1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/sched/signal.h> 23 #include <linux/syscalls.h> 24 #include <linux/fs.h> 25 #include <linux/iomap.h> 26 #include <linux/mm.h> 27 #include <linux/percpu.h> 28 #include <linux/slab.h> 29 #include <linux/capability.h> 30 #include <linux/blkdev.h> 31 #include <linux/file.h> 32 #include <linux/quotaops.h> 33 #include <linux/highmem.h> 34 #include <linux/export.h> 35 #include <linux/backing-dev.h> 36 #include <linux/writeback.h> 37 #include <linux/hash.h> 38 #include <linux/suspend.h> 39 #include <linux/buffer_head.h> 40 #include <linux/task_io_accounting_ops.h> 41 #include <linux/bio.h> 42 #include <linux/notifier.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <trace/events/block.h> 49 50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 52 enum rw_hint hint, struct writeback_control *wbc); 53 54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 55 56 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 57 { 58 bh->b_end_io = handler; 59 bh->b_private = private; 60 } 61 EXPORT_SYMBOL(init_buffer); 62 63 inline void touch_buffer(struct buffer_head *bh) 64 { 65 trace_block_touch_buffer(bh); 66 mark_page_accessed(bh->b_page); 67 } 68 EXPORT_SYMBOL(touch_buffer); 69 70 void __lock_buffer(struct buffer_head *bh) 71 { 72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 73 } 74 EXPORT_SYMBOL(__lock_buffer); 75 76 void unlock_buffer(struct buffer_head *bh) 77 { 78 clear_bit_unlock(BH_Lock, &bh->b_state); 79 smp_mb__after_atomic(); 80 wake_up_bit(&bh->b_state, BH_Lock); 81 } 82 EXPORT_SYMBOL(unlock_buffer); 83 84 /* 85 * Returns if the page has dirty or writeback buffers. If all the buffers 86 * are unlocked and clean then the PageDirty information is stale. If 87 * any of the pages are locked, it is assumed they are locked for IO. 88 */ 89 void buffer_check_dirty_writeback(struct page *page, 90 bool *dirty, bool *writeback) 91 { 92 struct buffer_head *head, *bh; 93 *dirty = false; 94 *writeback = false; 95 96 BUG_ON(!PageLocked(page)); 97 98 if (!page_has_buffers(page)) 99 return; 100 101 if (PageWriteback(page)) 102 *writeback = true; 103 104 head = page_buffers(page); 105 bh = head; 106 do { 107 if (buffer_locked(bh)) 108 *writeback = true; 109 110 if (buffer_dirty(bh)) 111 *dirty = true; 112 113 bh = bh->b_this_page; 114 } while (bh != head); 115 } 116 EXPORT_SYMBOL(buffer_check_dirty_writeback); 117 118 /* 119 * Block until a buffer comes unlocked. This doesn't stop it 120 * from becoming locked again - you have to lock it yourself 121 * if you want to preserve its state. 122 */ 123 void __wait_on_buffer(struct buffer_head * bh) 124 { 125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 126 } 127 EXPORT_SYMBOL(__wait_on_buffer); 128 129 static void 130 __clear_page_buffers(struct page *page) 131 { 132 ClearPagePrivate(page); 133 set_page_private(page, 0); 134 put_page(page); 135 } 136 137 static void buffer_io_error(struct buffer_head *bh, char *msg) 138 { 139 if (!test_bit(BH_Quiet, &bh->b_state)) 140 printk_ratelimited(KERN_ERR 141 "Buffer I/O error on dev %pg, logical block %llu%s\n", 142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 143 } 144 145 /* 146 * End-of-IO handler helper function which does not touch the bh after 147 * unlocking it. 148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 149 * a race there is benign: unlock_buffer() only use the bh's address for 150 * hashing after unlocking the buffer, so it doesn't actually touch the bh 151 * itself. 152 */ 153 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 154 { 155 if (uptodate) { 156 set_buffer_uptodate(bh); 157 } else { 158 /* This happens, due to failed read-ahead attempts. */ 159 clear_buffer_uptodate(bh); 160 } 161 unlock_buffer(bh); 162 } 163 164 /* 165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 166 * unlock the buffer. This is what ll_rw_block uses too. 167 */ 168 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 169 { 170 __end_buffer_read_notouch(bh, uptodate); 171 put_bh(bh); 172 } 173 EXPORT_SYMBOL(end_buffer_read_sync); 174 175 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 176 { 177 if (uptodate) { 178 set_buffer_uptodate(bh); 179 } else { 180 buffer_io_error(bh, ", lost sync page write"); 181 mark_buffer_write_io_error(bh); 182 clear_buffer_uptodate(bh); 183 } 184 unlock_buffer(bh); 185 put_bh(bh); 186 } 187 EXPORT_SYMBOL(end_buffer_write_sync); 188 189 /* 190 * Various filesystems appear to want __find_get_block to be non-blocking. 191 * But it's the page lock which protects the buffers. To get around this, 192 * we get exclusion from try_to_free_buffers with the blockdev mapping's 193 * private_lock. 194 * 195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 196 * may be quite high. This code could TryLock the page, and if that 197 * succeeds, there is no need to take private_lock. (But if 198 * private_lock is contended then so is mapping->tree_lock). 199 */ 200 static struct buffer_head * 201 __find_get_block_slow(struct block_device *bdev, sector_t block) 202 { 203 struct inode *bd_inode = bdev->bd_inode; 204 struct address_space *bd_mapping = bd_inode->i_mapping; 205 struct buffer_head *ret = NULL; 206 pgoff_t index; 207 struct buffer_head *bh; 208 struct buffer_head *head; 209 struct page *page; 210 int all_mapped = 1; 211 212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 214 if (!page) 215 goto out; 216 217 spin_lock(&bd_mapping->private_lock); 218 if (!page_has_buffers(page)) 219 goto out_unlock; 220 head = page_buffers(page); 221 bh = head; 222 do { 223 if (!buffer_mapped(bh)) 224 all_mapped = 0; 225 else if (bh->b_blocknr == block) { 226 ret = bh; 227 get_bh(bh); 228 goto out_unlock; 229 } 230 bh = bh->b_this_page; 231 } while (bh != head); 232 233 /* we might be here because some of the buffers on this page are 234 * not mapped. This is due to various races between 235 * file io on the block device and getblk. It gets dealt with 236 * elsewhere, don't buffer_error if we had some unmapped buffers 237 */ 238 if (all_mapped) { 239 printk("__find_get_block_slow() failed. " 240 "block=%llu, b_blocknr=%llu\n", 241 (unsigned long long)block, 242 (unsigned long long)bh->b_blocknr); 243 printk("b_state=0x%08lx, b_size=%zu\n", 244 bh->b_state, bh->b_size); 245 printk("device %pg blocksize: %d\n", bdev, 246 1 << bd_inode->i_blkbits); 247 } 248 out_unlock: 249 spin_unlock(&bd_mapping->private_lock); 250 put_page(page); 251 out: 252 return ret; 253 } 254 255 /* 256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 257 */ 258 static void free_more_memory(void) 259 { 260 struct zoneref *z; 261 int nid; 262 263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 264 yield(); 265 266 for_each_online_node(nid) { 267 268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 269 gfp_zone(GFP_NOFS), NULL); 270 if (z->zone) 271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 272 GFP_NOFS, NULL); 273 } 274 } 275 276 /* 277 * I/O completion handler for block_read_full_page() - pages 278 * which come unlocked at the end of I/O. 279 */ 280 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 281 { 282 unsigned long flags; 283 struct buffer_head *first; 284 struct buffer_head *tmp; 285 struct page *page; 286 int page_uptodate = 1; 287 288 BUG_ON(!buffer_async_read(bh)); 289 290 page = bh->b_page; 291 if (uptodate) { 292 set_buffer_uptodate(bh); 293 } else { 294 clear_buffer_uptodate(bh); 295 buffer_io_error(bh, ", async page read"); 296 SetPageError(page); 297 } 298 299 /* 300 * Be _very_ careful from here on. Bad things can happen if 301 * two buffer heads end IO at almost the same time and both 302 * decide that the page is now completely done. 303 */ 304 first = page_buffers(page); 305 local_irq_save(flags); 306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 307 clear_buffer_async_read(bh); 308 unlock_buffer(bh); 309 tmp = bh; 310 do { 311 if (!buffer_uptodate(tmp)) 312 page_uptodate = 0; 313 if (buffer_async_read(tmp)) { 314 BUG_ON(!buffer_locked(tmp)); 315 goto still_busy; 316 } 317 tmp = tmp->b_this_page; 318 } while (tmp != bh); 319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 320 local_irq_restore(flags); 321 322 /* 323 * If none of the buffers had errors and they are all 324 * uptodate then we can set the page uptodate. 325 */ 326 if (page_uptodate && !PageError(page)) 327 SetPageUptodate(page); 328 unlock_page(page); 329 return; 330 331 still_busy: 332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 333 local_irq_restore(flags); 334 return; 335 } 336 337 /* 338 * Completion handler for block_write_full_page() - pages which are unlocked 339 * during I/O, and which have PageWriteback cleared upon I/O completion. 340 */ 341 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 342 { 343 unsigned long flags; 344 struct buffer_head *first; 345 struct buffer_head *tmp; 346 struct page *page; 347 348 BUG_ON(!buffer_async_write(bh)); 349 350 page = bh->b_page; 351 if (uptodate) { 352 set_buffer_uptodate(bh); 353 } else { 354 buffer_io_error(bh, ", lost async page write"); 355 mark_buffer_write_io_error(bh); 356 clear_buffer_uptodate(bh); 357 SetPageError(page); 358 } 359 360 first = page_buffers(page); 361 local_irq_save(flags); 362 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 363 364 clear_buffer_async_write(bh); 365 unlock_buffer(bh); 366 tmp = bh->b_this_page; 367 while (tmp != bh) { 368 if (buffer_async_write(tmp)) { 369 BUG_ON(!buffer_locked(tmp)); 370 goto still_busy; 371 } 372 tmp = tmp->b_this_page; 373 } 374 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 375 local_irq_restore(flags); 376 end_page_writeback(page); 377 return; 378 379 still_busy: 380 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 381 local_irq_restore(flags); 382 return; 383 } 384 EXPORT_SYMBOL(end_buffer_async_write); 385 386 /* 387 * If a page's buffers are under async readin (end_buffer_async_read 388 * completion) then there is a possibility that another thread of 389 * control could lock one of the buffers after it has completed 390 * but while some of the other buffers have not completed. This 391 * locked buffer would confuse end_buffer_async_read() into not unlocking 392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 393 * that this buffer is not under async I/O. 394 * 395 * The page comes unlocked when it has no locked buffer_async buffers 396 * left. 397 * 398 * PageLocked prevents anyone starting new async I/O reads any of 399 * the buffers. 400 * 401 * PageWriteback is used to prevent simultaneous writeout of the same 402 * page. 403 * 404 * PageLocked prevents anyone from starting writeback of a page which is 405 * under read I/O (PageWriteback is only ever set against a locked page). 406 */ 407 static void mark_buffer_async_read(struct buffer_head *bh) 408 { 409 bh->b_end_io = end_buffer_async_read; 410 set_buffer_async_read(bh); 411 } 412 413 static void mark_buffer_async_write_endio(struct buffer_head *bh, 414 bh_end_io_t *handler) 415 { 416 bh->b_end_io = handler; 417 set_buffer_async_write(bh); 418 } 419 420 void mark_buffer_async_write(struct buffer_head *bh) 421 { 422 mark_buffer_async_write_endio(bh, end_buffer_async_write); 423 } 424 EXPORT_SYMBOL(mark_buffer_async_write); 425 426 427 /* 428 * fs/buffer.c contains helper functions for buffer-backed address space's 429 * fsync functions. A common requirement for buffer-based filesystems is 430 * that certain data from the backing blockdev needs to be written out for 431 * a successful fsync(). For example, ext2 indirect blocks need to be 432 * written back and waited upon before fsync() returns. 433 * 434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 436 * management of a list of dependent buffers at ->i_mapping->private_list. 437 * 438 * Locking is a little subtle: try_to_free_buffers() will remove buffers 439 * from their controlling inode's queue when they are being freed. But 440 * try_to_free_buffers() will be operating against the *blockdev* mapping 441 * at the time, not against the S_ISREG file which depends on those buffers. 442 * So the locking for private_list is via the private_lock in the address_space 443 * which backs the buffers. Which is different from the address_space 444 * against which the buffers are listed. So for a particular address_space, 445 * mapping->private_lock does *not* protect mapping->private_list! In fact, 446 * mapping->private_list will always be protected by the backing blockdev's 447 * ->private_lock. 448 * 449 * Which introduces a requirement: all buffers on an address_space's 450 * ->private_list must be from the same address_space: the blockdev's. 451 * 452 * address_spaces which do not place buffers at ->private_list via these 453 * utility functions are free to use private_lock and private_list for 454 * whatever they want. The only requirement is that list_empty(private_list) 455 * be true at clear_inode() time. 456 * 457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 458 * filesystems should do that. invalidate_inode_buffers() should just go 459 * BUG_ON(!list_empty). 