xref: /linux/fs/buffer.c (revision 9d56c248e5030d17ea9cd132634e86fdf0622d0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53 
54 #include "internal.h"
55 
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 			  enum rw_hint hint, struct writeback_control *wbc);
59 
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61 
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 	trace_block_touch_buffer(bh);
65 	folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68 
69 void __lock_buffer(struct buffer_head *bh)
70 {
71 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74 
75 void unlock_buffer(struct buffer_head *bh)
76 {
77 	clear_bit_unlock(BH_Lock, &bh->b_state);
78 	smp_mb__after_atomic();
79 	wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82 
83 /*
84  * Returns if the folio has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the folio_test_dirty information is stale. If
86  * any of the buffers are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct folio *folio,
89 				     bool *dirty, bool *writeback)
90 {
91 	struct buffer_head *head, *bh;
92 	*dirty = false;
93 	*writeback = false;
94 
95 	BUG_ON(!folio_test_locked(folio));
96 
97 	head = folio_buffers(folio);
98 	if (!head)
99 		return;
100 
101 	if (folio_test_writeback(folio))
102 		*writeback = true;
103 
104 	bh = head;
105 	do {
106 		if (buffer_locked(bh))
107 			*writeback = true;
108 
109 		if (buffer_dirty(bh))
110 			*dirty = true;
111 
112 		bh = bh->b_this_page;
113 	} while (bh != head);
114 }
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 	if (!test_bit(BH_Quiet, &bh->b_state))
130 		printk_ratelimited(KERN_ERR
131 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
132 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		/* This happens, due to failed read-ahead attempts. */
149 		clear_buffer_uptodate(bh);
150 	}
151 	unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 	__end_buffer_read_notouch(bh, uptodate);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 	if (uptodate) {
168 		set_buffer_uptodate(bh);
169 	} else {
170 		buffer_io_error(bh, ", lost sync page write");
171 		mark_buffer_write_io_error(bh);
172 		clear_buffer_uptodate(bh);
173 	}
174 	unlock_buffer(bh);
175 	put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * i_private_lock.
184  *
185  * Hack idea: for the blockdev mapping, i_private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take i_private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 	struct inode *bd_inode = bdev->bd_inode;
193 	struct address_space *bd_mapping = bd_inode->i_mapping;
194 	struct buffer_head *ret = NULL;
195 	pgoff_t index;
196 	struct buffer_head *bh;
197 	struct buffer_head *head;
198 	struct folio *folio;
199 	int all_mapped = 1;
200 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201 
202 	index = ((loff_t)block << bd_inode->i_blkbits) / PAGE_SIZE;
203 	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 	if (IS_ERR(folio))
205 		goto out;
206 
207 	spin_lock(&bd_mapping->i_private_lock);
208 	head = folio_buffers(folio);
209 	if (!head)
210 		goto out_unlock;
211 	bh = head;
212 	do {
213 		if (!buffer_mapped(bh))
214 			all_mapped = 0;
215 		else if (bh->b_blocknr == block) {
216 			ret = bh;
217 			get_bh(bh);
218 			goto out_unlock;
219 		}
220 		bh = bh->b_this_page;
221 	} while (bh != head);
222 
223 	/* we might be here because some of the buffers on this page are
224 	 * not mapped.  This is due to various races between
225 	 * file io on the block device and getblk.  It gets dealt with
226 	 * elsewhere, don't buffer_error if we had some unmapped buffers
227 	 */
228 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 	if (all_mapped && __ratelimit(&last_warned)) {
230 		printk("__find_get_block_slow() failed. block=%llu, "
231 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 		       "device %pg blocksize: %d\n",
233 		       (unsigned long long)block,
234 		       (unsigned long long)bh->b_blocknr,
235 		       bh->b_state, bh->b_size, bdev,
236 		       1 << bd_inode->i_blkbits);
237 	}
238 out_unlock:
239 	spin_unlock(&bd_mapping->i_private_lock);
240 	folio_put(folio);
241 out:
242 	return ret;
243 }
244 
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 	unsigned long flags;
248 	struct buffer_head *first;
249 	struct buffer_head *tmp;
250 	struct folio *folio;
251 	int folio_uptodate = 1;
252 
253 	BUG_ON(!buffer_async_read(bh));
254 
255 	folio = bh->b_folio;
256 	if (uptodate) {
257 		set_buffer_uptodate(bh);
258 	} else {
259 		clear_buffer_uptodate(bh);
260 		buffer_io_error(bh, ", async page read");
261 		folio_set_error(folio);
262 	}
263 
264 	/*
265 	 * Be _very_ careful from here on. Bad things can happen if
266 	 * two buffer heads end IO at almost the same time and both
267 	 * decide that the page is now completely done.
268 	 */
269 	first = folio_buffers(folio);
270 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
271 	clear_buffer_async_read(bh);
272 	unlock_buffer(bh);
273 	tmp = bh;
274 	do {
275 		if (!buffer_uptodate(tmp))
276 			folio_uptodate = 0;
277 		if (buffer_async_read(tmp)) {
278 			BUG_ON(!buffer_locked(tmp));
279 			goto still_busy;
280 		}
281 		tmp = tmp->b_this_page;
282 	} while (tmp != bh);
283 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284 
285 	folio_end_read(folio, folio_uptodate);
286 	return;
287 
288 still_busy:
289 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
290 	return;
291 }
292 
293 struct postprocess_bh_ctx {
294 	struct work_struct work;
295 	struct buffer_head *bh;
296 };
297 
298 static void verify_bh(struct work_struct *work)
299 {
300 	struct postprocess_bh_ctx *ctx =
301 		container_of(work, struct postprocess_bh_ctx, work);
302 	struct buffer_head *bh = ctx->bh;
303 	bool valid;
304 
305 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
306 	end_buffer_async_read(bh, valid);
307 	kfree(ctx);
308 }
309 
310 static bool need_fsverity(struct buffer_head *bh)
311 {
312 	struct folio *folio = bh->b_folio;
313 	struct inode *inode = folio->mapping->host;
314 
315 	return fsverity_active(inode) &&
316 		/* needed by ext4 */
317 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
318 }
319 
320 static void decrypt_bh(struct work_struct *work)
321 {
322 	struct postprocess_bh_ctx *ctx =
323 		container_of(work, struct postprocess_bh_ctx, work);
324 	struct buffer_head *bh = ctx->bh;
325 	int err;
326 
327 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
328 					       bh_offset(bh));
329 	if (err == 0 && need_fsverity(bh)) {
330 		/*
331 		 * We use different work queues for decryption and for verity
332 		 * because verity may require reading metadata pages that need
333 		 * decryption, and we shouldn't recurse to the same workqueue.
334 		 */
335 		INIT_WORK(&ctx->work, verify_bh);
336 		fsverity_enqueue_verify_work(&ctx->work);
337 		return;
338 	}
339 	end_buffer_async_read(bh, err == 0);
340 	kfree(ctx);
341 }
342 
343 /*
344  * I/O completion handler for block_read_full_folio() - pages
345  * which come unlocked at the end of I/O.
346  */
347 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
348 {
349 	struct inode *inode = bh->b_folio->mapping->host;
350 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
351 	bool verify = need_fsverity(bh);
352 
353 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
354 	if (uptodate && (decrypt || verify)) {
355 		struct postprocess_bh_ctx *ctx =
356 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
357 
358 		if (ctx) {
359 			ctx->bh = bh;
360 			if (decrypt) {
361 				INIT_WORK(&ctx->work, decrypt_bh);
362 				fscrypt_enqueue_decrypt_work(&ctx->work);
363 			} else {
364 				INIT_WORK(&ctx->work, verify_bh);
365 				fsverity_enqueue_verify_work(&ctx->work);
366 			}
367 			return;
368 		}
369 		uptodate = 0;
370 	}
371 	end_buffer_async_read(bh, uptodate);
372 }
373 
374 /*
375  * Completion handler for block_write_full_folio() - folios which are unlocked
376  * during I/O, and which have the writeback flag cleared upon I/O completion.
377  */
378 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
379 {
380 	unsigned long flags;
381 	struct buffer_head *first;
382 	struct buffer_head *tmp;
383 	struct folio *folio;
384 
385 	BUG_ON(!buffer_async_write(bh));
386 
387 	folio = bh->b_folio;
388 	if (uptodate) {
389 		set_buffer_uptodate(bh);
390 	} else {
391 		buffer_io_error(bh, ", lost async page write");
392 		mark_buffer_write_io_error(bh);
393 		clear_buffer_uptodate(bh);
394 		folio_set_error(folio);
395 	}
396 
397 	first = folio_buffers(folio);
398 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
399 
400 	clear_buffer_async_write(bh);
401 	unlock_buffer(bh);
402 	tmp = bh->b_this_page;
403 	while (tmp != bh) {
404 		if (buffer_async_write(tmp)) {
405 			BUG_ON(!buffer_locked(tmp));
406 			goto still_busy;
407 		}
408 		tmp = tmp->b_this_page;
409 	}
410 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
411 	folio_end_writeback(folio);
412 	return;
413 
414 still_busy:
415 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416 	return;
417 }
418 
419 /*
420  * If a page's buffers are under async readin (end_buffer_async_read
421  * completion) then there is a possibility that another thread of
422  * control could lock one of the buffers after it has completed
423  * but while some of the other buffers have not completed.  This
424  * locked buffer would confuse end_buffer_async_read() into not unlocking
425  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
426  * that this buffer is not under async I/O.
427  *
428  * The page comes unlocked when it has no locked buffer_async buffers
429  * left.
430  *
431  * PageLocked prevents anyone starting new async I/O reads any of
432  * the buffers.
433  *
434  * PageWriteback is used to prevent simultaneous writeout of the same
435  * page.
436  *
437  * PageLocked prevents anyone from starting writeback of a page which is
438  * under read I/O (PageWriteback is only ever set against a locked page).
439  */
440 static void mark_buffer_async_read(struct buffer_head *bh)
441 {
442 	bh->b_end_io = end_buffer_async_read_io;
443 	set_buffer_async_read(bh);
444 }
445 
446 static void mark_buffer_async_write_endio(struct buffer_head *bh,
447 					  bh_end_io_t *handler)
448 {
449 	bh->b_end_io = handler;
450 	set_buffer_async_write(bh);
451 }
452 
453 void mark_buffer_async_write(struct buffer_head *bh)
454 {
455 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
456 }
457 EXPORT_SYMBOL(mark_buffer_async_write);
458 
459 
460 /*
461  * fs/buffer.c contains helper functions for buffer-backed address space's
462  * fsync functions.  A common requirement for buffer-based filesystems is
463  * that certain data from the backing blockdev needs to be written out for
464  * a successful fsync().  For example, ext2 indirect blocks need to be
465  * written back and waited upon before fsync() returns.
466  *
467  * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
468  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
469  * management of a list of dependent buffers at ->i_mapping->i_private_list.
470  *
471  * Locking is a little subtle: try_to_free_buffers() will remove buffers
472  * from their controlling inode's queue when they are being freed.  But
473  * try_to_free_buffers() will be operating against the *blockdev* mapping
474  * at the time, not against the S_ISREG file which depends on those buffers.
475  * So the locking for i_private_list is via the i_private_lock in the address_space
476  * which backs the buffers.  Which is different from the address_space
477  * against which the buffers are listed.  So for a particular address_space,
478  * mapping->i_private_lock does *not* protect mapping->i_private_list!  In fact,
479  * mapping->i_private_list will always be protected by the backing blockdev's
480  * ->i_private_lock.
481  *
482  * Which introduces a requirement: all buffers on an address_space's
483  * ->i_private_list must be from the same address_space: the blockdev's.
484  *
485  * address_spaces which do not place buffers at ->i_private_list via these
486  * utility functions are free to use i_private_lock and i_private_list for
487  * whatever they want.  The only requirement is that list_empty(i_private_list)
488  * be true at clear_inode() time.
489  *
490  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
491  * filesystems should do that.  invalidate_inode_buffers() should just go
492  * BUG_ON(!list_empty).
493  *
494  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
495  * take an address_space, not an inode.  And it should be called
496  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
497  * queued up.
498  *
499  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
500  * list if it is already on a list.  Because if the buffer is on a list,
501  * it *must* already be on the right one.  If not, the filesystem is being
502  * silly.  This will save a ton of locking.  But first we have to ensure
503  * that buffers are taken *off* the old inode's list when they are freed
504  * (presumably in truncate).  That requires careful auditing of all
505  * filesystems (do it inside bforget()).  It could also be done by bringing
506  * b_inode back.
