1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 #include <linux/sched/isolation.h> 53 54 #include "internal.h" 55 56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 58 enum rw_hint hint, struct writeback_control *wbc); 59 60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 61 62 inline void touch_buffer(struct buffer_head *bh) 63 { 64 trace_block_touch_buffer(bh); 65 folio_mark_accessed(bh->b_folio); 66 } 67 EXPORT_SYMBOL(touch_buffer); 68 69 void __lock_buffer(struct buffer_head *bh) 70 { 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 72 } 73 EXPORT_SYMBOL(__lock_buffer); 74 75 void unlock_buffer(struct buffer_head *bh) 76 { 77 clear_bit_unlock(BH_Lock, &bh->b_state); 78 smp_mb__after_atomic(); 79 wake_up_bit(&bh->b_state, BH_Lock); 80 } 81 EXPORT_SYMBOL(unlock_buffer); 82 83 /* 84 * Returns if the folio has dirty or writeback buffers. If all the buffers 85 * are unlocked and clean then the folio_test_dirty information is stale. If 86 * any of the buffers are locked, it is assumed they are locked for IO. 87 */ 88 void buffer_check_dirty_writeback(struct folio *folio, 89 bool *dirty, bool *writeback) 90 { 91 struct buffer_head *head, *bh; 92 *dirty = false; 93 *writeback = false; 94 95 BUG_ON(!folio_test_locked(folio)); 96 97 head = folio_buffers(folio); 98 if (!head) 99 return; 100 101 if (folio_test_writeback(folio)) 102 *writeback = true; 103 104 bh = head; 105 do { 106 if (buffer_locked(bh)) 107 *writeback = true; 108 109 if (buffer_dirty(bh)) 110 *dirty = true; 111 112 bh = bh->b_this_page; 113 } while (bh != head); 114 } 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 __end_buffer_read_notouch(bh, uptodate); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 /* 180 * Various filesystems appear to want __find_get_block to be non-blocking. 181 * But it's the page lock which protects the buffers. To get around this, 182 * we get exclusion from try_to_free_buffers with the blockdev mapping's 183 * i_private_lock. 184 * 185 * Hack idea: for the blockdev mapping, i_private_lock contention 186 * may be quite high. This code could TryLock the page, and if that 187 * succeeds, there is no need to take i_private_lock. 188 */ 189 static struct buffer_head * 190 __find_get_block_slow(struct block_device *bdev, sector_t block) 191 { 192 struct address_space *bd_mapping = bdev->bd_mapping; 193 const int blkbits = bd_mapping->host->i_blkbits; 194 struct buffer_head *ret = NULL; 195 pgoff_t index; 196 struct buffer_head *bh; 197 struct buffer_head *head; 198 struct folio *folio; 199 int all_mapped = 1; 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 201 202 index = ((loff_t)block << blkbits) / PAGE_SIZE; 203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); 204 if (IS_ERR(folio)) 205 goto out; 206 207 spin_lock(&bd_mapping->i_private_lock); 208 head = folio_buffers(folio); 209 if (!head) 210 goto out_unlock; 211 bh = head; 212 do { 213 if (!buffer_mapped(bh)) 214 all_mapped = 0; 215 else if (bh->b_blocknr == block) { 216 ret = bh; 217 get_bh(bh); 218 goto out_unlock; 219 } 220 bh = bh->b_this_page; 221 } while (bh != head); 222 223 /* we might be here because some of the buffers on this page are 224 * not mapped. This is due to various races between 225 * file io on the block device and getblk. It gets dealt with 226 * elsewhere, don't buffer_error if we had some unmapped buffers 227 */ 228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 229 if (all_mapped && __ratelimit(&last_warned)) { 230 printk("__find_get_block_slow() failed. block=%llu, " 231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 232 "device %pg blocksize: %d\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr, 235 bh->b_state, bh->b_size, bdev, 236 1 << blkbits); 237 } 238 out_unlock: 239 spin_unlock(&bd_mapping->i_private_lock); 240 folio_put(folio); 241 out: 242 return ret; 243 } 244 245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 246 { 247 unsigned long flags; 248 struct buffer_head *first; 249 struct buffer_head *tmp; 250 struct folio *folio; 251 int folio_uptodate = 1; 252 253 BUG_ON(!buffer_async_read(bh)); 254 255 folio = bh->b_folio; 256 if (uptodate) { 257 set_buffer_uptodate(bh); 258 } else { 259 clear_buffer_uptodate(bh); 260 buffer_io_error(bh, ", async page read"); 261 folio_set_error(folio); 262 } 263 264 /* 265 * Be _very_ careful from here on. Bad things can happen if 266 * two buffer heads end IO at almost the same time and both 267 * decide that the page is now completely done. 268 */ 269 first = folio_buffers(folio); 270 spin_lock_irqsave(&first->b_uptodate_lock, flags); 271 clear_buffer_async_read(bh); 272 unlock_buffer(bh); 273 tmp = bh; 274 do { 275 if (!buffer_uptodate(tmp)) 276 folio_uptodate = 0; 277 if (buffer_async_read(tmp)) { 278 BUG_ON(!buffer_locked(tmp)); 279 goto still_busy; 280 } 281 tmp = tmp->b_this_page; 282 } while (tmp != bh); 283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 284 285 folio_end_read(folio, folio_uptodate); 286 return; 287 288 still_busy: 289 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 290 return; 291 } 292 293 struct postprocess_bh_ctx { 294 struct work_struct work; 295 struct buffer_head *bh; 296 }; 297 298 static void verify_bh(struct work_struct *work) 299 { 300 struct postprocess_bh_ctx *ctx = 301 container_of(work, struct postprocess_bh_ctx, work); 302 struct buffer_head *bh = ctx->bh; 303 bool valid; 304 305 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 306 end_buffer_async_read(bh, valid); 307 kfree(ctx); 308 } 309 310 static bool need_fsverity(struct buffer_head *bh) 311 { 312 struct folio *folio = bh->b_folio; 313 struct inode *inode = folio->mapping->host; 314 315 return fsverity_active(inode) && 316 /* needed by ext4 */ 317 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 318 } 319 320 static void decrypt_bh(struct work_struct *work) 321 { 322 struct postprocess_bh_ctx *ctx = 323 container_of(work, struct postprocess_bh_ctx, work); 324 struct buffer_head *bh = ctx->bh; 325 int err; 326 327 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 328 bh_offset(bh)); 329 if (err == 0 && need_fsverity(bh)) { 330 /* 331 * We use different work queues for decryption and for verity 332 * because verity may require reading metadata pages that need 333 * decryption, and we shouldn't recurse to the same workqueue. 334 */ 335 INIT_WORK(&ctx->work, verify_bh); 336 fsverity_enqueue_verify_work(&ctx->work); 337 return; 338 } 339 end_buffer_async_read(bh, err == 0); 340 kfree(ctx); 341 } 342 343 /* 344 * I/O completion handler for block_read_full_folio() - pages 345 * which come unlocked at the end of I/O. 346 */ 347 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 348 { 349 struct inode *inode = bh->b_folio->mapping->host; 350 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 351 bool verify = need_fsverity(bh); 352 353 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 354 if (uptodate && (decrypt || verify)) { 355 struct postprocess_bh_ctx *ctx = 356 kmalloc(sizeof(*ctx), GFP_ATOMIC); 357 358 if (ctx) { 359 ctx->bh = bh; 360 if (decrypt) { 361 INIT_WORK(&ctx->work, decrypt_bh); 362 fscrypt_enqueue_decrypt_work(&ctx->work); 363 } else { 364 INIT_WORK(&ctx->work, verify_bh); 365 fsverity_enqueue_verify_work(&ctx->work); 366 } 367 return; 368 } 369 uptodate = 0; 370 } 371 end_buffer_async_read(bh, uptodate); 372 } 373 374 /* 375 * Completion handler for block_write_full_folio() - folios which are unlocked 376 * during I/O, and which have the writeback flag cleared upon I/O completion. 377 */ 378 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 379 { 380 unsigned long flags; 381 struct buffer_head *first; 382 struct buffer_head *tmp; 383 struct folio *folio; 384 385 BUG_ON(!buffer_async_write(bh)); 386 387 folio = bh->b_folio; 388 if (uptodate) { 389 set_buffer_uptodate(bh); 390 } else { 391 buffer_io_error(bh, ", lost async page write"); 392 mark_buffer_write_io_error(bh); 393 clear_buffer_uptodate(bh); 394 folio_set_error(folio); 395 } 396 397 first = folio_buffers(folio); 398 spin_lock_irqsave(&first->b_uptodate_lock, flags); 399 400 clear_buffer_async_write(bh); 401 unlock_buffer(bh); 402 tmp = bh->b_this_page; 403 while (tmp != bh) { 404 if (buffer_async_write(tmp)) { 405 BUG_ON(!buffer_locked(tmp)); 406 goto still_busy; 407 } 408 tmp = tmp->b_this_page; 409 } 410 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 411 folio_end_writeback(folio); 412 return; 413 414 still_busy: 415 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 416 return; 417 } 418 419 /* 420 * If a page's buffers are under async readin (end_buffer_async_read 421 * completion) then there is a possibility that another thread of 422 * control could lock one of the buffers after it has completed 423 * but while some of the other buffers have not completed. This 424 * locked buffer would confuse end_buffer_async_read() into not unlocking 425 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 426 * that this buffer is not under async I/O. 427 * 428 * The page comes unlocked when it has no locked buffer_async buffers 429 * left. 430 * 431 * PageLocked prevents anyone starting new async I/O reads any of 432 * the buffers. 433 * 434 * PageWriteback is used to prevent simultaneous writeout of the same 435 * page. 436 * 437 * PageLocked prevents anyone from starting writeback of a page which is 438 * under read I/O (PageWriteback is only ever set against a locked page). 439 */ 440 static void mark_buffer_async_read(struct buffer_head *bh) 441 { 442 bh->b_end_io = end_buffer_async_read_io; 443 set_buffer_async_read(bh); 444 } 445 446 static void mark_buffer_async_write_endio(struct buffer_head *bh, 447 bh_end_io_t *handler) 448 { 449 bh->b_end_io = handler; 450 set_buffer_async_write(bh); 451 } 452 453 void mark_buffer_async_write(struct buffer_head *bh) 454 { 455 mark_buffer_async_write_endio(bh, end_buffer_async_write); 456 } 457 EXPORT_SYMBOL(mark_buffer_async_write); 458 459 460 /* 461 * fs/buffer.c contains helper functions for buffer-backed address space's 462 * fsync functions. A common requirement for buffer-based filesystems is 463 * that certain data from the backing blockdev needs to be written out for 464 * a successful fsync(). For example, ext2 indirect blocks need to be 465 * written back and waited upon before fsync() returns. 466 * 467 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(), 468 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 469 * management of a list of dependent buffers at ->i_mapping->i_private_list. 470 * 471 * Locking is a little subtle: try_to_free_buffers() will remove buffers 472 * from their controlling inode's queue when they are being freed. But 473 * try_to_free_buffers() will be operating against the *blockdev* mapping 474 * at the time, not against the S_ISREG file which depends on those buffers. 