1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 static int sleep_on_buffer(void *word) 58 { 59 io_schedule(); 60 return 0; 61 } 62 63 void __lock_buffer(struct buffer_head *bh) 64 { 65 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer, 66 TASK_UNINTERRUPTIBLE); 67 } 68 EXPORT_SYMBOL(__lock_buffer); 69 70 void unlock_buffer(struct buffer_head *bh) 71 { 72 clear_bit_unlock(BH_Lock, &bh->b_state); 73 smp_mb__after_clear_bit(); 74 wake_up_bit(&bh->b_state, BH_Lock); 75 } 76 EXPORT_SYMBOL(unlock_buffer); 77 78 /* 79 * Block until a buffer comes unlocked. This doesn't stop it 80 * from becoming locked again - you have to lock it yourself 81 * if you want to preserve its state. 82 */ 83 void __wait_on_buffer(struct buffer_head * bh) 84 { 85 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE); 86 } 87 EXPORT_SYMBOL(__wait_on_buffer); 88 89 static void 90 __clear_page_buffers(struct page *page) 91 { 92 ClearPagePrivate(page); 93 set_page_private(page, 0); 94 page_cache_release(page); 95 } 96 97 98 static int quiet_error(struct buffer_head *bh) 99 { 100 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 101 return 0; 102 return 1; 103 } 104 105 106 static void buffer_io_error(struct buffer_head *bh) 107 { 108 char b[BDEVNAME_SIZE]; 109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 110 bdevname(bh->b_bdev, b), 111 (unsigned long long)bh->b_blocknr); 112 } 113 114 /* 115 * End-of-IO handler helper function which does not touch the bh after 116 * unlocking it. 117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 118 * a race there is benign: unlock_buffer() only use the bh's address for 119 * hashing after unlocking the buffer, so it doesn't actually touch the bh 120 * itself. 121 */ 122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 123 { 124 if (uptodate) { 125 set_buffer_uptodate(bh); 126 } else { 127 /* This happens, due to failed READA attempts. */ 128 clear_buffer_uptodate(bh); 129 } 130 unlock_buffer(bh); 131 } 132 133 /* 134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 135 * unlock the buffer. This is what ll_rw_block uses too. 136 */ 137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 138 { 139 __end_buffer_read_notouch(bh, uptodate); 140 put_bh(bh); 141 } 142 EXPORT_SYMBOL(end_buffer_read_sync); 143 144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 145 { 146 char b[BDEVNAME_SIZE]; 147 148 if (uptodate) { 149 set_buffer_uptodate(bh); 150 } else { 151 if (!quiet_error(bh)) { 152 buffer_io_error(bh); 153 printk(KERN_WARNING "lost page write due to " 154 "I/O error on %s\n", 155 bdevname(bh->b_bdev, b)); 156 } 157 set_buffer_write_io_error(bh); 158 clear_buffer_uptodate(bh); 159 } 160 unlock_buffer(bh); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_write_sync); 164 165 /* 166 * Various filesystems appear to want __find_get_block to be non-blocking. 167 * But it's the page lock which protects the buffers. To get around this, 168 * we get exclusion from try_to_free_buffers with the blockdev mapping's 169 * private_lock. 170 * 171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 172 * may be quite high. This code could TryLock the page, and if that 173 * succeeds, there is no need to take private_lock. (But if 174 * private_lock is contended then so is mapping->tree_lock). 175 */ 176 static struct buffer_head * 177 __find_get_block_slow(struct block_device *bdev, sector_t block) 178 { 179 struct inode *bd_inode = bdev->bd_inode; 180 struct address_space *bd_mapping = bd_inode->i_mapping; 181 struct buffer_head *ret = NULL; 182 pgoff_t index; 183 struct buffer_head *bh; 184 struct buffer_head *head; 185 struct page *page; 186 int all_mapped = 1; 187 188 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 189 page = find_get_page(bd_mapping, index); 190 if (!page) 191 goto out; 192 193 spin_lock(&bd_mapping->private_lock); 194 if (!page_has_buffers(page)) 195 goto out_unlock; 196 head = page_buffers(page); 197 bh = head; 198 do { 199 if (!buffer_mapped(bh)) 200 all_mapped = 0; 201 else if (bh->b_blocknr == block) { 202 ret = bh; 203 get_bh(bh); 204 goto out_unlock; 205 } 206 bh = bh->b_this_page; 207 } while (bh != head); 208 209 /* we might be here because some of the buffers on this page are 210 * not mapped. This is due to various races between 211 * file io on the block device and getblk. It gets dealt with 212 * elsewhere, don't buffer_error if we had some unmapped buffers 213 */ 214 if (all_mapped) { 215 char b[BDEVNAME_SIZE]; 216 217 printk("__find_get_block_slow() failed. " 218 "block=%llu, b_blocknr=%llu\n", 219 (unsigned long long)block, 220 (unsigned long long)bh->b_blocknr); 221 printk("b_state=0x%08lx, b_size=%zu\n", 222 bh->b_state, bh->b_size); 223 printk("device %s blocksize: %d\n", bdevname(bdev, b), 224 1 << bd_inode->i_blkbits); 225 } 226 out_unlock: 227 spin_unlock(&bd_mapping->private_lock); 228 page_cache_release(page); 229 out: 230 return ret; 231 } 232 233 /* 234 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 235 */ 236 static void free_more_memory(void) 237 { 238 struct zone *zone; 239 