507  */
508 
509 /*
510  * The buffer's backing address_space's i_private_lock must be held
511  */
512 static void __remove_assoc_queue(struct buffer_head *bh)
513 {
514 	list_del_init(&bh->b_assoc_buffers);
515 	WARN_ON(!bh->b_assoc_map);
516 	bh->b_assoc_map = NULL;
517 }
518 
519 int inode_has_buffers(struct inode *inode)
520 {
521 	return !list_empty(&inode->i_data.i_private_list);
522 }
523 
524 /*
525  * osync is designed to support O_SYNC io.  It waits synchronously for
526  * all already-submitted IO to complete, but does not queue any new
527  * writes to the disk.
528  *
529  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
530  * as you dirty the buffers, and then use osync_inode_buffers to wait for
531  * completion.  Any other dirty buffers which are not yet queued for
532  * write will not be flushed to disk by the osync.
533  */
534 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
535 {
536 	struct buffer_head *bh;
537 	struct list_head *p;
538 	int err = 0;
539 
540 	spin_lock(lock);
541 repeat:
542 	list_for_each_prev(p, list) {
543 		bh = BH_ENTRY(p);
544 		if (buffer_locked(bh)) {
545 			get_bh(bh);
546 			spin_unlock(lock);
547 			wait_on_buffer(bh);
548 			if (!buffer_uptodate(bh))
549 				err = -EIO;
550 			brelse(bh);
551 			spin_lock(lock);
552 			goto repeat;
553 		}
554 	}
555 	spin_unlock(lock);
556 	return err;
557 }
558 
559 /**
560  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561  * @mapping: the mapping which wants those buffers written
562  *
563  * Starts I/O against the buffers at mapping->i_private_list, and waits upon
564  * that I/O.
565  *
566  * Basically, this is a convenience function for fsync().
567  * @mapping is a file or directory which needs those buffers to be written for
568  * a successful fsync().
569  */
570 int sync_mapping_buffers(struct address_space *mapping)
571 {
572 	struct address_space *buffer_mapping = mapping->i_private_data;
573 
574 	if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
575 		return 0;
576 
577 	return fsync_buffers_list(&buffer_mapping->i_private_lock,
578 					&mapping->i_private_list);
579 }
580 EXPORT_SYMBOL(sync_mapping_buffers);
581 
582 /**
583  * generic_buffers_fsync_noflush - generic buffer fsync implementation
584  * for simple filesystems with no inode lock
585  *
586  * @file:	file to synchronize
587  * @start:	start offset in bytes
588  * @end:	end offset in bytes (inclusive)
589  * @datasync:	only synchronize essential metadata if true
590  *
591  * This is a generic implementation of the fsync method for simple
592  * filesystems which track all non-inode metadata in the buffers list
593  * hanging off the address_space structure.
594  */
595 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
596 				  bool datasync)
597 {
598 	struct inode *inode = file->f_mapping->host;
599 	int err;
600 	int ret;
601 
602 	err = file_write_and_wait_range(file, start, end);
603 	if (err)
604 		return err;
605 
606 	ret = sync_mapping_buffers(inode->i_mapping);
607 	if (!(inode->i_state & I_DIRTY_ALL))
608 		goto out;
609 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
610 		goto out;
611 
612 	err = sync_inode_metadata(inode, 1);
613 	if (ret == 0)
614 		ret = err;
615 
616 out:
617 	/* check and advance again to catch errors after syncing out buffers */
618 	err = file_check_and_advance_wb_err(file);
619 	if (ret == 0)
620 		ret = err;
621 	return ret;
622 }
623 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
624 
625 /**
626  * generic_buffers_fsync - generic buffer fsync implementation
627  * for simple filesystems with no inode lock
628  *
629  * @file:	file to synchronize
630  * @start:	start offset in bytes
631  * @end:	end offset in bytes (inclusive)
632  * @datasync:	only synchronize essential metadata if true
633  *
634  * This is a generic implementation of the fsync method for simple
635  * filesystems which track all non-inode metadata in the buffers list
636  * hanging off the address_space structure. This also makes sure that
637  * a device cache flush operation is called at the end.
638  */
639 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
640 			  bool datasync)
641 {
642 	struct inode *inode = file->f_mapping->host;
643 	int ret;
644 
645 	ret = generic_buffers_fsync_noflush(file, start, end, datasync);
646 	if (!ret)
647 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
648 	return ret;
649 }
650 EXPORT_SYMBOL(generic_buffers_fsync);
651 
652 /*
653  * Called when we've recently written block `bblock', and it is known that
654  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
655  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
656  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
657  */
658 void write_boundary_block(struct block_device *bdev,
659 			sector_t bblock, unsigned blocksize)
660 {
661 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
662 	if (bh) {
663 		if (buffer_dirty(bh))
664 			write_dirty_buffer(bh, 0);
665 		put_bh(bh);
666 	}
667 }
668 
669 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
670 {
671 	struct address_space *mapping = inode->i_mapping;
672 	struct address_space *buffer_mapping = bh->b_folio->mapping;
673 
674 	mark_buffer_dirty(bh);
675 	if (!mapping->i_private_data) {
676 		mapping->i_private_data = buffer_mapping;
677 	} else {
678 		BUG_ON(mapping->i_private_data != buffer_mapping);
679 	}
680 	if (!bh->b_assoc_map) {
681 		spin_lock(&buffer_mapping->i_private_lock);
682 		list_move_tail(&bh->b_assoc_buffers,
683 				&mapping->i_private_list);
684 		bh->b_assoc_map = mapping;
685 		spin_unlock(&buffer_mapping->i_private_lock);
686 	}
687 }
688 EXPORT_SYMBOL(mark_buffer_dirty_inode);
689 
690 /*
691  * Add a page to the dirty page list.
692  *
693  * It is a sad fact of life that this function is called from several places
694  * deeply under spinlocking.  It may not sleep.
695  *
696  * If the page has buffers, the uptodate buffers are set dirty, to preserve
697  * dirty-state coherency between the page and the buffers.  It the page does
698  * not have buffers then when they are later attached they will all be set
699  * dirty.
700  *
701  * The buffers are dirtied before the page is dirtied.  There's a small race
702  * window in which a writepage caller may see the page cleanness but not the
703  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
704  * before the buffers, a concurrent writepage caller could clear the page dirty
705  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
706  * page on the dirty page list.
707  *
708  * We use i_private_lock to lock against try_to_free_buffers while using the
709  * page's buffer list.  Also use this to protect against clean buffers being
710  * added to the page after it was set dirty.
711  *
712  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
713  * address_space though.
714  */
715 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
716 {
717 	struct buffer_head *head;
718 	bool newly_dirty;
719 
720 	spin_lock(&mapping->i_private_lock);
721 	head = folio_buffers(folio);
722 	if (head) {
723 		struct buffer_head *bh = head;
724 
725 		do {
726 			set_buffer_dirty(bh);
727 			bh = bh->b_this_page;
728 		} while (bh != head);
729 	}
730 	/*
731 	 * Lock out page's memcg migration to keep PageDirty
732 	 * synchronized with per-memcg dirty page counters.
733 	 */
734 	folio_memcg_lock(folio);
735 	newly_dirty = !folio_test_set_dirty(folio);
736 	spin_unlock(&mapping->i_private_lock);
737 
738 	if (newly_dirty)
739 		__folio_mark_dirty(folio, mapping, 1);
740 
741 	folio_memcg_unlock(folio);
742 
743 	if (newly_dirty)
744 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
745 
746 	return newly_dirty;
747 }
748 EXPORT_SYMBOL(block_dirty_folio);
749 
750 /*
751  * Write out and wait upon a list of buffers.
752  *
753  * We have conflicting pressures: we want to make sure that all
754  * initially dirty buffers get waited on, but that any subsequently
755  * dirtied buffers don't.  After all, we don't want fsync to last
756  * forever if somebody is actively writing to the file.
757  *
758  * Do this in two main stages: first we copy dirty buffers to a
759  * temporary inode list, queueing the writes as we go.  Then we clean
760  * up, waiting for those writes to complete.
761  *
762  * During this second stage, any subsequent updates to the file may end
763  * up refiling the buffer on the original inode's dirty list again, so
764  * there is a chance we will end up with a buffer queued for write but
765  * not yet completed on that list.  So, as a final cleanup we go through
766  * the osync code to catch these locked, dirty buffers without requeuing
767  * any newly dirty buffers for write.
768  */
769 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
770 {
771 	struct buffer_head *bh;
772 	struct list_head tmp;
773 	struct address_space *mapping;
774 	int err = 0, err2;
775 	struct blk_plug plug;
776 
777 	INIT_LIST_HEAD(&tmp);
778 	blk_start_plug(&plug);
779 
780 	spin_lock(lock);
781 	while (!list_empty(list)) {
782 		bh = BH_ENTRY(list->next);
783 		mapping = bh->b_assoc_map;
784 		__remove_assoc_queue(bh);
785 		/* Avoid race with mark_buffer_dirty_inode() which does
786 		 * a lockless check and we rely on seeing the dirty bit */
787 		smp_mb();
788 		if (buffer_dirty(bh) || buffer_locked(bh)) {
789 			list_add(&bh->b_assoc_buffers, &tmp);
790 			bh->b_assoc_map = mapping;
791 			if (buffer_dirty(bh)) {
792 				get_bh(bh);
793 				spin_unlock(lock);
794 				/*
795 				 * Ensure any pending I/O completes so that
796 				 * write_dirty_buffer() actually writes the
797 				 * current contents - it is a noop if I/O is
798 				 * still in flight on potentially older
799 				 * contents.
800 				 */
801 				write_dirty_buffer(bh, REQ_SYNC);
802 
803 				/*
804 				 * Kick off IO for the previous mapping. Note
805 				 * that we will not run the very last mapping,
806 				 * wait_on_buffer() will do that for us
807 				 * through sync_buffer().
808 				 */
809 				brelse(bh);
810 				spin_lock(lock);
811 			}
812 		}
813 	}
814 
815 	spin_unlock(lock);
816 	blk_finish_plug(&plug);
817 	spin_lock(lock);
818 
819 	while (!list_empty(&tmp)) {
820 		bh = BH_ENTRY(tmp.prev);
821 		get_bh(bh);
822 		mapping = bh->b_assoc_map;
823 		__remove_assoc_queue(bh);
824 		/* Avoid race with mark_buffer_dirty_inode() which does
825 		 * a lockless check and we rely on seeing the dirty bit */
826 		smp_mb();
827 		if (buffer_dirty(bh)) {
828 			list_add(&bh->b_assoc_buffers,
829 				 &mapping->i_private_list);
830 			bh->b_assoc_map = mapping;
831 		}
832 		spin_unlock(lock);
833 		wait_on_buffer(bh);
834 		if (!buffer_uptodate(bh))
835 			err = -EIO;
836 		brelse(bh);
837 		spin_lock(lock);
838 	}
839 
840 	spin_unlock(lock);
841 	err2 = osync_buffers_list(lock, list);
842 	if (err)
843 		return err;
844 	else
845 		return err2;
846 }
847 
848 /*
849  * Invalidate any and all dirty buffers on a given inode.  We are
850  * probably unmounting the fs, but that doesn't mean we have already
851  * done a sync().  Just drop the buffers from the inode list.
852  *
853  * NOTE: we take the inode's blockdev's mapping's i_private_lock.  Which
854  * assumes that all the buffers are against the blockdev.  Not true
855  * for reiserfs.
856  */
857 void invalidate_inode_buffers(struct inode *inode)
858 {
859 	if (inode_has_buffers(inode)) {
860 		struct address_space *mapping = &inode->i_data;
861 		struct list_head *list = &mapping->i_private_list;
862 		struct address_space *buffer_mapping = mapping->i_private_data;
863 
864 		spin_lock(&buffer_mapping->i_private_lock);
865 		while (!list_empty(list))
866 			__remove_assoc_queue(BH_ENTRY(list->next));
867 		spin_unlock(&buffer_mapping->i_private_lock);
868 	}
869 }
870 EXPORT_SYMBOL(invalidate_inode_buffers);
871 
872 /*
873  * Remove any clean buffers from the inode's buffer list.  This is called
874  * when we're trying to free the inode itself.  Those buffers can pin it.
875  *
876  * Returns true if all buffers were removed.
