1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/module.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 static int sleep_on_buffer(void *word) 58 { 59 io_schedule(); 60 return 0; 61 } 62 63 void __lock_buffer(struct buffer_head *bh) 64 { 65 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer, 66 TASK_UNINTERRUPTIBLE); 67 } 68 EXPORT_SYMBOL(__lock_buffer); 69 70 void unlock_buffer(struct buffer_head *bh) 71 { 72 clear_bit_unlock(BH_Lock, &bh->b_state); 73 smp_mb__after_clear_bit(); 74 wake_up_bit(&bh->b_state, BH_Lock); 75 } 76 EXPORT_SYMBOL(unlock_buffer); 77 78 /* 79 * Block until a buffer comes unlocked. This doesn't stop it 80 * from becoming locked again - you have to lock it yourself 81 * if you want to preserve its state. 82 */ 83 void __wait_on_buffer(struct buffer_head * bh) 84 { 85 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE); 86 } 87 EXPORT_SYMBOL(__wait_on_buffer); 88 89 static void 90 __clear_page_buffers(struct page *page) 91 { 92 ClearPagePrivate(page); 93 set_page_private(page, 0); 94 page_cache_release(page); 95 } 96 97 98 static int quiet_error(struct buffer_head *bh) 99 { 100 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 101 return 0; 102 return 1; 103 } 104 105 106 static void buffer_io_error(struct buffer_head *bh) 107 { 108 char b[BDEVNAME_SIZE]; 109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 110 bdevname(bh->b_bdev, b), 111 (unsigned long long)bh->b_blocknr); 112 } 113 114 /* 115 * End-of-IO handler helper function which does not touch the bh after 116 * unlocking it. 117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 118 * a race there is benign: unlock_buffer() only use the bh's address for 119 * hashing after unlocking the buffer, so it doesn't actually touch the bh 120 * itself. 121 */ 122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 123 { 124 if (uptodate) { 125 set_buffer_uptodate(bh); 126 } else { 127 /* This happens, due to failed READA attempts. */ 128 clear_buffer_uptodate(bh); 129 } 130 unlock_buffer(bh); 131 } 132 133 /* 134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 135 * unlock the buffer. This is what ll_rw_block uses too. 136 */ 137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 138 { 139 __end_buffer_read_notouch(bh, uptodate); 140 put_bh(bh); 141 } 142 EXPORT_SYMBOL(end_buffer_read_sync); 143 144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 145 { 146 char b[BDEVNAME_SIZE]; 147 148 if (uptodate) { 149 set_buffer_uptodate(bh); 150 } else { 151 if (!quiet_error(bh)) { 152 buffer_io_error(bh); 153 printk(KERN_WARNING "lost page write due to " 154 "I/O error on %s\n", 155 bdevname(bh->b_bdev, b)); 156 } 157 set_buffer_write_io_error(bh); 158 clear_buffer_uptodate(bh); 159 } 160 unlock_buffer(bh); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_write_sync); 164 165 /* 166 * Various filesystems appear to want __find_get_block to be non-blocking. 167 * But it's the page lock which protects the buffers. To get around this, 168 * we get exclusion from try_to_free_buffers with the blockdev mapping's 169 * private_lock. 170 * 171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 172 * may be quite high. This code could TryLock the page, and if that 173 * succeeds, there is no need to take private_lock. (But if 174 * private_lock is contended then so is mapping->tree_lock). 175 */ 176 static struct buffer_head * 177 __find_get_block_slow(struct block_device *bdev, sector_t block) 178 { 179 struct inode *bd_inode = bdev->bd_inode; 180 struct address_space *bd_mapping = bd_inode->i_mapping; 181 struct buffer_head *ret = NULL; 182 pgoff_t index; 183 struct buffer_head *bh; 184 struct buffer_head *head; 185 struct page *page; 186 int all_mapped = 1; 187 188 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 189 page = find_get_page(bd_mapping, index); 190 if (!page) 191 goto out; 192 193 spin_lock(&bd_mapping->private_lock); 194 if (!page_has_buffers(page)) 195 goto out_unlock; 196 head = page_buffers(page); 197 bh = head; 198 do { 199 if (!buffer_mapped(bh)) 200 all_mapped = 0; 201 else if (bh->b_blocknr == block) { 202 ret = bh; 203 get_bh(bh); 204 goto out_unlock; 205 } 206 bh = bh->b_this_page; 207 } while (bh != head); 208 209 /* we might be here because some of the buffers on this page are 210 * not mapped. This is due to various races between 211 * file io on the block device and getblk. It gets dealt with 212 * elsewhere, don't buffer_error if we had some unmapped buffers 213 */ 214 if (all_mapped) { 215 char b[BDEVNAME_SIZE]; 216 217 printk("__find_get_block_slow() failed. " 218 "block=%llu, b_blocknr=%llu\n", 219 (unsigned long long)block, 220 (unsigned long long)bh->b_blocknr); 221 printk("b_state=0x%08lx, b_size=%zu\n", 222 bh->b_state, bh->b_size); 223 printk("device %s blocksize: %d\n", bdevname(bdev, b), 224 1 << bd_inode->i_blkbits); 225 } 226 out_unlock: 227 spin_unlock(&bd_mapping->private_lock); 228 page_cache_release(page); 229 out: 230 return ret; 231 } 232 233 /* 234 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 235 */ 236 static void free_more_memory(void) 237 { 238 struct zone *zone; 239 int nid; 240 241 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 242 yield(); 243 244 for_each_online_node(nid) { 245 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 246 gfp_zone(GFP_NOFS), NULL, 247 &zone); 248 if (zone) 249 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 250 GFP_NOFS, NULL); 251 } 252 } 253 254 /* 255 * I/O completion handler for block_read_full_page() - pages 256 * which come unlocked at the end of I/O. 257 */ 258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 259 { 260 unsigned long flags; 261 struct buffer_head *first; 262 struct buffer_head *tmp; 263 struct page *page; 264 int page_uptodate = 1; 265 266 BUG_ON(!buffer_async_read(bh)); 267 268 page = bh->b_page; 269 if (uptodate) { 270 set_buffer_uptodate(bh); 271 } else { 272 clear_buffer_uptodate(bh); 273 if (!quiet_error(bh)) 274 buffer_io_error(bh); 275 SetPageError(page); 276 } 277 278 /* 279 * Be _very_ careful from here on. Bad things can happen if 280 * two buffer heads end IO at almost the same time and both 281 * decide that the page is now completely done. 282 */ 283 first = page_buffers(page); 284 local_irq_save(flags); 285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 286 clear_buffer_async_read(bh); 287 unlock_buffer(bh); 288 tmp = bh; 289 do { 290 if (!buffer_uptodate(tmp)) 291 page_uptodate = 0; 292 if (buffer_async_read(tmp)) { 293 BUG_ON(!buffer_locked(tmp)); 294 goto still_busy; 295 } 296 tmp = tmp->b_this_page; 297 } while (tmp != bh); 298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 299 local_irq_restore(flags); 300 301 /* 302 * If none of the buffers had errors and they are all 303 * uptodate then we can set the page uptodate. 304 */ 305 if (page_uptodate && !PageError(page)) 306 SetPageUptodate(page); 307 unlock_page(page); 308 return; 309 310 still_busy: 311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 312 local_irq_restore(flags); 313 return; 314 } 315 316 /* 317 * Completion handler for block_write_full_page() - pages which are unlocked 318 * during I/O, and which have PageWriteback cleared upon I/O completion. 319 */ 320 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 321 { 322 char b[BDEVNAME_SIZE]; 323 unsigned long flags; 324 struct buffer_head *first; 325 struct buffer_head *tmp; 326 struct page *page; 327 328 BUG_ON(!buffer_async_write(bh)); 329 330 page = bh->b_page; 331 if (uptodate) { 332 set_buffer_uptodate(bh); 333 } else { 334 if (!quiet_error(bh)) { 335 buffer_io_error(bh); 336 printk(KERN_WARNING "lost page write due to " 337 "I/O error on %s\n", 338 bdevname(bh->b_bdev, b)); 339 } 340 set_bit(AS_EIO, &page->mapping->flags); 341 set_buffer_write_io_error(bh); 342 clear_buffer_uptodate(bh); 343 SetPageError(page); 344 } 345 346 first = page_buffers(page); 347 local_irq_save(flags); 348 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 349 350 clear_buffer_async_write(bh); 351 unlock_buffer(bh); 352 tmp = bh->b_this_page; 353 while (tmp != bh) { 354 if (buffer_async_write(tmp)) { 355 BUG_ON(!buffer_locked(tmp)); 356 goto still_busy; 357 } 358 tmp = tmp->b_this_page; 359 } 360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 361 local_irq_restore(flags); 362 end_page_writeback(page); 363 return; 364 365 still_busy: 366 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 367 local_irq_restore(flags); 368 return; 369 } 370 EXPORT_SYMBOL(end_buffer_async_write); 371 372 /* 373 * If a page's buffers are under async readin (end_buffer_async_read 374 * completion) then there is a possibility that another thread of 375 * control could lock one of the buffers after it has completed 376 * but while some of the other buffers have not completed. This 377 * locked buffer would confuse end_buffer_async_read() into not unlocking 378 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 379 * that this buffer is not under async I/O. 380 * 381 * The page comes unlocked when it has no locked buffer_async buffers 382 * left. 383 * 384 * PageLocked prevents anyone starting new async I/O reads any of 385 * the buffers. 386 * 387 * PageWriteback is used to prevent simultaneous writeout of the same 388 * page. 389 * 390 * PageLocked prevents anyone from starting writeback of a page which is 391 * under read I/O (PageWriteback is only ever set against a locked page). 392 */ 393 static void mark_buffer_async_read(struct buffer_head *bh) 394 { 395 bh->b_end_io = end_buffer_async_read; 396 set_buffer_async_read(bh); 397 } 398 399 static void mark_buffer_async_write_endio(struct buffer_head *bh, 400 bh_end_io_t *handler) 401 { 402 bh->b_end_io = handler; 403 set_buffer_async_write(bh); 404 } 405 406 void mark_buffer_async_write(struct buffer_head *bh) 407 { 408 mark_buffer_async_write_endio(bh, end_buffer_async_write); 409 } 410 EXPORT_SYMBOL(mark_buffer_async_write); 411 412 413 /* 414 * fs/buffer.c contains helper functions for buffer-backed address space's 415 * fsync functions. A common requirement for buffer-based filesystems is 416 * that certain data from the backing blockdev needs to be written out for 417 * a successful fsync(). For example, ext2 indirect blocks need to be 418 * written back and waited upon before fsync() returns. 419 * 420 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 421 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 422 * management of a list of dependent buffers at ->i_mapping->private_list. 423 * 424 * Locking is a little subtle: try_to_free_buffers() will remove buffers 425 * from their controlling inode's queue when they are being freed. But 426 * try_to_free_buffers() will be operating against the *blockdev* mapping 427 * at the time, not against the S_ISREG file which depends on those buffers. 428 * So the locking for private_list is via the private_lock in the address_space 429 * which backs the buffers. Which is different from the address_space 430 * against which the buffers are listed. So for a particular address_space, 431 * mapping->private_lock does *not* protect mapping->private_list! In fact, 432 * mapping->private_list will always be protected by the backing blockdev's 433 * ->private_lock. 434 * 435 * Which introduces a requirement: all buffers on an address_space's 436 * ->private_list must be from the same address_space: the blockdev's. 437 * 438 * address_spaces which do not place buffers at ->private_list via these 439 * utility functions are free to use private_lock and private_list for 440 * whatever they want. The only requirement is that list_empty(private_list) 441 * be true at clear_inode() time. 442 * 443 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 444 * filesystems should do that. invalidate_inode_buffers() should just go 445 * BUG_ON(!list_empty). 