460 * 461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 462 * take an address_space, not an inode. And it should be called 463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 464 * queued up. 465 * 466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 467 * list if it is already on a list. Because if the buffer is on a list, 468 * it *must* already be on the right one. If not, the filesystem is being 469 * silly. This will save a ton of locking. But first we have to ensure 470 * that buffers are taken *off* the old inode's list when they are freed 471 * (presumably in truncate). That requires careful auditing of all 472 * filesystems (do it inside bforget()). It could also be done by bringing 473 * b_inode back. 474 */ 475 476 /* 477 * The buffer's backing address_space's private_lock must be held 478 */ 479 static void __remove_assoc_queue(struct buffer_head *bh) 480 { 481 list_del_init(&bh->b_assoc_buffers); 482 WARN_ON(!bh->b_assoc_map); 483 bh->b_assoc_map = NULL; 484 } 485 486 int inode_has_buffers(struct inode *inode) 487 { 488 return !list_empty(&inode->i_data.private_list); 489 } 490 491 /* 492 * osync is designed to support O_SYNC io. It waits synchronously for 493 * all already-submitted IO to complete, but does not queue any new 494 * writes to the disk. 495 * 496 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 497 * you dirty the buffers, and then use osync_inode_buffers to wait for 498 * completion. Any other dirty buffers which are not yet queued for 499 * write will not be flushed to disk by the osync. 500 */ 501 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 502 { 503 struct buffer_head *bh; 504 struct list_head *p; 505 int err = 0; 506 507 spin_lock(lock); 508 repeat: 509 list_for_each_prev(p, list) { 510 bh = BH_ENTRY(p); 511 if (buffer_locked(bh)) { 512 get_bh(bh); 513 spin_unlock(lock); 514 wait_on_buffer(bh); 515 if (!buffer_uptodate(bh)) 516 err = -EIO; 517 brelse(bh); 518 spin_lock(lock); 519 goto repeat; 520 } 521 } 522 spin_unlock(lock); 523 return err; 524 } 525 526 static void do_thaw_one(struct super_block *sb, void *unused) 527 { 528 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 529 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 530 } 531 532 static void do_thaw_all(struct work_struct *work) 533 { 534 iterate_supers(do_thaw_one, NULL); 535 kfree(work); 536 printk(KERN_WARNING "Emergency Thaw complete\n"); 537 } 538 539 /** 540 * emergency_thaw_all -- forcibly thaw every frozen filesystem 541 * 542 * Used for emergency unfreeze of all filesystems via SysRq 543 */ 544 void emergency_thaw_all(void) 545 { 546 struct work_struct *work; 547 548 work = kmalloc(sizeof(*work), GFP_ATOMIC); 549 if (work) { 550 INIT_WORK(work, do_thaw_all); 551 schedule_work(work); 552 } 553 } 554 555 /** 556 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 557 * @mapping: the mapping which wants those buffers written 558 * 559 * Starts I/O against the buffers at mapping->private_list, and waits upon 560 * that I/O. 561 * 562 * Basically, this is a convenience function for fsync(). 563 * @mapping is a file or directory which needs those buffers to be written for 564 * a successful fsync(). 565 */ 566 int sync_mapping_buffers(struct address_space *mapping) 567 { 568 struct address_space *buffer_mapping = mapping->private_data; 569 570 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 571 return 0; 572 573 return fsync_buffers_list(&buffer_mapping->private_lock, 574 &mapping->private_list); 575 } 576 EXPORT_SYMBOL(sync_mapping_buffers); 577 578 /* 579 * Called when we've recently written block `bblock', and it is known that 580 * `bblock' was for a buffer_boundary() buffer. This means that the block at 581 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 582 * dirty, schedule it for IO. So that indirects merge nicely with their data. 583 */ 584 void write_boundary_block(struct block_device *bdev, 585 sector_t bblock, unsigned blocksize) 586 { 587 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 588 if (bh) { 589 if (buffer_dirty(bh)) 590 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 591 put_bh(bh); 592 } 593 } 594 595 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 596 { 597 struct address_space *mapping = inode->i_mapping; 598 struct address_space *buffer_mapping = bh->b_page->mapping; 599 600 mark_buffer_dirty(bh); 601 if (!mapping->private_data) { 602 mapping->private_data = buffer_mapping; 603 } else { 604 BUG_ON(mapping->private_data != buffer_mapping); 605 } 606 if (!bh->b_assoc_map) { 607 spin_lock(&buffer_mapping->private_lock); 608 list_move_tail(&bh->b_assoc_buffers, 609 &mapping->private_list); 610 bh->b_assoc_map = mapping; 611 spin_unlock(&buffer_mapping->private_lock); 612 } 613 } 614 EXPORT_SYMBOL(mark_buffer_dirty_inode); 615 616 /* 617 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 618 * dirty. 619 * 620 * If warn is true, then emit a warning if the page is not uptodate and has 621 * not been truncated. 622 * 623 * The caller must hold lock_page_memcg(). 624 */ 625 static void __set_page_dirty(struct page *page, struct address_space *mapping, 626 int warn) 627 { 628 unsigned long flags; 629 630 spin_lock_irqsave(&mapping->tree_lock, flags); 631 if (page->mapping) { /* Race with truncate? */ 632 WARN_ON_ONCE(warn && !PageUptodate(page)); 633 account_page_dirtied(page, mapping); 634 radix_tree_tag_set(&mapping->page_tree, 635 page_index(page), PAGECACHE_TAG_DIRTY); 636 } 637 spin_unlock_irqrestore(&mapping->tree_lock, flags); 638 } 639 640 /* 641 * Add a page to the dirty page list. 642 * 643 * It is a sad fact of life that this function is called from several places 644 * deeply under spinlocking. It may not sleep. 645 * 646 * If the page has buffers, the uptodate buffers are set dirty, to preserve 647 * dirty-state coherency between the page and the buffers. It the page does 648 * not have buffers then when they are later attached they will all be set 649 * dirty. 650 * 651 * The buffers are dirtied before the page is dirtied. There's a small race 652 * window in which a writepage caller may see the page cleanness but not the 653 * buffer dirtiness. That's fine. If this code were to set the page dirty 654 * before the buffers, a concurrent writepage caller could clear the page dirty 655 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 656 * page on the dirty page list. 657 * 658 * We use private_lock to lock against try_to_free_buffers while using the 659 * page's buffer list. Also use this to protect against clean buffers being 660 * added to the page after it was set dirty. 661 * 662 * FIXME: may need to call ->reservepage here as well. That's rather up to the 663 * address_space though. 664 */ 665 int __set_page_dirty_buffers(struct page *page) 666 { 667 int newly_dirty; 668 struct address_space *mapping = page_mapping(page); 669 670 if (unlikely(!mapping)) 671 return !TestSetPageDirty(page); 672 673 spin_lock(&mapping->private_lock); 674 if (page_has_buffers(page)) { 675 struct buffer_head *head = page_buffers(page); 676 struct buffer_head *bh = head; 677 678 do { 679 set_buffer_dirty(bh); 680 bh = bh->b_this_page; 681 } while (bh != head); 682 } 683 /* 684 * Lock out page->mem_cgroup migration to keep PageDirty 685 * synchronized with per-memcg dirty page counters. 686 */ 687 lock_page_memcg(page); 688 newly_dirty = !TestSetPageDirty(page); 689 spin_unlock(&mapping->private_lock); 690 691 if (newly_dirty) 692 __set_page_dirty(page, mapping, 1); 693 694 unlock_page_memcg(page); 695 696 if (newly_dirty) 697 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 698 699 return newly_dirty; 700 } 701 EXPORT_SYMBOL(__set_page_dirty_buffers); 702 703 /* 704 * Write out and wait upon a list of buffers. 705 * 706 * We have conflicting pressures: we want to make sure that all 707 * initially dirty buffers get waited on, but that any subsequently 708 * dirtied buffers don't. After all, we don't want fsync to last 709 * forever if somebody is actively writing to the file. 710 * 711 * Do this in two main stages: first we copy dirty buffers to a 712 * temporary inode list, queueing the writes as we go. Then we clean 713 * up, waiting for those writes to complete. 714 * 715 * During this second stage, any subsequent updates to the file may end 716 * up refiling the buffer on the original inode's dirty list again, so 717 * there is a chance we will end up with a buffer queued for write but 718 * not yet completed on that list. So, as a final cleanup we go through 719 * the osync code to catch these locked, dirty buffers without requeuing 720 * any newly dirty buffers for write. 721 */ 722 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 723 { 724 struct buffer_head *bh; 725 struct list_head tmp; 726 struct address_space *mapping; 727 int err = 0, err2; 728 struct blk_plug plug; 729 730 INIT_LIST_HEAD(&tmp); 731 blk_start_plug(&plug); 732 733 spin_lock(lock); 734 while (!list_empty(list)) { 735 bh = BH_ENTRY(list->next); 736 mapping = bh->b_assoc_map; 737 __remove_assoc_queue(bh); 738 /* Avoid race with mark_buffer_dirty_inode() which does 739 * a lockless check and we rely on seeing the dirty bit */ 740 smp_mb(); 741 if (buffer_dirty(bh) || buffer_locked(bh)) { 742 list_add(&bh->b_assoc_buffers, &tmp); 743 bh->b_assoc_map = mapping; 744 if (buffer_dirty(bh)) { 745 get_bh(bh); 746 spin_unlock(lock); 747 /* 748 * Ensure any pending I/O completes so that 749 * write_dirty_buffer() actually writes the 750 * current contents - it is a noop if I/O is 751 * still in flight on potentially older 752 * contents. 753 */ 754 write_dirty_buffer(bh, REQ_SYNC); 755 756 /* 757 * Kick off IO for the previous mapping. Note 758 * that we will not run the very last mapping, 759 * wait_on_buffer() will do that for us 760 * through sync_buffer(). 761 */ 762 brelse(bh); 763 spin_lock(lock); 764 } 765 } 766 } 767 768 spin_unlock(lock); 769 blk_finish_plug(&plug); 770 spin_lock(lock); 771 772 while (!list_empty(&tmp)) { 773 bh = BH_ENTRY(tmp.prev); 774 get_bh(bh); 775 mapping = bh->b_assoc_map; 776 __remove_assoc_queue(bh); 777 /* Avoid race with mark_buffer_dirty_inode() which does 778 * a lockless check and we rely on seeing the dirty bit */ 779 smp_mb(); 780 if (buffer_dirty(bh)) { 781 list_add(&bh->b_assoc_buffers, 782 &mapping->private_list); 783 bh->b_assoc_map = mapping; 784 } 785 spin_unlock(lock); 786 wait_on_buffer(bh); 787 if (!buffer_uptodate(bh)) 788 err = -EIO; 789 brelse(bh); 790 spin_lock(lock); 791 } 792 793 spin_unlock(lock); 794 err2 = osync_buffers_list(lock, list); 795 if (err) 796 return err; 797 else 798 return err2; 799 } 800 801 /* 802 * Invalidate any and all dirty buffers on a given inode. We are 803 * probably unmounting the fs, but that doesn't mean we have already 804 * done a sync(). Just drop the buffers from the inode list. 805 * 806 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 807 * assumes that all the buffers are against the blockdev. Not true 808 * for reiserfs. 809 */ 810 void invalidate_inode_buffers(struct inode *inode) 811 { 812 if (inode_has_buffers(inode)) { 813 struct address_space *mapping = &inode->i_data; 814 struct list_head *list = &mapping->private_list; 815 struct address_space *buffer_mapping = mapping->private_data; 816 817 spin_lock(&buffer_mapping->private_lock); 818 while (!list_empty(list)) 819 __remove_assoc_queue(BH_ENTRY(list->next)); 820 spin_unlock(&buffer_mapping->private_lock); 821 } 822 } 823 EXPORT_SYMBOL(invalidate_inode_buffers); 824 825 /* 826 * Remove any clean buffers from the inode's buffer list. This is called 827 * when we're trying to free the inode itself. Those buffers can pin it. 828 * 829 * Returns true if all buffers were removed. 830 */ 831 int remove_inode_buffers(struct inode *inode) 832 { 833 int ret = 1; 834 835 if (inode_has_buffers(inode)) { 836 struct address_space *mapping = &inode->i_data; 837 struct list_head *list = &mapping->private_list; 838 struct address_space *buffer_mapping = mapping->private_data; 839 840 spin_lock(&buffer_mapping->private_lock); 841 while (!list_empty(list)) { 842 struct buffer_head *bh = BH_ENTRY(list->next); 843 if (buffer_dirty(bh)) { 844 ret = 0; 845 break; 846 } 847 __remove_assoc_queue(bh); 848 } 849 spin_unlock(&buffer_mapping->private_lock); 850 } 851 return ret; 852 } 853 854 /* 855 * Create the appropriate buffers when given a page for data area and 856 * the size of each buffer.. Use the bh->b_this_page linked list to 857 * follow the buffers created. Return NULL if unable to create more 858 * buffers. 