int nid; 240 241 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 242 yield(); 243 244 for_each_online_node(nid) { 245 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 246 gfp_zone(GFP_NOFS), NULL, 247 &zone); 248 if (zone) 249 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 250 GFP_NOFS, NULL); 251 } 252 } 253 254 /* 255 * I/O completion handler for block_read_full_page() - pages 256 * which come unlocked at the end of I/O. 257 */ 258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 259 { 260 unsigned long flags; 261 struct buffer_head *first; 262 struct buffer_head *tmp; 263 struct page *page; 264 int page_uptodate = 1; 265 266 BUG_ON(!buffer_async_read(bh)); 267 268 page = bh->b_page; 269 if (uptodate) { 270 set_buffer_uptodate(bh); 271 } else { 272 clear_buffer_uptodate(bh); 273 if (!quiet_error(bh)) 274 buffer_io_error(bh); 275 SetPageError(page); 276 } 277 278 /* 279 * Be _very_ careful from here on. Bad things can happen if 280 * two buffer heads end IO at almost the same time and both 281 * decide that the page is now completely done. 282 */ 283 first = page_buffers(page); 284 local_irq_save(flags); 285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 286 clear_buffer_async_read(bh); 287 unlock_buffer(bh); 288 tmp = bh; 289 do { 290 if (!buffer_uptodate(tmp)) 291 page_uptodate = 0; 292 if (buffer_async_read(tmp)) { 293 BUG_ON(!buffer_locked(tmp)); 294 goto still_busy; 295 } 296 tmp = tmp->b_this_page; 297 } while (tmp != bh); 298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 299 local_irq_restore(flags); 300 301 /* 302 * If none of the buffers had errors and they are all 303 * uptodate then we can set the page uptodate. 304 */ 305 if (page_uptodate && !PageError(page)) 306 SetPageUptodate(page); 307 unlock_page(page); 308 return; 309 310 still_busy: 311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 312 local_irq_restore(flags); 313 return; 314 } 315 316 /* 317 * Completion handler for block_write_full_page() - pages which are unlocked 318 * during I/O, and which have PageWriteback cleared upon I/O completion. 319 */ 320 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 321 { 322 char b[BDEVNAME_SIZE]; 323 unsigned long flags; 324 struct buffer_head *first; 325 struct buffer_head *tmp; 326 struct page *page; 327 328 BUG_ON(!buffer_async_write(bh)); 329 330 page = bh->b_page; 331 if (uptodate) { 332 set_buffer_uptodate(bh); 333 } else { 334 if (!quiet_error(bh)) { 335 buffer_io_error(bh); 336 printk(KERN_WARNING "lost page write due to " 337 "I/O error on %s\n", 338 bdevname(bh->b_bdev, b)); 339 } 340 set_bit(AS_EIO, &page->mapping->flags); 341 set_buffer_write_io_error(bh); 342 clear_buffer_uptodate(bh); 343 SetPageError(page); 344 } 345 346 first = page_buffers(page); 347 local_irq_save(flags); 348 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 349 350 clear_buffer_async_write(bh); 351 unlock_buffer(bh); 352 tmp = bh->b_this_page; 353 while (tmp != bh) { 354 if (buffer_async_write(tmp)) { 355 BUG_ON(!buffer_locked(tmp)); 356 goto still_busy; 357 } 358 tmp = tmp->b_this_page; 359 } 360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 361 local_irq_restore(flags); 362 end_page_writeback(page); 363 return; 364 365 still_busy: 366 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 367 local_irq_restore(flags); 368 return; 369 } 370 EXPORT_SYMBOL(end_buffer_async_write); 371 372 /* 373 * If a page's buffers are under async readin (end_buffer_async_read 374 * completion) then there is a possibility that another thread of 375 * control could lock one of the buffers after it has completed 376 * but while some of the other buffers have not completed. This 377 * locked buffer would confuse end_buffer_async_read() into not unlocking 378 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 379 * that this buffer is not under async I/O. 380 * 381 * The page comes unlocked when it has no locked buffer_async buffers 382 * left. 383 * 384 * PageLocked prevents anyone starting new async I/O reads any of 385 * the buffers. 386 * 387 * PageWriteback is used to prevent simultaneous writeout of the same 388 * page. 389 * 390 * PageLocked prevents anyone from starting writeback of a page which is 391 * under read I/O (PageWriteback is only ever set against a locked page). 392 */ 393 static void mark_buffer_async_read(struct buffer_head *bh) 394 { 395 bh->b_end_io = end_buffer_async_read; 396 set_buffer_async_read(bh); 397 } 398 399 static void mark_buffer_async_write_endio(struct buffer_head *bh, 400 bh_end_io_t *handler) 401 { 402 bh->b_end_io = handler; 403 set_buffer_async_write(bh); 404 } 405 406 void mark_buffer_async_write(struct buffer_head *bh) 407 { 408 mark_buffer_async_write_endio(bh, end_buffer_async_write); 409 } 410 EXPORT_SYMBOL(mark_buffer_async_write); 411 412 413 /* 414 * fs/buffer.c contains helper functions for buffer-backed address space's 415 * fsync functions. A common requirement for buffer-based filesystems is 416 * that certain data from the backing blockdev needs to be written out for 417 * a successful fsync(). For example, ext2 indirect blocks need to be 418 * written back and waited upon before fsync() returns. 