1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 #include <trace/events/block.h> 45 46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 47 48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 49 50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 inline void touch_buffer(struct buffer_head *bh) 58 { 59 trace_block_touch_buffer(bh); 60 mark_page_accessed(bh->b_page); 61 } 62 EXPORT_SYMBOL(touch_buffer); 63 64 void __lock_buffer(struct buffer_head *bh) 65 { 66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 67 } 68 EXPORT_SYMBOL(__lock_buffer); 69 70 void unlock_buffer(struct buffer_head *bh) 71 { 72 clear_bit_unlock(BH_Lock, &bh->b_state); 73 smp_mb__after_atomic(); 74 wake_up_bit(&bh->b_state, BH_Lock); 75 } 76 EXPORT_SYMBOL(unlock_buffer); 77 78 /* 79 * Returns if the page has dirty or writeback buffers. If all the buffers 80 * are unlocked and clean then the PageDirty information is stale. If 81 * any of the pages are locked, it is assumed they are locked for IO. 82 */ 83 void buffer_check_dirty_writeback(struct page *page, 84 bool *dirty, bool *writeback) 85 { 86 struct buffer_head *head, *bh; 87 *dirty = false; 88 *writeback = false; 89 90 BUG_ON(!PageLocked(page)); 91 92 if (!page_has_buffers(page)) 93 return; 94 95 if (PageWriteback(page)) 96 *writeback = true; 97 98 head = page_buffers(page); 99 bh = head; 100 do { 101 if (buffer_locked(bh)) 102 *writeback = true; 103 104 if (buffer_dirty(bh)) 105 *dirty = true; 106 107 bh = bh->b_this_page; 108 } while (bh != head); 109 } 110 EXPORT_SYMBOL(buffer_check_dirty_writeback); 111 112 /* 113 * Block until a buffer comes unlocked. This doesn't stop it 114 * from becoming locked again - you have to lock it yourself 115 * if you want to preserve its state. 116 */ 117 void __wait_on_buffer(struct buffer_head * bh) 118 { 119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 120 } 121 EXPORT_SYMBOL(__wait_on_buffer); 122 123 static void 124 __clear_page_buffers(struct page *page) 125 { 126 ClearPagePrivate(page); 127 set_page_private(page, 0); 128 page_cache_release(page); 129 } 130 131 static void buffer_io_error(struct buffer_head *bh, char *msg) 132 { 133 char b[BDEVNAME_SIZE]; 134 135 if (!test_bit(BH_Quiet, &bh->b_state)) 136 printk_ratelimited(KERN_ERR 137 "Buffer I/O error on dev %s, logical block %llu%s\n", 138 bdevname(bh->b_bdev, b), 139 (unsigned long long)bh->b_blocknr, msg); 140 } 141 142 /* 143 * End-of-IO handler helper function which does not touch the bh after 144 * unlocking it. 145 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 146 * a race there is benign: unlock_buffer() only use the bh's address for 147 * hashing after unlocking the buffer, so it doesn't actually touch the bh 148 * itself. 149 */ 150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 151 { 152 if (uptodate) { 153 set_buffer_uptodate(bh); 154 } else { 155 /* This happens, due to failed READA attempts. */ 156 clear_buffer_uptodate(bh); 157 } 158 unlock_buffer(bh); 159 } 160 161 /* 162 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 163 * unlock the buffer. This is what ll_rw_block uses too. 164 */ 165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 166 { 167 __end_buffer_read_notouch(bh, uptodate); 168 put_bh(bh); 169 } 170 EXPORT_SYMBOL(end_buffer_read_sync); 171 172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 173 { 174 if (uptodate) { 175 set_buffer_uptodate(bh); 176 } else { 177 buffer_io_error(bh, ", lost sync page write"); 178 set_buffer_write_io_error(bh); 179 clear_buffer_uptodate(bh); 180 } 181 unlock_buffer(bh); 182 put_bh(bh); 183 } 184 EXPORT_SYMBOL(end_buffer_write_sync); 185 186 /* 187 * Various filesystems appear to want __find_get_block to be non-blocking. 188 * But it's the page lock which protects the buffers. To get around this, 189 * we get exclusion from try_to_free_buffers with the blockdev mapping's 190 * private_lock. 191 * 192 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 193 * may be quite high. This code could TryLock the page, and if that 194 * succeeds, there is no need to take private_lock. (But if 195 * private_lock is contended then so is mapping->tree_lock). 196 */ 197 static struct buffer_head * 198 __find_get_block_slow(struct block_device *bdev, sector_t block) 199 { 200 struct inode *bd_inode = bdev->bd_inode; 201 struct address_space *bd_mapping = bd_inode->i_mapping; 202 struct buffer_head *ret = NULL; 203 pgoff_t index; 204 struct buffer_head *bh; 205 struct buffer_head *head; 206 struct page *page; 207 int all_mapped = 1; 208 209 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 210 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 211 if (!page) 212 goto out; 213 214 spin_lock(&bd_mapping->private_lock); 215 if (!page_has_buffers(page)) 216 goto out_unlock; 217 head = page_buffers(page); 218 bh = head; 219 do { 220 if (!buffer_mapped(bh)) 221 all_mapped = 0; 222 else if (bh->b_blocknr == block) { 223 ret = bh; 224 get_bh(bh); 225 goto out_unlock; 226 } 227 bh = bh->b_this_page; 228 } while (bh != head); 229 230 /* we might be here because some of the buffers on this page are 231 * not mapped. This is due to various races between 232 * file io on the block device and getblk. It gets dealt with 233 * elsewhere, don't buffer_error if we had some unmapped buffers 234 */ 235 if (all_mapped) { 236 char b[BDEVNAME_SIZE]; 237 238 printk("__find_get_block_slow() failed. " 239 "block=%llu, b_blocknr=%llu\n", 240 (unsigned long long)block, 241 (unsigned long long)bh->b_blocknr); 242 printk("b_state=0x%08lx, b_size=%zu\n", 243 bh->b_state, bh->b_size); 244 printk("device %s blocksize: %d\n", bdevname(bdev, b), 245 1 << bd_inode->i_blkbits); 246 } 247 out_unlock: 248 spin_unlock(&bd_mapping->private_lock); 249 page_cache_release(page); 250 out: 251 return ret; 252 } 253 254 /* 255 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 256 */ 257 static void free_more_memory(void) 258 { 259 struct zone *zone; 260 int nid; 261 262 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 263 yield(); 264 265 for_each_online_node(nid) { 266 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 267 gfp_zone(GFP_NOFS), NULL, 268 &zone); 269 if (zone) 270 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 271 GFP_NOFS, NULL); 272 } 273 } 274 275 /* 276 * I/O completion handler for block_read_full_page() - pages 277 * which come unlocked at the end of I/O. 278 */ 279 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 280 { 281 unsigned long flags; 282 struct buffer_head *first; 283 struct buffer_head *tmp; 284 struct page *page; 285 int page_uptodate = 1; 286 287 BUG_ON(!buffer_async_read(bh)); 288 289 page = bh->b_page; 290 if (uptodate) { 291 set_buffer_uptodate(bh); 292 } else { 293 clear_buffer_uptodate(bh); 294 buffer_io_error(bh, ", async page read"); 295 SetPageError(page); 296 } 297 298 /* 299 * Be _very_ careful from here on. Bad things can happen if 300 * two buffer heads end IO at almost the same time and both 301 * decide that the page is now completely done. 302 */ 303 first = page_buffers(page); 304 local_irq_save(flags); 305 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 306 clear_buffer_async_read(bh); 307 unlock_buffer(bh); 308 tmp = bh; 309 do { 310 if (!buffer_uptodate(tmp)) 311 page_uptodate = 0; 312 if (buffer_async_read(tmp)) { 313 BUG_ON(!buffer_locked(tmp)); 314 goto still_busy; 315 } 316 tmp = tmp->b_this_page; 317 } while (tmp != bh); 318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 319 local_irq_restore(flags); 320 321 /* 322 * If none of the buffers had errors and they are all 323 * uptodate then we can set the page uptodate. 324 */ 325 if (page_uptodate && !PageError(page)) 326 SetPageUptodate(page); 327 unlock_page(page); 328 return; 329 330 still_busy: 331 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 332 local_irq_restore(flags); 333 return; 334 } 335 336 /* 337 * Completion handler for block_write_full_page() - pages which are unlocked 338 * during I/O, and which have PageWriteback cleared upon I/O completion. 339 */ 340 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 341 { 342 unsigned long flags; 343 struct buffer_head *first; 344 struct buffer_head *tmp; 345 struct page *page; 346 347 BUG_ON(!buffer_async_write(bh)); 348 349 page = bh->b_page; 350 if (uptodate) { 351 set_buffer_uptodate(bh); 352 } else { 353 buffer_io_error(bh, ", lost async page write"); 354 set_bit(AS_EIO, &page->mapping->flags); 355 set_buffer_write_io_error(bh); 356 clear_buffer_uptodate(bh); 357 SetPageError(page); 358 } 359 360 first = page_buffers(page); 361 local_irq_save(flags); 362 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 363 364 clear_buffer_async_write(bh); 365 unlock_buffer(bh); 366 tmp = bh->b_this_page; 367 while (tmp != bh) { 368 if (buffer_async_write(tmp)) { 369 BUG_ON(!buffer_locked(tmp)); 370 goto still_busy; 371 } 372 tmp = tmp->b_this_page; 373 } 374 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 375 local_irq_restore(flags); 376 end_page_writeback(page); 377 return; 378 379 still_busy: 380 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 381 local_irq_restore(flags); 382 return; 383 } 384 EXPORT_SYMBOL(end_buffer_async_write); 385 386 /* 387 * If a page's buffers are under async readin (end_buffer_async_read 388 * completion) then there is a possibility that another thread of 389 * control could lock one of the buffers after it has completed 390 * but while some of the other buffers have not completed. This 391 * locked buffer would confuse end_buffer_async_read() into not unlocking 392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 393 * that this buffer is not under async I/O. 394 * 395 * The page comes unlocked when it has no locked buffer_async buffers 396 * left. 397 * 398 * PageLocked prevents anyone starting new async I/O reads any of 399 * the buffers. 400 * 401 * PageWriteback is used to prevent simultaneous writeout of the same 402 * page. 403 * 404 * PageLocked prevents anyone from starting writeback of a page which is 405 * under read I/O (PageWriteback is only ever set against a locked page). 406 */ 407 static void mark_buffer_async_read(struct buffer_head *bh) 408 { 409 bh->b_end_io = end_buffer_async_read; 410 set_buffer_async_read(bh); 411 } 412 413 static void mark_buffer_async_write_endio(struct buffer_head *bh, 414 bh_end_io_t *handler) 415 { 416 bh->b_end_io = handler; 417 set_buffer_async_write(bh); 418 } 419 420 void mark_buffer_async_write(struct buffer_head *bh) 421 { 422 mark_buffer_async_write_endio(bh, end_buffer_async_write); 423 } 424 EXPORT_SYMBOL(mark_buffer_async_write); 425 426 427 /* 428 * fs/buffer.c contains helper functions for buffer-backed address space's 429 * fsync functions. A common requirement for buffer-based filesystems is 430 * that certain data from the backing blockdev needs to be written out for 431 * a successful fsync(). For example, ext2 indirect blocks need to be 432 * written back and waited upon before fsync() returns. 433 * 434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 436 * management of a list of dependent buffers at ->i_mapping->private_list. 437 * 438 * Locking is a little subtle: try_to_free_buffers() will remove buffers 439 * from their controlling inode's queue when they are being freed. But 440 * try_to_free_buffers() will be operating against the *blockdev* mapping 441 * at the time, not against the S_ISREG file which depends on those buffers. 442 * So the locking for private_list is via the private_lock in the address_space 443 * which backs the buffers. Which is different from the address_space 444 * against which the buffers are listed. So for a particular address_space, 445 * mapping->private_lock does *not* protect mapping->private_list! In fact, 446 * mapping->private_list will always be protected by the backing blockdev's 447 * ->private_lock. 448 * 449 * Which introduces a requirement: all buffers on an address_space's 450 * ->private_list must be from the same address_space: the blockdev's. 451 * 452 * address_spaces which do not place buffers at ->private_list via these 453 * utility functions are free to use private_lock and private_list for 454 * whatever they want. The only requirement is that list_empty(private_list) 455 * be true at clear_inode() time. 456 * 457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 458 * filesystems should do that. invalidate_inode_buffers() should just go 459 * BUG_ON(!list_empty). 