859 * 860 * The retry flag is used to differentiate async IO (paging, swapping) 861 * which may not fail from ordinary buffer allocations. 862 */ 863 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 864 int retry) 865 { 866 struct buffer_head *bh, *head; 867 long offset; 868 869 try_again: 870 head = NULL; 871 offset = PAGE_SIZE; 872 while ((offset -= size) >= 0) { 873 bh = alloc_buffer_head(GFP_NOFS); 874 if (!bh) 875 goto no_grow; 876 877 bh->b_this_page = head; 878 bh->b_blocknr = -1; 879 head = bh; 880 881 bh->b_size = size; 882 883 /* Link the buffer to its page */ 884 set_bh_page(bh, page, offset); 885 } 886 return head; 887 /* 888 * In case anything failed, we just free everything we got. 889 */ 890 no_grow: 891 if (head) { 892 do { 893 bh = head; 894 head = head->b_this_page; 895 free_buffer_head(bh); 896 } while (head); 897 } 898 899 /* 900 * Return failure for non-async IO requests. Async IO requests 901 * are not allowed to fail, so we have to wait until buffer heads 902 * become available. But we don't want tasks sleeping with 903 * partially complete buffers, so all were released above. 904 */ 905 if (!retry) 906 return NULL; 907 908 /* We're _really_ low on memory. Now we just 909 * wait for old buffer heads to become free due to 910 * finishing IO. Since this is an async request and 911 * the reserve list is empty, we're sure there are 912 * async buffer heads in use. 913 */ 914 free_more_memory(); 915 goto try_again; 916 } 917 EXPORT_SYMBOL_GPL(alloc_page_buffers); 918 919 static inline void 920 link_dev_buffers(struct page *page, struct buffer_head *head) 921 { 922 struct buffer_head *bh, *tail; 923 924 bh = head; 925 do { 926 tail = bh; 927 bh = bh->b_this_page; 928 } while (bh); 929 tail->b_this_page = head; 930 attach_page_buffers(page, head); 931 } 932 933 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 934 { 935 sector_t retval = ~((sector_t)0); 936 loff_t sz = i_size_read(bdev->bd_inode); 937 938 if (sz) { 939 unsigned int sizebits = blksize_bits(size); 940 retval = (sz >> sizebits); 941 } 942 return retval; 943 } 944 945 /* 946 * Initialise the state of a blockdev page's buffers. 947 */ 948 static sector_t 949 init_page_buffers(struct page *page, struct block_device *bdev, 950 sector_t block, int size) 951 { 952 struct buffer_head *head = page_buffers(page); 953 struct buffer_head *bh = head; 954 int uptodate = PageUptodate(page); 955 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 956 957 do { 958 if (!buffer_mapped(bh)) { 959 init_buffer(bh, NULL, NULL); 960 bh->b_bdev = bdev; 961 bh->b_blocknr = block; 962 if (uptodate) 963 set_buffer_uptodate(bh); 964 if (block < end_block) 965 set_buffer_mapped(bh); 966 } 967 block++; 968 bh = bh->b_this_page; 969 } while (bh != head); 970 971 /* 972 * Caller needs to validate requested block against end of device. 973 */ 974 return end_block; 975 } 976 977 /* 978 * Create the page-cache page that contains the requested block. 979 * 980 * This is used purely for blockdev mappings. 981 */ 982 static int 983 grow_dev_page(struct block_device *bdev, sector_t block, 984 pgoff_t index, int size, int sizebits, gfp_t gfp) 985 { 986 struct inode *inode = bdev->bd_inode; 987 struct page *page; 988 struct buffer_head *bh; 989 sector_t end_block; 990 int ret = 0; /* Will call free_more_memory() */ 991 gfp_t gfp_mask; 992 993 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 994 995 /* 996 * XXX: __getblk_slow() can not really deal with failure and 997 * will endlessly loop on improvised global reclaim. Prefer 998 * looping in the allocator rather than here, at least that 999 * code knows what it's doing. 1000 */ 1001 gfp_mask |= __GFP_NOFAIL; 1002 1003 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 1004 if (!page) 1005 return ret; 1006 1007 BUG_ON(!PageLocked(page)); 1008 1009 if (page_has_buffers(page)) { 1010 bh = page_buffers(page); 1011 if (bh->b_size == size) { 1012 end_block = init_page_buffers(page, bdev, 1013 (sector_t)index << sizebits, 1014 size); 1015 goto done; 1016 } 1017 if (!try_to_free_buffers(page)) 1018 goto failed; 1019 } 1020 1021 /* 1022 * Allocate some buffers for this page 1023 */ 1024 bh = alloc_page_buffers(page, size, 0); 1025 if (!bh) 1026 goto failed; 1027 1028 /* 1029 * Link the page to the buffers and initialise them. Take the 1030 * lock to be atomic wrt __find_get_block(), which does not 1031 * run under the page lock. 1032 */ 1033 spin_lock(&inode->i_mapping->private_lock); 1034 link_dev_buffers(page, bh); 1035 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1036 size); 1037 spin_unlock(&inode->i_mapping->private_lock); 1038 done: 1039 ret = (block < end_block) ? 1 : -ENXIO; 1040 failed: 1041 unlock_page(page); 1042 put_page(page); 1043 return ret; 1044 } 1045 1046 /* 1047 * Create buffers for the specified block device block's page. If 1048 * that page was dirty, the buffers are set dirty also. 1049 */ 1050 static int 1051 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1052 { 1053 pgoff_t index; 1054 int sizebits; 1055 1056 sizebits = -1; 1057 do { 1058 sizebits++; 1059 } while ((size << sizebits) < PAGE_SIZE); 1060 1061 index = block >> sizebits; 1062 1063 /* 1064 * Check for a block which wants to lie outside our maximum possible 1065 * pagecache index. (this comparison is done using sector_t types). 1066 */ 1067 if (unlikely(index != block >> sizebits)) { 1068 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1069 "device %pg\n", 1070 __func__, (unsigned long long)block, 1071 bdev); 1072 return -EIO; 1073 } 1074 1075 /* Create a page with the proper size buffers.. */ 1076 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1077 } 1078 1079 static struct buffer_head * 1080 __getblk_slow(struct block_device *bdev, sector_t block, 1081 unsigned size, gfp_t gfp) 1082 { 1083 /* Size must be multiple of hard sectorsize */ 1084 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1085 (size < 512 || size > PAGE_SIZE))) { 1086 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1087 size); 1088 printk(KERN_ERR "logical block size: %d\n", 1089 bdev_logical_block_size(bdev)); 1090 1091 dump_stack(); 1092 return NULL; 1093 } 1094 1095 for (;;) { 1096 struct buffer_head *bh; 1097 int ret; 1098 1099 bh = __find_get_block(bdev, block, size); 1100 if (bh) 1101 return bh; 1102 1103 ret = grow_buffers(bdev, block, size, gfp); 1104 if (ret < 0) 1105 return NULL; 1106 if (ret == 0) 1107 free_more_memory(); 1108 } 1109 } 1110 1111 /* 1112 * The relationship between dirty buffers and dirty pages: 1113 * 1114 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1115 * the page is tagged dirty in its radix tree. 1116 * 1117 * At all times, the dirtiness of the buffers represents the dirtiness of 1118 * subsections of the page. If the page has buffers, the page dirty bit is 1119 * merely a hint about the true dirty state. 1120 * 1121 * When a page is set dirty in its entirety, all its buffers are marked dirty 1122 * (if the page has buffers). 1123 * 1124 * When a buffer is marked dirty, its page is dirtied, but the page's other 1125 * buffers are not. 1126 * 1127 * Also. When blockdev buffers are explicitly read with bread(), they 1128 * individually become uptodate. But their backing page remains not 1129 * uptodate - even if all of its buffers are uptodate. A subsequent 1130 * block_read_full_page() against that page will discover all the uptodate 1131 * buffers, will set the page uptodate and will perform no I/O. 1132 */ 1133 1134 /** 1135 * mark_buffer_dirty - mark a buffer_head as needing writeout 1136 * @bh: the buffer_head to mark dirty 1137 * 1138 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1139 * backing page dirty, then tag the page as dirty in its address_space's radix 1140 * tree and then attach the address_space's inode to its superblock's dirty 1141 * inode list. 1142 * 1143 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1144 * mapping->tree_lock and mapping->host->i_lock. 1145 */ 1146 void mark_buffer_dirty(struct buffer_head *bh) 1147 { 1148 WARN_ON_ONCE(!buffer_uptodate(bh)); 1149 1150 trace_block_dirty_buffer(bh); 1151 1152 /* 1153 * Very *carefully* optimize the it-is-already-dirty case. 1154 * 1155 * Don't let the final "is it dirty" escape to before we 1156 * perhaps modified the buffer. 1157 */ 1158 if (buffer_dirty(bh)) { 1159 smp_mb(); 1160 if (buffer_dirty(bh)) 1161 return; 1162 } 1163 1164 if (!test_set_buffer_dirty(bh)) { 1165 struct page *page = bh->b_page; 1166 struct address_space *mapping = NULL; 1167 1168 lock_page_memcg(page); 1169 if (!TestSetPageDirty(page)) { 1170 mapping = page_mapping(page); 1171 if (mapping) 1172 __set_page_dirty(page, mapping, 0); 1173 } 1174 unlock_page_memcg(page); 1175 if (mapping) 1176 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1177 } 1178 } 1179 EXPORT_SYMBOL(mark_buffer_dirty); 1180 1181 void mark_buffer_write_io_error(struct buffer_head *bh) 1182 { 1183 set_buffer_write_io_error(bh); 1184 /* FIXME: do we need to set this in both places? */ 1185 if (bh->b_page && bh->b_page->mapping) 1186 mapping_set_error(bh->b_page->mapping, -EIO); 1187 if (bh->b_assoc_map) 1188 mapping_set_error(bh->b_assoc_map, -EIO); 1189 } 1190 EXPORT_SYMBOL(mark_buffer_write_io_error); 1191 1192 /* 1193 * Decrement a buffer_head's reference count. If all buffers against a page 1194 * have zero reference count, are clean and unlocked, and if the page is clean 1195 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1196 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1197 * a page but it ends up not being freed, and buffers may later be reattached). 1198 */ 1199 void __brelse(struct buffer_head * buf) 1200 { 1201 if (atomic_read(&buf->b_count)) { 1202 put_bh(buf); 1203 return; 1204 } 1205 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1206 } 1207 EXPORT_SYMBOL(__brelse); 1208 1209 /* 1210 * bforget() is like brelse(), except it discards any 1211 * potentially dirty data. 1212 */ 1213 void __bforget(struct buffer_head *bh) 1214 { 1215 clear_buffer_dirty(bh); 1216 if (bh->b_assoc_map) { 1217 struct address_space *buffer_mapping = bh->b_page->mapping; 1218 1219 spin_lock(&buffer_mapping->private_lock); 1220 list_del_init(&bh->b_assoc_buffers); 1221 bh->b_assoc_map = NULL; 1222 spin_unlock(&buffer_mapping->private_lock); 1223 } 1224 __brelse(bh); 1225 } 1226 EXPORT_SYMBOL(__bforget); 1227 1228 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1229 { 1230 lock_buffer(bh); 1231 if (buffer_uptodate(bh)) { 1232 unlock_buffer(bh); 1233 return bh; 1234 } else { 1235 get_bh(bh); 1236 bh->b_end_io = end_buffer_read_sync; 1237 submit_bh(REQ_OP_READ, 0, bh); 1238 wait_on_buffer(bh); 1239 if (buffer_uptodate(bh)) 1240 return bh; 1241 } 1242 brelse(bh); 1243 return NULL; 1244 } 1245 1246 /* 1247 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1248 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1249 * refcount elevated by one when they're in an LRU. A buffer can only appear 1250 * once in a particular CPU's LRU. A single buffer can be present in multiple 1251 * CPU's LRUs at the same time. 1252 * 1253 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1254 * sb_find_get_block(). 1255 * 1256 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1257 * a local interrupt disable for that. 1258 */ 1259 1260 #define BH_LRU_SIZE 16 1261 1262 struct bh_lru { 1263 struct buffer_head *bhs[BH_LRU_SIZE]; 1264 }; 1265 1266 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1267 1268 #ifdef CONFIG_SMP 1269 #define bh_lru_lock() local_irq_disable() 1270 #define bh_lru_unlock() local_irq_enable() 1271 #else 1272 #define bh_lru_lock() preempt_disable() 1273 #define bh_lru_unlock() preempt_enable() 1274 #endif 1275 1276 static inline void check_irqs_on(void) 1277 { 1278 #ifdef irqs_disabled 1279 BUG_ON(irqs_disabled()); 1280 #endif 1281 } 1282 1283 /* 1284 * The LRU management algorithm is dopey-but-simple. Sorry. 