 struct address_space *mapping = &inode->i_data; 813 struct list_head *list = &mapping->private_list; 814 struct address_space *buffer_mapping = mapping->private_data; 815 816 spin_lock(&buffer_mapping->private_lock); 817 while (!list_empty(list)) { 818 struct buffer_head *bh = BH_ENTRY(list->next); 819 if (buffer_dirty(bh)) { 820 ret = 0; 821 break; 822 } 823 __remove_assoc_queue(bh); 824 } 825 spin_unlock(&buffer_mapping->private_lock); 826 } 827 return ret; 828 } 829 830 /* 831 * Create the appropriate buffers when given a page for data area and 832 * the size of each buffer.. Use the bh->b_this_page linked list to 833 * follow the buffers created. Return NULL if unable to create more 834 * buffers. 835 * 836 * The retry flag is used to differentiate async IO (paging, swapping) 837 * which may not fail from ordinary buffer allocations. 838 */ 839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 840 bool retry) 841 { 842 struct buffer_head *bh, *head; 843 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 844 long offset; 845 struct mem_cgroup *memcg, *old_memcg; 846 847 if (retry) 848 gfp |= __GFP_NOFAIL; 849 850 /* The page lock pins the memcg */ 851 memcg = page_memcg(page); 852 old_memcg = set_active_memcg(memcg); 853 854 head = NULL; 855 offset = PAGE_SIZE; 856 while ((offset -= size) >= 0) { 857 bh = alloc_buffer_head(gfp); 858 if (!bh) 859 goto no_grow; 860 861 bh->b_this_page = head; 862 bh->b_blocknr = -1; 863 head = bh; 864 865 bh->b_size = size; 866 867 /* Link the buffer to its page */ 868 set_bh_page(bh, page, offset); 869 } 870 out: 871 set_active_memcg(old_memcg); 872 return head; 873 /* 874 * In case anything failed, we just free everything we got. 875 */ 876 no_grow: 877 if (head) { 878 do { 879 bh = head; 880 head = head->b_this_page; 881 free_buffer_head(bh); 882 } while (head); 883 } 884 885 goto out; 886 } 887 EXPORT_SYMBOL_GPL(alloc_page_buffers); 888 889 static inline void 890 link_dev_buffers(struct page *page, struct buffer_head *head) 891 { 892 struct buffer_head *bh, *tail; 893 894 bh = head; 895 do { 896 tail = bh; 897 bh = bh->b_this_page; 898 } while (bh); 899 tail->b_this_page = head; 900 attach_page_private(page, head); 901 } 902 903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 904 { 905 sector_t retval = ~((sector_t)0); 906 loff_t sz = i_size_read(bdev->bd_inode); 907 908 if (sz) { 909 unsigned int sizebits = blksize_bits(size); 910 retval = (sz >> sizebits); 911 } 912 return retval; 913 } 914 915 /* 916 * Initialise the state of a blockdev page's buffers. 917 */ 918 static sector_t 919 init_page_buffers(struct page *page, struct block_device *bdev, 920 sector_t block, int size) 921 { 922 struct buffer_head *head = page_buffers(page); 923 struct buffer_head *bh = head; 924 int uptodate = PageUptodate(page); 925 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 926 927 do { 928 if (!buffer_mapped(bh)) { 929 bh->b_end_io = NULL; 930 bh->b_private = NULL; 931 bh->b_bdev = bdev; 932 bh->b_blocknr = block; 933 if (uptodate) 934 set_buffer_uptodate(bh); 935 if (block < end_block) 936 set_buffer_mapped(bh); 937 } 938 block++; 939 bh = bh->b_this_page; 940 } while (bh != head); 941 942 /* 943 * Caller needs to validate requested block against end of device. 944 */ 945 return end_block; 946 } 947 948 /* 949 * Create the page-cache page that contains the requested block. 950 * 951 * This is used purely for blockdev mappings. 952 */ 953 static int 954 grow_dev_page(struct block_device *bdev, sector_t block, 955 pgoff_t index, int size, int sizebits, gfp_t gfp) 956 { 957 struct inode *inode = bdev->bd_inode; 958 struct page *page; 959 struct buffer_head *bh; 960 sector_t end_block; 961 int ret = 0; 962 gfp_t gfp_mask; 963 964 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 965 966 /* 967 * XXX: __getblk_slow() can not really deal with failure and 968 * will endlessly loop on improvised global reclaim. Prefer 969 * looping in the allocator rather than here, at least that 970 * code knows what it's doing. 971 */ 972 gfp_mask |= __GFP_NOFAIL; 973 974 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 975 976 BUG_ON(!PageLocked(page)); 977 978 if (page_has_buffers(page)) { 979 bh = page_buffers(page); 980 if (bh->b_size == size) { 981 end_block = init_page_buffers(page, bdev, 982 (sector_t)index << sizebits, 983 size); 984 goto done; 985 } 986 if (!try_to_free_buffers(page)) 987 goto failed; 988 } 989 990 /* 991 * Allocate some buffers for this page 992 */ 993 bh = alloc_page_buffers(page, size, true); 994 995 /* 996 * Link the page to the buffers and initialise them. Take the 997 * lock to be atomic wrt __find_get_block(), which does not 998 * run under the page lock. 999 */ 1000 spin_lock(&inode->i_mapping->private_lock); 1001 link_dev_buffers(page, bh); 1002 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1003 size); 1004 spin_unlock(&inode->i_mapping->private_lock); 1005 done: 1006 ret = (block < end_block) ? 1 : -ENXIO; 1007 failed: 1008 unlock_page(page); 1009 put_page(page); 1010 return ret; 1011 } 1012 1013 /* 1014 * Create buffers for the specified block device block's page. If 1015 * that page was dirty, the buffers are set dirty also. 1016 */ 1017 static int 1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1019 { 1020 pgoff_t index; 1021 int sizebits; 1022 1023 sizebits = PAGE_SHIFT - __ffs(size); 1024 index = block >> sizebits; 1025 1026 /* 1027 * Check for a block which wants to lie outside our maximum possible 1028 * pagecache index. (this comparison is done using sector_t types). 1029 */ 1030 if (unlikely(index != block >> sizebits)) { 1031 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1032 "device %pg\n", 1033 __func__, (unsigned long long)block, 1034 bdev); 1035 return -EIO; 1036 } 1037 1038 /* Create a page with the proper size buffers.. */ 1039 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1040 } 1041 1042 static struct buffer_head * 1043 __getblk_slow(struct block_device *bdev, sector_t block, 1044 unsigned size, gfp_t gfp) 1045 { 1046 /* Size must be multiple of hard sectorsize */ 1047 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1048 (size < 512 || size > PAGE_SIZE))) { 1049 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1050 size); 1051 printk(KERN_ERR "logical block size: %d\n", 1052 bdev_logical_block_size(bdev)); 1053 1054 dump_stack(); 1055 return NULL; 1056 } 1057 1058 for (;;) { 1059 struct buffer_head *bh; 1060 int ret; 1061 1062 bh = __find_get_block(bdev, block, size); 1063 if (bh) 1064 return bh; 1065 1066 ret = grow_buffers(bdev, block, size, gfp); 1067 if (ret < 0) 1068 return NULL; 1069 } 1070 } 1071 1072 /* 1073 * The relationship between dirty buffers and dirty pages: 1074 * 1075 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1076 * the page is tagged dirty in the page cache. 1077 * 1078 * At all times, the dirtiness of the buffers represents the dirtiness of 1079 * subsections of the page. If the page has buffers, the page dirty bit is 1080 * merely a hint about the true dirty state. 1081 * 1082 * When a page is set dirty in its entirety, all its buffers are marked dirty 1083 * (if the page has buffers). 1084 * 1085 * When a buffer is marked dirty, its page is dirtied, but the page's other 1086 * buffers are not. 1087 * 1088 * Also. When blockdev buffers are explicitly read with bread(), they 1089 * individually become uptodate. But their backing page remains not 1090 * uptodate - even if all of its buffers are uptodate. A subsequent 1091 * block_read_full_page() against that page will discover all the uptodate 1092 * buffers, will set the page uptodate and will perform no I/O. 1093 */ 1094 1095 /** 1096 * mark_buffer_dirty - mark a buffer_head as needing writeout 1097 * @bh: the buffer_head to mark dirty 1098 * 1099 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1100 * its backing page dirty, then tag the page as dirty in the page cache 1101 * and then attach the address_space's inode to its superblock's dirty 1102 * inode list. 1103 * 1104 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1105 * i_pages lock and mapping->host->i_lock. 1106 */ 1107 void mark_buffer_dirty(struct buffer_head *bh) 1108 { 1109 WARN_ON_ONCE(!buffer_uptodate(bh)); 1110 1111 trace_block_dirty_buffer(bh); 1112 1113 /* 1114 * Very *carefully* optimize the it-is-already-dirty case. 1115 * 1116 * Don't let the final "is it dirty" escape to before we 1117 * perhaps modified the buffer. 1118 */ 1119 if (buffer_dirty(bh)) { 1120 smp_mb(); 1121 if (buffer_dirty(bh)) 1122 return; 1123 } 1124 1125 if (!test_set_buffer_dirty(bh)) { 1126 struct page *page = bh->b_page; 1127 struct address_space *mapping = NULL; 1128 1129 lock_page_memcg(page); 1130 if (!TestSetPageDirty(page)) { 1131 mapping = page_mapping(page); 1132 if (mapping) 1133 __set_page_dirty(page, mapping, 0); 1134 } 1135 unlock_page_memcg(page); 1136 if (mapping) 1137 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1138 } 1139 } 1140 EXPORT_SYMBOL(mark_buffer_dirty); 1141 1142 void mark_buffer_write_io_error(struct buffer_head *bh) 1143 { 1144 struct super_block *sb; 1145 1146 set_buffer_write_io_error(bh); 1147 /* FIXME: do we need to set this in both places? */ 1148 if (bh->b_page && bh->b_page->mapping) 1149 mapping_set_error(bh->b_page->mapping, -EIO); 1150 if (bh->b_assoc_map) 1151 mapping_set_error(bh->b_assoc_map, -EIO); 1152 rcu_read_lock(); 1153 sb = READ_ONCE(bh->b_bdev->bd_super); 1154 if (sb) 1155 errseq_set(&sb->s_wb_err, -EIO); 1156 rcu_read_unlock(); 1157 } 1158 EXPORT_SYMBOL(mark_buffer_write_io_error); 1159 1160 /* 1161 * Decrement a buffer_head's reference count. If all buffers against a page 1162 * have zero reference count, are clean and unlocked, and if the page is clean 1163 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1164 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1165 * a page but it ends up not being freed, and buffers may later be reattached). 