460 * 461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 462 * take an address_space, not an inode. And it should be called 463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 464 * queued up. 465 * 466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 467 * list if it is already on a list. Because if the buffer is on a list, 468 * it *must* already be on the right one. If not, the filesystem is being 469 * silly. This will save a ton of locking. But first we have to ensure 470 * that buffers are taken *off* the old inode's list when they are freed 471 * (presumably in truncate). That requires careful auditing of all 472 * filesystems (do it inside bforget()). It could also be done by bringing 473 * b_inode back. 474 */ 475 476 /* 477 * The buffer's backing address_space's private_lock must be held 478 */ 479 static void __remove_assoc_queue(struct buffer_head *bh) 480 { 481 list_del_init(&bh->b_assoc_buffers); 482 WARN_ON(!bh->b_assoc_map); 483 if (buffer_write_io_error(bh)) 484 set_bit(AS_EIO, &bh->b_assoc_map->flags); 485 bh->b_assoc_map = NULL; 486 } 487 488 int inode_has_buffers(struct inode *inode) 489 { 490 return !list_empty(&inode->i_data.private_list); 491 } 492 493 /* 494 * osync is designed to support O_SYNC io. It waits synchronously for 495 * all already-submitted IO to complete, but does not queue any new 496 * writes to the disk. 497 * 498 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 499 * you dirty the buffers, and then use osync_inode_buffers to wait for 500 * completion. Any other dirty buffers which are not yet queued for 501 * write will not be flushed to disk by the osync. 502 */ 503 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 504 { 505 struct buffer_head *bh; 506 struct list_head *p; 507 int err = 0; 508 509 spin_lock(lock); 510 repeat: 511 list_for_each_prev(p, list) { 512 bh = BH_ENTRY(p); 513 if (buffer_locked(bh)) { 514 get_bh(bh); 515 spin_unlock(lock); 516 wait_on_buffer(bh); 517 if (!buffer_uptodate(bh)) 518 err = -EIO; 519 brelse(bh); 520 spin_lock(lock); 521 goto repeat; 522 } 523 } 524 spin_unlock(lock); 525 return err; 526 } 527 528 static void do_thaw_one(struct super_block *sb, void *unused) 529 { 530 char b[BDEVNAME_SIZE]; 531 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 532 printk(KERN_WARNING "Emergency Thaw on %s\n", 533 bdevname(sb->s_bdev, b)); 534 } 535 536 static void do_thaw_all(struct work_struct *work) 537 { 538 iterate_supers(do_thaw_one, NULL); 539 kfree(work); 540 printk(KERN_WARNING "Emergency Thaw complete\n"); 541 } 542 543 /** 544 * emergency_thaw_all -- forcibly thaw every frozen filesystem 545 * 546 * Used for emergency unfreeze of all filesystems via SysRq 547 */ 548 void emergency_thaw_all(void) 549 { 550 struct work_struct *work; 551 552 work = kmalloc(sizeof(*work), GFP_ATOMIC); 553 if (work) { 554 INIT_WORK(work, do_thaw_all); 555 schedule_work(work); 556 } 557 } 558 559 /** 560 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 561 * @mapping: the mapping which wants those buffers written 562 * 563 * Starts I/O against the buffers at mapping->private_list, and waits upon 564 * that I/O. 565 * 566 * Basically, this is a convenience function for fsync(). 567 * @mapping is a file or directory which needs those buffers to be written for 568 * a successful fsync(). 569 */ 570 int sync_mapping_buffers(struct address_space *mapping) 571 { 572 struct address_space *buffer_mapping = mapping->private_data; 573 574 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 575 return 0; 576 577 return fsync_buffers_list(&buffer_mapping->private_lock, 578 &mapping->private_list); 579 } 580 EXPORT_SYMBOL(sync_mapping_buffers); 581 582 /* 583 * Called when we've recently written block `bblock', and it is known that 584 * `bblock' was for a buffer_boundary() buffer. This means that the block at 585 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 586 * dirty, schedule it for IO. So that indirects merge nicely with their data. 587 */ 588 void write_boundary_block(struct block_device *bdev, 589 sector_t bblock, unsigned blocksize) 590 { 591 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 592 if (bh) { 593 if (buffer_dirty(bh)) 594 ll_rw_block(WRITE, 1, &bh); 595 put_bh(bh); 596 } 597 } 598 599 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 600 { 601 struct address_space *mapping = inode->i_mapping; 602 struct address_space *buffer_mapping = bh->b_page->mapping; 603 604 mark_buffer_dirty(bh); 605 if (!mapping->private_data) { 606 mapping->private_data = buffer_mapping; 607 } else { 608 BUG_ON(mapping->private_data != buffer_mapping); 609 } 610 if (!bh->b_assoc_map) { 611 spin_lock(&buffer_mapping->private_lock); 612 list_move_tail(&bh->b_assoc_buffers, 613 &mapping->private_list); 614 bh->b_assoc_map = mapping; 615 spin_unlock(&buffer_mapping->private_lock); 616 } 617 } 618 EXPORT_SYMBOL(mark_buffer_dirty_inode); 619 620 /* 621 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 622 * dirty. 623 * 624 * If warn is true, then emit a warning if the page is not uptodate and has 625 * not been truncated. 626 */ 627 static void __set_page_dirty(struct page *page, 628 struct address_space *mapping, int warn) 629 { 630 unsigned long flags; 631 632 spin_lock_irqsave(&mapping->tree_lock, flags); 633 if (page->mapping) { /* Race with truncate? */ 634 WARN_ON_ONCE(warn && !PageUptodate(page)); 635 account_page_dirtied(page, mapping); 636 radix_tree_tag_set(&mapping->page_tree, 637 page_index(page), PAGECACHE_TAG_DIRTY); 638 } 639 spin_unlock_irqrestore(&mapping->tree_lock, flags); 640 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 641 } 642 643 /* 644 * Add a page to the dirty page list. 645 * 646 * It is a sad fact of life that this function is called from several places 647 * deeply under spinlocking. It may not sleep. 648 * 649 * If the page has buffers, the uptodate buffers are set dirty, to preserve 650 * dirty-state coherency between the page and the buffers. It the page does 651 * not have buffers then when they are later attached they will all be set 652 * dirty. 653 * 654 * The buffers are dirtied before the page is dirtied. There's a small race 655 * window in which a writepage caller may see the page cleanness but not the 656 * buffer dirtiness. That's fine. If this code were to set the page dirty 657 * before the buffers, a concurrent writepage caller could clear the page dirty 658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 659 * page on the dirty page list. 660 * 661 * We use private_lock to lock against try_to_free_buffers while using the 662 * page's buffer list. Also use this to protect against clean buffers being 663 * added to the page after it was set dirty. 664 * 665 * FIXME: may need to call ->reservepage here as well. That's rather up to the 666 * address_space though. 667 */ 668 int __set_page_dirty_buffers(struct page *page) 669 { 670 int newly_dirty; 671 struct address_space *mapping = page_mapping(page); 672 673 if (unlikely(!mapping)) 674 return !TestSetPageDirty(page); 675 676 spin_lock(&mapping->private_lock); 677 if (page_has_buffers(page)) { 678 struct buffer_head *head = page_buffers(page); 679 struct buffer_head *bh = head; 680 681 do { 682 set_buffer_dirty(bh); 683 bh = bh->b_this_page; 684 } while (bh != head); 685 } 686 newly_dirty = !TestSetPageDirty(page); 687 spin_unlock(&mapping->private_lock); 688 689 if (newly_dirty) 690 __set_page_dirty(page, mapping, 1); 691 return newly_dirty; 692 } 693 EXPORT_SYMBOL(__set_page_dirty_buffers); 694 695 /* 696 * Write out and wait upon a list of buffers. 697 * 698 * We have conflicting pressures: we want to make sure that all 699 * initially dirty buffers get waited on, but that any subsequently 700 * dirtied buffers don't. After all, we don't want fsync to last 701 * forever if somebody is actively writing to the file. 702 * 703 * Do this in two main stages: first we copy dirty buffers to a 704 * temporary inode list, queueing the writes as we go. Then we clean 705 * up, waiting for those writes to complete. 706 * 707 * During this second stage, any subsequent updates to the file may end 708 * up refiling the buffer on the original inode's dirty list again, so 709 * there is a chance we will end up with a buffer queued for write but 710 * not yet completed on that list. So, as a final cleanup we go through 711 * the osync code to catch these locked, dirty buffers without requeuing 712 * any newly dirty buffers for write. 713 */ 714 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 715 { 716 struct buffer_head *bh; 717 struct list_head tmp; 718 struct address_space *mapping; 719 int err = 0, err2; 720 struct blk_plug plug; 721 722 INIT_LIST_HEAD(&tmp); 723 blk_start_plug(&plug); 724 725 spin_lock(lock); 726 while (!list_empty(list)) { 727 bh = BH_ENTRY(list->next); 728 mapping = bh->b_assoc_map; 729 __remove_assoc_queue(bh); 730 /* Avoid race with mark_buffer_dirty_inode() which does 731 * a lockless check and we rely on seeing the dirty bit */ 732 smp_mb(); 733 if (buffer_dirty(bh) || buffer_locked(bh)) { 734 list_add(&bh->b_assoc_buffers, &tmp); 735 bh->b_assoc_map = mapping; 736 if (buffer_dirty(bh)) { 737 get_bh(bh); 738 spin_unlock(lock); 739 /* 740 * Ensure any pending I/O completes so that 741 * write_dirty_buffer() actually writes the 742 * current contents - it is a noop if I/O is 743 * still in flight on potentially older 744 * contents. 745 */ 746 write_dirty_buffer(bh, WRITE_SYNC); 747 748 /* 749 * Kick off IO for the previous mapping. Note 750 * that we will not run the very last mapping, 751 * wait_on_buffer() will do that for us 752 * through sync_buffer(). 753 */ 754 brelse(bh); 755 spin_lock(lock); 756 } 757 } 758 } 759 760 spin_unlock(lock); 761 blk_finish_plug(&plug); 762 spin_lock(lock); 763 764 while (!list_empty(&tmp)) { 765 bh = BH_ENTRY(tmp.prev); 766 get_bh(bh); 767 mapping = bh->b_assoc_map; 768 __remove_assoc_queue(bh); 769 /* Avoid race with mark_buffer_dirty_inode() which does 770 * a lockless check and we rely on seeing the dirty bit */ 771 smp_mb(); 772 if (buffer_dirty(bh)) { 773 list_add(&bh->b_assoc_buffers, 774 &mapping->private_list); 775 bh->b_assoc_map = mapping; 776 } 777 spin_unlock(lock); 778 wait_on_buffer(bh); 779 if (!buffer_uptodate(bh)) 780 err = -EIO; 781 brelse(bh); 782 spin_lock(lock); 783 } 784 785 spin_unlock(lock); 786 err2 = osync_buffers_list(lock, list); 787 if (err) 788 return err; 789 else 790 return err2; 791 } 792 793 /* 794 * Invalidate any and all dirty buffers on a given inode. We are 795 * probably unmounting the fs, but that doesn't mean we have already 796 * done a sync(). Just drop the buffers from the inode list. 797 * 798 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 799 * assumes that all the buffers are against the blockdev. Not true 800 * for reiserfs. 801 */ 802 void invalidate_inode_buffers(struct inode *inode) 803 { 804 if (inode_has_buffers(inode)) { 805 struct address_space *mapping = &inode->i_data; 806 struct list_head *list = &mapping->private_list; 807 struct address_space *buffer_mapping = mapping->private_data; 808 809 spin_lock(&buffer_mapping->private_lock); 810 while (!list_empty(list)) 811 __remove_assoc_queue(BH_ENTRY(list->next)); 812 spin_unlock(&buffer_mapping->private_lock); 813 } 814 } 815 EXPORT_SYMBOL(invalidate_inode_buffers); 816 817 /* 818 * Remove any clean buffers from the inode's buffer list. This is called 819 * when we're trying to free the inode itself. Those buffers can pin it. 820 * 821 * Returns true if all buffers were removed. 822 */ 823 int remove_inode_buffers(struct inode *inode) 824 { 825 int ret = 1; 826 827 if (inode_has_buffers(inode)) { 828 struct address_space *mapping = &inode->i_data; 829 struct list_head *list = &mapping->private_list; 830 struct address_space *buffer_mapping = mapping->private_data; 831 832 spin_lock(&buffer_mapping->private_lock); 833 while (!list_empty(list)) { 834 struct buffer_head *bh = BH_ENTRY(list->next); 835 if (buffer_dirty(bh)) { 836 ret = 0; 837 break; 838 } 839 __remove_assoc_queue(bh); 840 } 841 spin_unlock(&buffer_mapping->private_lock); 842 } 843 return ret; 844 } 845 846 /* 847 * Create the appropriate buffers when given a page for data area and 848 * the size of each buffer.. Use the bh->b_this_page linked list to 849 * follow the buffers created. Return NULL if unable to create more 850 * buffers. 