1285 */ 1286 static void bh_lru_install(struct buffer_head *bh) 1287 { 1288 struct buffer_head *evictee = NULL; 1289 1290 check_irqs_on(); 1291 bh_lru_lock(); 1292 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1293 struct buffer_head *bhs[BH_LRU_SIZE]; 1294 int in; 1295 int out = 0; 1296 1297 get_bh(bh); 1298 bhs[out++] = bh; 1299 for (in = 0; in < BH_LRU_SIZE; in++) { 1300 struct buffer_head *bh2 = 1301 __this_cpu_read(bh_lrus.bhs[in]); 1302 1303 if (bh2 == bh) { 1304 __brelse(bh2); 1305 } else { 1306 if (out >= BH_LRU_SIZE) { 1307 BUG_ON(evictee != NULL); 1308 evictee = bh2; 1309 } else { 1310 bhs[out++] = bh2; 1311 } 1312 } 1313 } 1314 while (out < BH_LRU_SIZE) 1315 bhs[out++] = NULL; 1316 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1317 } 1318 bh_lru_unlock(); 1319 1320 if (evictee) 1321 __brelse(evictee); 1322 } 1323 1324 /* 1325 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1326 */ 1327 static struct buffer_head * 1328 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1329 { 1330 struct buffer_head *ret = NULL; 1331 unsigned int i; 1332 1333 check_irqs_on(); 1334 bh_lru_lock(); 1335 for (i = 0; i < BH_LRU_SIZE; i++) { 1336 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1337 1338 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1339 bh->b_size == size) { 1340 if (i) { 1341 while (i) { 1342 __this_cpu_write(bh_lrus.bhs[i], 1343 __this_cpu_read(bh_lrus.bhs[i - 1])); 1344 i--; 1345 } 1346 __this_cpu_write(bh_lrus.bhs[0], bh); 1347 } 1348 get_bh(bh); 1349 ret = bh; 1350 break; 1351 } 1352 } 1353 bh_lru_unlock(); 1354 return ret; 1355 } 1356 1357 /* 1358 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1359 * it in the LRU and mark it as accessed. If it is not present then return 1360 * NULL 1361 */ 1362 struct buffer_head * 1363 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1364 { 1365 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1366 1367 if (bh == NULL) { 1368 /* __find_get_block_slow will mark the page accessed */ 1369 bh = __find_get_block_slow(bdev, block); 1370 if (bh) 1371 bh_lru_install(bh); 1372 } else 1373 touch_buffer(bh); 1374 1375 return bh; 1376 } 1377 EXPORT_SYMBOL(__find_get_block); 1378 1379 /* 1380 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1381 * which corresponds to the passed block_device, block and size. The 1382 * returned buffer has its reference count incremented. 1383 * 1384 * __getblk_gfp() will lock up the machine if grow_dev_page's 1385 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1386 */ 1387 struct buffer_head * 1388 __getblk_gfp(struct block_device *bdev, sector_t block, 1389 unsigned size, gfp_t gfp) 1390 { 1391 struct buffer_head *bh = __find_get_block(bdev, block, size); 1392 1393 might_sleep(); 1394 if (bh == NULL) 1395 bh = __getblk_slow(bdev, block, size, gfp); 1396 return bh; 1397 } 1398 EXPORT_SYMBOL(__getblk_gfp); 1399 1400 /* 1401 * Do async read-ahead on a buffer.. 1402 */ 1403 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1404 { 1405 struct buffer_head *bh = __getblk(bdev, block, size); 1406 if (likely(bh)) { 1407 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1408 brelse(bh); 1409 } 1410 } 1411 EXPORT_SYMBOL(__breadahead); 1412 1413 /** 1414 * __bread_gfp() - reads a specified block and returns the bh 1415 * @bdev: the block_device to read from 1416 * @block: number of block 1417 * @size: size (in bytes) to read 1418 * @gfp: page allocation flag 1419 * 1420 * Reads a specified block, and returns buffer head that contains it. 1421 * The page cache can be allocated from non-movable area 1422 * not to prevent page migration if you set gfp to zero. 1423 * It returns NULL if the block was unreadable. 1424 */ 1425 struct buffer_head * 1426 __bread_gfp(struct block_device *bdev, sector_t block, 1427 unsigned size, gfp_t gfp) 1428 { 1429 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1430 1431 if (likely(bh) && !buffer_uptodate(bh)) 1432 bh = __bread_slow(bh); 1433 return bh; 1434 } 1435 EXPORT_SYMBOL(__bread_gfp); 1436 1437 /* 1438 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1439 * This doesn't race because it runs in each cpu either in irq 1440 * or with preempt disabled. 1441 */ 1442 static void invalidate_bh_lru(void *arg) 1443 { 1444 struct bh_lru *b = &get_cpu_var(bh_lrus); 1445 int i; 1446 1447 for (i = 0; i < BH_LRU_SIZE; i++) { 1448 brelse(b->bhs[i]); 1449 b->bhs[i] = NULL; 1450 } 1451 put_cpu_var(bh_lrus); 1452 } 1453 1454 static bool has_bh_in_lru(int cpu, void *dummy) 1455 { 1456 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1457 int i; 1458 1459 for (i = 0; i < BH_LRU_SIZE; i++) { 1460 if (b->bhs[i]) 1461 return 1; 1462 } 1463 1464 return 0; 1465 } 1466 1467 void invalidate_bh_lrus(void) 1468 { 1469 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1470 } 1471 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1472 1473 void set_bh_page(struct buffer_head *bh, 1474 struct page *page, unsigned long offset) 1475 { 1476 bh->b_page = page; 1477 BUG_ON(offset >= PAGE_SIZE); 1478 if (PageHighMem(page)) 1479 /* 1480 * This catches illegal uses and preserves the offset: 1481 */ 1482 bh->b_data = (char *)(0 + offset); 1483 else 1484 bh->b_data = page_address(page) + offset; 1485 } 1486 EXPORT_SYMBOL(set_bh_page); 1487 1488 /* 1489 * Called when truncating a buffer on a page completely. 1490 */ 1491 1492 /* Bits that are cleared during an invalidate */ 1493 #define BUFFER_FLAGS_DISCARD \ 1494 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1495 1 << BH_Delay | 1 << BH_Unwritten) 1496 1497 static void discard_buffer(struct buffer_head * bh) 1498 { 1499 unsigned long b_state, b_state_old; 1500 1501 lock_buffer(bh); 1502 clear_buffer_dirty(bh); 1503 bh->b_bdev = NULL; 1504 b_state = bh->b_state; 1505 for (;;) { 1506 b_state_old = cmpxchg(&bh->b_state, b_state, 1507 (b_state & ~BUFFER_FLAGS_DISCARD)); 1508 if (b_state_old == b_state) 1509 break; 1510 b_state = b_state_old; 1511 } 1512 unlock_buffer(bh); 1513 } 1514 1515 /** 1516 * block_invalidatepage - invalidate part or all of a buffer-backed page 1517 * 1518 * @page: the page which is affected 1519 * @offset: start of the range to invalidate 1520 * @length: length of the range to invalidate 1521 * 1522 * block_invalidatepage() is called when all or part of the page has become 1523 * invalidated by a truncate operation. 1524 * 1525 * block_invalidatepage() does not have to release all buffers, but it must 1526 * ensure that no dirty buffer is left outside @offset and that no I/O 1527 * is underway against any of the blocks which are outside the truncation 1528 * point. Because the caller is about to free (and possibly reuse) those 1529 * blocks on-disk. 1530 */ 1531 void block_invalidatepage(struct page *page, unsigned int offset, 1532 unsigned int length) 1533 { 1534 struct buffer_head *head, *bh, *next; 1535 unsigned int curr_off = 0; 1536 unsigned int stop = length + offset; 1537 1538 BUG_ON(!PageLocked(page)); 1539 if (!page_has_buffers(page)) 1540 goto out; 1541 1542 /* 1543 * Check for overflow 1544 */ 1545 BUG_ON(stop > PAGE_SIZE || stop < length); 1546 1547 head = page_buffers(page); 1548 bh = head; 1549 do { 1550 unsigned int next_off = curr_off + bh->b_size; 1551 next = bh->b_this_page; 1552 1553 /* 1554 * Are we still fully in range ? 1555 */ 1556 if (next_off > stop) 1557 goto out; 1558 1559 /* 1560 * is this block fully invalidated? 1561 */ 1562 if (offset <= curr_off) 1563 discard_buffer(bh); 1564 curr_off = next_off; 1565 bh = next; 1566 } while (bh != head); 1567 1568 /* 1569 * We release buffers only if the entire page is being invalidated. 1570 * The get_block cached value has been unconditionally invalidated, 1571 * so real IO is not possible anymore. 1572 */ 1573 if (offset == 0) 1574 try_to_release_page(page, 0); 1575 out: 1576 return; 1577 } 1578 EXPORT_SYMBOL(block_invalidatepage); 1579 1580 1581 /* 1582 * We attach and possibly dirty the buffers atomically wrt 1583 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1584 * is already excluded via the page lock. 1585 */ 1586 void create_empty_buffers(struct page *page, 1587 unsigned long blocksize, unsigned long b_state) 1588 { 1589 struct buffer_head *bh, *head, *tail; 1590 1591 head = alloc_page_buffers(page, blocksize, 1); 1592 bh = head; 1593 do { 1594 bh->b_state |= b_state; 1595 tail = bh; 1596 bh = bh->b_this_page; 1597 } while (bh); 1598 tail->b_this_page = head; 1599 1600 spin_lock(&page->mapping->private_lock); 1601 if (PageUptodate(page) || PageDirty(page)) { 1602 bh = head; 1603 do { 1604 if (PageDirty(page)) 1605 set_buffer_dirty(bh); 1606 if (PageUptodate(page)) 1607 set_buffer_uptodate(bh); 1608 bh = bh->b_this_page; 1609 } while (bh != head); 1610 } 1611 attach_page_buffers(page, head); 1612 spin_unlock(&page->mapping->private_lock); 1613 } 1614 EXPORT_SYMBOL(create_empty_buffers); 1615 1616 /** 1617 * clean_bdev_aliases: clean a range of buffers in block device 1618 * @bdev: Block device to clean buffers in 1619 * @block: Start of a range of blocks to clean 1620 * @len: Number of blocks to clean 1621 * 1622 * We are taking a range of blocks for data and we don't want writeback of any 1623 * buffer-cache aliases starting from return from this function and until the 1624 * moment when something will explicitly mark the buffer dirty (hopefully that 1625 * will not happen until we will free that block ;-) We don't even need to mark 1626 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1627 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1628 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1629 * would confuse anyone who might pick it with bread() afterwards... 1630 * 1631 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1632 * writeout I/O going on against recently-freed buffers. We don't wait on that 1633 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1634 * need to. That happens here. 1635 */ 1636 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1637 { 1638 struct inode *bd_inode = bdev->bd_inode; 1639 struct address_space *bd_mapping = bd_inode->i_mapping; 1640 struct pagevec pvec; 1641 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1642 pgoff_t end; 1643 int i; 1644 struct buffer_head *bh; 1645 struct buffer_head *head; 1646 1647 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1648 pagevec_init(&pvec, 0); 1649 while (index <= end && pagevec_lookup(&pvec, bd_mapping, index, 1650 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 1651 for (i = 0; i < pagevec_count(&pvec); i++) { 1652 struct page *page = pvec.pages[i]; 1653 1654 index = page->index; 1655 if (index > end) 1656 break; 1657 if (!page_has_buffers(page)) 1658 continue; 1659 /* 1660 * We use page lock instead of bd_mapping->private_lock 1661 * to pin buffers here since we can afford to sleep and 1662 * it scales better than a global spinlock lock. 1663 */ 1664 lock_page(page); 1665 /* Recheck when the page is locked which pins bhs */ 1666 if (!page_has_buffers(page)) 1667 goto unlock_page; 1668 head = page_buffers(page); 1669 bh = head; 1670 do { 1671 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1672 goto next; 1673 if (bh->b_blocknr >= block + len) 1674 break; 1675 clear_buffer_dirty(bh); 1676 wait_on_buffer(bh); 1677 clear_buffer_req(bh); 1678 next: 1679 bh = bh->b_this_page; 1680 } while (bh != head); 1681 unlock_page: 1682 unlock_page(page); 1683 } 1684 pagevec_release(&pvec); 1685 cond_resched(); 1686 index++; 1687 } 1688 } 1689 EXPORT_SYMBOL(clean_bdev_aliases); 1690 1691 /* 1692 * Size is a power-of-two in the range 512..PAGE_SIZE, 1693 * and the case we care about most is PAGE_SIZE. 1694 * 1695 * So this *could* possibly be written with those 1696 * constraints in mind (relevant mostly if some 1697 * architecture has a slow bit-scan instruction) 1698 */ 1699 static inline int block_size_bits(unsigned int blocksize) 1700 { 1701 return ilog2(blocksize); 1702 } 1703 1704 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1705 { 1706 BUG_ON(!PageLocked(page)); 1707 1708 if (!page_has_buffers(page)) 1709 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1710 return page_buffers(page); 1711 } 1712 1713 /* 1714 * NOTE! All mapped/uptodate combinations are valid: 1715 * 1716 * Mapped Uptodate Meaning 1717 * 1718 * No No "unknown" - must do get_block() 1719 * No Yes "hole" - zero-filled 1720 * Yes No "allocated" - allocated on disk, not read in 1721 * Yes Yes "valid" - allocated and up-to-date in memory. 1722 * 1723 * "Dirty" is valid only with the last case (mapped+uptodate). 1724 */ 1725 1726 /* 1727 * While block_write_full_page is writing back the dirty buffers under 1728 * the page lock, whoever dirtied the buffers may decide to clean them 1729 * again at any time. We handle that by only looking at the buffer 1730 * state inside lock_buffer(). 1731 * 1732 * If block_write_full_page() is called for regular writeback 1733 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1734 * locked buffer. This only can happen if someone has written the buffer 1735 * directly, with submit_bh(). At the address_space level PageWriteback 1736 * prevents this contention from occurring. 1737 * 1738 * If block_write_full_page() is called with wbc->sync_mode == 1739 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1740 * causes the writes to be flagged as synchronous writes. 