1166 */ 1167 void __brelse(struct buffer_head * buf) 1168 { 1169 if (atomic_read(&buf->b_count)) { 1170 put_bh(buf); 1171 return; 1172 } 1173 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1174 } 1175 EXPORT_SYMBOL(__brelse); 1176 1177 /* 1178 * bforget() is like brelse(), except it discards any 1179 * potentially dirty data. 1180 */ 1181 void __bforget(struct buffer_head *bh) 1182 { 1183 clear_buffer_dirty(bh); 1184 if (bh->b_assoc_map) { 1185 struct address_space *buffer_mapping = bh->b_page->mapping; 1186 1187 spin_lock(&buffer_mapping->private_lock); 1188 list_del_init(&bh->b_assoc_buffers); 1189 bh->b_assoc_map = NULL; 1190 spin_unlock(&buffer_mapping->private_lock); 1191 } 1192 __brelse(bh); 1193 } 1194 EXPORT_SYMBOL(__bforget); 1195 1196 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1197 { 1198 lock_buffer(bh); 1199 if (buffer_uptodate(bh)) { 1200 unlock_buffer(bh); 1201 return bh; 1202 } else { 1203 get_bh(bh); 1204 bh->b_end_io = end_buffer_read_sync; 1205 submit_bh(REQ_OP_READ, 0, bh); 1206 wait_on_buffer(bh); 1207 if (buffer_uptodate(bh)) 1208 return bh; 1209 } 1210 brelse(bh); 1211 return NULL; 1212 } 1213 1214 /* 1215 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1216 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1217 * refcount elevated by one when they're in an LRU. A buffer can only appear 1218 * once in a particular CPU's LRU. A single buffer can be present in multiple 1219 * CPU's LRUs at the same time. 1220 * 1221 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1222 * sb_find_get_block(). 1223 * 1224 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1225 * a local interrupt disable for that. 1226 */ 1227 1228 #define BH_LRU_SIZE 16 1229 1230 struct bh_lru { 1231 struct buffer_head *bhs[BH_LRU_SIZE]; 1232 }; 1233 1234 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1235 1236 #ifdef CONFIG_SMP 1237 #define bh_lru_lock() local_irq_disable() 1238 #define bh_lru_unlock() local_irq_enable() 1239 #else 1240 #define bh_lru_lock() preempt_disable() 1241 #define bh_lru_unlock() preempt_enable() 1242 #endif 1243 1244 static inline void check_irqs_on(void) 1245 { 1246 #ifdef irqs_disabled 1247 BUG_ON(irqs_disabled()); 1248 #endif 1249 } 1250 1251 /* 1252 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1253 * inserted at the front, and the buffer_head at the back if any is evicted. 1254 * Or, if already in the LRU it is moved to the front. 1255 */ 1256 static void bh_lru_install(struct buffer_head *bh) 1257 { 1258 struct buffer_head *evictee = bh; 1259 struct bh_lru *b; 1260 int i; 1261 1262 check_irqs_on(); 1263 bh_lru_lock(); 1264 1265 b = this_cpu_ptr(&bh_lrus); 1266 for (i = 0; i < BH_LRU_SIZE; i++) { 1267 swap(evictee, b->bhs[i]); 1268 if (evictee == bh) { 1269 bh_lru_unlock(); 1270 return; 1271 } 1272 } 1273 1274 get_bh(bh); 1275 bh_lru_unlock(); 1276 brelse(evictee); 1277 } 1278 1279 /* 1280 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1281 */ 1282 static struct buffer_head * 1283 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1284 { 1285 struct buffer_head *ret = NULL; 1286 unsigned int i; 1287 1288 check_irqs_on(); 1289 bh_lru_lock(); 1290 for (i = 0; i < BH_LRU_SIZE; i++) { 1291 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1292 1293 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1294 bh->b_size == size) { 1295 if (i) { 1296 while (i) { 1297 __this_cpu_write(bh_lrus.bhs[i], 1298 __this_cpu_read(bh_lrus.bhs[i - 1])); 1299 i--; 1300 } 1301 __this_cpu_write(bh_lrus.bhs[0], bh); 1302 } 1303 get_bh(bh); 1304 ret = bh; 1305 break; 1306 } 1307 } 1308 bh_lru_unlock(); 1309 return ret; 1310 } 1311 1312 /* 1313 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1314 * it in the LRU and mark it as accessed. If it is not present then return 1315 * NULL 1316 */ 1317 struct buffer_head * 1318 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1319 { 1320 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1321 1322 if (bh == NULL) { 1323 /* __find_get_block_slow will mark the page accessed */ 1324 bh = __find_get_block_slow(bdev, block); 1325 if (bh) 1326 bh_lru_install(bh); 1327 } else 1328 touch_buffer(bh); 1329 1330 return bh; 1331 } 1332 EXPORT_SYMBOL(__find_get_block); 1333 1334 /* 1335 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1336 * which corresponds to the passed block_device, block and size. The 1337 * returned buffer has its reference count incremented. 1338 * 1339 * __getblk_gfp() will lock up the machine if grow_dev_page's 1340 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1341 */ 1342 struct buffer_head * 1343 __getblk_gfp(struct block_device *bdev, sector_t block, 1344 unsigned size, gfp_t gfp) 1345 { 1346 struct buffer_head *bh = __find_get_block(bdev, block, size); 1347 1348 might_sleep(); 1349 if (bh == NULL) 1350 bh = __getblk_slow(bdev, block, size, gfp); 1351 return bh; 1352 } 1353 EXPORT_SYMBOL(__getblk_gfp); 1354 1355 /* 1356 * Do async read-ahead on a buffer.. 1357 */ 1358 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1359 { 1360 struct buffer_head *bh = __getblk(bdev, block, size); 1361 if (likely(bh)) { 1362 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1363 brelse(bh); 1364 } 1365 } 1366 EXPORT_SYMBOL(__breadahead); 1367 1368 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size, 1369 gfp_t gfp) 1370 { 1371 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1372 if (likely(bh)) { 1373 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1374 brelse(bh); 1375 } 1376 } 1377 EXPORT_SYMBOL(__breadahead_gfp); 1378 1379 /** 1380 * __bread_gfp() - reads a specified block and returns the bh 1381 * @bdev: the block_device to read from 1382 * @block: number of block 1383 * @size: size (in bytes) to read 1384 * @gfp: page allocation flag 1385 * 1386 * Reads a specified block, and returns buffer head that contains it. 1387 * The page cache can be allocated from non-movable area 1388 * not to prevent page migration if you set gfp to zero. 1389 * It returns NULL if the block was unreadable. 1390 */ 1391 struct buffer_head * 1392 __bread_gfp(struct block_device *bdev, sector_t block, 1393 unsigned size, gfp_t gfp) 1394 { 1395 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1396 1397 if (likely(bh) && !buffer_uptodate(bh)) 1398 bh = __bread_slow(bh); 1399 return bh; 1400 } 1401 EXPORT_SYMBOL(__bread_gfp); 1402 1403 /* 1404 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1405 * This doesn't race because it runs in each cpu either in irq 1406 * or with preempt disabled. 1407 */ 1408 static void invalidate_bh_lru(void *arg) 1409 { 1410 struct bh_lru *b = &get_cpu_var(bh_lrus); 1411 int i; 1412 1413 for (i = 0; i < BH_LRU_SIZE; i++) { 1414 brelse(b->bhs[i]); 1415 b->bhs[i] = NULL; 1416 } 1417 put_cpu_var(bh_lrus); 1418 } 1419 1420 static bool has_bh_in_lru(int cpu, void *dummy) 1421 { 1422 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1423 int i; 1424 1425 for (i = 0; i < BH_LRU_SIZE; i++) { 1426 if (b->bhs[i]) 1427 return true; 1428 } 1429 1430 return false; 1431 } 1432 1433 void invalidate_bh_lrus(void) 1434 { 1435 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1436 } 1437 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1438 1439 void set_bh_page(struct buffer_head *bh, 1440 struct page *page, unsigned long offset) 1441 { 1442 bh->b_page = page; 1443 BUG_ON(offset >= PAGE_SIZE); 1444 if (PageHighMem(page)) 1445 /* 1446 * This catches illegal uses and preserves the offset: 1447 */ 1448 bh->b_data = (char *)(0 + offset); 1449 else 1450 bh->b_data = page_address(page) + offset; 1451 } 1452 EXPORT_SYMBOL(set_bh_page); 1453 1454 /* 1455 * Called when truncating a buffer on a page completely. 1456 */ 1457 1458 /* Bits that are cleared during an invalidate */ 1459 #define BUFFER_FLAGS_DISCARD \ 1460 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1461 1 << BH_Delay | 1 << BH_Unwritten) 1462 1463 static void discard_buffer(struct buffer_head * bh) 1464 { 1465 unsigned long b_state, b_state_old; 1466 1467 lock_buffer(bh); 1468 clear_buffer_dirty(bh); 1469 bh->b_bdev = NULL; 1470 b_state = bh->b_state; 1471 for (;;) { 1472 b_state_old = cmpxchg(&bh->b_state, b_state, 1473 (b_state & ~BUFFER_FLAGS_DISCARD)); 1474 if (b_state_old == b_state) 1475 break; 1476 b_state = b_state_old; 1477 } 1478 unlock_buffer(bh); 1479 } 1480 1481 /** 1482 * block_invalidatepage - invalidate part or all of a buffer-backed page 1483 * 1484 * @page: the page which is affected 1485 * @offset: start of the range to invalidate 1486 * @length: length of the range to invalidate 1487 * 1488 * block_invalidatepage() is called when all or part of the page has become 1489 * invalidated by a truncate operation. 