419 * 420 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 421 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 422 * management of a list of dependent buffers at ->i_mapping->private_list. 423 * 424 * Locking is a little subtle: try_to_free_buffers() will remove buffers 425 * from their controlling inode's queue when they are being freed. But 426 * try_to_free_buffers() will be operating against the *blockdev* mapping 427 * at the time, not against the S_ISREG file which depends on those buffers. 428 * So the locking for private_list is via the private_lock in the address_space 429 * which backs the buffers. Which is different from the address_space 430 * against which the buffers are listed. So for a particular address_space, 431 * mapping->private_lock does *not* protect mapping->private_list! In fact, 432 * mapping->private_list will always be protected by the backing blockdev's 433 * ->private_lock. 434 * 435 * Which introduces a requirement: all buffers on an address_space's 436 * ->private_list must be from the same address_space: the blockdev's. 437 * 438 * address_spaces which do not place buffers at ->private_list via these 439 * utility functions are free to use private_lock and private_list for 440 * whatever they want. The only requirement is that list_empty(private_list) 441 * be true at clear_inode() time. 442 * 443 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 444 * filesystems should do that. invalidate_inode_buffers() should just go 445 * BUG_ON(!list_empty). 446 * 447 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 448 * take an address_space, not an inode. And it should be called 449 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 450 * queued up. 451 * 452 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 453 * list if it is already on a list. Because if the buffer is on a list, 454 * it *must* already be on the right one. If not, the filesystem is being 455 * silly. This will save a ton of locking. But first we have to ensure 456 * that buffers are taken *off* the old inode's list when they are freed 457 * (presumably in truncate). That requires careful auditing of all 458 * filesystems (do it inside bforget()). It could also be done by bringing 459 * b_inode back. 460 */ 461 462 /* 463 * The buffer's backing address_space's private_lock must be held 464 */ 465 static void __remove_assoc_queue(struct buffer_head *bh) 466 { 467 list_del_init(&bh->b_assoc_buffers); 468 WARN_ON(!bh->b_assoc_map); 469 if (buffer_write_io_error(bh)) 470 set_bit(AS_EIO, &bh->b_assoc_map->flags); 471 bh->b_assoc_map = NULL; 472 } 473 474 int inode_has_buffers(struct inode *inode) 475 { 476 return !list_empty(&inode->i_data.private_list); 477 } 478 479 /* 480 * osync is designed to support O_SYNC io. It waits synchronously for 481 * all already-submitted IO to complete, but does not queue any new 482 * writes to the disk. 483 * 484 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 485 * you dirty the buffers, and then use osync_inode_buffers to wait for 486 * completion. Any other dirty buffers which are not yet queued for 487 * write will not be flushed to disk by the osync. 488 */ 489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 490 { 491 struct buffer_head *bh; 492 struct list_head *p; 493 int err = 0; 494 495 spin_lock(lock); 496 repeat: 497 list_for_each_prev(p, list) { 498 bh = BH_ENTRY(p); 499 if (buffer_locked(bh)) { 500 get_bh(bh); 501 spin_unlock(lock); 502 wait_on_buffer(bh); 503 if (!buffer_uptodate(bh)) 504 err = -EIO; 505 brelse(bh); 506 spin_lock(lock); 507 goto repeat; 508 } 509 } 510 spin_unlock(lock); 511 return err; 512 } 513 514 static void do_thaw_one(struct super_block *sb, void *unused) 515 { 516 char b[BDEVNAME_SIZE]; 517 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 518 printk(KERN_WARNING "Emergency Thaw on %s\n", 519 bdevname(sb->s_bdev, b)); 520 } 521 522 static void do_thaw_all(struct work_struct *work) 523 { 524 iterate_supers(do_thaw_one, NULL); 525 kfree(work); 526 printk(KERN_WARNING "Emergency Thaw complete\n"); 527 } 528 529 /** 530 * emergency_thaw_all -- forcibly thaw every frozen filesystem 531 * 532 * Used for emergency unfreeze of all filesystems via SysRq 533 */ 534 void emergency_thaw_all(void) 535 { 536 struct work_struct *work; 537 538 work = kmalloc(sizeof(*work), GFP_ATOMIC); 539 if (work) { 540 INIT_WORK(work, do_thaw_all); 541 schedule_work(work); 542 } 543 } 544 545 /** 546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 547 * @mapping: the mapping which wants those buffers written 548 * 549 * Starts I/O against the buffers at mapping->private_list, and waits upon 550 * that I/O. 551 * 552 * Basically, this is a convenience function for fsync(). 553 * @mapping is a file or directory which needs those buffers to be written for 554 * a successful fsync(). 