877  */
878 int remove_inode_buffers(struct inode *inode)
879 {
880 	int ret = 1;
881 
882 	if (inode_has_buffers(inode)) {
883 		struct address_space *mapping = &inode->i_data;
884 		struct list_head *list = &mapping->i_private_list;
885 		struct address_space *buffer_mapping = mapping->i_private_data;
886 
887 		spin_lock(&buffer_mapping->i_private_lock);
888 		while (!list_empty(list)) {
889 			struct buffer_head *bh = BH_ENTRY(list->next);
890 			if (buffer_dirty(bh)) {
891 				ret = 0;
892 				break;
893 			}
894 			__remove_assoc_queue(bh);
895 		}
896 		spin_unlock(&buffer_mapping->i_private_lock);
897 	}
898 	return ret;
899 }
900 
901 /*
902  * Create the appropriate buffers when given a folio for data area and
903  * the size of each buffer.. Use the bh->b_this_page linked list to
904  * follow the buffers created.  Return NULL if unable to create more
905  * buffers.
906  *
907  * The retry flag is used to differentiate async IO (paging, swapping)
908  * which may not fail from ordinary buffer allocations.
909  */
910 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
911 					gfp_t gfp)
912 {
913 	struct buffer_head *bh, *head;
914 	long offset;
915 	struct mem_cgroup *memcg, *old_memcg;
916 
917 	/* The folio lock pins the memcg */
918 	memcg = folio_memcg(folio);
919 	old_memcg = set_active_memcg(memcg);
920 
921 	head = NULL;
922 	offset = folio_size(folio);
923 	while ((offset -= size) >= 0) {
924 		bh = alloc_buffer_head(gfp);
925 		if (!bh)
926 			goto no_grow;
927 
928 		bh->b_this_page = head;
929 		bh->b_blocknr = -1;
930 		head = bh;
931 
932 		bh->b_size = size;
933 
934 		/* Link the buffer to its folio */
935 		folio_set_bh(bh, folio, offset);
936 	}
937 out:
938 	set_active_memcg(old_memcg);
939 	return head;
940 /*
941  * In case anything failed, we just free everything we got.
942  */
943 no_grow:
944 	if (head) {
945 		do {
946 			bh = head;
947 			head = head->b_this_page;
948 			free_buffer_head(bh);
949 		} while (head);
950 	}
951 
952 	goto out;
953 }
954 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
955 
956 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
957 				       bool retry)
958 {
959 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
960 	if (retry)
961 		gfp |= __GFP_NOFAIL;
962 
963 	return folio_alloc_buffers(page_folio(page), size, gfp);
964 }
965 EXPORT_SYMBOL_GPL(alloc_page_buffers);
966 
967 static inline void link_dev_buffers(struct folio *folio,
968 		struct buffer_head *head)
969 {
970 	struct buffer_head *bh, *tail;
971 
972 	bh = head;
973 	do {
974 		tail = bh;
975 		bh = bh->b_this_page;
976 	} while (bh);
977 	tail->b_this_page = head;
978 	folio_attach_private(folio, head);
979 }
980 
981 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
982 {
983 	sector_t retval = ~((sector_t)0);
984 	loff_t sz = bdev_nr_bytes(bdev);
985 
986 	if (sz) {
987 		unsigned int sizebits = blksize_bits(size);
988 		retval = (sz >> sizebits);
989 	}
990 	return retval;
991 }
992 
993 /*
994  * Initialise the state of a blockdev folio's buffers.
995  */
996 static sector_t folio_init_buffers(struct folio *folio,
997 		struct block_device *bdev, unsigned size)
998 {
999 	struct buffer_head *head = folio_buffers(folio);
1000 	struct buffer_head *bh = head;
1001 	bool uptodate = folio_test_uptodate(folio);
1002 	sector_t block = div_u64(folio_pos(folio), size);
1003 	sector_t end_block = blkdev_max_block(bdev, size);
1004 
1005 	do {
1006 		if (!buffer_mapped(bh)) {
1007 			bh->b_end_io = NULL;
1008 			bh->b_private = NULL;
1009 			bh->b_bdev = bdev;
1010 			bh->b_blocknr = block;
1011 			if (uptodate)
1012 				set_buffer_uptodate(bh);
1013 			if (block < end_block)
1014 				set_buffer_mapped(bh);
1015 		}
1016 		block++;
1017 		bh = bh->b_this_page;
1018 	} while (bh != head);
1019 
1020 	/*
1021 	 * Caller needs to validate requested block against end of device.
1022 	 */
1023 	return end_block;
1024 }
1025 
1026 /*
1027  * Create the page-cache folio that contains the requested block.
1028  *
1029  * This is used purely for blockdev mappings.
1030  *
1031  * Returns false if we have a failure which cannot be cured by retrying
1032  * without sleeping.  Returns true if we succeeded, or the caller should retry.
1033  */
1034 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1035 		pgoff_t index, unsigned size, gfp_t gfp)
1036 {
1037 	struct inode *inode = bdev->bd_inode;
1038 	struct folio *folio;
1039 	struct buffer_head *bh;
1040 	sector_t end_block = 0;
1041 
1042 	folio = __filemap_get_folio(inode->i_mapping, index,
1043 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1044 	if (IS_ERR(folio))
1045 		return false;
1046 
1047 	bh = folio_buffers(folio);
1048 	if (bh) {
1049 		if (bh->b_size == size) {
1050 			end_block = folio_init_buffers(folio, bdev, size);
1051 			goto unlock;
1052 		}
1053 
1054 		/*
1055 		 * Retrying may succeed; for example the folio may finish
1056 		 * writeback, or buffers may be cleaned.  This should not
1057 		 * happen very often; maybe we have old buffers attached to
1058 		 * this blockdev's page cache and we're trying to change
1059 		 * the block size?
1060 		 */
1061 		if (!try_to_free_buffers(folio)) {
1062 			end_block = ~0ULL;
1063 			goto unlock;
1064 		}
1065 	}
1066 
1067 	bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1068 	if (!bh)
1069 		goto unlock;
1070 
1071 	/*
1072 	 * Link the folio to the buffers and initialise them.  Take the
1073 	 * lock to be atomic wrt __find_get_block(), which does not
1074 	 * run under the folio lock.
1075 	 */
1076 	spin_lock(&inode->i_mapping->i_private_lock);
1077 	link_dev_buffers(folio, bh);
1078 	end_block = folio_init_buffers(folio, bdev, size);
1079 	spin_unlock(&inode->i_mapping->i_private_lock);
1080 unlock:
1081 	folio_unlock(folio);
1082 	folio_put(folio);
1083 	return block < end_block;
1084 }
1085 
1086 /*
1087  * Create buffers for the specified block device block's folio.  If
1088  * that folio was dirty, the buffers are set dirty also.  Returns false
1089  * if we've hit a permanent error.
1090  */
1091 static bool grow_buffers(struct block_device *bdev, sector_t block,
1092 		unsigned size, gfp_t gfp)
1093 {
1094 	loff_t pos;
1095 
1096 	/*
1097 	 * Check for a block which lies outside our maximum possible
1098 	 * pagecache index.
1099 	 */
1100 	if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1101 		printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1102 			__func__, (unsigned long long)block,
1103 			bdev);
1104 		return false;
1105 	}
1106 
1107 	/* Create a folio with the proper size buffers */
1108 	return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1109 }
1110 
1111 static struct buffer_head *
1112 __getblk_slow(struct block_device *bdev, sector_t block,
1113 	     unsigned size, gfp_t gfp)
1114 {
1115 	/* Size must be multiple of hard sectorsize */
1116 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1117 			(size < 512 || size > PAGE_SIZE))) {
1118 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1119 					size);
1120 		printk(KERN_ERR "logical block size: %d\n",
1121 					bdev_logical_block_size(bdev));
1122 
1123 		dump_stack();
1124 		return NULL;
1125 	}
1126 
1127 	for (;;) {
1128 		struct buffer_head *bh;
1129 
1130 		bh = __find_get_block(bdev, block, size);
1131 		if (bh)
1132 			return bh;
1133 
1134 		if (!grow_buffers(bdev, block, size, gfp))
1135 			return NULL;
1136 	}
1137 }
1138 
1139 /*
1140  * The relationship between dirty buffers and dirty pages:
1141  *
1142  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1143  * the page is tagged dirty in the page cache.
1144  *
1145  * At all times, the dirtiness of the buffers represents the dirtiness of
1146  * subsections of the page.  If the page has buffers, the page dirty bit is
1147  * merely a hint about the true dirty state.
1148  *
1149  * When a page is set dirty in its entirety, all its buffers are marked dirty
1150  * (if the page has buffers).
1151  *
1152  * When a buffer is marked dirty, its page is dirtied, but the page's other
1153  * buffers are not.
1154  *
1155  * Also.  When blockdev buffers are explicitly read with bread(), they
1156  * individually become uptodate.  But their backing page remains not
1157  * uptodate - even if all of its buffers are uptodate.  A subsequent
1158  * block_read_full_folio() against that folio will discover all the uptodate
1159  * buffers, will set the folio uptodate and will perform no I/O.
1160  */
1161 
1162 /**
1163  * mark_buffer_dirty - mark a buffer_head as needing writeout
1164  * @bh: the buffer_head to mark dirty
1165  *
1166  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1167  * its backing page dirty, then tag the page as dirty in the page cache
1168  * and then attach the address_space's inode to its superblock's dirty
1169  * inode list.
1170  *
1171  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->i_private_lock,
1172  * i_pages lock and mapping->host->i_lock.
1173  */
1174 void mark_buffer_dirty(struct buffer_head *bh)
1175 {
1176 	WARN_ON_ONCE(!buffer_uptodate(bh));
1177 
1178 	trace_block_dirty_buffer(bh);
1179 
1180 	/*
1181 	 * Very *carefully* optimize the it-is-already-dirty case.
1182 	 *
1183 	 * Don't let the final "is it dirty" escape to before we
1184 	 * perhaps modified the buffer.
1185 	 */
1186 	if (buffer_dirty(bh)) {
1187 		smp_mb();
1188 		if (buffer_dirty(bh))
1189 			return;
1190 	}
1191 
1192 	if (!test_set_buffer_dirty(bh)) {
1193 		struct folio *folio = bh->b_folio;
1194 		struct address_space *mapping = NULL;
1195 
1196 		folio_memcg_lock(folio);
1197 		if (!folio_test_set_dirty(folio)) {
1198 			mapping = folio->mapping;
1199 			if (mapping)
1200 				__folio_mark_dirty(folio, mapping, 0);
1201 		}
1202 		folio_memcg_unlock(folio);
1203 		if (mapping)
1204 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1205 	}
1206 }
1207 EXPORT_SYMBOL(mark_buffer_dirty);
1208 
1209 void mark_buffer_write_io_error(struct buffer_head *bh)
1210 {
1211 	set_buffer_write_io_error(bh);
1212 	/* FIXME: do we need to set this in both places? */
1213 	if (bh->b_folio && bh->b_folio->mapping)
1214 		mapping_set_error(bh->b_folio->mapping, -EIO);
1215 	if (bh->b_assoc_map) {
1216 		mapping_set_error(bh->b_assoc_map, -EIO);
1217 		errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1218 	}
1219 }
1220 EXPORT_SYMBOL(mark_buffer_write_io_error);
1221 
1222 /*
1223  * Decrement a buffer_head's reference count.  If all buffers against a page
1224  * have zero reference count, are clean and unlocked, and if the page is clean
1225  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1226  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1227  * a page but it ends up not being freed, and buffers may later be reattached).
1228  */
1229 void __brelse(struct buffer_head * buf)
1230 {
1231 	if (atomic_read(&buf->b_count)) {
1232 		put_bh(buf);
1233 		return;
1234 	}
1235 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1236 }
1237 EXPORT_SYMBOL(__brelse);
1238 
1239 /*
1240  * bforget() is like brelse(), except it discards any
1241  * potentially dirty data.
