xref: /linux/fs/buffer.c (revision a0d8d552783b3fec78c775a57fa7e2b87e16e6ca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 
52 #include "internal.h"
53 
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 			 enum rw_hint hint, struct writeback_control *wbc);
57 
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59 
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 	trace_block_touch_buffer(bh);
63 	mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66 
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72 
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 	clear_bit_unlock(BH_Lock, &bh->b_state);
76 	smp_mb__after_atomic();
77 	wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80 
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87 				     bool *dirty, bool *writeback)
88 {
89 	struct buffer_head *head, *bh;
90 	*dirty = false;
91 	*writeback = false;
92 
93 	BUG_ON(!PageLocked(page));
94 
95 	if (!page_has_buffers(page))
96 		return;
97 
98 	if (PageWriteback(page))
99 		*writeback = true;
100 
101 	head = page_buffers(page);
102 	bh = head;
103 	do {
104 		if (buffer_locked(bh))
105 			*writeback = true;
106 
107 		if (buffer_dirty(bh))
108 			*dirty = true;
109 
110 		bh = bh->b_this_page;
111 	} while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114 
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125 
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 	if (!test_bit(BH_Quiet, &bh->b_state))
129 		printk_ratelimited(KERN_ERR
130 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
131 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133 
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 	if (uptodate) {
145 		set_buffer_uptodate(bh);
146 	} else {
147 		/* This happens, due to failed read-ahead attempts. */
148 		clear_buffer_uptodate(bh);
149 	}
150 	unlock_buffer(bh);
151 }
152 
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer. This is what ll_rw_block uses too.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 	__end_buffer_read_notouch(bh, uptodate);
160 	put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163 
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 	if (uptodate) {
167 		set_buffer_uptodate(bh);
168 	} else {
169 		buffer_io_error(bh, ", lost sync page write");
170 		mark_buffer_write_io_error(bh);
171 		clear_buffer_uptodate(bh);
172 	}
173 	unlock_buffer(bh);
174 	put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177 
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 	struct inode *bd_inode = bdev->bd_inode;
192 	struct address_space *bd_mapping = bd_inode->i_mapping;
193 	struct buffer_head *ret = NULL;
194 	pgoff_t index;
195 	struct buffer_head *bh;
196 	struct buffer_head *head;
197 	struct page *page;
198 	int all_mapped = 1;
199 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200 
201 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
203 	if (!page)
204 		goto out;
205 
206 	spin_lock(&bd_mapping->private_lock);
207 	if (!page_has_buffers(page))
208 		goto out_unlock;
209 	head = page_buffers(page);
210 	bh = head;
211 	do {
212 		if (!buffer_mapped(bh))
213 			all_mapped = 0;
214 		else if (bh->b_blocknr == block) {
215 			ret = bh;
216 			get_bh(bh);
217 			goto out_unlock;
218 		}
219 		bh = bh->b_this_page;
220 	} while (bh != head);
221 
222 	/* we might be here because some of the buffers on this page are
223 	 * not mapped.  This is due to various races between
224 	 * file io on the block device and getblk.  It gets dealt with
225 	 * elsewhere, don't buffer_error if we had some unmapped buffers
226 	 */
227 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 	if (all_mapped && __ratelimit(&last_warned)) {
229 		printk("__find_get_block_slow() failed. block=%llu, "
230 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 		       "device %pg blocksize: %d\n",
232 		       (unsigned long long)block,
233 		       (unsigned long long)bh->b_blocknr,
234 		       bh->b_state, bh->b_size, bdev,
235 		       1 << bd_inode->i_blkbits);
236 	}
237 out_unlock:
238 	spin_unlock(&bd_mapping->private_lock);
239 	put_page(page);
240 out:
241 	return ret;
242 }
243 
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 	unsigned long flags;
247 	struct buffer_head *first;
248 	struct buffer_head *tmp;
249 	struct page *page;
250 	int page_uptodate = 1;
251 
252 	BUG_ON(!buffer_async_read(bh));
253 
254 	page = bh->b_page;
255 	if (uptodate) {
256 		set_buffer_uptodate(bh);
257 	} else {
258 		clear_buffer_uptodate(bh);
259 		buffer_io_error(bh, ", async page read");
260 		SetPageError(page);
261 	}
262 
263 	/*
264 	 * Be _very_ careful from here on. Bad things can happen if
265 	 * two buffer heads end IO at almost the same time and both
266 	 * decide that the page is now completely done.
267 	 */
268 	first = page_buffers(page);
269 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 	clear_buffer_async_read(bh);
271 	unlock_buffer(bh);
272 	tmp = bh;
273 	do {
274 		if (!buffer_uptodate(tmp))
275 			page_uptodate = 0;
276 		if (buffer_async_read(tmp)) {
277 			BUG_ON(!buffer_locked(tmp));
278 			goto still_busy;
279 		}
280 		tmp = tmp->b_this_page;
281 	} while (tmp != bh);
282 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284 	/*
285 	 * If none of the buffers had errors and they are all
286 	 * uptodate then we can set the page uptodate.
287 	 */
288 	if (page_uptodate && !PageError(page))
289 		SetPageUptodate(page);
290 	unlock_page(page);
291 	return;
292 
293 still_busy:
294 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 	return;
296 }
297 
298 struct decrypt_bh_ctx {
299 	struct work_struct work;
300 	struct buffer_head *bh;
301 };
302 
303 static void decrypt_bh(struct work_struct *work)
304 {
305 	struct decrypt_bh_ctx *ctx =
306 		container_of(work, struct decrypt_bh_ctx, work);
307 	struct buffer_head *bh = ctx->bh;
308 	int err;
309 
310 	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
311 					       bh_offset(bh));
312 	end_buffer_async_read(bh, err == 0);
313 	kfree(ctx);
314 }
315 
316 /*
317  * I/O completion handler for block_read_full_page() - pages
318  * which come unlocked at the end of I/O.
319  */
320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
321 {
322 	/* Decrypt if needed */
323 	if (uptodate &&
324 	    fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
325 		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
326 
327 		if (ctx) {
328 			INIT_WORK(&ctx->work, decrypt_bh);
329 			ctx->bh = bh;
330 			fscrypt_enqueue_decrypt_work(&ctx->work);
331 			return;
332 		}
333 		uptodate = 0;
334 	}
335 	end_buffer_async_read(bh, uptodate);
336 }
337 
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344 	unsigned long flags;
345 	struct buffer_head *first;
346 	struct buffer_head *tmp;
347 	struct page *page;
348 
349 	BUG_ON(!buffer_async_write(bh));
350 
351 	page = bh->b_page;
352 	if (uptodate) {
353 		set_buffer_uptodate(bh);
354 	} else {
355 		buffer_io_error(bh, ", lost async page write");
356 		mark_buffer_write_io_error(bh);
357 		clear_buffer_uptodate(bh);
358 		SetPageError(page);
359 	}
360 
361 	first = page_buffers(page);
362 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
363 
364 	clear_buffer_async_write(bh);
365 	unlock_buffer(bh);
366 	tmp = bh->b_this_page;
367 	while (tmp != bh) {
368 		if (buffer_async_write(tmp)) {
369 			BUG_ON(!buffer_locked(tmp));
370 			goto still_busy;
371 		}
372 		tmp = tmp->b_this_page;
373 	}
374 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
375 	end_page_writeback(page);
376 	return;
377 
378 still_busy:
379 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
380 	return;
381 }
382 EXPORT_SYMBOL(end_buffer_async_write);
383 
384 /*
385  * If a page's buffers are under async readin (end_buffer_async_read
386  * completion) then there is a possibility that another thread of
387  * control could lock one of the buffers after it has completed
388  * but while some of the other buffers have not completed.  This
389  * locked buffer would confuse end_buffer_async_read() into not unlocking
390  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
391  * that this buffer is not under async I/O.
392  *
393  * The page comes unlocked when it has no locked buffer_async buffers
394  * left.
395  *
396  * PageLocked prevents anyone starting new async I/O reads any of
397  * the buffers.
398  *
399  * PageWriteback is used to prevent simultaneous writeout of the same
400  * page.
401  *
402  * PageLocked prevents anyone from starting writeback of a page which is
403  * under read I/O (PageWriteback is only ever set against a locked page).
404  */
405 static void mark_buffer_async_read(struct buffer_head *bh)
406 {
407 	bh->b_end_io = end_buffer_async_read_io;
408 	set_buffer_async_read(bh);
409 }
410 
411 static void mark_buffer_async_write_endio(struct buffer_head *bh,
412 					  bh_end_io_t *handler)
413 {
414 	bh->b_end_io = handler;
415 	set_buffer_async_write(bh);
416 }
417 
418 void mark_buffer_async_write(struct buffer_head *bh)
419 {
420 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
421 }
422 EXPORT_SYMBOL(mark_buffer_async_write);
423 
424 
425 /*
426  * fs/buffer.c contains helper functions for buffer-backed address space's
427  * fsync functions.  A common requirement for buffer-based filesystems is
428  * that certain data from the backing blockdev needs to be written out for
429  * a successful fsync().  For example, ext2 indirect blocks need to be
430  * written back and waited upon before fsync() returns.
431  *
432  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
433  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
434  * management of a list of dependent buffers at ->i_mapping->private_list.
435  *
436  * Locking is a little subtle: try_to_free_buffers() will remove buffers
437  * from their controlling inode's queue when they are being freed.  But
438  * try_to_free_buffers() will be operating against the *blockdev* mapping
439  * at the time, not against the S_ISREG file which depends on those buffers.
440  * So the locking for private_list is via the private_lock in the address_space
441  * which backs the buffers.  Which is different from the address_space
442  * against which the buffers are listed.  So for a particular address_space,
443  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
444  * mapping->private_list will always be protected by the backing blockdev's
445  * ->private_lock.
446  *
447  * Which introduces a requirement: all buffers on an address_space's
448  * ->private_list must be from the same address_space: the blockdev's.
449  *
450  * address_spaces which do not place buffers at ->private_list via these
451  * utility functions are free to use private_lock and private_list for
452  * whatever they want.  The only requirement is that list_empty(private_list)
453  * be true at clear_inode() time.
454  *
455  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
456  * filesystems should do that.  invalidate_inode_buffers() should just go
457  * BUG_ON(!list_empty).
458  *
459  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
460  * take an address_space, not an inode.  And it should be called
461  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
462  * queued up.
463  *
464  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
465  * list if it is already on a list.  Because if the buffer is on a list,
466  * it *must* already be on the right one.  If not, the filesystem is being
467  * silly.  This will save a ton of locking.  But first we have to ensure
468  * that buffers are taken *off* the old inode's list when they are freed
469  * (presumably in truncate).  That requires careful auditing of all
470  * filesystems (do it inside bforget()).  It could also be done by bringing
471  * b_inode back.
472  */
473 
474 /*
475  * The buffer's backing address_space's private_lock must be held
476  */
477 static void __remove_assoc_queue(struct buffer_head *bh)
478 {
479 	list_del_init(&bh->b_assoc_buffers);
480 	WARN_ON(!bh->b_assoc_map);
481 	bh->b_assoc_map = NULL;
482 }
483 
484 int inode_has_buffers(struct inode *inode)
485 {
486 	return !list_empty(&inode->i_data.private_list);
487 }
488 
489 /*
490  * osync is designed to support O_SYNC io.  It waits synchronously for
491  * all already-submitted IO to complete, but does not queue any new
492  * writes to the disk.
493  *
494  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
495  * you dirty the buffers, and then use osync_inode_buffers to wait for
496  * completion.  Any other dirty buffers which are not yet queued for
497  * write will not be flushed to disk by the osync.
498  */
499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
500 {
501 	struct buffer_head *bh;
502 	struct list_head *p;
503 	int err = 0;
504 
505 	spin_lock(lock);
506 repeat:
507 	list_for_each_prev(p, list) {
508 		bh = BH_ENTRY(p);
509 		if (buffer_locked(bh)) {
510 			get_bh(bh);
511 			spin_unlock(lock);
512 			wait_on_buffer(bh);
513 			if (!buffer_uptodate(bh))
514 				err = -EIO;
515 			brelse(bh);
516 			spin_lock(lock);
517 			goto repeat;
518 		}
519 	}
520 	spin_unlock(lock);
521 	return err;
522 }
523 
524 void emergency_thaw_bdev(struct super_block *sb)
525 {
526 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
527 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
528 }
529 
530 /**
531  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
532  * @mapping: the mapping which wants those buffers written
533  *
534  * Starts I/O against the buffers at mapping->private_list, and waits upon
535  * that I/O.
536  *
537  * Basically, this is a convenience function for fsync().
538  * @mapping is a file or directory which needs those buffers to be written for
539  * a successful fsync().