475 * So the locking for i_private_list is via the i_private_lock in the address_space 476 * which backs the buffers. Which is different from the address_space 477 * against which the buffers are listed. So for a particular address_space, 478 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact, 479 * mapping->i_private_list will always be protected by the backing blockdev's 480 * ->i_private_lock. 481 * 482 * Which introduces a requirement: all buffers on an address_space's 483 * ->i_private_list must be from the same address_space: the blockdev's. 484 * 485 * address_spaces which do not place buffers at ->i_private_list via these 486 * utility functions are free to use i_private_lock and i_private_list for 487 * whatever they want. The only requirement is that list_empty(i_private_list) 488 * be true at clear_inode() time. 489 * 490 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 491 * filesystems should do that. invalidate_inode_buffers() should just go 492 * BUG_ON(!list_empty). 493 * 494 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 495 * take an address_space, not an inode. And it should be called 496 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 497 * queued up. 498 * 499 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 500 * list if it is already on a list. Because if the buffer is on a list, 501 * it *must* already be on the right one. If not, the filesystem is being 502 * silly. This will save a ton of locking. But first we have to ensure 503 * that buffers are taken *off* the old inode's list when they are freed 504 * (presumably in truncate). That requires careful auditing of all 505 * filesystems (do it inside bforget()). It could also be done by bringing 506 * b_inode back. 507 */ 508 509 /* 510 * The buffer's backing address_space's i_private_lock must be held 511 */ 512 static void __remove_assoc_queue(struct buffer_head *bh) 513 { 514 list_del_init(&bh->b_assoc_buffers); 515 WARN_ON(!bh->b_assoc_map); 516 bh->b_assoc_map = NULL; 517 } 518 519 int inode_has_buffers(struct inode *inode) 520 { 521 return !list_empty(&inode->i_data.i_private_list); 522 } 523 524 /* 525 * osync is designed to support O_SYNC io. It waits synchronously for 526 * all already-submitted IO to complete, but does not queue any new 527 * writes to the disk. 528 * 529 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 530 * as you dirty the buffers, and then use osync_inode_buffers to wait for 531 * completion. Any other dirty buffers which are not yet queued for 532 * write will not be flushed to disk by the osync. 533 */ 534 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 535 { 536 struct buffer_head *bh; 537 struct list_head *p; 538 int err = 0; 539 540 spin_lock(lock); 541 repeat: 542 list_for_each_prev(p, list) { 543 bh = BH_ENTRY(p); 544 if (buffer_locked(bh)) { 545 get_bh(bh); 546 spin_unlock(lock); 547 wait_on_buffer(bh); 548 if (!buffer_uptodate(bh)) 549 err = -EIO; 550 brelse(bh); 551 spin_lock(lock); 552 goto repeat; 553 } 554 } 555 spin_unlock(lock); 556 return err; 557 } 558 559 /** 560 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 561 * @mapping: the mapping which wants those buffers written 562 * 563 * Starts I/O against the buffers at mapping->i_private_list, and waits upon 564 * that I/O. 565 * 566 * Basically, this is a convenience function for fsync(). 567 * @mapping is a file or directory which needs those buffers to be written for 568 * a successful fsync(). 569 */ 570 int sync_mapping_buffers(struct address_space *mapping) 571 { 572 struct address_space *buffer_mapping = mapping->i_private_data; 573 574 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list)) 575 return 0; 576 577 return fsync_buffers_list(&buffer_mapping->i_private_lock, 578 &mapping->i_private_list); 579 } 580 EXPORT_SYMBOL(sync_mapping_buffers); 581 582 /** 583 * generic_buffers_fsync_noflush - generic buffer fsync implementation 584 * for simple filesystems with no inode lock 585 * 586 * @file: file to synchronize 587 * @start: start offset in bytes 588 * @end: end offset in bytes (inclusive) 589 * @datasync: only synchronize essential metadata if true 590 * 591 * This is a generic implementation of the fsync method for simple 592 * filesystems which track all non-inode metadata in the buffers list 593 * hanging off the address_space structure. 594 */ 595 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, 596 bool datasync) 597 { 598 struct inode *inode = file->f_mapping->host; 599 int err; 600 int ret; 601 602 err = file_write_and_wait_range(file, start, end); 603 if (err) 604 return err; 605 606 ret = sync_mapping_buffers(inode->i_mapping); 607 if (!(inode->i_state & I_DIRTY_ALL)) 608 goto out; 609 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 610 goto out; 611 612 err = sync_inode_metadata(inode, 1); 613 if (ret == 0) 614 ret = err; 615 616 out: 617 /* check and advance again to catch errors after syncing out buffers */ 618 err = file_check_and_advance_wb_err(file); 619 if (ret == 0) 620 ret = err; 621 return ret; 622 } 623 EXPORT_SYMBOL(generic_buffers_fsync_noflush); 624 625 /** 626 * generic_buffers_fsync - generic buffer fsync implementation 627 * for simple filesystems with no inode lock 628 * 629 * @file: file to synchronize 630 * @start: start offset in bytes 631 * @end: end offset in bytes (inclusive) 632 * @datasync: only synchronize essential metadata if true 633 * 634 * This is a generic implementation of the fsync method for simple 635 * filesystems which track all non-inode metadata in the buffers list 636 * hanging off the address_space structure. This also makes sure that 637 * a device cache flush operation is called at the end. 638 */ 639 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, 640 bool datasync) 641 { 642 struct inode *inode = file->f_mapping->host; 643 int ret; 644 645 ret = generic_buffers_fsync_noflush(file, start, end, datasync); 646 if (!ret) 647 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 648 return ret; 649 } 650 EXPORT_SYMBOL(generic_buffers_fsync); 651 652 /* 653 * Called when we've recently written block `bblock', and it is known that 654 * `bblock' was for a buffer_boundary() buffer. This means that the block at 655 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 656 * dirty, schedule it for IO. So that indirects merge nicely with their data. 657 */ 658 void write_boundary_block(struct block_device *bdev, 659 sector_t bblock, unsigned blocksize) 660 { 661 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 662 if (bh) { 663 if (buffer_dirty(bh)) 664 write_dirty_buffer(bh, 0); 665 put_bh(bh); 666 } 667 } 668 669 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 670 { 671 struct address_space *mapping = inode->i_mapping; 672 struct address_space *buffer_mapping = bh->b_folio->mapping; 673 674 mark_buffer_dirty(bh); 675 if (!mapping->i_private_data) { 676 mapping->i_private_data = buffer_mapping; 677 } else { 678 BUG_ON(mapping->i_private_data != buffer_mapping); 679 } 680 if (!bh->b_assoc_map) { 681 spin_lock(&buffer_mapping->i_private_lock); 682 list_move_tail(&bh->b_assoc_buffers, 683 &mapping->i_private_list); 684 bh->b_assoc_map = mapping; 685 spin_unlock(&buffer_mapping->i_private_lock); 686 } 687 } 688 EXPORT_SYMBOL(mark_buffer_dirty_inode); 689 690 /** 691 * block_dirty_folio - Mark a folio as dirty. 692 * @mapping: The address space containing this folio. 693 * @folio: The folio to mark dirty. 694 * 695 * Filesystems which use buffer_heads can use this function as their 696 * ->dirty_folio implementation. Some filesystems need to do a little 697 * work before calling this function. Filesystems which do not use 698 * buffer_heads should call filemap_dirty_folio() instead. 699 * 700 * If the folio has buffers, the uptodate buffers are set dirty, to 701 * preserve dirty-state coherency between the folio and the buffers. 702 * Buffers added to a dirty folio are created dirty. 703 * 704 * The buffers are dirtied before the folio is dirtied. There's a small 705 * race window in which writeback may see the folio cleanness but not the 706 * buffer dirtiness. That's fine. If this code were to set the folio 707 * dirty before the buffers, writeback could clear the folio dirty flag, 708 * see a bunch of clean buffers and we'd end up with dirty buffers/clean 709 * folio on the dirty folio list. 710 * 711 * We use i_private_lock to lock against try_to_free_buffers() while 712 * using the folio's buffer list. This also prevents clean buffers 713 * being added to the folio after it was set dirty. 714 * 715 * Context: May only be called from process context. Does not sleep. 716 * Caller must ensure that @folio cannot be truncated during this call, 717 * typically by holding the folio lock or having a page in the folio 718 * mapped and holding the page table lock. 719 * 720 * Return: True if the folio was dirtied; false if it was already dirtied. 721 */ 722 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 723 { 724 struct buffer_head *head; 725 bool newly_dirty; 726 727 spin_lock(&mapping->i_private_lock); 728 head = folio_buffers(folio); 729 if (head) { 730 struct buffer_head *bh = head; 731 732 do { 733 set_buffer_dirty(bh); 734 bh = bh->b_this_page; 735 } while (bh != head); 736 } 737 /* 738 * Lock out page's memcg migration to keep PageDirty 739 * synchronized with per-memcg dirty page counters. 740 */ 741 folio_memcg_lock(folio); 742 newly_dirty = !folio_test_set_dirty(folio); 743 spin_unlock(&mapping->i_private_lock); 744 745 if (newly_dirty) 746 __folio_mark_dirty(folio, mapping, 1); 747 748 folio_memcg_unlock(folio); 749 750 if (newly_dirty) 751 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 752 753 return newly_dirty; 754 } 755 EXPORT_SYMBOL(block_dirty_folio); 756 757 /* 758 * Write out and wait upon a list of buffers. 759 * 760 * We have conflicting pressures: we want to make sure that all 761 * initially dirty buffers get waited on, but that any subsequently 762 * dirtied buffers don't. After all, we don't want fsync to last 763 * forever if somebody is actively writing to the file. 764 * 765 * Do this in two main stages: first we copy dirty buffers to a 766 * temporary inode list, queueing the writes as we go. Then we clean 767 * up, waiting for those writes to complete. 768 * 769 * During this second stage, any subsequent updates to the file may end 770 * up refiling the buffer on the original inode's dirty list again, so 771 * there is a chance we will end up with a buffer queued for write but 772 * not yet completed on that list. So, as a final cleanup we go through 773 * the osync code to catch these locked, dirty buffers without requeuing 774 * any newly dirty buffers for write. 775 */ 776 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 777 { 778 struct buffer_head *bh; 779 struct list_head tmp; 780 struct address_space *mapping; 781 int err = 0, err2; 782 struct blk_plug plug; 783 784 INIT_LIST_HEAD(&tmp); 785 blk_start_plug(&plug); 786 787 spin_lock(lock); 788 while (!list_empty(list)) { 789 bh = BH_ENTRY(list->next); 790 mapping = bh->b_assoc_map; 791 __remove_assoc_queue(bh); 792 /* Avoid race with mark_buffer_dirty_inode() which does 793 * a lockless check and we rely on seeing the dirty bit */ 794 smp_mb(); 795 if (buffer_dirty(bh) || buffer_locked(bh)) { 796 list_add(&bh->b_assoc_buffers, &tmp); 797 bh->b_assoc_map = mapping; 798 if (buffer_dirty(bh)) { 799 get_bh(bh); 800 spin_unlock(lock); 801 /* 802 * Ensure any pending I/O completes so that 803 * write_dirty_buffer() actually writes the 804 * current contents - it is a noop if I/O is 805 * still in flight on potentially older 806 * contents. 