1741 */ 1742 int __block_write_full_page(struct inode *inode, struct page *page, 1743 get_block_t *get_block, struct writeback_control *wbc, 1744 bh_end_io_t *handler) 1745 { 1746 int err; 1747 sector_t block; 1748 sector_t last_block; 1749 struct buffer_head *bh, *head; 1750 unsigned int blocksize, bbits; 1751 int nr_underway = 0; 1752 int write_flags = wbc_to_write_flags(wbc); 1753 1754 head = create_page_buffers(page, inode, 1755 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1756 1757 /* 1758 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1759 * here, and the (potentially unmapped) buffers may become dirty at 1760 * any time. If a buffer becomes dirty here after we've inspected it 1761 * then we just miss that fact, and the page stays dirty. 1762 * 1763 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1764 * handle that here by just cleaning them. 1765 */ 1766 1767 bh = head; 1768 blocksize = bh->b_size; 1769 bbits = block_size_bits(blocksize); 1770 1771 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1772 last_block = (i_size_read(inode) - 1) >> bbits; 1773 1774 /* 1775 * Get all the dirty buffers mapped to disk addresses and 1776 * handle any aliases from the underlying blockdev's mapping. 1777 */ 1778 do { 1779 if (block > last_block) { 1780 /* 1781 * mapped buffers outside i_size will occur, because 1782 * this page can be outside i_size when there is a 1783 * truncate in progress. 1784 */ 1785 /* 1786 * The buffer was zeroed by block_write_full_page() 1787 */ 1788 clear_buffer_dirty(bh); 1789 set_buffer_uptodate(bh); 1790 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1791 buffer_dirty(bh)) { 1792 WARN_ON(bh->b_size != blocksize); 1793 err = get_block(inode, block, bh, 1); 1794 if (err) 1795 goto recover; 1796 clear_buffer_delay(bh); 1797 if (buffer_new(bh)) { 1798 /* blockdev mappings never come here */ 1799 clear_buffer_new(bh); 1800 clean_bdev_bh_alias(bh); 1801 } 1802 } 1803 bh = bh->b_this_page; 1804 block++; 1805 } while (bh != head); 1806 1807 do { 1808 if (!buffer_mapped(bh)) 1809 continue; 1810 /* 1811 * If it's a fully non-blocking write attempt and we cannot 1812 * lock the buffer then redirty the page. Note that this can 1813 * potentially cause a busy-wait loop from writeback threads 1814 * and kswapd activity, but those code paths have their own 1815 * higher-level throttling. 1816 */ 1817 if (wbc->sync_mode != WB_SYNC_NONE) { 1818 lock_buffer(bh); 1819 } else if (!trylock_buffer(bh)) { 1820 redirty_page_for_writepage(wbc, page); 1821 continue; 1822 } 1823 if (test_clear_buffer_dirty(bh)) { 1824 mark_buffer_async_write_endio(bh, handler); 1825 } else { 1826 unlock_buffer(bh); 1827 } 1828 } while ((bh = bh->b_this_page) != head); 1829 1830 /* 1831 * The page and its buffers are protected by PageWriteback(), so we can 1832 * drop the bh refcounts early. 1833 */ 1834 BUG_ON(PageWriteback(page)); 1835 set_page_writeback(page); 1836 1837 do { 1838 struct buffer_head *next = bh->b_this_page; 1839 if (buffer_async_write(bh)) { 1840 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1841 inode->i_write_hint, wbc); 1842 nr_underway++; 1843 } 1844 bh = next; 1845 } while (bh != head); 1846 unlock_page(page); 1847 1848 err = 0; 1849 done: 1850 if (nr_underway == 0) { 1851 /* 1852 * The page was marked dirty, but the buffers were 1853 * clean. Someone wrote them back by hand with 1854 * ll_rw_block/submit_bh. A rare case. 1855 */ 1856 end_page_writeback(page); 1857 1858 /* 1859 * The page and buffer_heads can be released at any time from 1860 * here on. 1861 */ 1862 } 1863 return err; 1864 1865 recover: 1866 /* 1867 * ENOSPC, or some other error. We may already have added some 1868 * blocks to the file, so we need to write these out to avoid 1869 * exposing stale data. 1870 * The page is currently locked and not marked for writeback 1871 */ 1872 bh = head; 1873 /* Recovery: lock and submit the mapped buffers */ 1874 do { 1875 if (buffer_mapped(bh) && buffer_dirty(bh) && 1876 !buffer_delay(bh)) { 1877 lock_buffer(bh); 1878 mark_buffer_async_write_endio(bh, handler); 1879 } else { 1880 /* 1881 * The buffer may have been set dirty during 1882 * attachment to a dirty page. 1883 */ 1884 clear_buffer_dirty(bh); 1885 } 1886 } while ((bh = bh->b_this_page) != head); 1887 SetPageError(page); 1888 BUG_ON(PageWriteback(page)); 1889 mapping_set_error(page->mapping, err); 1890 set_page_writeback(page); 1891 do { 1892 struct buffer_head *next = bh->b_this_page; 1893 if (buffer_async_write(bh)) { 1894 clear_buffer_dirty(bh); 1895 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1896 inode->i_write_hint, wbc); 1897 nr_underway++; 1898 } 1899 bh = next; 1900 } while (bh != head); 1901 unlock_page(page); 1902 goto done; 1903 } 1904 EXPORT_SYMBOL(__block_write_full_page); 1905 1906 /* 1907 * If a page has any new buffers, zero them out here, and mark them uptodate 1908 * and dirty so they'll be written out (in order to prevent uninitialised 1909 * block data from leaking). And clear the new bit. 1910 */ 1911 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1912 { 1913 unsigned int block_start, block_end; 1914 struct buffer_head *head, *bh; 1915 1916 BUG_ON(!PageLocked(page)); 1917 if (!page_has_buffers(page)) 1918 return; 1919 1920 bh = head = page_buffers(page); 1921 block_start = 0; 1922 do { 1923 block_end = block_start + bh->b_size; 1924 1925 if (buffer_new(bh)) { 1926 if (block_end > from && block_start < to) { 1927 if (!PageUptodate(page)) { 1928 unsigned start, size; 1929 1930 start = max(from, block_start); 1931 size = min(to, block_end) - start; 1932 1933 zero_user(page, start, size); 1934 set_buffer_uptodate(bh); 1935 } 1936 1937 clear_buffer_new(bh); 1938 mark_buffer_dirty(bh); 1939 } 1940 } 1941 1942 block_start = block_end; 1943 bh = bh->b_this_page; 1944 } while (bh != head); 1945 } 1946 EXPORT_SYMBOL(page_zero_new_buffers); 1947 1948 static void 1949 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1950 struct iomap *iomap) 1951 { 1952 loff_t offset = block << inode->i_blkbits; 1953 1954 bh->b_bdev = iomap->bdev; 1955 1956 /* 1957 * Block points to offset in file we need to map, iomap contains 1958 * the offset at which the map starts. If the map ends before the 1959 * current block, then do not map the buffer and let the caller 1960 * handle it. 1961 */ 1962 BUG_ON(offset >= iomap->offset + iomap->length); 1963 1964 switch (iomap->type) { 1965 case IOMAP_HOLE: 1966 /* 1967 * If the buffer is not up to date or beyond the current EOF, 1968 * we need to mark it as new to ensure sub-block zeroing is 1969 * executed if necessary. 1970 */ 1971 if (!buffer_uptodate(bh) || 1972 (offset >= i_size_read(inode))) 1973 set_buffer_new(bh); 1974 break; 1975 case IOMAP_DELALLOC: 1976 if (!buffer_uptodate(bh) || 1977 (offset >= i_size_read(inode))) 1978 set_buffer_new(bh); 1979 set_buffer_uptodate(bh); 1980 set_buffer_mapped(bh); 1981 set_buffer_delay(bh); 1982 break; 1983 case IOMAP_UNWRITTEN: 1984 /* 1985 * For unwritten regions, we always need to ensure that 1986 * sub-block writes cause the regions in the block we are not 1987 * writing to are zeroed. Set the buffer as new to ensure this. 1988 */ 1989 set_buffer_new(bh); 1990 set_buffer_unwritten(bh); 1991 /* FALLTHRU */ 1992 case IOMAP_MAPPED: 1993 if (offset >= i_size_read(inode)) 1994 set_buffer_new(bh); 1995 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) + 1996 ((offset - iomap->offset) >> inode->i_blkbits); 1997 set_buffer_mapped(bh); 1998 break; 1999 } 2000 } 2001 2002 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 2003 get_block_t *get_block, struct iomap *iomap) 2004 { 2005 unsigned from = pos & (PAGE_SIZE - 1); 2006 unsigned to = from + len; 2007 struct inode *inode = page->mapping->host; 2008 unsigned block_start, block_end; 2009 sector_t block; 2010 int err = 0; 2011 unsigned blocksize, bbits; 2012 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2013 2014 BUG_ON(!PageLocked(page)); 2015 BUG_ON(from > PAGE_SIZE); 2016 BUG_ON(to > PAGE_SIZE); 2017 BUG_ON(from > to); 2018 2019 head = create_page_buffers(page, inode, 0); 2020 blocksize = head->b_size; 2021 bbits = block_size_bits(blocksize); 2022 2023 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 2024 2025 for(bh = head, block_start = 0; bh != head || !block_start; 2026 block++, block_start=block_end, bh = bh->b_this_page) { 2027 block_end = block_start + blocksize; 2028 if (block_end <= from || block_start >= to) { 2029 if (PageUptodate(page)) { 2030 if (!buffer_uptodate(bh)) 2031 set_buffer_uptodate(bh); 2032 } 2033 continue; 2034 } 2035 if (buffer_new(bh)) 2036 clear_buffer_new(bh); 2037 if (!buffer_mapped(bh)) { 2038 WARN_ON(bh->b_size != blocksize); 2039 if (get_block) { 2040 err = get_block(inode, block, bh, 1); 2041 if (err) 2042 break; 2043 } else { 2044 iomap_to_bh(inode, block, bh, iomap); 2045 } 2046 2047 if (buffer_new(bh)) { 2048 clean_bdev_bh_alias(bh); 2049 if (PageUptodate(page)) { 2050 clear_buffer_new(bh); 2051 set_buffer_uptodate(bh); 2052 mark_buffer_dirty(bh); 2053 continue; 2054 } 2055 if (block_end > to || block_start < from) 2056 zero_user_segments(page, 2057 to, block_end, 2058 block_start, from); 2059 continue; 2060 } 2061 } 2062 if (PageUptodate(page)) { 2063 if (!buffer_uptodate(bh)) 2064 set_buffer_uptodate(bh); 2065 continue; 2066 } 2067 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2068 !buffer_unwritten(bh) && 2069 (block_start < from || block_end > to)) { 2070 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2071 *wait_bh++=bh; 2072 } 2073 } 2074 /* 2075 * If we issued read requests - let them complete. 2076 */ 2077 while(wait_bh > wait) { 2078 wait_on_buffer(*--wait_bh); 2079 if (!buffer_uptodate(*wait_bh)) 2080 err = -EIO; 2081 } 2082 if (unlikely(err)) 2083 page_zero_new_buffers(page, from, to); 2084 return err; 2085 } 2086 2087 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2088 get_block_t *get_block) 2089 { 2090 return __block_write_begin_int(page, pos, len, get_block, NULL); 2091 } 2092 EXPORT_SYMBOL(__block_write_begin); 2093 2094 static int __block_commit_write(struct inode *inode, struct page *page, 2095 unsigned from, unsigned to) 2096 { 2097 unsigned block_start, block_end; 2098 int partial = 0; 2099 unsigned blocksize; 2100 struct buffer_head *bh, *head; 2101 2102 bh = head = page_buffers(page); 2103 blocksize = bh->b_size; 2104 2105 block_start = 0; 2106 do { 2107 block_end = block_start + blocksize; 2108 if (block_end <= from || block_start >= to) { 2109 if (!buffer_uptodate(bh)) 2110 partial = 1; 2111 } else { 2112 set_buffer_uptodate(bh); 2113 mark_buffer_dirty(bh); 2114 } 2115 clear_buffer_new(bh); 2116 2117 block_start = block_end; 2118 bh = bh->b_this_page; 2119 } while (bh != head); 2120 2121 /* 2122 * If this is a partial write which happened to make all buffers 2123 * uptodate then we can optimize away a bogus readpage() for 2124 * the next read(). Here we 'discover' whether the page went 2125 * uptodate as a result of this (potentially partial) write. 2126 */ 2127 if (!partial) 2128 SetPageUptodate(page); 2129 return 0; 2130 } 2131 2132 /* 2133 * block_write_begin takes care of the basic task of block allocation and 2134 * bringing partial write blocks uptodate first. 2135 * 2136 * The filesystem needs to handle block truncation upon failure. 2137 */ 2138 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2139 unsigned flags, struct page **pagep, get_block_t *get_block) 2140 { 2141 pgoff_t index = pos >> PAGE_SHIFT; 2142 struct page *page; 2143 int status; 2144 2145 page = grab_cache_page_write_begin(mapping, index, flags); 2146 if (!page) 2147 return -ENOMEM; 2148 2149 status = __block_write_begin(page, pos, len, get_block); 2150 if (unlikely(status)) { 2151 unlock_page(page); 2152 put_page(page); 2153 page = NULL; 2154 } 2155 2156 *pagep = page; 2157 return status; 2158 } 2159 EXPORT_SYMBOL(block_write_begin); 2160 2161 int block_write_end(struct file *file, struct address_space *mapping, 2162 loff_t pos, unsigned len, unsigned copied, 2163 struct page *page, void *fsdata) 2164 { 2165 struct inode *inode = mapping->host; 2166 unsigned start; 2167 2168 start = pos & (PAGE_SIZE - 1); 2169 2170 if (unlikely(copied < len)) { 2171 /* 2172 * The buffers that were written will now be uptodate, so we 2173 * don't have to worry about a readpage reading them and 2174 * overwriting a partial write. However if we have encountered 2175 * a short write and only partially written into a buffer, it 2176 * will not be marked uptodate, so a readpage might come in and 2177 * destroy our partial write. 2178 * 2179 * Do the simplest thing, and just treat any short write to a 2180 * non uptodate page as a zero-length write, and force the 2181 * caller to redo the whole thing. 