446 * 447 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 448 * take an address_space, not an inode. And it should be called 449 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 450 * queued up. 451 * 452 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 453 * list if it is already on a list. Because if the buffer is on a list, 454 * it *must* already be on the right one. If not, the filesystem is being 455 * silly. This will save a ton of locking. But first we have to ensure 456 * that buffers are taken *off* the old inode's list when they are freed 457 * (presumably in truncate). That requires careful auditing of all 458 * filesystems (do it inside bforget()). It could also be done by bringing 459 * b_inode back. 460 */ 461 462 /* 463 * The buffer's backing address_space's private_lock must be held 464 */ 465 static void __remove_assoc_queue(struct buffer_head *bh) 466 { 467 list_del_init(&bh->b_assoc_buffers); 468 WARN_ON(!bh->b_assoc_map); 469 if (buffer_write_io_error(bh)) 470 set_bit(AS_EIO, &bh->b_assoc_map->flags); 471 bh->b_assoc_map = NULL; 472 } 473 474 int inode_has_buffers(struct inode *inode) 475 { 476 return !list_empty(&inode->i_data.private_list); 477 } 478 479 /* 480 * osync is designed to support O_SYNC io. It waits synchronously for 481 * all already-submitted IO to complete, but does not queue any new 482 * writes to the disk. 483 * 484 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 485 * you dirty the buffers, and then use osync_inode_buffers to wait for 486 * completion. Any other dirty buffers which are not yet queued for 487 * write will not be flushed to disk by the osync. 488 */ 489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 490 { 491 struct buffer_head *bh; 492 struct list_head *p; 493 int err = 0; 494 495 spin_lock(lock); 496 repeat: 497 list_for_each_prev(p, list) { 498 bh = BH_ENTRY(p); 499 if (buffer_locked(bh)) { 500 get_bh(bh); 501 spin_unlock(lock); 502 wait_on_buffer(bh); 503 if (!buffer_uptodate(bh)) 504 err = -EIO; 505 brelse(bh); 506 spin_lock(lock); 507 goto repeat; 508 } 509 } 510 spin_unlock(lock); 511 return err; 512 } 513 514 static void do_thaw_one(struct super_block *sb, void *unused) 515 { 516 char b[BDEVNAME_SIZE]; 517 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 518 printk(KERN_WARNING "Emergency Thaw on %s\n", 519 bdevname(sb->s_bdev, b)); 520 } 521 522 static void do_thaw_all(struct work_struct *work) 523 { 524 iterate_supers(do_thaw_one, NULL); 525 kfree(work); 526 printk(KERN_WARNING "Emergency Thaw complete\n"); 527 } 528 529 /** 530 * emergency_thaw_all -- forcibly thaw every frozen filesystem 531 * 532 * Used for emergency unfreeze of all filesystems via SysRq 533 */ 534 void emergency_thaw_all(void) 535 { 536 struct work_struct *work; 537 538 work = kmalloc(sizeof(*work), GFP_ATOMIC); 539 if (work) { 540 INIT_WORK(work, do_thaw_all); 541 schedule_work(work); 542 } 543 } 544 545 /** 546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 547 * @mapping: the mapping which wants those buffers written 548 * 549 * Starts I/O against the buffers at mapping->private_list, and waits upon 550 * that I/O. 551 * 552 * Basically, this is a convenience function for fsync(). 553 * @mapping is a file or directory which needs those buffers to be written for 554 * a successful fsync(). 555 */ 556 int sync_mapping_buffers(struct address_space *mapping) 557 { 558 struct address_space *buffer_mapping = mapping->assoc_mapping; 559 560 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 561 return 0; 562 563 return fsync_buffers_list(&buffer_mapping->private_lock, 564 &mapping->private_list); 565 } 566 EXPORT_SYMBOL(sync_mapping_buffers); 567 568 /* 569 * Called when we've recently written block `bblock', and it is known that 570 * `bblock' was for a buffer_boundary() buffer. This means that the block at 571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 572 * dirty, schedule it for IO. So that indirects merge nicely with their data. 573 */ 574 void write_boundary_block(struct block_device *bdev, 575 sector_t bblock, unsigned blocksize) 576 { 577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 578 if (bh) { 579 if (buffer_dirty(bh)) 580 ll_rw_block(WRITE, 1, &bh); 581 put_bh(bh); 582 } 583 } 584 585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 586 { 587 struct address_space *mapping = inode->i_mapping; 588 struct address_space *buffer_mapping = bh->b_page->mapping; 589 590 mark_buffer_dirty(bh); 591 if (!mapping->assoc_mapping) { 592 mapping->assoc_mapping = buffer_mapping; 593 } else { 594 BUG_ON(mapping->assoc_mapping != buffer_mapping); 595 } 596 if (!bh->b_assoc_map) { 597 spin_lock(&buffer_mapping->private_lock); 598 list_move_tail(&bh->b_assoc_buffers, 599 &mapping->private_list); 600 bh->b_assoc_map = mapping; 601 spin_unlock(&buffer_mapping->private_lock); 602 } 603 } 604 EXPORT_SYMBOL(mark_buffer_dirty_inode); 605 606 /* 607 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 608 * dirty. 609 * 610 * If warn is true, then emit a warning if the page is not uptodate and has 611 * not been truncated. 612 */ 613 static void __set_page_dirty(struct page *page, 614 struct address_space *mapping, int warn) 615 { 616 spin_lock_irq(&mapping->tree_lock); 617 if (page->mapping) { /* Race with truncate? */ 618 WARN_ON_ONCE(warn && !PageUptodate(page)); 619 account_page_dirtied(page, mapping); 620 radix_tree_tag_set(&mapping->page_tree, 621 page_index(page), PAGECACHE_TAG_DIRTY); 622 } 623 spin_unlock_irq(&mapping->tree_lock); 624 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 625 } 626 627 /* 628 * Add a page to the dirty page list. 629 * 630 * It is a sad fact of life that this function is called from several places 631 * deeply under spinlocking. It may not sleep. 632 * 633 * If the page has buffers, the uptodate buffers are set dirty, to preserve 634 * dirty-state coherency between the page and the buffers. It the page does 635 * not have buffers then when they are later attached they will all be set 636 * dirty. 637 * 638 * The buffers are dirtied before the page is dirtied. There's a small race 639 * window in which a writepage caller may see the page cleanness but not the 640 * buffer dirtiness. That's fine. If this code were to set the page dirty 641 * before the buffers, a concurrent writepage caller could clear the page dirty 642 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 643 * page on the dirty page list. 644 * 645 * We use private_lock to lock against try_to_free_buffers while using the 646 * page's buffer list. Also use this to protect against clean buffers being 647 * added to the page after it was set dirty. 648 * 649 * FIXME: may need to call ->reservepage here as well. That's rather up to the 650 * address_space though. 651 */ 652 int __set_page_dirty_buffers(struct page *page) 653 { 654 int newly_dirty; 655 struct address_space *mapping = page_mapping(page); 656 657 if (unlikely(!mapping)) 658 return !TestSetPageDirty(page); 659 660 spin_lock(&mapping->private_lock); 661 if (page_has_buffers(page)) { 662 struct buffer_head *head = page_buffers(page); 663 struct buffer_head *bh = head; 664 665 do { 666 set_buffer_dirty(bh); 667 bh = bh->b_this_page; 668 } while (bh != head); 669 } 670 newly_dirty = !TestSetPageDirty(page); 671 spin_unlock(&mapping->private_lock); 672 673 if (newly_dirty) 674 __set_page_dirty(page, mapping, 1); 675 return newly_dirty; 676 } 677 EXPORT_SYMBOL(__set_page_dirty_buffers); 678 679 /* 680 * Write out and wait upon a list of buffers. 681 * 682 * We have conflicting pressures: we want to make sure that all 683 * initially dirty buffers get waited on, but that any subsequently 684 * dirtied buffers don't. After all, we don't want fsync to last 685 * forever if somebody is actively writing to the file. 686 * 687 * Do this in two main stages: first we copy dirty buffers to a 688 * temporary inode list, queueing the writes as we go. Then we clean 689 * up, waiting for those writes to complete. 690 * 691 * During this second stage, any subsequent updates to the file may end 692 * up refiling the buffer on the original inode's dirty list again, so 693 * there is a chance we will end up with a buffer queued for write but 694 * not yet completed on that list. So, as a final cleanup we go through 695 * the osync code to catch these locked, dirty buffers without requeuing 696 * any newly dirty buffers for write. 697 */ 698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 699 { 700 struct buffer_head *bh; 701 struct list_head tmp; 702 struct address_space *mapping; 703 int err = 0, err2; 704 struct blk_plug plug; 705 706 INIT_LIST_HEAD(&tmp); 707 blk_start_plug(&plug); 708 709 spin_lock(lock); 710 while (!list_empty(list)) { 711 bh = BH_ENTRY(list->next); 712 mapping = bh->b_assoc_map; 713 __remove_assoc_queue(bh); 714 /* Avoid race with mark_buffer_dirty_inode() which does 715 * a lockless check and we rely on seeing the dirty bit */ 716 smp_mb(); 717 if (buffer_dirty(bh) || buffer_locked(bh)) { 718 list_add(&bh->b_assoc_buffers, &tmp); 719 bh->b_assoc_map = mapping; 720 if (buffer_dirty(bh)) { 721 get_bh(bh); 722 spin_unlock(lock); 723 /* 724 * Ensure any pending I/O completes so that 725 * write_dirty_buffer() actually writes the 726 * current contents - it is a noop if I/O is 727 * still in flight on potentially older 728 * contents. 729 */ 730 write_dirty_buffer(bh, WRITE_SYNC); 731 732 /* 733 * Kick off IO for the previous mapping. Note 734 * that we will not run the very last mapping, 735 * wait_on_buffer() will do that for us 736 * through sync_buffer(). 737 */ 738 brelse(bh); 739 spin_lock(lock); 740 } 741 } 742 } 743 744 spin_unlock(lock); 745 blk_finish_plug(&plug); 746 spin_lock(lock); 747 748 while (!list_empty(&tmp)) { 749 bh = BH_ENTRY(tmp.prev); 750 get_bh(bh); 751 mapping = bh->b_assoc_map; 752 __remove_assoc_queue(bh); 753 /* Avoid race with mark_buffer_dirty_inode() which does 754 * a lockless check and we rely on seeing the dirty bit */ 755 smp_mb(); 756 if (buffer_dirty(bh)) { 757 list_add(&bh->b_assoc_buffers, 758 &mapping->private_list); 759 bh->b_assoc_map = mapping; 760 } 761 spin_unlock(lock); 762 wait_on_buffer(bh); 763 if (!buffer_uptodate(bh)) 764 err = -EIO; 765 brelse(bh); 766 spin_lock(lock); 767 } 768 769 spin_unlock(lock); 770 err2 = osync_buffers_list(lock, list); 771 if (err) 772 return err; 773 else 774 return err2; 775 } 776 777 /* 778 * Invalidate any and all dirty buffers on a given inode. We are 779 * probably unmounting the fs, but that doesn't mean we have already 780 * done a sync(). Just drop the buffers from the inode list. 781 * 782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 783 * assumes that all the buffers are against the blockdev. Not true 784 * for reiserfs. 785 */ 786 void invalidate_inode_buffers(struct inode *inode) 787 { 788 if (inode_has_buffers(inode)) { 789 struct address_space *mapping = &inode->i_data; 790 struct list_head *list = &mapping->private_list; 791 struct address_space *buffer_mapping = mapping->assoc_mapping; 792 793 spin_lock(&buffer_mapping->private_lock); 794 while (!list_empty(list)) 795 __remove_assoc_queue(BH_ENTRY(list->next)); 796 spin_unlock(&buffer_mapping->private_lock); 797 } 798 } 799 EXPORT_SYMBOL(invalidate_inode_buffers); 800 801 /* 802 * Remove any clean buffers from the inode's buffer list. This is called 803 * when we're trying to free the inode itself. Those buffers can pin it. 804 * 805 * Returns true if all buffers were removed. 