807 */ 808 write_dirty_buffer(bh, REQ_SYNC); 809 810 /* 811 * Kick off IO for the previous mapping. Note 812 * that we will not run the very last mapping, 813 * wait_on_buffer() will do that for us 814 * through sync_buffer(). 815 */ 816 brelse(bh); 817 spin_lock(lock); 818 } 819 } 820 } 821 822 spin_unlock(lock); 823 blk_finish_plug(&plug); 824 spin_lock(lock); 825 826 while (!list_empty(&tmp)) { 827 bh = BH_ENTRY(tmp.prev); 828 get_bh(bh); 829 mapping = bh->b_assoc_map; 830 __remove_assoc_queue(bh); 831 /* Avoid race with mark_buffer_dirty_inode() which does 832 * a lockless check and we rely on seeing the dirty bit */ 833 smp_mb(); 834 if (buffer_dirty(bh)) { 835 list_add(&bh->b_assoc_buffers, 836 &mapping->i_private_list); 837 bh->b_assoc_map = mapping; 838 } 839 spin_unlock(lock); 840 wait_on_buffer(bh); 841 if (!buffer_uptodate(bh)) 842 err = -EIO; 843 brelse(bh); 844 spin_lock(lock); 845 } 846 847 spin_unlock(lock); 848 err2 = osync_buffers_list(lock, list); 849 if (err) 850 return err; 851 else 852 return err2; 853 } 854 855 /* 856 * Invalidate any and all dirty buffers on a given inode. We are 857 * probably unmounting the fs, but that doesn't mean we have already 858 * done a sync(). Just drop the buffers from the inode list. 859 * 860 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which 861 * assumes that all the buffers are against the blockdev. Not true 862 * for reiserfs. 863 */ 864 void invalidate_inode_buffers(struct inode *inode) 865 { 866 if (inode_has_buffers(inode)) { 867 struct address_space *mapping = &inode->i_data; 868 struct list_head *list = &mapping->i_private_list; 869 struct address_space *buffer_mapping = mapping->i_private_data; 870 871 spin_lock(&buffer_mapping->i_private_lock); 872 while (!list_empty(list)) 873 __remove_assoc_queue(BH_ENTRY(list->next)); 874 spin_unlock(&buffer_mapping->i_private_lock); 875 } 876 } 877 EXPORT_SYMBOL(invalidate_inode_buffers); 878 879 /* 880 * Remove any clean buffers from the inode's buffer list. This is called 881 * when we're trying to free the inode itself. Those buffers can pin it. 882 * 883 * Returns true if all buffers were removed. 884 */ 885 int remove_inode_buffers(struct inode *inode) 886 { 887 int ret = 1; 888 889 if (inode_has_buffers(inode)) { 890 struct address_space *mapping = &inode->i_data; 891 struct list_head *list = &mapping->i_private_list; 892 struct address_space *buffer_mapping = mapping->i_private_data; 893 894 spin_lock(&buffer_mapping->i_private_lock); 895 while (!list_empty(list)) { 896 struct buffer_head *bh = BH_ENTRY(list->next); 897 if (buffer_dirty(bh)) { 898 ret = 0; 899 break; 900 } 901 __remove_assoc_queue(bh); 902 } 903 spin_unlock(&buffer_mapping->i_private_lock); 904 } 905 return ret; 906 } 907 908 /* 909 * Create the appropriate buffers when given a folio for data area and 910 * the size of each buffer.. Use the bh->b_this_page linked list to 911 * follow the buffers created. Return NULL if unable to create more 912 * buffers. 913 * 914 * The retry flag is used to differentiate async IO (paging, swapping) 915 * which may not fail from ordinary buffer allocations. 916 */ 917 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 918 gfp_t gfp) 919 { 920 struct buffer_head *bh, *head; 921 long offset; 922 struct mem_cgroup *memcg, *old_memcg; 923 924 /* The folio lock pins the memcg */ 925 memcg = folio_memcg(folio); 926 old_memcg = set_active_memcg(memcg); 927 928 head = NULL; 929 offset = folio_size(folio); 930 while ((offset -= size) >= 0) { 931 bh = alloc_buffer_head(gfp); 932 if (!bh) 933 goto no_grow; 934 935 bh->b_this_page = head; 936 bh->b_blocknr = -1; 937 head = bh; 938 939 bh->b_size = size; 940 941 /* Link the buffer to its folio */ 942 folio_set_bh(bh, folio, offset); 943 } 944 out: 945 set_active_memcg(old_memcg); 946 return head; 947 /* 948 * In case anything failed, we just free everything we got. 949 */ 950 no_grow: 951 if (head) { 952 do { 953 bh = head; 954 head = head->b_this_page; 955 free_buffer_head(bh); 956 } while (head); 957 } 958 959 goto out; 960 } 961 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 962 963 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 964 bool retry) 965 { 966 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 967 if (retry) 968 gfp |= __GFP_NOFAIL; 969 970 return folio_alloc_buffers(page_folio(page), size, gfp); 971 } 972 EXPORT_SYMBOL_GPL(alloc_page_buffers); 973 974 static inline void link_dev_buffers(struct folio *folio, 975 struct buffer_head *head) 976 { 977 struct buffer_head *bh, *tail; 978 979 bh = head; 980 do { 981 tail = bh; 982 bh = bh->b_this_page; 983 } while (bh); 984 tail->b_this_page = head; 985 folio_attach_private(folio, head); 986 } 987 988 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 989 { 990 sector_t retval = ~((sector_t)0); 991 loff_t sz = bdev_nr_bytes(bdev); 992 993 if (sz) { 994 unsigned int sizebits = blksize_bits(size); 995 retval = (sz >> sizebits); 996 } 997 return retval; 998 } 999 1000 /* 1001 * Initialise the state of a blockdev folio's buffers. 1002 */ 1003 static sector_t folio_init_buffers(struct folio *folio, 1004 struct block_device *bdev, unsigned size) 1005 { 1006 struct buffer_head *head = folio_buffers(folio); 1007 struct buffer_head *bh = head; 1008 bool uptodate = folio_test_uptodate(folio); 1009 sector_t block = div_u64(folio_pos(folio), size); 1010 sector_t end_block = blkdev_max_block(bdev, size); 1011 1012 do { 1013 if (!buffer_mapped(bh)) { 1014 bh->b_end_io = NULL; 1015 bh->b_private = NULL; 1016 bh->b_bdev = bdev; 1017 bh->b_blocknr = block; 1018 if (uptodate) 1019 set_buffer_uptodate(bh); 1020 if (block < end_block) 1021 set_buffer_mapped(bh); 1022 } 1023 block++; 1024 bh = bh->b_this_page; 1025 } while (bh != head); 1026 1027 /* 1028 * Caller needs to validate requested block against end of device. 1029 */ 1030 return end_block; 1031 } 1032 1033 /* 1034 * Create the page-cache folio that contains the requested block. 1035 * 1036 * This is used purely for blockdev mappings. 1037 * 1038 * Returns false if we have a failure which cannot be cured by retrying 1039 * without sleeping. Returns true if we succeeded, or the caller should retry. 1040 */ 1041 static bool grow_dev_folio(struct block_device *bdev, sector_t block, 1042 pgoff_t index, unsigned size, gfp_t gfp) 1043 { 1044 struct address_space *mapping = bdev->bd_mapping; 1045 struct folio *folio; 1046 struct buffer_head *bh; 1047 sector_t end_block = 0; 1048 1049 folio = __filemap_get_folio(mapping, index, 1050 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1051 if (IS_ERR(folio)) 1052 return false; 1053 1054 bh = folio_buffers(folio); 1055 if (bh) { 1056 if (bh->b_size == size) { 1057 end_block = folio_init_buffers(folio, bdev, size); 1058 goto unlock; 1059 } 1060 1061 /* 1062 * Retrying may succeed; for example the folio may finish 1063 * writeback, or buffers may be cleaned. This should not 1064 * happen very often; maybe we have old buffers attached to 1065 * this blockdev's page cache and we're trying to change 1066 * the block size? 1067 */ 1068 if (!try_to_free_buffers(folio)) { 1069 end_block = ~0ULL; 1070 goto unlock; 1071 } 1072 } 1073 1074 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT); 1075 if (!bh) 1076 goto unlock; 1077 1078 /* 1079 * Link the folio to the buffers and initialise them. Take the 1080 * lock to be atomic wrt __find_get_block(), which does not 1081 * run under the folio lock. 1082 */ 1083 spin_lock(&mapping->i_private_lock); 1084 link_dev_buffers(folio, bh); 1085 end_block = folio_init_buffers(folio, bdev, size); 1086 spin_unlock(&mapping->i_private_lock); 1087 unlock: 1088 folio_unlock(folio); 1089 folio_put(folio); 1090 return block < end_block; 1091 } 1092 1093 /* 1094 * Create buffers for the specified block device block's folio. If 1095 * that folio was dirty, the buffers are set dirty also. Returns false 1096 * if we've hit a permanent error. 1097 */ 1098 static bool grow_buffers(struct block_device *bdev, sector_t block, 1099 unsigned size, gfp_t gfp) 1100 { 1101 loff_t pos; 1102 1103 /* 1104 * Check for a block which lies outside our maximum possible 1105 * pagecache index. 1106 */ 1107 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) { 1108 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n", 1109 __func__, (unsigned long long)block, 1110 bdev); 1111 return false; 1112 } 1113 1114 /* Create a folio with the proper size buffers */ 1115 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp); 1116 } 1117 1118 static struct buffer_head * 1119 __getblk_slow(struct block_device *bdev, sector_t block, 1120 unsigned size, gfp_t gfp) 1121 { 1122 /* Size must be multiple of hard sectorsize */ 1123 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1124 (size < 512 || size > PAGE_SIZE))) { 1125 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1126 size); 1127 printk(KERN_ERR "logical block size: %d\n", 1128 bdev_logical_block_size(bdev)); 1129 1130 dump_stack(); 1131 return NULL; 1132 } 1133 1134 for (;;) { 1135 struct buffer_head *bh; 1136 1137 bh = __find_get_block(bdev, block, size); 1138 if (bh) 1139 return bh; 1140 1141 if (!grow_buffers(bdev, block, size, gfp)) 1142 return NULL; 1143 } 1144 } 1145 1146 /* 1147 * The relationship between dirty buffers and dirty pages: 1148 * 1149 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1150 * the page is tagged dirty in the page cache. 1151 * 1152 * At all times, the dirtiness of the buffers represents the dirtiness of 1153 * subsections of the page. If the page has buffers, the page dirty bit is 1154 * merely a hint about the true dirty state. 1155 * 1156 * When a page is set dirty in its entirety, all its buffers are marked dirty 1157 * (if the page has buffers). 1158 * 1159 * When a buffer is marked dirty, its page is dirtied, but the page's other 1160 * buffers are not. 1161 * 1162 * Also. When blockdev buffers are explicitly read with bread(), they 1163 * individually become uptodate. But their backing page remains not 1164 * uptodate - even if all of its buffers are uptodate. A subsequent 1165 * block_read_full_folio() against that folio will discover all the uptodate 1166 * buffers, will set the folio uptodate and will perform no I/O. 1167 */ 1168 1169 /** 1170 * mark_buffer_dirty - mark a buffer_head as needing writeout 1171 * @bh: the buffer_head to mark dirty 1172 * 1173 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1174 * its backing page dirty, then tag the page as dirty in the page cache 1175 * and then attach the address_space's inode to its superblock's dirty 1176 * inode list. 1177 * 1178 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock, 1179 * i_pages lock and mapping->host->i_lock. 1180 */ 1181 void mark_buffer_dirty(struct buffer_head *bh) 1182 { 1183 WARN_ON_ONCE(!buffer_uptodate(bh)); 1184 1185 trace_block_dirty_buffer(bh); 1186 1187 /* 1188 * Very *carefully* optimize the it-is-already-dirty case. 1189 * 1190 * Don't let the final "is it dirty" escape to before we 1191 * perhaps modified the buffer. 