2182 */ 2183 if (!PageUptodate(page)) 2184 copied = 0; 2185 2186 page_zero_new_buffers(page, start+copied, start+len); 2187 } 2188 flush_dcache_page(page); 2189 2190 /* This could be a short (even 0-length) commit */ 2191 __block_commit_write(inode, page, start, start+copied); 2192 2193 return copied; 2194 } 2195 EXPORT_SYMBOL(block_write_end); 2196 2197 int generic_write_end(struct file *file, struct address_space *mapping, 2198 loff_t pos, unsigned len, unsigned copied, 2199 struct page *page, void *fsdata) 2200 { 2201 struct inode *inode = mapping->host; 2202 loff_t old_size = inode->i_size; 2203 int i_size_changed = 0; 2204 2205 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2206 2207 /* 2208 * No need to use i_size_read() here, the i_size 2209 * cannot change under us because we hold i_mutex. 2210 * 2211 * But it's important to update i_size while still holding page lock: 2212 * page writeout could otherwise come in and zero beyond i_size. 2213 */ 2214 if (pos+copied > inode->i_size) { 2215 i_size_write(inode, pos+copied); 2216 i_size_changed = 1; 2217 } 2218 2219 unlock_page(page); 2220 put_page(page); 2221 2222 if (old_size < pos) 2223 pagecache_isize_extended(inode, old_size, pos); 2224 /* 2225 * Don't mark the inode dirty under page lock. First, it unnecessarily 2226 * makes the holding time of page lock longer. Second, it forces lock 2227 * ordering of page lock and transaction start for journaling 2228 * filesystems. 2229 */ 2230 if (i_size_changed) 2231 mark_inode_dirty(inode); 2232 2233 return copied; 2234 } 2235 EXPORT_SYMBOL(generic_write_end); 2236 2237 /* 2238 * block_is_partially_uptodate checks whether buffers within a page are 2239 * uptodate or not. 2240 * 2241 * Returns true if all buffers which correspond to a file portion 2242 * we want to read are uptodate. 2243 */ 2244 int block_is_partially_uptodate(struct page *page, unsigned long from, 2245 unsigned long count) 2246 { 2247 unsigned block_start, block_end, blocksize; 2248 unsigned to; 2249 struct buffer_head *bh, *head; 2250 int ret = 1; 2251 2252 if (!page_has_buffers(page)) 2253 return 0; 2254 2255 head = page_buffers(page); 2256 blocksize = head->b_size; 2257 to = min_t(unsigned, PAGE_SIZE - from, count); 2258 to = from + to; 2259 if (from < blocksize && to > PAGE_SIZE - blocksize) 2260 return 0; 2261 2262 bh = head; 2263 block_start = 0; 2264 do { 2265 block_end = block_start + blocksize; 2266 if (block_end > from && block_start < to) { 2267 if (!buffer_uptodate(bh)) { 2268 ret = 0; 2269 break; 2270 } 2271 if (block_end >= to) 2272 break; 2273 } 2274 block_start = block_end; 2275 bh = bh->b_this_page; 2276 } while (bh != head); 2277 2278 return ret; 2279 } 2280 EXPORT_SYMBOL(block_is_partially_uptodate); 2281 2282 /* 2283 * Generic "read page" function for block devices that have the normal 2284 * get_block functionality. This is most of the block device filesystems. 2285 * Reads the page asynchronously --- the unlock_buffer() and 2286 * set/clear_buffer_uptodate() functions propagate buffer state into the 2287 * page struct once IO has completed. 2288 */ 2289 int block_read_full_page(struct page *page, get_block_t *get_block) 2290 { 2291 struct inode *inode = page->mapping->host; 2292 sector_t iblock, lblock; 2293 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2294 unsigned int blocksize, bbits; 2295 int nr, i; 2296 int fully_mapped = 1; 2297 2298 head = create_page_buffers(page, inode, 0); 2299 blocksize = head->b_size; 2300 bbits = block_size_bits(blocksize); 2301 2302 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2303 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2304 bh = head; 2305 nr = 0; 2306 i = 0; 2307 2308 do { 2309 if (buffer_uptodate(bh)) 2310 continue; 2311 2312 if (!buffer_mapped(bh)) { 2313 int err = 0; 2314 2315 fully_mapped = 0; 2316 if (iblock < lblock) { 2317 WARN_ON(bh->b_size != blocksize); 2318 err = get_block(inode, iblock, bh, 0); 2319 if (err) 2320 SetPageError(page); 2321 } 2322 if (!buffer_mapped(bh)) { 2323 zero_user(page, i * blocksize, blocksize); 2324 if (!err) 2325 set_buffer_uptodate(bh); 2326 continue; 2327 } 2328 /* 2329 * get_block() might have updated the buffer 2330 * synchronously 2331 */ 2332 if (buffer_uptodate(bh)) 2333 continue; 2334 } 2335 arr[nr++] = bh; 2336 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2337 2338 if (fully_mapped) 2339 SetPageMappedToDisk(page); 2340 2341 if (!nr) { 2342 /* 2343 * All buffers are uptodate - we can set the page uptodate 2344 * as well. But not if get_block() returned an error. 2345 */ 2346 if (!PageError(page)) 2347 SetPageUptodate(page); 2348 unlock_page(page); 2349 return 0; 2350 } 2351 2352 /* Stage two: lock the buffers */ 2353 for (i = 0; i < nr; i++) { 2354 bh = arr[i]; 2355 lock_buffer(bh); 2356 mark_buffer_async_read(bh); 2357 } 2358 2359 /* 2360 * Stage 3: start the IO. Check for uptodateness 2361 * inside the buffer lock in case another process reading 2362 * the underlying blockdev brought it uptodate (the sct fix). 2363 */ 2364 for (i = 0; i < nr; i++) { 2365 bh = arr[i]; 2366 if (buffer_uptodate(bh)) 2367 end_buffer_async_read(bh, 1); 2368 else 2369 submit_bh(REQ_OP_READ, 0, bh); 2370 } 2371 return 0; 2372 } 2373 EXPORT_SYMBOL(block_read_full_page); 2374 2375 /* utility function for filesystems that need to do work on expanding 2376 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2377 * deal with the hole. 2378 */ 2379 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2380 { 2381 struct address_space *mapping = inode->i_mapping; 2382 struct page *page; 2383 void *fsdata; 2384 int err; 2385 2386 err = inode_newsize_ok(inode, size); 2387 if (err) 2388 goto out; 2389 2390 err = pagecache_write_begin(NULL, mapping, size, 0, 2391 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2392 if (err) 2393 goto out; 2394 2395 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2396 BUG_ON(err > 0); 2397 2398 out: 2399 return err; 2400 } 2401 EXPORT_SYMBOL(generic_cont_expand_simple); 2402 2403 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2404 loff_t pos, loff_t *bytes) 2405 { 2406 struct inode *inode = mapping->host; 2407 unsigned int blocksize = i_blocksize(inode); 2408 struct page *page; 2409 void *fsdata; 2410 pgoff_t index, curidx; 2411 loff_t curpos; 2412 unsigned zerofrom, offset, len; 2413 int err = 0; 2414 2415 index = pos >> PAGE_SHIFT; 2416 offset = pos & ~PAGE_MASK; 2417 2418 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2419 zerofrom = curpos & ~PAGE_MASK; 2420 if (zerofrom & (blocksize-1)) { 2421 *bytes |= (blocksize-1); 2422 (*bytes)++; 2423 } 2424 len = PAGE_SIZE - zerofrom; 2425 2426 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2427 &page, &fsdata); 2428 if (err) 2429 goto out; 2430 zero_user(page, zerofrom, len); 2431 err = pagecache_write_end(file, mapping, curpos, len, len, 2432 page, fsdata); 2433 if (err < 0) 2434 goto out; 2435 BUG_ON(err != len); 2436 err = 0; 2437 2438 balance_dirty_pages_ratelimited(mapping); 2439 2440 if (unlikely(fatal_signal_pending(current))) { 2441 err = -EINTR; 2442 goto out; 2443 } 2444 } 2445 2446 /* page covers the boundary, find the boundary offset */ 2447 if (index == curidx) { 2448 zerofrom = curpos & ~PAGE_MASK; 2449 /* if we will expand the thing last block will be filled */ 2450 if (offset <= zerofrom) { 2451 goto out; 2452 } 2453 if (zerofrom & (blocksize-1)) { 2454 *bytes |= (blocksize-1); 2455 (*bytes)++; 2456 } 2457 len = offset - zerofrom; 2458 2459 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2460 &page, &fsdata); 2461 if (err) 2462 goto out; 2463 zero_user(page, zerofrom, len); 2464 err = pagecache_write_end(file, mapping, curpos, len, len, 2465 page, fsdata); 2466 if (err < 0) 2467 goto out; 2468 BUG_ON(err != len); 2469 err = 0; 2470 } 2471 out: 2472 return err; 2473 } 2474 2475 /* 2476 * For moronic filesystems that do not allow holes in file. 2477 * We may have to extend the file. 2478 */ 2479 int cont_write_begin(struct file *file, struct address_space *mapping, 2480 loff_t pos, unsigned len, unsigned flags, 2481 struct page **pagep, void **fsdata, 2482 get_block_t *get_block, loff_t *bytes) 2483 { 2484 struct inode *inode = mapping->host; 2485 unsigned int blocksize = i_blocksize(inode); 2486 unsigned int zerofrom; 2487 int err; 2488 2489 err = cont_expand_zero(file, mapping, pos, bytes); 2490 if (err) 2491 return err; 2492 2493 zerofrom = *bytes & ~PAGE_MASK; 2494 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2495 *bytes |= (blocksize-1); 2496 (*bytes)++; 2497 } 2498 2499 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2500 } 2501 EXPORT_SYMBOL(cont_write_begin); 2502 2503 int block_commit_write(struct page *page, unsigned from, unsigned to) 2504 { 2505 struct inode *inode = page->mapping->host; 2506 __block_commit_write(inode,page,from,to); 2507 return 0; 2508 } 2509 EXPORT_SYMBOL(block_commit_write); 2510 2511 /* 2512 * block_page_mkwrite() is not allowed to change the file size as it gets 2513 * called from a page fault handler when a page is first dirtied. Hence we must 2514 * be careful to check for EOF conditions here. We set the page up correctly 2515 * for a written page which means we get ENOSPC checking when writing into 2516 * holes and correct delalloc and unwritten extent mapping on filesystems that 2517 * support these features. 2518 * 2519 * We are not allowed to take the i_mutex here so we have to play games to 2520 * protect against truncate races as the page could now be beyond EOF. Because 2521 * truncate writes the inode size before removing pages, once we have the 2522 * page lock we can determine safely if the page is beyond EOF. If it is not 2523 * beyond EOF, then the page is guaranteed safe against truncation until we 2524 * unlock the page. 2525 * 2526 * Direct callers of this function should protect against filesystem freezing 2527 * using sb_start_pagefault() - sb_end_pagefault() functions. 2528 */ 2529 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2530 get_block_t get_block) 2531 { 2532 struct page *page = vmf->page; 2533 struct inode *inode = file_inode(vma->vm_file); 2534 unsigned long end; 2535 loff_t size; 2536 int ret; 2537 2538 lock_page(page); 2539 size = i_size_read(inode); 2540 if ((page->mapping != inode->i_mapping) || 2541 (page_offset(page) > size)) { 2542 /* We overload EFAULT to mean page got truncated */ 2543 ret = -EFAULT; 2544 goto out_unlock; 2545 } 2546 2547 /* page is wholly or partially inside EOF */ 2548 if (((page->index + 1) << PAGE_SHIFT) > size) 2549 end = size & ~PAGE_MASK; 2550 else 2551 end = PAGE_SIZE; 2552 2553 ret = __block_write_begin(page, 0, end, get_block); 2554 if (!ret) 2555 ret = block_commit_write(page, 0, end); 2556 2557 if (unlikely(ret < 0)) 2558 goto out_unlock; 2559 set_page_dirty(page); 2560 wait_for_stable_page(page); 2561 return 0; 2562 out_unlock: 2563 unlock_page(page); 2564 return ret; 2565 } 2566 EXPORT_SYMBOL(block_page_mkwrite); 2567 2568 /* 2569 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2570 * immediately, while under the page lock. So it needs a special end_io 2571 * handler which does not touch the bh after unlocking it. 2572 */ 2573 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2574 { 2575 __end_buffer_read_notouch(bh, uptodate); 2576 } 2577 2578 /* 2579 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2580 * the page (converting it to circular linked list and taking care of page 2581 * dirty races). 2582 */ 2583 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2584 { 2585 struct buffer_head *bh; 2586 2587 BUG_ON(!PageLocked(page)); 2588 2589 spin_lock(&page->mapping->private_lock); 2590 bh = head; 2591 do { 2592 if (PageDirty(page)) 2593 set_buffer_dirty(bh); 2594 if (!bh->b_this_page) 2595 bh->b_this_page = head; 2596 bh = bh->b_this_page; 2597 } while (bh != head); 2598 attach_page_buffers(page, head); 2599 spin_unlock(&page->mapping->private_lock); 2600 } 2601 2602 /* 2603 * On entry, the page is fully not uptodate. 2604 * On exit the page is fully uptodate in the areas outside (from,to) 2605 * The filesystem needs to handle block truncation upon failure. 2606 */ 2607 int nobh_write_begin(struct address_space *mapping, 2608 loff_t pos, unsigned len, unsigned flags, 2609 struct page **pagep, void **fsdata, 2610 get_block_t *get_block) 2611 { 2612 struct inode *inode = mapping->host; 2613 const unsigned blkbits = inode->i_blkbits; 2614 const unsigned blocksize = 1 << blkbits; 2615 struct buffer_head *head, *bh; 2616 struct page *page; 2617 pgoff_t index; 2618 unsigned from, to; 2619 unsigned block_in_page; 2620 unsigned block_start, block_end; 2621 sector_t block_in_file; 2622 int nr_reads = 0; 2623 int ret = 0; 2624 int is_mapped_to_disk = 1; 2625 2626 index = pos >> PAGE_SHIFT; 2627 from = pos & (PAGE_SIZE - 1); 2628 to = from + len; 2629 2630 page = grab_cache_page_write_begin(mapping, index, flags); 2631 if (!page) 2632 return -ENOMEM; 2633 *pagep = page; 2634 *fsdata = NULL; 2635 2636 if (page_has_buffers(page)) { 2637 ret = __block_write_begin(page, pos, len, get_block); 2638 if (unlikely(ret)) 2639 goto out_release; 2640 return ret; 2641 } 2642 2643 if (PageMappedToDisk(page)) 2644 return 0; 2645 2646 /* 2647 * Allocate buffers so that we can keep track of state, and potentially 2648 * attach them to the page if an error occurs. In the common case of 2649 * no error, they will just be freed again without ever being attached 2650 * to the page (which is all OK, because we're under the page lock). 