806 */ 807 int remove_inode_buffers(struct inode *inode) 808 { 809 int ret = 1; 810 811 if (inode_has_buffers(inode)) { 812 struct address_space *mapping = &inode->i_data; 813 struct list_head *list = &mapping->private_list; 814 struct address_space *buffer_mapping = mapping->assoc_mapping; 815 816 spin_lock(&buffer_mapping->private_lock); 817 while (!list_empty(list)) { 818 struct buffer_head *bh = BH_ENTRY(list->next); 819 if (buffer_dirty(bh)) { 820 ret = 0; 821 break; 822 } 823 __remove_assoc_queue(bh); 824 } 825 spin_unlock(&buffer_mapping->private_lock); 826 } 827 return ret; 828 } 829 830 /* 831 * Create the appropriate buffers when given a page for data area and 832 * the size of each buffer.. Use the bh->b_this_page linked list to 833 * follow the buffers created. Return NULL if unable to create more 834 * buffers. 835 * 836 * The retry flag is used to differentiate async IO (paging, swapping) 837 * which may not fail from ordinary buffer allocations. 838 */ 839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 840 int retry) 841 { 842 struct buffer_head *bh, *head; 843 long offset; 844 845 try_again: 846 head = NULL; 847 offset = PAGE_SIZE; 848 while ((offset -= size) >= 0) { 849 bh = alloc_buffer_head(GFP_NOFS); 850 if (!bh) 851 goto no_grow; 852 853 bh->b_bdev = NULL; 854 bh->b_this_page = head; 855 bh->b_blocknr = -1; 856 head = bh; 857 858 bh->b_state = 0; 859 atomic_set(&bh->b_count, 0); 860 bh->b_size = size; 861 862 /* Link the buffer to its page */ 863 set_bh_page(bh, page, offset); 864 865 init_buffer(bh, NULL, NULL); 866 } 867 return head; 868 /* 869 * In case anything failed, we just free everything we got. 870 */ 871 no_grow: 872 if (head) { 873 do { 874 bh = head; 875 head = head->b_this_page; 876 free_buffer_head(bh); 877 } while (head); 878 } 879 880 /* 881 * Return failure for non-async IO requests. Async IO requests 882 * are not allowed to fail, so we have to wait until buffer heads 883 * become available. But we don't want tasks sleeping with 884 * partially complete buffers, so all were released above. 885 */ 886 if (!retry) 887 return NULL; 888 889 /* We're _really_ low on memory. Now we just 890 * wait for old buffer heads to become free due to 891 * finishing IO. Since this is an async request and 892 * the reserve list is empty, we're sure there are 893 * async buffer heads in use. 894 */ 895 free_more_memory(); 896 goto try_again; 897 } 898 EXPORT_SYMBOL_GPL(alloc_page_buffers); 899 900 static inline void 901 link_dev_buffers(struct page *page, struct buffer_head *head) 902 { 903 struct buffer_head *bh, *tail; 904 905 bh = head; 906 do { 907 tail = bh; 908 bh = bh->b_this_page; 909 } while (bh); 910 tail->b_this_page = head; 911 attach_page_buffers(page, head); 912 } 913 914 /* 915 * Initialise the state of a blockdev page's buffers. 916 */ 917 static void 918 init_page_buffers(struct page *page, struct block_device *bdev, 919 sector_t block, int size) 920 { 921 struct buffer_head *head = page_buffers(page); 922 struct buffer_head *bh = head; 923 int uptodate = PageUptodate(page); 924 925 do { 926 if (!buffer_mapped(bh)) { 927 init_buffer(bh, NULL, NULL); 928 bh->b_bdev = bdev; 929 bh->b_blocknr = block; 930 if (uptodate) 931 set_buffer_uptodate(bh); 932 set_buffer_mapped(bh); 933 } 934 block++; 935 bh = bh->b_this_page; 936 } while (bh != head); 937 } 938 939 /* 940 * Create the page-cache page that contains the requested block. 941 * 942 * This is user purely for blockdev mappings. 943 */ 944 static struct page * 945 grow_dev_page(struct block_device *bdev, sector_t block, 946 pgoff_t index, int size) 947 { 948 struct inode *inode = bdev->bd_inode; 949 struct page *page; 950 struct buffer_head *bh; 951 952 page = find_or_create_page(inode->i_mapping, index, 953 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 954 if (!page) 955 return NULL; 956 957 BUG_ON(!PageLocked(page)); 958 959 if (page_has_buffers(page)) { 960 bh = page_buffers(page); 961 if (bh->b_size == size) { 962 init_page_buffers(page, bdev, block, size); 963 return page; 964 } 965 if (!try_to_free_buffers(page)) 966 goto failed; 967 } 968 969 /* 970 * Allocate some buffers for this page 971 */ 972 bh = alloc_page_buffers(page, size, 0); 973 if (!bh) 974 goto failed; 975 976 /* 977 * Link the page to the buffers and initialise them. Take the 978 * lock to be atomic wrt __find_get_block(), which does not 979 * run under the page lock. 980 */ 981 spin_lock(&inode->i_mapping->private_lock); 982 link_dev_buffers(page, bh); 983 init_page_buffers(page, bdev, block, size); 984 spin_unlock(&inode->i_mapping->private_lock); 985 return page; 986 987 failed: 988 BUG(); 989 unlock_page(page); 990 page_cache_release(page); 991 return NULL; 992 } 993 994 /* 995 * Create buffers for the specified block device block's page. If 996 * that page was dirty, the buffers are set dirty also. 997 */ 998 static int 999 grow_buffers(struct block_device *bdev, sector_t block, int size) 1000 { 1001 struct page *page; 1002 pgoff_t index; 1003 int sizebits; 1004 1005 sizebits = -1; 1006 do { 1007 sizebits++; 1008 } while ((size << sizebits) < PAGE_SIZE); 1009 1010 index = block >> sizebits; 1011 1012 /* 1013 * Check for a block which wants to lie outside our maximum possible 1014 * pagecache index. (this comparison is done using sector_t types). 1015 */ 1016 if (unlikely(index != block >> sizebits)) { 1017 char b[BDEVNAME_SIZE]; 1018 1019 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1020 "device %s\n", 1021 __func__, (unsigned long long)block, 1022 bdevname(bdev, b)); 1023 return -EIO; 1024 } 1025 block = index << sizebits; 1026 /* Create a page with the proper size buffers.. */ 1027 page = grow_dev_page(bdev, block, index, size); 1028 if (!page) 1029 return 0; 1030 unlock_page(page); 1031 page_cache_release(page); 1032 return 1; 1033 } 1034 1035 static struct buffer_head * 1036 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1037 { 1038 /* Size must be multiple of hard sectorsize */ 1039 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1040 (size < 512 || size > PAGE_SIZE))) { 1041 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1042 size); 1043 printk(KERN_ERR "logical block size: %d\n", 1044 bdev_logical_block_size(bdev)); 1045 1046 dump_stack(); 1047 return NULL; 1048 } 1049 1050 for (;;) { 1051 struct buffer_head * bh; 1052 int ret; 1053 1054 bh = __find_get_block(bdev, block, size); 1055 if (bh) 1056 return bh; 1057 1058 ret = grow_buffers(bdev, block, size); 1059 if (ret < 0) 1060 return NULL; 1061 if (ret == 0) 1062 free_more_memory(); 1063 } 1064 } 1065 1066 /* 1067 * The relationship between dirty buffers and dirty pages: 1068 * 1069 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1070 * the page is tagged dirty in its radix tree. 1071 * 1072 * At all times, the dirtiness of the buffers represents the dirtiness of 1073 * subsections of the page. If the page has buffers, the page dirty bit is 1074 * merely a hint about the true dirty state. 1075 * 1076 * When a page is set dirty in its entirety, all its buffers are marked dirty 1077 * (if the page has buffers). 1078 * 1079 * When a buffer is marked dirty, its page is dirtied, but the page's other 1080 * buffers are not. 1081 * 1082 * Also. When blockdev buffers are explicitly read with bread(), they 1083 * individually become uptodate. But their backing page remains not 1084 * uptodate - even if all of its buffers are uptodate. A subsequent 1085 * block_read_full_page() against that page will discover all the uptodate 1086 * buffers, will set the page uptodate and will perform no I/O. 1087 */ 1088 1089 /** 1090 * mark_buffer_dirty - mark a buffer_head as needing writeout 1091 * @bh: the buffer_head to mark dirty 1092 * 1093 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1094 * backing page dirty, then tag the page as dirty in its address_space's radix 1095 * tree and then attach the address_space's inode to its superblock's dirty 1096 * inode list. 1097 * 1098 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1099 * mapping->tree_lock and mapping->host->i_lock. 1100 */ 1101 void mark_buffer_dirty(struct buffer_head *bh) 1102 { 1103 WARN_ON_ONCE(!buffer_uptodate(bh)); 1104 1105 /* 1106 * Very *carefully* optimize the it-is-already-dirty case. 1107 * 1108 * Don't let the final "is it dirty" escape to before we 1109 * perhaps modified the buffer. 1110 */ 1111 if (buffer_dirty(bh)) { 1112 smp_mb(); 1113 if (buffer_dirty(bh)) 1114 return; 1115 } 1116 1117 if (!test_set_buffer_dirty(bh)) { 1118 struct page *page = bh->b_page; 1119 if (!TestSetPageDirty(page)) { 1120 struct address_space *mapping = page_mapping(page); 1121 if (mapping) 1122 __set_page_dirty(page, mapping, 0); 1123 } 1124 } 1125 } 1126 EXPORT_SYMBOL(mark_buffer_dirty); 1127 1128 /* 1129 * Decrement a buffer_head's reference count. If all buffers against a page 1130 * have zero reference count, are clean and unlocked, and if the page is clean 1131 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1132 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1133 * a page but it ends up not being freed, and buffers may later be reattached). 1134 */ 1135 void __brelse(struct buffer_head * buf) 1136 { 1137 if (atomic_read(&buf->b_count)) { 1138 put_bh(buf); 1139 return; 1140 } 1141 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1142 } 1143 EXPORT_SYMBOL(__brelse); 1144 1145 /* 1146 * bforget() is like brelse(), except it discards any 1147 * potentially dirty data. 1148 */ 1149 void __bforget(struct buffer_head *bh) 1150 { 1151 clear_buffer_dirty(bh); 1152 if (bh->b_assoc_map) { 1153 struct address_space *buffer_mapping = bh->b_page->mapping; 1154 1155 spin_lock(&buffer_mapping->private_lock); 1156 list_del_init(&bh->b_assoc_buffers); 1157 bh->b_assoc_map = NULL; 1158 spin_unlock(&buffer_mapping->private_lock); 1159 } 1160 __brelse(bh); 1161 } 1162 EXPORT_SYMBOL(__bforget); 1163 1164 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1165 { 1166 lock_buffer(bh); 1167 if (buffer_uptodate(bh)) { 1168 unlock_buffer(bh); 1169 return bh; 1170 } else { 1171 get_bh(bh); 1172 bh->b_end_io = end_buffer_read_sync; 1173 submit_bh(READ, bh); 1174 wait_on_buffer(bh); 1175 if (buffer_uptodate(bh)) 1176 return bh; 1177 } 1178 brelse(bh); 1179 return NULL; 1180 } 1181 1182 /* 1183 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1184 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1185 * refcount elevated by one when they're in an LRU. A buffer can only appear 1186 * once in a particular CPU's LRU. A single buffer can be present in multiple 1187 * CPU's LRUs at the same time. 1188 * 1189 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1190 * sb_find_get_block(). 1191 * 1192 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1193 * a local interrupt disable for that. 1194 */ 1195 1196 #define BH_LRU_SIZE 8 1197 1198 struct bh_lru { 1199 struct buffer_head *bhs[BH_LRU_SIZE]; 1200 }; 1201 1202 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1203 1204 #ifdef CONFIG_SMP 1205 #define bh_lru_lock() local_irq_disable() 1206 #define bh_lru_unlock() local_irq_enable() 1207 #else 1208 #define bh_lru_lock() preempt_disable() 1209 #define bh_lru_unlock() preempt_enable() 1210 #endif 1211 1212 static inline void check_irqs_on(void) 1213 { 1214 #ifdef irqs_disabled 1215 BUG_ON(irqs_disabled()); 1216 #endif 1217 } 1218 1219 /* 1220 * The LRU management algorithm is dopey-but-simple. Sorry. 