1242  */
1243 void __bforget(struct buffer_head *bh)
1244 {
1245 	clear_buffer_dirty(bh);
1246 	if (bh->b_assoc_map) {
1247 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1248 
1249 		spin_lock(&buffer_mapping->i_private_lock);
1250 		list_del_init(&bh->b_assoc_buffers);
1251 		bh->b_assoc_map = NULL;
1252 		spin_unlock(&buffer_mapping->i_private_lock);
1253 	}
1254 	__brelse(bh);
1255 }
1256 EXPORT_SYMBOL(__bforget);
1257 
1258 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1259 {
1260 	lock_buffer(bh);
1261 	if (buffer_uptodate(bh)) {
1262 		unlock_buffer(bh);
1263 		return bh;
1264 	} else {
1265 		get_bh(bh);
1266 		bh->b_end_io = end_buffer_read_sync;
1267 		submit_bh(REQ_OP_READ, bh);
1268 		wait_on_buffer(bh);
1269 		if (buffer_uptodate(bh))
1270 			return bh;
1271 	}
1272 	brelse(bh);
1273 	return NULL;
1274 }
1275 
1276 /*
1277  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1278  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1279  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1280  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1281  * CPU's LRUs at the same time.
1282  *
1283  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1284  * sb_find_get_block().
1285  *
1286  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1287  * a local interrupt disable for that.
1288  */
1289 
1290 #define BH_LRU_SIZE	16
1291 
1292 struct bh_lru {
1293 	struct buffer_head *bhs[BH_LRU_SIZE];
1294 };
1295 
1296 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1297 
1298 #ifdef CONFIG_SMP
1299 #define bh_lru_lock()	local_irq_disable()
1300 #define bh_lru_unlock()	local_irq_enable()
1301 #else
1302 #define bh_lru_lock()	preempt_disable()
1303 #define bh_lru_unlock()	preempt_enable()
1304 #endif
1305 
1306 static inline void check_irqs_on(void)
1307 {
1308 #ifdef irqs_disabled
1309 	BUG_ON(irqs_disabled());
1310 #endif
1311 }
1312 
1313 /*
1314  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1315  * inserted at the front, and the buffer_head at the back if any is evicted.
1316  * Or, if already in the LRU it is moved to the front.
1317  */
1318 static void bh_lru_install(struct buffer_head *bh)
1319 {
1320 	struct buffer_head *evictee = bh;
1321 	struct bh_lru *b;
1322 	int i;
1323 
1324 	check_irqs_on();
1325 	bh_lru_lock();
1326 
1327 	/*
1328 	 * the refcount of buffer_head in bh_lru prevents dropping the
1329 	 * attached page(i.e., try_to_free_buffers) so it could cause
1330 	 * failing page migration.
1331 	 * Skip putting upcoming bh into bh_lru until migration is done.
1332 	 */
1333 	if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1334 		bh_lru_unlock();
1335 		return;
1336 	}
1337 
1338 	b = this_cpu_ptr(&bh_lrus);
1339 	for (i = 0; i < BH_LRU_SIZE; i++) {
1340 		swap(evictee, b->bhs[i]);
1341 		if (evictee == bh) {
1342 			bh_lru_unlock();
1343 			return;
1344 		}
1345 	}
1346 
1347 	get_bh(bh);
1348 	bh_lru_unlock();
1349 	brelse(evictee);
1350 }
1351 
1352 /*
1353  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1354  */
1355 static struct buffer_head *
1356 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358 	struct buffer_head *ret = NULL;
1359 	unsigned int i;
1360 
1361 	check_irqs_on();
1362 	bh_lru_lock();
1363 	if (cpu_is_isolated(smp_processor_id())) {
1364 		bh_lru_unlock();
1365 		return NULL;
1366 	}
1367 	for (i = 0; i < BH_LRU_SIZE; i++) {
1368 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1369 
1370 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1371 		    bh->b_size == size) {
1372 			if (i) {
1373 				while (i) {
1374 					__this_cpu_write(bh_lrus.bhs[i],
1375 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1376 					i--;
1377 				}
1378 				__this_cpu_write(bh_lrus.bhs[0], bh);
1379 			}
1380 			get_bh(bh);
1381 			ret = bh;
1382 			break;
1383 		}
1384 	}
1385 	bh_lru_unlock();
1386 	return ret;
1387 }
1388 
1389 /*
1390  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1391  * it in the LRU and mark it as accessed.  If it is not present then return
1392  * NULL
1393  */
1394 struct buffer_head *
1395 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1396 {
1397 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1398 
1399 	if (bh == NULL) {
1400 		/* __find_get_block_slow will mark the page accessed */
1401 		bh = __find_get_block_slow(bdev, block);
1402 		if (bh)
1403 			bh_lru_install(bh);
1404 	} else
1405 		touch_buffer(bh);
1406 
1407 	return bh;
1408 }
1409 EXPORT_SYMBOL(__find_get_block);
1410 
1411 /**
1412  * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1413  * @bdev: The block device.
1414  * @block: The block number.
1415  * @size: The size of buffer_heads for this @bdev.
1416  * @gfp: The memory allocation flags to use.
1417  *
1418  * Return: The buffer head, or NULL if memory could not be allocated.
1419  */
1420 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1421 		unsigned size, gfp_t gfp)
1422 {
1423 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1424 
1425 	might_alloc(gfp);
1426 	if (bh)
1427 		return bh;
1428 
1429 	return __getblk_slow(bdev, block, size, gfp);
1430 }
1431 EXPORT_SYMBOL(bdev_getblk);
1432 
1433 /*
1434  * Do async read-ahead on a buffer..
1435  */
1436 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1437 {
1438 	struct buffer_head *bh = bdev_getblk(bdev, block, size,
1439 			GFP_NOWAIT | __GFP_MOVABLE);
1440 
1441 	if (likely(bh)) {
1442 		bh_readahead(bh, REQ_RAHEAD);
1443 		brelse(bh);
1444 	}
1445 }
1446 EXPORT_SYMBOL(__breadahead);
1447 
1448 /**
1449  *  __bread_gfp() - reads a specified block and returns the bh
1450  *  @bdev: the block_device to read from
1451  *  @block: number of block
1452  *  @size: size (in bytes) to read
1453  *  @gfp: page allocation flag
1454  *
1455  *  Reads a specified block, and returns buffer head that contains it.
1456  *  The page cache can be allocated from non-movable area
1457  *  not to prevent page migration if you set gfp to zero.
1458  *  It returns NULL if the block was unreadable.
1459  */
1460 struct buffer_head *
1461 __bread_gfp(struct block_device *bdev, sector_t block,
1462 		   unsigned size, gfp_t gfp)
1463 {
1464 	struct buffer_head *bh;
1465 
1466 	gfp |= mapping_gfp_constraint(bdev->bd_inode->i_mapping, ~__GFP_FS);
1467 
1468 	/*
1469 	 * Prefer looping in the allocator rather than here, at least that
1470 	 * code knows what it's doing.
1471 	 */
1472 	gfp |= __GFP_NOFAIL;
1473 
1474 	bh = bdev_getblk(bdev, block, size, gfp);
1475 
1476 	if (likely(bh) && !buffer_uptodate(bh))
1477 		bh = __bread_slow(bh);
1478 	return bh;
1479 }
1480 EXPORT_SYMBOL(__bread_gfp);
1481 
1482 static void __invalidate_bh_lrus(struct bh_lru *b)
1483 {
1484 	int i;
1485 
1486 	for (i = 0; i < BH_LRU_SIZE; i++) {
1487 		brelse(b->bhs[i]);
1488 		b->bhs[i] = NULL;
1489 	}
1490 }
1491 /*
1492  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1493  * This doesn't race because it runs in each cpu either in irq
1494  * or with preempt disabled.
1495  */
1496 static void invalidate_bh_lru(void *arg)
1497 {
1498 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1499 
1500 	__invalidate_bh_lrus(b);
1501 	put_cpu_var(bh_lrus);
1502 }
1503 
1504 bool has_bh_in_lru(int cpu, void *dummy)
1505 {
1506 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1507 	int i;
1508 
1509 	for (i = 0; i < BH_LRU_SIZE; i++) {
1510 		if (b->bhs[i])
1511 			return true;
1512 	}
1513 
1514 	return false;
1515 }
1516 
1517 void invalidate_bh_lrus(void)
1518 {
1519 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1520 }
1521 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1522 
1523 /*
1524  * It's called from workqueue context so we need a bh_lru_lock to close
1525  * the race with preemption/irq.
1526  */
1527 void invalidate_bh_lrus_cpu(void)
1528 {
1529 	struct bh_lru *b;
1530 
1531 	bh_lru_lock();
1532 	b = this_cpu_ptr(&bh_lrus);
1533 	__invalidate_bh_lrus(b);
1534 	bh_lru_unlock();
1535 }
1536 
1537 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1538 		  unsigned long offset)
1539 {
1540 	bh->b_folio = folio;
1541 	BUG_ON(offset >= folio_size(folio));
1542 	if (folio_test_highmem(folio))
1543 		/*
1544 		 * This catches illegal uses and preserves the offset:
1545 		 */
1546 		bh->b_data = (char *)(0 + offset);
1547 	else
1548 		bh->b_data = folio_address(folio) + offset;
1549 }
1550 EXPORT_SYMBOL(folio_set_bh);
1551 
1552 /*
1553  * Called when truncating a buffer on a page completely.
1554  */
1555 
1556 /* Bits that are cleared during an invalidate */
1557 #define BUFFER_FLAGS_DISCARD \
1558 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1559 	 1 << BH_Delay | 1 << BH_Unwritten)
1560 
1561 static void discard_buffer(struct buffer_head * bh)
1562 {
1563 	unsigned long b_state;
1564 
1565 	lock_buffer(bh);
1566 	clear_buffer_dirty(bh);
1567 	bh->b_bdev = NULL;
1568 	b_state = READ_ONCE(bh->b_state);
1569 	do {
1570 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1571 			      b_state & ~BUFFER_FLAGS_DISCARD));
1572 	unlock_buffer(bh);
1573 }
1574 
1575 /**
1576  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1577  * @folio: The folio which is affected.
1578  * @offset: start of the range to invalidate
1579  * @length: length of the range to invalidate
1580  *
1581  * block_invalidate_folio() is called when all or part of the folio has been
1582  * invalidated by a truncate operation.
1583  *
1584  * block_invalidate_folio() does not have to release all buffers, but it must
1585  * ensure that no dirty buffer is left outside @offset and that no I/O
1586  * is underway against any of the blocks which are outside the truncation
1587  * point.  Because the caller is about to free (and possibly reuse) those
1588  * blocks on-disk.
1589  */
1590 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1591 {
1592 	struct buffer_head *head, *bh, *next;
1593 	size_t curr_off = 0;
1594 	size_t stop = length + offset;
1595 
1596 	BUG_ON(!folio_test_locked(folio));
1597 
1598 	/*
1599 	 * Check for overflow
1600 	 */
1601 	BUG_ON(stop > folio_size(folio) || stop < length);
1602 
1603 	head = folio_buffers(folio);
1604 	if (!head)
1605 		return;
1606 
1607 	bh = head;
1608 	do {
1609 		size_t next_off = curr_off + bh->b_size;
1610 		next = bh->b_this_page;
1611 
1612 		/*
1613 		 * Are we still fully in range ?
1614 		 */
1615 		if (next_off > stop)
1616 			goto out;
1617 
1618 		/*
1619 		 * is this block fully invalidated?
1620 		 */
1621 		if (offset <= curr_off)
1622 			discard_buffer(bh);
1623 		curr_off = next_off;
1624 		bh = next;
1625 	} while (bh != head);
1626 
1627 	/*
1628 	 * We release buffers only if the entire folio is being invalidated.
1629 	 * The get_block cached value has been unconditionally invalidated,
1630 	 * so real IO is not possible anymore.
1631 	 */
1632 	if (length == folio_size(folio))
1633 		filemap_release_folio(folio, 0);
1634 out:
1635 	return;
1636 }
1637 EXPORT_SYMBOL(block_invalidate_folio);
1638 
1639 /*
1640  * We attach and possibly dirty the buffers atomically wrt
1641  * block_dirty_folio() via i_private_lock.  try_to_free_buffers
1642  * is already excluded via the folio lock.