540  */
541 int sync_mapping_buffers(struct address_space *mapping)
542 {
543 	struct address_space *buffer_mapping = mapping->private_data;
544 
545 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
546 		return 0;
547 
548 	return fsync_buffers_list(&buffer_mapping->private_lock,
549 					&mapping->private_list);
550 }
551 EXPORT_SYMBOL(sync_mapping_buffers);
552 
553 /*
554  * Called when we've recently written block `bblock', and it is known that
555  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
556  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
557  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
558  */
559 void write_boundary_block(struct block_device *bdev,
560 			sector_t bblock, unsigned blocksize)
561 {
562 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
563 	if (bh) {
564 		if (buffer_dirty(bh))
565 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
566 		put_bh(bh);
567 	}
568 }
569 
570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
571 {
572 	struct address_space *mapping = inode->i_mapping;
573 	struct address_space *buffer_mapping = bh->b_page->mapping;
574 
575 	mark_buffer_dirty(bh);
576 	if (!mapping->private_data) {
577 		mapping->private_data = buffer_mapping;
578 	} else {
579 		BUG_ON(mapping->private_data != buffer_mapping);
580 	}
581 	if (!bh->b_assoc_map) {
582 		spin_lock(&buffer_mapping->private_lock);
583 		list_move_tail(&bh->b_assoc_buffers,
584 				&mapping->private_list);
585 		bh->b_assoc_map = mapping;
586 		spin_unlock(&buffer_mapping->private_lock);
587 	}
588 }
589 EXPORT_SYMBOL(mark_buffer_dirty_inode);
590 
591 /*
592  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
593  * dirty.
594  *
595  * If warn is true, then emit a warning if the page is not uptodate and has
596  * not been truncated.
597  *
598  * The caller must hold lock_page_memcg().
599  */
600 void __set_page_dirty(struct page *page, struct address_space *mapping,
601 			     int warn)
602 {
603 	unsigned long flags;
604 
605 	xa_lock_irqsave(&mapping->i_pages, flags);
606 	if (page->mapping) {	/* Race with truncate? */
607 		WARN_ON_ONCE(warn && !PageUptodate(page));
608 		account_page_dirtied(page, mapping);
609 		__xa_set_mark(&mapping->i_pages, page_index(page),
610 				PAGECACHE_TAG_DIRTY);
611 	}
612 	xa_unlock_irqrestore(&mapping->i_pages, flags);
613 }
614 EXPORT_SYMBOL_GPL(__set_page_dirty);
615 
616 /*
617  * Add a page to the dirty page list.
618  *
619  * It is a sad fact of life that this function is called from several places
620  * deeply under spinlocking.  It may not sleep.
621  *
622  * If the page has buffers, the uptodate buffers are set dirty, to preserve
623  * dirty-state coherency between the page and the buffers.  It the page does
624  * not have buffers then when they are later attached they will all be set
625  * dirty.
626  *
627  * The buffers are dirtied before the page is dirtied.  There's a small race
628  * window in which a writepage caller may see the page cleanness but not the
629  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
630  * before the buffers, a concurrent writepage caller could clear the page dirty
631  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
632  * page on the dirty page list.
633  *
634  * We use private_lock to lock against try_to_free_buffers while using the
635  * page's buffer list.  Also use this to protect against clean buffers being
636  * added to the page after it was set dirty.
637  *
638  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
639  * address_space though.
640  */
641 int __set_page_dirty_buffers(struct page *page)
642 {
643 	int newly_dirty;
644 	struct address_space *mapping = page_mapping(page);
645 
646 	if (unlikely(!mapping))
647 		return !TestSetPageDirty(page);
648 
649 	spin_lock(&mapping->private_lock);
650 	if (page_has_buffers(page)) {
651 		struct buffer_head *head = page_buffers(page);
652 		struct buffer_head *bh = head;
653 
654 		do {
655 			set_buffer_dirty(bh);
656 			bh = bh->b_this_page;
657 		} while (bh != head);
658 	}
659 	/*
660 	 * Lock out page's memcg migration to keep PageDirty
661 	 * synchronized with per-memcg dirty page counters.
662 	 */
663 	lock_page_memcg(page);
664 	newly_dirty = !TestSetPageDirty(page);
665 	spin_unlock(&mapping->private_lock);
666 
667 	if (newly_dirty)
668 		__set_page_dirty(page, mapping, 1);
669 
670 	unlock_page_memcg(page);
671 
672 	if (newly_dirty)
673 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
674 
675 	return newly_dirty;
676 }
677 EXPORT_SYMBOL(__set_page_dirty_buffers);
678 
679 /*
680  * Write out and wait upon a list of buffers.
681  *
682  * We have conflicting pressures: we want to make sure that all
683  * initially dirty buffers get waited on, but that any subsequently
684  * dirtied buffers don't.  After all, we don't want fsync to last
685  * forever if somebody is actively writing to the file.
686  *
687  * Do this in two main stages: first we copy dirty buffers to a
688  * temporary inode list, queueing the writes as we go.  Then we clean
689  * up, waiting for those writes to complete.
690  *
691  * During this second stage, any subsequent updates to the file may end
692  * up refiling the buffer on the original inode's dirty list again, so
693  * there is a chance we will end up with a buffer queued for write but
694  * not yet completed on that list.  So, as a final cleanup we go through
695  * the osync code to catch these locked, dirty buffers without requeuing
696  * any newly dirty buffers for write.
697  */
698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
699 {
700 	struct buffer_head *bh;
701 	struct list_head tmp;
702 	struct address_space *mapping;
703 	int err = 0, err2;
704 	struct blk_plug plug;
705 
706 	INIT_LIST_HEAD(&tmp);
707 	blk_start_plug(&plug);
708 
709 	spin_lock(lock);
710 	while (!list_empty(list)) {
711 		bh = BH_ENTRY(list->next);
712 		mapping = bh->b_assoc_map;
713 		__remove_assoc_queue(bh);
714 		/* Avoid race with mark_buffer_dirty_inode() which does
715 		 * a lockless check and we rely on seeing the dirty bit */
716 		smp_mb();
717 		if (buffer_dirty(bh) || buffer_locked(bh)) {
718 			list_add(&bh->b_assoc_buffers, &tmp);
719 			bh->b_assoc_map = mapping;
720 			if (buffer_dirty(bh)) {
721 				get_bh(bh);
722 				spin_unlock(lock);
723 				/*
724 				 * Ensure any pending I/O completes so that
725 				 * write_dirty_buffer() actually writes the
726 				 * current contents - it is a noop if I/O is
727 				 * still in flight on potentially older
728 				 * contents.
729 				 */
730 				write_dirty_buffer(bh, REQ_SYNC);
731 
732 				/*
733 				 * Kick off IO for the previous mapping. Note
734 				 * that we will not run the very last mapping,
735 				 * wait_on_buffer() will do that for us
736 				 * through sync_buffer().
737 				 */
738 				brelse(bh);
739 				spin_lock(lock);
740 			}
741 		}
742 	}
743 
744 	spin_unlock(lock);
745 	blk_finish_plug(&plug);
746 	spin_lock(lock);
747 
748 	while (!list_empty(&tmp)) {
749 		bh = BH_ENTRY(tmp.prev);
750 		get_bh(bh);
751 		mapping = bh->b_assoc_map;
752 		__remove_assoc_queue(bh);
753 		/* Avoid race with mark_buffer_dirty_inode() which does
754 		 * a lockless check and we rely on seeing the dirty bit */
755 		smp_mb();
756 		if (buffer_dirty(bh)) {
757 			list_add(&bh->b_assoc_buffers,
758 				 &mapping->private_list);
759 			bh->b_assoc_map = mapping;
760 		}
761 		spin_unlock(lock);
762 		wait_on_buffer(bh);
763 		if (!buffer_uptodate(bh))
764 			err = -EIO;
765 		brelse(bh);
766 		spin_lock(lock);
767 	}
768 
769 	spin_unlock(lock);
770 	err2 = osync_buffers_list(lock, list);
771 	if (err)
772 		return err;
773 	else
774 		return err2;
775 }
776 
777 /*
778  * Invalidate any and all dirty buffers on a given inode.  We are
779  * probably unmounting the fs, but that doesn't mean we have already
780  * done a sync().  Just drop the buffers from the inode list.
781  *
782  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
783  * assumes that all the buffers are against the blockdev.  Not true
784  * for reiserfs.
785  */
786 void invalidate_inode_buffers(struct inode *inode)
787 {
788 	if (inode_has_buffers(inode)) {
789 		struct address_space *mapping = &inode->i_data;
790 		struct list_head *list = &mapping->private_list;
791 		struct address_space *buffer_mapping = mapping->private_data;
792 
793 		spin_lock(&buffer_mapping->private_lock);
794 		while (!list_empty(list))
795 			__remove_assoc_queue(BH_ENTRY(list->next));
796 		spin_unlock(&buffer_mapping->private_lock);
797 	}
798 }
799 EXPORT_SYMBOL(invalidate_inode_buffers);
800 
801 /*
802  * Remove any clean buffers from the inode's buffer list.  This is called
803  * when we're trying to free the inode itself.  Those buffers can pin it.
804  *
805  * Returns true if all buffers were removed.
806  */
807 int remove_inode_buffers(struct inode *inode)
808 {
809 	int ret = 1;
810 
811 	if (inode_has_buffers(inode)) {
812 		struct address_space *mapping = &inode->i_data;
813 		struct list_head *list = &mapping->private_list;
814 		struct address_space *buffer_mapping = mapping->private_data;
815 
816 		spin_lock(&buffer_mapping->private_lock);
817 		while (!list_empty(list)) {
818 			struct buffer_head *bh = BH_ENTRY(list->next);
819 			if (buffer_dirty(bh)) {
820 				ret = 0;
821 				break;
822 			}
823 			__remove_assoc_queue(bh);
824 		}
825 		spin_unlock(&buffer_mapping->private_lock);
826 	}
827 	return ret;
828 }
829 
830 /*
831  * Create the appropriate buffers when given a page for data area and
832  * the size of each buffer.. Use the bh->b_this_page linked list to
833  * follow the buffers created.  Return NULL if unable to create more
834  * buffers.
835  *
836  * The retry flag is used to differentiate async IO (paging, swapping)
837  * which may not fail from ordinary buffer allocations.
838  */
839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
840 		bool retry)
841 {
842 	struct buffer_head *bh, *head;
843 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
844 	long offset;
845 	struct mem_cgroup *memcg, *old_memcg;
846 
847 	if (retry)
848 		gfp |= __GFP_NOFAIL;
849 
850 	/* The page lock pins the memcg */
851 	memcg = page_memcg(page);
852 	old_memcg = set_active_memcg(memcg);
853 
854 	head = NULL;
855 	offset = PAGE_SIZE;
856 	while ((offset -= size) >= 0) {
857 		bh = alloc_buffer_head(gfp);
858 		if (!bh)
859 			goto no_grow;
860 
861 		bh->b_this_page = head;
862 		bh->b_blocknr = -1;
863 		head = bh;
864 
865 		bh->b_size = size;
866 
867 		/* Link the buffer to its page */
868 		set_bh_page(bh, page, offset);
869 	}
870 out:
871 	set_active_memcg(old_memcg);
872 	return head;
873 /*
874  * In case anything failed, we just free everything we got.
875  */
876 no_grow:
877 	if (head) {
878 		do {
879 			bh = head;
880 			head = head->b_this_page;
881 			free_buffer_head(bh);
882 		} while (head);
883 	}
884 
885 	goto out;
886 }
887 EXPORT_SYMBOL_GPL(alloc_page_buffers);
888 
889 static inline void
890 link_dev_buffers(struct page *page, struct buffer_head *head)
891 {
892 	struct buffer_head *bh, *tail;
893 
894 	bh = head;
895 	do {
896 		tail = bh;
897 		bh = bh->b_this_page;
898 	} while (bh);
899 	tail->b_this_page = head;
900 	attach_page_private(page, head);
901 }
902 
903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
904 {
905 	sector_t retval = ~((sector_t)0);
906 	loff_t sz = i_size_read(bdev->bd_inode);
907 
908 	if (sz) {
909 		unsigned int sizebits = blksize_bits(size);
910 		retval = (sz >> sizebits);
911 	}
912 	return retval;
913 }
914 
915 /*
916  * Initialise the state of a blockdev page's buffers.
917  */
918 static sector_t
919 init_page_buffers(struct page *page, struct block_device *bdev,
920 			sector_t block, int size)
921 {
922 	struct buffer_head *head = page_buffers(page);
923 	struct buffer_head *bh = head;
924 	int uptodate = PageUptodate(page);
925 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
926 
927 	do {
928 		if (!buffer_mapped(bh)) {
929 			bh->b_end_io = NULL;
930 			bh->b_private = NULL;
931 			bh->b_bdev = bdev;
932 			bh->b_blocknr = block;
933 			if (uptodate)
934 				set_buffer_uptodate(bh);
935 			if (block < end_block)
936 				set_buffer_mapped(bh);
937 		}
938 		block++;
939 		bh = bh->b_this_page;
940 	} while (bh != head);
941 
942 	/*
943 	 * Caller needs to validate requested block against end of device.
944 	 */
945 	return end_block;
946 }
947 
948 /*
949  * Create the page-cache page that contains the requested block.
950  *
951  * This is used purely for blockdev mappings.
952  */
953 static int
954 grow_dev_page(struct block_device *bdev, sector_t block,
955 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
956 {
957 	struct inode *inode = bdev->bd_inode;
958 	struct page *page;
959 	struct buffer_head *bh;
960 	sector_t end_block;
961 	int ret = 0;
962 	gfp_t gfp_mask;
963 
964 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
965 
966 	/*
967 	 * XXX: __getblk_slow() can not really deal with failure and
968 	 * will endlessly loop on improvised global reclaim.  Prefer
969 	 * looping in the allocator rather than here, at least that
970 	 * code knows what it's doing.