1221 */ 1222 static void bh_lru_install(struct buffer_head *bh) 1223 { 1224 struct buffer_head *evictee = NULL; 1225 1226 check_irqs_on(); 1227 bh_lru_lock(); 1228 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1229 struct buffer_head *bhs[BH_LRU_SIZE]; 1230 int in; 1231 int out = 0; 1232 1233 get_bh(bh); 1234 bhs[out++] = bh; 1235 for (in = 0; in < BH_LRU_SIZE; in++) { 1236 struct buffer_head *bh2 = 1237 __this_cpu_read(bh_lrus.bhs[in]); 1238 1239 if (bh2 == bh) { 1240 __brelse(bh2); 1241 } else { 1242 if (out >= BH_LRU_SIZE) { 1243 BUG_ON(evictee != NULL); 1244 evictee = bh2; 1245 } else { 1246 bhs[out++] = bh2; 1247 } 1248 } 1249 } 1250 while (out < BH_LRU_SIZE) 1251 bhs[out++] = NULL; 1252 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1253 } 1254 bh_lru_unlock(); 1255 1256 if (evictee) 1257 __brelse(evictee); 1258 } 1259 1260 /* 1261 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1262 */ 1263 static struct buffer_head * 1264 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1265 { 1266 struct buffer_head *ret = NULL; 1267 unsigned int i; 1268 1269 check_irqs_on(); 1270 bh_lru_lock(); 1271 for (i = 0; i < BH_LRU_SIZE; i++) { 1272 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1273 1274 if (bh && bh->b_bdev == bdev && 1275 bh->b_blocknr == block && bh->b_size == size) { 1276 if (i) { 1277 while (i) { 1278 __this_cpu_write(bh_lrus.bhs[i], 1279 __this_cpu_read(bh_lrus.bhs[i - 1])); 1280 i--; 1281 } 1282 __this_cpu_write(bh_lrus.bhs[0], bh); 1283 } 1284 get_bh(bh); 1285 ret = bh; 1286 break; 1287 } 1288 } 1289 bh_lru_unlock(); 1290 return ret; 1291 } 1292 1293 /* 1294 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1295 * it in the LRU and mark it as accessed. If it is not present then return 1296 * NULL 1297 */ 1298 struct buffer_head * 1299 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1300 { 1301 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1302 1303 if (bh == NULL) { 1304 bh = __find_get_block_slow(bdev, block); 1305 if (bh) 1306 bh_lru_install(bh); 1307 } 1308 if (bh) 1309 touch_buffer(bh); 1310 return bh; 1311 } 1312 EXPORT_SYMBOL(__find_get_block); 1313 1314 /* 1315 * __getblk will locate (and, if necessary, create) the buffer_head 1316 * which corresponds to the passed block_device, block and size. The 1317 * returned buffer has its reference count incremented. 1318 * 1319 * __getblk() cannot fail - it just keeps trying. If you pass it an 1320 * illegal block number, __getblk() will happily return a buffer_head 1321 * which represents the non-existent block. Very weird. 1322 * 1323 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1324 * attempt is failing. FIXME, perhaps? 1325 */ 1326 struct buffer_head * 1327 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1328 { 1329 struct buffer_head *bh = __find_get_block(bdev, block, size); 1330 1331 might_sleep(); 1332 if (bh == NULL) 1333 bh = __getblk_slow(bdev, block, size); 1334 return bh; 1335 } 1336 EXPORT_SYMBOL(__getblk); 1337 1338 /* 1339 * Do async read-ahead on a buffer.. 1340 */ 1341 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1342 { 1343 struct buffer_head *bh = __getblk(bdev, block, size); 1344 if (likely(bh)) { 1345 ll_rw_block(READA, 1, &bh); 1346 brelse(bh); 1347 } 1348 } 1349 EXPORT_SYMBOL(__breadahead); 1350 1351 /** 1352 * __bread() - reads a specified block and returns the bh 1353 * @bdev: the block_device to read from 1354 * @block: number of block 1355 * @size: size (in bytes) to read 1356 * 1357 * Reads a specified block, and returns buffer head that contains it. 1358 * It returns NULL if the block was unreadable. 1359 */ 1360 struct buffer_head * 1361 __bread(struct block_device *bdev, sector_t block, unsigned size) 1362 { 1363 struct buffer_head *bh = __getblk(bdev, block, size); 1364 1365 if (likely(bh) && !buffer_uptodate(bh)) 1366 bh = __bread_slow(bh); 1367 return bh; 1368 } 1369 EXPORT_SYMBOL(__bread); 1370 1371 /* 1372 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1373 * This doesn't race because it runs in each cpu either in irq 1374 * or with preempt disabled. 1375 */ 1376 static void invalidate_bh_lru(void *arg) 1377 { 1378 struct bh_lru *b = &get_cpu_var(bh_lrus); 1379 int i; 1380 1381 for (i = 0; i < BH_LRU_SIZE; i++) { 1382 brelse(b->bhs[i]); 1383 b->bhs[i] = NULL; 1384 } 1385 put_cpu_var(bh_lrus); 1386 } 1387 1388 void invalidate_bh_lrus(void) 1389 { 1390 on_each_cpu(invalidate_bh_lru, NULL, 1); 1391 } 1392 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1393 1394 void set_bh_page(struct buffer_head *bh, 1395 struct page *page, unsigned long offset) 1396 { 1397 bh->b_page = page; 1398 BUG_ON(offset >= PAGE_SIZE); 1399 if (PageHighMem(page)) 1400 /* 1401 * This catches illegal uses and preserves the offset: 1402 */ 1403 bh->b_data = (char *)(0 + offset); 1404 else 1405 bh->b_data = page_address(page) + offset; 1406 } 1407 EXPORT_SYMBOL(set_bh_page); 1408 1409 /* 1410 * Called when truncating a buffer on a page completely. 1411 */ 1412 static void discard_buffer(struct buffer_head * bh) 1413 { 1414 lock_buffer(bh); 1415 clear_buffer_dirty(bh); 1416 bh->b_bdev = NULL; 1417 clear_buffer_mapped(bh); 1418 clear_buffer_req(bh); 1419 clear_buffer_new(bh); 1420 clear_buffer_delay(bh); 1421 clear_buffer_unwritten(bh); 1422 unlock_buffer(bh); 1423 } 1424 1425 /** 1426 * block_invalidatepage - invalidate part or all of a buffer-backed page 1427 * 1428 * @page: the page which is affected 1429 * @offset: the index of the truncation point 1430 * 1431 * block_invalidatepage() is called when all or part of the page has become 1432 * invalidated by a truncate operation. 1433 * 1434 * block_invalidatepage() does not have to release all buffers, but it must 1435 * ensure that no dirty buffer is left outside @offset and that no I/O 1436 * is underway against any of the blocks which are outside the truncation 1437 * point. Because the caller is about to free (and possibly reuse) those 1438 * blocks on-disk. 1439 */ 1440 void block_invalidatepage(struct page *page, unsigned long offset) 1441 { 1442 struct buffer_head *head, *bh, *next; 1443 unsigned int curr_off = 0; 1444 1445 BUG_ON(!PageLocked(page)); 1446 if (!page_has_buffers(page)) 1447 goto out; 1448 1449 head = page_buffers(page); 1450 bh = head; 1451 do { 1452 unsigned int next_off = curr_off + bh->b_size; 1453 next = bh->b_this_page; 1454 1455 /* 1456 * is this block fully invalidated? 1457 */ 1458 if (offset <= curr_off) 1459 discard_buffer(bh); 1460 curr_off = next_off; 1461 bh = next; 1462 } while (bh != head); 1463 1464 /* 1465 * We release buffers only if the entire page is being invalidated. 1466 * The get_block cached value has been unconditionally invalidated, 1467 * so real IO is not possible anymore. 1468 */ 1469 if (offset == 0) 1470 try_to_release_page(page, 0); 1471 out: 1472 return; 1473 } 1474 EXPORT_SYMBOL(block_invalidatepage); 1475 1476 /* 1477 * We attach and possibly dirty the buffers atomically wrt 1478 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1479 * is already excluded via the page lock. 1480 */ 1481 void create_empty_buffers(struct page *page, 1482 unsigned long blocksize, unsigned long b_state) 1483 { 1484 struct buffer_head *bh, *head, *tail; 1485 1486 head = alloc_page_buffers(page, blocksize, 1); 1487 bh = head; 1488 do { 1489 bh->b_state |= b_state; 1490 tail = bh; 1491 bh = bh->b_this_page; 1492 } while (bh); 1493 tail->b_this_page = head; 1494 1495 spin_lock(&page->mapping->private_lock); 1496 if (PageUptodate(page) || PageDirty(page)) { 1497 bh = head; 1498 do { 1499 if (PageDirty(page)) 1500 set_buffer_dirty(bh); 1501 if (PageUptodate(page)) 1502 set_buffer_uptodate(bh); 1503 bh = bh->b_this_page; 1504 } while (bh != head); 1505 } 1506 attach_page_buffers(page, head); 1507 spin_unlock(&page->mapping->private_lock); 1508 } 1509 EXPORT_SYMBOL(create_empty_buffers); 1510 1511 /* 1512 * We are taking a block for data and we don't want any output from any 1513 * buffer-cache aliases starting from return from that function and 1514 * until the moment when something will explicitly mark the buffer 1515 * dirty (hopefully that will not happen until we will free that block ;-) 1516 * We don't even need to mark it not-uptodate - nobody can expect 1517 * anything from a newly allocated buffer anyway. We used to used 1518 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1519 * don't want to mark the alias unmapped, for example - it would confuse 1520 * anyone who might pick it with bread() afterwards... 1521 * 1522 * Also.. Note that bforget() doesn't lock the buffer. So there can 1523 * be writeout I/O going on against recently-freed buffers. We don't 1524 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1525 * only if we really need to. That happens here. 1526 */ 1527 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1528 { 1529 struct buffer_head *old_bh; 1530 1531 might_sleep(); 1532 1533 old_bh = __find_get_block_slow(bdev, block); 1534 if (old_bh) { 1535 clear_buffer_dirty(old_bh); 1536 wait_on_buffer(old_bh); 1537 clear_buffer_req(old_bh); 1538 __brelse(old_bh); 1539 } 1540 } 1541 EXPORT_SYMBOL(unmap_underlying_metadata); 1542 1543 /* 1544 * NOTE! All mapped/uptodate combinations are valid: 1545 * 1546 * Mapped Uptodate Meaning 1547 * 1548 * No No "unknown" - must do get_block() 1549 * No Yes "hole" - zero-filled 1550 * Yes No "allocated" - allocated on disk, not read in 1551 * Yes Yes "valid" - allocated and up-to-date in memory. 1552 * 1553 * "Dirty" is valid only with the last case (mapped+uptodate). 1554 */ 1555 1556 /* 1557 * While block_write_full_page is writing back the dirty buffers under 1558 * the page lock, whoever dirtied the buffers may decide to clean them 1559 * again at any time. We handle that by only looking at the buffer 1560 * state inside lock_buffer(). 1561 * 1562 * If block_write_full_page() is called for regular writeback 1563 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1564 * locked buffer. This only can happen if someone has written the buffer 1565 * directly, with submit_bh(). At the address_space level PageWriteback 1566 * prevents this contention from occurring. 1567 * 1568 * If block_write_full_page() is called with wbc->sync_mode == 1569 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1570 * causes the writes to be flagged as synchronous writes. 1571 */ 1572 static int __block_write_full_page(struct inode *inode, struct page *page, 1573 get_block_t *get_block, struct writeback_control *wbc, 1574 bh_end_io_t *handler) 1575 { 1576 int err; 1577 sector_t block; 1578 sector_t last_block; 1579 struct buffer_head *bh, *head; 1580 const unsigned blocksize = 1 << inode->i_blkbits; 1581 int nr_underway = 0; 1582 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1583 WRITE_SYNC : WRITE); 1584 1585 BUG_ON(!PageLocked(page)); 1586 1587 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1588 1589 if (!page_has_buffers(page)) { 1590 create_empty_buffers(page, blocksize, 1591 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1592 } 1593 1594 /* 1595 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1596 * here, and the (potentially unmapped) buffers may become dirty at 1597 * any time. If a buffer becomes dirty here after we've inspected it 1598 * then we just miss that fact, and the page stays dirty. 1599 * 1600 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1601 * handle that here by just cleaning them. 1602 */ 1603 1604 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1605 head = page_buffers(page); 1606 bh = head; 1607 1608 /* 1609 * Get all the dirty buffers mapped to disk addresses and 1610 * handle any aliases from the underlying blockdev's mapping. 1611 */ 1612 do { 1613 if (block > last_block) { 1614 /* 1615 * mapped buffers outside i_size will occur, because 1616 * this page can be outside i_size when there is a 1617 * truncate in progress. 1618 */ 1619 /* 1620 * The buffer was zeroed by block_write_full_page() 1621 */ 1622 clear_buffer_dirty(bh); 1623 set_buffer_uptodate(bh); 1624 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1625 buffer_dirty(bh)) { 1626 WARN_ON(bh->b_size != blocksize); 1627 err = get_block(inode, block, bh, 1); 1628 if (err) 1629 goto recover; 1630 clear_buffer_delay(bh); 1631 if (buffer_new(bh)) { 1632 /* blockdev mappings never come here */ 1633 clear_buffer_new(bh); 1634 unmap_underlying_metadata(bh->b_bdev, 1635 bh->b_blocknr); 1636 } 1637 } 1638 bh = bh->b_this_page; 1639 block++; 1640 } while (bh != head); 1641 1642 do { 1643 if (!buffer_mapped(bh)) 1644 continue; 1645 /* 1646 * If it's a fully non-blocking write attempt and we cannot 1647 * lock the buffer then redirty the page. Note that this can 1648 * potentially cause a busy-wait loop from writeback threads 1649 * and kswapd activity, but those code paths have their own 1650 * higher-level throttling. 