1643  */
1644 struct buffer_head *create_empty_buffers(struct folio *folio,
1645 		unsigned long blocksize, unsigned long b_state)
1646 {
1647 	struct buffer_head *bh, *head, *tail;
1648 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1649 
1650 	head = folio_alloc_buffers(folio, blocksize, gfp);
1651 	bh = head;
1652 	do {
1653 		bh->b_state |= b_state;
1654 		tail = bh;
1655 		bh = bh->b_this_page;
1656 	} while (bh);
1657 	tail->b_this_page = head;
1658 
1659 	spin_lock(&folio->mapping->i_private_lock);
1660 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1661 		bh = head;
1662 		do {
1663 			if (folio_test_dirty(folio))
1664 				set_buffer_dirty(bh);
1665 			if (folio_test_uptodate(folio))
1666 				set_buffer_uptodate(bh);
1667 			bh = bh->b_this_page;
1668 		} while (bh != head);
1669 	}
1670 	folio_attach_private(folio, head);
1671 	spin_unlock(&folio->mapping->i_private_lock);
1672 
1673 	return head;
1674 }
1675 EXPORT_SYMBOL(create_empty_buffers);
1676 
1677 /**
1678  * clean_bdev_aliases: clean a range of buffers in block device
1679  * @bdev: Block device to clean buffers in
1680  * @block: Start of a range of blocks to clean
1681  * @len: Number of blocks to clean
1682  *
1683  * We are taking a range of blocks for data and we don't want writeback of any
1684  * buffer-cache aliases starting from return from this function and until the
1685  * moment when something will explicitly mark the buffer dirty (hopefully that
1686  * will not happen until we will free that block ;-) We don't even need to mark
1687  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1688  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1689  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1690  * would confuse anyone who might pick it with bread() afterwards...
1691  *
1692  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1693  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1694  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1695  * need to.  That happens here.
1696  */
1697 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1698 {
1699 	struct inode *bd_inode = bdev->bd_inode;
1700 	struct address_space *bd_mapping = bd_inode->i_mapping;
1701 	struct folio_batch fbatch;
1702 	pgoff_t index = ((loff_t)block << bd_inode->i_blkbits) / PAGE_SIZE;
1703 	pgoff_t end;
1704 	int i, count;
1705 	struct buffer_head *bh;
1706 	struct buffer_head *head;
1707 
1708 	end = ((loff_t)(block + len - 1) << bd_inode->i_blkbits) / PAGE_SIZE;
1709 	folio_batch_init(&fbatch);
1710 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1711 		count = folio_batch_count(&fbatch);
1712 		for (i = 0; i < count; i++) {
1713 			struct folio *folio = fbatch.folios[i];
1714 
1715 			if (!folio_buffers(folio))
1716 				continue;
1717 			/*
1718 			 * We use folio lock instead of bd_mapping->i_private_lock
1719 			 * to pin buffers here since we can afford to sleep and
1720 			 * it scales better than a global spinlock lock.
1721 			 */
1722 			folio_lock(folio);
1723 			/* Recheck when the folio is locked which pins bhs */
1724 			head = folio_buffers(folio);
1725 			if (!head)
1726 				goto unlock_page;
1727 			bh = head;
1728 			do {
1729 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1730 					goto next;
1731 				if (bh->b_blocknr >= block + len)
1732 					break;
1733 				clear_buffer_dirty(bh);
1734 				wait_on_buffer(bh);
1735 				clear_buffer_req(bh);
1736 next:
1737 				bh = bh->b_this_page;
1738 			} while (bh != head);
1739 unlock_page:
1740 			folio_unlock(folio);
1741 		}
1742 		folio_batch_release(&fbatch);
1743 		cond_resched();
1744 		/* End of range already reached? */
1745 		if (index > end || !index)
1746 			break;
1747 	}
1748 }
1749 EXPORT_SYMBOL(clean_bdev_aliases);
1750 
1751 static struct buffer_head *folio_create_buffers(struct folio *folio,
1752 						struct inode *inode,
1753 						unsigned int b_state)
1754 {
1755 	struct buffer_head *bh;
1756 
1757 	BUG_ON(!folio_test_locked(folio));
1758 
1759 	bh = folio_buffers(folio);
1760 	if (!bh)
1761 		bh = create_empty_buffers(folio,
1762 				1 << READ_ONCE(inode->i_blkbits), b_state);
1763 	return bh;
1764 }
1765 
1766 /*
1767  * NOTE! All mapped/uptodate combinations are valid:
1768  *
1769  *	Mapped	Uptodate	Meaning
1770  *
1771  *	No	No		"unknown" - must do get_block()
1772  *	No	Yes		"hole" - zero-filled
1773  *	Yes	No		"allocated" - allocated on disk, not read in
1774  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1775  *
1776  * "Dirty" is valid only with the last case (mapped+uptodate).
1777  */
1778 
1779 /*
1780  * While block_write_full_folio is writing back the dirty buffers under
1781  * the page lock, whoever dirtied the buffers may decide to clean them
1782  * again at any time.  We handle that by only looking at the buffer
1783  * state inside lock_buffer().
1784  *
1785  * If block_write_full_folio() is called for regular writeback
1786  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1787  * locked buffer.   This only can happen if someone has written the buffer
1788  * directly, with submit_bh().  At the address_space level PageWriteback
1789  * prevents this contention from occurring.
1790  *
1791  * If block_write_full_folio() is called with wbc->sync_mode ==
1792  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1793  * causes the writes to be flagged as synchronous writes.
1794  */
1795 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1796 			get_block_t *get_block, struct writeback_control *wbc)
1797 {
1798 	int err;
1799 	sector_t block;
1800 	sector_t last_block;
1801 	struct buffer_head *bh, *head;
1802 	size_t blocksize;
1803 	int nr_underway = 0;
1804 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1805 
1806 	head = folio_create_buffers(folio, inode,
1807 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1808 
1809 	/*
1810 	 * Be very careful.  We have no exclusion from block_dirty_folio
1811 	 * here, and the (potentially unmapped) buffers may become dirty at
1812 	 * any time.  If a buffer becomes dirty here after we've inspected it
1813 	 * then we just miss that fact, and the folio stays dirty.
1814 	 *
1815 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1816 	 * handle that here by just cleaning them.
1817 	 */
1818 
1819 	bh = head;
1820 	blocksize = bh->b_size;
1821 
1822 	block = div_u64(folio_pos(folio), blocksize);
1823 	last_block = div_u64(i_size_read(inode) - 1, blocksize);
1824 
1825 	/*
1826 	 * Get all the dirty buffers mapped to disk addresses and
1827 	 * handle any aliases from the underlying blockdev's mapping.
1828 	 */
1829 	do {
1830 		if (block > last_block) {
1831 			/*
1832 			 * mapped buffers outside i_size will occur, because
1833 			 * this folio can be outside i_size when there is a
1834 			 * truncate in progress.
1835 			 */
1836 			/*
1837 			 * The buffer was zeroed by block_write_full_folio()
1838 			 */
1839 			clear_buffer_dirty(bh);
1840 			set_buffer_uptodate(bh);
1841 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1842 			   buffer_dirty(bh)) {
1843 			WARN_ON(bh->b_size != blocksize);
1844 			err = get_block(inode, block, bh, 1);
1845 			if (err)
1846 				goto recover;
1847 			clear_buffer_delay(bh);
1848 			if (buffer_new(bh)) {
1849 				/* blockdev mappings never come here */
1850 				clear_buffer_new(bh);
1851 				clean_bdev_bh_alias(bh);
1852 			}
1853 		}
1854 		bh = bh->b_this_page;
1855 		block++;
1856 	} while (bh != head);
1857 
1858 	do {
1859 		if (!buffer_mapped(bh))
1860 			continue;
1861 		/*
1862 		 * If it's a fully non-blocking write attempt and we cannot
1863 		 * lock the buffer then redirty the folio.  Note that this can
1864 		 * potentially cause a busy-wait loop from writeback threads
1865 		 * and kswapd activity, but those code paths have their own
1866 		 * higher-level throttling.
1867 		 */
1868 		if (wbc->sync_mode != WB_SYNC_NONE) {
1869 			lock_buffer(bh);
1870 		} else if (!trylock_buffer(bh)) {
1871 			folio_redirty_for_writepage(wbc, folio);
1872 			continue;
1873 		}
1874 		if (test_clear_buffer_dirty(bh)) {
1875 			mark_buffer_async_write_endio(bh,
1876 				end_buffer_async_write);
1877 		} else {
1878 			unlock_buffer(bh);
1879 		}
1880 	} while ((bh = bh->b_this_page) != head);
1881 
1882 	/*
1883 	 * The folio and its buffers are protected by the writeback flag,
1884 	 * so we can drop the bh refcounts early.
1885 	 */
1886 	BUG_ON(folio_test_writeback(folio));
1887 	folio_start_writeback(folio);
1888 
1889 	do {
1890 		struct buffer_head *next = bh->b_this_page;
1891 		if (buffer_async_write(bh)) {
1892 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1893 				      inode->i_write_hint, wbc);
1894 			nr_underway++;
1895 		}
1896 		bh = next;
1897 	} while (bh != head);
1898 	folio_unlock(folio);
1899 
1900 	err = 0;
1901 done:
1902 	if (nr_underway == 0) {
1903 		/*
1904 		 * The folio was marked dirty, but the buffers were
1905 		 * clean.  Someone wrote them back by hand with
1906 		 * write_dirty_buffer/submit_bh.  A rare case.
1907 		 */
1908 		folio_end_writeback(folio);
1909 
1910 		/*
1911 		 * The folio and buffer_heads can be released at any time from
1912 		 * here on.
1913 		 */
1914 	}
1915 	return err;
1916 
1917 recover:
1918 	/*
1919 	 * ENOSPC, or some other error.  We may already have added some
1920 	 * blocks to the file, so we need to write these out to avoid
1921 	 * exposing stale data.
1922 	 * The folio is currently locked and not marked for writeback
1923 	 */
1924 	bh = head;
1925 	/* Recovery: lock and submit the mapped buffers */
1926 	do {
1927 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1928 		    !buffer_delay(bh)) {
1929 			lock_buffer(bh);
1930 			mark_buffer_async_write_endio(bh,
1931 				end_buffer_async_write);
1932 		} else {
1933 			/*
1934 			 * The buffer may have been set dirty during
1935 			 * attachment to a dirty folio.
1936 			 */
1937 			clear_buffer_dirty(bh);
1938 		}
1939 	} while ((bh = bh->b_this_page) != head);
1940 	folio_set_error(folio);
1941 	BUG_ON(folio_test_writeback(folio));
1942 	mapping_set_error(folio->mapping, err);
1943 	folio_start_writeback(folio);
1944 	do {
1945 		struct buffer_head *next = bh->b_this_page;
1946 		if (buffer_async_write(bh)) {
1947 			clear_buffer_dirty(bh);
1948 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1949 				      inode->i_write_hint, wbc);
1950 			nr_underway++;
1951 		}
1952 		bh = next;
1953 	} while (bh != head);
1954 	folio_unlock(folio);
1955 	goto done;
1956 }
1957 EXPORT_SYMBOL(__block_write_full_folio);
1958 
1959 /*
1960  * If a folio has any new buffers, zero them out here, and mark them uptodate
1961  * and dirty so they'll be written out (in order to prevent uninitialised
1962  * block data from leaking). And clear the new bit.
1963  */
1964 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1965 {
1966 	size_t block_start, block_end;
1967 	struct buffer_head *head, *bh;
1968 
1969 	BUG_ON(!folio_test_locked(folio));
1970 	head = folio_buffers(folio);
1971 	if (!head)
1972 		return;
1973 
1974 	bh = head;
1975 	block_start = 0;
1976 	do {
1977 		block_end = block_start + bh->b_size;
1978 
1979 		if (buffer_new(bh)) {
1980 			if (block_end > from && block_start < to) {
1981 				if (!folio_test_uptodate(folio)) {
1982 					size_t start, xend;
1983 
1984 					start = max(from, block_start);
1985 					xend = min(to, block_end);
1986 
1987 					folio_zero_segment(folio, start, xend);
1988 					set_buffer_uptodate(bh);
1989 				}
1990 
1991 				clear_buffer_new(bh);
1992 				mark_buffer_dirty(bh);
1993 			}
1994 		}
1995 
1996 		block_start = block_end;
1997 		bh = bh->b_this_page;
1998 	} while (bh != head);
1999 }
2000 EXPORT_SYMBOL(folio_zero_new_buffers);
2001 
2002 static int
2003 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2004 		const struct iomap *iomap)
2005 {
2006 	loff_t offset = (loff_t)block << inode->i_blkbits;
2007 
2008 	bh->b_bdev = iomap->bdev;
2009 
2010 	/*
2011 	 * Block points to offset in file we need to map, iomap contains
2012 	 * the offset at which the map starts. If the map ends before the
2013 	 * current block, then do not map the buffer and let the caller
2014 	 * handle it.
2015 	 */
2016 	if (offset >= iomap->offset + iomap->length)
2017 		return -EIO;
2018 
2019 	switch (iomap->type) {
2020 	case IOMAP_HOLE:
2021 		/*
2022 		 * If the buffer is not up to date or beyond the current EOF,
2023 		 * we need to mark it as new to ensure sub-block zeroing is
2024 		 * executed if necessary.