1192 */ 1193 if (buffer_dirty(bh)) { 1194 smp_mb(); 1195 if (buffer_dirty(bh)) 1196 return; 1197 } 1198 1199 if (!test_set_buffer_dirty(bh)) { 1200 struct folio *folio = bh->b_folio; 1201 struct address_space *mapping = NULL; 1202 1203 folio_memcg_lock(folio); 1204 if (!folio_test_set_dirty(folio)) { 1205 mapping = folio->mapping; 1206 if (mapping) 1207 __folio_mark_dirty(folio, mapping, 0); 1208 } 1209 folio_memcg_unlock(folio); 1210 if (mapping) 1211 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1212 } 1213 } 1214 EXPORT_SYMBOL(mark_buffer_dirty); 1215 1216 void mark_buffer_write_io_error(struct buffer_head *bh) 1217 { 1218 set_buffer_write_io_error(bh); 1219 /* FIXME: do we need to set this in both places? */ 1220 if (bh->b_folio && bh->b_folio->mapping) 1221 mapping_set_error(bh->b_folio->mapping, -EIO); 1222 if (bh->b_assoc_map) { 1223 mapping_set_error(bh->b_assoc_map, -EIO); 1224 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO); 1225 } 1226 } 1227 EXPORT_SYMBOL(mark_buffer_write_io_error); 1228 1229 /** 1230 * __brelse - Release a buffer. 1231 * @bh: The buffer to release. 1232 * 1233 * This variant of brelse() can be called if @bh is guaranteed to not be NULL. 1234 */ 1235 void __brelse(struct buffer_head *bh) 1236 { 1237 if (atomic_read(&bh->b_count)) { 1238 put_bh(bh); 1239 return; 1240 } 1241 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1242 } 1243 EXPORT_SYMBOL(__brelse); 1244 1245 /** 1246 * __bforget - Discard any dirty data in a buffer. 1247 * @bh: The buffer to forget. 1248 * 1249 * This variant of bforget() can be called if @bh is guaranteed to not 1250 * be NULL. 1251 */ 1252 void __bforget(struct buffer_head *bh) 1253 { 1254 clear_buffer_dirty(bh); 1255 if (bh->b_assoc_map) { 1256 struct address_space *buffer_mapping = bh->b_folio->mapping; 1257 1258 spin_lock(&buffer_mapping->i_private_lock); 1259 list_del_init(&bh->b_assoc_buffers); 1260 bh->b_assoc_map = NULL; 1261 spin_unlock(&buffer_mapping->i_private_lock); 1262 } 1263 __brelse(bh); 1264 } 1265 EXPORT_SYMBOL(__bforget); 1266 1267 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1268 { 1269 lock_buffer(bh); 1270 if (buffer_uptodate(bh)) { 1271 unlock_buffer(bh); 1272 return bh; 1273 } else { 1274 get_bh(bh); 1275 bh->b_end_io = end_buffer_read_sync; 1276 submit_bh(REQ_OP_READ, bh); 1277 wait_on_buffer(bh); 1278 if (buffer_uptodate(bh)) 1279 return bh; 1280 } 1281 brelse(bh); 1282 return NULL; 1283 } 1284 1285 /* 1286 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1287 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1288 * refcount elevated by one when they're in an LRU. A buffer can only appear 1289 * once in a particular CPU's LRU. A single buffer can be present in multiple 1290 * CPU's LRUs at the same time. 1291 * 1292 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1293 * sb_find_get_block(). 1294 * 1295 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1296 * a local interrupt disable for that. 1297 */ 1298 1299 #define BH_LRU_SIZE 16 1300 1301 struct bh_lru { 1302 struct buffer_head *bhs[BH_LRU_SIZE]; 1303 }; 1304 1305 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1306 1307 #ifdef CONFIG_SMP 1308 #define bh_lru_lock() local_irq_disable() 1309 #define bh_lru_unlock() local_irq_enable() 1310 #else 1311 #define bh_lru_lock() preempt_disable() 1312 #define bh_lru_unlock() preempt_enable() 1313 #endif 1314 1315 static inline void check_irqs_on(void) 1316 { 1317 #ifdef irqs_disabled 1318 BUG_ON(irqs_disabled()); 1319 #endif 1320 } 1321 1322 /* 1323 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1324 * inserted at the front, and the buffer_head at the back if any is evicted. 1325 * Or, if already in the LRU it is moved to the front. 1326 */ 1327 static void bh_lru_install(struct buffer_head *bh) 1328 { 1329 struct buffer_head *evictee = bh; 1330 struct bh_lru *b; 1331 int i; 1332 1333 check_irqs_on(); 1334 bh_lru_lock(); 1335 1336 /* 1337 * the refcount of buffer_head in bh_lru prevents dropping the 1338 * attached page(i.e., try_to_free_buffers) so it could cause 1339 * failing page migration. 1340 * Skip putting upcoming bh into bh_lru until migration is done. 1341 */ 1342 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) { 1343 bh_lru_unlock(); 1344 return; 1345 } 1346 1347 b = this_cpu_ptr(&bh_lrus); 1348 for (i = 0; i < BH_LRU_SIZE; i++) { 1349 swap(evictee, b->bhs[i]); 1350 if (evictee == bh) { 1351 bh_lru_unlock(); 1352 return; 1353 } 1354 } 1355 1356 get_bh(bh); 1357 bh_lru_unlock(); 1358 brelse(evictee); 1359 } 1360 1361 /* 1362 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1363 */ 1364 static struct buffer_head * 1365 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1366 { 1367 struct buffer_head *ret = NULL; 1368 unsigned int i; 1369 1370 check_irqs_on(); 1371 bh_lru_lock(); 1372 if (cpu_is_isolated(smp_processor_id())) { 1373 bh_lru_unlock(); 1374 return NULL; 1375 } 1376 for (i = 0; i < BH_LRU_SIZE; i++) { 1377 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1378 1379 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1380 bh->b_size == size) { 1381 if (i) { 1382 while (i) { 1383 __this_cpu_write(bh_lrus.bhs[i], 1384 __this_cpu_read(bh_lrus.bhs[i - 1])); 1385 i--; 1386 } 1387 __this_cpu_write(bh_lrus.bhs[0], bh); 1388 } 1389 get_bh(bh); 1390 ret = bh; 1391 break; 1392 } 1393 } 1394 bh_lru_unlock(); 1395 return ret; 1396 } 1397 1398 /* 1399 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1400 * it in the LRU and mark it as accessed. If it is not present then return 1401 * NULL 1402 */ 1403 struct buffer_head * 1404 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1405 { 1406 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1407 1408 if (bh == NULL) { 1409 /* __find_get_block_slow will mark the page accessed */ 1410 bh = __find_get_block_slow(bdev, block); 1411 if (bh) 1412 bh_lru_install(bh); 1413 } else 1414 touch_buffer(bh); 1415 1416 return bh; 1417 } 1418 EXPORT_SYMBOL(__find_get_block); 1419 1420 /** 1421 * bdev_getblk - Get a buffer_head in a block device's buffer cache. 1422 * @bdev: The block device. 1423 * @block: The block number. 1424 * @size: The size of buffer_heads for this @bdev. 1425 * @gfp: The memory allocation flags to use. 1426 * 1427 * The returned buffer head has its reference count incremented, but is 1428 * not locked. The caller should call brelse() when it has finished 1429 * with the buffer. The buffer may not be uptodate. If needed, the 1430 * caller can bring it uptodate either by reading it or overwriting it. 1431 * 1432 * Return: The buffer head, or NULL if memory could not be allocated. 1433 */ 1434 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block, 1435 unsigned size, gfp_t gfp) 1436 { 1437 struct buffer_head *bh = __find_get_block(bdev, block, size); 1438 1439 might_alloc(gfp); 1440 if (bh) 1441 return bh; 1442 1443 return __getblk_slow(bdev, block, size, gfp); 1444 } 1445 EXPORT_SYMBOL(bdev_getblk); 1446 1447 /* 1448 * Do async read-ahead on a buffer.. 1449 */ 1450 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1451 { 1452 struct buffer_head *bh = bdev_getblk(bdev, block, size, 1453 GFP_NOWAIT | __GFP_MOVABLE); 1454 1455 if (likely(bh)) { 1456 bh_readahead(bh, REQ_RAHEAD); 1457 brelse(bh); 1458 } 1459 } 1460 EXPORT_SYMBOL(__breadahead); 1461 1462 /** 1463 * __bread_gfp() - Read a block. 1464 * @bdev: The block device to read from. 1465 * @block: Block number in units of block size. 1466 * @size: The block size of this device in bytes. 1467 * @gfp: Not page allocation flags; see below. 1468 * 1469 * You are not expected to call this function. You should use one of 1470 * sb_bread(), sb_bread_unmovable() or __bread(). 1471 * 1472 * Read a specified block, and return the buffer head that refers to it. 1473 * If @gfp is 0, the memory will be allocated using the block device's 1474 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be 1475 * allocated from a movable area. Do not pass in a complete set of 1476 * GFP flags. 1477 * 1478 * The returned buffer head has its refcount increased. The caller should 1479 * call brelse() when it has finished with the buffer. 1480 * 1481 * Context: May sleep waiting for I/O. 1482 * Return: NULL if the block was unreadable. 1483 */ 1484 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block, 1485 unsigned size, gfp_t gfp) 1486 { 1487 struct buffer_head *bh; 1488 1489 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS); 1490 1491 /* 1492 * Prefer looping in the allocator rather than here, at least that 1493 * code knows what it's doing. 1494 */ 1495 gfp |= __GFP_NOFAIL; 1496 1497 bh = bdev_getblk(bdev, block, size, gfp); 1498 1499 if (likely(bh) && !buffer_uptodate(bh)) 1500 bh = __bread_slow(bh); 1501 return bh; 1502 } 1503 EXPORT_SYMBOL(__bread_gfp); 1504 1505 static void __invalidate_bh_lrus(struct bh_lru *b) 1506 { 1507 int i; 1508 1509 for (i = 0; i < BH_LRU_SIZE; i++) { 1510 brelse(b->bhs[i]); 1511 b->bhs[i] = NULL; 1512 } 1513 } 1514 /* 1515 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1516 * This doesn't race because it runs in each cpu either in irq 1517 * or with preempt disabled. 1518 */ 1519 static void invalidate_bh_lru(void *arg) 1520 { 1521 struct bh_lru *b = &get_cpu_var(bh_lrus); 1522 1523 __invalidate_bh_lrus(b); 1524 put_cpu_var(bh_lrus); 1525 } 1526 1527 bool has_bh_in_lru(int cpu, void *dummy) 1528 { 1529 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1530 int i; 1531 1532 for (i = 0; i < BH_LRU_SIZE; i++) { 1533 if (b->bhs[i]) 1534 return true; 1535 } 1536 1537 return false; 1538 } 1539 1540 void invalidate_bh_lrus(void) 1541 { 1542 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1543 } 1544 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1545 1546 /* 1547 * It's called from workqueue context so we need a bh_lru_lock to close 1548 * the race with preemption/irq. 1549 */ 1550 void invalidate_bh_lrus_cpu(void) 1551 { 1552 struct bh_lru *b; 1553 1554 bh_lru_lock(); 1555 b = this_cpu_ptr(&bh_lrus); 1556 __invalidate_bh_lrus(b); 1557 bh_lru_unlock(); 1558 } 1559 1560 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1561 unsigned long offset) 1562 { 1563 bh->b_folio = folio; 1564 BUG_ON(offset >= folio_size(folio)); 1565 if (folio_test_highmem(folio)) 1566 /* 1567 * This catches illegal uses and preserves the offset: 1568 */ 1569 bh->b_data = (char *)(0 + offset); 1570 else 1571 bh->b_data = folio_address(folio) + offset; 1572 } 1573 EXPORT_SYMBOL(folio_set_bh); 1574 1575 /* 1576 * Called when truncating a buffer on a page completely. 1577 */ 1578 1579 /* Bits that are cleared during an invalidate */ 1580 #define BUFFER_FLAGS_DISCARD \ 1581 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1582 1 << BH_Delay | 1 << BH_Unwritten) 1583 1584 static void discard_buffer(struct buffer_head * bh) 1585 { 1586 unsigned long b_state; 1587 1588 lock_buffer(bh); 1589 clear_buffer_dirty(bh); 1590 bh->b_bdev = NULL; 1591 b_state = READ_ONCE(bh->b_state); 1592 do { 1593 } while (!try_cmpxchg(&bh->b_state, &b_state, 1594 b_state & ~BUFFER_FLAGS_DISCARD)); 1595 unlock_buffer(bh); 1596 } 1597 1598 /** 1599 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1600 * @folio: The folio which is affected. 1601 * @offset: start of the range to invalidate 1602 * @length: length of the range to invalidate 1603 * 1604 * block_invalidate_folio() is called when all or part of the folio has been 1605 * invalidated by a truncate operation. 