1651 */ 1652 if (wbc->sync_mode != WB_SYNC_NONE) { 1653 lock_buffer(bh); 1654 } else if (!trylock_buffer(bh)) { 1655 redirty_page_for_writepage(wbc, page); 1656 continue; 1657 } 1658 if (test_clear_buffer_dirty(bh)) { 1659 mark_buffer_async_write_endio(bh, handler); 1660 } else { 1661 unlock_buffer(bh); 1662 } 1663 } while ((bh = bh->b_this_page) != head); 1664 1665 /* 1666 * The page and its buffers are protected by PageWriteback(), so we can 1667 * drop the bh refcounts early. 1668 */ 1669 BUG_ON(PageWriteback(page)); 1670 set_page_writeback(page); 1671 1672 do { 1673 struct buffer_head *next = bh->b_this_page; 1674 if (buffer_async_write(bh)) { 1675 submit_bh(write_op, bh); 1676 nr_underway++; 1677 } 1678 bh = next; 1679 } while (bh != head); 1680 unlock_page(page); 1681 1682 err = 0; 1683 done: 1684 if (nr_underway == 0) { 1685 /* 1686 * The page was marked dirty, but the buffers were 1687 * clean. Someone wrote them back by hand with 1688 * ll_rw_block/submit_bh. A rare case. 1689 */ 1690 end_page_writeback(page); 1691 1692 /* 1693 * The page and buffer_heads can be released at any time from 1694 * here on. 1695 */ 1696 } 1697 return err; 1698 1699 recover: 1700 /* 1701 * ENOSPC, or some other error. We may already have added some 1702 * blocks to the file, so we need to write these out to avoid 1703 * exposing stale data. 1704 * The page is currently locked and not marked for writeback 1705 */ 1706 bh = head; 1707 /* Recovery: lock and submit the mapped buffers */ 1708 do { 1709 if (buffer_mapped(bh) && buffer_dirty(bh) && 1710 !buffer_delay(bh)) { 1711 lock_buffer(bh); 1712 mark_buffer_async_write_endio(bh, handler); 1713 } else { 1714 /* 1715 * The buffer may have been set dirty during 1716 * attachment to a dirty page. 1717 */ 1718 clear_buffer_dirty(bh); 1719 } 1720 } while ((bh = bh->b_this_page) != head); 1721 SetPageError(page); 1722 BUG_ON(PageWriteback(page)); 1723 mapping_set_error(page->mapping, err); 1724 set_page_writeback(page); 1725 do { 1726 struct buffer_head *next = bh->b_this_page; 1727 if (buffer_async_write(bh)) { 1728 clear_buffer_dirty(bh); 1729 submit_bh(write_op, bh); 1730 nr_underway++; 1731 } 1732 bh = next; 1733 } while (bh != head); 1734 unlock_page(page); 1735 goto done; 1736 } 1737 1738 /* 1739 * If a page has any new buffers, zero them out here, and mark them uptodate 1740 * and dirty so they'll be written out (in order to prevent uninitialised 1741 * block data from leaking). And clear the new bit. 1742 */ 1743 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1744 { 1745 unsigned int block_start, block_end; 1746 struct buffer_head *head, *bh; 1747 1748 BUG_ON(!PageLocked(page)); 1749 if (!page_has_buffers(page)) 1750 return; 1751 1752 bh = head = page_buffers(page); 1753 block_start = 0; 1754 do { 1755 block_end = block_start + bh->b_size; 1756 1757 if (buffer_new(bh)) { 1758 if (block_end > from && block_start < to) { 1759 if (!PageUptodate(page)) { 1760 unsigned start, size; 1761 1762 start = max(from, block_start); 1763 size = min(to, block_end) - start; 1764 1765 zero_user(page, start, size); 1766 set_buffer_uptodate(bh); 1767 } 1768 1769 clear_buffer_new(bh); 1770 mark_buffer_dirty(bh); 1771 } 1772 } 1773 1774 block_start = block_end; 1775 bh = bh->b_this_page; 1776 } while (bh != head); 1777 } 1778 EXPORT_SYMBOL(page_zero_new_buffers); 1779 1780 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1781 get_block_t *get_block) 1782 { 1783 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1784 unsigned to = from + len; 1785 struct inode *inode = page->mapping->host; 1786 unsigned block_start, block_end; 1787 sector_t block; 1788 int err = 0; 1789 unsigned blocksize, bbits; 1790 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1791 1792 BUG_ON(!PageLocked(page)); 1793 BUG_ON(from > PAGE_CACHE_SIZE); 1794 BUG_ON(to > PAGE_CACHE_SIZE); 1795 BUG_ON(from > to); 1796 1797 blocksize = 1 << inode->i_blkbits; 1798 if (!page_has_buffers(page)) 1799 create_empty_buffers(page, blocksize, 0); 1800 head = page_buffers(page); 1801 1802 bbits = inode->i_blkbits; 1803 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1804 1805 for(bh = head, block_start = 0; bh != head || !block_start; 1806 block++, block_start=block_end, bh = bh->b_this_page) { 1807 block_end = block_start + blocksize; 1808 if (block_end <= from || block_start >= to) { 1809 if (PageUptodate(page)) { 1810 if (!buffer_uptodate(bh)) 1811 set_buffer_uptodate(bh); 1812 } 1813 continue; 1814 } 1815 if (buffer_new(bh)) 1816 clear_buffer_new(bh); 1817 if (!buffer_mapped(bh)) { 1818 WARN_ON(bh->b_size != blocksize); 1819 err = get_block(inode, block, bh, 1); 1820 if (err) 1821 break; 1822 if (buffer_new(bh)) { 1823 unmap_underlying_metadata(bh->b_bdev, 1824 bh->b_blocknr); 1825 if (PageUptodate(page)) { 1826 clear_buffer_new(bh); 1827 set_buffer_uptodate(bh); 1828 mark_buffer_dirty(bh); 1829 continue; 1830 } 1831 if (block_end > to || block_start < from) 1832 zero_user_segments(page, 1833 to, block_end, 1834 block_start, from); 1835 continue; 1836 } 1837 } 1838 if (PageUptodate(page)) { 1839 if (!buffer_uptodate(bh)) 1840 set_buffer_uptodate(bh); 1841 continue; 1842 } 1843 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1844 !buffer_unwritten(bh) && 1845 (block_start < from || block_end > to)) { 1846 ll_rw_block(READ, 1, &bh); 1847 *wait_bh++=bh; 1848 } 1849 } 1850 /* 1851 * If we issued read requests - let them complete. 1852 */ 1853 while(wait_bh > wait) { 1854 wait_on_buffer(*--wait_bh); 1855 if (!buffer_uptodate(*wait_bh)) 1856 err = -EIO; 1857 } 1858 if (unlikely(err)) 1859 page_zero_new_buffers(page, from, to); 1860 return err; 1861 } 1862 EXPORT_SYMBOL(__block_write_begin); 1863 1864 static int __block_commit_write(struct inode *inode, struct page *page, 1865 unsigned from, unsigned to) 1866 { 1867 unsigned block_start, block_end; 1868 int partial = 0; 1869 unsigned blocksize; 1870 struct buffer_head *bh, *head; 1871 1872 blocksize = 1 << inode->i_blkbits; 1873 1874 for(bh = head = page_buffers(page), block_start = 0; 1875 bh != head || !block_start; 1876 block_start=block_end, bh = bh->b_this_page) { 1877 block_end = block_start + blocksize; 1878 if (block_end <= from || block_start >= to) { 1879 if (!buffer_uptodate(bh)) 1880 partial = 1; 1881 } else { 1882 set_buffer_uptodate(bh); 1883 mark_buffer_dirty(bh); 1884 } 1885 clear_buffer_new(bh); 1886 } 1887 1888 /* 1889 * If this is a partial write which happened to make all buffers 1890 * uptodate then we can optimize away a bogus readpage() for 1891 * the next read(). Here we 'discover' whether the page went 1892 * uptodate as a result of this (potentially partial) write. 1893 */ 1894 if (!partial) 1895 SetPageUptodate(page); 1896 return 0; 1897 } 1898 1899 /* 1900 * block_write_begin takes care of the basic task of block allocation and 1901 * bringing partial write blocks uptodate first. 1902 * 1903 * The filesystem needs to handle block truncation upon failure. 1904 */ 1905 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 1906 unsigned flags, struct page **pagep, get_block_t *get_block) 1907 { 1908 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1909 struct page *page; 1910 int status; 1911 1912 page = grab_cache_page_write_begin(mapping, index, flags); 1913 if (!page) 1914 return -ENOMEM; 1915 1916 status = __block_write_begin(page, pos, len, get_block); 1917 if (unlikely(status)) { 1918 unlock_page(page); 1919 page_cache_release(page); 1920 page = NULL; 1921 } 1922 1923 *pagep = page; 1924 return status; 1925 } 1926 EXPORT_SYMBOL(block_write_begin); 1927 1928 int block_write_end(struct file *file, struct address_space *mapping, 1929 loff_t pos, unsigned len, unsigned copied, 1930 struct page *page, void *fsdata) 1931 { 1932 struct inode *inode = mapping->host; 1933 unsigned start; 1934 1935 start = pos & (PAGE_CACHE_SIZE - 1); 1936 1937 if (unlikely(copied < len)) { 1938 /* 1939 * The buffers that were written will now be uptodate, so we 1940 * don't have to worry about a readpage reading them and 1941 * overwriting a partial write. However if we have encountered 1942 * a short write and only partially written into a buffer, it 1943 * will not be marked uptodate, so a readpage might come in and 1944 * destroy our partial write. 1945 * 1946 * Do the simplest thing, and just treat any short write to a 1947 * non uptodate page as a zero-length write, and force the 1948 * caller to redo the whole thing. 1949 */ 1950 if (!PageUptodate(page)) 1951 copied = 0; 1952 1953 page_zero_new_buffers(page, start+copied, start+len); 1954 } 1955 flush_dcache_page(page); 1956 1957 /* This could be a short (even 0-length) commit */ 1958 __block_commit_write(inode, page, start, start+copied); 1959 1960 return copied; 1961 } 1962 EXPORT_SYMBOL(block_write_end); 1963 1964 int generic_write_end(struct file *file, struct address_space *mapping, 1965 loff_t pos, unsigned len, unsigned copied, 1966 struct page *page, void *fsdata) 1967 { 1968 struct inode *inode = mapping->host; 1969 int i_size_changed = 0; 1970 1971 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1972 1973 /* 1974 * No need to use i_size_read() here, the i_size 1975 * cannot change under us because we hold i_mutex. 1976 * 1977 * But it's important to update i_size while still holding page lock: 1978 * page writeout could otherwise come in and zero beyond i_size. 1979 */ 1980 if (pos+copied > inode->i_size) { 1981 i_size_write(inode, pos+copied); 1982 i_size_changed = 1; 1983 } 1984 1985 unlock_page(page); 1986 page_cache_release(page); 1987 1988 /* 1989 * Don't mark the inode dirty under page lock. First, it unnecessarily 1990 * makes the holding time of page lock longer. Second, it forces lock 1991 * ordering of page lock and transaction start for journaling 1992 * filesystems. 1993 */ 1994 if (i_size_changed) 1995 mark_inode_dirty(inode); 1996 1997 return copied; 1998 } 1999 EXPORT_SYMBOL(generic_write_end); 2000 2001 /* 2002 * block_is_partially_uptodate checks whether buffers within a page are 2003 * uptodate or not. 2004 * 2005 * Returns true if all buffers which correspond to a file portion 2006 * we want to read are uptodate. 2007 */ 2008 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2009 unsigned long from) 2010 { 2011 struct inode *inode = page->mapping->host; 2012 unsigned block_start, block_end, blocksize; 2013 unsigned to; 2014 struct buffer_head *bh, *head; 2015 int ret = 1; 2016 2017 if (!page_has_buffers(page)) 2018 return 0; 2019 2020 blocksize = 1 << inode->i_blkbits; 2021 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2022 to = from + to; 2023 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2024 return 0; 2025 2026 head = page_buffers(page); 2027 bh = head; 2028 block_start = 0; 2029 do { 2030 block_end = block_start + blocksize; 2031 if (block_end > from && block_start < to) { 2032 if (!buffer_uptodate(bh)) { 2033 ret = 0; 2034 break; 2035 } 2036 if (block_end >= to) 2037 break; 2038 } 2039 block_start = block_end; 2040 bh = bh->b_this_page; 2041 } while (bh != head); 2042 2043 return ret; 2044 } 2045 EXPORT_SYMBOL(block_is_partially_uptodate); 2046 2047 /* 2048 * Generic "read page" function for block devices that have the normal 2049 * get_block functionality. This is most of the block device filesystems. 2050 * Reads the page asynchronously --- the unlock_buffer() and 2051 * set/clear_buffer_uptodate() functions propagate buffer state into the 2052 * page struct once IO has completed. 