555 */ 556 int sync_mapping_buffers(struct address_space *mapping) 557 { 558 struct address_space *buffer_mapping = mapping->assoc_mapping; 559 560 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 561 return 0; 562 563 return fsync_buffers_list(&buffer_mapping->private_lock, 564 &mapping->private_list); 565 } 566 EXPORT_SYMBOL(sync_mapping_buffers); 567 568 /* 569 * Called when we've recently written block `bblock', and it is known that 570 * `bblock' was for a buffer_boundary() buffer. This means that the block at 571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 572 * dirty, schedule it for IO. So that indirects merge nicely with their data. 573 */ 574 void write_boundary_block(struct block_device *bdev, 575 sector_t bblock, unsigned blocksize) 576 { 577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 578 if (bh) { 579 if (buffer_dirty(bh)) 580 ll_rw_block(WRITE, 1, &bh); 581 put_bh(bh); 582 } 583 } 584 585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 586 { 587 struct address_space *mapping = inode->i_mapping; 588 struct address_space *buffer_mapping = bh->b_page->mapping; 589 590 mark_buffer_dirty(bh); 591 if (!mapping->assoc_mapping) { 592 mapping->assoc_mapping = buffer_mapping; 593 } else { 594 BUG_ON(mapping->assoc_mapping != buffer_mapping); 595 } 596 if (!bh->b_assoc_map) { 597 spin_lock(&buffer_mapping->private_lock); 598 list_move_tail(&bh->b_assoc_buffers, 599 &mapping->private_list); 600 bh->b_assoc_map = mapping; 601 spin_unlock(&buffer_mapping->private_lock); 602 } 603 } 604 EXPORT_SYMBOL(mark_buffer_dirty_inode); 605 606 /* 607 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 608 * dirty. 609 * 610 * If warn is true, then emit a warning if the page is not uptodate and has 611 * not been truncated. 612 */ 613 static void __set_page_dirty(struct page *page, 614 struct address_space *mapping, int warn) 615 { 616 spin_lock_irq(&mapping->tree_lock); 617 if (page->mapping) { /* Race with truncate? */ 618 WARN_ON_ONCE(warn && !PageUptodate(page)); 619 account_page_dirtied(page, mapping); 620 radix_tree_tag_set(&mapping->page_tree, 621 page_index(page), PAGECACHE_TAG_DIRTY); 622 } 623 spin_unlock_irq(&mapping->tree_lock); 624 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 625 } 626 627 /* 628 * Add a page to the dirty page list. 629 * 630 * It is a sad fact of life that this function is called from several places 631 * deeply under spinlocking. It may not sleep. 632 * 633 * If the page has buffers, the uptodate buffers are set dirty, to preserve 634 * dirty-state coherency between the page and the buffers. It the page does 635 * not have buffers then when they are later attached they will all be set 636 * dirty. 637 * 638 * The buffers are dirtied before the page is dirtied. There's a small race 639 * window in which a writepage caller may see the page cleanness but not the 640 * buffer dirtiness. That's fine. If this code were to set the page dirty 641 * before the buffers, a concurrent writepage caller could clear the page dirty 642 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 643 * page on the dirty page list. 644 * 645 * We use private_lock to lock against try_to_free_buffers while using the 646 * page's buffer list. Also use this to protect against clean buffers being 647 * added to the page after it was set dirty. 648 * 649 * FIXME: may need to call ->reservepage here as well. That's rather up to the 650 * address_space though. 651 */ 652 int __set_page_dirty_buffers(struct page *page) 653 { 654 int newly_dirty; 655 struct address_space *mapping = page_mapping(page); 656 657 if (unlikely(!mapping)) 658 return !TestSetPageDirty(page); 659 660 spin_lock(&mapping->private_lock); 661 if (page_has_buffers(page)) { 662 struct buffer_head *head = page_buffers(page); 663 struct buffer_head *bh = head; 664 665 do { 666 set_buffer_dirty(bh); 667 bh = bh->b_this_page; 668 } while (bh != head); 669 } 670 newly_dirty = !TestSetPageDirty(page); 671 spin_unlock(&mapping->private_lock); 672 673 if (newly_dirty) 674 __set_page_dirty(page, mapping, 1); 675 return newly_dirty; 676 } 677 EXPORT_SYMBOL(__set_page_dirty_buffers); 678 679 /* 680 * Write out and wait upon a list of buffers. 681 * 682 * We have conflicting pressures: we want to make sure that all 683 * initially dirty buffers get waited on, but that any subsequently 684 * dirtied buffers don't. After all, we don't want fsync to last 685 * forever if somebody is actively writing to the file. 686 * 687 * Do this in two main stages: first we copy dirty buffers to a 688 * temporary inode list, queueing the writes as we go. Then we clean 689 * up, waiting for those writes to complete. 690 * 691 * During this second stage, any subsequent updates to the file may end 692 * up refiling the buffer on the original inode's dirty list again, so 693 * there is a chance we will end up with a buffer queued for write but 694 * not yet completed on that list. So, as a final cleanup we go through 695 * the osync code to catch these locked, dirty buffers without requeuing 696 * any newly dirty buffers for write. 