851 * 852 * The retry flag is used to differentiate async IO (paging, swapping) 853 * which may not fail from ordinary buffer allocations. 854 */ 855 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 856 int retry) 857 { 858 struct buffer_head *bh, *head; 859 long offset; 860 861 try_again: 862 head = NULL; 863 offset = PAGE_SIZE; 864 while ((offset -= size) >= 0) { 865 bh = alloc_buffer_head(GFP_NOFS); 866 if (!bh) 867 goto no_grow; 868 869 bh->b_this_page = head; 870 bh->b_blocknr = -1; 871 head = bh; 872 873 bh->b_size = size; 874 875 /* Link the buffer to its page */ 876 set_bh_page(bh, page, offset); 877 } 878 return head; 879 /* 880 * In case anything failed, we just free everything we got. 881 */ 882 no_grow: 883 if (head) { 884 do { 885 bh = head; 886 head = head->b_this_page; 887 free_buffer_head(bh); 888 } while (head); 889 } 890 891 /* 892 * Return failure for non-async IO requests. Async IO requests 893 * are not allowed to fail, so we have to wait until buffer heads 894 * become available. But we don't want tasks sleeping with 895 * partially complete buffers, so all were released above. 896 */ 897 if (!retry) 898 return NULL; 899 900 /* We're _really_ low on memory. Now we just 901 * wait for old buffer heads to become free due to 902 * finishing IO. Since this is an async request and 903 * the reserve list is empty, we're sure there are 904 * async buffer heads in use. 905 */ 906 free_more_memory(); 907 goto try_again; 908 } 909 EXPORT_SYMBOL_GPL(alloc_page_buffers); 910 911 static inline void 912 link_dev_buffers(struct page *page, struct buffer_head *head) 913 { 914 struct buffer_head *bh, *tail; 915 916 bh = head; 917 do { 918 tail = bh; 919 bh = bh->b_this_page; 920 } while (bh); 921 tail->b_this_page = head; 922 attach_page_buffers(page, head); 923 } 924 925 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 926 { 927 sector_t retval = ~((sector_t)0); 928 loff_t sz = i_size_read(bdev->bd_inode); 929 930 if (sz) { 931 unsigned int sizebits = blksize_bits(size); 932 retval = (sz >> sizebits); 933 } 934 return retval; 935 } 936 937 /* 938 * Initialise the state of a blockdev page's buffers. 939 */ 940 static sector_t 941 init_page_buffers(struct page *page, struct block_device *bdev, 942 sector_t block, int size) 943 { 944 struct buffer_head *head = page_buffers(page); 945 struct buffer_head *bh = head; 946 int uptodate = PageUptodate(page); 947 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 948 949 do { 950 if (!buffer_mapped(bh)) { 951 init_buffer(bh, NULL, NULL); 952 bh->b_bdev = bdev; 953 bh->b_blocknr = block; 954 if (uptodate) 955 set_buffer_uptodate(bh); 956 if (block < end_block) 957 set_buffer_mapped(bh); 958 } 959 block++; 960 bh = bh->b_this_page; 961 } while (bh != head); 962 963 /* 964 * Caller needs to validate requested block against end of device. 965 */ 966 return end_block; 967 } 968 969 /* 970 * Create the page-cache page that contains the requested block. 971 * 972 * This is used purely for blockdev mappings. 973 */ 974 static int 975 grow_dev_page(struct block_device *bdev, sector_t block, 976 pgoff_t index, int size, int sizebits, gfp_t gfp) 977 { 978 struct inode *inode = bdev->bd_inode; 979 struct page *page; 980 struct buffer_head *bh; 981 sector_t end_block; 982 int ret = 0; /* Will call free_more_memory() */ 983 gfp_t gfp_mask; 984 985 gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp; 986 987 /* 988 * XXX: __getblk_slow() can not really deal with failure and 989 * will endlessly loop on improvised global reclaim. Prefer 990 * looping in the allocator rather than here, at least that 991 * code knows what it's doing. 992 */ 993 gfp_mask |= __GFP_NOFAIL; 994 995 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 996 if (!page) 997 return ret; 998 999 BUG_ON(!PageLocked(page)); 1000 1001 if (page_has_buffers(page)) { 1002 bh = page_buffers(page); 1003 if (bh->b_size == size) { 1004 end_block = init_page_buffers(page, bdev, 1005 (sector_t)index << sizebits, 1006 size); 1007 goto done; 1008 } 1009 if (!try_to_free_buffers(page)) 1010 goto failed; 1011 } 1012 1013 /* 1014 * Allocate some buffers for this page 1015 */ 1016 bh = alloc_page_buffers(page, size, 0); 1017 if (!bh) 1018 goto failed; 1019 1020 /* 1021 * Link the page to the buffers and initialise them. Take the 1022 * lock to be atomic wrt __find_get_block(), which does not 1023 * run under the page lock. 1024 */ 1025 spin_lock(&inode->i_mapping->private_lock); 1026 link_dev_buffers(page, bh); 1027 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1028 size); 1029 spin_unlock(&inode->i_mapping->private_lock); 1030 done: 1031 ret = (block < end_block) ? 1 : -ENXIO; 1032 failed: 1033 unlock_page(page); 1034 page_cache_release(page); 1035 return ret; 1036 } 1037 1038 /* 1039 * Create buffers for the specified block device block's page. If 1040 * that page was dirty, the buffers are set dirty also. 1041 */ 1042 static int 1043 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1044 { 1045 pgoff_t index; 1046 int sizebits; 1047 1048 sizebits = -1; 1049 do { 1050 sizebits++; 1051 } while ((size << sizebits) < PAGE_SIZE); 1052 1053 index = block >> sizebits; 1054 1055 /* 1056 * Check for a block which wants to lie outside our maximum possible 1057 * pagecache index. (this comparison is done using sector_t types). 1058 */ 1059 if (unlikely(index != block >> sizebits)) { 1060 char b[BDEVNAME_SIZE]; 1061 1062 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1063 "device %s\n", 1064 __func__, (unsigned long long)block, 1065 bdevname(bdev, b)); 1066 return -EIO; 1067 } 1068 1069 /* Create a page with the proper size buffers.. */ 1070 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1071 } 1072 1073 struct buffer_head * 1074 __getblk_slow(struct block_device *bdev, sector_t block, 1075 unsigned size, gfp_t gfp) 1076 { 1077 /* Size must be multiple of hard sectorsize */ 1078 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1079 (size < 512 || size > PAGE_SIZE))) { 1080 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1081 size); 1082 printk(KERN_ERR "logical block size: %d\n", 1083 bdev_logical_block_size(bdev)); 1084 1085 dump_stack(); 1086 return NULL; 1087 } 1088 1089 for (;;) { 1090 struct buffer_head *bh; 1091 int ret; 1092 1093 bh = __find_get_block(bdev, block, size); 1094 if (bh) 1095 return bh; 1096 1097 ret = grow_buffers(bdev, block, size, gfp); 1098 if (ret < 0) 1099 return NULL; 1100 if (ret == 0) 1101 free_more_memory(); 1102 } 1103 } 1104 EXPORT_SYMBOL(__getblk_slow); 1105 1106 /* 1107 * The relationship between dirty buffers and dirty pages: 1108 * 1109 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1110 * the page is tagged dirty in its radix tree. 1111 * 1112 * At all times, the dirtiness of the buffers represents the dirtiness of 1113 * subsections of the page. If the page has buffers, the page dirty bit is 1114 * merely a hint about the true dirty state. 1115 * 1116 * When a page is set dirty in its entirety, all its buffers are marked dirty 1117 * (if the page has buffers). 1118 * 1119 * When a buffer is marked dirty, its page is dirtied, but the page's other 1120 * buffers are not. 1121 * 1122 * Also. When blockdev buffers are explicitly read with bread(), they 1123 * individually become uptodate. But their backing page remains not 1124 * uptodate - even if all of its buffers are uptodate. A subsequent 1125 * block_read_full_page() against that page will discover all the uptodate 1126 * buffers, will set the page uptodate and will perform no I/O. 1127 */ 1128 1129 /** 1130 * mark_buffer_dirty - mark a buffer_head as needing writeout 1131 * @bh: the buffer_head to mark dirty 1132 * 1133 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1134 * backing page dirty, then tag the page as dirty in its address_space's radix 1135 * tree and then attach the address_space's inode to its superblock's dirty 1136 * inode list. 1137 * 1138 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1139 * mapping->tree_lock and mapping->host->i_lock. 1140 */ 1141 void mark_buffer_dirty(struct buffer_head *bh) 1142 { 1143 WARN_ON_ONCE(!buffer_uptodate(bh)); 1144 1145 trace_block_dirty_buffer(bh); 1146 1147 /* 1148 * Very *carefully* optimize the it-is-already-dirty case. 1149 * 1150 * Don't let the final "is it dirty" escape to before we 1151 * perhaps modified the buffer. 1152 */ 1153 if (buffer_dirty(bh)) { 1154 smp_mb(); 1155 if (buffer_dirty(bh)) 1156 return; 1157 } 1158 1159 if (!test_set_buffer_dirty(bh)) { 1160 struct page *page = bh->b_page; 1161 if (!TestSetPageDirty(page)) { 1162 struct address_space *mapping = page_mapping(page); 1163 if (mapping) 1164 __set_page_dirty(page, mapping, 0); 1165 } 1166 } 1167 } 1168 EXPORT_SYMBOL(mark_buffer_dirty); 1169 1170 /* 1171 * Decrement a buffer_head's reference count. If all buffers against a page 1172 * have zero reference count, are clean and unlocked, and if the page is clean 1173 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1174 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1175 * a page but it ends up not being freed, and buffers may later be reattached). 1176 */ 1177 void __brelse(struct buffer_head * buf) 1178 { 1179 if (atomic_read(&buf->b_count)) { 1180 put_bh(buf); 1181 return; 1182 } 1183 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1184 } 1185 EXPORT_SYMBOL(__brelse); 1186 1187 /* 1188 * bforget() is like brelse(), except it discards any 1189 * potentially dirty data. 1190 */ 1191 void __bforget(struct buffer_head *bh) 1192 { 1193 clear_buffer_dirty(bh); 1194 if (bh->b_assoc_map) { 1195 struct address_space *buffer_mapping = bh->b_page->mapping; 1196 1197 spin_lock(&buffer_mapping->private_lock); 1198 list_del_init(&bh->b_assoc_buffers); 1199 bh->b_assoc_map = NULL; 1200 spin_unlock(&buffer_mapping->private_lock); 1201 } 1202 __brelse(bh); 1203 } 1204 EXPORT_SYMBOL(__bforget); 1205 1206 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1207 { 1208 lock_buffer(bh); 1209 if (buffer_uptodate(bh)) { 1210 unlock_buffer(bh); 1211 return bh; 1212 } else { 1213 get_bh(bh); 1214 bh->b_end_io = end_buffer_read_sync; 1215 submit_bh(READ, bh); 1216 wait_on_buffer(bh); 1217 if (buffer_uptodate(bh)) 1218 return bh; 1219 } 1220 brelse(bh); 1221 return NULL; 1222 } 1223 1224 /* 1225 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1226 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1227 * refcount elevated by one when they're in an LRU. A buffer can only appear 1228 * once in a particular CPU's LRU. A single buffer can be present in multiple 1229 * CPU's LRUs at the same time. 1230 * 1231 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1232 * sb_find_get_block(). 1233 * 1234 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1235 * a local interrupt disable for that. 1236 */ 1237 1238 #define BH_LRU_SIZE 16 1239 1240 struct bh_lru { 1241 struct buffer_head *bhs[BH_LRU_SIZE]; 1242 }; 1243 1244 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1245 1246 #ifdef CONFIG_SMP 1247 #define bh_lru_lock() local_irq_disable() 1248 #define bh_lru_unlock() local_irq_enable() 1249 #else 1250 #define bh_lru_lock() preempt_disable() 1251 #define bh_lru_unlock() preempt_enable() 1252 #endif 1253 1254 static inline void check_irqs_on(void) 1255 { 1256 #ifdef irqs_disabled 1257 BUG_ON(irqs_disabled()); 1258 #endif 1259 } 1260 1261 /* 1262 * The LRU management algorithm is dopey-but-simple. Sorry. 