1606 * 1607 * block_invalidate_folio() does not have to release all buffers, but it must 1608 * ensure that no dirty buffer is left outside @offset and that no I/O 1609 * is underway against any of the blocks which are outside the truncation 1610 * point. Because the caller is about to free (and possibly reuse) those 1611 * blocks on-disk. 1612 */ 1613 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1614 { 1615 struct buffer_head *head, *bh, *next; 1616 size_t curr_off = 0; 1617 size_t stop = length + offset; 1618 1619 BUG_ON(!folio_test_locked(folio)); 1620 1621 /* 1622 * Check for overflow 1623 */ 1624 BUG_ON(stop > folio_size(folio) || stop < length); 1625 1626 head = folio_buffers(folio); 1627 if (!head) 1628 return; 1629 1630 bh = head; 1631 do { 1632 size_t next_off = curr_off + bh->b_size; 1633 next = bh->b_this_page; 1634 1635 /* 1636 * Are we still fully in range ? 1637 */ 1638 if (next_off > stop) 1639 goto out; 1640 1641 /* 1642 * is this block fully invalidated? 1643 */ 1644 if (offset <= curr_off) 1645 discard_buffer(bh); 1646 curr_off = next_off; 1647 bh = next; 1648 } while (bh != head); 1649 1650 /* 1651 * We release buffers only if the entire folio is being invalidated. 1652 * The get_block cached value has been unconditionally invalidated, 1653 * so real IO is not possible anymore. 1654 */ 1655 if (length == folio_size(folio)) 1656 filemap_release_folio(folio, 0); 1657 out: 1658 return; 1659 } 1660 EXPORT_SYMBOL(block_invalidate_folio); 1661 1662 /* 1663 * We attach and possibly dirty the buffers atomically wrt 1664 * block_dirty_folio() via i_private_lock. try_to_free_buffers 1665 * is already excluded via the folio lock. 1666 */ 1667 struct buffer_head *create_empty_buffers(struct folio *folio, 1668 unsigned long blocksize, unsigned long b_state) 1669 { 1670 struct buffer_head *bh, *head, *tail; 1671 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL; 1672 1673 head = folio_alloc_buffers(folio, blocksize, gfp); 1674 bh = head; 1675 do { 1676 bh->b_state |= b_state; 1677 tail = bh; 1678 bh = bh->b_this_page; 1679 } while (bh); 1680 tail->b_this_page = head; 1681 1682 spin_lock(&folio->mapping->i_private_lock); 1683 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1684 bh = head; 1685 do { 1686 if (folio_test_dirty(folio)) 1687 set_buffer_dirty(bh); 1688 if (folio_test_uptodate(folio)) 1689 set_buffer_uptodate(bh); 1690 bh = bh->b_this_page; 1691 } while (bh != head); 1692 } 1693 folio_attach_private(folio, head); 1694 spin_unlock(&folio->mapping->i_private_lock); 1695 1696 return head; 1697 } 1698 EXPORT_SYMBOL(create_empty_buffers); 1699 1700 /** 1701 * clean_bdev_aliases: clean a range of buffers in block device 1702 * @bdev: Block device to clean buffers in 1703 * @block: Start of a range of blocks to clean 1704 * @len: Number of blocks to clean 1705 * 1706 * We are taking a range of blocks for data and we don't want writeback of any 1707 * buffer-cache aliases starting from return from this function and until the 1708 * moment when something will explicitly mark the buffer dirty (hopefully that 1709 * will not happen until we will free that block ;-) We don't even need to mark 1710 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1711 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1712 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1713 * would confuse anyone who might pick it with bread() afterwards... 1714 * 1715 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1716 * writeout I/O going on against recently-freed buffers. We don't wait on that 1717 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1718 * need to. That happens here. 1719 */ 1720 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1721 { 1722 struct address_space *bd_mapping = bdev->bd_mapping; 1723 const int blkbits = bd_mapping->host->i_blkbits; 1724 struct folio_batch fbatch; 1725 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE; 1726 pgoff_t end; 1727 int i, count; 1728 struct buffer_head *bh; 1729 struct buffer_head *head; 1730 1731 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE; 1732 folio_batch_init(&fbatch); 1733 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1734 count = folio_batch_count(&fbatch); 1735 for (i = 0; i < count; i++) { 1736 struct folio *folio = fbatch.folios[i]; 1737 1738 if (!folio_buffers(folio)) 1739 continue; 1740 /* 1741 * We use folio lock instead of bd_mapping->i_private_lock 1742 * to pin buffers here since we can afford to sleep and 1743 * it scales better than a global spinlock lock. 1744 */ 1745 folio_lock(folio); 1746 /* Recheck when the folio is locked which pins bhs */ 1747 head = folio_buffers(folio); 1748 if (!head) 1749 goto unlock_page; 1750 bh = head; 1751 do { 1752 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1753 goto next; 1754 if (bh->b_blocknr >= block + len) 1755 break; 1756 clear_buffer_dirty(bh); 1757 wait_on_buffer(bh); 1758 clear_buffer_req(bh); 1759 next: 1760 bh = bh->b_this_page; 1761 } while (bh != head); 1762 unlock_page: 1763 folio_unlock(folio); 1764 } 1765 folio_batch_release(&fbatch); 1766 cond_resched(); 1767 /* End of range already reached? */ 1768 if (index > end || !index) 1769 break; 1770 } 1771 } 1772 EXPORT_SYMBOL(clean_bdev_aliases); 1773 1774 static struct buffer_head *folio_create_buffers(struct folio *folio, 1775 struct inode *inode, 1776 unsigned int b_state) 1777 { 1778 struct buffer_head *bh; 1779 1780 BUG_ON(!folio_test_locked(folio)); 1781 1782 bh = folio_buffers(folio); 1783 if (!bh) 1784 bh = create_empty_buffers(folio, 1785 1 << READ_ONCE(inode->i_blkbits), b_state); 1786 return bh; 1787 } 1788 1789 /* 1790 * NOTE! All mapped/uptodate combinations are valid: 1791 * 1792 * Mapped Uptodate Meaning 1793 * 1794 * No No "unknown" - must do get_block() 1795 * No Yes "hole" - zero-filled 1796 * Yes No "allocated" - allocated on disk, not read in 1797 * Yes Yes "valid" - allocated and up-to-date in memory. 1798 * 1799 * "Dirty" is valid only with the last case (mapped+uptodate). 1800 */ 1801 1802 /* 1803 * While block_write_full_folio is writing back the dirty buffers under 1804 * the page lock, whoever dirtied the buffers may decide to clean them 1805 * again at any time. We handle that by only looking at the buffer 1806 * state inside lock_buffer(). 1807 * 1808 * If block_write_full_folio() is called for regular writeback 1809 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1810 * locked buffer. This only can happen if someone has written the buffer 1811 * directly, with submit_bh(). At the address_space level PageWriteback 1812 * prevents this contention from occurring. 1813 * 1814 * If block_write_full_folio() is called with wbc->sync_mode == 1815 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1816 * causes the writes to be flagged as synchronous writes. 1817 */ 1818 int __block_write_full_folio(struct inode *inode, struct folio *folio, 1819 get_block_t *get_block, struct writeback_control *wbc) 1820 { 1821 int err; 1822 sector_t block; 1823 sector_t last_block; 1824 struct buffer_head *bh, *head; 1825 size_t blocksize; 1826 int nr_underway = 0; 1827 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1828 1829 head = folio_create_buffers(folio, inode, 1830 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1831 1832 /* 1833 * Be very careful. We have no exclusion from block_dirty_folio 1834 * here, and the (potentially unmapped) buffers may become dirty at 1835 * any time. If a buffer becomes dirty here after we've inspected it 1836 * then we just miss that fact, and the folio stays dirty. 1837 * 1838 * Buffers outside i_size may be dirtied by block_dirty_folio; 1839 * handle that here by just cleaning them. 1840 */ 1841 1842 bh = head; 1843 blocksize = bh->b_size; 1844 1845 block = div_u64(folio_pos(folio), blocksize); 1846 last_block = div_u64(i_size_read(inode) - 1, blocksize); 1847 1848 /* 1849 * Get all the dirty buffers mapped to disk addresses and 1850 * handle any aliases from the underlying blockdev's mapping. 1851 */ 1852 do { 1853 if (block > last_block) { 1854 /* 1855 * mapped buffers outside i_size will occur, because 1856 * this folio can be outside i_size when there is a 1857 * truncate in progress. 1858 */ 1859 /* 1860 * The buffer was zeroed by block_write_full_folio() 1861 */ 1862 clear_buffer_dirty(bh); 1863 set_buffer_uptodate(bh); 1864 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1865 buffer_dirty(bh)) { 1866 WARN_ON(bh->b_size != blocksize); 1867 err = get_block(inode, block, bh, 1); 1868 if (err) 1869 goto recover; 1870 clear_buffer_delay(bh); 1871 if (buffer_new(bh)) { 1872 /* blockdev mappings never come here */ 1873 clear_buffer_new(bh); 1874 clean_bdev_bh_alias(bh); 1875 } 1876 } 1877 bh = bh->b_this_page; 1878 block++; 1879 } while (bh != head); 1880 1881 do { 1882 if (!buffer_mapped(bh)) 1883 continue; 1884 /* 1885 * If it's a fully non-blocking write attempt and we cannot 1886 * lock the buffer then redirty the folio. Note that this can 1887 * potentially cause a busy-wait loop from writeback threads 1888 * and kswapd activity, but those code paths have their own 1889 * higher-level throttling. 1890 */ 1891 if (wbc->sync_mode != WB_SYNC_NONE) { 1892 lock_buffer(bh); 1893 } else if (!trylock_buffer(bh)) { 1894 folio_redirty_for_writepage(wbc, folio); 1895 continue; 1896 } 1897 if (test_clear_buffer_dirty(bh)) { 1898 mark_buffer_async_write_endio(bh, 1899 end_buffer_async_write); 1900 } else { 1901 unlock_buffer(bh); 1902 } 1903 } while ((bh = bh->b_this_page) != head); 1904 1905 /* 1906 * The folio and its buffers are protected by the writeback flag, 1907 * so we can drop the bh refcounts early. 1908 */ 1909 BUG_ON(folio_test_writeback(folio)); 1910 folio_start_writeback(folio); 1911 1912 do { 1913 struct buffer_head *next = bh->b_this_page; 1914 if (buffer_async_write(bh)) { 1915 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1916 inode->i_write_hint, wbc); 1917 nr_underway++; 1918 } 1919 bh = next; 1920 } while (bh != head); 1921 folio_unlock(folio); 1922 1923 err = 0; 1924 done: 1925 if (nr_underway == 0) { 1926 /* 1927 * The folio was marked dirty, but the buffers were 1928 * clean. Someone wrote them back by hand with 1929 * write_dirty_buffer/submit_bh. A rare case. 1930 */ 1931 folio_end_writeback(folio); 1932 1933 /* 1934 * The folio and buffer_heads can be released at any time from 1935 * here on. 1936 */ 1937 } 1938 return err; 1939 1940 recover: 1941 /* 1942 * ENOSPC, or some other error. We may already have added some 1943 * blocks to the file, so we need to write these out to avoid 1944 * exposing stale data. 1945 * The folio is currently locked and not marked for writeback 1946 */ 1947 bh = head; 1948 /* Recovery: lock and submit the mapped buffers */ 1949 do { 1950 if (buffer_mapped(bh) && buffer_dirty(bh) && 1951 !buffer_delay(bh)) { 1952 lock_buffer(bh); 1953 mark_buffer_async_write_endio(bh, 1954 end_buffer_async_write); 1955 } else { 1956 /* 1957 * The buffer may have been set dirty during 1958 * attachment to a dirty folio. 