2053 */ 2054 int block_read_full_page(struct page *page, get_block_t *get_block) 2055 { 2056 struct inode *inode = page->mapping->host; 2057 sector_t iblock, lblock; 2058 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2059 unsigned int blocksize; 2060 int nr, i; 2061 int fully_mapped = 1; 2062 2063 BUG_ON(!PageLocked(page)); 2064 blocksize = 1 << inode->i_blkbits; 2065 if (!page_has_buffers(page)) 2066 create_empty_buffers(page, blocksize, 0); 2067 head = page_buffers(page); 2068 2069 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2070 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2071 bh = head; 2072 nr = 0; 2073 i = 0; 2074 2075 do { 2076 if (buffer_uptodate(bh)) 2077 continue; 2078 2079 if (!buffer_mapped(bh)) { 2080 int err = 0; 2081 2082 fully_mapped = 0; 2083 if (iblock < lblock) { 2084 WARN_ON(bh->b_size != blocksize); 2085 err = get_block(inode, iblock, bh, 0); 2086 if (err) 2087 SetPageError(page); 2088 } 2089 if (!buffer_mapped(bh)) { 2090 zero_user(page, i * blocksize, blocksize); 2091 if (!err) 2092 set_buffer_uptodate(bh); 2093 continue; 2094 } 2095 /* 2096 * get_block() might have updated the buffer 2097 * synchronously 2098 */ 2099 if (buffer_uptodate(bh)) 2100 continue; 2101 } 2102 arr[nr++] = bh; 2103 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2104 2105 if (fully_mapped) 2106 SetPageMappedToDisk(page); 2107 2108 if (!nr) { 2109 /* 2110 * All buffers are uptodate - we can set the page uptodate 2111 * as well. But not if get_block() returned an error. 2112 */ 2113 if (!PageError(page)) 2114 SetPageUptodate(page); 2115 unlock_page(page); 2116 return 0; 2117 } 2118 2119 /* Stage two: lock the buffers */ 2120 for (i = 0; i < nr; i++) { 2121 bh = arr[i]; 2122 lock_buffer(bh); 2123 mark_buffer_async_read(bh); 2124 } 2125 2126 /* 2127 * Stage 3: start the IO. Check for uptodateness 2128 * inside the buffer lock in case another process reading 2129 * the underlying blockdev brought it uptodate (the sct fix). 2130 */ 2131 for (i = 0; i < nr; i++) { 2132 bh = arr[i]; 2133 if (buffer_uptodate(bh)) 2134 end_buffer_async_read(bh, 1); 2135 else 2136 submit_bh(READ, bh); 2137 } 2138 return 0; 2139 } 2140 EXPORT_SYMBOL(block_read_full_page); 2141 2142 /* utility function for filesystems that need to do work on expanding 2143 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2144 * deal with the hole. 2145 */ 2146 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2147 { 2148 struct address_space *mapping = inode->i_mapping; 2149 struct page *page; 2150 void *fsdata; 2151 int err; 2152 2153 err = inode_newsize_ok(inode, size); 2154 if (err) 2155 goto out; 2156 2157 err = pagecache_write_begin(NULL, mapping, size, 0, 2158 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2159 &page, &fsdata); 2160 if (err) 2161 goto out; 2162 2163 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2164 BUG_ON(err > 0); 2165 2166 out: 2167 return err; 2168 } 2169 EXPORT_SYMBOL(generic_cont_expand_simple); 2170 2171 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2172 loff_t pos, loff_t *bytes) 2173 { 2174 struct inode *inode = mapping->host; 2175 unsigned blocksize = 1 << inode->i_blkbits; 2176 struct page *page; 2177 void *fsdata; 2178 pgoff_t index, curidx; 2179 loff_t curpos; 2180 unsigned zerofrom, offset, len; 2181 int err = 0; 2182 2183 index = pos >> PAGE_CACHE_SHIFT; 2184 offset = pos & ~PAGE_CACHE_MASK; 2185 2186 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2187 zerofrom = curpos & ~PAGE_CACHE_MASK; 2188 if (zerofrom & (blocksize-1)) { 2189 *bytes |= (blocksize-1); 2190 (*bytes)++; 2191 } 2192 len = PAGE_CACHE_SIZE - zerofrom; 2193 2194 err = pagecache_write_begin(file, mapping, curpos, len, 2195 AOP_FLAG_UNINTERRUPTIBLE, 2196 &page, &fsdata); 2197 if (err) 2198 goto out; 2199 zero_user(page, zerofrom, len); 2200 err = pagecache_write_end(file, mapping, curpos, len, len, 2201 page, fsdata); 2202 if (err < 0) 2203 goto out; 2204 BUG_ON(err != len); 2205 err = 0; 2206 2207 balance_dirty_pages_ratelimited(mapping); 2208 } 2209 2210 /* page covers the boundary, find the boundary offset */ 2211 if (index == curidx) { 2212 zerofrom = curpos & ~PAGE_CACHE_MASK; 2213 /* if we will expand the thing last block will be filled */ 2214 if (offset <= zerofrom) { 2215 goto out; 2216 } 2217 if (zerofrom & (blocksize-1)) { 2218 *bytes |= (blocksize-1); 2219 (*bytes)++; 2220 } 2221 len = offset - zerofrom; 2222 2223 err = pagecache_write_begin(file, mapping, curpos, len, 2224 AOP_FLAG_UNINTERRUPTIBLE, 2225 &page, &fsdata); 2226 if (err) 2227 goto out; 2228 zero_user(page, zerofrom, len); 2229 err = pagecache_write_end(file, mapping, curpos, len, len, 2230 page, fsdata); 2231 if (err < 0) 2232 goto out; 2233 BUG_ON(err != len); 2234 err = 0; 2235 } 2236 out: 2237 return err; 2238 } 2239 2240 /* 2241 * For moronic filesystems that do not allow holes in file. 2242 * We may have to extend the file. 2243 */ 2244 int cont_write_begin(struct file *file, struct address_space *mapping, 2245 loff_t pos, unsigned len, unsigned flags, 2246 struct page **pagep, void **fsdata, 2247 get_block_t *get_block, loff_t *bytes) 2248 { 2249 struct inode *inode = mapping->host; 2250 unsigned blocksize = 1 << inode->i_blkbits; 2251 unsigned zerofrom; 2252 int err; 2253 2254 err = cont_expand_zero(file, mapping, pos, bytes); 2255 if (err) 2256 return err; 2257 2258 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2259 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2260 *bytes |= (blocksize-1); 2261 (*bytes)++; 2262 } 2263 2264 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2265 } 2266 EXPORT_SYMBOL(cont_write_begin); 2267 2268 int block_commit_write(struct page *page, unsigned from, unsigned to) 2269 { 2270 struct inode *inode = page->mapping->host; 2271 __block_commit_write(inode,page,from,to); 2272 return 0; 2273 } 2274 EXPORT_SYMBOL(block_commit_write); 2275 2276 /* 2277 * block_page_mkwrite() is not allowed to change the file size as it gets 2278 * called from a page fault handler when a page is first dirtied. Hence we must 2279 * be careful to check for EOF conditions here. We set the page up correctly 2280 * for a written page which means we get ENOSPC checking when writing into 2281 * holes and correct delalloc and unwritten extent mapping on filesystems that 2282 * support these features. 2283 * 2284 * We are not allowed to take the i_mutex here so we have to play games to 2285 * protect against truncate races as the page could now be beyond EOF. Because 2286 * truncate writes the inode size before removing pages, once we have the 2287 * page lock we can determine safely if the page is beyond EOF. If it is not 2288 * beyond EOF, then the page is guaranteed safe against truncation until we 2289 * unlock the page. 2290 * 2291 * Direct callers of this function should call vfs_check_frozen() so that page 2292 * fault does not busyloop until the fs is thawed. 2293 */ 2294 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2295 get_block_t get_block) 2296 { 2297 struct page *page = vmf->page; 2298 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2299 unsigned long end; 2300 loff_t size; 2301 int ret; 2302 2303 lock_page(page); 2304 size = i_size_read(inode); 2305 if ((page->mapping != inode->i_mapping) || 2306 (page_offset(page) > size)) { 2307 /* We overload EFAULT to mean page got truncated */ 2308 ret = -EFAULT; 2309 goto out_unlock; 2310 } 2311 2312 /* page is wholly or partially inside EOF */ 2313 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2314 end = size & ~PAGE_CACHE_MASK; 2315 else 2316 end = PAGE_CACHE_SIZE; 2317 2318 ret = __block_write_begin(page, 0, end, get_block); 2319 if (!ret) 2320 ret = block_commit_write(page, 0, end); 2321 2322 if (unlikely(ret < 0)) 2323 goto out_unlock; 2324 /* 2325 * Freezing in progress? We check after the page is marked dirty and 2326 * with page lock held so if the test here fails, we are sure freezing 2327 * code will wait during syncing until the page fault is done - at that 2328 * point page will be dirty and unlocked so freezing code will write it 2329 * and writeprotect it again. 2330 */ 2331 set_page_dirty(page); 2332 if (inode->i_sb->s_frozen != SB_UNFROZEN) { 2333 ret = -EAGAIN; 2334 goto out_unlock; 2335 } 2336 wait_on_page_writeback(page); 2337 return 0; 2338 out_unlock: 2339 unlock_page(page); 2340 return ret; 2341 } 2342 EXPORT_SYMBOL(__block_page_mkwrite); 2343 2344 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2345 get_block_t get_block) 2346 { 2347 int ret; 2348 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb; 2349 2350 /* 2351 * This check is racy but catches the common case. The check in 2352 * __block_page_mkwrite() is reliable. 2353 */ 2354 vfs_check_frozen(sb, SB_FREEZE_WRITE); 2355 ret = __block_page_mkwrite(vma, vmf, get_block); 2356 return block_page_mkwrite_return(ret); 2357 } 2358 EXPORT_SYMBOL(block_page_mkwrite); 2359 2360 /* 2361 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2362 * immediately, while under the page lock. So it needs a special end_io 2363 * handler which does not touch the bh after unlocking it. 2364 */ 2365 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2366 { 2367 __end_buffer_read_notouch(bh, uptodate); 2368 } 2369 2370 /* 2371 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2372 * the page (converting it to circular linked list and taking care of page 2373 * dirty races). 2374 */ 2375 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2376 { 2377 struct buffer_head *bh; 2378 2379 BUG_ON(!PageLocked(page)); 2380 2381 spin_lock(&page->mapping->private_lock); 2382 bh = head; 2383 do { 2384 if (PageDirty(page)) 2385 set_buffer_dirty(bh); 2386 if (!bh->b_this_page) 2387 bh->b_this_page = head; 2388 bh = bh->b_this_page; 2389 } while (bh != head); 2390 attach_page_buffers(page, head); 2391 spin_unlock(&page->mapping->private_lock); 2392 } 2393 2394 /* 2395 * On entry, the page is fully not uptodate. 2396 * On exit the page is fully uptodate in the areas outside (from,to) 2397 * The filesystem needs to handle block truncation upon failure. 2398 */ 2399 int nobh_write_begin(struct address_space *mapping, 2400 loff_t pos, unsigned len, unsigned flags, 2401 struct page **pagep, void **fsdata, 2402 get_block_t *get_block) 2403 { 2404 struct inode *inode = mapping->host; 2405 const unsigned blkbits = inode->i_blkbits; 2406 const unsigned blocksize = 1 << blkbits; 2407 struct buffer_head *head, *bh; 2408 struct page *page; 2409 pgoff_t index; 2410 unsigned from, to; 2411 unsigned block_in_page; 2412 unsigned block_start, block_end; 2413 sector_t block_in_file; 2414 int nr_reads = 0; 2415 int ret = 0; 2416 int is_mapped_to_disk = 1; 2417 2418 index = pos >> PAGE_CACHE_SHIFT; 2419 from = pos & (PAGE_CACHE_SIZE - 1); 2420 to = from + len; 2421 2422 page = grab_cache_page_write_begin(mapping, index, flags); 2423 if (!page) 2424 return -ENOMEM; 2425 *pagep = page; 2426 *fsdata = NULL; 2427 2428 if (page_has_buffers(page)) { 2429 ret = __block_write_begin(page, pos, len, get_block); 2430 if (unlikely(ret)) 2431 goto out_release; 2432 return ret; 2433 } 2434 2435 if (PageMappedToDisk(page)) 2436 return 0; 2437 2438 /* 2439 * Allocate buffers so that we can keep track of state, and potentially 2440 * attach them to the page if an error occurs. In the common case of 2441 * no error, they will just be freed again without ever being attached 2442 * to the page (which is all OK, because we're under the page lock). 