971 	 */
972 	gfp_mask |= __GFP_NOFAIL;
973 
974 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
975 
976 	BUG_ON(!PageLocked(page));
977 
978 	if (page_has_buffers(page)) {
979 		bh = page_buffers(page);
980 		if (bh->b_size == size) {
981 			end_block = init_page_buffers(page, bdev,
982 						(sector_t)index << sizebits,
983 						size);
984 			goto done;
985 		}
986 		if (!try_to_free_buffers(page))
987 			goto failed;
988 	}
989 
990 	/*
991 	 * Allocate some buffers for this page
992 	 */
993 	bh = alloc_page_buffers(page, size, true);
994 
995 	/*
996 	 * Link the page to the buffers and initialise them.  Take the
997 	 * lock to be atomic wrt __find_get_block(), which does not
998 	 * run under the page lock.
999 	 */
1000 	spin_lock(&inode->i_mapping->private_lock);
1001 	link_dev_buffers(page, bh);
1002 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1003 			size);
1004 	spin_unlock(&inode->i_mapping->private_lock);
1005 done:
1006 	ret = (block < end_block) ? 1 : -ENXIO;
1007 failed:
1008 	unlock_page(page);
1009 	put_page(page);
1010 	return ret;
1011 }
1012 
1013 /*
1014  * Create buffers for the specified block device block's page.  If
1015  * that page was dirty, the buffers are set dirty also.
1016  */
1017 static int
1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1019 {
1020 	pgoff_t index;
1021 	int sizebits;
1022 
1023 	sizebits = PAGE_SHIFT - __ffs(size);
1024 	index = block >> sizebits;
1025 
1026 	/*
1027 	 * Check for a block which wants to lie outside our maximum possible
1028 	 * pagecache index.  (this comparison is done using sector_t types).
1029 	 */
1030 	if (unlikely(index != block >> sizebits)) {
1031 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1032 			"device %pg\n",
1033 			__func__, (unsigned long long)block,
1034 			bdev);
1035 		return -EIO;
1036 	}
1037 
1038 	/* Create a page with the proper size buffers.. */
1039 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1040 }
1041 
1042 static struct buffer_head *
1043 __getblk_slow(struct block_device *bdev, sector_t block,
1044 	     unsigned size, gfp_t gfp)
1045 {
1046 	/* Size must be multiple of hard sectorsize */
1047 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1048 			(size < 512 || size > PAGE_SIZE))) {
1049 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1050 					size);
1051 		printk(KERN_ERR "logical block size: %d\n",
1052 					bdev_logical_block_size(bdev));
1053 
1054 		dump_stack();
1055 		return NULL;
1056 	}
1057 
1058 	for (;;) {
1059 		struct buffer_head *bh;
1060 		int ret;
1061 
1062 		bh = __find_get_block(bdev, block, size);
1063 		if (bh)
1064 			return bh;
1065 
1066 		ret = grow_buffers(bdev, block, size, gfp);
1067 		if (ret < 0)
1068 			return NULL;
1069 	}
1070 }
1071 
1072 /*
1073  * The relationship between dirty buffers and dirty pages:
1074  *
1075  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1076  * the page is tagged dirty in the page cache.
1077  *
1078  * At all times, the dirtiness of the buffers represents the dirtiness of
1079  * subsections of the page.  If the page has buffers, the page dirty bit is
1080  * merely a hint about the true dirty state.
1081  *
1082  * When a page is set dirty in its entirety, all its buffers are marked dirty
1083  * (if the page has buffers).
1084  *
1085  * When a buffer is marked dirty, its page is dirtied, but the page's other
1086  * buffers are not.
1087  *
1088  * Also.  When blockdev buffers are explicitly read with bread(), they
1089  * individually become uptodate.  But their backing page remains not
1090  * uptodate - even if all of its buffers are uptodate.  A subsequent
1091  * block_read_full_page() against that page will discover all the uptodate
1092  * buffers, will set the page uptodate and will perform no I/O.
1093  */
1094 
1095 /**
1096  * mark_buffer_dirty - mark a buffer_head as needing writeout
1097  * @bh: the buffer_head to mark dirty
1098  *
1099  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1100  * its backing page dirty, then tag the page as dirty in the page cache
1101  * and then attach the address_space's inode to its superblock's dirty
1102  * inode list.
1103  *
1104  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1105  * i_pages lock and mapping->host->i_lock.
1106  */
1107 void mark_buffer_dirty(struct buffer_head *bh)
1108 {
1109 	WARN_ON_ONCE(!buffer_uptodate(bh));
1110 
1111 	trace_block_dirty_buffer(bh);
1112 
1113 	/*
1114 	 * Very *carefully* optimize the it-is-already-dirty case.
1115 	 *
1116 	 * Don't let the final "is it dirty" escape to before we
1117 	 * perhaps modified the buffer.
1118 	 */
1119 	if (buffer_dirty(bh)) {
1120 		smp_mb();
1121 		if (buffer_dirty(bh))
1122 			return;
1123 	}
1124 
1125 	if (!test_set_buffer_dirty(bh)) {
1126 		struct page *page = bh->b_page;
1127 		struct address_space *mapping = NULL;
1128 
1129 		lock_page_memcg(page);
1130 		if (!TestSetPageDirty(page)) {
1131 			mapping = page_mapping(page);
1132 			if (mapping)
1133 				__set_page_dirty(page, mapping, 0);
1134 		}
1135 		unlock_page_memcg(page);
1136 		if (mapping)
1137 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1138 	}
1139 }
1140 EXPORT_SYMBOL(mark_buffer_dirty);
1141 
1142 void mark_buffer_write_io_error(struct buffer_head *bh)
1143 {
1144 	struct super_block *sb;
1145 
1146 	set_buffer_write_io_error(bh);
1147 	/* FIXME: do we need to set this in both places? */
1148 	if (bh->b_page && bh->b_page->mapping)
1149 		mapping_set_error(bh->b_page->mapping, -EIO);
1150 	if (bh->b_assoc_map)
1151 		mapping_set_error(bh->b_assoc_map, -EIO);
1152 	rcu_read_lock();
1153 	sb = READ_ONCE(bh->b_bdev->bd_super);
1154 	if (sb)
1155 		errseq_set(&sb->s_wb_err, -EIO);
1156 	rcu_read_unlock();
1157 }
1158 EXPORT_SYMBOL(mark_buffer_write_io_error);
1159 
1160 /*
1161  * Decrement a buffer_head's reference count.  If all buffers against a page
1162  * have zero reference count, are clean and unlocked, and if the page is clean
1163  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1164  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1165  * a page but it ends up not being freed, and buffers may later be reattached).
1166  */
1167 void __brelse(struct buffer_head * buf)
1168 {
1169 	if (atomic_read(&buf->b_count)) {
1170 		put_bh(buf);
1171 		return;
1172 	}
1173 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1174 }
1175 EXPORT_SYMBOL(__brelse);
1176 
1177 /*
1178  * bforget() is like brelse(), except it discards any
1179  * potentially dirty data.
1180  */
1181 void __bforget(struct buffer_head *bh)
1182 {
1183 	clear_buffer_dirty(bh);
1184 	if (bh->b_assoc_map) {
1185 		struct address_space *buffer_mapping = bh->b_page->mapping;
1186 
1187 		spin_lock(&buffer_mapping->private_lock);
1188 		list_del_init(&bh->b_assoc_buffers);
1189 		bh->b_assoc_map = NULL;
1190 		spin_unlock(&buffer_mapping->private_lock);
1191 	}
1192 	__brelse(bh);
1193 }
1194 EXPORT_SYMBOL(__bforget);
1195 
1196 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1197 {
1198 	lock_buffer(bh);
1199 	if (buffer_uptodate(bh)) {
1200 		unlock_buffer(bh);
1201 		return bh;
1202 	} else {
1203 		get_bh(bh);
1204 		bh->b_end_io = end_buffer_read_sync;
1205 		submit_bh(REQ_OP_READ, 0, bh);
1206 		wait_on_buffer(bh);
1207 		if (buffer_uptodate(bh))
1208 			return bh;
1209 	}
1210 	brelse(bh);
1211 	return NULL;
1212 }
1213 
1214 /*
1215  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1216  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1217  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1218  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1219  * CPU's LRUs at the same time.
1220  *
1221  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1222  * sb_find_get_block().
1223  *
1224  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1225  * a local interrupt disable for that.
1226  */
1227 
1228 #define BH_LRU_SIZE	16
1229 
1230 struct bh_lru {
1231 	struct buffer_head *bhs[BH_LRU_SIZE];
1232 };
1233 
1234 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1235 
1236 #ifdef CONFIG_SMP
1237 #define bh_lru_lock()	local_irq_disable()
1238 #define bh_lru_unlock()	local_irq_enable()
1239 #else
1240 #define bh_lru_lock()	preempt_disable()
1241 #define bh_lru_unlock()	preempt_enable()
1242 #endif
1243 
1244 static inline void check_irqs_on(void)
1245 {
1246 #ifdef irqs_disabled
1247 	BUG_ON(irqs_disabled());
1248 #endif
1249 }
1250 
1251 /*
1252  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1253  * inserted at the front, and the buffer_head at the back if any is evicted.
1254  * Or, if already in the LRU it is moved to the front.
1255  */
1256 static void bh_lru_install(struct buffer_head *bh)
1257 {
1258 	struct buffer_head *evictee = bh;
1259 	struct bh_lru *b;
1260 	int i;
1261 
1262 	check_irqs_on();
1263 	bh_lru_lock();
1264 
1265 	b = this_cpu_ptr(&bh_lrus);
1266 	for (i = 0; i < BH_LRU_SIZE; i++) {
1267 		swap(evictee, b->bhs[i]);
1268 		if (evictee == bh) {
1269 			bh_lru_unlock();
1270 			return;
1271 		}
1272 	}
1273 
1274 	get_bh(bh);
1275 	bh_lru_unlock();
1276 	brelse(evictee);
1277 }
1278 
1279 /*
1280  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1281  */
1282 static struct buffer_head *
1283 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1284 {
1285 	struct buffer_head *ret = NULL;
1286 	unsigned int i;
1287 
1288 	check_irqs_on();
1289 	bh_lru_lock();
1290 	for (i = 0; i < BH_LRU_SIZE; i++) {
1291 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1292 
1293 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1294 		    bh->b_size == size) {
1295 			if (i) {
1296 				while (i) {
1297 					__this_cpu_write(bh_lrus.bhs[i],
1298 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1299 					i--;
1300 				}
1301 				__this_cpu_write(bh_lrus.bhs[0], bh);
1302 			}
1303 			get_bh(bh);
1304 			ret = bh;
1305 			break;
1306 		}
1307 	}
1308 	bh_lru_unlock();
1309 	return ret;
1310 }
1311 
1312 /*
1313  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1314  * it in the LRU and mark it as accessed.  If it is not present then return
1315  * NULL
1316  */
1317 struct buffer_head *
1318 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1319 {
1320 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1321 
1322 	if (bh == NULL) {
1323 		/* __find_get_block_slow will mark the page accessed */
1324 		bh = __find_get_block_slow(bdev, block);
1325 		if (bh)
1326 			bh_lru_install(bh);
1327 	} else
1328 		touch_buffer(bh);
1329 
1330 	return bh;
1331 }
1332 EXPORT_SYMBOL(__find_get_block);
1333 
1334 /*
1335  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1336  * which corresponds to the passed block_device, block and size. The
1337  * returned buffer has its reference count incremented.
1338  *
1339  * __getblk_gfp() will lock up the machine if grow_dev_page's
1340  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1341  */
1342 struct buffer_head *
1343 __getblk_gfp(struct block_device *bdev, sector_t block,
1344 	     unsigned size, gfp_t gfp)
1345 {
1346 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1347 
1348 	might_sleep();
1349 	if (bh == NULL)
1350 		bh = __getblk_slow(bdev, block, size, gfp);
1351 	return bh;
1352 }
1353 EXPORT_SYMBOL(__getblk_gfp);
1354 
1355 /*
1356  * Do async read-ahead on a buffer..
1357  */
1358 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1359 {
1360 	struct buffer_head *bh = __getblk(bdev, block, size);
1361 	if (likely(bh)) {
1362 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1363 		brelse(bh);
1364 	}
1365 }
1366 EXPORT_SYMBOL(__breadahead);
1367 
1368 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1369 		      gfp_t gfp)
1370 {
1371 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1372 	if (likely(bh)) {
1373 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1374 		brelse(bh);
1375 	}
1376 }
1377 EXPORT_SYMBOL(__breadahead_gfp);
1378 
1379 /**
1380  *  __bread_gfp() - reads a specified block and returns the bh
1381  *  @bdev: the block_device to read from
1382  *  @block: number of block
1383  *  @size: size (in bytes) to read
1384  *  @gfp: page allocation flag
1385  *
1386  *  Reads a specified block, and returns buffer head that contains it.
1387  *  The page cache can be allocated from non-movable area
1388  *  not to prevent page migration if you set gfp to zero.
1389  *  It returns NULL if the block was unreadable.
1390  */
1391 struct buffer_head *
1392 __bread_gfp(struct block_device *bdev, sector_t block,
1393 		   unsigned size, gfp_t gfp)
1394 {
1395 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1396 
1397 	if (likely(bh) && !buffer_uptodate(bh))
1398 		bh = __bread_slow(bh);
1399 	return bh;
1400 }
1401 EXPORT_SYMBOL(__bread_gfp);
1402 
1403 /*
1404  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1405  * This doesn't race because it runs in each cpu either in irq
1406  * or with preempt disabled.