1959 */ 1960 clear_buffer_dirty(bh); 1961 } 1962 } while ((bh = bh->b_this_page) != head); 1963 folio_set_error(folio); 1964 BUG_ON(folio_test_writeback(folio)); 1965 mapping_set_error(folio->mapping, err); 1966 folio_start_writeback(folio); 1967 do { 1968 struct buffer_head *next = bh->b_this_page; 1969 if (buffer_async_write(bh)) { 1970 clear_buffer_dirty(bh); 1971 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1972 inode->i_write_hint, wbc); 1973 nr_underway++; 1974 } 1975 bh = next; 1976 } while (bh != head); 1977 folio_unlock(folio); 1978 goto done; 1979 } 1980 EXPORT_SYMBOL(__block_write_full_folio); 1981 1982 /* 1983 * If a folio has any new buffers, zero them out here, and mark them uptodate 1984 * and dirty so they'll be written out (in order to prevent uninitialised 1985 * block data from leaking). And clear the new bit. 1986 */ 1987 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) 1988 { 1989 size_t block_start, block_end; 1990 struct buffer_head *head, *bh; 1991 1992 BUG_ON(!folio_test_locked(folio)); 1993 head = folio_buffers(folio); 1994 if (!head) 1995 return; 1996 1997 bh = head; 1998 block_start = 0; 1999 do { 2000 block_end = block_start + bh->b_size; 2001 2002 if (buffer_new(bh)) { 2003 if (block_end > from && block_start < to) { 2004 if (!folio_test_uptodate(folio)) { 2005 size_t start, xend; 2006 2007 start = max(from, block_start); 2008 xend = min(to, block_end); 2009 2010 folio_zero_segment(folio, start, xend); 2011 set_buffer_uptodate(bh); 2012 } 2013 2014 clear_buffer_new(bh); 2015 mark_buffer_dirty(bh); 2016 } 2017 } 2018 2019 block_start = block_end; 2020 bh = bh->b_this_page; 2021 } while (bh != head); 2022 } 2023 EXPORT_SYMBOL(folio_zero_new_buffers); 2024 2025 static int 2026 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 2027 const struct iomap *iomap) 2028 { 2029 loff_t offset = (loff_t)block << inode->i_blkbits; 2030 2031 bh->b_bdev = iomap->bdev; 2032 2033 /* 2034 * Block points to offset in file we need to map, iomap contains 2035 * the offset at which the map starts. If the map ends before the 2036 * current block, then do not map the buffer and let the caller 2037 * handle it. 2038 */ 2039 if (offset >= iomap->offset + iomap->length) 2040 return -EIO; 2041 2042 switch (iomap->type) { 2043 case IOMAP_HOLE: 2044 /* 2045 * If the buffer is not up to date or beyond the current EOF, 2046 * we need to mark it as new to ensure sub-block zeroing is 2047 * executed if necessary. 2048 */ 2049 if (!buffer_uptodate(bh) || 2050 (offset >= i_size_read(inode))) 2051 set_buffer_new(bh); 2052 return 0; 2053 case IOMAP_DELALLOC: 2054 if (!buffer_uptodate(bh) || 2055 (offset >= i_size_read(inode))) 2056 set_buffer_new(bh); 2057 set_buffer_uptodate(bh); 2058 set_buffer_mapped(bh); 2059 set_buffer_delay(bh); 2060 return 0; 2061 case IOMAP_UNWRITTEN: 2062 /* 2063 * For unwritten regions, we always need to ensure that regions 2064 * in the block we are not writing to are zeroed. Mark the 2065 * buffer as new to ensure this. 2066 */ 2067 set_buffer_new(bh); 2068 set_buffer_unwritten(bh); 2069 fallthrough; 2070 case IOMAP_MAPPED: 2071 if ((iomap->flags & IOMAP_F_NEW) || 2072 offset >= i_size_read(inode)) { 2073 /* 2074 * This can happen if truncating the block device races 2075 * with the check in the caller as i_size updates on 2076 * block devices aren't synchronized by i_rwsem for 2077 * block devices. 2078 */ 2079 if (S_ISBLK(inode->i_mode)) 2080 return -EIO; 2081 set_buffer_new(bh); 2082 } 2083 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2084 inode->i_blkbits; 2085 set_buffer_mapped(bh); 2086 return 0; 2087 default: 2088 WARN_ON_ONCE(1); 2089 return -EIO; 2090 } 2091 } 2092 2093 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2094 get_block_t *get_block, const struct iomap *iomap) 2095 { 2096 size_t from = offset_in_folio(folio, pos); 2097 size_t to = from + len; 2098 struct inode *inode = folio->mapping->host; 2099 size_t block_start, block_end; 2100 sector_t block; 2101 int err = 0; 2102 size_t blocksize; 2103 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2104 2105 BUG_ON(!folio_test_locked(folio)); 2106 BUG_ON(to > folio_size(folio)); 2107 BUG_ON(from > to); 2108 2109 head = folio_create_buffers(folio, inode, 0); 2110 blocksize = head->b_size; 2111 block = div_u64(folio_pos(folio), blocksize); 2112 2113 for (bh = head, block_start = 0; bh != head || !block_start; 2114 block++, block_start=block_end, bh = bh->b_this_page) { 2115 block_end = block_start + blocksize; 2116 if (block_end <= from || block_start >= to) { 2117 if (folio_test_uptodate(folio)) { 2118 if (!buffer_uptodate(bh)) 2119 set_buffer_uptodate(bh); 2120 } 2121 continue; 2122 } 2123 if (buffer_new(bh)) 2124 clear_buffer_new(bh); 2125 if (!buffer_mapped(bh)) { 2126 WARN_ON(bh->b_size != blocksize); 2127 if (get_block) 2128 err = get_block(inode, block, bh, 1); 2129 else 2130 err = iomap_to_bh(inode, block, bh, iomap); 2131 if (err) 2132 break; 2133 2134 if (buffer_new(bh)) { 2135 clean_bdev_bh_alias(bh); 2136 if (folio_test_uptodate(folio)) { 2137 clear_buffer_new(bh); 2138 set_buffer_uptodate(bh); 2139 mark_buffer_dirty(bh); 2140 continue; 2141 } 2142 if (block_end > to || block_start < from) 2143 folio_zero_segments(folio, 2144 to, block_end, 2145 block_start, from); 2146 continue; 2147 } 2148 } 2149 if (folio_test_uptodate(folio)) { 2150 if (!buffer_uptodate(bh)) 2151 set_buffer_uptodate(bh); 2152 continue; 2153 } 2154 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2155 !buffer_unwritten(bh) && 2156 (block_start < from || block_end > to)) { 2157 bh_read_nowait(bh, 0); 2158 *wait_bh++=bh; 2159 } 2160 } 2161 /* 2162 * If we issued read requests - let them complete. 2163 */ 2164 while(wait_bh > wait) { 2165 wait_on_buffer(*--wait_bh); 2166 if (!buffer_uptodate(*wait_bh)) 2167 err = -EIO; 2168 } 2169 if (unlikely(err)) 2170 folio_zero_new_buffers(folio, from, to); 2171 return err; 2172 } 2173 2174 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2175 get_block_t *get_block) 2176 { 2177 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2178 NULL); 2179 } 2180 EXPORT_SYMBOL(__block_write_begin); 2181 2182 static void __block_commit_write(struct folio *folio, size_t from, size_t to) 2183 { 2184 size_t block_start, block_end; 2185 bool partial = false; 2186 unsigned blocksize; 2187 struct buffer_head *bh, *head; 2188 2189 bh = head = folio_buffers(folio); 2190 blocksize = bh->b_size; 2191 2192 block_start = 0; 2193 do { 2194 block_end = block_start + blocksize; 2195 if (block_end <= from || block_start >= to) { 2196 if (!buffer_uptodate(bh)) 2197 partial = true; 2198 } else { 2199 set_buffer_uptodate(bh); 2200 mark_buffer_dirty(bh); 2201 } 2202 if (buffer_new(bh)) 2203 clear_buffer_new(bh); 2204 2205 block_start = block_end; 2206 bh = bh->b_this_page; 2207 } while (bh != head); 2208 2209 /* 2210 * If this is a partial write which happened to make all buffers 2211 * uptodate then we can optimize away a bogus read_folio() for 2212 * the next read(). Here we 'discover' whether the folio went 2213 * uptodate as a result of this (potentially partial) write. 2214 */ 2215 if (!partial) 2216 folio_mark_uptodate(folio); 2217 } 2218 2219 /* 2220 * block_write_begin takes care of the basic task of block allocation and 2221 * bringing partial write blocks uptodate first. 2222 * 2223 * The filesystem needs to handle block truncation upon failure. 2224 */ 2225 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2226 struct page **pagep, get_block_t *get_block) 2227 { 2228 pgoff_t index = pos >> PAGE_SHIFT; 2229 struct page *page; 2230 int status; 2231 2232 page = grab_cache_page_write_begin(mapping, index); 2233 if (!page) 2234 return -ENOMEM; 2235 2236 status = __block_write_begin(page, pos, len, get_block); 2237 if (unlikely(status)) { 2238 unlock_page(page); 2239 put_page(page); 2240 page = NULL; 2241 } 2242 2243 *pagep = page; 2244 return status; 2245 } 2246 EXPORT_SYMBOL(block_write_begin); 2247 2248 int block_write_end(struct file *file, struct address_space *mapping, 2249 loff_t pos, unsigned len, unsigned copied, 2250 struct page *page, void *fsdata) 2251 { 2252 struct folio *folio = page_folio(page); 2253 size_t start = pos - folio_pos(folio); 2254 2255 if (unlikely(copied < len)) { 2256 /* 2257 * The buffers that were written will now be uptodate, so 2258 * we don't have to worry about a read_folio reading them 2259 * and overwriting a partial write. However if we have 2260 * encountered a short write and only partially written 2261 * into a buffer, it will not be marked uptodate, so a 2262 * read_folio might come in and destroy our partial write. 2263 * 2264 * Do the simplest thing, and just treat any short write to a 2265 * non uptodate folio as a zero-length write, and force the 2266 * caller to redo the whole thing. 2267 */ 2268 if (!folio_test_uptodate(folio)) 2269 copied = 0; 2270 2271 folio_zero_new_buffers(folio, start+copied, start+len); 2272 } 2273 flush_dcache_folio(folio); 2274 2275 /* This could be a short (even 0-length) commit */ 2276 __block_commit_write(folio, start, start + copied); 2277 2278 return copied; 2279 } 2280 EXPORT_SYMBOL(block_write_end); 2281 2282 int generic_write_end(struct file *file, struct address_space *mapping, 2283 loff_t pos, unsigned len, unsigned copied, 2284 struct page *page, void *fsdata) 2285 { 2286 struct inode *inode = mapping->host; 2287 loff_t old_size = inode->i_size; 2288 bool i_size_changed = false; 2289 2290 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2291 2292 /* 2293 * No need to use i_size_read() here, the i_size cannot change under us 2294 * because we hold i_rwsem. 2295 * 2296 * But it's important to update i_size while still holding page lock: 2297 * page writeout could otherwise come in and zero beyond i_size. 2298 */ 2299 if (pos + copied > inode->i_size) { 2300 i_size_write(inode, pos + copied); 2301 i_size_changed = true; 2302 } 2303 2304 unlock_page(page); 2305 put_page(page); 2306 2307 if (old_size < pos) 2308 pagecache_isize_extended(inode, old_size, pos); 2309 /* 2310 * Don't mark the inode dirty under page lock. First, it unnecessarily 2311 * makes the holding time of page lock longer. Second, it forces lock 2312 * ordering of page lock and transaction start for journaling 2313 * filesystems. 2314 */ 2315 if (i_size_changed) 2316 mark_inode_dirty(inode); 2317 return copied; 2318 } 2319 EXPORT_SYMBOL(generic_write_end); 2320 2321 /* 2322 * block_is_partially_uptodate checks whether buffers within a folio are 2323 * uptodate or not. 2324 * 2325 * Returns true if all buffers which correspond to the specified part 2326 * of the folio are uptodate. 2327 */ 2328 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2329 { 2330 unsigned block_start, block_end, blocksize; 2331 unsigned to; 2332 struct buffer_head *bh, *head; 2333 bool ret = true; 2334 2335 head = folio_buffers(folio); 2336 if (!head) 2337 return false; 2338 blocksize = head->b_size; 2339 to = min_t(unsigned, folio_size(folio) - from, count); 2340 to = from + to; 2341 if (from < blocksize && to > folio_size(folio) - blocksize) 2342 return false; 2343 2344 bh = head; 2345 block_start = 0; 2346 do { 2347 block_end = block_start + blocksize; 2348 if (block_end > from && block_start < to) { 2349 if (!buffer_uptodate(bh)) { 2350 ret = false; 2351 break; 2352 } 2353 if (block_end >= to) 2354 break; 2355 } 2356 block_start = block_end; 2357 bh = bh->b_this_page; 2358 } while (bh != head); 2359 2360 return ret; 2361 } 2362 EXPORT_SYMBOL(block_is_partially_uptodate); 2363 2364 /* 2365 * Generic "read_folio" function for block devices that have the normal 2366 * get_block functionality. This is most of the block device filesystems. 