1490 * 1491 * block_invalidatepage() does not have to release all buffers, but it must 1492 * ensure that no dirty buffer is left outside @offset and that no I/O 1493 * is underway against any of the blocks which are outside the truncation 1494 * point. Because the caller is about to free (and possibly reuse) those 1495 * blocks on-disk. 1496 */ 1497 void block_invalidatepage(struct page *page, unsigned int offset, 1498 unsigned int length) 1499 { 1500 struct buffer_head *head, *bh, *next; 1501 unsigned int curr_off = 0; 1502 unsigned int stop = length + offset; 1503 1504 BUG_ON(!PageLocked(page)); 1505 if (!page_has_buffers(page)) 1506 goto out; 1507 1508 /* 1509 * Check for overflow 1510 */ 1511 BUG_ON(stop > PAGE_SIZE || stop < length); 1512 1513 head = page_buffers(page); 1514 bh = head; 1515 do { 1516 unsigned int next_off = curr_off + bh->b_size; 1517 next = bh->b_this_page; 1518 1519 /* 1520 * Are we still fully in range ? 1521 */ 1522 if (next_off > stop) 1523 goto out; 1524 1525 /* 1526 * is this block fully invalidated? 1527 */ 1528 if (offset <= curr_off) 1529 discard_buffer(bh); 1530 curr_off = next_off; 1531 bh = next; 1532 } while (bh != head); 1533 1534 /* 1535 * We release buffers only if the entire page is being invalidated. 1536 * The get_block cached value has been unconditionally invalidated, 1537 * so real IO is not possible anymore. 1538 */ 1539 if (length == PAGE_SIZE) 1540 try_to_release_page(page, 0); 1541 out: 1542 return; 1543 } 1544 EXPORT_SYMBOL(block_invalidatepage); 1545 1546 1547 /* 1548 * We attach and possibly dirty the buffers atomically wrt 1549 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1550 * is already excluded via the page lock. 1551 */ 1552 void create_empty_buffers(struct page *page, 1553 unsigned long blocksize, unsigned long b_state) 1554 { 1555 struct buffer_head *bh, *head, *tail; 1556 1557 head = alloc_page_buffers(page, blocksize, true); 1558 bh = head; 1559 do { 1560 bh->b_state |= b_state; 1561 tail = bh; 1562 bh = bh->b_this_page; 1563 } while (bh); 1564 tail->b_this_page = head; 1565 1566 spin_lock(&page->mapping->private_lock); 1567 if (PageUptodate(page) || PageDirty(page)) { 1568 bh = head; 1569 do { 1570 if (PageDirty(page)) 1571 set_buffer_dirty(bh); 1572 if (PageUptodate(page)) 1573 set_buffer_uptodate(bh); 1574 bh = bh->b_this_page; 1575 } while (bh != head); 1576 } 1577 attach_page_private(page, head); 1578 spin_unlock(&page->mapping->private_lock); 1579 } 1580 EXPORT_SYMBOL(create_empty_buffers); 1581 1582 /** 1583 * clean_bdev_aliases: clean a range of buffers in block device 1584 * @bdev: Block device to clean buffers in 1585 * @block: Start of a range of blocks to clean 1586 * @len: Number of blocks to clean 1587 * 1588 * We are taking a range of blocks for data and we don't want writeback of any 1589 * buffer-cache aliases starting from return from this function and until the 1590 * moment when something will explicitly mark the buffer dirty (hopefully that 1591 * will not happen until we will free that block ;-) We don't even need to mark 1592 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1593 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1594 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1595 * would confuse anyone who might pick it with bread() afterwards... 1596 * 1597 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1598 * writeout I/O going on against recently-freed buffers. We don't wait on that 1599 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1600 * need to. That happens here. 1601 */ 1602 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1603 { 1604 struct inode *bd_inode = bdev->bd_inode; 1605 struct address_space *bd_mapping = bd_inode->i_mapping; 1606 struct pagevec pvec; 1607 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1608 pgoff_t end; 1609 int i, count; 1610 struct buffer_head *bh; 1611 struct buffer_head *head; 1612 1613 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1614 pagevec_init(&pvec); 1615 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1616 count = pagevec_count(&pvec); 1617 for (i = 0; i < count; i++) { 1618 struct page *page = pvec.pages[i]; 1619 1620 if (!page_has_buffers(page)) 1621 continue; 1622 /* 1623 * We use page lock instead of bd_mapping->private_lock 1624 * to pin buffers here since we can afford to sleep and 1625 * it scales better than a global spinlock lock. 1626 */ 1627 lock_page(page); 1628 /* Recheck when the page is locked which pins bhs */ 1629 if (!page_has_buffers(page)) 1630 goto unlock_page; 1631 head = page_buffers(page); 1632 bh = head; 1633 do { 1634 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1635 goto next; 1636 if (bh->b_blocknr >= block + len) 1637 break; 1638 clear_buffer_dirty(bh); 1639 wait_on_buffer(bh); 1640 clear_buffer_req(bh); 1641 next: 1642 bh = bh->b_this_page; 1643 } while (bh != head); 1644 unlock_page: 1645 unlock_page(page); 1646 } 1647 pagevec_release(&pvec); 1648 cond_resched(); 1649 /* End of range already reached? */ 1650 if (index > end || !index) 1651 break; 1652 } 1653 } 1654 EXPORT_SYMBOL(clean_bdev_aliases); 1655 1656 /* 1657 * Size is a power-of-two in the range 512..PAGE_SIZE, 1658 * and the case we care about most is PAGE_SIZE. 1659 * 1660 * So this *could* possibly be written with those 1661 * constraints in mind (relevant mostly if some 1662 * architecture has a slow bit-scan instruction) 1663 */ 1664 static inline int block_size_bits(unsigned int blocksize) 1665 { 1666 return ilog2(blocksize); 1667 } 1668 1669 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1670 { 1671 BUG_ON(!PageLocked(page)); 1672 1673 if (!page_has_buffers(page)) 1674 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1675 b_state); 1676 return page_buffers(page); 1677 } 1678 1679 /* 1680 * NOTE! All mapped/uptodate combinations are valid: 1681 * 1682 * Mapped Uptodate Meaning 1683 * 1684 * No No "unknown" - must do get_block() 1685 * No Yes "hole" - zero-filled 1686 * Yes No "allocated" - allocated on disk, not read in 1687 * Yes Yes "valid" - allocated and up-to-date in memory. 1688 * 1689 * "Dirty" is valid only with the last case (mapped+uptodate). 1690 */ 1691 1692 /* 1693 * While block_write_full_page is writing back the dirty buffers under 1694 * the page lock, whoever dirtied the buffers may decide to clean them 1695 * again at any time. We handle that by only looking at the buffer 1696 * state inside lock_buffer(). 1697 * 1698 * If block_write_full_page() is called for regular writeback 1699 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1700 * locked buffer. This only can happen if someone has written the buffer 1701 * directly, with submit_bh(). At the address_space level PageWriteback 1702 * prevents this contention from occurring. 1703 * 1704 * If block_write_full_page() is called with wbc->sync_mode == 1705 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1706 * causes the writes to be flagged as synchronous writes. 1707 */ 1708 int __block_write_full_page(struct inode *inode, struct page *page, 1709 get_block_t *get_block, struct writeback_control *wbc, 1710 bh_end_io_t *handler) 1711 { 1712 int err; 1713 sector_t block; 1714 sector_t last_block; 1715 struct buffer_head *bh, *head; 1716 unsigned int blocksize, bbits; 1717 int nr_underway = 0; 1718 int write_flags = wbc_to_write_flags(wbc); 1719 1720 head = create_page_buffers(page, inode, 1721 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1722 1723 /* 1724 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1725 * here, and the (potentially unmapped) buffers may become dirty at 1726 * any time. If a buffer becomes dirty here after we've inspected it 1727 * then we just miss that fact, and the page stays dirty. 1728 * 1729 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1730 * handle that here by just cleaning them. 1731 */ 1732 1733 bh = head; 1734 blocksize = bh->b_size; 1735 bbits = block_size_bits(blocksize); 1736 1737 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1738 last_block = (i_size_read(inode) - 1) >> bbits; 1739 1740 /* 1741 * Get all the dirty buffers mapped to disk addresses and 1742 * handle any aliases from the underlying blockdev's mapping. 1743 */ 1744 do { 1745 if (block > last_block) { 1746 /* 1747 * mapped buffers outside i_size will occur, because 1748 * this page can be outside i_size when there is a 1749 * truncate in progress. 1750 */ 1751 /* 1752 * The buffer was zeroed by block_write_full_page() 1753 */ 1754 clear_buffer_dirty(bh); 1755 set_buffer_uptodate(bh); 1756 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1757 buffer_dirty(bh)) { 1758 WARN_ON(bh->b_size != blocksize); 1759 err = get_block(inode, block, bh, 1); 1760 if (err) 1761 goto recover; 1762 clear_buffer_delay(bh); 1763 if (buffer_new(bh)) { 1764 /* blockdev mappings never come here */ 1765 clear_buffer_new(bh); 1766 clean_bdev_bh_alias(bh); 1767 } 1768 } 1769 bh = bh->b_this_page; 1770 block++; 1771 } while (bh != head); 1772 1773 do { 1774 if (!buffer_mapped(bh)) 1775 continue; 1776 /* 1777 * If it's a fully non-blocking write attempt and we cannot 1778 * lock the buffer then redirty the page. Note that this can 1779 * potentially cause a busy-wait loop from writeback threads 1780 * and kswapd activity, but those code paths have their own 1781 * higher-level throttling. 