2651 * 2652 * Be careful: the buffer linked list is a NULL terminated one, rather 2653 * than the circular one we're used to. 2654 */ 2655 head = alloc_page_buffers(page, blocksize, 0); 2656 if (!head) { 2657 ret = -ENOMEM; 2658 goto out_release; 2659 } 2660 2661 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2662 2663 /* 2664 * We loop across all blocks in the page, whether or not they are 2665 * part of the affected region. This is so we can discover if the 2666 * page is fully mapped-to-disk. 2667 */ 2668 for (block_start = 0, block_in_page = 0, bh = head; 2669 block_start < PAGE_SIZE; 2670 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2671 int create; 2672 2673 block_end = block_start + blocksize; 2674 bh->b_state = 0; 2675 create = 1; 2676 if (block_start >= to) 2677 create = 0; 2678 ret = get_block(inode, block_in_file + block_in_page, 2679 bh, create); 2680 if (ret) 2681 goto failed; 2682 if (!buffer_mapped(bh)) 2683 is_mapped_to_disk = 0; 2684 if (buffer_new(bh)) 2685 clean_bdev_bh_alias(bh); 2686 if (PageUptodate(page)) { 2687 set_buffer_uptodate(bh); 2688 continue; 2689 } 2690 if (buffer_new(bh) || !buffer_mapped(bh)) { 2691 zero_user_segments(page, block_start, from, 2692 to, block_end); 2693 continue; 2694 } 2695 if (buffer_uptodate(bh)) 2696 continue; /* reiserfs does this */ 2697 if (block_start < from || block_end > to) { 2698 lock_buffer(bh); 2699 bh->b_end_io = end_buffer_read_nobh; 2700 submit_bh(REQ_OP_READ, 0, bh); 2701 nr_reads++; 2702 } 2703 } 2704 2705 if (nr_reads) { 2706 /* 2707 * The page is locked, so these buffers are protected from 2708 * any VM or truncate activity. Hence we don't need to care 2709 * for the buffer_head refcounts. 2710 */ 2711 for (bh = head; bh; bh = bh->b_this_page) { 2712 wait_on_buffer(bh); 2713 if (!buffer_uptodate(bh)) 2714 ret = -EIO; 2715 } 2716 if (ret) 2717 goto failed; 2718 } 2719 2720 if (is_mapped_to_disk) 2721 SetPageMappedToDisk(page); 2722 2723 *fsdata = head; /* to be released by nobh_write_end */ 2724 2725 return 0; 2726 2727 failed: 2728 BUG_ON(!ret); 2729 /* 2730 * Error recovery is a bit difficult. We need to zero out blocks that 2731 * were newly allocated, and dirty them to ensure they get written out. 2732 * Buffers need to be attached to the page at this point, otherwise 2733 * the handling of potential IO errors during writeout would be hard 2734 * (could try doing synchronous writeout, but what if that fails too?) 2735 */ 2736 attach_nobh_buffers(page, head); 2737 page_zero_new_buffers(page, from, to); 2738 2739 out_release: 2740 unlock_page(page); 2741 put_page(page); 2742 *pagep = NULL; 2743 2744 return ret; 2745 } 2746 EXPORT_SYMBOL(nobh_write_begin); 2747 2748 int nobh_write_end(struct file *file, struct address_space *mapping, 2749 loff_t pos, unsigned len, unsigned copied, 2750 struct page *page, void *fsdata) 2751 { 2752 struct inode *inode = page->mapping->host; 2753 struct buffer_head *head = fsdata; 2754 struct buffer_head *bh; 2755 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2756 2757 if (unlikely(copied < len) && head) 2758 attach_nobh_buffers(page, head); 2759 if (page_has_buffers(page)) 2760 return generic_write_end(file, mapping, pos, len, 2761 copied, page, fsdata); 2762 2763 SetPageUptodate(page); 2764 set_page_dirty(page); 2765 if (pos+copied > inode->i_size) { 2766 i_size_write(inode, pos+copied); 2767 mark_inode_dirty(inode); 2768 } 2769 2770 unlock_page(page); 2771 put_page(page); 2772 2773 while (head) { 2774 bh = head; 2775 head = head->b_this_page; 2776 free_buffer_head(bh); 2777 } 2778 2779 return copied; 2780 } 2781 EXPORT_SYMBOL(nobh_write_end); 2782 2783 /* 2784 * nobh_writepage() - based on block_full_write_page() except 2785 * that it tries to operate without attaching bufferheads to 2786 * the page. 2787 */ 2788 int nobh_writepage(struct page *page, get_block_t *get_block, 2789 struct writeback_control *wbc) 2790 { 2791 struct inode * const inode = page->mapping->host; 2792 loff_t i_size = i_size_read(inode); 2793 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2794 unsigned offset; 2795 int ret; 2796 2797 /* Is the page fully inside i_size? */ 2798 if (page->index < end_index) 2799 goto out; 2800 2801 /* Is the page fully outside i_size? (truncate in progress) */ 2802 offset = i_size & (PAGE_SIZE-1); 2803 if (page->index >= end_index+1 || !offset) { 2804 /* 2805 * The page may have dirty, unmapped buffers. For example, 2806 * they may have been added in ext3_writepage(). Make them 2807 * freeable here, so the page does not leak. 2808 */ 2809 #if 0 2810 /* Not really sure about this - do we need this ? */ 2811 if (page->mapping->a_ops->invalidatepage) 2812 page->mapping->a_ops->invalidatepage(page, offset); 2813 #endif 2814 unlock_page(page); 2815 return 0; /* don't care */ 2816 } 2817 2818 /* 2819 * The page straddles i_size. It must be zeroed out on each and every 2820 * writepage invocation because it may be mmapped. "A file is mapped 2821 * in multiples of the page size. For a file that is not a multiple of 2822 * the page size, the remaining memory is zeroed when mapped, and 2823 * writes to that region are not written out to the file." 2824 */ 2825 zero_user_segment(page, offset, PAGE_SIZE); 2826 out: 2827 ret = mpage_writepage(page, get_block, wbc); 2828 if (ret == -EAGAIN) 2829 ret = __block_write_full_page(inode, page, get_block, wbc, 2830 end_buffer_async_write); 2831 return ret; 2832 } 2833 EXPORT_SYMBOL(nobh_writepage); 2834 2835 int nobh_truncate_page(struct address_space *mapping, 2836 loff_t from, get_block_t *get_block) 2837 { 2838 pgoff_t index = from >> PAGE_SHIFT; 2839 unsigned offset = from & (PAGE_SIZE-1); 2840 unsigned blocksize; 2841 sector_t iblock; 2842 unsigned length, pos; 2843 struct inode *inode = mapping->host; 2844 struct page *page; 2845 struct buffer_head map_bh; 2846 int err; 2847 2848 blocksize = i_blocksize(inode); 2849 length = offset & (blocksize - 1); 2850 2851 /* Block boundary? Nothing to do */ 2852 if (!length) 2853 return 0; 2854 2855 length = blocksize - length; 2856 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2857 2858 page = grab_cache_page(mapping, index); 2859 err = -ENOMEM; 2860 if (!page) 2861 goto out; 2862 2863 if (page_has_buffers(page)) { 2864 has_buffers: 2865 unlock_page(page); 2866 put_page(page); 2867 return block_truncate_page(mapping, from, get_block); 2868 } 2869 2870 /* Find the buffer that contains "offset" */ 2871 pos = blocksize; 2872 while (offset >= pos) { 2873 iblock++; 2874 pos += blocksize; 2875 } 2876 2877 map_bh.b_size = blocksize; 2878 map_bh.b_state = 0; 2879 err = get_block(inode, iblock, &map_bh, 0); 2880 if (err) 2881 goto unlock; 2882 /* unmapped? It's a hole - nothing to do */ 2883 if (!buffer_mapped(&map_bh)) 2884 goto unlock; 2885 2886 /* Ok, it's mapped. Make sure it's up-to-date */ 2887 if (!PageUptodate(page)) { 2888 err = mapping->a_ops->readpage(NULL, page); 2889 if (err) { 2890 put_page(page); 2891 goto out; 2892 } 2893 lock_page(page); 2894 if (!PageUptodate(page)) { 2895 err = -EIO; 2896 goto unlock; 2897 } 2898 if (page_has_buffers(page)) 2899 goto has_buffers; 2900 } 2901 zero_user(page, offset, length); 2902 set_page_dirty(page); 2903 err = 0; 2904 2905 unlock: 2906 unlock_page(page); 2907 put_page(page); 2908 out: 2909 return err; 2910 } 2911 EXPORT_SYMBOL(nobh_truncate_page); 2912 2913 int block_truncate_page(struct address_space *mapping, 2914 loff_t from, get_block_t *get_block) 2915 { 2916 pgoff_t index = from >> PAGE_SHIFT; 2917 unsigned offset = from & (PAGE_SIZE-1); 2918 unsigned blocksize; 2919 sector_t iblock; 2920 unsigned length, pos; 2921 struct inode *inode = mapping->host; 2922 struct page *page; 2923 struct buffer_head *bh; 2924 int err; 2925 2926 blocksize = i_blocksize(inode); 2927 length = offset & (blocksize - 1); 2928 2929 /* Block boundary? Nothing to do */ 2930 if (!length) 2931 return 0; 2932 2933 length = blocksize - length; 2934 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2935 2936 page = grab_cache_page(mapping, index); 2937 err = -ENOMEM; 2938 if (!page) 2939 goto out; 2940 2941 if (!page_has_buffers(page)) 2942 create_empty_buffers(page, blocksize, 0); 2943 2944 /* Find the buffer that contains "offset" */ 2945 bh = page_buffers(page); 2946 pos = blocksize; 2947 while (offset >= pos) { 2948 bh = bh->b_this_page; 2949 iblock++; 2950 pos += blocksize; 2951 } 2952 2953 err = 0; 2954 if (!buffer_mapped(bh)) { 2955 WARN_ON(bh->b_size != blocksize); 2956 err = get_block(inode, iblock, bh, 0); 2957 if (err) 2958 goto unlock; 2959 /* unmapped? It's a hole - nothing to do */ 2960 if (!buffer_mapped(bh)) 2961 goto unlock; 2962 } 2963 2964 /* Ok, it's mapped. Make sure it's up-to-date */ 2965 if (PageUptodate(page)) 2966 set_buffer_uptodate(bh); 2967 2968 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2969 err = -EIO; 2970 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2971 wait_on_buffer(bh); 2972 /* Uhhuh. Read error. Complain and punt. */ 2973 if (!buffer_uptodate(bh)) 2974 goto unlock; 2975 } 2976 2977 zero_user(page, offset, length); 2978 mark_buffer_dirty(bh); 2979 err = 0; 2980 2981 unlock: 2982 unlock_page(page); 2983 put_page(page); 2984 out: 2985 return err; 2986 } 2987 EXPORT_SYMBOL(block_truncate_page); 2988 2989 /* 2990 * The generic ->writepage function for buffer-backed address_spaces 2991 */ 2992 int block_write_full_page(struct page *page, get_block_t *get_block, 2993 struct writeback_control *wbc) 2994 { 2995 struct inode * const inode = page->mapping->host; 2996 loff_t i_size = i_size_read(inode); 2997 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2998 unsigned offset; 2999 3000 /* Is the page fully inside i_size? */ 3001 if (page->index < end_index) 3002 return __block_write_full_page(inode, page, get_block, wbc, 3003 end_buffer_async_write); 3004 3005 /* Is the page fully outside i_size? (truncate in progress) */ 3006 offset = i_size & (PAGE_SIZE-1); 3007 if (page->index >= end_index+1 || !offset) { 3008 /* 3009 * The page may have dirty, unmapped buffers. For example, 3010 * they may have been added in ext3_writepage(). Make them 3011 * freeable here, so the page does not leak. 3012 */ 3013 do_invalidatepage(page, 0, PAGE_SIZE); 3014 unlock_page(page); 3015 return 0; /* don't care */ 3016 } 3017 3018 /* 3019 * The page straddles i_size. It must be zeroed out on each and every 3020 * writepage invocation because it may be mmapped. "A file is mapped 3021 * in multiples of the page size. For a file that is not a multiple of 3022 * the page size, the remaining memory is zeroed when mapped, and 3023 * writes to that region are not written out to the file." 3024 */ 3025 zero_user_segment(page, offset, PAGE_SIZE); 3026 return __block_write_full_page(inode, page, get_block, wbc, 3027 end_buffer_async_write); 3028 } 3029 EXPORT_SYMBOL(block_write_full_page); 3030 3031 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 3032 get_block_t *get_block) 3033 { 3034 struct inode *inode = mapping->host; 3035 struct buffer_head tmp = { 3036 .b_size = i_blocksize(inode), 3037 }; 3038 3039 get_block(inode, block, &tmp, 0); 3040 return tmp.b_blocknr; 3041 } 3042 EXPORT_SYMBOL(generic_block_bmap); 3043 3044 static void end_bio_bh_io_sync(struct bio *bio) 3045 { 3046 struct buffer_head *bh = bio->bi_private; 3047 3048 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3049 set_bit(BH_Quiet, &bh->b_state); 3050 3051 bh->b_end_io(bh, !bio->bi_status); 3052 bio_put(bio); 3053 } 3054 3055 /* 3056 * This allows us to do IO even on the odd last sectors 3057 * of a device, even if the block size is some multiple 3058 * of the physical sector size. 3059 * 3060 * We'll just truncate the bio to the size of the device, 3061 * and clear the end of the buffer head manually. 