2025 		 */
2026 		if (!buffer_uptodate(bh) ||
2027 		    (offset >= i_size_read(inode)))
2028 			set_buffer_new(bh);
2029 		return 0;
2030 	case IOMAP_DELALLOC:
2031 		if (!buffer_uptodate(bh) ||
2032 		    (offset >= i_size_read(inode)))
2033 			set_buffer_new(bh);
2034 		set_buffer_uptodate(bh);
2035 		set_buffer_mapped(bh);
2036 		set_buffer_delay(bh);
2037 		return 0;
2038 	case IOMAP_UNWRITTEN:
2039 		/*
2040 		 * For unwritten regions, we always need to ensure that regions
2041 		 * in the block we are not writing to are zeroed. Mark the
2042 		 * buffer as new to ensure this.
2043 		 */
2044 		set_buffer_new(bh);
2045 		set_buffer_unwritten(bh);
2046 		fallthrough;
2047 	case IOMAP_MAPPED:
2048 		if ((iomap->flags & IOMAP_F_NEW) ||
2049 		    offset >= i_size_read(inode)) {
2050 			/*
2051 			 * This can happen if truncating the block device races
2052 			 * with the check in the caller as i_size updates on
2053 			 * block devices aren't synchronized by i_rwsem for
2054 			 * block devices.
2055 			 */
2056 			if (S_ISBLK(inode->i_mode))
2057 				return -EIO;
2058 			set_buffer_new(bh);
2059 		}
2060 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2061 				inode->i_blkbits;
2062 		set_buffer_mapped(bh);
2063 		return 0;
2064 	default:
2065 		WARN_ON_ONCE(1);
2066 		return -EIO;
2067 	}
2068 }
2069 
2070 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2071 		get_block_t *get_block, const struct iomap *iomap)
2072 {
2073 	size_t from = offset_in_folio(folio, pos);
2074 	size_t to = from + len;
2075 	struct inode *inode = folio->mapping->host;
2076 	size_t block_start, block_end;
2077 	sector_t block;
2078 	int err = 0;
2079 	size_t blocksize;
2080 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2081 
2082 	BUG_ON(!folio_test_locked(folio));
2083 	BUG_ON(to > folio_size(folio));
2084 	BUG_ON(from > to);
2085 
2086 	head = folio_create_buffers(folio, inode, 0);
2087 	blocksize = head->b_size;
2088 	block = div_u64(folio_pos(folio), blocksize);
2089 
2090 	for (bh = head, block_start = 0; bh != head || !block_start;
2091 	    block++, block_start=block_end, bh = bh->b_this_page) {
2092 		block_end = block_start + blocksize;
2093 		if (block_end <= from || block_start >= to) {
2094 			if (folio_test_uptodate(folio)) {
2095 				if (!buffer_uptodate(bh))
2096 					set_buffer_uptodate(bh);
2097 			}
2098 			continue;
2099 		}
2100 		if (buffer_new(bh))
2101 			clear_buffer_new(bh);
2102 		if (!buffer_mapped(bh)) {
2103 			WARN_ON(bh->b_size != blocksize);
2104 			if (get_block)
2105 				err = get_block(inode, block, bh, 1);
2106 			else
2107 				err = iomap_to_bh(inode, block, bh, iomap);
2108 			if (err)
2109 				break;
2110 
2111 			if (buffer_new(bh)) {
2112 				clean_bdev_bh_alias(bh);
2113 				if (folio_test_uptodate(folio)) {
2114 					clear_buffer_new(bh);
2115 					set_buffer_uptodate(bh);
2116 					mark_buffer_dirty(bh);
2117 					continue;
2118 				}
2119 				if (block_end > to || block_start < from)
2120 					folio_zero_segments(folio,
2121 						to, block_end,
2122 						block_start, from);
2123 				continue;
2124 			}
2125 		}
2126 		if (folio_test_uptodate(folio)) {
2127 			if (!buffer_uptodate(bh))
2128 				set_buffer_uptodate(bh);
2129 			continue;
2130 		}
2131 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2132 		    !buffer_unwritten(bh) &&
2133 		     (block_start < from || block_end > to)) {
2134 			bh_read_nowait(bh, 0);
2135 			*wait_bh++=bh;
2136 		}
2137 	}
2138 	/*
2139 	 * If we issued read requests - let them complete.
2140 	 */
2141 	while(wait_bh > wait) {
2142 		wait_on_buffer(*--wait_bh);
2143 		if (!buffer_uptodate(*wait_bh))
2144 			err = -EIO;
2145 	}
2146 	if (unlikely(err))
2147 		folio_zero_new_buffers(folio, from, to);
2148 	return err;
2149 }
2150 
2151 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2152 		get_block_t *get_block)
2153 {
2154 	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2155 				       NULL);
2156 }
2157 EXPORT_SYMBOL(__block_write_begin);
2158 
2159 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2160 {
2161 	size_t block_start, block_end;
2162 	bool partial = false;
2163 	unsigned blocksize;
2164 	struct buffer_head *bh, *head;
2165 
2166 	bh = head = folio_buffers(folio);
2167 	blocksize = bh->b_size;
2168 
2169 	block_start = 0;
2170 	do {
2171 		block_end = block_start + blocksize;
2172 		if (block_end <= from || block_start >= to) {
2173 			if (!buffer_uptodate(bh))
2174 				partial = true;
2175 		} else {
2176 			set_buffer_uptodate(bh);
2177 			mark_buffer_dirty(bh);
2178 		}
2179 		if (buffer_new(bh))
2180 			clear_buffer_new(bh);
2181 
2182 		block_start = block_end;
2183 		bh = bh->b_this_page;
2184 	} while (bh != head);
2185 
2186 	/*
2187 	 * If this is a partial write which happened to make all buffers
2188 	 * uptodate then we can optimize away a bogus read_folio() for
2189 	 * the next read(). Here we 'discover' whether the folio went
2190 	 * uptodate as a result of this (potentially partial) write.
2191 	 */
2192 	if (!partial)
2193 		folio_mark_uptodate(folio);
2194 }
2195 
2196 /*
2197  * block_write_begin takes care of the basic task of block allocation and
2198  * bringing partial write blocks uptodate first.
2199  *
2200  * The filesystem needs to handle block truncation upon failure.
2201  */
2202 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2203 		struct page **pagep, get_block_t *get_block)
2204 {
2205 	pgoff_t index = pos >> PAGE_SHIFT;
2206 	struct page *page;
2207 	int status;
2208 
2209 	page = grab_cache_page_write_begin(mapping, index);
2210 	if (!page)
2211 		return -ENOMEM;
2212 
2213 	status = __block_write_begin(page, pos, len, get_block);
2214 	if (unlikely(status)) {
2215 		unlock_page(page);
2216 		put_page(page);
2217 		page = NULL;
2218 	}
2219 
2220 	*pagep = page;
2221 	return status;
2222 }
2223 EXPORT_SYMBOL(block_write_begin);
2224 
2225 int block_write_end(struct file *file, struct address_space *mapping,
2226 			loff_t pos, unsigned len, unsigned copied,
2227 			struct page *page, void *fsdata)
2228 {
2229 	struct folio *folio = page_folio(page);
2230 	size_t start = pos - folio_pos(folio);
2231 
2232 	if (unlikely(copied < len)) {
2233 		/*
2234 		 * The buffers that were written will now be uptodate, so
2235 		 * we don't have to worry about a read_folio reading them
2236 		 * and overwriting a partial write. However if we have
2237 		 * encountered a short write and only partially written
2238 		 * into a buffer, it will not be marked uptodate, so a
2239 		 * read_folio might come in and destroy our partial write.
2240 		 *
2241 		 * Do the simplest thing, and just treat any short write to a
2242 		 * non uptodate folio as a zero-length write, and force the
2243 		 * caller to redo the whole thing.
2244 		 */
2245 		if (!folio_test_uptodate(folio))
2246 			copied = 0;
2247 
2248 		folio_zero_new_buffers(folio, start+copied, start+len);
2249 	}
2250 	flush_dcache_folio(folio);
2251 
2252 	/* This could be a short (even 0-length) commit */
2253 	__block_commit_write(folio, start, start + copied);
2254 
2255 	return copied;
2256 }
2257 EXPORT_SYMBOL(block_write_end);
2258 
2259 int generic_write_end(struct file *file, struct address_space *mapping,
2260 			loff_t pos, unsigned len, unsigned copied,
2261 			struct page *page, void *fsdata)
2262 {
2263 	struct inode *inode = mapping->host;
2264 	loff_t old_size = inode->i_size;
2265 	bool i_size_changed = false;
2266 
2267 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2268 
2269 	/*
2270 	 * No need to use i_size_read() here, the i_size cannot change under us
2271 	 * because we hold i_rwsem.
2272 	 *
2273 	 * But it's important to update i_size while still holding page lock:
2274 	 * page writeout could otherwise come in and zero beyond i_size.
2275 	 */
2276 	if (pos + copied > inode->i_size) {
2277 		i_size_write(inode, pos + copied);
2278 		i_size_changed = true;
2279 	}
2280 
2281 	unlock_page(page);
2282 	put_page(page);
2283 
2284 	if (old_size < pos)
2285 		pagecache_isize_extended(inode, old_size, pos);
2286 	/*
2287 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2288 	 * makes the holding time of page lock longer. Second, it forces lock
2289 	 * ordering of page lock and transaction start for journaling
2290 	 * filesystems.
2291 	 */
2292 	if (i_size_changed)
2293 		mark_inode_dirty(inode);
2294 	return copied;
2295 }
2296 EXPORT_SYMBOL(generic_write_end);
2297 
2298 /*
2299  * block_is_partially_uptodate checks whether buffers within a folio are
2300  * uptodate or not.
2301  *
2302  * Returns true if all buffers which correspond to the specified part
2303  * of the folio are uptodate.
2304  */
2305 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2306 {
2307 	unsigned block_start, block_end, blocksize;
2308 	unsigned to;
2309 	struct buffer_head *bh, *head;
2310 	bool ret = true;
2311 
2312 	head = folio_buffers(folio);
2313 	if (!head)
2314 		return false;
2315 	blocksize = head->b_size;
2316 	to = min_t(unsigned, folio_size(folio) - from, count);
2317 	to = from + to;
2318 	if (from < blocksize && to > folio_size(folio) - blocksize)
2319 		return false;
2320 
2321 	bh = head;
2322 	block_start = 0;
2323 	do {
2324 		block_end = block_start + blocksize;
2325 		if (block_end > from && block_start < to) {
2326 			if (!buffer_uptodate(bh)) {
2327 				ret = false;
2328 				break;
2329 			}
2330 			if (block_end >= to)
2331 				break;
2332 		}
2333 		block_start = block_end;
2334 		bh = bh->b_this_page;
2335 	} while (bh != head);
2336 
2337 	return ret;
2338 }
2339 EXPORT_SYMBOL(block_is_partially_uptodate);
2340 
2341 /*
2342  * Generic "read_folio" function for block devices that have the normal
2343  * get_block functionality. This is most of the block device filesystems.
2344  * Reads the folio asynchronously --- the unlock_buffer() and
2345  * set/clear_buffer_uptodate() functions propagate buffer state into the
2346  * folio once IO has completed.
2347  */
2348 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2349 {
2350 	struct inode *inode = folio->mapping->host;
2351 	sector_t iblock, lblock;
2352 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2353 	size_t blocksize;
2354 	int nr, i;
2355 	int fully_mapped = 1;
2356 	bool page_error = false;
2357 	loff_t limit = i_size_read(inode);
2358 
2359 	/* This is needed for ext4. */
2360 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2361 		limit = inode->i_sb->s_maxbytes;
2362 
2363 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2364 
2365 	head = folio_create_buffers(folio, inode, 0);
2366 	blocksize = head->b_size;
2367 
2368 	iblock = div_u64(folio_pos(folio), blocksize);
2369 	lblock = div_u64(limit + blocksize - 1, blocksize);
2370 	bh = head;
2371 	nr = 0;
2372 	i = 0;
2373 
2374 	do {
2375 		if (buffer_uptodate(bh))
2376 			continue;
2377 
2378 		if (!buffer_mapped(bh)) {
2379 			int err = 0;
2380 
2381 			fully_mapped = 0;
2382 			if (iblock < lblock) {
2383 				WARN_ON(bh->b_size != blocksize);
2384 				err = get_block(inode, iblock, bh, 0);
2385 				if (err) {
2386 					folio_set_error(folio);
2387 					page_error = true;
2388 				}
2389 			}
2390 			if (!buffer_mapped(bh)) {
2391 				folio_zero_range(folio, i * blocksize,
2392 						blocksize);
2393 				if (!err)
2394 					set_buffer_uptodate(bh);
2395 				continue;
2396 			}
2397 			/*
2398 			 * get_block() might have updated the buffer
2399 			 * synchronously
2400 			 */
2401 			if (buffer_uptodate(bh))
2402 				continue;
2403 		}
2404 		arr[nr++] = bh;
2405 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2406 
2407 	if (fully_mapped)
2408 		folio_set_mappedtodisk(folio);
2409 
2410 	if (!nr) {
2411 		/*
2412 		 * All buffers are uptodate or get_block() returned an
2413 		 * error when trying to map them - we can finish the read.