1407  */
1408 static void invalidate_bh_lru(void *arg)
1409 {
1410 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1411 	int i;
1412 
1413 	for (i = 0; i < BH_LRU_SIZE; i++) {
1414 		brelse(b->bhs[i]);
1415 		b->bhs[i] = NULL;
1416 	}
1417 	put_cpu_var(bh_lrus);
1418 }
1419 
1420 static bool has_bh_in_lru(int cpu, void *dummy)
1421 {
1422 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1423 	int i;
1424 
1425 	for (i = 0; i < BH_LRU_SIZE; i++) {
1426 		if (b->bhs[i])
1427 			return true;
1428 	}
1429 
1430 	return false;
1431 }
1432 
1433 void invalidate_bh_lrus(void)
1434 {
1435 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1436 }
1437 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1438 
1439 void set_bh_page(struct buffer_head *bh,
1440 		struct page *page, unsigned long offset)
1441 {
1442 	bh->b_page = page;
1443 	BUG_ON(offset >= PAGE_SIZE);
1444 	if (PageHighMem(page))
1445 		/*
1446 		 * This catches illegal uses and preserves the offset:
1447 		 */
1448 		bh->b_data = (char *)(0 + offset);
1449 	else
1450 		bh->b_data = page_address(page) + offset;
1451 }
1452 EXPORT_SYMBOL(set_bh_page);
1453 
1454 /*
1455  * Called when truncating a buffer on a page completely.
1456  */
1457 
1458 /* Bits that are cleared during an invalidate */
1459 #define BUFFER_FLAGS_DISCARD \
1460 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1461 	 1 << BH_Delay | 1 << BH_Unwritten)
1462 
1463 static void discard_buffer(struct buffer_head * bh)
1464 {
1465 	unsigned long b_state, b_state_old;
1466 
1467 	lock_buffer(bh);
1468 	clear_buffer_dirty(bh);
1469 	bh->b_bdev = NULL;
1470 	b_state = bh->b_state;
1471 	for (;;) {
1472 		b_state_old = cmpxchg(&bh->b_state, b_state,
1473 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1474 		if (b_state_old == b_state)
1475 			break;
1476 		b_state = b_state_old;
1477 	}
1478 	unlock_buffer(bh);
1479 }
1480 
1481 /**
1482  * block_invalidatepage - invalidate part or all of a buffer-backed page
1483  *
1484  * @page: the page which is affected
1485  * @offset: start of the range to invalidate
1486  * @length: length of the range to invalidate
1487  *
1488  * block_invalidatepage() is called when all or part of the page has become
1489  * invalidated by a truncate operation.
1490  *
1491  * block_invalidatepage() does not have to release all buffers, but it must
1492  * ensure that no dirty buffer is left outside @offset and that no I/O
1493  * is underway against any of the blocks which are outside the truncation
1494  * point.  Because the caller is about to free (and possibly reuse) those
1495  * blocks on-disk.
1496  */
1497 void block_invalidatepage(struct page *page, unsigned int offset,
1498 			  unsigned int length)
1499 {
1500 	struct buffer_head *head, *bh, *next;
1501 	unsigned int curr_off = 0;
1502 	unsigned int stop = length + offset;
1503 
1504 	BUG_ON(!PageLocked(page));
1505 	if (!page_has_buffers(page))
1506 		goto out;
1507 
1508 	/*
1509 	 * Check for overflow
1510 	 */
1511 	BUG_ON(stop > PAGE_SIZE || stop < length);
1512 
1513 	head = page_buffers(page);
1514 	bh = head;
1515 	do {
1516 		unsigned int next_off = curr_off + bh->b_size;
1517 		next = bh->b_this_page;
1518 
1519 		/*
1520 		 * Are we still fully in range ?
1521 		 */
1522 		if (next_off > stop)
1523 			goto out;
1524 
1525 		/*
1526 		 * is this block fully invalidated?
1527 		 */
1528 		if (offset <= curr_off)
1529 			discard_buffer(bh);
1530 		curr_off = next_off;
1531 		bh = next;
1532 	} while (bh != head);
1533 
1534 	/*
1535 	 * We release buffers only if the entire page is being invalidated.
1536 	 * The get_block cached value has been unconditionally invalidated,
1537 	 * so real IO is not possible anymore.
1538 	 */
1539 	if (length == PAGE_SIZE)
1540 		try_to_release_page(page, 0);
1541 out:
1542 	return;
1543 }
1544 EXPORT_SYMBOL(block_invalidatepage);
1545 
1546 
1547 /*
1548  * We attach and possibly dirty the buffers atomically wrt
1549  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1550  * is already excluded via the page lock.
1551  */
1552 void create_empty_buffers(struct page *page,
1553 			unsigned long blocksize, unsigned long b_state)
1554 {
1555 	struct buffer_head *bh, *head, *tail;
1556 
1557 	head = alloc_page_buffers(page, blocksize, true);
1558 	bh = head;
1559 	do {
1560 		bh->b_state |= b_state;
1561 		tail = bh;
1562 		bh = bh->b_this_page;
1563 	} while (bh);
1564 	tail->b_this_page = head;
1565 
1566 	spin_lock(&page->mapping->private_lock);
1567 	if (PageUptodate(page) || PageDirty(page)) {
1568 		bh = head;
1569 		do {
1570 			if (PageDirty(page))
1571 				set_buffer_dirty(bh);
1572 			if (PageUptodate(page))
1573 				set_buffer_uptodate(bh);
1574 			bh = bh->b_this_page;
1575 		} while (bh != head);
1576 	}
1577 	attach_page_private(page, head);
1578 	spin_unlock(&page->mapping->private_lock);
1579 }
1580 EXPORT_SYMBOL(create_empty_buffers);
1581 
1582 /**
1583  * clean_bdev_aliases: clean a range of buffers in block device
1584  * @bdev: Block device to clean buffers in
1585  * @block: Start of a range of blocks to clean
1586  * @len: Number of blocks to clean
1587  *
1588  * We are taking a range of blocks for data and we don't want writeback of any
1589  * buffer-cache aliases starting from return from this function and until the
1590  * moment when something will explicitly mark the buffer dirty (hopefully that
1591  * will not happen until we will free that block ;-) We don't even need to mark
1592  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1593  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1594  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1595  * would confuse anyone who might pick it with bread() afterwards...
1596  *
1597  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1598  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1599  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1600  * need to.  That happens here.
1601  */
1602 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1603 {
1604 	struct inode *bd_inode = bdev->bd_inode;
1605 	struct address_space *bd_mapping = bd_inode->i_mapping;
1606 	struct pagevec pvec;
1607 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1608 	pgoff_t end;
1609 	int i, count;
1610 	struct buffer_head *bh;
1611 	struct buffer_head *head;
1612 
1613 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1614 	pagevec_init(&pvec);
1615 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1616 		count = pagevec_count(&pvec);
1617 		for (i = 0; i < count; i++) {
1618 			struct page *page = pvec.pages[i];
1619 
1620 			if (!page_has_buffers(page))
1621 				continue;
1622 			/*
1623 			 * We use page lock instead of bd_mapping->private_lock
1624 			 * to pin buffers here since we can afford to sleep and
1625 			 * it scales better than a global spinlock lock.
1626 			 */
1627 			lock_page(page);
1628 			/* Recheck when the page is locked which pins bhs */
1629 			if (!page_has_buffers(page))
1630 				goto unlock_page;
1631 			head = page_buffers(page);
1632 			bh = head;
1633 			do {
1634 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1635 					goto next;
1636 				if (bh->b_blocknr >= block + len)
1637 					break;
1638 				clear_buffer_dirty(bh);
1639 				wait_on_buffer(bh);
1640 				clear_buffer_req(bh);
1641 next:
1642 				bh = bh->b_this_page;
1643 			} while (bh != head);
1644 unlock_page:
1645 			unlock_page(page);
1646 		}
1647 		pagevec_release(&pvec);
1648 		cond_resched();
1649 		/* End of range already reached? */
1650 		if (index > end || !index)
1651 			break;
1652 	}
1653 }
1654 EXPORT_SYMBOL(clean_bdev_aliases);
1655 
1656 /*
1657  * Size is a power-of-two in the range 512..PAGE_SIZE,
1658  * and the case we care about most is PAGE_SIZE.
1659  *
1660  * So this *could* possibly be written with those
1661  * constraints in mind (relevant mostly if some
1662  * architecture has a slow bit-scan instruction)
1663  */
1664 static inline int block_size_bits(unsigned int blocksize)
1665 {
1666 	return ilog2(blocksize);
1667 }
1668 
1669 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1670 {
1671 	BUG_ON(!PageLocked(page));
1672 
1673 	if (!page_has_buffers(page))
1674 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1675 				     b_state);
1676 	return page_buffers(page);
1677 }
1678 
1679 /*
1680  * NOTE! All mapped/uptodate combinations are valid:
1681  *
1682  *	Mapped	Uptodate	Meaning
1683  *
1684  *	No	No		"unknown" - must do get_block()
1685  *	No	Yes		"hole" - zero-filled
1686  *	Yes	No		"allocated" - allocated on disk, not read in
1687  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1688  *
1689  * "Dirty" is valid only with the last case (mapped+uptodate).
1690  */
1691 
1692 /*
1693  * While block_write_full_page is writing back the dirty buffers under
1694  * the page lock, whoever dirtied the buffers may decide to clean them
1695  * again at any time.  We handle that by only looking at the buffer
1696  * state inside lock_buffer().
1697  *
1698  * If block_write_full_page() is called for regular writeback
1699  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1700  * locked buffer.   This only can happen if someone has written the buffer
1701  * directly, with submit_bh().  At the address_space level PageWriteback
1702  * prevents this contention from occurring.
1703  *
1704  * If block_write_full_page() is called with wbc->sync_mode ==
1705  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1706  * causes the writes to be flagged as synchronous writes.
1707  */
1708 int __block_write_full_page(struct inode *inode, struct page *page,
1709 			get_block_t *get_block, struct writeback_control *wbc,
1710 			bh_end_io_t *handler)
1711 {
1712 	int err;
1713 	sector_t block;
1714 	sector_t last_block;
1715 	struct buffer_head *bh, *head;
1716 	unsigned int blocksize, bbits;
1717 	int nr_underway = 0;
1718 	int write_flags = wbc_to_write_flags(wbc);
1719 
1720 	head = create_page_buffers(page, inode,
1721 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1722 
1723 	/*
1724 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1725 	 * here, and the (potentially unmapped) buffers may become dirty at
1726 	 * any time.  If a buffer becomes dirty here after we've inspected it
1727 	 * then we just miss that fact, and the page stays dirty.
1728 	 *
1729 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1730 	 * handle that here by just cleaning them.
1731 	 */
1732 
1733 	bh = head;
1734 	blocksize = bh->b_size;
1735 	bbits = block_size_bits(blocksize);
1736 
1737 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1738 	last_block = (i_size_read(inode) - 1) >> bbits;
1739 
1740 	/*
1741 	 * Get all the dirty buffers mapped to disk addresses and
1742 	 * handle any aliases from the underlying blockdev's mapping.
1743 	 */
1744 	do {
1745 		if (block > last_block) {
1746 			/*
1747 			 * mapped buffers outside i_size will occur, because
1748 			 * this page can be outside i_size when there is a
1749 			 * truncate in progress.
1750 			 */
1751 			/*
1752 			 * The buffer was zeroed by block_write_full_page()
1753 			 */
1754 			clear_buffer_dirty(bh);
1755 			set_buffer_uptodate(bh);
1756 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1757 			   buffer_dirty(bh)) {
1758 			WARN_ON(bh->b_size != blocksize);
1759 			err = get_block(inode, block, bh, 1);
1760 			if (err)
1761 				goto recover;
1762 			clear_buffer_delay(bh);
1763 			if (buffer_new(bh)) {
1764 				/* blockdev mappings never come here */
1765 				clear_buffer_new(bh);
1766 				clean_bdev_bh_alias(bh);
1767 			}
1768 		}
1769 		bh = bh->b_this_page;
1770 		block++;
1771 	} while (bh != head);
1772 
1773 	do {
1774 		if (!buffer_mapped(bh))
1775 			continue;
1776 		/*
1777 		 * If it's a fully non-blocking write attempt and we cannot
1778 		 * lock the buffer then redirty the page.  Note that this can
1779 		 * potentially cause a busy-wait loop from writeback threads
1780 		 * and kswapd activity, but those code paths have their own
1781 		 * higher-level throttling.
1782 		 */
1783 		if (wbc->sync_mode != WB_SYNC_NONE) {
1784 			lock_buffer(bh);
1785 		} else if (!trylock_buffer(bh)) {
1786 			redirty_page_for_writepage(wbc, page);
1787 			continue;
1788 		}
1789 		if (test_clear_buffer_dirty(bh)) {
1790 			mark_buffer_async_write_endio(bh, handler);
1791 		} else {
1792 			unlock_buffer(bh);
1793 		}
1794 	} while ((bh = bh->b_this_page) != head);
1795 
1796 	/*
1797 	 * The page and its buffers are protected by PageWriteback(), so we can
1798 	 * drop the bh refcounts early.
1799 	 */
1800 	BUG_ON(PageWriteback(page));
1801 	set_page_writeback(page);
1802 
1803 	do {
1804 		struct buffer_head *next = bh->b_this_page;
1805 		if (buffer_async_write(bh)) {
1806 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1807 					inode->i_write_hint, wbc);
1808 			nr_underway++;
1809 		}
1810 		bh = next;
1811 	} while (bh != head);
1812 	unlock_page(page);
1813 
1814 	err = 0;
1815 done:
1816 	if (nr_underway == 0) {
1817 		/*
1818 		 * The page was marked dirty, but the buffers were
1819 		 * clean.  Someone wrote them back by hand with
1820 		 * ll_rw_block/submit_bh.  A rare case.