1782 */ 1783 if (wbc->sync_mode != WB_SYNC_NONE) { 1784 lock_buffer(bh); 1785 } else if (!trylock_buffer(bh)) { 1786 redirty_page_for_writepage(wbc, page); 1787 continue; 1788 } 1789 if (test_clear_buffer_dirty(bh)) { 1790 mark_buffer_async_write_endio(bh, handler); 1791 } else { 1792 unlock_buffer(bh); 1793 } 1794 } while ((bh = bh->b_this_page) != head); 1795 1796 /* 1797 * The page and its buffers are protected by PageWriteback(), so we can 1798 * drop the bh refcounts early. 1799 */ 1800 BUG_ON(PageWriteback(page)); 1801 set_page_writeback(page); 1802 1803 do { 1804 struct buffer_head *next = bh->b_this_page; 1805 if (buffer_async_write(bh)) { 1806 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1807 inode->i_write_hint, wbc); 1808 nr_underway++; 1809 } 1810 bh = next; 1811 } while (bh != head); 1812 unlock_page(page); 1813 1814 err = 0; 1815 done: 1816 if (nr_underway == 0) { 1817 /* 1818 * The page was marked dirty, but the buffers were 1819 * clean. Someone wrote them back by hand with 1820 * ll_rw_block/submit_bh. A rare case. 1821 */ 1822 end_page_writeback(page); 1823 1824 /* 1825 * The page and buffer_heads can be released at any time from 1826 * here on. 1827 */ 1828 } 1829 return err; 1830 1831 recover: 1832 /* 1833 * ENOSPC, or some other error. We may already have added some 1834 * blocks to the file, so we need to write these out to avoid 1835 * exposing stale data. 1836 * The page is currently locked and not marked for writeback 1837 */ 1838 bh = head; 1839 /* Recovery: lock and submit the mapped buffers */ 1840 do { 1841 if (buffer_mapped(bh) && buffer_dirty(bh) && 1842 !buffer_delay(bh)) { 1843 lock_buffer(bh); 1844 mark_buffer_async_write_endio(bh, handler); 1845 } else { 1846 /* 1847 * The buffer may have been set dirty during 1848 * attachment to a dirty page. 1849 */ 1850 clear_buffer_dirty(bh); 1851 } 1852 } while ((bh = bh->b_this_page) != head); 1853 SetPageError(page); 1854 BUG_ON(PageWriteback(page)); 1855 mapping_set_error(page->mapping, err); 1856 set_page_writeback(page); 1857 do { 1858 struct buffer_head *next = bh->b_this_page; 1859 if (buffer_async_write(bh)) { 1860 clear_buffer_dirty(bh); 1861 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1862 inode->i_write_hint, wbc); 1863 nr_underway++; 1864 } 1865 bh = next; 1866 } while (bh != head); 1867 unlock_page(page); 1868 goto done; 1869 } 1870 EXPORT_SYMBOL(__block_write_full_page); 1871 1872 /* 1873 * If a page has any new buffers, zero them out here, and mark them uptodate 1874 * and dirty so they'll be written out (in order to prevent uninitialised 1875 * block data from leaking). And clear the new bit. 1876 */ 1877 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1878 { 1879 unsigned int block_start, block_end; 1880 struct buffer_head *head, *bh; 1881 1882 BUG_ON(!PageLocked(page)); 1883 if (!page_has_buffers(page)) 1884 return; 1885 1886 bh = head = page_buffers(page); 1887 block_start = 0; 1888 do { 1889 block_end = block_start + bh->b_size; 1890 1891 if (buffer_new(bh)) { 1892 if (block_end > from && block_start < to) { 1893 if (!PageUptodate(page)) { 1894 unsigned start, size; 1895 1896 start = max(from, block_start); 1897 size = min(to, block_end) - start; 1898 1899 zero_user(page, start, size); 1900 set_buffer_uptodate(bh); 1901 } 1902 1903 clear_buffer_new(bh); 1904 mark_buffer_dirty(bh); 1905 } 1906 } 1907 1908 block_start = block_end; 1909 bh = bh->b_this_page; 1910 } while (bh != head); 1911 } 1912 EXPORT_SYMBOL(page_zero_new_buffers); 1913 1914 static void 1915 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1916 struct iomap *iomap) 1917 { 1918 loff_t offset = block << inode->i_blkbits; 1919 1920 bh->b_bdev = iomap->bdev; 1921 1922 /* 1923 * Block points to offset in file we need to map, iomap contains 1924 * the offset at which the map starts. If the map ends before the 1925 * current block, then do not map the buffer and let the caller 1926 * handle it. 1927 */ 1928 BUG_ON(offset >= iomap->offset + iomap->length); 1929 1930 switch (iomap->type) { 1931 case IOMAP_HOLE: 1932 /* 1933 * If the buffer is not up to date or beyond the current EOF, 1934 * we need to mark it as new to ensure sub-block zeroing is 1935 * executed if necessary. 1936 */ 1937 if (!buffer_uptodate(bh) || 1938 (offset >= i_size_read(inode))) 1939 set_buffer_new(bh); 1940 break; 1941 case IOMAP_DELALLOC: 1942 if (!buffer_uptodate(bh) || 1943 (offset >= i_size_read(inode))) 1944 set_buffer_new(bh); 1945 set_buffer_uptodate(bh); 1946 set_buffer_mapped(bh); 1947 set_buffer_delay(bh); 1948 break; 1949 case IOMAP_UNWRITTEN: 1950 /* 1951 * For unwritten regions, we always need to ensure that regions 1952 * in the block we are not writing to are zeroed. Mark the 1953 * buffer as new to ensure this. 1954 */ 1955 set_buffer_new(bh); 1956 set_buffer_unwritten(bh); 1957 fallthrough; 1958 case IOMAP_MAPPED: 1959 if ((iomap->flags & IOMAP_F_NEW) || 1960 offset >= i_size_read(inode)) 1961 set_buffer_new(bh); 1962 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1963 inode->i_blkbits; 1964 set_buffer_mapped(bh); 1965 break; 1966 } 1967 } 1968 1969 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1970 get_block_t *get_block, struct iomap *iomap) 1971 { 1972 unsigned from = pos & (PAGE_SIZE - 1); 1973 unsigned to = from + len; 1974 struct inode *inode = page->mapping->host; 1975 unsigned block_start, block_end; 1976 sector_t block; 1977 int err = 0; 1978 unsigned blocksize, bbits; 1979 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1980 1981 BUG_ON(!PageLocked(page)); 1982 BUG_ON(from > PAGE_SIZE); 1983 BUG_ON(to > PAGE_SIZE); 1984 BUG_ON(from > to); 1985 1986 head = create_page_buffers(page, inode, 0); 1987 blocksize = head->b_size; 1988 bbits = block_size_bits(blocksize); 1989 1990 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1991 1992 for(bh = head, block_start = 0; bh != head || !block_start; 1993 block++, block_start=block_end, bh = bh->b_this_page) { 1994 block_end = block_start + blocksize; 1995 if (block_end <= from || block_start >= to) { 1996 if (PageUptodate(page)) { 1997 if (!buffer_uptodate(bh)) 1998 set_buffer_uptodate(bh); 1999 } 2000 continue; 2001 } 2002 if (buffer_new(bh)) 2003 clear_buffer_new(bh); 2004 if (!buffer_mapped(bh)) { 2005 WARN_ON(bh->b_size != blocksize); 2006 if (get_block) { 2007 err = get_block(inode, block, bh, 1); 2008 if (err) 2009 break; 2010 } else { 2011 iomap_to_bh(inode, block, bh, iomap); 2012 } 2013 2014 if (buffer_new(bh)) { 2015 clean_bdev_bh_alias(bh); 2016 if (PageUptodate(page)) { 2017 clear_buffer_new(bh); 2018 set_buffer_uptodate(bh); 2019 mark_buffer_dirty(bh); 2020 continue; 2021 } 2022 if (block_end > to || block_start < from) 2023 zero_user_segments(page, 2024 to, block_end, 2025 block_start, from); 2026 continue; 2027 } 2028 } 2029 if (PageUptodate(page)) { 2030 if (!buffer_uptodate(bh)) 2031 set_buffer_uptodate(bh); 2032 continue; 2033 } 2034 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2035 !buffer_unwritten(bh) && 2036 (block_start < from || block_end > to)) { 2037 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2038 *wait_bh++=bh; 2039 } 2040 } 2041 /* 2042 * If we issued read requests - let them complete. 2043 */ 2044 while(wait_bh > wait) { 2045 wait_on_buffer(*--wait_bh); 2046 if (!buffer_uptodate(*wait_bh)) 2047 err = -EIO; 2048 } 2049 if (unlikely(err)) 2050 page_zero_new_buffers(page, from, to); 2051 return err; 2052 } 2053 2054 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2055 get_block_t *get_block) 2056 { 2057 return __block_write_begin_int(page, pos, len, get_block, NULL); 2058 } 2059 EXPORT_SYMBOL(__block_write_begin); 2060 2061 static int __block_commit_write(struct inode *inode, struct page *page, 2062 unsigned from, unsigned to) 2063 { 2064 unsigned block_start, block_end; 2065 int partial = 0; 2066 unsigned blocksize; 2067 struct buffer_head *bh, *head; 2068 2069 bh = head = page_buffers(page); 2070 blocksize = bh->b_size; 2071 2072 block_start = 0; 2073 do { 2074 block_end = block_start + blocksize; 2075 if (block_end <= from || block_start >= to) { 2076 if (!buffer_uptodate(bh)) 2077 partial = 1; 2078 } else { 2079 set_buffer_uptodate(bh); 2080 mark_buffer_dirty(bh); 2081 } 2082 if (buffer_new(bh)) 2083 clear_buffer_new(bh); 2084 2085 block_start = block_end; 2086 bh = bh->b_this_page; 2087 } while (bh != head); 2088 2089 /* 2090 * If this is a partial write which happened to make all buffers 2091 * uptodate then we can optimize away a bogus readpage() for 2092 * the next read(). Here we 'discover' whether the page went 2093 * uptodate as a result of this (potentially partial) write. 2094 */ 2095 if (!partial) 2096 SetPageUptodate(page); 2097 return 0; 2098 } 2099 2100 /* 2101 * block_write_begin takes care of the basic task of block allocation and 2102 * bringing partial write blocks uptodate first. 2103 * 2104 * The filesystem needs to handle block truncation upon failure. 