2443 * 2444 * Be careful: the buffer linked list is a NULL terminated one, rather 2445 * than the circular one we're used to. 2446 */ 2447 head = alloc_page_buffers(page, blocksize, 0); 2448 if (!head) { 2449 ret = -ENOMEM; 2450 goto out_release; 2451 } 2452 2453 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2454 2455 /* 2456 * We loop across all blocks in the page, whether or not they are 2457 * part of the affected region. This is so we can discover if the 2458 * page is fully mapped-to-disk. 2459 */ 2460 for (block_start = 0, block_in_page = 0, bh = head; 2461 block_start < PAGE_CACHE_SIZE; 2462 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2463 int create; 2464 2465 block_end = block_start + blocksize; 2466 bh->b_state = 0; 2467 create = 1; 2468 if (block_start >= to) 2469 create = 0; 2470 ret = get_block(inode, block_in_file + block_in_page, 2471 bh, create); 2472 if (ret) 2473 goto failed; 2474 if (!buffer_mapped(bh)) 2475 is_mapped_to_disk = 0; 2476 if (buffer_new(bh)) 2477 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2478 if (PageUptodate(page)) { 2479 set_buffer_uptodate(bh); 2480 continue; 2481 } 2482 if (buffer_new(bh) || !buffer_mapped(bh)) { 2483 zero_user_segments(page, block_start, from, 2484 to, block_end); 2485 continue; 2486 } 2487 if (buffer_uptodate(bh)) 2488 continue; /* reiserfs does this */ 2489 if (block_start < from || block_end > to) { 2490 lock_buffer(bh); 2491 bh->b_end_io = end_buffer_read_nobh; 2492 submit_bh(READ, bh); 2493 nr_reads++; 2494 } 2495 } 2496 2497 if (nr_reads) { 2498 /* 2499 * The page is locked, so these buffers are protected from 2500 * any VM or truncate activity. Hence we don't need to care 2501 * for the buffer_head refcounts. 2502 */ 2503 for (bh = head; bh; bh = bh->b_this_page) { 2504 wait_on_buffer(bh); 2505 if (!buffer_uptodate(bh)) 2506 ret = -EIO; 2507 } 2508 if (ret) 2509 goto failed; 2510 } 2511 2512 if (is_mapped_to_disk) 2513 SetPageMappedToDisk(page); 2514 2515 *fsdata = head; /* to be released by nobh_write_end */ 2516 2517 return 0; 2518 2519 failed: 2520 BUG_ON(!ret); 2521 /* 2522 * Error recovery is a bit difficult. We need to zero out blocks that 2523 * were newly allocated, and dirty them to ensure they get written out. 2524 * Buffers need to be attached to the page at this point, otherwise 2525 * the handling of potential IO errors during writeout would be hard 2526 * (could try doing synchronous writeout, but what if that fails too?) 2527 */ 2528 attach_nobh_buffers(page, head); 2529 page_zero_new_buffers(page, from, to); 2530 2531 out_release: 2532 unlock_page(page); 2533 page_cache_release(page); 2534 *pagep = NULL; 2535 2536 return ret; 2537 } 2538 EXPORT_SYMBOL(nobh_write_begin); 2539 2540 int nobh_write_end(struct file *file, struct address_space *mapping, 2541 loff_t pos, unsigned len, unsigned copied, 2542 struct page *page, void *fsdata) 2543 { 2544 struct inode *inode = page->mapping->host; 2545 struct buffer_head *head = fsdata; 2546 struct buffer_head *bh; 2547 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2548 2549 if (unlikely(copied < len) && head) 2550 attach_nobh_buffers(page, head); 2551 if (page_has_buffers(page)) 2552 return generic_write_end(file, mapping, pos, len, 2553 copied, page, fsdata); 2554 2555 SetPageUptodate(page); 2556 set_page_dirty(page); 2557 if (pos+copied > inode->i_size) { 2558 i_size_write(inode, pos+copied); 2559 mark_inode_dirty(inode); 2560 } 2561 2562 unlock_page(page); 2563 page_cache_release(page); 2564 2565 while (head) { 2566 bh = head; 2567 head = head->b_this_page; 2568 free_buffer_head(bh); 2569 } 2570 2571 return copied; 2572 } 2573 EXPORT_SYMBOL(nobh_write_end); 2574 2575 /* 2576 * nobh_writepage() - based on block_full_write_page() except 2577 * that it tries to operate without attaching bufferheads to 2578 * the page. 2579 */ 2580 int nobh_writepage(struct page *page, get_block_t *get_block, 2581 struct writeback_control *wbc) 2582 { 2583 struct inode * const inode = page->mapping->host; 2584 loff_t i_size = i_size_read(inode); 2585 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2586 unsigned offset; 2587 int ret; 2588 2589 /* Is the page fully inside i_size? */ 2590 if (page->index < end_index) 2591 goto out; 2592 2593 /* Is the page fully outside i_size? (truncate in progress) */ 2594 offset = i_size & (PAGE_CACHE_SIZE-1); 2595 if (page->index >= end_index+1 || !offset) { 2596 /* 2597 * The page may have dirty, unmapped buffers. For example, 2598 * they may have been added in ext3_writepage(). Make them 2599 * freeable here, so the page does not leak. 2600 */ 2601 #if 0 2602 /* Not really sure about this - do we need this ? */ 2603 if (page->mapping->a_ops->invalidatepage) 2604 page->mapping->a_ops->invalidatepage(page, offset); 2605 #endif 2606 unlock_page(page); 2607 return 0; /* don't care */ 2608 } 2609 2610 /* 2611 * The page straddles i_size. It must be zeroed out on each and every 2612 * writepage invocation because it may be mmapped. "A file is mapped 2613 * in multiples of the page size. For a file that is not a multiple of 2614 * the page size, the remaining memory is zeroed when mapped, and 2615 * writes to that region are not written out to the file." 2616 */ 2617 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2618 out: 2619 ret = mpage_writepage(page, get_block, wbc); 2620 if (ret == -EAGAIN) 2621 ret = __block_write_full_page(inode, page, get_block, wbc, 2622 end_buffer_async_write); 2623 return ret; 2624 } 2625 EXPORT_SYMBOL(nobh_writepage); 2626 2627 int nobh_truncate_page(struct address_space *mapping, 2628 loff_t from, get_block_t *get_block) 2629 { 2630 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2631 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2632 unsigned blocksize; 2633 sector_t iblock; 2634 unsigned length, pos; 2635 struct inode *inode = mapping->host; 2636 struct page *page; 2637 struct buffer_head map_bh; 2638 int err; 2639 2640 blocksize = 1 << inode->i_blkbits; 2641 length = offset & (blocksize - 1); 2642 2643 /* Block boundary? Nothing to do */ 2644 if (!length) 2645 return 0; 2646 2647 length = blocksize - length; 2648 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2649 2650 page = grab_cache_page(mapping, index); 2651 err = -ENOMEM; 2652 if (!page) 2653 goto out; 2654 2655 if (page_has_buffers(page)) { 2656 has_buffers: 2657 unlock_page(page); 2658 page_cache_release(page); 2659 return block_truncate_page(mapping, from, get_block); 2660 } 2661 2662 /* Find the buffer that contains "offset" */ 2663 pos = blocksize; 2664 while (offset >= pos) { 2665 iblock++; 2666 pos += blocksize; 2667 } 2668 2669 map_bh.b_size = blocksize; 2670 map_bh.b_state = 0; 2671 err = get_block(inode, iblock, &map_bh, 0); 2672 if (err) 2673 goto unlock; 2674 /* unmapped? It's a hole - nothing to do */ 2675 if (!buffer_mapped(&map_bh)) 2676 goto unlock; 2677 2678 /* Ok, it's mapped. Make sure it's up-to-date */ 2679 if (!PageUptodate(page)) { 2680 err = mapping->a_ops->readpage(NULL, page); 2681 if (err) { 2682 page_cache_release(page); 2683 goto out; 2684 } 2685 lock_page(page); 2686 if (!PageUptodate(page)) { 2687 err = -EIO; 2688 goto unlock; 2689 } 2690 if (page_has_buffers(page)) 2691 goto has_buffers; 2692 } 2693 zero_user(page, offset, length); 2694 set_page_dirty(page); 2695 err = 0; 2696 2697 unlock: 2698 unlock_page(page); 2699 page_cache_release(page); 2700 out: 2701 return err; 2702 } 2703 EXPORT_SYMBOL(nobh_truncate_page); 2704 2705 int block_truncate_page(struct address_space *mapping, 2706 loff_t from, get_block_t *get_block) 2707 { 2708 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2709 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2710 unsigned blocksize; 2711 sector_t iblock; 2712 unsigned length, pos; 2713 struct inode *inode = mapping->host; 2714 struct page *page; 2715 struct buffer_head *bh; 2716 int err; 2717 2718 blocksize = 1 << inode->i_blkbits; 2719 length = offset & (blocksize - 1); 2720 2721 /* Block boundary? Nothing to do */ 2722 if (!length) 2723 return 0; 2724 2725 length = blocksize - length; 2726 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2727 2728 page = grab_cache_page(mapping, index); 2729 err = -ENOMEM; 2730 if (!page) 2731 goto out; 2732 2733 if (!page_has_buffers(page)) 2734 create_empty_buffers(page, blocksize, 0); 2735 2736 /* Find the buffer that contains "offset" */ 2737 bh = page_buffers(page); 2738 pos = blocksize; 2739 while (offset >= pos) { 2740 bh = bh->b_this_page; 2741 iblock++; 2742 pos += blocksize; 2743 } 2744 2745 err = 0; 2746 if (!buffer_mapped(bh)) { 2747 WARN_ON(bh->b_size != blocksize); 2748 err = get_block(inode, iblock, bh, 0); 2749 if (err) 2750 goto unlock; 2751 /* unmapped? It's a hole - nothing to do */ 2752 if (!buffer_mapped(bh)) 2753 goto unlock; 2754 } 2755 2756 /* Ok, it's mapped. Make sure it's up-to-date */ 2757 if (PageUptodate(page)) 2758 set_buffer_uptodate(bh); 2759 2760 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2761 err = -EIO; 2762 ll_rw_block(READ, 1, &bh); 2763 wait_on_buffer(bh); 2764 /* Uhhuh. Read error. Complain and punt. */ 2765 if (!buffer_uptodate(bh)) 2766 goto unlock; 2767 } 2768 2769 zero_user(page, offset, length); 2770 mark_buffer_dirty(bh); 2771 err = 0; 2772 2773 unlock: 2774 unlock_page(page); 2775 page_cache_release(page); 2776 out: 2777 return err; 2778 } 2779 EXPORT_SYMBOL(block_truncate_page); 2780 2781 /* 2782 * The generic ->writepage function for buffer-backed address_spaces 2783 * this form passes in the end_io handler used to finish the IO. 2784 */ 2785 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2786 struct writeback_control *wbc, bh_end_io_t *handler) 2787 { 2788 struct inode * const inode = page->mapping->host; 2789 loff_t i_size = i_size_read(inode); 2790 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2791 unsigned offset; 2792 2793 /* Is the page fully inside i_size? */ 2794 if (page->index < end_index) 2795 return __block_write_full_page(inode, page, get_block, wbc, 2796 handler); 2797 2798 /* Is the page fully outside i_size? (truncate in progress) */ 2799 offset = i_size & (PAGE_CACHE_SIZE-1); 2800 if (page->index >= end_index+1 || !offset) { 2801 /* 2802 * The page may have dirty, unmapped buffers. For example, 2803 * they may have been added in ext3_writepage(). Make them 2804 * freeable here, so the page does not leak. 2805 */ 2806 do_invalidatepage(page, 0); 2807 unlock_page(page); 2808 return 0; /* don't care */ 2809 } 2810 2811 /* 2812 * The page straddles i_size. It must be zeroed out on each and every 2813 * writepage invocation because it may be mmapped. "A file is mapped 2814 * in multiples of the page size. For a file that is not a multiple of 2815 * the page size, the remaining memory is zeroed when mapped, and 2816 * writes to that region are not written out to the file." 2817 */ 2818 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2819 return __block_write_full_page(inode, page, get_block, wbc, handler); 2820 } 2821 EXPORT_SYMBOL(block_write_full_page_endio); 2822 2823 /* 2824 * The generic ->writepage function for buffer-backed address_spaces 2825 */ 2826 int block_write_full_page(struct page *page, get_block_t *get_block, 2827 struct writeback_control *wbc) 2828 { 2829 return block_write_full_page_endio(page, get_block, wbc, 2830 end_buffer_async_write); 2831 } 2832 EXPORT_SYMBOL(block_write_full_page); 2833 2834 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2835 get_block_t *get_block) 2836 { 2837 struct buffer_head tmp; 2838 struct inode *inode = mapping->host; 2839 tmp.b_state = 0; 2840 tmp.b_blocknr = 0; 2841 tmp.b_size = 1 << inode->i_blkbits; 2842 get_block(inode, block, &tmp, 0); 2843 return tmp.b_blocknr; 2844 } 2845 EXPORT_SYMBOL(generic_block_bmap); 2846 2847 static void end_bio_bh_io_sync(struct bio *bio, int err) 2848 { 2849 struct buffer_head *bh = bio->bi_private; 2850 2851 if (err == -EOPNOTSUPP) { 2852 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2853 } 2854 2855 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2856 set_bit(BH_Quiet, &bh->b_state); 2857 2858 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2859 bio_put(bio); 2860 } 2861 2862 int submit_bh(int rw, struct buffer_head * bh) 2863 { 2864 struct bio *bio; 2865 int ret = 0; 2866 2867 BUG_ON(!buffer_locked(bh)); 2868 BUG_ON(!buffer_mapped(bh)); 2869 BUG_ON(!bh->b_end_io); 2870 BUG_ON(buffer_delay(bh)); 2871 BUG_ON(buffer_unwritten(bh)); 2872 2873 /* 2874 * Only clear out a write error when rewriting 2875 */ 2876 if (test_set_buffer_req(bh) && (rw & WRITE)) 2877 clear_buffer_write_io_error(bh); 2878 2879 /* 2880 * from here on down, it's all bio -- do the initial mapping, 2881 * submit_bio -> generic_make_request may further map this bio around 2882 */ 2883 bio = bio_alloc(GFP_NOIO, 1); 2884 2885 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2886 bio->bi_bdev = bh->b_bdev; 2887 bio->bi_io_vec[0].bv_page = bh->b_page; 2888 bio->bi_io_vec[0].bv_len = bh->b_size; 2889 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2890 2891 bio->bi_vcnt = 1; 2892 bio->bi_idx = 0; 2893 bio->bi_size = bh->b_size; 2894 2895 bio->bi_end_io = end_bio_bh_io_sync; 2896 bio->bi_private = bh; 2897 2898 bio_get(bio); 2899 submit_bio(rw, bio); 2900 2901 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2902 ret = -EOPNOTSUPP; 2903 2904 bio_put(bio); 2905 return ret; 2906 } 2907 EXPORT_SYMBOL(submit_bh); 2908 2909 /** 2910 * ll_rw_block: low-level access to block devices (DEPRECATED) 2911 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 2912 * @nr: number of &struct buffer_heads in the array 2913 * @bhs: array of pointers to &struct buffer_head 2914 * 2915 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2916 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2917 * %READA option is described in the documentation for generic_make_request() 2918 * which ll_rw_block() calls. 