697 */ 698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 699 { 700 struct buffer_head *bh; 701 struct list_head tmp; 702 struct address_space *mapping; 703 int err = 0, err2; 704 struct blk_plug plug; 705 706 INIT_LIST_HEAD(&tmp); 707 blk_start_plug(&plug); 708 709 spin_lock(lock); 710 while (!list_empty(list)) { 711 bh = BH_ENTRY(list->next); 712 mapping = bh->b_assoc_map; 713 __remove_assoc_queue(bh); 714 /* Avoid race with mark_buffer_dirty_inode() which does 715 * a lockless check and we rely on seeing the dirty bit */ 716 smp_mb(); 717 if (buffer_dirty(bh) || buffer_locked(bh)) { 718 list_add(&bh->b_assoc_buffers, &tmp); 719 bh->b_assoc_map = mapping; 720 if (buffer_dirty(bh)) { 721 get_bh(bh); 722 spin_unlock(lock); 723 /* 724 * Ensure any pending I/O completes so that 725 * write_dirty_buffer() actually writes the 726 * current contents - it is a noop if I/O is 727 * still in flight on potentially older 728 * contents. 729 */ 730 write_dirty_buffer(bh, WRITE_SYNC); 731 732 /* 733 * Kick off IO for the previous mapping. Note 734 * that we will not run the very last mapping, 735 * wait_on_buffer() will do that for us 736 * through sync_buffer(). 737 */ 738 brelse(bh); 739 spin_lock(lock); 740 } 741 } 742 } 743 744 spin_unlock(lock); 745 blk_finish_plug(&plug); 746 spin_lock(lock); 747 748 while (!list_empty(&tmp)) { 749 bh = BH_ENTRY(tmp.prev); 750 get_bh(bh); 751 mapping = bh->b_assoc_map; 752 __remove_assoc_queue(bh); 753 /* Avoid race with mark_buffer_dirty_inode() which does 754 * a lockless check and we rely on seeing the dirty bit */ 755 smp_mb(); 756 if (buffer_dirty(bh)) { 757 list_add(&bh->b_assoc_buffers, 758 &mapping->private_list); 759 bh->b_assoc_map = mapping; 760 } 761 spin_unlock(lock); 762 wait_on_buffer(bh); 763 if (!buffer_uptodate(bh)) 764 err = -EIO; 765 brelse(bh); 766 spin_lock(lock); 767 } 768 769 spin_unlock(lock); 770 err2 = osync_buffers_list(lock, list); 771 if (err) 772 return err; 773 else 774 return err2; 775 } 776 777 /* 778 * Invalidate any and all dirty buffers on a given inode. We are 779 * probably unmounting the fs, but that doesn't mean we have already 780 * done a sync(). Just drop the buffers from the inode list. 781 * 782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 783 * assumes that all the buffers are against the blockdev. Not true 784 * for reiserfs. 785 */ 786 void invalidate_inode_buffers(struct inode *inode) 787 { 788 if (inode_has_buffers(inode)) { 789 struct address_space *mapping = &inode->i_data; 790 struct list_head *list = &mapping->private_list; 791 struct address_space *buffer_mapping = mapping->assoc_mapping; 792 793 spin_lock(&buffer_mapping->private_lock); 794 while (!list_empty(list)) 795 __remove_assoc_queue(BH_ENTRY(list->next)); 796 spin_unlock(&buffer_mapping->private_lock); 797 } 798 } 799 EXPORT_SYMBOL(invalidate_inode_buffers); 800 801 /* 802 * Remove any clean buffers from the inode's buffer list. This is called 803 * when we're trying to free the inode itself. Those buffers can pin it. 804 * 805 * Returns true if all buffers were removed. 806 */ 807 int remove_inode_buffers(struct inode *inode) 808 { 809 int ret = 1; 810 811 if (inode_has_buffers(inode)) { 812 struct address_space *mapping = &inode->i_data; 813 struct list_head *list = &mapping->private_list; 814 struct address_space *buffer_mapping = mapping->assoc_mapping; 815 816 spin_lock(&buffer_mapping->private_lock); 817 while (!list_empty(list)) { 818 struct buffer_head *bh = BH_ENTRY(list->next); 819 if (buffer_dirty(bh)) { 820 ret = 0; 821 break; 822 } 823 __remove_assoc_queue(bh); 824 } 825 spin_unlock(&buffer_mapping->private_lock); 826 } 827 return ret; 828 } 829 830 /* 831 * Create the appropriate buffers when given a page for data area and 832 * the size of each buffer.. Use the bh->b_this_page linked list to 833 * follow the buffers created. Return NULL if unable to create more 834 * buffers. 835 * 836 * The retry flag is used to differentiate async IO (paging, swapping) 837 * which may not fail from ordinary buffer allocations. 838 */ 839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 840 int retry) 841 { 842 struct buffer_head *bh, *head; 843 long offset; 844 845 try_again: 846 head = NULL; 847 offset = PAGE_SIZE; 848 while ((offset -= size) >= 0) { 849 bh = alloc_buffer_head(GFP_NOFS); 850 if (!bh) 851 goto no_grow; 852 853 bh->b_bdev = NULL; 854 bh->b_this_page = head; 855 bh->b_blocknr = -1; 856 head = bh; 857 858 bh->b_state = 0; 859 atomic_set(&bh->b_count, 0); 860 bh->b_size = size; 861 862 /* Link the buffer to its page */ 863 set_bh_page(bh, page, offset); 864 865 init_buffer(bh, NULL, NULL); 866 } 867 return head; 868 /* 869 * In case anything failed, we just free everything we got. 870 */ 871 no_grow: 872 if (head) { 873 do { 874 bh = head; 875 head = head->b_this_page; 876 free_buffer_head(bh); 877 } while (head); 878 } 879 880 /* 881 * Return failure for non-async IO requests. Async IO requests 882 * are not allowed to fail, so we have to wait until buffer heads 883 * become available. But we don't want tasks sleeping with 884 * partially complete buffers, so all were released above. 