2367 * Reads the folio asynchronously --- the unlock_buffer() and 2368 * set/clear_buffer_uptodate() functions propagate buffer state into the 2369 * folio once IO has completed. 2370 */ 2371 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2372 { 2373 struct inode *inode = folio->mapping->host; 2374 sector_t iblock, lblock; 2375 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2376 size_t blocksize; 2377 int nr, i; 2378 int fully_mapped = 1; 2379 bool page_error = false; 2380 loff_t limit = i_size_read(inode); 2381 2382 /* This is needed for ext4. */ 2383 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2384 limit = inode->i_sb->s_maxbytes; 2385 2386 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2387 2388 head = folio_create_buffers(folio, inode, 0); 2389 blocksize = head->b_size; 2390 2391 iblock = div_u64(folio_pos(folio), blocksize); 2392 lblock = div_u64(limit + blocksize - 1, blocksize); 2393 bh = head; 2394 nr = 0; 2395 i = 0; 2396 2397 do { 2398 if (buffer_uptodate(bh)) 2399 continue; 2400 2401 if (!buffer_mapped(bh)) { 2402 int err = 0; 2403 2404 fully_mapped = 0; 2405 if (iblock < lblock) { 2406 WARN_ON(bh->b_size != blocksize); 2407 err = get_block(inode, iblock, bh, 0); 2408 if (err) { 2409 folio_set_error(folio); 2410 page_error = true; 2411 } 2412 } 2413 if (!buffer_mapped(bh)) { 2414 folio_zero_range(folio, i * blocksize, 2415 blocksize); 2416 if (!err) 2417 set_buffer_uptodate(bh); 2418 continue; 2419 } 2420 /* 2421 * get_block() might have updated the buffer 2422 * synchronously 2423 */ 2424 if (buffer_uptodate(bh)) 2425 continue; 2426 } 2427 arr[nr++] = bh; 2428 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2429 2430 if (fully_mapped) 2431 folio_set_mappedtodisk(folio); 2432 2433 if (!nr) { 2434 /* 2435 * All buffers are uptodate or get_block() returned an 2436 * error when trying to map them - we can finish the read. 2437 */ 2438 folio_end_read(folio, !page_error); 2439 return 0; 2440 } 2441 2442 /* Stage two: lock the buffers */ 2443 for (i = 0; i < nr; i++) { 2444 bh = arr[i]; 2445 lock_buffer(bh); 2446 mark_buffer_async_read(bh); 2447 } 2448 2449 /* 2450 * Stage 3: start the IO. Check for uptodateness 2451 * inside the buffer lock in case another process reading 2452 * the underlying blockdev brought it uptodate (the sct fix). 2453 */ 2454 for (i = 0; i < nr; i++) { 2455 bh = arr[i]; 2456 if (buffer_uptodate(bh)) 2457 end_buffer_async_read(bh, 1); 2458 else 2459 submit_bh(REQ_OP_READ, bh); 2460 } 2461 return 0; 2462 } 2463 EXPORT_SYMBOL(block_read_full_folio); 2464 2465 /* utility function for filesystems that need to do work on expanding 2466 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2467 * deal with the hole. 2468 */ 2469 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2470 { 2471 struct address_space *mapping = inode->i_mapping; 2472 const struct address_space_operations *aops = mapping->a_ops; 2473 struct page *page; 2474 void *fsdata = NULL; 2475 int err; 2476 2477 err = inode_newsize_ok(inode, size); 2478 if (err) 2479 goto out; 2480 2481 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata); 2482 if (err) 2483 goto out; 2484 2485 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata); 2486 BUG_ON(err > 0); 2487 2488 out: 2489 return err; 2490 } 2491 EXPORT_SYMBOL(generic_cont_expand_simple); 2492 2493 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2494 loff_t pos, loff_t *bytes) 2495 { 2496 struct inode *inode = mapping->host; 2497 const struct address_space_operations *aops = mapping->a_ops; 2498 unsigned int blocksize = i_blocksize(inode); 2499 struct page *page; 2500 void *fsdata = NULL; 2501 pgoff_t index, curidx; 2502 loff_t curpos; 2503 unsigned zerofrom, offset, len; 2504 int err = 0; 2505 2506 index = pos >> PAGE_SHIFT; 2507 offset = pos & ~PAGE_MASK; 2508 2509 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2510 zerofrom = curpos & ~PAGE_MASK; 2511 if (zerofrom & (blocksize-1)) { 2512 *bytes |= (blocksize-1); 2513 (*bytes)++; 2514 } 2515 len = PAGE_SIZE - zerofrom; 2516 2517 err = aops->write_begin(file, mapping, curpos, len, 2518 &page, &fsdata); 2519 if (err) 2520 goto out; 2521 zero_user(page, zerofrom, len); 2522 err = aops->write_end(file, mapping, curpos, len, len, 2523 page, fsdata); 2524 if (err < 0) 2525 goto out; 2526 BUG_ON(err != len); 2527 err = 0; 2528 2529 balance_dirty_pages_ratelimited(mapping); 2530 2531 if (fatal_signal_pending(current)) { 2532 err = -EINTR; 2533 goto out; 2534 } 2535 } 2536 2537 /* page covers the boundary, find the boundary offset */ 2538 if (index == curidx) { 2539 zerofrom = curpos & ~PAGE_MASK; 2540 /* if we will expand the thing last block will be filled */ 2541 if (offset <= zerofrom) { 2542 goto out; 2543 } 2544 if (zerofrom & (blocksize-1)) { 2545 *bytes |= (blocksize-1); 2546 (*bytes)++; 2547 } 2548 len = offset - zerofrom; 2549 2550 err = aops->write_begin(file, mapping, curpos, len, 2551 &page, &fsdata); 2552 if (err) 2553 goto out; 2554 zero_user(page, zerofrom, len); 2555 err = aops->write_end(file, mapping, curpos, len, len, 2556 page, fsdata); 2557 if (err < 0) 2558 goto out; 2559 BUG_ON(err != len); 2560 err = 0; 2561 } 2562 out: 2563 return err; 2564 } 2565 2566 /* 2567 * For moronic filesystems that do not allow holes in file. 2568 * We may have to extend the file. 2569 */ 2570 int cont_write_begin(struct file *file, struct address_space *mapping, 2571 loff_t pos, unsigned len, 2572 struct page **pagep, void **fsdata, 2573 get_block_t *get_block, loff_t *bytes) 2574 { 2575 struct inode *inode = mapping->host; 2576 unsigned int blocksize = i_blocksize(inode); 2577 unsigned int zerofrom; 2578 int err; 2579 2580 err = cont_expand_zero(file, mapping, pos, bytes); 2581 if (err) 2582 return err; 2583 2584 zerofrom = *bytes & ~PAGE_MASK; 2585 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2586 *bytes |= (blocksize-1); 2587 (*bytes)++; 2588 } 2589 2590 return block_write_begin(mapping, pos, len, pagep, get_block); 2591 } 2592 EXPORT_SYMBOL(cont_write_begin); 2593 2594 void block_commit_write(struct page *page, unsigned from, unsigned to) 2595 { 2596 struct folio *folio = page_folio(page); 2597 __block_commit_write(folio, from, to); 2598 } 2599 EXPORT_SYMBOL(block_commit_write); 2600 2601 /* 2602 * block_page_mkwrite() is not allowed to change the file size as it gets 2603 * called from a page fault handler when a page is first dirtied. Hence we must 2604 * be careful to check for EOF conditions here. We set the page up correctly 2605 * for a written page which means we get ENOSPC checking when writing into 2606 * holes and correct delalloc and unwritten extent mapping on filesystems that 2607 * support these features. 2608 * 2609 * We are not allowed to take the i_mutex here so we have to play games to 2610 * protect against truncate races as the page could now be beyond EOF. Because 2611 * truncate writes the inode size before removing pages, once we have the 2612 * page lock we can determine safely if the page is beyond EOF. If it is not 2613 * beyond EOF, then the page is guaranteed safe against truncation until we 2614 * unlock the page. 2615 * 2616 * Direct callers of this function should protect against filesystem freezing 2617 * using sb_start_pagefault() - sb_end_pagefault() functions. 2618 */ 2619 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2620 get_block_t get_block) 2621 { 2622 struct folio *folio = page_folio(vmf->page); 2623 struct inode *inode = file_inode(vma->vm_file); 2624 unsigned long end; 2625 loff_t size; 2626 int ret; 2627 2628 folio_lock(folio); 2629 size = i_size_read(inode); 2630 if ((folio->mapping != inode->i_mapping) || 2631 (folio_pos(folio) >= size)) { 2632 /* We overload EFAULT to mean page got truncated */ 2633 ret = -EFAULT; 2634 goto out_unlock; 2635 } 2636 2637 end = folio_size(folio); 2638 /* folio is wholly or partially inside EOF */ 2639 if (folio_pos(folio) + end > size) 2640 end = size - folio_pos(folio); 2641 2642 ret = __block_write_begin_int(folio, 0, end, get_block, NULL); 2643 if (unlikely(ret)) 2644 goto out_unlock; 2645 2646 __block_commit_write(folio, 0, end); 2647 2648 folio_mark_dirty(folio); 2649 folio_wait_stable(folio); 2650 return 0; 2651 out_unlock: 2652 folio_unlock(folio); 2653 return ret; 2654 } 2655 EXPORT_SYMBOL(block_page_mkwrite); 2656 2657 int block_truncate_page(struct address_space *mapping, 2658 loff_t from, get_block_t *get_block) 2659 { 2660 pgoff_t index = from >> PAGE_SHIFT; 2661 unsigned blocksize; 2662 sector_t iblock; 2663 size_t offset, length, pos; 2664 struct inode *inode = mapping->host; 2665 struct folio *folio; 2666 struct buffer_head *bh; 2667 int err = 0; 2668 2669 blocksize = i_blocksize(inode); 2670 length = from & (blocksize - 1); 2671 2672 /* Block boundary? Nothing to do */ 2673 if (!length) 2674 return 0; 2675 2676 length = blocksize - length; 2677 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits; 2678 2679 folio = filemap_grab_folio(mapping, index); 2680 if (IS_ERR(folio)) 2681 return PTR_ERR(folio); 2682 2683 bh = folio_buffers(folio); 2684 if (!bh) 2685 bh = create_empty_buffers(folio, blocksize, 0); 2686 2687 /* Find the buffer that contains "offset" */ 2688 offset = offset_in_folio(folio, from); 2689 pos = blocksize; 2690 while (offset >= pos) { 2691 bh = bh->b_this_page; 2692 iblock++; 2693 pos += blocksize; 2694 } 2695 2696 if (!buffer_mapped(bh)) { 2697 WARN_ON(bh->b_size != blocksize); 2698 err = get_block(inode, iblock, bh, 0); 2699 if (err) 2700 goto unlock; 2701 /* unmapped? It's a hole - nothing to do */ 2702 if (!buffer_mapped(bh)) 2703 goto unlock; 2704 } 2705 2706 /* Ok, it's mapped. Make sure it's up-to-date */ 2707 if (folio_test_uptodate(folio)) 2708 set_buffer_uptodate(bh); 2709 2710 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2711 err = bh_read(bh, 0); 2712 /* Uhhuh. Read error. Complain and punt. */ 2713 if (err < 0) 2714 goto unlock; 2715 } 2716 2717 folio_zero_range(folio, offset, length); 2718 mark_buffer_dirty(bh); 2719 2720 unlock: 2721 folio_unlock(folio); 2722 folio_put(folio); 2723 2724 return err; 2725 } 2726 EXPORT_SYMBOL(block_truncate_page); 2727 2728 /* 2729 * The generic ->writepage function for buffer-backed address_spaces 2730 */ 2731 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc, 2732 void *get_block) 2733 { 2734 struct inode * const inode = folio->mapping->host; 2735 loff_t i_size = i_size_read(inode); 2736 2737 /* Is the folio fully inside i_size? */ 2738 if (folio_pos(folio) + folio_size(folio) <= i_size) 2739 return __block_write_full_folio(inode, folio, get_block, wbc); 2740 2741 /* Is the folio fully outside i_size? (truncate in progress) */ 2742 if (folio_pos(folio) >= i_size) { 2743 folio_unlock(folio); 2744 return 0; /* don't care */ 2745 } 2746 2747 /* 2748 * The folio straddles i_size. It must be zeroed out on each and every 2749 * writepage invocation because it may be mmapped. "A file is mapped 2750 * in multiples of the page size. For a file that is not a multiple of 2751 * the page size, the remaining memory is zeroed when mapped, and 2752 * writes to that region are not written out to the file." 2753 */ 2754 folio_zero_segment(folio, offset_in_folio(folio, i_size), 2755 folio_size(folio)); 2756 return __block_write_full_folio(inode, folio, get_block, wbc); 2757 } 2758 2759 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2760 