1821 		 */
1822 		end_page_writeback(page);
1823 
1824 		/*
1825 		 * The page and buffer_heads can be released at any time from
1826 		 * here on.
1827 		 */
1828 	}
1829 	return err;
1830 
1831 recover:
1832 	/*
1833 	 * ENOSPC, or some other error.  We may already have added some
1834 	 * blocks to the file, so we need to write these out to avoid
1835 	 * exposing stale data.
1836 	 * The page is currently locked and not marked for writeback
1837 	 */
1838 	bh = head;
1839 	/* Recovery: lock and submit the mapped buffers */
1840 	do {
1841 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1842 		    !buffer_delay(bh)) {
1843 			lock_buffer(bh);
1844 			mark_buffer_async_write_endio(bh, handler);
1845 		} else {
1846 			/*
1847 			 * The buffer may have been set dirty during
1848 			 * attachment to a dirty page.
1849 			 */
1850 			clear_buffer_dirty(bh);
1851 		}
1852 	} while ((bh = bh->b_this_page) != head);
1853 	SetPageError(page);
1854 	BUG_ON(PageWriteback(page));
1855 	mapping_set_error(page->mapping, err);
1856 	set_page_writeback(page);
1857 	do {
1858 		struct buffer_head *next = bh->b_this_page;
1859 		if (buffer_async_write(bh)) {
1860 			clear_buffer_dirty(bh);
1861 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1862 					inode->i_write_hint, wbc);
1863 			nr_underway++;
1864 		}
1865 		bh = next;
1866 	} while (bh != head);
1867 	unlock_page(page);
1868 	goto done;
1869 }
1870 EXPORT_SYMBOL(__block_write_full_page);
1871 
1872 /*
1873  * If a page has any new buffers, zero them out here, and mark them uptodate
1874  * and dirty so they'll be written out (in order to prevent uninitialised
1875  * block data from leaking). And clear the new bit.
1876  */
1877 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1878 {
1879 	unsigned int block_start, block_end;
1880 	struct buffer_head *head, *bh;
1881 
1882 	BUG_ON(!PageLocked(page));
1883 	if (!page_has_buffers(page))
1884 		return;
1885 
1886 	bh = head = page_buffers(page);
1887 	block_start = 0;
1888 	do {
1889 		block_end = block_start + bh->b_size;
1890 
1891 		if (buffer_new(bh)) {
1892 			if (block_end > from && block_start < to) {
1893 				if (!PageUptodate(page)) {
1894 					unsigned start, size;
1895 
1896 					start = max(from, block_start);
1897 					size = min(to, block_end) - start;
1898 
1899 					zero_user(page, start, size);
1900 					set_buffer_uptodate(bh);
1901 				}
1902 
1903 				clear_buffer_new(bh);
1904 				mark_buffer_dirty(bh);
1905 			}
1906 		}
1907 
1908 		block_start = block_end;
1909 		bh = bh->b_this_page;
1910 	} while (bh != head);
1911 }
1912 EXPORT_SYMBOL(page_zero_new_buffers);
1913 
1914 static void
1915 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1916 		struct iomap *iomap)
1917 {
1918 	loff_t offset = block << inode->i_blkbits;
1919 
1920 	bh->b_bdev = iomap->bdev;
1921 
1922 	/*
1923 	 * Block points to offset in file we need to map, iomap contains
1924 	 * the offset at which the map starts. If the map ends before the
1925 	 * current block, then do not map the buffer and let the caller
1926 	 * handle it.
1927 	 */
1928 	BUG_ON(offset >= iomap->offset + iomap->length);
1929 
1930 	switch (iomap->type) {
1931 	case IOMAP_HOLE:
1932 		/*
1933 		 * If the buffer is not up to date or beyond the current EOF,
1934 		 * we need to mark it as new to ensure sub-block zeroing is
1935 		 * executed if necessary.
1936 		 */
1937 		if (!buffer_uptodate(bh) ||
1938 		    (offset >= i_size_read(inode)))
1939 			set_buffer_new(bh);
1940 		break;
1941 	case IOMAP_DELALLOC:
1942 		if (!buffer_uptodate(bh) ||
1943 		    (offset >= i_size_read(inode)))
1944 			set_buffer_new(bh);
1945 		set_buffer_uptodate(bh);
1946 		set_buffer_mapped(bh);
1947 		set_buffer_delay(bh);
1948 		break;
1949 	case IOMAP_UNWRITTEN:
1950 		/*
1951 		 * For unwritten regions, we always need to ensure that regions
1952 		 * in the block we are not writing to are zeroed. Mark the
1953 		 * buffer as new to ensure this.
1954 		 */
1955 		set_buffer_new(bh);
1956 		set_buffer_unwritten(bh);
1957 		fallthrough;
1958 	case IOMAP_MAPPED:
1959 		if ((iomap->flags & IOMAP_F_NEW) ||
1960 		    offset >= i_size_read(inode))
1961 			set_buffer_new(bh);
1962 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1963 				inode->i_blkbits;
1964 		set_buffer_mapped(bh);
1965 		break;
1966 	}
1967 }
1968 
1969 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1970 		get_block_t *get_block, struct iomap *iomap)
1971 {
1972 	unsigned from = pos & (PAGE_SIZE - 1);
1973 	unsigned to = from + len;
1974 	struct inode *inode = page->mapping->host;
1975 	unsigned block_start, block_end;
1976 	sector_t block;
1977 	int err = 0;
1978 	unsigned blocksize, bbits;
1979 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1980 
1981 	BUG_ON(!PageLocked(page));
1982 	BUG_ON(from > PAGE_SIZE);
1983 	BUG_ON(to > PAGE_SIZE);
1984 	BUG_ON(from > to);
1985 
1986 	head = create_page_buffers(page, inode, 0);
1987 	blocksize = head->b_size;
1988 	bbits = block_size_bits(blocksize);
1989 
1990 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1991 
1992 	for(bh = head, block_start = 0; bh != head || !block_start;
1993 	    block++, block_start=block_end, bh = bh->b_this_page) {
1994 		block_end = block_start + blocksize;
1995 		if (block_end <= from || block_start >= to) {
1996 			if (PageUptodate(page)) {
1997 				if (!buffer_uptodate(bh))
1998 					set_buffer_uptodate(bh);
1999 			}
2000 			continue;
2001 		}
2002 		if (buffer_new(bh))
2003 			clear_buffer_new(bh);
2004 		if (!buffer_mapped(bh)) {
2005 			WARN_ON(bh->b_size != blocksize);
2006 			if (get_block) {
2007 				err = get_block(inode, block, bh, 1);
2008 				if (err)
2009 					break;
2010 			} else {
2011 				iomap_to_bh(inode, block, bh, iomap);
2012 			}
2013 
2014 			if (buffer_new(bh)) {
2015 				clean_bdev_bh_alias(bh);
2016 				if (PageUptodate(page)) {
2017 					clear_buffer_new(bh);
2018 					set_buffer_uptodate(bh);
2019 					mark_buffer_dirty(bh);
2020 					continue;
2021 				}
2022 				if (block_end > to || block_start < from)
2023 					zero_user_segments(page,
2024 						to, block_end,
2025 						block_start, from);
2026 				continue;
2027 			}
2028 		}
2029 		if (PageUptodate(page)) {
2030 			if (!buffer_uptodate(bh))
2031 				set_buffer_uptodate(bh);
2032 			continue;
2033 		}
2034 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2035 		    !buffer_unwritten(bh) &&
2036 		     (block_start < from || block_end > to)) {
2037 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2038 			*wait_bh++=bh;
2039 		}
2040 	}
2041 	/*
2042 	 * If we issued read requests - let them complete.
2043 	 */
2044 	while(wait_bh > wait) {
2045 		wait_on_buffer(*--wait_bh);
2046 		if (!buffer_uptodate(*wait_bh))
2047 			err = -EIO;
2048 	}
2049 	if (unlikely(err))
2050 		page_zero_new_buffers(page, from, to);
2051 	return err;
2052 }
2053 
2054 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2055 		get_block_t *get_block)
2056 {
2057 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2058 }
2059 EXPORT_SYMBOL(__block_write_begin);
2060 
2061 static int __block_commit_write(struct inode *inode, struct page *page,
2062 		unsigned from, unsigned to)
2063 {
2064 	unsigned block_start, block_end;
2065 	int partial = 0;
2066 	unsigned blocksize;
2067 	struct buffer_head *bh, *head;
2068 
2069 	bh = head = page_buffers(page);
2070 	blocksize = bh->b_size;
2071 
2072 	block_start = 0;
2073 	do {
2074 		block_end = block_start + blocksize;
2075 		if (block_end <= from || block_start >= to) {
2076 			if (!buffer_uptodate(bh))
2077 				partial = 1;
2078 		} else {
2079 			set_buffer_uptodate(bh);
2080 			mark_buffer_dirty(bh);
2081 		}
2082 		if (buffer_new(bh))
2083 			clear_buffer_new(bh);
2084 
2085 		block_start = block_end;
2086 		bh = bh->b_this_page;
2087 	} while (bh != head);
2088 
2089 	/*
2090 	 * If this is a partial write which happened to make all buffers
2091 	 * uptodate then we can optimize away a bogus readpage() for
2092 	 * the next read(). Here we 'discover' whether the page went
2093 	 * uptodate as a result of this (potentially partial) write.
2094 	 */
2095 	if (!partial)
2096 		SetPageUptodate(page);
2097 	return 0;
2098 }
2099 
2100 /*
2101  * block_write_begin takes care of the basic task of block allocation and
2102  * bringing partial write blocks uptodate first.
2103  *
2104  * The filesystem needs to handle block truncation upon failure.
2105  */
2106 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2107 		unsigned flags, struct page **pagep, get_block_t *get_block)
2108 {
2109 	pgoff_t index = pos >> PAGE_SHIFT;
2110 	struct page *page;
2111 	int status;
2112 
2113 	page = grab_cache_page_write_begin(mapping, index, flags);
2114 	if (!page)
2115 		return -ENOMEM;
2116 
2117 	status = __block_write_begin(page, pos, len, get_block);
2118 	if (unlikely(status)) {
2119 		unlock_page(page);
2120 		put_page(page);
2121 		page = NULL;
2122 	}
2123 
2124 	*pagep = page;
2125 	return status;
2126 }
2127 EXPORT_SYMBOL(block_write_begin);
2128 
2129 int block_write_end(struct file *file, struct address_space *mapping,
2130 			loff_t pos, unsigned len, unsigned copied,
2131 			struct page *page, void *fsdata)
2132 {
2133 	struct inode *inode = mapping->host;
2134 	unsigned start;
2135 
2136 	start = pos & (PAGE_SIZE - 1);
2137 
2138 	if (unlikely(copied < len)) {
2139 		/*
2140 		 * The buffers that were written will now be uptodate, so we
2141 		 * don't have to worry about a readpage reading them and
2142 		 * overwriting a partial write. However if we have encountered
2143 		 * a short write and only partially written into a buffer, it
2144 		 * will not be marked uptodate, so a readpage might come in and
2145 		 * destroy our partial write.
2146 		 *
2147 		 * Do the simplest thing, and just treat any short write to a
2148 		 * non uptodate page as a zero-length write, and force the
2149 		 * caller to redo the whole thing.
2150 		 */
2151 		if (!PageUptodate(page))
2152 			copied = 0;
2153 
2154 		page_zero_new_buffers(page, start+copied, start+len);
2155 	}
2156 	flush_dcache_page(page);
2157 
2158 	/* This could be a short (even 0-length) commit */
2159 	__block_commit_write(inode, page, start, start+copied);
2160 
2161 	return copied;
2162 }
2163 EXPORT_SYMBOL(block_write_end);
2164 
2165 int generic_write_end(struct file *file, struct address_space *mapping,
2166 			loff_t pos, unsigned len, unsigned copied,
2167 			struct page *page, void *fsdata)
2168 {
2169 	struct inode *inode = mapping->host;
2170 	loff_t old_size = inode->i_size;
2171 	bool i_size_changed = false;
2172 
2173 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2174 
2175 	/*
2176 	 * No need to use i_size_read() here, the i_size cannot change under us
2177 	 * because we hold i_rwsem.
2178 	 *
2179 	 * But it's important to update i_size while still holding page lock:
2180 	 * page writeout could otherwise come in and zero beyond i_size.
2181 	 */
2182 	if (pos + copied > inode->i_size) {
2183 		i_size_write(inode, pos + copied);
2184 		i_size_changed = true;
2185 	}
2186 
2187 	unlock_page(page);
2188 	put_page(page);
2189 
2190 	if (old_size < pos)
2191 		pagecache_isize_extended(inode, old_size, pos);
2192 	/*
2193 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2194 	 * makes the holding time of page lock longer. Second, it forces lock
2195 	 * ordering of page lock and transaction start for journaling
2196 	 * filesystems.
2197 	 */
2198 	if (i_size_changed)
2199 		mark_inode_dirty(inode);
2200 	return copied;
2201 }
2202 EXPORT_SYMBOL(generic_write_end);
2203 
2204 /*
2205  * block_is_partially_uptodate checks whether buffers within a page are
2206  * uptodate or not.
2207  *
2208  * Returns true if all buffers which correspond to a file portion
2209  * we want to read are uptodate.