2105 */ 2106 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2107 unsigned flags, struct page **pagep, get_block_t *get_block) 2108 { 2109 pgoff_t index = pos >> PAGE_SHIFT; 2110 struct page *page; 2111 int status; 2112 2113 page = grab_cache_page_write_begin(mapping, index, flags); 2114 if (!page) 2115 return -ENOMEM; 2116 2117 status = __block_write_begin(page, pos, len, get_block); 2118 if (unlikely(status)) { 2119 unlock_page(page); 2120 put_page(page); 2121 page = NULL; 2122 } 2123 2124 *pagep = page; 2125 return status; 2126 } 2127 EXPORT_SYMBOL(block_write_begin); 2128 2129 int block_write_end(struct file *file, struct address_space *mapping, 2130 loff_t pos, unsigned len, unsigned copied, 2131 struct page *page, void *fsdata) 2132 { 2133 struct inode *inode = mapping->host; 2134 unsigned start; 2135 2136 start = pos & (PAGE_SIZE - 1); 2137 2138 if (unlikely(copied < len)) { 2139 /* 2140 * The buffers that were written will now be uptodate, so we 2141 * don't have to worry about a readpage reading them and 2142 * overwriting a partial write. However if we have encountered 2143 * a short write and only partially written into a buffer, it 2144 * will not be marked uptodate, so a readpage might come in and 2145 * destroy our partial write. 2146 * 2147 * Do the simplest thing, and just treat any short write to a 2148 * non uptodate page as a zero-length write, and force the 2149 * caller to redo the whole thing. 2150 */ 2151 if (!PageUptodate(page)) 2152 copied = 0; 2153 2154 page_zero_new_buffers(page, start+copied, start+len); 2155 } 2156 flush_dcache_page(page); 2157 2158 /* This could be a short (even 0-length) commit */ 2159 __block_commit_write(inode, page, start, start+copied); 2160 2161 return copied; 2162 } 2163 EXPORT_SYMBOL(block_write_end); 2164 2165 int generic_write_end(struct file *file, struct address_space *mapping, 2166 loff_t pos, unsigned len, unsigned copied, 2167 struct page *page, void *fsdata) 2168 { 2169 struct inode *inode = mapping->host; 2170 loff_t old_size = inode->i_size; 2171 bool i_size_changed = false; 2172 2173 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2174 2175 /* 2176 * No need to use i_size_read() here, the i_size cannot change under us 2177 * because we hold i_rwsem. 2178 * 2179 * But it's important to update i_size while still holding page lock: 2180 * page writeout could otherwise come in and zero beyond i_size. 2181 */ 2182 if (pos + copied > inode->i_size) { 2183 i_size_write(inode, pos + copied); 2184 i_size_changed = true; 2185 } 2186 2187 unlock_page(page); 2188 put_page(page); 2189 2190 if (old_size < pos) 2191 pagecache_isize_extended(inode, old_size, pos); 2192 /* 2193 * Don't mark the inode dirty under page lock. First, it unnecessarily 2194 * makes the holding time of page lock longer. Second, it forces lock 2195 * ordering of page lock and transaction start for journaling 2196 * filesystems. 2197 */ 2198 if (i_size_changed) 2199 mark_inode_dirty(inode); 2200 return copied; 2201 } 2202 EXPORT_SYMBOL(generic_write_end); 2203 2204 /* 2205 * block_is_partially_uptodate checks whether buffers within a page are 2206 * uptodate or not. 2207 * 2208 * Returns true if all buffers which correspond to a file portion 2209 * we want to read are uptodate. 2210 */ 2211 int block_is_partially_uptodate(struct page *page, unsigned long from, 2212 unsigned long count) 2213 { 2214 unsigned block_start, block_end, blocksize; 2215 unsigned to; 2216 struct buffer_head *bh, *head; 2217 int ret = 1; 2218 2219 if (!page_has_buffers(page)) 2220 return 0; 2221 2222 head = page_buffers(page); 2223 blocksize = head->b_size; 2224 to = min_t(unsigned, PAGE_SIZE - from, count); 2225 to = from + to; 2226 if (from < blocksize && to > PAGE_SIZE - blocksize) 2227 return 0; 2228 2229 bh = head; 2230 block_start = 0; 2231 do { 2232 block_end = block_start + blocksize; 2233 if (block_end > from && block_start < to) { 2234 if (!buffer_uptodate(bh)) { 2235 ret = 0; 2236 break; 2237 } 2238 if (block_end >= to) 2239 break; 2240 } 2241 block_start = block_end; 2242 bh = bh->b_this_page; 2243 } while (bh != head); 2244 2245 return ret; 2246 } 2247 EXPORT_SYMBOL(block_is_partially_uptodate); 2248 2249 /* 2250 * Generic "read page" function for block devices that have the normal 2251 * get_block functionality. This is most of the block device filesystems. 2252 * Reads the page asynchronously --- the unlock_buffer() and 2253 * set/clear_buffer_uptodate() functions propagate buffer state into the 2254 * page struct once IO has completed. 2255 */ 2256 int block_read_full_page(struct page *page, get_block_t *get_block) 2257 { 2258 struct inode *inode = page->mapping->host; 2259 sector_t iblock, lblock; 2260 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2261 unsigned int blocksize, bbits; 2262 int nr, i; 2263 int fully_mapped = 1; 2264 2265 head = create_page_buffers(page, inode, 0); 2266 blocksize = head->b_size; 2267 bbits = block_size_bits(blocksize); 2268 2269 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2270 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2271 bh = head; 2272 nr = 0; 2273 i = 0; 2274 2275 do { 2276 if (buffer_uptodate(bh)) 2277 continue; 2278 2279 if (!buffer_mapped(bh)) { 2280 int err = 0; 2281 2282 fully_mapped = 0; 2283 if (iblock < lblock) { 2284 WARN_ON(bh->b_size != blocksize); 2285 err = get_block(inode, iblock, bh, 0); 2286 if (err) 2287 SetPageError(page); 2288 } 2289 if (!buffer_mapped(bh)) { 2290 zero_user(page, i * blocksize, blocksize); 2291 if (!err) 2292 set_buffer_uptodate(bh); 2293 continue; 2294 } 2295 /* 2296 * get_block() might have updated the buffer 2297 * synchronously 2298 */ 2299 if (buffer_uptodate(bh)) 2300 continue; 2301 } 2302 arr[nr++] = bh; 2303 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2304 2305 if (fully_mapped) 2306 SetPageMappedToDisk(page); 2307 2308 if (!nr) { 2309 /* 2310 * All buffers are uptodate - we can set the page uptodate 2311 * as well. But not if get_block() returned an error. 2312 */ 2313 if (!PageError(page)) 2314 SetPageUptodate(page); 2315 unlock_page(page); 2316 return 0; 2317 } 2318 2319 /* Stage two: lock the buffers */ 2320 for (i = 0; i < nr; i++) { 2321 bh = arr[i]; 2322 lock_buffer(bh); 2323 mark_buffer_async_read(bh); 2324 } 2325 2326 /* 2327 * Stage 3: start the IO. Check for uptodateness 2328 * inside the buffer lock in case another process reading 2329 * the underlying blockdev brought it uptodate (the sct fix). 2330 */ 2331 for (i = 0; i < nr; i++) { 2332 bh = arr[i]; 2333 if (buffer_uptodate(bh)) 2334 end_buffer_async_read(bh, 1); 2335 else 2336 submit_bh(REQ_OP_READ, 0, bh); 2337 } 2338 return 0; 2339 } 2340 EXPORT_SYMBOL(block_read_full_page); 2341 2342 /* utility function for filesystems that need to do work on expanding 2343 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2344 * deal with the hole. 2345 */ 2346 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2347 { 2348 struct address_space *mapping = inode->i_mapping; 2349 struct page *page; 2350 void *fsdata; 2351 int err; 2352 2353 err = inode_newsize_ok(inode, size); 2354 if (err) 2355 goto out; 2356 2357 err = pagecache_write_begin(NULL, mapping, size, 0, 2358 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2359 if (err) 2360 goto out; 2361 2362 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2363 BUG_ON(err > 0); 2364 2365 out: 2366 return err; 2367 } 2368 EXPORT_SYMBOL(generic_cont_expand_simple); 2369 2370 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2371 loff_t pos, loff_t *bytes) 2372 { 2373 struct inode *inode = mapping->host; 2374 unsigned int blocksize = i_blocksize(inode); 2375 struct page *page; 2376 void *fsdata; 2377 pgoff_t index, curidx; 2378 loff_t curpos; 2379 unsigned zerofrom, offset, len; 2380 int err = 0; 2381 2382 index = pos >> PAGE_SHIFT; 2383 offset = pos & ~PAGE_MASK; 2384 2385 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2386 zerofrom = curpos & ~PAGE_MASK; 2387 if (zerofrom & (blocksize-1)) { 2388 *bytes |= (blocksize-1); 2389 (*bytes)++; 2390 } 2391 len = PAGE_SIZE - zerofrom; 2392 2393 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2394 &page, &fsdata); 2395 if (err) 2396 goto out; 2397 zero_user(page, zerofrom, len); 2398 err = pagecache_write_end(file, mapping, curpos, len, len, 2399 page, fsdata); 2400 if (err < 0) 2401 goto out; 2402 BUG_ON(err != len); 2403 err = 0; 2404 2405 balance_dirty_pages_ratelimited(mapping); 2406 2407 if (fatal_signal_pending(current)) { 2408 err = -EINTR; 2409 goto out; 2410 } 2411 } 2412 2413 /* page covers the boundary, find the boundary offset */ 2414 if (index == curidx) { 2415 zerofrom = curpos & ~PAGE_MASK; 2416 /* if we will expand the thing last block will be filled */ 2417 if (offset <= zerofrom) { 2418 goto out; 2419 } 2420 if (zerofrom & (blocksize-1)) { 2421 *bytes |= (blocksize-1); 2422 (*bytes)++; 2423 } 2424 len = offset - zerofrom; 2425 2426 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2427 &page, &fsdata); 2428 if (err) 2429 goto out; 2430 zero_user(page, zerofrom, len); 2431 err = pagecache_write_end(file, mapping, curpos, len, len, 2432 page, fsdata); 2433 if (err < 0) 2434 goto out; 2435 BUG_ON(err != len); 2436 err = 0; 2437 } 2438 out: 2439 return err; 2440 } 2441 2442 /* 2443 * For moronic filesystems that do not allow holes in file. 2444 * We may have to extend the file. 2445 */ 2446 int cont_write_begin(struct file *file, struct address_space *mapping, 2447 loff_t pos, unsigned len, unsigned flags, 2448 struct page **pagep, void **fsdata, 2449 get_block_t *get_block, loff_t *bytes) 2450 { 2451 struct inode *inode = mapping->host; 2452 unsigned int blocksize = i_blocksize(inode); 2453 unsigned int zerofrom; 2454 int err; 2455 2456 err = cont_expand_zero(file, mapping, pos, bytes); 2457 if (err) 2458 return err; 2459 2460 zerofrom = *bytes & ~PAGE_MASK; 2461 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2462 *bytes |= (blocksize-1); 2463 (*bytes)++; 2464 } 2465 2466 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2467 } 2468 EXPORT_SYMBOL(cont_write_begin); 2469 2470 int block_commit_write(struct page *page, unsigned from, unsigned to) 2471 { 2472 struct inode *inode = page->mapping->host; 2473 __block_commit_write(inode,page,from,to); 2474 return 0; 2475 } 2476 EXPORT_SYMBOL(block_commit_write); 2477 2478 /* 2479 * block_page_mkwrite() is not allowed to change the file size as it gets 2480 * called from a page fault handler when a page is first dirtied. Hence we must 2481 * be careful to check for EOF conditions here. We set the page up correctly 2482 * for a written page which means we get ENOSPC checking when writing into 2483 * holes and correct delalloc and unwritten extent mapping on filesystems that 2484 * support these features. 