885 */ 886 if (!retry) 887 return NULL; 888 889 /* We're _really_ low on memory. Now we just 890 * wait for old buffer heads to become free due to 891 * finishing IO. Since this is an async request and 892 * the reserve list is empty, we're sure there are 893 * async buffer heads in use. 894 */ 895 free_more_memory(); 896 goto try_again; 897 } 898 EXPORT_SYMBOL_GPL(alloc_page_buffers); 899 900 static inline void 901 link_dev_buffers(struct page *page, struct buffer_head *head) 902 { 903 struct buffer_head *bh, *tail; 904 905 bh = head; 906 do { 907 tail = bh; 908 bh = bh->b_this_page; 909 } while (bh); 910 tail->b_this_page = head; 911 attach_page_buffers(page, head); 912 } 913 914 /* 915 * Initialise the state of a blockdev page's buffers. 916 */ 917 static void 918 init_page_buffers(struct page *page, struct block_device *bdev, 919 sector_t block, int size) 920 { 921 struct buffer_head *head = page_buffers(page); 922 struct buffer_head *bh = head; 923 int uptodate = PageUptodate(page); 924 925 do { 926 if (!buffer_mapped(bh)) { 927 init_buffer(bh, NULL, NULL); 928 bh->b_bdev = bdev; 929 bh->b_blocknr = block; 930 if (uptodate) 931 set_buffer_uptodate(bh); 932 set_buffer_mapped(bh); 933 } 934 block++; 935 bh = bh->b_this_page; 936 } while (bh != head); 937 } 938 939 /* 940 * Create the page-cache page that contains the requested block. 941 * 942 * This is user purely for blockdev mappings. 943 */ 944 static struct page * 945 grow_dev_page(struct block_device *bdev, sector_t block, 946 pgoff_t index, int size) 947 { 948 struct inode *inode = bdev->bd_inode; 949 struct page *page; 950 struct buffer_head *bh; 951 952 page = find_or_create_page(inode->i_mapping, index, 953 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 954 if (!page) 955 return NULL; 956 957 BUG_ON(!PageLocked(page)); 958 959 if (page_has_buffers(page)) { 960 bh = page_buffers(page); 961 if (bh->b_size == size) { 962 init_page_buffers(page, bdev, block, size); 963 return page; 964 } 965 if (!try_to_free_buffers(page)) 966 goto failed; 967 } 968 969 /* 970 * Allocate some buffers for this page 971 */ 972 bh = alloc_page_buffers(page, size, 0); 973 if (!bh) 974 goto failed; 975 976 /* 977 * Link the page to the buffers and initialise them. Take the 978 * lock to be atomic wrt __find_get_block(), which does not 979 * run under the page lock. 980 */ 981 spin_lock(&inode->i_mapping->private_lock); 982 link_dev_buffers(page, bh); 983 init_page_buffers(page, bdev, block, size); 984 spin_unlock(&inode->i_mapping->private_lock); 985 return page; 986 987 failed: 988 BUG(); 989 unlock_page(page); 990 page_cache_release(page); 991 return NULL; 992 } 993 994 /* 995 * Create buffers for the specified block device block's page. If 996 * that page was dirty, the buffers are set dirty also. 997 */ 998 static int 999 grow_buffers(struct block_device *bdev, sector_t block, int size) 1000 { 1001 struct page *page; 1002 pgoff_t index; 1003 int sizebits; 1004 1005 sizebits = -1; 1006 do { 1007 sizebits++; 1008 } while ((size << sizebits) < PAGE_SIZE); 1009 1010 index = block >> sizebits; 1011 1012 /* 1013 * Check for a block which wants to lie outside our maximum possible 1014 * pagecache index. (this comparison is done using sector_t types). 1015 */ 1016 if (unlikely(index != block >> sizebits)) { 1017 char b[BDEVNAME_SIZE]; 1018 1019 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1020 "device %s\n", 1021 __func__, (unsigned long long)block, 1022 bdevname(bdev, b)); 1023 return -EIO; 1024 } 1025 block = index << sizebits; 1026 /* Create a page with the proper size buffers.. */ 1027 page = grow_dev_page(bdev, block, index, size); 1028 if (!page) 1029 return 0; 1030 unlock_page(page); 1031 page_cache_release(page); 1032 return 1; 1033 } 1034 1035 static struct buffer_head * 1036 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1037 { 1038 /* Size must be multiple of hard sectorsize */ 1039 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1040 (size < 512 || size > PAGE_SIZE))) { 1041 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1042 size); 1043 printk(KERN_ERR "logical block size: %d\n", 1044 bdev_logical_block_size(bdev)); 1045 1046 dump_stack(); 1047 return NULL; 1048 } 1049 1050 for (;;) { 1051 struct buffer_head * bh; 1052 int ret; 1053 1054 bh = __find_get_block(bdev, block, size); 1055 if (bh) 1056 return bh; 1057 1058 ret = grow_buffers(bdev, block, size); 1059 if (ret < 0) 1060 return NULL; 1061 if (ret == 0) 1062 free_more_memory(); 1063 } 1064 } 1065 1066 /* 1067 * The relationship between dirty buffers and dirty pages: 1068 * 1069 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1070 * the page is tagged dirty in its radix tree. 1071 * 1072 * At all times, the dirtiness of the buffers represents the dirtiness of 1073 * subsections of the page. If the page has buffers, the page dirty bit is 1074 * merely a hint about the true dirty state. 1075 * 1076 * When a page is set dirty in its entirety, all its buffers are marked dirty 1077 * (if the page has buffers). 