2210  */
2211 int block_is_partially_uptodate(struct page *page, unsigned long from,
2212 					unsigned long count)
2213 {
2214 	unsigned block_start, block_end, blocksize;
2215 	unsigned to;
2216 	struct buffer_head *bh, *head;
2217 	int ret = 1;
2218 
2219 	if (!page_has_buffers(page))
2220 		return 0;
2221 
2222 	head = page_buffers(page);
2223 	blocksize = head->b_size;
2224 	to = min_t(unsigned, PAGE_SIZE - from, count);
2225 	to = from + to;
2226 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2227 		return 0;
2228 
2229 	bh = head;
2230 	block_start = 0;
2231 	do {
2232 		block_end = block_start + blocksize;
2233 		if (block_end > from && block_start < to) {
2234 			if (!buffer_uptodate(bh)) {
2235 				ret = 0;
2236 				break;
2237 			}
2238 			if (block_end >= to)
2239 				break;
2240 		}
2241 		block_start = block_end;
2242 		bh = bh->b_this_page;
2243 	} while (bh != head);
2244 
2245 	return ret;
2246 }
2247 EXPORT_SYMBOL(block_is_partially_uptodate);
2248 
2249 /*
2250  * Generic "read page" function for block devices that have the normal
2251  * get_block functionality. This is most of the block device filesystems.
2252  * Reads the page asynchronously --- the unlock_buffer() and
2253  * set/clear_buffer_uptodate() functions propagate buffer state into the
2254  * page struct once IO has completed.
2255  */
2256 int block_read_full_page(struct page *page, get_block_t *get_block)
2257 {
2258 	struct inode *inode = page->mapping->host;
2259 	sector_t iblock, lblock;
2260 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2261 	unsigned int blocksize, bbits;
2262 	int nr, i;
2263 	int fully_mapped = 1;
2264 
2265 	head = create_page_buffers(page, inode, 0);
2266 	blocksize = head->b_size;
2267 	bbits = block_size_bits(blocksize);
2268 
2269 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2270 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2271 	bh = head;
2272 	nr = 0;
2273 	i = 0;
2274 
2275 	do {
2276 		if (buffer_uptodate(bh))
2277 			continue;
2278 
2279 		if (!buffer_mapped(bh)) {
2280 			int err = 0;
2281 
2282 			fully_mapped = 0;
2283 			if (iblock < lblock) {
2284 				WARN_ON(bh->b_size != blocksize);
2285 				err = get_block(inode, iblock, bh, 0);
2286 				if (err)
2287 					SetPageError(page);
2288 			}
2289 			if (!buffer_mapped(bh)) {
2290 				zero_user(page, i * blocksize, blocksize);
2291 				if (!err)
2292 					set_buffer_uptodate(bh);
2293 				continue;
2294 			}
2295 			/*
2296 			 * get_block() might have updated the buffer
2297 			 * synchronously
2298 			 */
2299 			if (buffer_uptodate(bh))
2300 				continue;
2301 		}
2302 		arr[nr++] = bh;
2303 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2304 
2305 	if (fully_mapped)
2306 		SetPageMappedToDisk(page);
2307 
2308 	if (!nr) {
2309 		/*
2310 		 * All buffers are uptodate - we can set the page uptodate
2311 		 * as well. But not if get_block() returned an error.
2312 		 */
2313 		if (!PageError(page))
2314 			SetPageUptodate(page);
2315 		unlock_page(page);
2316 		return 0;
2317 	}
2318 
2319 	/* Stage two: lock the buffers */
2320 	for (i = 0; i < nr; i++) {
2321 		bh = arr[i];
2322 		lock_buffer(bh);
2323 		mark_buffer_async_read(bh);
2324 	}
2325 
2326 	/*
2327 	 * Stage 3: start the IO.  Check for uptodateness
2328 	 * inside the buffer lock in case another process reading
2329 	 * the underlying blockdev brought it uptodate (the sct fix).
2330 	 */
2331 	for (i = 0; i < nr; i++) {
2332 		bh = arr[i];
2333 		if (buffer_uptodate(bh))
2334 			end_buffer_async_read(bh, 1);
2335 		else
2336 			submit_bh(REQ_OP_READ, 0, bh);
2337 	}
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL(block_read_full_page);
2341 
2342 /* utility function for filesystems that need to do work on expanding
2343  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2344  * deal with the hole.
2345  */
2346 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2347 {
2348 	struct address_space *mapping = inode->i_mapping;
2349 	struct page *page;
2350 	void *fsdata;
2351 	int err;
2352 
2353 	err = inode_newsize_ok(inode, size);
2354 	if (err)
2355 		goto out;
2356 
2357 	err = pagecache_write_begin(NULL, mapping, size, 0,
2358 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2359 	if (err)
2360 		goto out;
2361 
2362 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2363 	BUG_ON(err > 0);
2364 
2365 out:
2366 	return err;
2367 }
2368 EXPORT_SYMBOL(generic_cont_expand_simple);
2369 
2370 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2371 			    loff_t pos, loff_t *bytes)
2372 {
2373 	struct inode *inode = mapping->host;
2374 	unsigned int blocksize = i_blocksize(inode);
2375 	struct page *page;
2376 	void *fsdata;
2377 	pgoff_t index, curidx;
2378 	loff_t curpos;
2379 	unsigned zerofrom, offset, len;
2380 	int err = 0;
2381 
2382 	index = pos >> PAGE_SHIFT;
2383 	offset = pos & ~PAGE_MASK;
2384 
2385 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2386 		zerofrom = curpos & ~PAGE_MASK;
2387 		if (zerofrom & (blocksize-1)) {
2388 			*bytes |= (blocksize-1);
2389 			(*bytes)++;
2390 		}
2391 		len = PAGE_SIZE - zerofrom;
2392 
2393 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2394 					    &page, &fsdata);
2395 		if (err)
2396 			goto out;
2397 		zero_user(page, zerofrom, len);
2398 		err = pagecache_write_end(file, mapping, curpos, len, len,
2399 						page, fsdata);
2400 		if (err < 0)
2401 			goto out;
2402 		BUG_ON(err != len);
2403 		err = 0;
2404 
2405 		balance_dirty_pages_ratelimited(mapping);
2406 
2407 		if (fatal_signal_pending(current)) {
2408 			err = -EINTR;
2409 			goto out;
2410 		}
2411 	}
2412 
2413 	/* page covers the boundary, find the boundary offset */
2414 	if (index == curidx) {
2415 		zerofrom = curpos & ~PAGE_MASK;
2416 		/* if we will expand the thing last block will be filled */
2417 		if (offset <= zerofrom) {
2418 			goto out;
2419 		}
2420 		if (zerofrom & (blocksize-1)) {
2421 			*bytes |= (blocksize-1);
2422 			(*bytes)++;
2423 		}
2424 		len = offset - zerofrom;
2425 
2426 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2427 					    &page, &fsdata);
2428 		if (err)
2429 			goto out;
2430 		zero_user(page, zerofrom, len);
2431 		err = pagecache_write_end(file, mapping, curpos, len, len,
2432 						page, fsdata);
2433 		if (err < 0)
2434 			goto out;
2435 		BUG_ON(err != len);
2436 		err = 0;
2437 	}
2438 out:
2439 	return err;
2440 }
2441 
2442 /*
2443  * For moronic filesystems that do not allow holes in file.
2444  * We may have to extend the file.
2445  */
2446 int cont_write_begin(struct file *file, struct address_space *mapping,
2447 			loff_t pos, unsigned len, unsigned flags,
2448 			struct page **pagep, void **fsdata,
2449 			get_block_t *get_block, loff_t *bytes)
2450 {
2451 	struct inode *inode = mapping->host;
2452 	unsigned int blocksize = i_blocksize(inode);
2453 	unsigned int zerofrom;
2454 	int err;
2455 
2456 	err = cont_expand_zero(file, mapping, pos, bytes);
2457 	if (err)
2458 		return err;
2459 
2460 	zerofrom = *bytes & ~PAGE_MASK;
2461 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2462 		*bytes |= (blocksize-1);
2463 		(*bytes)++;
2464 	}
2465 
2466 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2467 }
2468 EXPORT_SYMBOL(cont_write_begin);
2469 
2470 int block_commit_write(struct page *page, unsigned from, unsigned to)
2471 {
2472 	struct inode *inode = page->mapping->host;
2473 	__block_commit_write(inode,page,from,to);
2474 	return 0;
2475 }
2476 EXPORT_SYMBOL(block_commit_write);
2477 
2478 /*
2479  * block_page_mkwrite() is not allowed to change the file size as it gets
2480  * called from a page fault handler when a page is first dirtied. Hence we must
2481  * be careful to check for EOF conditions here. We set the page up correctly
2482  * for a written page which means we get ENOSPC checking when writing into
2483  * holes and correct delalloc and unwritten extent mapping on filesystems that
2484  * support these features.
2485  *
2486  * We are not allowed to take the i_mutex here so we have to play games to
2487  * protect against truncate races as the page could now be beyond EOF.  Because
2488  * truncate writes the inode size before removing pages, once we have the
2489  * page lock we can determine safely if the page is beyond EOF. If it is not
2490  * beyond EOF, then the page is guaranteed safe against truncation until we
2491  * unlock the page.
2492  *
2493  * Direct callers of this function should protect against filesystem freezing
2494  * using sb_start_pagefault() - sb_end_pagefault() functions.
2495  */
2496 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2497 			 get_block_t get_block)
2498 {
2499 	struct page *page = vmf->page;
2500 	struct inode *inode = file_inode(vma->vm_file);
2501 	unsigned long end;
2502 	loff_t size;
2503 	int ret;
2504 
2505 	lock_page(page);
2506 	size = i_size_read(inode);
2507 	if ((page->mapping != inode->i_mapping) ||
2508 	    (page_offset(page) > size)) {
2509 		/* We overload EFAULT to mean page got truncated */
2510 		ret = -EFAULT;
2511 		goto out_unlock;
2512 	}
2513 
2514 	/* page is wholly or partially inside EOF */
2515 	if (((page->index + 1) << PAGE_SHIFT) > size)
2516 		end = size & ~PAGE_MASK;
2517 	else
2518 		end = PAGE_SIZE;
2519 
2520 	ret = __block_write_begin(page, 0, end, get_block);
2521 	if (!ret)
2522 		ret = block_commit_write(page, 0, end);
2523 
2524 	if (unlikely(ret < 0))
2525 		goto out_unlock;
2526 	set_page_dirty(page);
2527 	wait_for_stable_page(page);
2528 	return 0;
2529 out_unlock:
2530 	unlock_page(page);
2531 	return ret;
2532 }
2533 EXPORT_SYMBOL(block_page_mkwrite);
2534 
2535 /*
2536  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2537  * immediately, while under the page lock.  So it needs a special end_io
2538  * handler which does not touch the bh after unlocking it.
2539  */
2540 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2541 {
2542 	__end_buffer_read_notouch(bh, uptodate);
2543 }
2544 
2545 /*
2546  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2547  * the page (converting it to circular linked list and taking care of page
2548  * dirty races).
2549  */
2550 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2551 {
2552 	struct buffer_head *bh;
2553 
2554 	BUG_ON(!PageLocked(page));
2555 
2556 	spin_lock(&page->mapping->private_lock);
2557 	bh = head;
2558 	do {
2559 		if (PageDirty(page))
2560 			set_buffer_dirty(bh);
2561 		if (!bh->b_this_page)
2562 			bh->b_this_page = head;
2563 		bh = bh->b_this_page;
2564 	} while (bh != head);
2565 	attach_page_private(page, head);
2566 	spin_unlock(&page->mapping->private_lock);
2567 }
2568 
2569 /*
2570  * On entry, the page is fully not uptodate.
2571  * On exit the page is fully uptodate in the areas outside (from,to)
2572  * The filesystem needs to handle block truncation upon failure.
2573  */
2574 int nobh_write_begin(struct address_space *mapping,
2575 			loff_t pos, unsigned len, unsigned flags,
2576 			struct page **pagep, void **fsdata,
2577 			get_block_t *get_block)
2578 {
2579 	struct inode *inode = mapping->host;
2580 	const unsigned blkbits = inode->i_blkbits;
2581 	const unsigned blocksize = 1 << blkbits;
2582 	struct buffer_head *head, *bh;
2583 	struct page *page;
2584 	pgoff_t index;
2585 	unsigned from, to;
2586 	unsigned block_in_page;
2587 	unsigned block_start, block_end;
2588 	sector_t block_in_file;
2589 	int nr_reads = 0;
2590 	int ret = 0;
2591 	int is_mapped_to_disk = 1;
2592 
2593 	index = pos >> PAGE_SHIFT;
2594 	from = pos & (PAGE_SIZE - 1);
2595 	to = from + len;
2596 
2597 	page = grab_cache_page_write_begin(mapping, index, flags);
2598 	if (!page)
2599 		return -ENOMEM;
2600 	*pagep = page;
2601 	*fsdata = NULL;
2602 
2603 	if (page_has_buffers(page)) {
2604 		ret = __block_write_begin(page, pos, len, get_block);
2605 		if (unlikely(ret))
2606 			goto out_release;
2607 		return ret;
2608 	}
2609 
2610 	if (PageMappedToDisk(page))
2611 		return 0;
2612 
2613 	/*
2614 	 * Allocate buffers so that we can keep track of state, and potentially
2615 	 * attach them to the page if an error occurs. In the common case of
2616 	 * no error, they will just be freed again without ever being attached
2617 	 * to the page (which is all OK, because we're under the page lock).