1263 */ 1264 static void bh_lru_install(struct buffer_head *bh) 1265 { 1266 struct buffer_head *evictee = NULL; 1267 1268 check_irqs_on(); 1269 bh_lru_lock(); 1270 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1271 struct buffer_head *bhs[BH_LRU_SIZE]; 1272 int in; 1273 int out = 0; 1274 1275 get_bh(bh); 1276 bhs[out++] = bh; 1277 for (in = 0; in < BH_LRU_SIZE; in++) { 1278 struct buffer_head *bh2 = 1279 __this_cpu_read(bh_lrus.bhs[in]); 1280 1281 if (bh2 == bh) { 1282 __brelse(bh2); 1283 } else { 1284 if (out >= BH_LRU_SIZE) { 1285 BUG_ON(evictee != NULL); 1286 evictee = bh2; 1287 } else { 1288 bhs[out++] = bh2; 1289 } 1290 } 1291 } 1292 while (out < BH_LRU_SIZE) 1293 bhs[out++] = NULL; 1294 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1295 } 1296 bh_lru_unlock(); 1297 1298 if (evictee) 1299 __brelse(evictee); 1300 } 1301 1302 /* 1303 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1304 */ 1305 static struct buffer_head * 1306 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1307 { 1308 struct buffer_head *ret = NULL; 1309 unsigned int i; 1310 1311 check_irqs_on(); 1312 bh_lru_lock(); 1313 for (i = 0; i < BH_LRU_SIZE; i++) { 1314 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1315 1316 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1317 bh->b_size == size) { 1318 if (i) { 1319 while (i) { 1320 __this_cpu_write(bh_lrus.bhs[i], 1321 __this_cpu_read(bh_lrus.bhs[i - 1])); 1322 i--; 1323 } 1324 __this_cpu_write(bh_lrus.bhs[0], bh); 1325 } 1326 get_bh(bh); 1327 ret = bh; 1328 break; 1329 } 1330 } 1331 bh_lru_unlock(); 1332 return ret; 1333 } 1334 1335 /* 1336 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1337 * it in the LRU and mark it as accessed. If it is not present then return 1338 * NULL 1339 */ 1340 struct buffer_head * 1341 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1342 { 1343 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1344 1345 if (bh == NULL) { 1346 /* __find_get_block_slow will mark the page accessed */ 1347 bh = __find_get_block_slow(bdev, block); 1348 if (bh) 1349 bh_lru_install(bh); 1350 } else 1351 touch_buffer(bh); 1352 1353 return bh; 1354 } 1355 EXPORT_SYMBOL(__find_get_block); 1356 1357 /* 1358 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1359 * which corresponds to the passed block_device, block and size. The 1360 * returned buffer has its reference count incremented. 1361 * 1362 * __getblk_gfp() will lock up the machine if grow_dev_page's 1363 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1364 */ 1365 struct buffer_head * 1366 __getblk_gfp(struct block_device *bdev, sector_t block, 1367 unsigned size, gfp_t gfp) 1368 { 1369 struct buffer_head *bh = __find_get_block(bdev, block, size); 1370 1371 might_sleep(); 1372 if (bh == NULL) 1373 bh = __getblk_slow(bdev, block, size, gfp); 1374 return bh; 1375 } 1376 EXPORT_SYMBOL(__getblk_gfp); 1377 1378 /* 1379 * Do async read-ahead on a buffer.. 1380 */ 1381 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1382 { 1383 struct buffer_head *bh = __getblk(bdev, block, size); 1384 if (likely(bh)) { 1385 ll_rw_block(READA, 1, &bh); 1386 brelse(bh); 1387 } 1388 } 1389 EXPORT_SYMBOL(__breadahead); 1390 1391 /** 1392 * __bread_gfp() - reads a specified block and returns the bh 1393 * @bdev: the block_device to read from 1394 * @block: number of block 1395 * @size: size (in bytes) to read 1396 * @gfp: page allocation flag 1397 * 1398 * Reads a specified block, and returns buffer head that contains it. 1399 * The page cache can be allocated from non-movable area 1400 * not to prevent page migration if you set gfp to zero. 1401 * It returns NULL if the block was unreadable. 1402 */ 1403 struct buffer_head * 1404 __bread_gfp(struct block_device *bdev, sector_t block, 1405 unsigned size, gfp_t gfp) 1406 { 1407 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1408 1409 if (likely(bh) && !buffer_uptodate(bh)) 1410 bh = __bread_slow(bh); 1411 return bh; 1412 } 1413 EXPORT_SYMBOL(__bread_gfp); 1414 1415 /* 1416 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1417 * This doesn't race because it runs in each cpu either in irq 1418 * or with preempt disabled. 1419 */ 1420 static void invalidate_bh_lru(void *arg) 1421 { 1422 struct bh_lru *b = &get_cpu_var(bh_lrus); 1423 int i; 1424 1425 for (i = 0; i < BH_LRU_SIZE; i++) { 1426 brelse(b->bhs[i]); 1427 b->bhs[i] = NULL; 1428 } 1429 put_cpu_var(bh_lrus); 1430 } 1431 1432 static bool has_bh_in_lru(int cpu, void *dummy) 1433 { 1434 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1435 int i; 1436 1437 for (i = 0; i < BH_LRU_SIZE; i++) { 1438 if (b->bhs[i]) 1439 return 1; 1440 } 1441 1442 return 0; 1443 } 1444 1445 void invalidate_bh_lrus(void) 1446 { 1447 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1448 } 1449 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1450 1451 void set_bh_page(struct buffer_head *bh, 1452 struct page *page, unsigned long offset) 1453 { 1454 bh->b_page = page; 1455 BUG_ON(offset >= PAGE_SIZE); 1456 if (PageHighMem(page)) 1457 /* 1458 * This catches illegal uses and preserves the offset: 1459 */ 1460 bh->b_data = (char *)(0 + offset); 1461 else 1462 bh->b_data = page_address(page) + offset; 1463 } 1464 EXPORT_SYMBOL(set_bh_page); 1465 1466 /* 1467 * Called when truncating a buffer on a page completely. 1468 */ 1469 1470 /* Bits that are cleared during an invalidate */ 1471 #define BUFFER_FLAGS_DISCARD \ 1472 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1473 1 << BH_Delay | 1 << BH_Unwritten) 1474 1475 static void discard_buffer(struct buffer_head * bh) 1476 { 1477 unsigned long b_state, b_state_old; 1478 1479 lock_buffer(bh); 1480 clear_buffer_dirty(bh); 1481 bh->b_bdev = NULL; 1482 b_state = bh->b_state; 1483 for (;;) { 1484 b_state_old = cmpxchg(&bh->b_state, b_state, 1485 (b_state & ~BUFFER_FLAGS_DISCARD)); 1486 if (b_state_old == b_state) 1487 break; 1488 b_state = b_state_old; 1489 } 1490 unlock_buffer(bh); 1491 } 1492 1493 /** 1494 * block_invalidatepage - invalidate part or all of a buffer-backed page 1495 * 1496 * @page: the page which is affected 1497 * @offset: start of the range to invalidate 1498 * @length: length of the range to invalidate 1499 * 1500 * block_invalidatepage() is called when all or part of the page has become 1501 * invalidated by a truncate operation. 1502 * 1503 * block_invalidatepage() does not have to release all buffers, but it must 1504 * ensure that no dirty buffer is left outside @offset and that no I/O 1505 * is underway against any of the blocks which are outside the truncation 1506 * point. Because the caller is about to free (and possibly reuse) those 1507 * blocks on-disk. 1508 */ 1509 void block_invalidatepage(struct page *page, unsigned int offset, 1510 unsigned int length) 1511 { 1512 struct buffer_head *head, *bh, *next; 1513 unsigned int curr_off = 0; 1514 unsigned int stop = length + offset; 1515 1516 BUG_ON(!PageLocked(page)); 1517 if (!page_has_buffers(page)) 1518 goto out; 1519 1520 /* 1521 * Check for overflow 1522 */ 1523 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1524 1525 head = page_buffers(page); 1526 bh = head; 1527 do { 1528 unsigned int next_off = curr_off + bh->b_size; 1529 next = bh->b_this_page; 1530 1531 /* 1532 * Are we still fully in range ? 1533 */ 1534 if (next_off > stop) 1535 goto out; 1536 1537 /* 1538 * is this block fully invalidated? 1539 */ 1540 if (offset <= curr_off) 1541 discard_buffer(bh); 1542 curr_off = next_off; 1543 bh = next; 1544 } while (bh != head); 1545 1546 /* 1547 * We release buffers only if the entire page is being invalidated. 1548 * The get_block cached value has been unconditionally invalidated, 1549 * so real IO is not possible anymore. 1550 */ 1551 if (offset == 0) 1552 try_to_release_page(page, 0); 1553 out: 1554 return; 1555 } 1556 EXPORT_SYMBOL(block_invalidatepage); 1557 1558 1559 /* 1560 * We attach and possibly dirty the buffers atomically wrt 1561 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1562 * is already excluded via the page lock. 1563 */ 1564 void create_empty_buffers(struct page *page, 1565 unsigned long blocksize, unsigned long b_state) 1566 { 1567 struct buffer_head *bh, *head, *tail; 1568 1569 head = alloc_page_buffers(page, blocksize, 1); 1570 bh = head; 1571 do { 1572 bh->b_state |= b_state; 1573 tail = bh; 1574 bh = bh->b_this_page; 1575 } while (bh); 1576 tail->b_this_page = head; 1577 1578 spin_lock(&page->mapping->private_lock); 1579 if (PageUptodate(page) || PageDirty(page)) { 1580 bh = head; 1581 do { 1582 if (PageDirty(page)) 1583 set_buffer_dirty(bh); 1584 if (PageUptodate(page)) 1585 set_buffer_uptodate(bh); 1586 bh = bh->b_this_page; 1587 } while (bh != head); 1588 } 1589 attach_page_buffers(page, head); 1590 spin_unlock(&page->mapping->private_lock); 1591 } 1592 EXPORT_SYMBOL(create_empty_buffers); 1593 1594 /* 1595 * We are taking a block for data and we don't want any output from any 1596 * buffer-cache aliases starting from return from that function and 1597 * until the moment when something will explicitly mark the buffer 1598 * dirty (hopefully that will not happen until we will free that block ;-) 1599 * We don't even need to mark it not-uptodate - nobody can expect 1600 * anything from a newly allocated buffer anyway. We used to used 1601 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1602 * don't want to mark the alias unmapped, for example - it would confuse 1603 * anyone who might pick it with bread() afterwards... 1604 * 1605 * Also.. Note that bforget() doesn't lock the buffer. So there can 1606 * be writeout I/O going on against recently-freed buffers. We don't 1607 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1608 * only if we really need to. That happens here. 1609 */ 1610 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1611 { 1612 struct buffer_head *old_bh; 1613 1614 might_sleep(); 1615 1616 old_bh = __find_get_block_slow(bdev, block); 1617 if (old_bh) { 1618 clear_buffer_dirty(old_bh); 1619 wait_on_buffer(old_bh); 1620 clear_buffer_req(old_bh); 1621 __brelse(old_bh); 1622 } 1623 } 1624 EXPORT_SYMBOL(unmap_underlying_metadata); 1625 1626 /* 1627 * Size is a power-of-two in the range 512..PAGE_SIZE, 1628 * and the case we care about most is PAGE_SIZE. 1629 * 1630 * So this *could* possibly be written with those 1631 * constraints in mind (relevant mostly if some 1632 * architecture has a slow bit-scan instruction) 1633 */ 1634 static inline int block_size_bits(unsigned int blocksize) 1635 { 1636 return ilog2(blocksize); 1637 } 1638 1639 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1640 { 1641 BUG_ON(!PageLocked(page)); 1642 1643 if (!page_has_buffers(page)) 1644 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1645 return page_buffers(page); 1646 } 1647 1648 /* 1649 * NOTE! All mapped/uptodate combinations are valid: 1650 * 1651 * Mapped Uptodate Meaning 1652 * 1653 * No No "unknown" - must do get_block() 1654 * No Yes "hole" - zero-filled 1655 * Yes No "allocated" - allocated on disk, not read in 1656 * Yes Yes "valid" - allocated and up-to-date in memory. 1657 * 1658 * "Dirty" is valid only with the last case (mapped+uptodate). 1659 */ 1660 1661 /* 1662 * While block_write_full_page is writing back the dirty buffers under 1663 * the page lock, whoever dirtied the buffers may decide to clean them 1664 * again at any time. We handle that by only looking at the buffer 1665 * state inside lock_buffer(). 1666 * 1667 * If block_write_full_page() is called for regular writeback 1668 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1669 * locked buffer. This only can happen if someone has written the buffer 1670 * directly, with submit_bh(). At the address_space level PageWriteback 1671 * prevents this contention from occurring. 1672 * 1673 * If block_write_full_page() is called with wbc->sync_mode == 1674 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1675 * causes the writes to be flagged as synchronous writes. 1676 */ 1677 static int __block_write_full_page(struct inode *inode, struct page *page, 1678 get_block_t *get_block, struct writeback_control *wbc, 1679 bh_end_io_t *handler) 1680 { 1681 int err; 1682 sector_t block; 1683 sector_t last_block; 1684 struct buffer_head *bh, *head; 1685 unsigned int blocksize, bbits; 1686 int nr_underway = 0; 1687 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1688 WRITE_SYNC : WRITE); 1689 1690 head = create_page_buffers(page, inode, 1691 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1692 1693 /* 1694 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1695 * here, and the (potentially unmapped) buffers may become dirty at 1696 * any time. If a buffer becomes dirty here after we've inspected it 1697 * then we just miss that fact, and the page stays dirty. 1698 * 1699 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1700 * handle that here by just cleaning them. 1701 */ 1702 1703 bh = head; 1704 blocksize = bh->b_size; 1705 bbits = block_size_bits(blocksize); 1706 1707 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1708 last_block = (i_size_read(inode) - 1) >> bbits; 1709 1710 /* 1711 * Get all the dirty buffers mapped to disk addresses and 1712 * handle any aliases from the underlying blockdev's mapping. 