2485 * 2486 * We are not allowed to take the i_mutex here so we have to play games to 2487 * protect against truncate races as the page could now be beyond EOF. Because 2488 * truncate writes the inode size before removing pages, once we have the 2489 * page lock we can determine safely if the page is beyond EOF. If it is not 2490 * beyond EOF, then the page is guaranteed safe against truncation until we 2491 * unlock the page. 2492 * 2493 * Direct callers of this function should protect against filesystem freezing 2494 * using sb_start_pagefault() - sb_end_pagefault() functions. 2495 */ 2496 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2497 get_block_t get_block) 2498 { 2499 struct page *page = vmf->page; 2500 struct inode *inode = file_inode(vma->vm_file); 2501 unsigned long end; 2502 loff_t size; 2503 int ret; 2504 2505 lock_page(page); 2506 size = i_size_read(inode); 2507 if ((page->mapping != inode->i_mapping) || 2508 (page_offset(page) > size)) { 2509 /* We overload EFAULT to mean page got truncated */ 2510 ret = -EFAULT; 2511 goto out_unlock; 2512 } 2513 2514 /* page is wholly or partially inside EOF */ 2515 if (((page->index + 1) << PAGE_SHIFT) > size) 2516 end = size & ~PAGE_MASK; 2517 else 2518 end = PAGE_SIZE; 2519 2520 ret = __block_write_begin(page, 0, end, get_block); 2521 if (!ret) 2522 ret = block_commit_write(page, 0, end); 2523 2524 if (unlikely(ret < 0)) 2525 goto out_unlock; 2526 set_page_dirty(page); 2527 wait_for_stable_page(page); 2528 return 0; 2529 out_unlock: 2530 unlock_page(page); 2531 return ret; 2532 } 2533 EXPORT_SYMBOL(block_page_mkwrite); 2534 2535 /* 2536 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2537 * immediately, while under the page lock. So it needs a special end_io 2538 * handler which does not touch the bh after unlocking it. 2539 */ 2540 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2541 { 2542 __end_buffer_read_notouch(bh, uptodate); 2543 } 2544 2545 /* 2546 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2547 * the page (converting it to circular linked list and taking care of page 2548 * dirty races). 2549 */ 2550 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2551 { 2552 struct buffer_head *bh; 2553 2554 BUG_ON(!PageLocked(page)); 2555 2556 spin_lock(&page->mapping->private_lock); 2557 bh = head; 2558 do { 2559 if (PageDirty(page)) 2560 set_buffer_dirty(bh); 2561 if (!bh->b_this_page) 2562 bh->b_this_page = head; 2563 bh = bh->b_this_page; 2564 } while (bh != head); 2565 attach_page_private(page, head); 2566 spin_unlock(&page->mapping->private_lock); 2567 } 2568 2569 /* 2570 * On entry, the page is fully not uptodate. 2571 * On exit the page is fully uptodate in the areas outside (from,to) 2572 * The filesystem needs to handle block truncation upon failure. 2573 */ 2574 int nobh_write_begin(struct address_space *mapping, 2575 loff_t pos, unsigned len, unsigned flags, 2576 struct page **pagep, void **fsdata, 2577 get_block_t *get_block) 2578 { 2579 struct inode *inode = mapping->host; 2580 const unsigned blkbits = inode->i_blkbits; 2581 const unsigned blocksize = 1 << blkbits; 2582 struct buffer_head *head, *bh; 2583 struct page *page; 2584 pgoff_t index; 2585 unsigned from, to; 2586 unsigned block_in_page; 2587 unsigned block_start, block_end; 2588 sector_t block_in_file; 2589 int nr_reads = 0; 2590 int ret = 0; 2591 int is_mapped_to_disk = 1; 2592 2593 index = pos >> PAGE_SHIFT; 2594 from = pos & (PAGE_SIZE - 1); 2595 to = from + len; 2596 2597 page = grab_cache_page_write_begin(mapping, index, flags); 2598 if (!page) 2599 return -ENOMEM; 2600 *pagep = page; 2601 *fsdata = NULL; 2602 2603 if (page_has_buffers(page)) { 2604 ret = __block_write_begin(page, pos, len, get_block); 2605 if (unlikely(ret)) 2606 goto out_release; 2607 return ret; 2608 } 2609 2610 if (PageMappedToDisk(page)) 2611 return 0; 2612 2613 /* 2614 * Allocate buffers so that we can keep track of state, and potentially 2615 * attach them to the page if an error occurs. In the common case of 2616 * no error, they will just be freed again without ever being attached 2617 * to the page (which is all OK, because we're under the page lock). 2618 * 2619 * Be careful: the buffer linked list is a NULL terminated one, rather 2620 * than the circular one we're used to. 2621 */ 2622 head = alloc_page_buffers(page, blocksize, false); 2623 if (!head) { 2624 ret = -ENOMEM; 2625 goto out_release; 2626 } 2627 2628 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2629 2630 /* 2631 * We loop across all blocks in the page, whether or not they are 2632 * part of the affected region. This is so we can discover if the 2633 * page is fully mapped-to-disk. 2634 */ 2635 for (block_start = 0, block_in_page = 0, bh = head; 2636 block_start < PAGE_SIZE; 2637 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2638 int create; 2639 2640 block_end = block_start + blocksize; 2641 bh->b_state = 0; 2642 create = 1; 2643 if (block_start >= to) 2644 create = 0; 2645 ret = get_block(inode, block_in_file + block_in_page, 2646 bh, create); 2647 if (ret) 2648 goto failed; 2649 if (!buffer_mapped(bh)) 2650 is_mapped_to_disk = 0; 2651 if (buffer_new(bh)) 2652 clean_bdev_bh_alias(bh); 2653 if (PageUptodate(page)) { 2654 set_buffer_uptodate(bh); 2655 continue; 2656 } 2657 if (buffer_new(bh) || !buffer_mapped(bh)) { 2658 zero_user_segments(page, block_start, from, 2659 to, block_end); 2660 continue; 2661 } 2662 if (buffer_uptodate(bh)) 2663 continue; /* reiserfs does this */ 2664 if (block_start < from || block_end > to) { 2665 lock_buffer(bh); 2666 bh->b_end_io = end_buffer_read_nobh; 2667 submit_bh(REQ_OP_READ, 0, bh); 2668 nr_reads++; 2669 } 2670 } 2671 2672 if (nr_reads) { 2673 /* 2674 * The page is locked, so these buffers are protected from 2675 * any VM or truncate activity. Hence we don't need to care 2676 * for the buffer_head refcounts. 2677 */ 2678 for (bh = head; bh; bh = bh->b_this_page) { 2679 wait_on_buffer(bh); 2680 if (!buffer_uptodate(bh)) 2681 ret = -EIO; 2682 } 2683 if (ret) 2684 goto failed; 2685 } 2686 2687 if (is_mapped_to_disk) 2688 SetPageMappedToDisk(page); 2689 2690 *fsdata = head; /* to be released by nobh_write_end */ 2691 2692 return 0; 2693 2694 failed: 2695 BUG_ON(!ret); 2696 /* 2697 * Error recovery is a bit difficult. We need to zero out blocks that 2698 * were newly allocated, and dirty them to ensure they get written out. 2699 * Buffers need to be attached to the page at this point, otherwise 2700 * the handling of potential IO errors during writeout would be hard 2701 * (could try doing synchronous writeout, but what if that fails too?) 2702 */ 2703 attach_nobh_buffers(page, head); 2704 page_zero_new_buffers(page, from, to); 2705 2706 out_release: 2707 unlock_page(page); 2708 put_page(page); 2709 *pagep = NULL; 2710 2711 return ret; 2712 } 2713 EXPORT_SYMBOL(nobh_write_begin); 2714 2715 int nobh_write_end(struct file *file, struct address_space *mapping, 2716 loff_t pos, unsigned len, unsigned copied, 2717 struct page *page, void *fsdata) 2718 { 2719 struct inode *inode = page->mapping->host; 2720 struct buffer_head *head = fsdata; 2721 struct buffer_head *bh; 2722 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2723 2724 if (unlikely(copied < len) && head) 2725 attach_nobh_buffers(page, head); 2726 if (page_has_buffers(page)) 2727 return generic_write_end(file, mapping, pos, len, 2728 copied, page, fsdata); 2729 2730 SetPageUptodate(page); 2731 set_page_dirty(page); 2732 if (pos+copied > inode->i_size) { 2733 i_size_write(inode, pos+copied); 2734 mark_inode_dirty(inode); 2735 } 2736 2737 unlock_page(page); 2738 put_page(page); 2739 2740 while (head) { 2741 bh = head; 2742 head = head->b_this_page; 2743 free_buffer_head(bh); 2744 } 2745 2746 return copied; 2747 } 2748 EXPORT_SYMBOL(nobh_write_end); 2749 2750 /* 2751 * nobh_writepage() - based on block_full_write_page() except 2752 * that it tries to operate without attaching bufferheads to 2753 * the page. 2754 */ 2755 int nobh_writepage(struct page *page, get_block_t *get_block, 2756 struct writeback_control *wbc) 2757 { 2758 struct inode * const inode = page->mapping->host; 2759 loff_t i_size = i_size_read(inode); 2760 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2761 unsigned offset; 2762 int ret; 2763 2764 /* Is the page fully inside i_size? */ 2765 if (page->index < end_index) 2766 goto out; 2767 2768 /* Is the page fully outside i_size? (truncate in progress) */ 2769 offset = i_size & (PAGE_SIZE-1); 