2414 		 */
2415 		folio_end_read(folio, !page_error);
2416 		return 0;
2417 	}
2418 
2419 	/* Stage two: lock the buffers */
2420 	for (i = 0; i < nr; i++) {
2421 		bh = arr[i];
2422 		lock_buffer(bh);
2423 		mark_buffer_async_read(bh);
2424 	}
2425 
2426 	/*
2427 	 * Stage 3: start the IO.  Check for uptodateness
2428 	 * inside the buffer lock in case another process reading
2429 	 * the underlying blockdev brought it uptodate (the sct fix).
2430 	 */
2431 	for (i = 0; i < nr; i++) {
2432 		bh = arr[i];
2433 		if (buffer_uptodate(bh))
2434 			end_buffer_async_read(bh, 1);
2435 		else
2436 			submit_bh(REQ_OP_READ, bh);
2437 	}
2438 	return 0;
2439 }
2440 EXPORT_SYMBOL(block_read_full_folio);
2441 
2442 /* utility function for filesystems that need to do work on expanding
2443  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2444  * deal with the hole.
2445  */
2446 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2447 {
2448 	struct address_space *mapping = inode->i_mapping;
2449 	const struct address_space_operations *aops = mapping->a_ops;
2450 	struct page *page;
2451 	void *fsdata = NULL;
2452 	int err;
2453 
2454 	err = inode_newsize_ok(inode, size);
2455 	if (err)
2456 		goto out;
2457 
2458 	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2459 	if (err)
2460 		goto out;
2461 
2462 	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2463 	BUG_ON(err > 0);
2464 
2465 out:
2466 	return err;
2467 }
2468 EXPORT_SYMBOL(generic_cont_expand_simple);
2469 
2470 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2471 			    loff_t pos, loff_t *bytes)
2472 {
2473 	struct inode *inode = mapping->host;
2474 	const struct address_space_operations *aops = mapping->a_ops;
2475 	unsigned int blocksize = i_blocksize(inode);
2476 	struct page *page;
2477 	void *fsdata = NULL;
2478 	pgoff_t index, curidx;
2479 	loff_t curpos;
2480 	unsigned zerofrom, offset, len;
2481 	int err = 0;
2482 
2483 	index = pos >> PAGE_SHIFT;
2484 	offset = pos & ~PAGE_MASK;
2485 
2486 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2487 		zerofrom = curpos & ~PAGE_MASK;
2488 		if (zerofrom & (blocksize-1)) {
2489 			*bytes |= (blocksize-1);
2490 			(*bytes)++;
2491 		}
2492 		len = PAGE_SIZE - zerofrom;
2493 
2494 		err = aops->write_begin(file, mapping, curpos, len,
2495 					    &page, &fsdata);
2496 		if (err)
2497 			goto out;
2498 		zero_user(page, zerofrom, len);
2499 		err = aops->write_end(file, mapping, curpos, len, len,
2500 						page, fsdata);
2501 		if (err < 0)
2502 			goto out;
2503 		BUG_ON(err != len);
2504 		err = 0;
2505 
2506 		balance_dirty_pages_ratelimited(mapping);
2507 
2508 		if (fatal_signal_pending(current)) {
2509 			err = -EINTR;
2510 			goto out;
2511 		}
2512 	}
2513 
2514 	/* page covers the boundary, find the boundary offset */
2515 	if (index == curidx) {
2516 		zerofrom = curpos & ~PAGE_MASK;
2517 		/* if we will expand the thing last block will be filled */
2518 		if (offset <= zerofrom) {
2519 			goto out;
2520 		}
2521 		if (zerofrom & (blocksize-1)) {
2522 			*bytes |= (blocksize-1);
2523 			(*bytes)++;
2524 		}
2525 		len = offset - zerofrom;
2526 
2527 		err = aops->write_begin(file, mapping, curpos, len,
2528 					    &page, &fsdata);
2529 		if (err)
2530 			goto out;
2531 		zero_user(page, zerofrom, len);
2532 		err = aops->write_end(file, mapping, curpos, len, len,
2533 						page, fsdata);
2534 		if (err < 0)
2535 			goto out;
2536 		BUG_ON(err != len);
2537 		err = 0;
2538 	}
2539 out:
2540 	return err;
2541 }
2542 
2543 /*
2544  * For moronic filesystems that do not allow holes in file.
2545  * We may have to extend the file.
2546  */
2547 int cont_write_begin(struct file *file, struct address_space *mapping,
2548 			loff_t pos, unsigned len,
2549 			struct page **pagep, void **fsdata,
2550 			get_block_t *get_block, loff_t *bytes)
2551 {
2552 	struct inode *inode = mapping->host;
2553 	unsigned int blocksize = i_blocksize(inode);
2554 	unsigned int zerofrom;
2555 	int err;
2556 
2557 	err = cont_expand_zero(file, mapping, pos, bytes);
2558 	if (err)
2559 		return err;
2560 
2561 	zerofrom = *bytes & ~PAGE_MASK;
2562 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2563 		*bytes |= (blocksize-1);
2564 		(*bytes)++;
2565 	}
2566 
2567 	return block_write_begin(mapping, pos, len, pagep, get_block);
2568 }
2569 EXPORT_SYMBOL(cont_write_begin);
2570 
2571 void block_commit_write(struct page *page, unsigned from, unsigned to)
2572 {
2573 	struct folio *folio = page_folio(page);
2574 	__block_commit_write(folio, from, to);
2575 }
2576 EXPORT_SYMBOL(block_commit_write);
2577 
2578 /*
2579  * block_page_mkwrite() is not allowed to change the file size as it gets
2580  * called from a page fault handler when a page is first dirtied. Hence we must
2581  * be careful to check for EOF conditions here. We set the page up correctly
2582  * for a written page which means we get ENOSPC checking when writing into
2583  * holes and correct delalloc and unwritten extent mapping on filesystems that
2584  * support these features.
2585  *
2586  * We are not allowed to take the i_mutex here so we have to play games to
2587  * protect against truncate races as the page could now be beyond EOF.  Because
2588  * truncate writes the inode size before removing pages, once we have the
2589  * page lock we can determine safely if the page is beyond EOF. If it is not
2590  * beyond EOF, then the page is guaranteed safe against truncation until we
2591  * unlock the page.
2592  *
2593  * Direct callers of this function should protect against filesystem freezing
2594  * using sb_start_pagefault() - sb_end_pagefault() functions.
2595  */
2596 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2597 			 get_block_t get_block)
2598 {
2599 	struct folio *folio = page_folio(vmf->page);
2600 	struct inode *inode = file_inode(vma->vm_file);
2601 	unsigned long end;
2602 	loff_t size;
2603 	int ret;
2604 
2605 	folio_lock(folio);
2606 	size = i_size_read(inode);
2607 	if ((folio->mapping != inode->i_mapping) ||
2608 	    (folio_pos(folio) >= size)) {
2609 		/* We overload EFAULT to mean page got truncated */
2610 		ret = -EFAULT;
2611 		goto out_unlock;
2612 	}
2613 
2614 	end = folio_size(folio);
2615 	/* folio is wholly or partially inside EOF */
2616 	if (folio_pos(folio) + end > size)
2617 		end = size - folio_pos(folio);
2618 
2619 	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2620 	if (unlikely(ret))
2621 		goto out_unlock;
2622 
2623 	__block_commit_write(folio, 0, end);
2624 
2625 	folio_mark_dirty(folio);
2626 	folio_wait_stable(folio);
2627 	return 0;
2628 out_unlock:
2629 	folio_unlock(folio);
2630 	return ret;
2631 }
2632 EXPORT_SYMBOL(block_page_mkwrite);
2633 
2634 int block_truncate_page(struct address_space *mapping,
2635 			loff_t from, get_block_t *get_block)
2636 {
2637 	pgoff_t index = from >> PAGE_SHIFT;
2638 	unsigned blocksize;
2639 	sector_t iblock;
2640 	size_t offset, length, pos;
2641 	struct inode *inode = mapping->host;
2642 	struct folio *folio;
2643 	struct buffer_head *bh;
2644 	int err = 0;
2645 
2646 	blocksize = i_blocksize(inode);
2647 	length = from & (blocksize - 1);
2648 
2649 	/* Block boundary? Nothing to do */
2650 	if (!length)
2651 		return 0;
2652 
2653 	length = blocksize - length;
2654 	iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2655 
2656 	folio = filemap_grab_folio(mapping, index);
2657 	if (IS_ERR(folio))
2658 		return PTR_ERR(folio);
2659 
2660 	bh = folio_buffers(folio);
2661 	if (!bh)
2662 		bh = create_empty_buffers(folio, blocksize, 0);
2663 
2664 	/* Find the buffer that contains "offset" */
2665 	offset = offset_in_folio(folio, from);
2666 	pos = blocksize;
2667 	while (offset >= pos) {
2668 		bh = bh->b_this_page;
2669 		iblock++;
2670 		pos += blocksize;
2671 	}
2672 
2673 	if (!buffer_mapped(bh)) {
2674 		WARN_ON(bh->b_size != blocksize);
2675 		err = get_block(inode, iblock, bh, 0);
2676 		if (err)
2677 			goto unlock;
2678 		/* unmapped? It's a hole - nothing to do */
2679 		if (!buffer_mapped(bh))
2680 			goto unlock;
2681 	}
2682 
2683 	/* Ok, it's mapped. Make sure it's up-to-date */
2684 	if (folio_test_uptodate(folio))
2685 		set_buffer_uptodate(bh);
2686 
2687 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2688 		err = bh_read(bh, 0);
2689 		/* Uhhuh. Read error. Complain and punt. */
2690 		if (err < 0)
2691 			goto unlock;
2692 	}
2693 
2694 	folio_zero_range(folio, offset, length);
2695 	mark_buffer_dirty(bh);
2696 
2697 unlock:
2698 	folio_unlock(folio);
2699 	folio_put(folio);
2700 
2701 	return err;
2702 }
2703 EXPORT_SYMBOL(block_truncate_page);
2704 
2705 /*
2706  * The generic ->writepage function for buffer-backed address_spaces
2707  */
2708 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2709 		void *get_block)
2710 {
2711 	struct inode * const inode = folio->mapping->host;
2712 	loff_t i_size = i_size_read(inode);
2713 
2714 	/* Is the folio fully inside i_size? */
2715 	if (folio_pos(folio) + folio_size(folio) <= i_size)
2716 		return __block_write_full_folio(inode, folio, get_block, wbc);
2717 
2718 	/* Is the folio fully outside i_size? (truncate in progress) */
2719 	if (folio_pos(folio) >= i_size) {
2720 		folio_unlock(folio);
2721 		return 0; /* don't care */
2722 	}
2723 
2724 	/*
2725 	 * The folio straddles i_size.  It must be zeroed out on each and every
2726 	 * writepage invocation because it may be mmapped.  "A file is mapped
2727 	 * in multiples of the page size.  For a file that is not a multiple of
2728 	 * the page size, the remaining memory is zeroed when mapped, and
2729 	 * writes to that region are not written out to the file."