1713 */ 1714 do { 1715 if (block > last_block) { 1716 /* 1717 * mapped buffers outside i_size will occur, because 1718 * this page can be outside i_size when there is a 1719 * truncate in progress. 1720 */ 1721 /* 1722 * The buffer was zeroed by block_write_full_page() 1723 */ 1724 clear_buffer_dirty(bh); 1725 set_buffer_uptodate(bh); 1726 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1727 buffer_dirty(bh)) { 1728 WARN_ON(bh->b_size != blocksize); 1729 err = get_block(inode, block, bh, 1); 1730 if (err) 1731 goto recover; 1732 clear_buffer_delay(bh); 1733 if (buffer_new(bh)) { 1734 /* blockdev mappings never come here */ 1735 clear_buffer_new(bh); 1736 unmap_underlying_metadata(bh->b_bdev, 1737 bh->b_blocknr); 1738 } 1739 } 1740 bh = bh->b_this_page; 1741 block++; 1742 } while (bh != head); 1743 1744 do { 1745 if (!buffer_mapped(bh)) 1746 continue; 1747 /* 1748 * If it's a fully non-blocking write attempt and we cannot 1749 * lock the buffer then redirty the page. Note that this can 1750 * potentially cause a busy-wait loop from writeback threads 1751 * and kswapd activity, but those code paths have their own 1752 * higher-level throttling. 1753 */ 1754 if (wbc->sync_mode != WB_SYNC_NONE) { 1755 lock_buffer(bh); 1756 } else if (!trylock_buffer(bh)) { 1757 redirty_page_for_writepage(wbc, page); 1758 continue; 1759 } 1760 if (test_clear_buffer_dirty(bh)) { 1761 mark_buffer_async_write_endio(bh, handler); 1762 } else { 1763 unlock_buffer(bh); 1764 } 1765 } while ((bh = bh->b_this_page) != head); 1766 1767 /* 1768 * The page and its buffers are protected by PageWriteback(), so we can 1769 * drop the bh refcounts early. 1770 */ 1771 BUG_ON(PageWriteback(page)); 1772 set_page_writeback(page); 1773 1774 do { 1775 struct buffer_head *next = bh->b_this_page; 1776 if (buffer_async_write(bh)) { 1777 submit_bh(write_op, bh); 1778 nr_underway++; 1779 } 1780 bh = next; 1781 } while (bh != head); 1782 unlock_page(page); 1783 1784 err = 0; 1785 done: 1786 if (nr_underway == 0) { 1787 /* 1788 * The page was marked dirty, but the buffers were 1789 * clean. Someone wrote them back by hand with 1790 * ll_rw_block/submit_bh. A rare case. 1791 */ 1792 end_page_writeback(page); 1793 1794 /* 1795 * The page and buffer_heads can be released at any time from 1796 * here on. 1797 */ 1798 } 1799 return err; 1800 1801 recover: 1802 /* 1803 * ENOSPC, or some other error. We may already have added some 1804 * blocks to the file, so we need to write these out to avoid 1805 * exposing stale data. 1806 * The page is currently locked and not marked for writeback 1807 */ 1808 bh = head; 1809 /* Recovery: lock and submit the mapped buffers */ 1810 do { 1811 if (buffer_mapped(bh) && buffer_dirty(bh) && 1812 !buffer_delay(bh)) { 1813 lock_buffer(bh); 1814 mark_buffer_async_write_endio(bh, handler); 1815 } else { 1816 /* 1817 * The buffer may have been set dirty during 1818 * attachment to a dirty page. 1819 */ 1820 clear_buffer_dirty(bh); 1821 } 1822 } while ((bh = bh->b_this_page) != head); 1823 SetPageError(page); 1824 BUG_ON(PageWriteback(page)); 1825 mapping_set_error(page->mapping, err); 1826 set_page_writeback(page); 1827 do { 1828 struct buffer_head *next = bh->b_this_page; 1829 if (buffer_async_write(bh)) { 1830 clear_buffer_dirty(bh); 1831 submit_bh(write_op, bh); 1832 nr_underway++; 1833 } 1834 bh = next; 1835 } while (bh != head); 1836 unlock_page(page); 1837 goto done; 1838 } 1839 1840 /* 1841 * If a page has any new buffers, zero them out here, and mark them uptodate 1842 * and dirty so they'll be written out (in order to prevent uninitialised 1843 * block data from leaking). And clear the new bit. 1844 */ 1845 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1846 { 1847 unsigned int block_start, block_end; 1848 struct buffer_head *head, *bh; 1849 1850 BUG_ON(!PageLocked(page)); 1851 if (!page_has_buffers(page)) 1852 return; 1853 1854 bh = head = page_buffers(page); 1855 block_start = 0; 1856 do { 1857 block_end = block_start + bh->b_size; 1858 1859 if (buffer_new(bh)) { 1860 if (block_end > from && block_start < to) { 1861 if (!PageUptodate(page)) { 1862 unsigned start, size; 1863 1864 start = max(from, block_start); 1865 size = min(to, block_end) - start; 1866 1867 zero_user(page, start, size); 1868 set_buffer_uptodate(bh); 1869 } 1870 1871 clear_buffer_new(bh); 1872 mark_buffer_dirty(bh); 1873 } 1874 } 1875 1876 block_start = block_end; 1877 bh = bh->b_this_page; 1878 } while (bh != head); 1879 } 1880 EXPORT_SYMBOL(page_zero_new_buffers); 1881 1882 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1883 get_block_t *get_block) 1884 { 1885 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1886 unsigned to = from + len; 1887 struct inode *inode = page->mapping->host; 1888 unsigned block_start, block_end; 1889 sector_t block; 1890 int err = 0; 1891 unsigned blocksize, bbits; 1892 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1893 1894 BUG_ON(!PageLocked(page)); 1895 BUG_ON(from > PAGE_CACHE_SIZE); 1896 BUG_ON(to > PAGE_CACHE_SIZE); 1897 BUG_ON(from > to); 1898 1899 head = create_page_buffers(page, inode, 0); 1900 blocksize = head->b_size; 1901 bbits = block_size_bits(blocksize); 1902 1903 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1904 1905 for(bh = head, block_start = 0; bh != head || !block_start; 1906 block++, block_start=block_end, bh = bh->b_this_page) { 1907 block_end = block_start + blocksize; 1908 if (block_end <= from || block_start >= to) { 1909 if (PageUptodate(page)) { 1910 if (!buffer_uptodate(bh)) 1911 set_buffer_uptodate(bh); 1912 } 1913 continue; 1914 } 1915 if (buffer_new(bh)) 1916 clear_buffer_new(bh); 1917 if (!buffer_mapped(bh)) { 1918 WARN_ON(bh->b_size != blocksize); 1919 err = get_block(inode, block, bh, 1); 1920 if (err) 1921 break; 1922 if (buffer_new(bh)) { 1923 unmap_underlying_metadata(bh->b_bdev, 1924 bh->b_blocknr); 1925 if (PageUptodate(page)) { 1926 clear_buffer_new(bh); 1927 set_buffer_uptodate(bh); 1928 mark_buffer_dirty(bh); 1929 continue; 1930 } 1931 if (block_end > to || block_start < from) 1932 zero_user_segments(page, 1933 to, block_end, 1934 block_start, from); 1935 continue; 1936 } 1937 } 1938 if (PageUptodate(page)) { 1939 if (!buffer_uptodate(bh)) 1940 set_buffer_uptodate(bh); 1941 continue; 1942 } 1943 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1944 !buffer_unwritten(bh) && 1945 (block_start < from || block_end > to)) { 1946 ll_rw_block(READ, 1, &bh); 1947 *wait_bh++=bh; 1948 } 1949 } 1950 /* 1951 * If we issued read requests - let them complete. 1952 */ 1953 while(wait_bh > wait) { 1954 wait_on_buffer(*--wait_bh); 1955 if (!buffer_uptodate(*wait_bh)) 1956 err = -EIO; 1957 } 1958 if (unlikely(err)) 1959 page_zero_new_buffers(page, from, to); 1960 return err; 1961 } 1962 EXPORT_SYMBOL(__block_write_begin); 1963 1964 static int __block_commit_write(struct inode *inode, struct page *page, 1965 unsigned from, unsigned to) 1966 { 1967 unsigned block_start, block_end; 1968 int partial = 0; 1969 unsigned blocksize; 1970 struct buffer_head *bh, *head; 1971 1972 bh = head = page_buffers(page); 1973 blocksize = bh->b_size; 1974 1975 block_start = 0; 1976 do { 1977 block_end = block_start + blocksize; 1978 if (block_end <= from || block_start >= to) { 1979 if (!buffer_uptodate(bh)) 1980 partial = 1; 1981 } else { 1982 set_buffer_uptodate(bh); 1983 mark_buffer_dirty(bh); 1984 } 1985 clear_buffer_new(bh); 1986 1987 block_start = block_end; 1988 bh = bh->b_this_page; 1989 } while (bh != head); 1990 1991 /* 1992 * If this is a partial write which happened to make all buffers 1993 * uptodate then we can optimize away a bogus readpage() for 1994 * the next read(). Here we 'discover' whether the page went 1995 * uptodate as a result of this (potentially partial) write. 1996 */ 1997 if (!partial) 1998 SetPageUptodate(page); 1999 return 0; 2000 } 2001 2002 /* 2003 * block_write_begin takes care of the basic task of block allocation and 2004 * bringing partial write blocks uptodate first. 2005 * 2006 * The filesystem needs to handle block truncation upon failure. 2007 */ 2008 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2009 unsigned flags, struct page **pagep, get_block_t *get_block) 2010 { 2011 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2012 struct page *page; 2013 int status; 2014 2015 page = grab_cache_page_write_begin(mapping, index, flags); 2016 if (!page) 2017 return -ENOMEM; 2018 2019 status = __block_write_begin(page, pos, len, get_block); 2020 if (unlikely(status)) { 2021 unlock_page(page); 2022 page_cache_release(page); 2023 page = NULL; 2024 } 2025 2026 *pagep = page; 2027 return status; 2028 } 2029 EXPORT_SYMBOL(block_write_begin); 2030 2031 int block_write_end(struct file *file, struct address_space *mapping, 2032 loff_t pos, unsigned len, unsigned copied, 2033 struct page *page, void *fsdata) 2034 { 2035 struct inode *inode = mapping->host; 2036 unsigned start; 2037 2038 start = pos & (PAGE_CACHE_SIZE - 1); 2039 2040 if (unlikely(copied < len)) { 2041 /* 2042 * The buffers that were written will now be uptodate, so we 2043 * don't have to worry about a readpage reading them and 2044 * overwriting a partial write. However if we have encountered 2045 * a short write and only partially written into a buffer, it 2046 * will not be marked uptodate, so a readpage might come in and 2047 * destroy our partial write. 2048 * 2049 * Do the simplest thing, and just treat any short write to a 2050 * non uptodate page as a zero-length write, and force the 2051 * caller to redo the whole thing. 2052 */ 2053 if (!PageUptodate(page)) 2054 copied = 0; 2055 2056 page_zero_new_buffers(page, start+copied, start+len); 2057 } 2058 flush_dcache_page(page); 2059 2060 /* This could be a short (even 0-length) commit */ 2061 __block_commit_write(inode, page, start, start+copied); 2062 2063 return copied; 2064 } 2065 EXPORT_SYMBOL(block_write_end); 2066 2067 int generic_write_end(struct file *file, struct address_space *mapping, 2068 loff_t pos, unsigned len, unsigned copied, 2069 struct page *page, void *fsdata) 2070 { 2071 struct inode *inode = mapping->host; 2072 loff_t old_size = inode->i_size; 2073 int i_size_changed = 0; 2074 2075 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2076 2077 /* 2078 * No need to use i_size_read() here, the i_size 2079 * cannot change under us because we hold i_mutex. 2080 * 2081 * But it's important to update i_size while still holding page lock: 2082 * page writeout could otherwise come in and zero beyond i_size. 2083 */ 2084 if (pos+copied > inode->i_size) { 2085 i_size_write(inode, pos+copied); 2086 i_size_changed = 1; 2087 } 2088 2089 unlock_page(page); 2090 page_cache_release(page); 2091 2092 if (old_size < pos) 2093 pagecache_isize_extended(inode, old_size, pos); 2094 /* 2095 * Don't mark the inode dirty under page lock. First, it unnecessarily 2096 * makes the holding time of page lock longer. Second, it forces lock 2097 * ordering of page lock and transaction start for journaling 2098 * filesystems. 2099 */ 2100 if (i_size_changed) 2101 mark_inode_dirty(inode); 2102 2103 return copied; 2104 } 2105 EXPORT_SYMBOL(generic_write_end); 2106 2107 /* 2108 * block_is_partially_uptodate checks whether buffers within a page are 2109 * uptodate or not. 2110 * 2111 * Returns true if all buffers which correspond to a file portion 2112 * we want to read are uptodate. 2113 */ 2114 int block_is_partially_uptodate(struct page *page, unsigned long from, 2115 unsigned long count) 2116 { 2117 unsigned block_start, block_end, blocksize; 2118 unsigned to; 2119 struct buffer_head *bh, *head; 2120 int ret = 1; 2121 2122 if (!page_has_buffers(page)) 2123 return 0; 2124 2125 head = page_buffers(page); 2126 blocksize = head->b_size; 2127 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count); 2128 to = from + to; 2129 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2130 return 0; 2131 2132 bh = head; 2133 block_start = 0; 2134 do { 2135 block_end = block_start + blocksize; 2136 if (block_end > from && block_start < to) { 2137 if (!buffer_uptodate(bh)) { 2138 ret = 0; 2139 break; 2140 } 2141 if (block_end >= to) 2142 break; 2143 } 2144 block_start = block_end; 2145 bh = bh->b_this_page; 2146 } while (bh != head); 2147 2148 return ret; 2149 } 2150 EXPORT_SYMBOL(block_is_partially_uptodate); 2151 2152 /* 2153 * Generic "read page" function for block devices that have the normal 2154 * get_block functionality. This is most of the block device filesystems. 