2618 	 *
2619 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2620 	 * than the circular one we're used to.
2621 	 */
2622 	head = alloc_page_buffers(page, blocksize, false);
2623 	if (!head) {
2624 		ret = -ENOMEM;
2625 		goto out_release;
2626 	}
2627 
2628 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2629 
2630 	/*
2631 	 * We loop across all blocks in the page, whether or not they are
2632 	 * part of the affected region.  This is so we can discover if the
2633 	 * page is fully mapped-to-disk.
2634 	 */
2635 	for (block_start = 0, block_in_page = 0, bh = head;
2636 		  block_start < PAGE_SIZE;
2637 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2638 		int create;
2639 
2640 		block_end = block_start + blocksize;
2641 		bh->b_state = 0;
2642 		create = 1;
2643 		if (block_start >= to)
2644 			create = 0;
2645 		ret = get_block(inode, block_in_file + block_in_page,
2646 					bh, create);
2647 		if (ret)
2648 			goto failed;
2649 		if (!buffer_mapped(bh))
2650 			is_mapped_to_disk = 0;
2651 		if (buffer_new(bh))
2652 			clean_bdev_bh_alias(bh);
2653 		if (PageUptodate(page)) {
2654 			set_buffer_uptodate(bh);
2655 			continue;
2656 		}
2657 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2658 			zero_user_segments(page, block_start, from,
2659 							to, block_end);
2660 			continue;
2661 		}
2662 		if (buffer_uptodate(bh))
2663 			continue;	/* reiserfs does this */
2664 		if (block_start < from || block_end > to) {
2665 			lock_buffer(bh);
2666 			bh->b_end_io = end_buffer_read_nobh;
2667 			submit_bh(REQ_OP_READ, 0, bh);
2668 			nr_reads++;
2669 		}
2670 	}
2671 
2672 	if (nr_reads) {
2673 		/*
2674 		 * The page is locked, so these buffers are protected from
2675 		 * any VM or truncate activity.  Hence we don't need to care
2676 		 * for the buffer_head refcounts.
2677 		 */
2678 		for (bh = head; bh; bh = bh->b_this_page) {
2679 			wait_on_buffer(bh);
2680 			if (!buffer_uptodate(bh))
2681 				ret = -EIO;
2682 		}
2683 		if (ret)
2684 			goto failed;
2685 	}
2686 
2687 	if (is_mapped_to_disk)
2688 		SetPageMappedToDisk(page);
2689 
2690 	*fsdata = head; /* to be released by nobh_write_end */
2691 
2692 	return 0;
2693 
2694 failed:
2695 	BUG_ON(!ret);
2696 	/*
2697 	 * Error recovery is a bit difficult. We need to zero out blocks that
2698 	 * were newly allocated, and dirty them to ensure they get written out.
2699 	 * Buffers need to be attached to the page at this point, otherwise
2700 	 * the handling of potential IO errors during writeout would be hard
2701 	 * (could try doing synchronous writeout, but what if that fails too?)
2702 	 */
2703 	attach_nobh_buffers(page, head);
2704 	page_zero_new_buffers(page, from, to);
2705 
2706 out_release:
2707 	unlock_page(page);
2708 	put_page(page);
2709 	*pagep = NULL;
2710 
2711 	return ret;
2712 }
2713 EXPORT_SYMBOL(nobh_write_begin);
2714 
2715 int nobh_write_end(struct file *file, struct address_space *mapping,
2716 			loff_t pos, unsigned len, unsigned copied,
2717 			struct page *page, void *fsdata)
2718 {
2719 	struct inode *inode = page->mapping->host;
2720 	struct buffer_head *head = fsdata;
2721 	struct buffer_head *bh;
2722 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2723 
2724 	if (unlikely(copied < len) && head)
2725 		attach_nobh_buffers(page, head);
2726 	if (page_has_buffers(page))
2727 		return generic_write_end(file, mapping, pos, len,
2728 					copied, page, fsdata);
2729 
2730 	SetPageUptodate(page);
2731 	set_page_dirty(page);
2732 	if (pos+copied > inode->i_size) {
2733 		i_size_write(inode, pos+copied);
2734 		mark_inode_dirty(inode);
2735 	}
2736 
2737 	unlock_page(page);
2738 	put_page(page);
2739 
2740 	while (head) {
2741 		bh = head;
2742 		head = head->b_this_page;
2743 		free_buffer_head(bh);
2744 	}
2745 
2746 	return copied;
2747 }
2748 EXPORT_SYMBOL(nobh_write_end);
2749 
2750 /*
2751  * nobh_writepage() - based on block_full_write_page() except
2752  * that it tries to operate without attaching bufferheads to
2753  * the page.
2754  */
2755 int nobh_writepage(struct page *page, get_block_t *get_block,
2756 			struct writeback_control *wbc)
2757 {
2758 	struct inode * const inode = page->mapping->host;
2759 	loff_t i_size = i_size_read(inode);
2760 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2761 	unsigned offset;
2762 	int ret;
2763 
2764 	/* Is the page fully inside i_size? */
2765 	if (page->index < end_index)
2766 		goto out;
2767 
2768 	/* Is the page fully outside i_size? (truncate in progress) */
2769 	offset = i_size & (PAGE_SIZE-1);
2770 	if (page->index >= end_index+1 || !offset) {
2771 		unlock_page(page);
2772 		return 0; /* don't care */
2773 	}
2774 
2775 	/*
2776 	 * The page straddles i_size.  It must be zeroed out on each and every
2777 	 * writepage invocation because it may be mmapped.  "A file is mapped
2778 	 * in multiples of the page size.  For a file that is not a multiple of
2779 	 * the  page size, the remaining memory is zeroed when mapped, and
2780 	 * writes to that region are not written out to the file."
2781 	 */
2782 	zero_user_segment(page, offset, PAGE_SIZE);
2783 out:
2784 	ret = mpage_writepage(page, get_block, wbc);
2785 	if (ret == -EAGAIN)
2786 		ret = __block_write_full_page(inode, page, get_block, wbc,
2787 					      end_buffer_async_write);
2788 	return ret;
2789 }
2790 EXPORT_SYMBOL(nobh_writepage);
2791 
2792 int nobh_truncate_page(struct address_space *mapping,
2793 			loff_t from, get_block_t *get_block)
2794 {
2795 	pgoff_t index = from >> PAGE_SHIFT;
2796 	unsigned offset = from & (PAGE_SIZE-1);
2797 	unsigned blocksize;
2798 	sector_t iblock;
2799 	unsigned length, pos;
2800 	struct inode *inode = mapping->host;
2801 	struct page *page;
2802 	struct buffer_head map_bh;
2803 	int err;
2804 
2805 	blocksize = i_blocksize(inode);
2806 	length = offset & (blocksize - 1);
2807 
2808 	/* Block boundary? Nothing to do */
2809 	if (!length)
2810 		return 0;
2811 
2812 	length = blocksize - length;
2813 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2814 
2815 	page = grab_cache_page(mapping, index);
2816 	err = -ENOMEM;
2817 	if (!page)
2818 		goto out;
2819 
2820 	if (page_has_buffers(page)) {
2821 has_buffers:
2822 		unlock_page(page);
2823 		put_page(page);
2824 		return block_truncate_page(mapping, from, get_block);
2825 	}
2826 
2827 	/* Find the buffer that contains "offset" */
2828 	pos = blocksize;
2829 	while (offset >= pos) {
2830 		iblock++;
2831 		pos += blocksize;
2832 	}
2833 
2834 	map_bh.b_size = blocksize;
2835 	map_bh.b_state = 0;
2836 	err = get_block(inode, iblock, &map_bh, 0);
2837 	if (err)
2838 		goto unlock;
2839 	/* unmapped? It's a hole - nothing to do */
2840 	if (!buffer_mapped(&map_bh))
2841 		goto unlock;
2842 
2843 	/* Ok, it's mapped. Make sure it's up-to-date */
2844 	if (!PageUptodate(page)) {
2845 		err = mapping->a_ops->readpage(NULL, page);
2846 		if (err) {
2847 			put_page(page);
2848 			goto out;
2849 		}
2850 		lock_page(page);
2851 		if (!PageUptodate(page)) {
2852 			err = -EIO;
2853 			goto unlock;
2854 		}
2855 		if (page_has_buffers(page))
2856 			goto has_buffers;
2857 	}
2858 	zero_user(page, offset, length);
2859 	set_page_dirty(page);
2860 	err = 0;
2861 
2862 unlock:
2863 	unlock_page(page);
2864 	put_page(page);
2865 out:
2866 	return err;
2867 }
2868 EXPORT_SYMBOL(nobh_truncate_page);
2869 
2870 int block_truncate_page(struct address_space *mapping,
2871 			loff_t from, get_block_t *get_block)
2872 {
2873 	pgoff_t index = from >> PAGE_SHIFT;
2874 	unsigned offset = from & (PAGE_SIZE-1);
2875 	unsigned blocksize;
2876 	sector_t iblock;
2877 	unsigned length, pos;
2878 	struct inode *inode = mapping->host;
2879 	struct page *page;
2880 	struct buffer_head *bh;
2881 	int err;
2882 
2883 	blocksize = i_blocksize(inode);
2884 	length = offset & (blocksize - 1);
2885 
2886 	/* Block boundary? Nothing to do */
2887 	if (!length)
2888 		return 0;
2889 
2890 	length = blocksize - length;
2891 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2892 
2893 	page = grab_cache_page(mapping, index);
2894 	err = -ENOMEM;
2895 	if (!page)
2896 		goto out;
2897 
2898 	if (!page_has_buffers(page))
2899 		create_empty_buffers(page, blocksize, 0);
2900 
2901 	/* Find the buffer that contains "offset" */
2902 	bh = page_buffers(page);
2903 	pos = blocksize;
2904 	while (offset >= pos) {
2905 		bh = bh->b_this_page;
2906 		iblock++;
2907 		pos += blocksize;
2908 	}
2909 
2910 	err = 0;
2911 	if (!buffer_mapped(bh)) {
2912 		WARN_ON(bh->b_size != blocksize);
2913 		err = get_block(inode, iblock, bh, 0);
2914 		if (err)
2915 			goto unlock;
2916 		/* unmapped? It's a hole - nothing to do */
2917 		if (!buffer_mapped(bh))
2918 			goto unlock;
2919 	}
2920 
2921 	/* Ok, it's mapped. Make sure it's up-to-date */
2922 	if (PageUptodate(page))
2923 		set_buffer_uptodate(bh);
2924 
2925 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2926 		err = -EIO;
2927 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2928 		wait_on_buffer(bh);
2929 		/* Uhhuh. Read error. Complain and punt. */
2930 		if (!buffer_uptodate(bh))
2931 			goto unlock;
2932 	}
2933 
2934 	zero_user(page, offset, length);
2935 	mark_buffer_dirty(bh);
2936 	err = 0;
2937 
2938 unlock:
2939 	unlock_page(page);
2940 	put_page(page);
2941 out:
2942 	return err;
2943 }
2944 EXPORT_SYMBOL(block_truncate_page);
2945 
2946 /*
2947  * The generic ->writepage function for buffer-backed address_spaces
2948  */
2949 int block_write_full_page(struct page *page, get_block_t *get_block,
2950 			struct writeback_control *wbc)
2951 {
2952 	struct inode * const inode = page->mapping->host;
2953 	loff_t i_size = i_size_read(inode);
2954 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2955 	unsigned offset;
2956 
2957 	/* Is the page fully inside i_size? */
2958 	if (page->index < end_index)
2959 		return __block_write_full_page(inode, page, get_block, wbc,
2960 					       end_buffer_async_write);
2961 
2962 	/* Is the page fully outside i_size? (truncate in progress) */
2963 	offset = i_size & (PAGE_SIZE-1);
2964 	if (page->index >= end_index+1 || !offset) {
2965 		unlock_page(page);
2966 		return 0; /* don't care */
2967 	}
2968 
2969 	/*
2970 	 * The page straddles i_size.  It must be zeroed out on each and every
2971 	 * writepage invocation because it may be mmapped.  "A file is mapped
2972 	 * in multiples of the page size.  For a file that is not a multiple of
2973 	 * the  page size, the remaining memory is zeroed when mapped, and
2974 	 * writes to that region are not written out to the file."