2770 if (page->index >= end_index+1 || !offset) { 2771 unlock_page(page); 2772 return 0; /* don't care */ 2773 } 2774 2775 /* 2776 * The page straddles i_size. It must be zeroed out on each and every 2777 * writepage invocation because it may be mmapped. "A file is mapped 2778 * in multiples of the page size. For a file that is not a multiple of 2779 * the page size, the remaining memory is zeroed when mapped, and 2780 * writes to that region are not written out to the file." 2781 */ 2782 zero_user_segment(page, offset, PAGE_SIZE); 2783 out: 2784 ret = mpage_writepage(page, get_block, wbc); 2785 if (ret == -EAGAIN) 2786 ret = __block_write_full_page(inode, page, get_block, wbc, 2787 end_buffer_async_write); 2788 return ret; 2789 } 2790 EXPORT_SYMBOL(nobh_writepage); 2791 2792 int nobh_truncate_page(struct address_space *mapping, 2793 loff_t from, get_block_t *get_block) 2794 { 2795 pgoff_t index = from >> PAGE_SHIFT; 2796 unsigned offset = from & (PAGE_SIZE-1); 2797 unsigned blocksize; 2798 sector_t iblock; 2799 unsigned length, pos; 2800 struct inode *inode = mapping->host; 2801 struct page *page; 2802 struct buffer_head map_bh; 2803 int err; 2804 2805 blocksize = i_blocksize(inode); 2806 length = offset & (blocksize - 1); 2807 2808 /* Block boundary? Nothing to do */ 2809 if (!length) 2810 return 0; 2811 2812 length = blocksize - length; 2813 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2814 2815 page = grab_cache_page(mapping, index); 2816 err = -ENOMEM; 2817 if (!page) 2818 goto out; 2819 2820 if (page_has_buffers(page)) { 2821 has_buffers: 2822 unlock_page(page); 2823 put_page(page); 2824 return block_truncate_page(mapping, from, get_block); 2825 } 2826 2827 /* Find the buffer that contains "offset" */ 2828 pos = blocksize; 2829 while (offset >= pos) { 2830 iblock++; 2831 pos += blocksize; 2832 } 2833 2834 map_bh.b_size = blocksize; 2835 map_bh.b_state = 0; 2836 err = get_block(inode, iblock, &map_bh, 0); 2837 if (err) 2838 goto unlock; 2839 /* unmapped? It's a hole - nothing to do */ 2840 if (!buffer_mapped(&map_bh)) 2841 goto unlock; 2842 2843 /* Ok, it's mapped. Make sure it's up-to-date */ 2844 if (!PageUptodate(page)) { 2845 err = mapping->a_ops->readpage(NULL, page); 2846 if (err) { 2847 put_page(page); 2848 goto out; 2849 } 2850 lock_page(page); 2851 if (!PageUptodate(page)) { 2852 err = -EIO; 2853 goto unlock; 2854 } 2855 if (page_has_buffers(page)) 2856 goto has_buffers; 2857 } 2858 zero_user(page, offset, length); 2859 set_page_dirty(page); 2860 err = 0; 2861 2862 unlock: 2863 unlock_page(page); 2864 put_page(page); 2865 out: 2866 return err; 2867 } 2868 EXPORT_SYMBOL(nobh_truncate_page); 2869 2870 int block_truncate_page(struct address_space *mapping, 2871 loff_t from, get_block_t *get_block) 2872 { 2873 pgoff_t index = from >> PAGE_SHIFT; 2874 unsigned offset = from & (PAGE_SIZE-1); 2875 unsigned blocksize; 2876 sector_t iblock; 2877 unsigned length, pos; 2878 struct inode *inode = mapping->host; 2879 struct page *page; 2880 struct buffer_head *bh; 2881 int err; 2882 2883 blocksize = i_blocksize(inode); 2884 length = offset & (blocksize - 1); 2885 2886 /* Block boundary? Nothing to do */ 2887 if (!length) 2888 return 0; 2889 2890 length = blocksize - length; 2891 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2892 2893 page = grab_cache_page(mapping, index); 2894 err = -ENOMEM; 2895 if (!page) 2896 goto out; 2897 2898 if (!page_has_buffers(page)) 2899 create_empty_buffers(page, blocksize, 0); 2900 2901 /* Find the buffer that contains "offset" */ 2902 bh = page_buffers(page); 2903 pos = blocksize; 2904 while (offset >= pos) { 2905 bh = bh->b_this_page; 2906 iblock++; 2907 pos += blocksize; 2908 } 2909 2910 err = 0; 2911 if (!buffer_mapped(bh)) { 2912 WARN_ON(bh->b_size != blocksize); 2913 err = get_block(inode, iblock, bh, 0); 2914 if (err) 2915 goto unlock; 2916 /* unmapped? It's a hole - nothing to do */ 2917 if (!buffer_mapped(bh)) 2918 goto unlock; 2919 } 2920 2921 /* Ok, it's mapped. Make sure it's up-to-date */ 2922 if (PageUptodate(page)) 2923 set_buffer_uptodate(bh); 2924 2925 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2926 err = -EIO; 2927 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2928 wait_on_buffer(bh); 2929 /* Uhhuh. Read error. Complain and punt. */ 2930 if (!buffer_uptodate(bh)) 2931 goto unlock; 2932 } 2933 2934 zero_user(page, offset, length); 2935 mark_buffer_dirty(bh); 2936 err = 0; 2937 2938 unlock: 2939 unlock_page(page); 2940 put_page(page); 2941 out: 2942 return err; 2943 } 2944 EXPORT_SYMBOL(block_truncate_page); 2945 2946 /* 2947 * The generic ->writepage function for buffer-backed address_spaces 2948 */ 2949 int block_write_full_page(struct page *page, get_block_t *get_block, 2950 struct writeback_control *wbc) 2951 { 2952 struct inode * const inode = page->mapping->host; 2953 loff_t i_size = i_size_read(inode); 2954 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2955 unsigned offset; 2956 2957 /* Is the page fully inside i_size? */ 2958 if (page->index < end_index) 2959 return __block_write_full_page(inode, page, get_block, wbc, 2960 end_buffer_async_write); 2961 2962 /* Is the page fully outside i_size? (truncate in progress) */ 2963 offset = i_size & (PAGE_SIZE-1); 2964 if (page->index >= end_index+1 || !offset) { 2965 unlock_page(page); 2966 return 0; /* don't care */ 2967 } 2968 2969 /* 2970 * The page straddles i_size. It must be zeroed out on each and every 2971 * writepage invocation because it may be mmapped. "A file is mapped 2972 * in multiples of the page size. For a file that is not a multiple of 2973 * the page size, the remaining memory is zeroed when mapped, and 2974 * writes to that region are not written out to the file." 2975 */ 2976 zero_user_segment(page, offset, PAGE_SIZE); 2977 return __block_write_full_page(inode, page, get_block, wbc, 2978 end_buffer_async_write); 2979 } 2980 EXPORT_SYMBOL(block_write_full_page); 2981 2982 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2983 get_block_t *get_block) 2984 { 2985 struct inode *inode = mapping->host; 2986 struct buffer_head tmp = { 2987 .b_size = i_blocksize(inode), 2988 }; 2989 2990 get_block(inode, block, &tmp, 0); 2991 return tmp.b_blocknr; 2992 } 2993 EXPORT_SYMBOL(generic_block_bmap); 2994 2995 static void end_bio_bh_io_sync(struct bio *bio) 2996 { 2997 struct buffer_head *bh = bio->bi_private; 2998 2999 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3000 set_bit(BH_Quiet, &bh->b_state); 3001 3002 bh->b_end_io(bh, !bio->bi_status); 3003 bio_put(bio); 3004 } 3005 3006 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3007 enum rw_hint write_hint, struct writeback_control *wbc) 3008 { 3009 struct bio *bio; 3010 3011 BUG_ON(!buffer_locked(bh)); 3012 BUG_ON(!buffer_mapped(bh)); 3013 BUG_ON(!bh->b_end_io); 3014 BUG_ON(buffer_delay(bh)); 3015 BUG_ON(buffer_unwritten(bh)); 3016 3017 /* 3018 * Only clear out a write error when rewriting 3019 */ 3020 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3021 clear_buffer_write_io_error(bh); 3022 3023 bio = bio_alloc(GFP_NOIO, 1); 3024 3025 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 3026 3027 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3028 bio_set_dev(bio, bh->b_bdev); 3029 bio->bi_write_hint = write_hint; 3030 3031 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3032 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3033 3034 bio->bi_end_io = end_bio_bh_io_sync; 3035 bio->bi_private = bh; 3036 3037 if (buffer_meta(bh)) 3038 op_flags |= REQ_META; 3039 if (buffer_prio(bh)) 3040 op_flags |= REQ_PRIO; 3041 bio_set_op_attrs(bio, op, op_flags); 3042 3043 /* Take care of bh's that straddle the end of the device */ 3044 guard_bio_eod(bio); 3045 3046 if (wbc) { 3047 wbc_init_bio(wbc, bio); 3048 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 3049 } 3050 3051 submit_bio(bio); 3052 return 0; 3053 } 3054 3055 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3056 { 3057 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3058 } 3059 EXPORT_SYMBOL(submit_bh); 3060 3061 /** 3062 * ll_rw_block: low-level access to block devices (DEPRECATED) 3063 * @op: whether to %READ or %WRITE 3064 * @op_flags: req_flag_bits 3065 * @nr: number of &struct buffer_heads in the array 3066 * @bhs: array of pointers to &struct buffer_head 3067 * 3068 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3069 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3070 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3071 * %REQ_RAHEAD. 3072 * 3073 * This function drops any buffer that it cannot get a lock on (with the 3074 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3075 * request, and any buffer that appears to be up-to-date when doing read 3076 * request. Further it marks as clean buffers that are processed for 3077 * writing (the buffer cache won't assume that they are actually clean 3078 * until the buffer gets unlocked). 3079 * 3080 * ll_rw_block sets b_end_io to simple completion handler that marks 3081 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3082 * any waiters. 3083 * 3084 * All of the buffers must be for the same device, and must also be a 3085 * multiple of the current approved size for the device. 