1078 * 1079 * When a buffer is marked dirty, its page is dirtied, but the page's other 1080 * buffers are not. 1081 * 1082 * Also. When blockdev buffers are explicitly read with bread(), they 1083 * individually become uptodate. But their backing page remains not 1084 * uptodate - even if all of its buffers are uptodate. A subsequent 1085 * block_read_full_page() against that page will discover all the uptodate 1086 * buffers, will set the page uptodate and will perform no I/O. 1087 */ 1088 1089 /** 1090 * mark_buffer_dirty - mark a buffer_head as needing writeout 1091 * @bh: the buffer_head to mark dirty 1092 * 1093 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1094 * backing page dirty, then tag the page as dirty in its address_space's radix 1095 * tree and then attach the address_space's inode to its superblock's dirty 1096 * inode list. 1097 * 1098 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1099 * mapping->tree_lock and mapping->host->i_lock. 1100 */ 1101 void mark_buffer_dirty(struct buffer_head *bh) 1102 { 1103 WARN_ON_ONCE(!buffer_uptodate(bh)); 1104 1105 /* 1106 * Very *carefully* optimize the it-is-already-dirty case. 1107 * 1108 * Don't let the final "is it dirty" escape to before we 1109 * perhaps modified the buffer. 1110 */ 1111 if (buffer_dirty(bh)) { 1112 smp_mb(); 1113 if (buffer_dirty(bh)) 1114 return; 1115 } 1116 1117 if (!test_set_buffer_dirty(bh)) { 1118 struct page *page = bh->b_page; 1119 if (!TestSetPageDirty(page)) { 1120 struct address_space *mapping = page_mapping(page); 1121 if (mapping) 1122 __set_page_dirty(page, mapping, 0); 1123 } 1124 } 1125 } 1126 EXPORT_SYMBOL(mark_buffer_dirty); 1127 1128 /* 1129 * Decrement a buffer_head's reference count. If all buffers against a page 1130 * have zero reference count, are clean and unlocked, and if the page is clean 1131 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1132 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1133 * a page but it ends up not being freed, and buffers may later be reattached). 1134 */ 1135 void __brelse(struct buffer_head * buf) 1136 { 1137 if (atomic_read(&buf->b_count)) { 1138 put_bh(buf); 1139 return; 1140 } 1141 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1142 } 1143 EXPORT_SYMBOL(__brelse); 1144 1145 /* 1146 * bforget() is like brelse(), except it discards any 1147 * potentially dirty data. 1148 */ 1149 void __bforget(struct buffer_head *bh) 1150 { 1151 clear_buffer_dirty(bh); 1152 if (bh->b_assoc_map) { 1153 struct address_space *buffer_mapping = bh->b_page->mapping; 1154 1155 spin_lock(&buffer_mapping->private_lock); 1156 list_del_init(&bh->b_assoc_buffers); 1157 bh->b_assoc_map = NULL; 1158 spin_unlock(&buffer_mapping->private_lock); 1159 } 1160 __brelse(bh); 1161 } 1162 EXPORT_SYMBOL(__bforget); 1163 1164 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1165 { 1166 lock_buffer(bh); 1167 if (buffer_uptodate(bh)) { 1168 unlock_buffer(bh); 1169 return bh; 1170 } else { 1171 get_bh(bh); 1172 bh->b_end_io = end_buffer_read_sync; 1173 submit_bh(READ, bh); 1174 wait_on_buffer(bh); 1175 if (buffer_uptodate(bh)) 1176 return bh; 1177 } 1178 brelse(bh); 1179 return NULL; 1180 } 1181 1182 /* 1183 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1184 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1185 * refcount elevated by one when they're in an LRU. A buffer can only appear 1186 * once in a particular CPU's LRU. A single buffer can be present in multiple 1187 * CPU's LRUs at the same time. 1188 * 1189 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1190 * sb_find_get_block(). 1191 * 1192 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1193 * a local interrupt disable for that. 1194 */ 1195 1196 #define BH_LRU_SIZE 8 1197 1198 struct bh_lru { 1199 struct buffer_head *bhs[BH_LRU_SIZE]; 1200 }; 1201 1202 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1203 1204 #ifdef CONFIG_SMP 1205 #define bh_lru_lock() local_irq_disable() 1206 #define bh_lru_unlock() local_irq_enable() 1207 #else 1208 #define bh_lru_lock() preempt_disable() 1209 #define bh_lru_unlock() preempt_enable() 1210 #endif 1211 1212 static inline void check_irqs_on(void) 1213 { 1214 #ifdef irqs_disabled 1215 BUG_ON(irqs_disabled()); 1216 #endif 1217 } 1218 1219 /* 1220 * The LRU management algorithm is dopey-but-simple. Sorry. 1221 */ 1222 static void bh_lru_install(struct buffer_head *bh) 1223 { 1224 struct buffer_head *evictee = NULL; 1225 1226 check_irqs_on(); 1227 bh_lru_lock(); 1228 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1229 struct buffer_head *bhs[BH_LRU_SIZE]; 1230 int in; 1231 int out = 0; 1232 1233 get_bh(bh); 1234 bhs[out++] = bh; 1235 for (in = 0; in < BH_LRU_SIZE; in++) { 1236 struct buffer_head *bh2 = 1237 __this_cpu_read(bh_lrus.bhs[in]); 1238 1239 if (bh2 == bh) { 1240 __brelse(bh2); 1241 } else { 1242 if (out >= BH_LRU_SIZE) { 1243 BUG_ON(evictee != NULL); 1244 evictee = bh2; 1245 } else { 1246 bhs[out++] = bh2; 1247 } 1248 } 1249 } 1250 while (out < BH_LRU_SIZE) 1251 bhs[out++] = NULL; 1252 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1253 } 1254 