2155 * Reads the page asynchronously --- the unlock_buffer() and 2156 * set/clear_buffer_uptodate() functions propagate buffer state into the 2157 * page struct once IO has completed. 2158 */ 2159 int block_read_full_page(struct page *page, get_block_t *get_block) 2160 { 2161 struct inode *inode = page->mapping->host; 2162 sector_t iblock, lblock; 2163 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2164 unsigned int blocksize, bbits; 2165 int nr, i; 2166 int fully_mapped = 1; 2167 2168 head = create_page_buffers(page, inode, 0); 2169 blocksize = head->b_size; 2170 bbits = block_size_bits(blocksize); 2171 2172 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 2173 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2174 bh = head; 2175 nr = 0; 2176 i = 0; 2177 2178 do { 2179 if (buffer_uptodate(bh)) 2180 continue; 2181 2182 if (!buffer_mapped(bh)) { 2183 int err = 0; 2184 2185 fully_mapped = 0; 2186 if (iblock < lblock) { 2187 WARN_ON(bh->b_size != blocksize); 2188 err = get_block(inode, iblock, bh, 0); 2189 if (err) 2190 SetPageError(page); 2191 } 2192 if (!buffer_mapped(bh)) { 2193 zero_user(page, i * blocksize, blocksize); 2194 if (!err) 2195 set_buffer_uptodate(bh); 2196 continue; 2197 } 2198 /* 2199 * get_block() might have updated the buffer 2200 * synchronously 2201 */ 2202 if (buffer_uptodate(bh)) 2203 continue; 2204 } 2205 arr[nr++] = bh; 2206 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2207 2208 if (fully_mapped) 2209 SetPageMappedToDisk(page); 2210 2211 if (!nr) { 2212 /* 2213 * All buffers are uptodate - we can set the page uptodate 2214 * as well. But not if get_block() returned an error. 2215 */ 2216 if (!PageError(page)) 2217 SetPageUptodate(page); 2218 unlock_page(page); 2219 return 0; 2220 } 2221 2222 /* Stage two: lock the buffers */ 2223 for (i = 0; i < nr; i++) { 2224 bh = arr[i]; 2225 lock_buffer(bh); 2226 mark_buffer_async_read(bh); 2227 } 2228 2229 /* 2230 * Stage 3: start the IO. Check for uptodateness 2231 * inside the buffer lock in case another process reading 2232 * the underlying blockdev brought it uptodate (the sct fix). 2233 */ 2234 for (i = 0; i < nr; i++) { 2235 bh = arr[i]; 2236 if (buffer_uptodate(bh)) 2237 end_buffer_async_read(bh, 1); 2238 else 2239 submit_bh(READ, bh); 2240 } 2241 return 0; 2242 } 2243 EXPORT_SYMBOL(block_read_full_page); 2244 2245 /* utility function for filesystems that need to do work on expanding 2246 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2247 * deal with the hole. 2248 */ 2249 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2250 { 2251 struct address_space *mapping = inode->i_mapping; 2252 struct page *page; 2253 void *fsdata; 2254 int err; 2255 2256 err = inode_newsize_ok(inode, size); 2257 if (err) 2258 goto out; 2259 2260 err = pagecache_write_begin(NULL, mapping, size, 0, 2261 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2262 &page, &fsdata); 2263 if (err) 2264 goto out; 2265 2266 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2267 BUG_ON(err > 0); 2268 2269 out: 2270 return err; 2271 } 2272 EXPORT_SYMBOL(generic_cont_expand_simple); 2273 2274 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2275 loff_t pos, loff_t *bytes) 2276 { 2277 struct inode *inode = mapping->host; 2278 unsigned blocksize = 1 << inode->i_blkbits; 2279 struct page *page; 2280 void *fsdata; 2281 pgoff_t index, curidx; 2282 loff_t curpos; 2283 unsigned zerofrom, offset, len; 2284 int err = 0; 2285 2286 index = pos >> PAGE_CACHE_SHIFT; 2287 offset = pos & ~PAGE_CACHE_MASK; 2288 2289 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2290 zerofrom = curpos & ~PAGE_CACHE_MASK; 2291 if (zerofrom & (blocksize-1)) { 2292 *bytes |= (blocksize-1); 2293 (*bytes)++; 2294 } 2295 len = PAGE_CACHE_SIZE - zerofrom; 2296 2297 err = pagecache_write_begin(file, mapping, curpos, len, 2298 AOP_FLAG_UNINTERRUPTIBLE, 2299 &page, &fsdata); 2300 if (err) 2301 goto out; 2302 zero_user(page, zerofrom, len); 2303 err = pagecache_write_end(file, mapping, curpos, len, len, 2304 page, fsdata); 2305 if (err < 0) 2306 goto out; 2307 BUG_ON(err != len); 2308 err = 0; 2309 2310 balance_dirty_pages_ratelimited(mapping); 2311 2312 if (unlikely(fatal_signal_pending(current))) { 2313 err = -EINTR; 2314 goto out; 2315 } 2316 } 2317 2318 /* page covers the boundary, find the boundary offset */ 2319 if (index == curidx) { 2320 zerofrom = curpos & ~PAGE_CACHE_MASK; 2321 /* if we will expand the thing last block will be filled */ 2322 if (offset <= zerofrom) { 2323 goto out; 2324 } 2325 if (zerofrom & (blocksize-1)) { 2326 *bytes |= (blocksize-1); 2327 (*bytes)++; 2328 } 2329 len = offset - zerofrom; 2330 2331 err = pagecache_write_begin(file, mapping, curpos, len, 2332 AOP_FLAG_UNINTERRUPTIBLE, 2333 &page, &fsdata); 2334 if (err) 2335 goto out; 2336 zero_user(page, zerofrom, len); 2337 err = pagecache_write_end(file, mapping, curpos, len, len, 2338 page, fsdata); 2339 if (err < 0) 2340 goto out; 2341 BUG_ON(err != len); 2342 err = 0; 2343 } 2344 out: 2345 return err; 2346 } 2347 2348 /* 2349 * For moronic filesystems that do not allow holes in file. 2350 * We may have to extend the file. 2351 */ 2352 int cont_write_begin(struct file *file, struct address_space *mapping, 2353 loff_t pos, unsigned len, unsigned flags, 2354 struct page **pagep, void **fsdata, 2355 get_block_t *get_block, loff_t *bytes) 2356 { 2357 struct inode *inode = mapping->host; 2358 unsigned blocksize = 1 << inode->i_blkbits; 2359 unsigned zerofrom; 2360 int err; 2361 2362 err = cont_expand_zero(file, mapping, pos, bytes); 2363 if (err) 2364 return err; 2365 2366 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2367 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2368 *bytes |= (blocksize-1); 2369 (*bytes)++; 2370 } 2371 2372 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2373 } 2374 EXPORT_SYMBOL(cont_write_begin); 2375 2376 int block_commit_write(struct page *page, unsigned from, unsigned to) 2377 { 2378 struct inode *inode = page->mapping->host; 2379 __block_commit_write(inode,page,from,to); 2380 return 0; 2381 } 2382 EXPORT_SYMBOL(block_commit_write); 2383 2384 /* 2385 * block_page_mkwrite() is not allowed to change the file size as it gets 2386 * called from a page fault handler when a page is first dirtied. Hence we must 2387 * be careful to check for EOF conditions here. We set the page up correctly 2388 * for a written page which means we get ENOSPC checking when writing into 2389 * holes and correct delalloc and unwritten extent mapping on filesystems that 2390 * support these features. 2391 * 2392 * We are not allowed to take the i_mutex here so we have to play games to 2393 * protect against truncate races as the page could now be beyond EOF. Because 2394 * truncate writes the inode size before removing pages, once we have the 2395 * page lock we can determine safely if the page is beyond EOF. If it is not 2396 * beyond EOF, then the page is guaranteed safe against truncation until we 2397 * unlock the page. 2398 * 2399 * Direct callers of this function should protect against filesystem freezing 2400 * using sb_start_write() - sb_end_write() functions. 2401 */ 2402 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2403 get_block_t get_block) 2404 { 2405 struct page *page = vmf->page; 2406 struct inode *inode = file_inode(vma->vm_file); 2407 unsigned long end; 2408 loff_t size; 2409 int ret; 2410 2411 lock_page(page); 2412 size = i_size_read(inode); 2413 if ((page->mapping != inode->i_mapping) || 2414 (page_offset(page) > size)) { 2415 /* We overload EFAULT to mean page got truncated */ 2416 ret = -EFAULT; 2417 goto out_unlock; 2418 } 2419 2420 /* page is wholly or partially inside EOF */ 2421 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2422 end = size & ~PAGE_CACHE_MASK; 2423 else 2424 end = PAGE_CACHE_SIZE; 2425 2426 ret = __block_write_begin(page, 0, end, get_block); 2427 if (!ret) 2428 ret = block_commit_write(page, 0, end); 2429 2430 if (unlikely(ret < 0)) 2431 goto out_unlock; 2432 set_page_dirty(page); 2433 wait_for_stable_page(page); 2434 return 0; 2435 out_unlock: 2436 unlock_page(page); 2437 return ret; 2438 } 2439 EXPORT_SYMBOL(__block_page_mkwrite); 2440 2441 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2442 get_block_t get_block) 2443 { 2444 int ret; 2445 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 2446 2447 sb_start_pagefault(sb); 2448 2449 /* 2450 * Update file times before taking page lock. We may end up failing the 2451 * fault so this update may be superfluous but who really cares... 2452 */ 2453 file_update_time(vma->vm_file); 2454 2455 ret = __block_page_mkwrite(vma, vmf, get_block); 2456 sb_end_pagefault(sb); 2457 return block_page_mkwrite_return(ret); 2458 } 2459 EXPORT_SYMBOL(block_page_mkwrite); 2460 2461 /* 2462 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2463 * immediately, while under the page lock. So it needs a special end_io 2464 * handler which does not touch the bh after unlocking it. 2465 */ 2466 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2467 { 2468 __end_buffer_read_notouch(bh, uptodate); 2469 } 2470 2471 /* 2472 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2473 * the page (converting it to circular linked list and taking care of page 2474 * dirty races). 2475 */ 2476 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2477 { 2478 struct buffer_head *bh; 2479 2480 BUG_ON(!PageLocked(page)); 2481 2482 spin_lock(&page->mapping->private_lock); 2483 bh = head; 2484 do { 2485 if (PageDirty(page)) 2486 set_buffer_dirty(bh); 2487 if (!bh->b_this_page) 2488 bh->b_this_page = head; 2489 bh = bh->b_this_page; 2490 } while (bh != head); 2491 attach_page_buffers(page, head); 2492 spin_unlock(&page->mapping->private_lock); 2493 } 2494 2495 /* 2496 * On entry, the page is fully not uptodate. 2497 * On exit the page is fully uptodate in the areas outside (from,to) 2498 * The filesystem needs to handle block truncation upon failure. 2499 */ 2500 int nobh_write_begin(struct address_space *mapping, 2501 loff_t pos, unsigned len, unsigned flags, 2502 struct page **pagep, void **fsdata, 2503 get_block_t *get_block) 2504 { 2505 struct inode *inode = mapping->host; 2506 const unsigned blkbits = inode->i_blkbits; 2507 const unsigned blocksize = 1 << blkbits; 2508 struct buffer_head *head, *bh; 2509 struct page *page; 2510 pgoff_t index; 2511 unsigned from, to; 2512 unsigned block_in_page; 2513 unsigned block_start, block_end; 2514 sector_t block_in_file; 2515 int nr_reads = 0; 2516 int ret = 0; 2517 int is_mapped_to_disk = 1; 2518 2519 index = pos >> PAGE_CACHE_SHIFT; 2520 from = pos & (PAGE_CACHE_SIZE - 1); 2521 to = from + len; 2522 2523 page = grab_cache_page_write_begin(mapping, index, flags); 2524 if (!page) 2525 return -ENOMEM; 2526 *pagep = page; 2527 *fsdata = NULL; 2528 2529 if (page_has_buffers(page)) { 2530 ret = __block_write_begin(page, pos, len, get_block); 2531 if (unlikely(ret)) 2532 goto out_release; 2533 return ret; 2534 } 2535 2536 if (PageMappedToDisk(page)) 2537 return 0; 2538 2539 /* 2540 * Allocate buffers so that we can keep track of state, and potentially 2541 * attach them to the page if an error occurs. In the common case of 2542 * no error, they will just be freed again without ever being attached 2543 * to the page (which is all OK, because we're under the page lock). 