3062 * 3063 * Truly out-of-range accesses will turn into actual IO 3064 * errors, this only handles the "we need to be able to 3065 * do IO at the final sector" case. 3066 */ 3067 void guard_bio_eod(int op, struct bio *bio) 3068 { 3069 sector_t maxsector; 3070 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 3071 unsigned truncated_bytes; 3072 3073 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 3074 if (!maxsector) 3075 return; 3076 3077 /* 3078 * If the *whole* IO is past the end of the device, 3079 * let it through, and the IO layer will turn it into 3080 * an EIO. 3081 */ 3082 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3083 return; 3084 3085 maxsector -= bio->bi_iter.bi_sector; 3086 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3087 return; 3088 3089 /* Uhhuh. We've got a bio that straddles the device size! */ 3090 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3091 3092 /* Truncate the bio.. */ 3093 bio->bi_iter.bi_size -= truncated_bytes; 3094 bvec->bv_len -= truncated_bytes; 3095 3096 /* ..and clear the end of the buffer for reads */ 3097 if (op == REQ_OP_READ) { 3098 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 3099 truncated_bytes); 3100 } 3101 } 3102 3103 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3104 enum rw_hint write_hint, struct writeback_control *wbc) 3105 { 3106 struct bio *bio; 3107 3108 BUG_ON(!buffer_locked(bh)); 3109 BUG_ON(!buffer_mapped(bh)); 3110 BUG_ON(!bh->b_end_io); 3111 BUG_ON(buffer_delay(bh)); 3112 BUG_ON(buffer_unwritten(bh)); 3113 3114 /* 3115 * Only clear out a write error when rewriting 3116 */ 3117 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3118 clear_buffer_write_io_error(bh); 3119 3120 /* 3121 * from here on down, it's all bio -- do the initial mapping, 3122 * submit_bio -> generic_make_request may further map this bio around 3123 */ 3124 bio = bio_alloc(GFP_NOIO, 1); 3125 3126 if (wbc) { 3127 wbc_init_bio(wbc, bio); 3128 wbc_account_io(wbc, bh->b_page, bh->b_size); 3129 } 3130 3131 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3132 bio->bi_bdev = bh->b_bdev; 3133 bio->bi_write_hint = write_hint; 3134 3135 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3136 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3137 3138 bio->bi_end_io = end_bio_bh_io_sync; 3139 bio->bi_private = bh; 3140 3141 /* Take care of bh's that straddle the end of the device */ 3142 guard_bio_eod(op, bio); 3143 3144 if (buffer_meta(bh)) 3145 op_flags |= REQ_META; 3146 if (buffer_prio(bh)) 3147 op_flags |= REQ_PRIO; 3148 bio_set_op_attrs(bio, op, op_flags); 3149 3150 submit_bio(bio); 3151 return 0; 3152 } 3153 3154 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3155 { 3156 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3157 } 3158 EXPORT_SYMBOL(submit_bh); 3159 3160 /** 3161 * ll_rw_block: low-level access to block devices (DEPRECATED) 3162 * @op: whether to %READ or %WRITE 3163 * @op_flags: req_flag_bits 3164 * @nr: number of &struct buffer_heads in the array 3165 * @bhs: array of pointers to &struct buffer_head 3166 * 3167 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3168 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3169 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3170 * %REQ_RAHEAD. 3171 * 3172 * This function drops any buffer that it cannot get a lock on (with the 3173 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3174 * request, and any buffer that appears to be up-to-date when doing read 3175 * request. Further it marks as clean buffers that are processed for 3176 * writing (the buffer cache won't assume that they are actually clean 3177 * until the buffer gets unlocked). 3178 * 3179 * ll_rw_block sets b_end_io to simple completion handler that marks 3180 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3181 * any waiters. 3182 * 3183 * All of the buffers must be for the same device, and must also be a 3184 * multiple of the current approved size for the device. 3185 */ 3186 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3187 { 3188 int i; 3189 3190 for (i = 0; i < nr; i++) { 3191 struct buffer_head *bh = bhs[i]; 3192 3193 if (!trylock_buffer(bh)) 3194 continue; 3195 if (op == WRITE) { 3196 if (test_clear_buffer_dirty(bh)) { 3197 bh->b_end_io = end_buffer_write_sync; 3198 get_bh(bh); 3199 submit_bh(op, op_flags, bh); 3200 continue; 3201 } 3202 } else { 3203 if (!buffer_uptodate(bh)) { 3204 bh->b_end_io = end_buffer_read_sync; 3205 get_bh(bh); 3206 submit_bh(op, op_flags, bh); 3207 continue; 3208 } 3209 } 3210 unlock_buffer(bh); 3211 } 3212 } 3213 EXPORT_SYMBOL(ll_rw_block); 3214 3215 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3216 { 3217 lock_buffer(bh); 3218 if (!test_clear_buffer_dirty(bh)) { 3219 unlock_buffer(bh); 3220 return; 3221 } 3222 bh->b_end_io = end_buffer_write_sync; 3223 get_bh(bh); 3224 submit_bh(REQ_OP_WRITE, op_flags, bh); 3225 } 3226 EXPORT_SYMBOL(write_dirty_buffer); 3227 3228 /* 3229 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3230 * and then start new I/O and then wait upon it. The caller must have a ref on 3231 * the buffer_head. 3232 */ 3233 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3234 { 3235 int ret = 0; 3236 3237 WARN_ON(atomic_read(&bh->b_count) < 1); 3238 lock_buffer(bh); 3239 if (test_clear_buffer_dirty(bh)) { 3240 get_bh(bh); 3241 bh->b_end_io = end_buffer_write_sync; 3242 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3243 wait_on_buffer(bh); 3244 if (!ret && !buffer_uptodate(bh)) 3245 ret = -EIO; 3246 } else { 3247 unlock_buffer(bh); 3248 } 3249 return ret; 3250 } 3251 EXPORT_SYMBOL(__sync_dirty_buffer); 3252 3253 int sync_dirty_buffer(struct buffer_head *bh) 3254 { 3255 return __sync_dirty_buffer(bh, REQ_SYNC); 3256 } 3257 EXPORT_SYMBOL(sync_dirty_buffer); 3258 3259 /* 3260 * try_to_free_buffers() checks if all the buffers on this particular page 3261 * are unused, and releases them if so. 3262 * 3263 * Exclusion against try_to_free_buffers may be obtained by either 3264 * locking the page or by holding its mapping's private_lock. 3265 * 3266 * If the page is dirty but all the buffers are clean then we need to 3267 * be sure to mark the page clean as well. This is because the page 3268 * may be against a block device, and a later reattachment of buffers 3269 * to a dirty page will set *all* buffers dirty. Which would corrupt 3270 * filesystem data on the same device. 3271 * 3272 * The same applies to regular filesystem pages: if all the buffers are 3273 * clean then we set the page clean and proceed. To do that, we require 3274 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3275 * private_lock. 3276 * 3277 * try_to_free_buffers() is non-blocking. 3278 */ 3279 static inline int buffer_busy(struct buffer_head *bh) 3280 { 3281 return atomic_read(&bh->b_count) | 3282 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3283 } 3284 3285 static int 3286 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3287 { 3288 struct buffer_head *head = page_buffers(page); 3289 struct buffer_head *bh; 3290 3291 bh = head; 3292 do { 3293 if (buffer_busy(bh)) 3294 goto failed; 3295 bh = bh->b_this_page; 3296 } while (bh != head); 3297 3298 do { 3299 struct buffer_head *next = bh->b_this_page; 3300 3301 if (bh->b_assoc_map) 3302 __remove_assoc_queue(bh); 3303 bh = next; 3304 } while (bh != head); 3305 *buffers_to_free = head; 3306 __clear_page_buffers(page); 3307 return 1; 3308 failed: 3309 return 0; 3310 } 3311 3312 int try_to_free_buffers(struct page *page) 3313 { 3314 struct address_space * const mapping = page->mapping; 3315 struct buffer_head *buffers_to_free = NULL; 3316 int ret = 0; 3317 3318 BUG_ON(!PageLocked(page)); 3319 if (PageWriteback(page)) 3320 return 0; 3321 3322 if (mapping == NULL) { /* can this still happen? */ 3323 ret = drop_buffers(page, &buffers_to_free); 3324 goto out; 3325 } 3326 3327 spin_lock(&mapping->private_lock); 3328 ret = drop_buffers(page, &buffers_to_free); 3329 3330 /* 3331 * If the filesystem writes its buffers by hand (eg ext3) 3332 * then we can have clean buffers against a dirty page. We 3333 * clean the page here; otherwise the VM will never notice 3334 * that the filesystem did any IO at all. 3335 * 3336 * Also, during truncate, discard_buffer will have marked all 3337 * the page's buffers clean. We discover that here and clean 3338 * the page also. 3339 * 3340 * private_lock must be held over this entire operation in order 3341 * to synchronise against __set_page_dirty_buffers and prevent the 3342 * dirty bit from being lost. 3343 */ 3344 if (ret) 3345 cancel_dirty_page(page); 3346 spin_unlock(&mapping->private_lock); 3347 out: 3348 if (buffers_to_free) { 3349 struct buffer_head *bh = buffers_to_free; 3350 3351 do { 3352 struct buffer_head *next = bh->b_this_page; 3353 free_buffer_head(bh); 3354 bh = next; 3355 } while (bh != buffers_to_free); 3356 } 3357 return ret; 3358 } 3359 EXPORT_SYMBOL(try_to_free_buffers); 3360 3361 /* 3362 * There are no bdflush tunables left. But distributions are 3363 * still running obsolete flush daemons, so we terminate them here. 3364 * 3365 * Use of bdflush() is deprecated and will be removed in a future kernel. 3366 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3367 */ 3368 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3369 { 3370 static int msg_count; 3371 3372 if (!capable(CAP_SYS_ADMIN)) 3373 return -EPERM; 3374 3375 if (msg_count < 5) { 3376 msg_count++; 3377 printk(KERN_INFO 3378 "warning: process `%s' used the obsolete bdflush" 3379 " system call\n", current->comm); 3380 printk(KERN_INFO "Fix your initscripts?\n"); 3381 } 3382 3383 if (func == 1) 3384 do_exit(0); 3385 return 0; 3386 } 3387 3388 /* 3389 * Buffer-head allocation 3390 */ 3391 static struct kmem_cache *bh_cachep __read_mostly; 3392 3393 /* 3394 * Once the number of bh's in the machine exceeds this level, we start 3395 * stripping them in writeback. 3396 */ 3397 static unsigned long max_buffer_heads; 3398 3399 int buffer_heads_over_limit; 3400 3401 struct bh_accounting { 3402 int nr; /* Number of live bh's */ 3403 int ratelimit; /* Limit cacheline bouncing */ 3404 }; 3405 3406 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3407 3408 static void recalc_bh_state(void) 3409 { 3410 int i; 3411 int tot = 0; 3412 3413 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3414 return; 3415 __this_cpu_write(bh_accounting.ratelimit, 0); 3416 for_each_online_cpu(i) 3417 tot += per_cpu(bh_accounting, i).nr; 3418 buffer_heads_over_limit = (tot > max_buffer_heads); 3419 } 3420 3421 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3422 { 3423 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3424 if (ret) { 3425 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3426 preempt_disable(); 3427 __this_cpu_inc(bh_accounting.nr); 3428 recalc_bh_state(); 3429 preempt_enable(); 3430 } 3431 return ret; 3432 } 3433 EXPORT_SYMBOL(alloc_buffer_head); 3434 3435 void free_buffer_head(struct buffer_head *bh) 3436 { 3437 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3438 kmem_cache_free(bh_cachep, bh); 3439 preempt_disable(); 3440 __this_cpu_dec(bh_accounting.nr); 3441 recalc_bh_state(); 3442 preempt_enable(); 3443 } 3444 EXPORT_SYMBOL(free_buffer_head); 3445 3446 static int buffer_exit_cpu_dead(unsigned int cpu) 3447 { 3448 int i; 3449 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3450 3451 for (i = 0; i < BH_LRU_SIZE; i++) { 3452 brelse(b->bhs[i]); 3453 b->bhs[i] = NULL; 3454 } 3455 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3456 per_cpu(bh_accounting, cpu).nr = 0; 3457 return 0; 3458 } 3459 3460 /** 3461 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3462 * @bh: struct buffer_head 3463 * 3464 * Return true if the buffer is up-to-date and false, 3465 * with the buffer locked, if not. 3466 */ 3467 int bh_uptodate_or_lock(struct buffer_head *bh) 3468 { 3469 if (!buffer_uptodate(bh)) { 3470 lock_buffer(bh); 3471 if (!buffer_uptodate(bh)) 3472 return 0; 3473 unlock_buffer(bh); 3474 } 3475 return 1; 3476 } 3477 EXPORT_SYMBOL(bh_uptodate_or_lock); 3478 3479 /** 3480 * bh_submit_read - Submit a locked buffer for reading 3481 * @bh: struct buffer_head 3482 * 3483 * Returns zero on success and -EIO on error. 3484 */ 3485 int bh_submit_read(struct buffer_head *bh) 3486 { 3487 BUG_ON(!buffer_locked(bh)); 3488 3489 if (buffer_uptodate(bh)) { 3490 unlock_buffer(bh); 3491 return 0; 3492 } 3493 3494 get_bh(bh); 3495 bh->b_end_io = end_buffer_read_sync; 3496 submit_bh(REQ_OP_READ, 0, bh); 3497 wait_on_buffer(bh); 3498 if (buffer_uptodate(bh)) 3499 return 0; 3500 return -EIO; 3501 } 3502 EXPORT_SYMBOL(bh_submit_read); 3503 3504 void __init buffer_init(void) 3505 { 3506 unsigned long nrpages; 3507 int ret; 3508 3509 bh_cachep = kmem_cache_create("buffer_head", 3510 sizeof(struct buffer_head), 0, 3511 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3512 SLAB_MEM_SPREAD), 3513 NULL); 3514 3515 /* 3516 * Limit the bh occupancy to 10% of ZONE_NORMAL 3517 */ 3518 nrpages = (nr_free_buffer_pages() * 10) / 100; 3519 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3520 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3521 NULL, buffer_exit_cpu_dead); 3522 WARN_ON(ret < 0); 3523 } 3524