2919 * 2920 * This function drops any buffer that it cannot get a lock on (with the 2921 * BH_Lock state bit), any buffer that appears to be clean when doing a write 2922 * request, and any buffer that appears to be up-to-date when doing read 2923 * request. Further it marks as clean buffers that are processed for 2924 * writing (the buffer cache won't assume that they are actually clean 2925 * until the buffer gets unlocked). 2926 * 2927 * ll_rw_block sets b_end_io to simple completion handler that marks 2928 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2929 * any waiters. 2930 * 2931 * All of the buffers must be for the same device, and must also be a 2932 * multiple of the current approved size for the device. 2933 */ 2934 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2935 { 2936 int i; 2937 2938 for (i = 0; i < nr; i++) { 2939 struct buffer_head *bh = bhs[i]; 2940 2941 if (!trylock_buffer(bh)) 2942 continue; 2943 if (rw == WRITE) { 2944 if (test_clear_buffer_dirty(bh)) { 2945 bh->b_end_io = end_buffer_write_sync; 2946 get_bh(bh); 2947 submit_bh(WRITE, bh); 2948 continue; 2949 } 2950 } else { 2951 if (!buffer_uptodate(bh)) { 2952 bh->b_end_io = end_buffer_read_sync; 2953 get_bh(bh); 2954 submit_bh(rw, bh); 2955 continue; 2956 } 2957 } 2958 unlock_buffer(bh); 2959 } 2960 } 2961 EXPORT_SYMBOL(ll_rw_block); 2962 2963 void write_dirty_buffer(struct buffer_head *bh, int rw) 2964 { 2965 lock_buffer(bh); 2966 if (!test_clear_buffer_dirty(bh)) { 2967 unlock_buffer(bh); 2968 return; 2969 } 2970 bh->b_end_io = end_buffer_write_sync; 2971 get_bh(bh); 2972 submit_bh(rw, bh); 2973 } 2974 EXPORT_SYMBOL(write_dirty_buffer); 2975 2976 /* 2977 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2978 * and then start new I/O and then wait upon it. The caller must have a ref on 2979 * the buffer_head. 2980 */ 2981 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 2982 { 2983 int ret = 0; 2984 2985 WARN_ON(atomic_read(&bh->b_count) < 1); 2986 lock_buffer(bh); 2987 if (test_clear_buffer_dirty(bh)) { 2988 get_bh(bh); 2989 bh->b_end_io = end_buffer_write_sync; 2990 ret = submit_bh(rw, bh); 2991 wait_on_buffer(bh); 2992 if (!ret && !buffer_uptodate(bh)) 2993 ret = -EIO; 2994 } else { 2995 unlock_buffer(bh); 2996 } 2997 return ret; 2998 } 2999 EXPORT_SYMBOL(__sync_dirty_buffer); 3000 3001 int sync_dirty_buffer(struct buffer_head *bh) 3002 { 3003 return __sync_dirty_buffer(bh, WRITE_SYNC); 3004 } 3005 EXPORT_SYMBOL(sync_dirty_buffer); 3006 3007 /* 3008 * try_to_free_buffers() checks if all the buffers on this particular page 3009 * are unused, and releases them if so. 3010 * 3011 * Exclusion against try_to_free_buffers may be obtained by either 3012 * locking the page or by holding its mapping's private_lock. 3013 * 3014 * If the page is dirty but all the buffers are clean then we need to 3015 * be sure to mark the page clean as well. This is because the page 3016 * may be against a block device, and a later reattachment of buffers 3017 * to a dirty page will set *all* buffers dirty. Which would corrupt 3018 * filesystem data on the same device. 3019 * 3020 * The same applies to regular filesystem pages: if all the buffers are 3021 * clean then we set the page clean and proceed. To do that, we require 3022 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3023 * private_lock. 3024 * 3025 * try_to_free_buffers() is non-blocking. 3026 */ 3027 static inline int buffer_busy(struct buffer_head *bh) 3028 { 3029 return atomic_read(&bh->b_count) | 3030 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3031 } 3032 3033 static int 3034 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3035 { 3036 struct buffer_head *head = page_buffers(page); 3037 struct buffer_head *bh; 3038 3039 bh = head; 3040 do { 3041 if (buffer_write_io_error(bh) && page->mapping) 3042 set_bit(AS_EIO, &page->mapping->flags); 3043 if (buffer_busy(bh)) 3044 goto failed; 3045 bh = bh->b_this_page; 3046 } while (bh != head); 3047 3048 do { 3049 struct buffer_head *next = bh->b_this_page; 3050 3051 if (bh->b_assoc_map) 3052 __remove_assoc_queue(bh); 3053 bh = next; 3054 } while (bh != head); 3055 *buffers_to_free = head; 3056 __clear_page_buffers(page); 3057 return 1; 3058 failed: 3059 return 0; 3060 } 3061 3062 int try_to_free_buffers(struct page *page) 3063 { 3064 struct address_space * const mapping = page->mapping; 3065 struct buffer_head *buffers_to_free = NULL; 3066 int ret = 0; 3067 3068 BUG_ON(!PageLocked(page)); 3069 if (PageWriteback(page)) 3070 return 0; 3071 3072 if (mapping == NULL) { /* can this still happen? */ 3073 ret = drop_buffers(page, &buffers_to_free); 3074 goto out; 3075 } 3076 3077 spin_lock(&mapping->private_lock); 3078 ret = drop_buffers(page, &buffers_to_free); 3079 3080 /* 3081 * If the filesystem writes its buffers by hand (eg ext3) 3082 * then we can have clean buffers against a dirty page. We 3083 * clean the page here; otherwise the VM will never notice 3084 * that the filesystem did any IO at all. 3085 * 3086 * Also, during truncate, discard_buffer will have marked all 3087 * the page's buffers clean. We discover that here and clean 3088 * the page also. 3089 * 3090 * private_lock must be held over this entire operation in order 3091 * to synchronise against __set_page_dirty_buffers and prevent the 3092 * dirty bit from being lost. 3093 */ 3094 if (ret) 3095 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3096 spin_unlock(&mapping->private_lock); 3097 out: 3098 if (buffers_to_free) { 3099 struct buffer_head *bh = buffers_to_free; 3100 3101 do { 3102 struct buffer_head *next = bh->b_this_page; 3103 free_buffer_head(bh); 3104 bh = next; 3105 } while (bh != buffers_to_free); 3106 } 3107 return ret; 3108 } 3109 EXPORT_SYMBOL(try_to_free_buffers); 3110 3111 /* 3112 * There are no bdflush tunables left. But distributions are 3113 * still running obsolete flush daemons, so we terminate them here. 3114 * 3115 * Use of bdflush() is deprecated and will be removed in a future kernel. 3116 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3117 */ 3118 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3119 { 3120 static int msg_count; 3121 3122 if (!capable(CAP_SYS_ADMIN)) 3123 return -EPERM; 3124 3125 if (msg_count < 5) { 3126 msg_count++; 3127 printk(KERN_INFO 3128 "warning: process `%s' used the obsolete bdflush" 3129 " system call\n", current->comm); 3130 printk(KERN_INFO "Fix your initscripts?\n"); 3131 } 3132 3133 if (func == 1) 3134 do_exit(0); 3135 return 0; 3136 } 3137 3138 /* 3139 * Buffer-head allocation 3140 */ 3141 static struct kmem_cache *bh_cachep; 3142 3143 /* 3144 * Once the number of bh's in the machine exceeds this level, we start 3145 * stripping them in writeback. 3146 */ 3147 static int max_buffer_heads; 3148 3149 int buffer_heads_over_limit; 3150 3151 struct bh_accounting { 3152 int nr; /* Number of live bh's */ 3153 int ratelimit; /* Limit cacheline bouncing */ 3154 }; 3155 3156 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3157 3158 static void recalc_bh_state(void) 3159 { 3160 int i; 3161 int tot = 0; 3162 3163 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3164 return; 3165 __this_cpu_write(bh_accounting.ratelimit, 0); 3166 for_each_online_cpu(i) 3167 tot += per_cpu(bh_accounting, i).nr; 3168 buffer_heads_over_limit = (tot > max_buffer_heads); 3169 } 3170 3171 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3172 { 3173 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3174 if (ret) { 3175 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3176 preempt_disable(); 3177 __this_cpu_inc(bh_accounting.nr); 3178 recalc_bh_state(); 3179 preempt_enable(); 3180 } 3181 return ret; 3182 } 3183 EXPORT_SYMBOL(alloc_buffer_head); 3184 3185 void free_buffer_head(struct buffer_head *bh) 3186 { 3187 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3188 kmem_cache_free(bh_cachep, bh); 3189 preempt_disable(); 3190 __this_cpu_dec(bh_accounting.nr); 3191 recalc_bh_state(); 3192 preempt_enable(); 3193 } 3194 EXPORT_SYMBOL(free_buffer_head); 3195 3196 static void buffer_exit_cpu(int cpu) 3197 { 3198 int i; 3199 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3200 3201 for (i = 0; i < BH_LRU_SIZE; i++) { 3202 brelse(b->bhs[i]); 3203 b->bhs[i] = NULL; 3204 } 3205 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3206 per_cpu(bh_accounting, cpu).nr = 0; 3207 } 3208 3209 static int buffer_cpu_notify(struct notifier_block *self, 3210 unsigned long action, void *hcpu) 3211 { 3212 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3213 buffer_exit_cpu((unsigned long)hcpu); 3214 return NOTIFY_OK; 3215 } 3216 3217 /** 3218 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3219 * @bh: struct buffer_head 3220 * 3221 * Return true if the buffer is up-to-date and false, 3222 * with the buffer locked, if not. 3223 */ 3224 int bh_uptodate_or_lock(struct buffer_head *bh) 3225 { 3226 if (!buffer_uptodate(bh)) { 3227 lock_buffer(bh); 3228 if (!buffer_uptodate(bh)) 3229 return 0; 3230 unlock_buffer(bh); 3231 } 3232 return 1; 3233 } 3234 EXPORT_SYMBOL(bh_uptodate_or_lock); 3235 3236 /** 3237 * bh_submit_read - Submit a locked buffer for reading 3238 * @bh: struct buffer_head 3239 * 3240 * Returns zero on success and -EIO on error. 3241 */ 3242 int bh_submit_read(struct buffer_head *bh) 3243 { 3244 BUG_ON(!buffer_locked(bh)); 3245 3246 if (buffer_uptodate(bh)) { 3247 unlock_buffer(bh); 3248 return 0; 3249 } 3250 3251 get_bh(bh); 3252 bh->b_end_io = end_buffer_read_sync; 3253 submit_bh(READ, bh); 3254 wait_on_buffer(bh); 3255 if (buffer_uptodate(bh)) 3256 return 0; 3257 return -EIO; 3258 } 3259 EXPORT_SYMBOL(bh_submit_read); 3260 3261 void __init buffer_init(void) 3262 { 3263 int nrpages; 3264 3265 bh_cachep = kmem_cache_create("buffer_head", 3266 sizeof(struct buffer_head), 0, 3267 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3268 SLAB_MEM_SPREAD), 3269 NULL); 3270 3271 /* 3272 * Limit the bh occupancy to 10% of ZONE_NORMAL 3273 */ 3274 nrpages = (nr_free_buffer_pages() * 10) / 100; 3275 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3276 hotcpu_notifier(buffer_cpu_notify, 0); 3277 } 3278