2544 * 2545 * Be careful: the buffer linked list is a NULL terminated one, rather 2546 * than the circular one we're used to. 2547 */ 2548 head = alloc_page_buffers(page, blocksize, 0); 2549 if (!head) { 2550 ret = -ENOMEM; 2551 goto out_release; 2552 } 2553 2554 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2555 2556 /* 2557 * We loop across all blocks in the page, whether or not they are 2558 * part of the affected region. This is so we can discover if the 2559 * page is fully mapped-to-disk. 2560 */ 2561 for (block_start = 0, block_in_page = 0, bh = head; 2562 block_start < PAGE_CACHE_SIZE; 2563 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2564 int create; 2565 2566 block_end = block_start + blocksize; 2567 bh->b_state = 0; 2568 create = 1; 2569 if (block_start >= to) 2570 create = 0; 2571 ret = get_block(inode, block_in_file + block_in_page, 2572 bh, create); 2573 if (ret) 2574 goto failed; 2575 if (!buffer_mapped(bh)) 2576 is_mapped_to_disk = 0; 2577 if (buffer_new(bh)) 2578 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2579 if (PageUptodate(page)) { 2580 set_buffer_uptodate(bh); 2581 continue; 2582 } 2583 if (buffer_new(bh) || !buffer_mapped(bh)) { 2584 zero_user_segments(page, block_start, from, 2585 to, block_end); 2586 continue; 2587 } 2588 if (buffer_uptodate(bh)) 2589 continue; /* reiserfs does this */ 2590 if (block_start < from || block_end > to) { 2591 lock_buffer(bh); 2592 bh->b_end_io = end_buffer_read_nobh; 2593 submit_bh(READ, bh); 2594 nr_reads++; 2595 } 2596 } 2597 2598 if (nr_reads) { 2599 /* 2600 * The page is locked, so these buffers are protected from 2601 * any VM or truncate activity. Hence we don't need to care 2602 * for the buffer_head refcounts. 2603 */ 2604 for (bh = head; bh; bh = bh->b_this_page) { 2605 wait_on_buffer(bh); 2606 if (!buffer_uptodate(bh)) 2607 ret = -EIO; 2608 } 2609 if (ret) 2610 goto failed; 2611 } 2612 2613 if (is_mapped_to_disk) 2614 SetPageMappedToDisk(page); 2615 2616 *fsdata = head; /* to be released by nobh_write_end */ 2617 2618 return 0; 2619 2620 failed: 2621 BUG_ON(!ret); 2622 /* 2623 * Error recovery is a bit difficult. We need to zero out blocks that 2624 * were newly allocated, and dirty them to ensure they get written out. 2625 * Buffers need to be attached to the page at this point, otherwise 2626 * the handling of potential IO errors during writeout would be hard 2627 * (could try doing synchronous writeout, but what if that fails too?) 2628 */ 2629 attach_nobh_buffers(page, head); 2630 page_zero_new_buffers(page, from, to); 2631 2632 out_release: 2633 unlock_page(page); 2634 page_cache_release(page); 2635 *pagep = NULL; 2636 2637 return ret; 2638 } 2639 EXPORT_SYMBOL(nobh_write_begin); 2640 2641 int nobh_write_end(struct file *file, struct address_space *mapping, 2642 loff_t pos, unsigned len, unsigned copied, 2643 struct page *page, void *fsdata) 2644 { 2645 struct inode *inode = page->mapping->host; 2646 struct buffer_head *head = fsdata; 2647 struct buffer_head *bh; 2648 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2649 2650 if (unlikely(copied < len) && head) 2651 attach_nobh_buffers(page, head); 2652 if (page_has_buffers(page)) 2653 return generic_write_end(file, mapping, pos, len, 2654 copied, page, fsdata); 2655 2656 SetPageUptodate(page); 2657 set_page_dirty(page); 2658 if (pos+copied > inode->i_size) { 2659 i_size_write(inode, pos+copied); 2660 mark_inode_dirty(inode); 2661 } 2662 2663 unlock_page(page); 2664 page_cache_release(page); 2665 2666 while (head) { 2667 bh = head; 2668 head = head->b_this_page; 2669 free_buffer_head(bh); 2670 } 2671 2672 return copied; 2673 } 2674 EXPORT_SYMBOL(nobh_write_end); 2675 2676 /* 2677 * nobh_writepage() - based on block_full_write_page() except 2678 * that it tries to operate without attaching bufferheads to 2679 * the page. 2680 */ 2681 int nobh_writepage(struct page *page, get_block_t *get_block, 2682 struct writeback_control *wbc) 2683 { 2684 struct inode * const inode = page->mapping->host; 2685 loff_t i_size = i_size_read(inode); 2686 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2687 unsigned offset; 2688 int ret; 2689 2690 /* Is the page fully inside i_size? */ 2691 if (page->index < end_index) 2692 goto out; 2693 2694 /* Is the page fully outside i_size? (truncate in progress) */ 2695 offset = i_size & (PAGE_CACHE_SIZE-1); 2696 if (page->index >= end_index+1 || !offset) { 2697 /* 2698 * The page may have dirty, unmapped buffers. For example, 2699 * they may have been added in ext3_writepage(). Make them 2700 * freeable here, so the page does not leak. 2701 */ 2702 #if 0 2703 /* Not really sure about this - do we need this ? */ 2704 if (page->mapping->a_ops->invalidatepage) 2705 page->mapping->a_ops->invalidatepage(page, offset); 2706 #endif 2707 unlock_page(page); 2708 return 0; /* don't care */ 2709 } 2710 2711 /* 2712 * The page straddles i_size. It must be zeroed out on each and every 2713 * writepage invocation because it may be mmapped. "A file is mapped 2714 * in multiples of the page size. For a file that is not a multiple of 2715 * the page size, the remaining memory is zeroed when mapped, and 2716 * writes to that region are not written out to the file." 2717 */ 2718 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2719 out: 2720 ret = mpage_writepage(page, get_block, wbc); 2721 if (ret == -EAGAIN) 2722 ret = __block_write_full_page(inode, page, get_block, wbc, 2723 end_buffer_async_write); 2724 return ret; 2725 } 2726 EXPORT_SYMBOL(nobh_writepage); 2727 2728 int nobh_truncate_page(struct address_space *mapping, 2729 loff_t from, get_block_t *get_block) 2730 { 2731 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2732 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2733 unsigned blocksize; 2734 sector_t iblock; 2735 unsigned length, pos; 2736 struct inode *inode = mapping->host; 2737 struct page *page; 2738 struct buffer_head map_bh; 2739 int err; 2740 2741 blocksize = 1 << inode->i_blkbits; 2742 length = offset & (blocksize - 1); 2743 2744 /* Block boundary? Nothing to do */ 2745 if (!length) 2746 return 0; 2747 2748 length = blocksize - length; 2749 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2750 2751 page = grab_cache_page(mapping, index); 2752 err = -ENOMEM; 2753 if (!page) 2754 goto out; 2755 2756 if (page_has_buffers(page)) { 2757 has_buffers: 2758 unlock_page(page); 2759 page_cache_release(page); 2760 return block_truncate_page(mapping, from, get_block); 2761 } 2762 2763 /* Find the buffer that contains "offset" */ 2764 pos = blocksize; 2765 while (offset >= pos) { 2766 iblock++; 2767 pos += blocksize; 2768 } 2769 2770 map_bh.b_size = blocksize; 2771 map_bh.b_state = 0; 2772 err = get_block(inode, iblock, &map_bh, 0); 2773 if (err) 2774 goto unlock; 2775 /* unmapped? It's a hole - nothing to do */ 2776 if (!buffer_mapped(&map_bh)) 2777 goto unlock; 2778 2779 /* Ok, it's mapped. Make sure it's up-to-date */ 2780 if (!PageUptodate(page)) { 2781 err = mapping->a_ops->readpage(NULL, page); 2782 if (err) { 2783 page_cache_release(page); 2784 goto out; 2785 } 2786 lock_page(page); 2787 if (!PageUptodate(page)) { 2788 err = -EIO; 2789 goto unlock; 2790 } 2791 if (page_has_buffers(page)) 2792 goto has_buffers; 2793 } 2794 zero_user(page, offset, length); 2795 set_page_dirty(page); 2796 err = 0; 2797 2798 unlock: 2799 unlock_page(page); 2800 page_cache_release(page); 2801 out: 2802 return err; 2803 } 2804 EXPORT_SYMBOL(nobh_truncate_page); 2805 2806 int block_truncate_page(struct address_space *mapping, 2807 loff_t from, get_block_t *get_block) 2808 { 2809 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2810 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2811 unsigned blocksize; 2812 sector_t iblock; 2813 unsigned length, pos; 2814 struct inode *inode = mapping->host; 2815 struct page *page; 2816 struct buffer_head *bh; 2817 int err; 2818 2819 blocksize = 1 << inode->i_blkbits; 2820 length = offset & (blocksize - 1); 2821 2822 /* Block boundary? Nothing to do */ 2823 if (!length) 2824 return 0; 2825 2826 length = blocksize - length; 2827 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2828 2829 page = grab_cache_page(mapping, index); 2830 err = -ENOMEM; 2831 if (!page) 2832 goto out; 2833 2834 if (!page_has_buffers(page)) 2835 create_empty_buffers(page, blocksize, 0); 2836 2837 /* Find the buffer that contains "offset" */ 2838 bh = page_buffers(page); 2839 pos = blocksize; 2840 while (offset >= pos) { 2841 bh = bh->b_this_page; 2842 iblock++; 2843 pos += blocksize; 2844 } 2845 2846 err = 0; 2847 if (!buffer_mapped(bh)) { 2848 WARN_ON(bh->b_size != blocksize); 2849 err = get_block(inode, iblock, bh, 0); 2850 if (err) 2851 goto unlock; 2852 /* unmapped? It's a hole - nothing to do */ 2853 if (!buffer_mapped(bh)) 2854 goto unlock; 2855 } 2856 2857 /* Ok, it's mapped. Make sure it's up-to-date */ 2858 if (PageUptodate(page)) 2859 set_buffer_uptodate(bh); 2860 2861 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2862 err = -EIO; 2863 ll_rw_block(READ, 1, &bh); 2864 wait_on_buffer(bh); 2865 /* Uhhuh. Read error. Complain and punt. */ 2866 if (!buffer_uptodate(bh)) 2867 goto unlock; 2868 } 2869 2870 zero_user(page, offset, length); 2871 mark_buffer_dirty(bh); 2872 err = 0; 2873 2874 unlock: 2875 unlock_page(page); 2876 page_cache_release(page); 2877 out: 2878 return err; 2879 } 2880 EXPORT_SYMBOL(block_truncate_page); 2881 2882 /* 2883 * The generic ->writepage function for buffer-backed address_spaces 2884 */ 2885 int block_write_full_page(struct page *page, get_block_t *get_block, 2886 struct writeback_control *wbc) 2887 { 2888 struct inode * const inode = page->mapping->host; 2889 loff_t i_size = i_size_read(inode); 2890 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2891 unsigned offset; 2892 2893 /* Is the page fully inside i_size? */ 2894 if (page->index < end_index) 2895 return __block_write_full_page(inode, page, get_block, wbc, 2896 end_buffer_async_write); 2897 2898 /* Is the page fully outside i_size? (truncate in progress) */ 2899 offset = i_size & (PAGE_CACHE_SIZE-1); 2900 if (page->index >= end_index+1 || !offset) { 2901 /* 2902 * The page may have dirty, unmapped buffers. For example, 2903 * they may have been added in ext3_writepage(). Make them 2904 * freeable here, so the page does not leak. 2905 */ 2906 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 2907 unlock_page(page); 2908 return 0; /* don't care */ 2909 } 2910 2911 /* 2912 * The page straddles i_size. It must be zeroed out on each and every 2913 * writepage invocation because it may be mmapped. "A file is mapped 2914 * in multiples of the page size. For a file that is not a multiple of 2915 * the page size, the remaining memory is zeroed when mapped, and 2916 * writes to that region are not written out to the file." 2917 */ 2918 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2919 return __block_write_full_page(inode, page, get_block, wbc, 2920 end_buffer_async_write); 2921 } 2922 EXPORT_SYMBOL(block_write_full_page); 2923 2924 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2925 get_block_t *get_block) 2926 { 2927 struct buffer_head tmp; 2928 struct inode *inode = mapping->host; 2929 tmp.b_state = 0; 2930 tmp.b_blocknr = 0; 2931 tmp.b_size = 1 << inode->i_blkbits; 2932 get_block(inode, block, &tmp, 0); 2933 return tmp.b_blocknr; 2934 } 2935 EXPORT_SYMBOL(generic_block_bmap); 2936 2937 static void end_bio_bh_io_sync(struct bio *bio, int err) 2938 { 2939 struct buffer_head *bh = bio->bi_private; 2940 2941 if (err == -EOPNOTSUPP) { 2942 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2943 } 2944 2945 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2946 set_bit(BH_Quiet, &bh->b_state); 2947 2948 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2949 bio_put(bio); 2950 } 2951 2952 /* 2953 * This allows us to do IO even on the odd last sectors 2954 * of a device, even if the block size is some multiple 2955 * of the physical sector size. 2956 * 2957 * We'll just truncate the bio to the size of the device, 2958 * and clear the end of the buffer head manually. 