get_block_t *get_block) 2761 { 2762 struct inode *inode = mapping->host; 2763 struct buffer_head tmp = { 2764 .b_size = i_blocksize(inode), 2765 }; 2766 2767 get_block(inode, block, &tmp, 0); 2768 return tmp.b_blocknr; 2769 } 2770 EXPORT_SYMBOL(generic_block_bmap); 2771 2772 static void end_bio_bh_io_sync(struct bio *bio) 2773 { 2774 struct buffer_head *bh = bio->bi_private; 2775 2776 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2777 set_bit(BH_Quiet, &bh->b_state); 2778 2779 bh->b_end_io(bh, !bio->bi_status); 2780 bio_put(bio); 2781 } 2782 2783 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2784 enum rw_hint write_hint, 2785 struct writeback_control *wbc) 2786 { 2787 const enum req_op op = opf & REQ_OP_MASK; 2788 struct bio *bio; 2789 2790 BUG_ON(!buffer_locked(bh)); 2791 BUG_ON(!buffer_mapped(bh)); 2792 BUG_ON(!bh->b_end_io); 2793 BUG_ON(buffer_delay(bh)); 2794 BUG_ON(buffer_unwritten(bh)); 2795 2796 /* 2797 * Only clear out a write error when rewriting 2798 */ 2799 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2800 clear_buffer_write_io_error(bh); 2801 2802 if (buffer_meta(bh)) 2803 opf |= REQ_META; 2804 if (buffer_prio(bh)) 2805 opf |= REQ_PRIO; 2806 2807 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2808 2809 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2810 2811 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2812 bio->bi_write_hint = write_hint; 2813 2814 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2815 2816 bio->bi_end_io = end_bio_bh_io_sync; 2817 bio->bi_private = bh; 2818 2819 /* Take care of bh's that straddle the end of the device */ 2820 guard_bio_eod(bio); 2821 2822 if (wbc) { 2823 wbc_init_bio(wbc, bio); 2824 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2825 } 2826 2827 submit_bio(bio); 2828 } 2829 2830 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2831 { 2832 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL); 2833 } 2834 EXPORT_SYMBOL(submit_bh); 2835 2836 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2837 { 2838 lock_buffer(bh); 2839 if (!test_clear_buffer_dirty(bh)) { 2840 unlock_buffer(bh); 2841 return; 2842 } 2843 bh->b_end_io = end_buffer_write_sync; 2844 get_bh(bh); 2845 submit_bh(REQ_OP_WRITE | op_flags, bh); 2846 } 2847 EXPORT_SYMBOL(write_dirty_buffer); 2848 2849 /* 2850 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2851 * and then start new I/O and then wait upon it. The caller must have a ref on 2852 * the buffer_head. 2853 */ 2854 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2855 { 2856 WARN_ON(atomic_read(&bh->b_count) < 1); 2857 lock_buffer(bh); 2858 if (test_clear_buffer_dirty(bh)) { 2859 /* 2860 * The bh should be mapped, but it might not be if the 2861 * device was hot-removed. Not much we can do but fail the I/O. 2862 */ 2863 if (!buffer_mapped(bh)) { 2864 unlock_buffer(bh); 2865 return -EIO; 2866 } 2867 2868 get_bh(bh); 2869 bh->b_end_io = end_buffer_write_sync; 2870 submit_bh(REQ_OP_WRITE | op_flags, bh); 2871 wait_on_buffer(bh); 2872 if (!buffer_uptodate(bh)) 2873 return -EIO; 2874 } else { 2875 unlock_buffer(bh); 2876 } 2877 return 0; 2878 } 2879 EXPORT_SYMBOL(__sync_dirty_buffer); 2880 2881 int sync_dirty_buffer(struct buffer_head *bh) 2882 { 2883 return __sync_dirty_buffer(bh, REQ_SYNC); 2884 } 2885 EXPORT_SYMBOL(sync_dirty_buffer); 2886 2887 static inline int buffer_busy(struct buffer_head *bh) 2888 { 2889 return atomic_read(&bh->b_count) | 2890 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2891 } 2892 2893 static bool 2894 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2895 { 2896 struct buffer_head *head = folio_buffers(folio); 2897 struct buffer_head *bh; 2898 2899 bh = head; 2900 do { 2901 if (buffer_busy(bh)) 2902 goto failed; 2903 bh = bh->b_this_page; 2904 } while (bh != head); 2905 2906 do { 2907 struct buffer_head *next = bh->b_this_page; 2908 2909 if (bh->b_assoc_map) 2910 __remove_assoc_queue(bh); 2911 bh = next; 2912 } while (bh != head); 2913 *buffers_to_free = head; 2914 folio_detach_private(folio); 2915 return true; 2916 failed: 2917 return false; 2918 } 2919 2920 /** 2921 * try_to_free_buffers - Release buffers attached to this folio. 2922 * @folio: The folio. 2923 * 2924 * If any buffers are in use (dirty, under writeback, elevated refcount), 2925 * no buffers will be freed. 2926 * 2927 * If the folio is dirty but all the buffers are clean then we need to 2928 * be sure to mark the folio clean as well. This is because the folio 2929 * may be against a block device, and a later reattachment of buffers 2930 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2931 * filesystem data on the same device. 2932 * 2933 * The same applies to regular filesystem folios: if all the buffers are 2934 * clean then we set the folio clean and proceed. To do that, we require 2935 * total exclusion from block_dirty_folio(). That is obtained with 2936 * i_private_lock. 2937 * 2938 * Exclusion against try_to_free_buffers may be obtained by either 2939 * locking the folio or by holding its mapping's i_private_lock. 2940 * 2941 * Context: Process context. @folio must be locked. Will not sleep. 2942 * Return: true if all buffers attached to this folio were freed. 2943 */ 2944 bool try_to_free_buffers(struct folio *folio) 2945 { 2946 struct address_space * const mapping = folio->mapping; 2947 struct buffer_head *buffers_to_free = NULL; 2948 bool ret = 0; 2949 2950 BUG_ON(!folio_test_locked(folio)); 2951 if (folio_test_writeback(folio)) 2952 return false; 2953 2954 if (mapping == NULL) { /* can this still happen? */ 2955 ret = drop_buffers(folio, &buffers_to_free); 2956 goto out; 2957 } 2958 2959 spin_lock(&mapping->i_private_lock); 2960 ret = drop_buffers(folio, &buffers_to_free); 2961 2962 /* 2963 * If the filesystem writes its buffers by hand (eg ext3) 2964 * then we can have clean buffers against a dirty folio. We 2965 * clean the folio here; otherwise the VM will never notice 2966 * that the filesystem did any IO at all. 2967 * 2968 * Also, during truncate, discard_buffer will have marked all 2969 * the folio's buffers clean. We discover that here and clean 2970 * the folio also. 2971 * 2972 * i_private_lock must be held over this entire operation in order 2973 * to synchronise against block_dirty_folio and prevent the 2974 * dirty bit from being lost. 2975 */ 2976 if (ret) 2977 folio_cancel_dirty(folio); 2978 spin_unlock(&mapping->i_private_lock); 2979 out: 2980 if (buffers_to_free) { 2981 struct buffer_head *bh = buffers_to_free; 2982 2983 do { 2984 struct buffer_head *next = bh->b_this_page; 2985 free_buffer_head(bh); 2986 bh = next; 2987 } while (bh != buffers_to_free); 2988 } 2989 return ret; 2990 } 2991 EXPORT_SYMBOL(try_to_free_buffers); 2992 2993 /* 2994 * Buffer-head allocation 2995 */ 2996 static struct kmem_cache *bh_cachep __ro_after_init; 2997 2998 /* 2999 * Once the number of bh's in the machine exceeds this level, we start 3000 * stripping them in writeback. 3001 */ 3002 static unsigned long max_buffer_heads __ro_after_init; 3003 3004 int buffer_heads_over_limit; 3005 3006 struct bh_accounting { 3007 int nr; /* Number of live bh's */ 3008 int ratelimit; /* Limit cacheline bouncing */ 3009 }; 3010 3011 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3012 3013 static void recalc_bh_state(void) 3014 { 3015 int i; 3016 int tot = 0; 3017 3018 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3019 return; 3020 __this_cpu_write(bh_accounting.ratelimit, 0); 3021 for_each_online_cpu(i) 3022 tot += per_cpu(bh_accounting, i).nr; 3023 buffer_heads_over_limit = (tot > max_buffer_heads); 3024 } 3025 3026 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3027 { 3028 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3029 if (ret) { 3030 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3031 spin_lock_init(&ret->b_uptodate_lock); 3032 preempt_disable(); 3033 __this_cpu_inc(bh_accounting.nr); 3034 recalc_bh_state(); 3035 preempt_enable(); 3036 } 3037 return ret; 3038 } 3039 EXPORT_SYMBOL(alloc_buffer_head); 3040 3041 void free_buffer_head(struct buffer_head *bh) 3042 { 3043 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3044 kmem_cache_free(bh_cachep, bh); 3045 preempt_disable(); 3046 __this_cpu_dec(bh_accounting.nr); 3047 recalc_bh_state(); 3048 preempt_enable(); 3049 } 3050 EXPORT_SYMBOL(free_buffer_head); 3051 3052 static int buffer_exit_cpu_dead(unsigned int cpu) 3053 { 3054 int i; 3055 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3056 3057 for (i = 0; i < BH_LRU_SIZE; i++) { 3058 brelse(b->bhs[i]); 3059 b->bhs[i] = NULL; 3060 } 3061 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3062 per_cpu(bh_accounting, cpu).nr = 0; 3063 return 0; 3064 } 3065 3066 /** 3067 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3068 * @bh: struct buffer_head 3069 * 3070 * Return true if the buffer is up-to-date and false, 3071 * with the buffer locked, if not. 3072 */ 3073 int bh_uptodate_or_lock(struct buffer_head *bh) 3074 { 3075 if (!buffer_uptodate(bh)) { 3076 lock_buffer(bh); 3077 if (!buffer_uptodate(bh)) 3078 return 0; 3079 unlock_buffer(bh); 3080 } 3081 return 1; 3082 } 3083 EXPORT_SYMBOL(bh_uptodate_or_lock); 3084 3085 /** 3086 * __bh_read - Submit read for a locked buffer 3087 * @bh: struct buffer_head 3088 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3089 * @wait: wait until reading finish 3090 * 3091 * Returns zero on success or don't wait, and -EIO on error. 3092 */ 3093 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3094 { 3095 int ret = 0; 3096 3097 BUG_ON(!buffer_locked(bh)); 3098 3099 get_bh(bh); 3100 bh->b_end_io = end_buffer_read_sync; 3101 submit_bh(REQ_OP_READ | op_flags, bh); 3102 if (wait) { 3103 wait_on_buffer(bh); 3104 if (!buffer_uptodate(bh)) 3105 ret = -EIO; 3106 } 3107 return ret; 3108 } 3109 EXPORT_SYMBOL(__bh_read); 3110 3111 /** 3112 * __bh_read_batch - Submit read for a batch of unlocked buffers 3113 * @nr: entry number of the buffer batch 3114 * @bhs: a batch of struct buffer_head 3115 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3116 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3117 * buffer that cannot lock. 3118 * 3119 * Returns zero on success or don't wait, and -EIO on error. 3120 */ 3121 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3122 blk_opf_t op_flags, bool force_lock) 3123 { 3124 int i; 3125 3126 for (i = 0; i < nr; i++) { 3127 struct buffer_head *bh = bhs[i]; 3128 3129 if (buffer_uptodate(bh)) 3130 continue; 3131 3132 if (force_lock) 3133 lock_buffer(bh); 3134 else 3135 if (!trylock_buffer(bh)) 3136 continue; 3137 3138 if (buffer_uptodate(bh)) { 3139 unlock_buffer(bh); 3140 continue; 3141 } 3142 3143 bh->b_end_io = end_buffer_read_sync; 3144 get_bh(bh); 3145 submit_bh(REQ_OP_READ | op_flags, bh); 3146 } 3147 } 3148 EXPORT_SYMBOL(__bh_read_batch); 3149 3150 void __init buffer_init(void) 3151 { 3152 unsigned long nrpages; 3153 int ret; 3154 3155 bh_cachep = KMEM_CACHE(buffer_head, 3156 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC); 3157 /* 3158 * Limit the bh occupancy to 10% of ZONE_NORMAL 3159 */ 3160 nrpages = (nr_free_buffer_pages() * 10) / 100; 3161 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3162 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3163 NULL, buffer_exit_cpu_dead); 3164 WARN_ON(ret < 0); 3165 } 3166