2975 	 */
2976 	zero_user_segment(page, offset, PAGE_SIZE);
2977 	return __block_write_full_page(inode, page, get_block, wbc,
2978 							end_buffer_async_write);
2979 }
2980 EXPORT_SYMBOL(block_write_full_page);
2981 
2982 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2983 			    get_block_t *get_block)
2984 {
2985 	struct inode *inode = mapping->host;
2986 	struct buffer_head tmp = {
2987 		.b_size = i_blocksize(inode),
2988 	};
2989 
2990 	get_block(inode, block, &tmp, 0);
2991 	return tmp.b_blocknr;
2992 }
2993 EXPORT_SYMBOL(generic_block_bmap);
2994 
2995 static void end_bio_bh_io_sync(struct bio *bio)
2996 {
2997 	struct buffer_head *bh = bio->bi_private;
2998 
2999 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3000 		set_bit(BH_Quiet, &bh->b_state);
3001 
3002 	bh->b_end_io(bh, !bio->bi_status);
3003 	bio_put(bio);
3004 }
3005 
3006 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3007 			 enum rw_hint write_hint, struct writeback_control *wbc)
3008 {
3009 	struct bio *bio;
3010 
3011 	BUG_ON(!buffer_locked(bh));
3012 	BUG_ON(!buffer_mapped(bh));
3013 	BUG_ON(!bh->b_end_io);
3014 	BUG_ON(buffer_delay(bh));
3015 	BUG_ON(buffer_unwritten(bh));
3016 
3017 	/*
3018 	 * Only clear out a write error when rewriting
3019 	 */
3020 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3021 		clear_buffer_write_io_error(bh);
3022 
3023 	bio = bio_alloc(GFP_NOIO, 1);
3024 
3025 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3026 
3027 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3028 	bio_set_dev(bio, bh->b_bdev);
3029 	bio->bi_write_hint = write_hint;
3030 
3031 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3032 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3033 
3034 	bio->bi_end_io = end_bio_bh_io_sync;
3035 	bio->bi_private = bh;
3036 
3037 	if (buffer_meta(bh))
3038 		op_flags |= REQ_META;
3039 	if (buffer_prio(bh))
3040 		op_flags |= REQ_PRIO;
3041 	bio_set_op_attrs(bio, op, op_flags);
3042 
3043 	/* Take care of bh's that straddle the end of the device */
3044 	guard_bio_eod(bio);
3045 
3046 	if (wbc) {
3047 		wbc_init_bio(wbc, bio);
3048 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3049 	}
3050 
3051 	submit_bio(bio);
3052 	return 0;
3053 }
3054 
3055 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3056 {
3057 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3058 }
3059 EXPORT_SYMBOL(submit_bh);
3060 
3061 /**
3062  * ll_rw_block: low-level access to block devices (DEPRECATED)
3063  * @op: whether to %READ or %WRITE
3064  * @op_flags: req_flag_bits
3065  * @nr: number of &struct buffer_heads in the array
3066  * @bhs: array of pointers to &struct buffer_head
3067  *
3068  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3069  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3070  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3071  * %REQ_RAHEAD.
3072  *
3073  * This function drops any buffer that it cannot get a lock on (with the
3074  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3075  * request, and any buffer that appears to be up-to-date when doing read
3076  * request.  Further it marks as clean buffers that are processed for
3077  * writing (the buffer cache won't assume that they are actually clean
3078  * until the buffer gets unlocked).
3079  *
3080  * ll_rw_block sets b_end_io to simple completion handler that marks
3081  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3082  * any waiters.
3083  *
3084  * All of the buffers must be for the same device, and must also be a
3085  * multiple of the current approved size for the device.
3086  */
3087 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3088 {
3089 	int i;
3090 
3091 	for (i = 0; i < nr; i++) {
3092 		struct buffer_head *bh = bhs[i];
3093 
3094 		if (!trylock_buffer(bh))
3095 			continue;
3096 		if (op == WRITE) {
3097 			if (test_clear_buffer_dirty(bh)) {
3098 				bh->b_end_io = end_buffer_write_sync;
3099 				get_bh(bh);
3100 				submit_bh(op, op_flags, bh);
3101 				continue;
3102 			}
3103 		} else {
3104 			if (!buffer_uptodate(bh)) {
3105 				bh->b_end_io = end_buffer_read_sync;
3106 				get_bh(bh);
3107 				submit_bh(op, op_flags, bh);
3108 				continue;
3109 			}
3110 		}
3111 		unlock_buffer(bh);
3112 	}
3113 }
3114 EXPORT_SYMBOL(ll_rw_block);
3115 
3116 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3117 {
3118 	lock_buffer(bh);
3119 	if (!test_clear_buffer_dirty(bh)) {
3120 		unlock_buffer(bh);
3121 		return;
3122 	}
3123 	bh->b_end_io = end_buffer_write_sync;
3124 	get_bh(bh);
3125 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3126 }
3127 EXPORT_SYMBOL(write_dirty_buffer);
3128 
3129 /*
3130  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3131  * and then start new I/O and then wait upon it.  The caller must have a ref on
3132  * the buffer_head.
3133  */
3134 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3135 {
3136 	int ret = 0;
3137 
3138 	WARN_ON(atomic_read(&bh->b_count) < 1);
3139 	lock_buffer(bh);
3140 	if (test_clear_buffer_dirty(bh)) {
3141 		/*
3142 		 * The bh should be mapped, but it might not be if the
3143 		 * device was hot-removed. Not much we can do but fail the I/O.
3144 		 */
3145 		if (!buffer_mapped(bh)) {
3146 			unlock_buffer(bh);
3147 			return -EIO;
3148 		}
3149 
3150 		get_bh(bh);
3151 		bh->b_end_io = end_buffer_write_sync;
3152 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3153 		wait_on_buffer(bh);
3154 		if (!ret && !buffer_uptodate(bh))
3155 			ret = -EIO;
3156 	} else {
3157 		unlock_buffer(bh);
3158 	}
3159 	return ret;
3160 }
3161 EXPORT_SYMBOL(__sync_dirty_buffer);
3162 
3163 int sync_dirty_buffer(struct buffer_head *bh)
3164 {
3165 	return __sync_dirty_buffer(bh, REQ_SYNC);
3166 }
3167 EXPORT_SYMBOL(sync_dirty_buffer);
3168 
3169 /*
3170  * try_to_free_buffers() checks if all the buffers on this particular page
3171  * are unused, and releases them if so.
3172  *
3173  * Exclusion against try_to_free_buffers may be obtained by either
3174  * locking the page or by holding its mapping's private_lock.
3175  *
3176  * If the page is dirty but all the buffers are clean then we need to
3177  * be sure to mark the page clean as well.  This is because the page
3178  * may be against a block device, and a later reattachment of buffers
3179  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3180  * filesystem data on the same device.
3181  *
3182  * The same applies to regular filesystem pages: if all the buffers are
3183  * clean then we set the page clean and proceed.  To do that, we require
3184  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3185  * private_lock.
3186  *
3187  * try_to_free_buffers() is non-blocking.
3188  */
3189 static inline int buffer_busy(struct buffer_head *bh)
3190 {
3191 	return atomic_read(&bh->b_count) |
3192 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3193 }
3194 
3195 static int
3196 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3197 {
3198 	struct buffer_head *head = page_buffers(page);
3199 	struct buffer_head *bh;
3200 
3201 	bh = head;
3202 	do {
3203 		if (buffer_busy(bh))
3204 			goto failed;
3205 		bh = bh->b_this_page;
3206 	} while (bh != head);
3207 
3208 	do {
3209 		struct buffer_head *next = bh->b_this_page;
3210 
3211 		if (bh->b_assoc_map)
3212 			__remove_assoc_queue(bh);
3213 		bh = next;
3214 	} while (bh != head);
3215 	*buffers_to_free = head;
3216 	detach_page_private(page);
3217 	return 1;
3218 failed:
3219 	return 0;
3220 }
3221 
3222 int try_to_free_buffers(struct page *page)
3223 {
3224 	struct address_space * const mapping = page->mapping;
3225 	struct buffer_head *buffers_to_free = NULL;
3226 	int ret = 0;
3227 
3228 	BUG_ON(!PageLocked(page));
3229 	if (PageWriteback(page))
3230 		return 0;
3231 
3232 	if (mapping == NULL) {		/* can this still happen? */
3233 		ret = drop_buffers(page, &buffers_to_free);
3234 		goto out;
3235 	}
3236 
3237 	spin_lock(&mapping->private_lock);
3238 	ret = drop_buffers(page, &buffers_to_free);
3239 
3240 	/*
3241 	 * If the filesystem writes its buffers by hand (eg ext3)
3242 	 * then we can have clean buffers against a dirty page.  We
3243 	 * clean the page here; otherwise the VM will never notice
3244 	 * that the filesystem did any IO at all.
3245 	 *
3246 	 * Also, during truncate, discard_buffer will have marked all
3247 	 * the page's buffers clean.  We discover that here and clean
3248 	 * the page also.
3249 	 *
3250 	 * private_lock must be held over this entire operation in order
3251 	 * to synchronise against __set_page_dirty_buffers and prevent the
3252 	 * dirty bit from being lost.
3253 	 */
3254 	if (ret)
3255 		cancel_dirty_page(page);
3256 	spin_unlock(&mapping->private_lock);
3257 out:
3258 	if (buffers_to_free) {
3259 		struct buffer_head *bh = buffers_to_free;
3260 
3261 		do {
3262 			struct buffer_head *next = bh->b_this_page;
3263 			free_buffer_head(bh);
3264 			bh = next;
3265 		} while (bh != buffers_to_free);
3266 	}
3267 	return ret;
3268 }
3269 EXPORT_SYMBOL(try_to_free_buffers);
3270 
3271 /*
3272  * There are no bdflush tunables left.  But distributions are
3273  * still running obsolete flush daemons, so we terminate them here.
3274  *
3275  * Use of bdflush() is deprecated and will be removed in a future kernel.
3276  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3277  */
3278 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3279 {
3280 	static int msg_count;
3281 
3282 	if (!capable(CAP_SYS_ADMIN))
3283 		return -EPERM;
3284 
3285 	if (msg_count < 5) {
3286 		msg_count++;
3287 		printk(KERN_INFO
3288 			"warning: process `%s' used the obsolete bdflush"
3289 			" system call\n", current->comm);
3290 		printk(KERN_INFO "Fix your initscripts?\n");
3291 	}
3292 
3293 	if (func == 1)
3294 		do_exit(0);
3295 	return 0;
3296 }
3297 
3298 /*
3299  * Buffer-head allocation
3300  */
3301 static struct kmem_cache *bh_cachep __read_mostly;
3302 
3303 /*
3304  * Once the number of bh's in the machine exceeds this level, we start
3305  * stripping them in writeback.
3306  */
3307 static unsigned long max_buffer_heads;
3308 
3309 int buffer_heads_over_limit;
3310 
3311 struct bh_accounting {
3312 	int nr;			/* Number of live bh's */
3313 	int ratelimit;		/* Limit cacheline bouncing */
3314 };
3315 
3316 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3317 
3318 static void recalc_bh_state(void)
3319 {
3320 	int i;
3321 	int tot = 0;
3322 
3323 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3324 		return;
3325 	__this_cpu_write(bh_accounting.ratelimit, 0);
3326 	for_each_online_cpu(i)
3327 		tot += per_cpu(bh_accounting, i).nr;
3328 	buffer_heads_over_limit = (tot > max_buffer_heads);
3329 }
3330 
3331 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3332 {
3333 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3334 	if (ret) {
3335 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3336 		spin_lock_init(&ret->b_uptodate_lock);
3337 		preempt_disable();
3338 		__this_cpu_inc(bh_accounting.nr);
3339 		recalc_bh_state();
3340 		preempt_enable();
3341 	}
3342 	return ret;
3343 }
3344 EXPORT_SYMBOL(alloc_buffer_head);
3345 
3346 void free_buffer_head(struct buffer_head *bh)
3347 {
3348 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3349 	kmem_cache_free(bh_cachep, bh);
3350 	preempt_disable();
3351 	__this_cpu_dec(bh_accounting.nr);
3352 	recalc_bh_state();
3353 	preempt_enable();
3354 }
3355 EXPORT_SYMBOL(free_buffer_head);
3356 
3357 static int buffer_exit_cpu_dead(unsigned int cpu)
3358 {
3359 	int i;
3360 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3361 
3362 	for (i = 0; i < BH_LRU_SIZE; i++) {
3363 		brelse(b->bhs[i]);
3364 		b->bhs[i] = NULL;
3365 	}
3366 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3367 	per_cpu(bh_accounting, cpu).nr = 0;
3368 	return 0;
3369 }
3370 
3371 /**
3372  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3373  * @bh: struct buffer_head
3374  *
3375  * Return true if the buffer is up-to-date and false,
3376  * with the buffer locked, if not.
3377  */
3378 int bh_uptodate_or_lock(struct buffer_head *bh)
3379 {
3380 	if (!buffer_uptodate(bh)) {
3381 		lock_buffer(bh);
3382 		if (!buffer_uptodate(bh))
3383 			return 0;
3384 		unlock_buffer(bh);
3385 	}
3386 	return 1;
3387 }
3388 EXPORT_SYMBOL(bh_uptodate_or_lock);
3389 
3390 /**
3391  * bh_submit_read - Submit a locked buffer for reading
3392  * @bh: struct buffer_head
3393  *
3394  * Returns zero on success and -EIO on error.
3395  */
3396 int bh_submit_read(struct buffer_head *bh)
3397 {
3398 	BUG_ON(!buffer_locked(bh));
3399 
3400 	if (buffer_uptodate(bh)) {
3401 		unlock_buffer(bh);
3402 		return 0;
3403 	}
3404 
3405 	get_bh(bh);
3406 	bh->b_end_io = end_buffer_read_sync;
3407 	submit_bh(REQ_OP_READ, 0, bh);
3408 	wait_on_buffer(bh);
3409 	if (buffer_uptodate(bh))
3410 		return 0;
3411 	return -EIO;
3412 }
3413 EXPORT_SYMBOL(bh_submit_read);
3414 
3415 void __init buffer_init(void)
3416 {
3417 	unsigned long nrpages;
3418 	int ret;
3419 
3420 	bh_cachep = kmem_cache_create("buffer_head",
3421 			sizeof(struct buffer_head), 0,
3422 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3423 				SLAB_MEM_SPREAD),
3424 				NULL);
3425 
3426 	/*
3427 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3428 	 */
3429 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3430 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3431 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3432 					NULL, buffer_exit_cpu_dead);
3433 	WARN_ON(ret < 0);
3434 }
3435