2959 * 2960 * Truly out-of-range accesses will turn into actual IO 2961 * errors, this only handles the "we need to be able to 2962 * do IO at the final sector" case. 2963 */ 2964 void guard_bio_eod(int rw, struct bio *bio) 2965 { 2966 sector_t maxsector; 2967 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 2968 unsigned truncated_bytes; 2969 2970 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 2971 if (!maxsector) 2972 return; 2973 2974 /* 2975 * If the *whole* IO is past the end of the device, 2976 * let it through, and the IO layer will turn it into 2977 * an EIO. 2978 */ 2979 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 2980 return; 2981 2982 maxsector -= bio->bi_iter.bi_sector; 2983 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 2984 return; 2985 2986 /* Uhhuh. We've got a bio that straddles the device size! */ 2987 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 2988 2989 /* Truncate the bio.. */ 2990 bio->bi_iter.bi_size -= truncated_bytes; 2991 bvec->bv_len -= truncated_bytes; 2992 2993 /* ..and clear the end of the buffer for reads */ 2994 if ((rw & RW_MASK) == READ) { 2995 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 2996 truncated_bytes); 2997 } 2998 } 2999 3000 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags) 3001 { 3002 struct bio *bio; 3003 int ret = 0; 3004 3005 BUG_ON(!buffer_locked(bh)); 3006 BUG_ON(!buffer_mapped(bh)); 3007 BUG_ON(!bh->b_end_io); 3008 BUG_ON(buffer_delay(bh)); 3009 BUG_ON(buffer_unwritten(bh)); 3010 3011 /* 3012 * Only clear out a write error when rewriting 3013 */ 3014 if (test_set_buffer_req(bh) && (rw & WRITE)) 3015 clear_buffer_write_io_error(bh); 3016 3017 /* 3018 * from here on down, it's all bio -- do the initial mapping, 3019 * submit_bio -> generic_make_request may further map this bio around 3020 */ 3021 bio = bio_alloc(GFP_NOIO, 1); 3022 3023 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3024 bio->bi_bdev = bh->b_bdev; 3025 bio->bi_io_vec[0].bv_page = bh->b_page; 3026 bio->bi_io_vec[0].bv_len = bh->b_size; 3027 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 3028 3029 bio->bi_vcnt = 1; 3030 bio->bi_iter.bi_size = bh->b_size; 3031 3032 bio->bi_end_io = end_bio_bh_io_sync; 3033 bio->bi_private = bh; 3034 bio->bi_flags |= bio_flags; 3035 3036 /* Take care of bh's that straddle the end of the device */ 3037 guard_bio_eod(rw, bio); 3038 3039 if (buffer_meta(bh)) 3040 rw |= REQ_META; 3041 if (buffer_prio(bh)) 3042 rw |= REQ_PRIO; 3043 3044 bio_get(bio); 3045 submit_bio(rw, bio); 3046 3047 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 3048 ret = -EOPNOTSUPP; 3049 3050 bio_put(bio); 3051 return ret; 3052 } 3053 EXPORT_SYMBOL_GPL(_submit_bh); 3054 3055 int submit_bh(int rw, struct buffer_head *bh) 3056 { 3057 return _submit_bh(rw, bh, 0); 3058 } 3059 EXPORT_SYMBOL(submit_bh); 3060 3061 /** 3062 * ll_rw_block: low-level access to block devices (DEPRECATED) 3063 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 3064 * @nr: number of &struct buffer_heads in the array 3065 * @bhs: array of pointers to &struct buffer_head 3066 * 3067 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3068 * requests an I/O operation on them, either a %READ or a %WRITE. The third 3069 * %READA option is described in the documentation for generic_make_request() 3070 * which ll_rw_block() calls. 3071 * 3072 * This function drops any buffer that it cannot get a lock on (with the 3073 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3074 * request, and any buffer that appears to be up-to-date when doing read 3075 * request. Further it marks as clean buffers that are processed for 3076 * writing (the buffer cache won't assume that they are actually clean 3077 * until the buffer gets unlocked). 3078 * 3079 * ll_rw_block sets b_end_io to simple completion handler that marks 3080 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3081 * any waiters. 3082 * 3083 * All of the buffers must be for the same device, and must also be a 3084 * multiple of the current approved size for the device. 3085 */ 3086 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 3087 { 3088 int i; 3089 3090 for (i = 0; i < nr; i++) { 3091 struct buffer_head *bh = bhs[i]; 3092 3093 if (!trylock_buffer(bh)) 3094 continue; 3095 if (rw == WRITE) { 3096 if (test_clear_buffer_dirty(bh)) { 3097 bh->b_end_io = end_buffer_write_sync; 3098 get_bh(bh); 3099 submit_bh(WRITE, bh); 3100 continue; 3101 } 3102 } else { 3103 if (!buffer_uptodate(bh)) { 3104 bh->b_end_io = end_buffer_read_sync; 3105 get_bh(bh); 3106 submit_bh(rw, bh); 3107 continue; 3108 } 3109 } 3110 unlock_buffer(bh); 3111 } 3112 } 3113 EXPORT_SYMBOL(ll_rw_block); 3114 3115 void write_dirty_buffer(struct buffer_head *bh, int rw) 3116 { 3117 lock_buffer(bh); 3118 if (!test_clear_buffer_dirty(bh)) { 3119 unlock_buffer(bh); 3120 return; 3121 } 3122 bh->b_end_io = end_buffer_write_sync; 3123 get_bh(bh); 3124 submit_bh(rw, bh); 3125 } 3126 EXPORT_SYMBOL(write_dirty_buffer); 3127 3128 /* 3129 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3130 * and then start new I/O and then wait upon it. The caller must have a ref on 3131 * the buffer_head. 3132 */ 3133 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3134 { 3135 int ret = 0; 3136 3137 WARN_ON(atomic_read(&bh->b_count) < 1); 3138 lock_buffer(bh); 3139 if (test_clear_buffer_dirty(bh)) { 3140 get_bh(bh); 3141 bh->b_end_io = end_buffer_write_sync; 3142 ret = submit_bh(rw, bh); 3143 wait_on_buffer(bh); 3144 if (!ret && !buffer_uptodate(bh)) 3145 ret = -EIO; 3146 } else { 3147 unlock_buffer(bh); 3148 } 3149 return ret; 3150 } 3151 EXPORT_SYMBOL(__sync_dirty_buffer); 3152 3153 int sync_dirty_buffer(struct buffer_head *bh) 3154 { 3155 return __sync_dirty_buffer(bh, WRITE_SYNC); 3156 } 3157 EXPORT_SYMBOL(sync_dirty_buffer); 3158 3159 /* 3160 * try_to_free_buffers() checks if all the buffers on this particular page 3161 * are unused, and releases them if so. 3162 * 3163 * Exclusion against try_to_free_buffers may be obtained by either 3164 * locking the page or by holding its mapping's private_lock. 3165 * 3166 * If the page is dirty but all the buffers are clean then we need to 3167 * be sure to mark the page clean as well. This is because the page 3168 * may be against a block device, and a later reattachment of buffers 3169 * to a dirty page will set *all* buffers dirty. Which would corrupt 3170 * filesystem data on the same device. 3171 * 3172 * The same applies to regular filesystem pages: if all the buffers are 3173 * clean then we set the page clean and proceed. To do that, we require 3174 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3175 * private_lock. 3176 * 3177 * try_to_free_buffers() is non-blocking. 3178 */ 3179 static inline int buffer_busy(struct buffer_head *bh) 3180 { 3181 return atomic_read(&bh->b_count) | 3182 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3183 } 3184 3185 static int 3186 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3187 { 3188 struct buffer_head *head = page_buffers(page); 3189 struct buffer_head *bh; 3190 3191 bh = head; 3192 do { 3193 if (buffer_write_io_error(bh) && page->mapping) 3194 set_bit(AS_EIO, &page->mapping->flags); 3195 if (buffer_busy(bh)) 3196 goto failed; 3197 bh = bh->b_this_page; 3198 } while (bh != head); 3199 3200 do { 3201 struct buffer_head *next = bh->b_this_page; 3202 3203 if (bh->b_assoc_map) 3204 __remove_assoc_queue(bh); 3205 bh = next; 3206 } while (bh != head); 3207 *buffers_to_free = head; 3208 __clear_page_buffers(page); 3209 return 1; 3210 failed: 3211 return 0; 3212 } 3213 3214 int try_to_free_buffers(struct page *page) 3215 { 3216 struct address_space * const mapping = page->mapping; 3217 struct buffer_head *buffers_to_free = NULL; 3218 int ret = 0; 3219 3220 BUG_ON(!PageLocked(page)); 3221 if (PageWriteback(page)) 3222 return 0; 3223 3224 if (mapping == NULL) { /* can this still happen? */ 3225 ret = drop_buffers(page, &buffers_to_free); 3226 goto out; 3227 } 3228 3229 spin_lock(&mapping->private_lock); 3230 ret = drop_buffers(page, &buffers_to_free); 3231 3232 /* 3233 * If the filesystem writes its buffers by hand (eg ext3) 3234 * then we can have clean buffers against a dirty page. We 3235 * clean the page here; otherwise the VM will never notice 3236 * that the filesystem did any IO at all. 3237 * 3238 * Also, during truncate, discard_buffer will have marked all 3239 * the page's buffers clean. We discover that here and clean 3240 * the page also. 3241 * 3242 * private_lock must be held over this entire operation in order 3243 * to synchronise against __set_page_dirty_buffers and prevent the 3244 * dirty bit from being lost. 3245 */ 3246 if (ret) 3247 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3248 spin_unlock(&mapping->private_lock); 3249 out: 3250 if (buffers_to_free) { 3251 struct buffer_head *bh = buffers_to_free; 3252 3253 do { 3254 struct buffer_head *next = bh->b_this_page; 3255 free_buffer_head(bh); 3256 bh = next; 3257 } while (bh != buffers_to_free); 3258 } 3259 return ret; 3260 } 3261 EXPORT_SYMBOL(try_to_free_buffers); 3262 3263 /* 3264 * There are no bdflush tunables left. But distributions are 3265 * still running obsolete flush daemons, so we terminate them here. 3266 * 3267 * Use of bdflush() is deprecated and will be removed in a future kernel. 3268 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3269 */ 3270 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3271 { 3272 static int msg_count; 3273 3274 if (!capable(CAP_SYS_ADMIN)) 3275 return -EPERM; 3276 3277 if (msg_count < 5) { 3278 msg_count++; 3279 printk(KERN_INFO 3280 "warning: process `%s' used the obsolete bdflush" 3281 " system call\n", current->comm); 3282 printk(KERN_INFO "Fix your initscripts?\n"); 3283 } 3284 3285 if (func == 1) 3286 do_exit(0); 3287 return 0; 3288 } 3289 3290 /* 3291 * Buffer-head allocation 3292 */ 3293 static struct kmem_cache *bh_cachep __read_mostly; 3294 3295 /* 3296 * Once the number of bh's in the machine exceeds this level, we start 3297 * stripping them in writeback. 3298 */ 3299 static unsigned long max_buffer_heads; 3300 3301 int buffer_heads_over_limit; 3302 3303 struct bh_accounting { 3304 int nr; /* Number of live bh's */ 3305 int ratelimit; /* Limit cacheline bouncing */ 3306 }; 3307 3308 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3309 3310 static void recalc_bh_state(void) 3311 { 3312 int i; 3313 int tot = 0; 3314 3315 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3316 return; 3317 __this_cpu_write(bh_accounting.ratelimit, 0); 3318 for_each_online_cpu(i) 3319 tot += per_cpu(bh_accounting, i).nr; 3320 buffer_heads_over_limit = (tot > max_buffer_heads); 3321 } 3322 3323 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3324 { 3325 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3326 if (ret) { 3327 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3328 preempt_disable(); 3329 __this_cpu_inc(bh_accounting.nr); 3330 recalc_bh_state(); 3331 preempt_enable(); 3332 } 3333 return ret; 3334 } 3335 EXPORT_SYMBOL(alloc_buffer_head); 3336 3337 void free_buffer_head(struct buffer_head *bh) 3338 { 3339 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3340 kmem_cache_free(bh_cachep, bh); 3341 preempt_disable(); 3342 __this_cpu_dec(bh_accounting.nr); 3343 recalc_bh_state(); 3344 preempt_enable(); 3345 } 3346 EXPORT_SYMBOL(free_buffer_head); 3347 3348 static void buffer_exit_cpu(int cpu) 3349 { 3350 int i; 3351 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3352 3353 for (i = 0; i < BH_LRU_SIZE; i++) { 3354 brelse(b->bhs[i]); 3355 b->bhs[i] = NULL; 3356 } 3357 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3358 per_cpu(bh_accounting, cpu).nr = 0; 3359 } 3360 3361 static int buffer_cpu_notify(struct notifier_block *self, 3362 unsigned long action, void *hcpu) 3363 { 3364 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3365 buffer_exit_cpu((unsigned long)hcpu); 3366 return NOTIFY_OK; 3367 } 3368 3369 /** 3370 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3371 * @bh: struct buffer_head 3372 * 3373 * Return true if the buffer is up-to-date and false, 3374 * with the buffer locked, if not. 3375 */ 3376 int bh_uptodate_or_lock(struct buffer_head *bh) 3377 { 3378 if (!buffer_uptodate(bh)) { 3379 lock_buffer(bh); 3380 if (!buffer_uptodate(bh)) 3381 return 0; 3382 unlock_buffer(bh); 3383 } 3384 return 1; 3385 } 3386 EXPORT_SYMBOL(bh_uptodate_or_lock); 3387 3388 /** 3389 * bh_submit_read - Submit a locked buffer for reading 3390 * @bh: struct buffer_head 3391 * 3392 * Returns zero on success and -EIO on error. 3393 */ 3394 int bh_submit_read(struct buffer_head *bh) 3395 { 3396 BUG_ON(!buffer_locked(bh)); 3397 3398 if (buffer_uptodate(bh)) { 3399 unlock_buffer(bh); 3400 return 0; 3401 } 3402 3403 get_bh(bh); 3404 bh->b_end_io = end_buffer_read_sync; 3405 submit_bh(READ, bh); 3406 wait_on_buffer(bh); 3407 if (buffer_uptodate(bh)) 3408 return 0; 3409 return -EIO; 3410 } 3411 EXPORT_SYMBOL(bh_submit_read); 3412 3413 void __init buffer_init(void) 3414 { 3415 unsigned long nrpages; 3416 3417 bh_cachep = kmem_cache_create("buffer_head", 3418 sizeof(struct buffer_head), 0, 3419 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3420 SLAB_MEM_SPREAD), 3421 NULL); 3422 3423 /* 3424 * Limit the bh occupancy to 10% of ZONE_NORMAL 3425 */ 3426 nrpages = (nr_free_buffer_pages() * 10) / 100; 3427 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3428 hotcpu_notifier(buffer_cpu_notify, 0); 3429 } 3430