2730 	 */
2731 	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2732 			folio_size(folio));
2733 	return __block_write_full_folio(inode, folio, get_block, wbc);
2734 }
2735 
2736 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2737 			    get_block_t *get_block)
2738 {
2739 	struct inode *inode = mapping->host;
2740 	struct buffer_head tmp = {
2741 		.b_size = i_blocksize(inode),
2742 	};
2743 
2744 	get_block(inode, block, &tmp, 0);
2745 	return tmp.b_blocknr;
2746 }
2747 EXPORT_SYMBOL(generic_block_bmap);
2748 
2749 static void end_bio_bh_io_sync(struct bio *bio)
2750 {
2751 	struct buffer_head *bh = bio->bi_private;
2752 
2753 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2754 		set_bit(BH_Quiet, &bh->b_state);
2755 
2756 	bh->b_end_io(bh, !bio->bi_status);
2757 	bio_put(bio);
2758 }
2759 
2760 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2761 			  enum rw_hint write_hint,
2762 			  struct writeback_control *wbc)
2763 {
2764 	const enum req_op op = opf & REQ_OP_MASK;
2765 	struct bio *bio;
2766 
2767 	BUG_ON(!buffer_locked(bh));
2768 	BUG_ON(!buffer_mapped(bh));
2769 	BUG_ON(!bh->b_end_io);
2770 	BUG_ON(buffer_delay(bh));
2771 	BUG_ON(buffer_unwritten(bh));
2772 
2773 	/*
2774 	 * Only clear out a write error when rewriting
2775 	 */
2776 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2777 		clear_buffer_write_io_error(bh);
2778 
2779 	if (buffer_meta(bh))
2780 		opf |= REQ_META;
2781 	if (buffer_prio(bh))
2782 		opf |= REQ_PRIO;
2783 
2784 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2785 
2786 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2787 
2788 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2789 	bio->bi_write_hint = write_hint;
2790 
2791 	__bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2792 
2793 	bio->bi_end_io = end_bio_bh_io_sync;
2794 	bio->bi_private = bh;
2795 
2796 	/* Take care of bh's that straddle the end of the device */
2797 	guard_bio_eod(bio);
2798 
2799 	if (wbc) {
2800 		wbc_init_bio(wbc, bio);
2801 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2802 	}
2803 
2804 	submit_bio(bio);
2805 }
2806 
2807 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2808 {
2809 	submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2810 }
2811 EXPORT_SYMBOL(submit_bh);
2812 
2813 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2814 {
2815 	lock_buffer(bh);
2816 	if (!test_clear_buffer_dirty(bh)) {
2817 		unlock_buffer(bh);
2818 		return;
2819 	}
2820 	bh->b_end_io = end_buffer_write_sync;
2821 	get_bh(bh);
2822 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2823 }
2824 EXPORT_SYMBOL(write_dirty_buffer);
2825 
2826 /*
2827  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2828  * and then start new I/O and then wait upon it.  The caller must have a ref on
2829  * the buffer_head.
2830  */
2831 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2832 {
2833 	WARN_ON(atomic_read(&bh->b_count) < 1);
2834 	lock_buffer(bh);
2835 	if (test_clear_buffer_dirty(bh)) {
2836 		/*
2837 		 * The bh should be mapped, but it might not be if the
2838 		 * device was hot-removed. Not much we can do but fail the I/O.
2839 		 */
2840 		if (!buffer_mapped(bh)) {
2841 			unlock_buffer(bh);
2842 			return -EIO;
2843 		}
2844 
2845 		get_bh(bh);
2846 		bh->b_end_io = end_buffer_write_sync;
2847 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2848 		wait_on_buffer(bh);
2849 		if (!buffer_uptodate(bh))
2850 			return -EIO;
2851 	} else {
2852 		unlock_buffer(bh);
2853 	}
2854 	return 0;
2855 }
2856 EXPORT_SYMBOL(__sync_dirty_buffer);
2857 
2858 int sync_dirty_buffer(struct buffer_head *bh)
2859 {
2860 	return __sync_dirty_buffer(bh, REQ_SYNC);
2861 }
2862 EXPORT_SYMBOL(sync_dirty_buffer);
2863 
2864 /*
2865  * try_to_free_buffers() checks if all the buffers on this particular folio
2866  * are unused, and releases them if so.
2867  *
2868  * Exclusion against try_to_free_buffers may be obtained by either
2869  * locking the folio or by holding its mapping's i_private_lock.
2870  *
2871  * If the folio is dirty but all the buffers are clean then we need to
2872  * be sure to mark the folio clean as well.  This is because the folio
2873  * may be against a block device, and a later reattachment of buffers
2874  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2875  * filesystem data on the same device.
2876  *
2877  * The same applies to regular filesystem folios: if all the buffers are
2878  * clean then we set the folio clean and proceed.  To do that, we require
2879  * total exclusion from block_dirty_folio().  That is obtained with
2880  * i_private_lock.
2881  *
2882  * try_to_free_buffers() is non-blocking.
2883  */
2884 static inline int buffer_busy(struct buffer_head *bh)
2885 {
2886 	return atomic_read(&bh->b_count) |
2887 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2888 }
2889 
2890 static bool
2891 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2892 {
2893 	struct buffer_head *head = folio_buffers(folio);
2894 	struct buffer_head *bh;
2895 
2896 	bh = head;
2897 	do {
2898 		if (buffer_busy(bh))
2899 			goto failed;
2900 		bh = bh->b_this_page;
2901 	} while (bh != head);
2902 
2903 	do {
2904 		struct buffer_head *next = bh->b_this_page;
2905 
2906 		if (bh->b_assoc_map)
2907 			__remove_assoc_queue(bh);
2908 		bh = next;
2909 	} while (bh != head);
2910 	*buffers_to_free = head;
2911 	folio_detach_private(folio);
2912 	return true;
2913 failed:
2914 	return false;
2915 }
2916 
2917 bool try_to_free_buffers(struct folio *folio)
2918 {
2919 	struct address_space * const mapping = folio->mapping;
2920 	struct buffer_head *buffers_to_free = NULL;
2921 	bool ret = 0;
2922 
2923 	BUG_ON(!folio_test_locked(folio));
2924 	if (folio_test_writeback(folio))
2925 		return false;
2926 
2927 	if (mapping == NULL) {		/* can this still happen? */
2928 		ret = drop_buffers(folio, &buffers_to_free);
2929 		goto out;
2930 	}
2931 
2932 	spin_lock(&mapping->i_private_lock);
2933 	ret = drop_buffers(folio, &buffers_to_free);
2934 
2935 	/*
2936 	 * If the filesystem writes its buffers by hand (eg ext3)
2937 	 * then we can have clean buffers against a dirty folio.  We
2938 	 * clean the folio here; otherwise the VM will never notice
2939 	 * that the filesystem did any IO at all.
2940 	 *
2941 	 * Also, during truncate, discard_buffer will have marked all
2942 	 * the folio's buffers clean.  We discover that here and clean
2943 	 * the folio also.
2944 	 *
2945 	 * i_private_lock must be held over this entire operation in order
2946 	 * to synchronise against block_dirty_folio and prevent the
2947 	 * dirty bit from being lost.
2948 	 */
2949 	if (ret)
2950 		folio_cancel_dirty(folio);
2951 	spin_unlock(&mapping->i_private_lock);
2952 out:
2953 	if (buffers_to_free) {
2954 		struct buffer_head *bh = buffers_to_free;
2955 
2956 		do {
2957 			struct buffer_head *next = bh->b_this_page;
2958 			free_buffer_head(bh);
2959 			bh = next;
2960 		} while (bh != buffers_to_free);
2961 	}
2962 	return ret;
2963 }
2964 EXPORT_SYMBOL(try_to_free_buffers);
2965 
2966 /*
2967  * Buffer-head allocation
2968  */
2969 static struct kmem_cache *bh_cachep __ro_after_init;
2970 
2971 /*
2972  * Once the number of bh's in the machine exceeds this level, we start
2973  * stripping them in writeback.
2974  */
2975 static unsigned long max_buffer_heads __ro_after_init;
2976 
2977 int buffer_heads_over_limit;
2978 
2979 struct bh_accounting {
2980 	int nr;			/* Number of live bh's */
2981 	int ratelimit;		/* Limit cacheline bouncing */
2982 };
2983 
2984 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2985 
2986 static void recalc_bh_state(void)
2987 {
2988 	int i;
2989 	int tot = 0;
2990 
2991 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2992 		return;
2993 	__this_cpu_write(bh_accounting.ratelimit, 0);
2994 	for_each_online_cpu(i)
2995 		tot += per_cpu(bh_accounting, i).nr;
2996 	buffer_heads_over_limit = (tot > max_buffer_heads);
2997 }
2998 
2999 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3000 {
3001 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3002 	if (ret) {
3003 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3004 		spin_lock_init(&ret->b_uptodate_lock);
3005 		preempt_disable();
3006 		__this_cpu_inc(bh_accounting.nr);
3007 		recalc_bh_state();
3008 		preempt_enable();
3009 	}
3010 	return ret;
3011 }
3012 EXPORT_SYMBOL(alloc_buffer_head);
3013 
3014 void free_buffer_head(struct buffer_head *bh)
3015 {
3016 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3017 	kmem_cache_free(bh_cachep, bh);
3018 	preempt_disable();
3019 	__this_cpu_dec(bh_accounting.nr);
3020 	recalc_bh_state();
3021 	preempt_enable();
3022 }
3023 EXPORT_SYMBOL(free_buffer_head);
3024 
3025 static int buffer_exit_cpu_dead(unsigned int cpu)
3026 {
3027 	int i;
3028 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3029 
3030 	for (i = 0; i < BH_LRU_SIZE; i++) {
3031 		brelse(b->bhs[i]);
3032 		b->bhs[i] = NULL;
3033 	}
3034 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3035 	per_cpu(bh_accounting, cpu).nr = 0;
3036 	return 0;
3037 }
3038 
3039 /**
3040  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3041  * @bh: struct buffer_head
3042  *
3043  * Return true if the buffer is up-to-date and false,
3044  * with the buffer locked, if not.
3045  */
3046 int bh_uptodate_or_lock(struct buffer_head *bh)
3047 {
3048 	if (!buffer_uptodate(bh)) {
3049 		lock_buffer(bh);
3050 		if (!buffer_uptodate(bh))
3051 			return 0;
3052 		unlock_buffer(bh);
3053 	}
3054 	return 1;
3055 }
3056 EXPORT_SYMBOL(bh_uptodate_or_lock);
3057 
3058 /**
3059  * __bh_read - Submit read for a locked buffer
3060  * @bh: struct buffer_head
3061  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3062  * @wait: wait until reading finish
3063  *
3064  * Returns zero on success or don't wait, and -EIO on error.
3065  */
3066 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3067 {
3068 	int ret = 0;
3069 
3070 	BUG_ON(!buffer_locked(bh));
3071 
3072 	get_bh(bh);
3073 	bh->b_end_io = end_buffer_read_sync;
3074 	submit_bh(REQ_OP_READ | op_flags, bh);
3075 	if (wait) {
3076 		wait_on_buffer(bh);
3077 		if (!buffer_uptodate(bh))
3078 			ret = -EIO;
3079 	}
3080 	return ret;
3081 }
3082 EXPORT_SYMBOL(__bh_read);
3083 
3084 /**
3085  * __bh_read_batch - Submit read for a batch of unlocked buffers
3086  * @nr: entry number of the buffer batch
3087  * @bhs: a batch of struct buffer_head
3088  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3089  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3090  *              buffer that cannot lock.
3091  *
3092  * Returns zero on success or don't wait, and -EIO on error.
3093  */
3094 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3095 		     blk_opf_t op_flags, bool force_lock)
3096 {
3097 	int i;
3098 
3099 	for (i = 0; i < nr; i++) {
3100 		struct buffer_head *bh = bhs[i];
3101 
3102 		if (buffer_uptodate(bh))
3103 			continue;
3104 
3105 		if (force_lock)
3106 			lock_buffer(bh);
3107 		else
3108 			if (!trylock_buffer(bh))
3109 				continue;
3110 
3111 		if (buffer_uptodate(bh)) {
3112 			unlock_buffer(bh);
3113 			continue;
3114 		}
3115 
3116 		bh->b_end_io = end_buffer_read_sync;
3117 		get_bh(bh);
3118 		submit_bh(REQ_OP_READ | op_flags, bh);
3119 	}
3120 }
3121 EXPORT_SYMBOL(__bh_read_batch);
3122 
3123 void __init buffer_init(void)
3124 {
3125 	unsigned long nrpages;
3126 	int ret;
3127 
3128 	bh_cachep = KMEM_CACHE(buffer_head,
3129 				SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3130 	/*
3131 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3132 	 */
3133 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3134 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3135 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3136 					NULL, buffer_exit_cpu_dead);
3137 	WARN_ON(ret < 0);
3138 }
3139