3086 */ 3087 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3088 { 3089 int i; 3090 3091 for (i = 0; i < nr; i++) { 3092 struct buffer_head *bh = bhs[i]; 3093 3094 if (!trylock_buffer(bh)) 3095 continue; 3096 if (op == WRITE) { 3097 if (test_clear_buffer_dirty(bh)) { 3098 bh->b_end_io = end_buffer_write_sync; 3099 get_bh(bh); 3100 submit_bh(op, op_flags, bh); 3101 continue; 3102 } 3103 } else { 3104 if (!buffer_uptodate(bh)) { 3105 bh->b_end_io = end_buffer_read_sync; 3106 get_bh(bh); 3107 submit_bh(op, op_flags, bh); 3108 continue; 3109 } 3110 } 3111 unlock_buffer(bh); 3112 } 3113 } 3114 EXPORT_SYMBOL(ll_rw_block); 3115 3116 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3117 { 3118 lock_buffer(bh); 3119 if (!test_clear_buffer_dirty(bh)) { 3120 unlock_buffer(bh); 3121 return; 3122 } 3123 bh->b_end_io = end_buffer_write_sync; 3124 get_bh(bh); 3125 submit_bh(REQ_OP_WRITE, op_flags, bh); 3126 } 3127 EXPORT_SYMBOL(write_dirty_buffer); 3128 3129 /* 3130 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3131 * and then start new I/O and then wait upon it. The caller must have a ref on 3132 * the buffer_head. 3133 */ 3134 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3135 { 3136 int ret = 0; 3137 3138 WARN_ON(atomic_read(&bh->b_count) < 1); 3139 lock_buffer(bh); 3140 if (test_clear_buffer_dirty(bh)) { 3141 /* 3142 * The bh should be mapped, but it might not be if the 3143 * device was hot-removed. Not much we can do but fail the I/O. 3144 */ 3145 if (!buffer_mapped(bh)) { 3146 unlock_buffer(bh); 3147 return -EIO; 3148 } 3149 3150 get_bh(bh); 3151 bh->b_end_io = end_buffer_write_sync; 3152 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3153 wait_on_buffer(bh); 3154 if (!ret && !buffer_uptodate(bh)) 3155 ret = -EIO; 3156 } else { 3157 unlock_buffer(bh); 3158 } 3159 return ret; 3160 } 3161 EXPORT_SYMBOL(__sync_dirty_buffer); 3162 3163 int sync_dirty_buffer(struct buffer_head *bh) 3164 { 3165 return __sync_dirty_buffer(bh, REQ_SYNC); 3166 } 3167 EXPORT_SYMBOL(sync_dirty_buffer); 3168 3169 /* 3170 * try_to_free_buffers() checks if all the buffers on this particular page 3171 * are unused, and releases them if so. 3172 * 3173 * Exclusion against try_to_free_buffers may be obtained by either 3174 * locking the page or by holding its mapping's private_lock. 3175 * 3176 * If the page is dirty but all the buffers are clean then we need to 3177 * be sure to mark the page clean as well. This is because the page 3178 * may be against a block device, and a later reattachment of buffers 3179 * to a dirty page will set *all* buffers dirty. Which would corrupt 3180 * filesystem data on the same device. 3181 * 3182 * The same applies to regular filesystem pages: if all the buffers are 3183 * clean then we set the page clean and proceed. To do that, we require 3184 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3185 * private_lock. 3186 * 3187 * try_to_free_buffers() is non-blocking. 3188 */ 3189 static inline int buffer_busy(struct buffer_head *bh) 3190 { 3191 return atomic_read(&bh->b_count) | 3192 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3193 } 3194 3195 static int 3196 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3197 { 3198 struct buffer_head *head = page_buffers(page); 3199 struct buffer_head *bh; 3200 3201 bh = head; 3202 do { 3203 if (buffer_busy(bh)) 3204 goto failed; 3205 bh = bh->b_this_page; 3206 } while (bh != head); 3207 3208 do { 3209 struct buffer_head *next = bh->b_this_page; 3210 3211 if (bh->b_assoc_map) 3212 __remove_assoc_queue(bh); 3213 bh = next; 3214 } while (bh != head); 3215 *buffers_to_free = head; 3216 detach_page_private(page); 3217 return 1; 3218 failed: 3219 return 0; 3220 } 3221 3222 int try_to_free_buffers(struct page *page) 3223 { 3224 struct address_space * const mapping = page->mapping; 3225 struct buffer_head *buffers_to_free = NULL; 3226 int ret = 0; 3227 3228 BUG_ON(!PageLocked(page)); 3229 if (PageWriteback(page)) 3230 return 0; 3231 3232 if (mapping == NULL) { /* can this still happen? */ 3233 ret = drop_buffers(page, &buffers_to_free); 3234 goto out; 3235 } 3236 3237 spin_lock(&mapping->private_lock); 3238 ret = drop_buffers(page, &buffers_to_free); 3239 3240 /* 3241 * If the filesystem writes its buffers by hand (eg ext3) 3242 * then we can have clean buffers against a dirty page. We 3243 * clean the page here; otherwise the VM will never notice 3244 * that the filesystem did any IO at all. 3245 * 3246 * Also, during truncate, discard_buffer will have marked all 3247 * the page's buffers clean. We discover that here and clean 3248 * the page also. 3249 * 3250 * private_lock must be held over this entire operation in order 3251 * to synchronise against __set_page_dirty_buffers and prevent the 3252 * dirty bit from being lost. 3253 */ 3254 if (ret) 3255 cancel_dirty_page(page); 3256 spin_unlock(&mapping->private_lock); 3257 out: 3258 if (buffers_to_free) { 3259 struct buffer_head *bh = buffers_to_free; 3260 3261 do { 3262 struct buffer_head *next = bh->b_this_page; 3263 free_buffer_head(bh); 3264 bh = next; 3265 } while (bh != buffers_to_free); 3266 } 3267 return ret; 3268 } 3269 EXPORT_SYMBOL(try_to_free_buffers); 3270 3271 /* 3272 * There are no bdflush tunables left. But distributions are 3273 * still running obsolete flush daemons, so we terminate them here. 3274 * 3275 * Use of bdflush() is deprecated and will be removed in a future kernel. 3276 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3277 */ 3278 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3279 { 3280 static int msg_count; 3281 3282 if (!capable(CAP_SYS_ADMIN)) 3283 return -EPERM; 3284 3285 if (msg_count < 5) { 3286 msg_count++; 3287 printk(KERN_INFO 3288 "warning: process `%s' used the obsolete bdflush" 3289 " system call\n", current->comm); 3290 printk(KERN_INFO "Fix your initscripts?\n"); 3291 } 3292 3293 if (func == 1) 3294 do_exit(0); 3295 return 0; 3296 } 3297 3298 /* 3299 * Buffer-head allocation 3300 */ 3301 static struct kmem_cache *bh_cachep __read_mostly; 3302 3303 /* 3304 * Once the number of bh's in the machine exceeds this level, we start 3305 * stripping them in writeback. 3306 */ 3307 static unsigned long max_buffer_heads; 3308 3309 int buffer_heads_over_limit; 3310 3311 struct bh_accounting { 3312 int nr; /* Number of live bh's */ 3313 int ratelimit; /* Limit cacheline bouncing */ 3314 }; 3315 3316 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3317 3318 static void recalc_bh_state(void) 3319 { 3320 int i; 3321 int tot = 0; 3322 3323 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3324 return; 3325 __this_cpu_write(bh_accounting.ratelimit, 0); 3326 for_each_online_cpu(i) 3327 tot += per_cpu(bh_accounting, i).nr; 3328 buffer_heads_over_limit = (tot > max_buffer_heads); 3329 } 3330 3331 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3332 { 3333 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3334 if (ret) { 3335 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3336 spin_lock_init(&ret->b_uptodate_lock); 3337 preempt_disable(); 3338 __this_cpu_inc(bh_accounting.nr); 3339 recalc_bh_state(); 3340 preempt_enable(); 3341 } 3342 return ret; 3343 } 3344 EXPORT_SYMBOL(alloc_buffer_head); 3345 3346 void free_buffer_head(struct buffer_head *bh) 3347 { 3348 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3349 kmem_cache_free(bh_cachep, bh); 3350 preempt_disable(); 3351 __this_cpu_dec(bh_accounting.nr); 3352 recalc_bh_state(); 3353 preempt_enable(); 3354 } 3355 EXPORT_SYMBOL(free_buffer_head); 3356 3357 static int buffer_exit_cpu_dead(unsigned int cpu) 3358 { 3359 int i; 3360 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3361 3362 for (i = 0; i < BH_LRU_SIZE; i++) { 3363 brelse(b->bhs[i]); 3364 b->bhs[i] = NULL; 3365 } 3366 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3367 per_cpu(bh_accounting, cpu).nr = 0; 3368 return 0; 3369 } 3370 3371 /** 3372 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3373 * @bh: struct buffer_head 3374 * 3375 * Return true if the buffer is up-to-date and false, 3376 * with the buffer locked, if not. 3377 */ 3378 int bh_uptodate_or_lock(struct buffer_head *bh) 3379 { 3380 if (!buffer_uptodate(bh)) { 3381 lock_buffer(bh); 3382 if (!buffer_uptodate(bh)) 3383 return 0; 3384 unlock_buffer(bh); 3385 } 3386 return 1; 3387 } 3388 EXPORT_SYMBOL(bh_uptodate_or_lock); 3389 3390 /** 3391 * bh_submit_read - Submit a locked buffer for reading 3392 * @bh: struct buffer_head 3393 * 3394 * Returns zero on success and -EIO on error. 3395 */ 3396 int bh_submit_read(struct buffer_head *bh) 3397 { 3398 BUG_ON(!buffer_locked(bh)); 3399 3400 if (buffer_uptodate(bh)) { 3401 unlock_buffer(bh); 3402 return 0; 3403 } 3404 3405 get_bh(bh); 3406 bh->b_end_io = end_buffer_read_sync; 3407 submit_bh(REQ_OP_READ, 0, bh); 3408 wait_on_buffer(bh); 3409 if (buffer_uptodate(bh)) 3410 return 0; 3411 return -EIO; 3412 } 3413 EXPORT_SYMBOL(bh_submit_read); 3414 3415 void __init buffer_init(void) 3416 { 3417 unsigned long nrpages; 3418 int ret; 3419 3420 bh_cachep = kmem_cache_create("buffer_head", 3421 sizeof(struct buffer_head), 0, 3422 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3423 SLAB_MEM_SPREAD), 3424 NULL); 3425 3426 /* 3427 * Limit the bh occupancy to 10% of ZONE_NORMAL 3428 */ 3429 nrpages = (nr_free_buffer_pages() * 10) / 100; 3430 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3431 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3432 NULL, buffer_exit_cpu_dead); 3433 WARN_ON(ret < 0); 3434 } 3435