bh_lru_unlock(); 1255 1256 if (evictee) 1257 __brelse(evictee); 1258 } 1259 1260 /* 1261 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1262 */ 1263 static struct buffer_head * 1264 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1265 { 1266 struct buffer_head *ret = NULL; 1267 unsigned int i; 1268 1269 check_irqs_on(); 1270 bh_lru_lock(); 1271 for (i = 0; i < BH_LRU_SIZE; i++) { 1272 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1273 1274 if (bh && bh->b_bdev == bdev && 1275 bh->b_blocknr == block && bh->b_size == size) { 1276 if (i) { 1277 while (i) { 1278 __this_cpu_write(bh_lrus.bhs[i], 1279 __this_cpu_read(bh_lrus.bhs[i - 1])); 1280 i--; 1281 } 1282 __this_cpu_write(bh_lrus.bhs[0], bh); 1283 } 1284 get_bh(bh); 1285 ret = bh; 1286 break; 1287 } 1288 } 1289 bh_lru_unlock(); 1290 return ret; 1291 } 1292 1293 /* 1294 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1295 * it in the LRU and mark it as accessed. If it is not present then return 1296 * NULL 1297 */ 1298 struct buffer_head * 1299 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1300 { 1301 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1302 1303 if (bh == NULL) { 1304 bh = __find_get_block_slow(bdev, block); 1305 if (bh) 1306 bh_lru_install(bh); 1307 } 1308 if (bh) 1309 touch_buffer(bh); 1310 return bh; 1311 } 1312 EXPORT_SYMBOL(__find_get_block); 1313 1314 /* 1315 * __getblk will locate (and, if necessary, create) the buffer_head 1316 * which corresponds to the passed block_device, block and size. The 1317 * returned buffer has its reference count incremented. 1318 * 1319 * __getblk() cannot fail - it just keeps trying. If you pass it an 1320 * illegal block number, __getblk() will happily return a buffer_head 1321 * which represents the non-existent block. Very weird. 1322 * 1323 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1324 * attempt is failing. FIXME, perhaps? 1325 */ 1326 struct buffer_head * 1327 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1328 { 1329 struct buffer_head *bh = __find_get_block(bdev, block, size); 1330 1331 might_sleep(); 1332 if (bh == NULL) 1333 bh = __getblk_slow(bdev, block, size); 1334 return bh; 1335 } 1336 EXPORT_SYMBOL(__getblk); 1337 1338 /* 1339 * Do async read-ahead on a buffer.. 1340 */ 1341 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1342 { 1343 struct buffer_head *bh = __getblk(bdev, block, size); 1344 if (likely(bh)) { 1345 ll_rw_block(READA, 1, &bh); 1346 brelse(bh); 1347 } 1348 } 1349 EXPORT_SYMBOL(__breadahead); 1350 1351 /** 1352 * __bread() - reads a specified block and returns the bh 1353 * @bdev: the block_device to read from 1354 * @block: number of block 1355 * @size: size (in bytes) to read 1356 * 1357 * Reads a specified block, and returns buffer head that contains it. 1358 * It returns NULL if the block was unreadable. 1359 */ 1360 struct buffer_head * 1361 __bread(struct block_device *bdev, sector_t block, unsigned size) 1362 { 1363 struct buffer_head *bh = __getblk(bdev, block, size); 1364 1365 if (likely(bh) && !buffer_uptodate(bh)) 1366 bh = __bread_slow(bh); 1367 return bh; 1368 } 1369 EXPORT_SYMBOL(__bread); 1370 1371 /* 1372 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1373 * This doesn't race because it runs in each cpu either in irq 1374 * or with preempt disabled. 1375 */ 1376 static void invalidate_bh_lru(void *arg) 1377 { 1378 struct bh_lru *b = &get_cpu_var(bh_lrus); 1379 int i; 1380 1381 for (i = 0; i < BH_LRU_SIZE; i++) { 1382 brelse(b->bhs[i]); 1383 b->bhs[i] = NULL; 1384 } 1385 put_cpu_var(bh_lrus); 1386 } 1387 1388 static bool has_bh_in_lru(int cpu, void *dummy) 1389 { 1390 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1391 int i; 1392 1393 for (i = 0; i < BH_LRU_SIZE; i++) { 1394 if (b->bhs[i]) 1395 return 1; 1396 } 1397 1398 return 0; 1399 } 1400 1401 void invalidate_bh_lrus(void) 1402 { 1403 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1404 } 1405 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1406 1407 void set_bh_page(struct buffer_head *bh, 1408 struct page *page, unsigned long offset) 1409 { 1410 bh->b_page = page; 1411 BUG_ON(offset >= PAGE_SIZE); 1412 if (PageHighMem(page)) 1413 /* 1414 * This catches illegal uses and preserves the offset: 1415 */ 1416 bh->b_data = (char *)(0 + offset); 1417 else 1418 bh->b_data = page_address(page) + offset; 1419 } 1420 EXPORT_SYMBOL(set_bh_page); 1421 1422 /* 1423 * Called when truncating a buffer on a page completely. 1424 */ 1425 static void discard_buffer(struct buffer_head * bh) 1426 { 1427 lock_buffer(bh); 1428 clear_buffer_dirty(bh); 1429 bh->b_bdev = NULL; 1430 clear_buffer_mapped(bh); 1431 clear_buffer_req(bh); 1432 clear_buffer_new(bh); 1433 clear_buffer_delay(bh); 1434 clear_buffer_unwritten(bh); 1435 unlock_buffer(bh); 1436 } 1437 1438 /** 1439 * block_invalidatepage - invalidate part or all of a buffer-backed page 1440 * 1441 * @page: the page which is affected 1442 * @offset: the index of the truncation point 1443 * 1444 * block_invalidatepage() is called when all or part of the page has become 1445 * invalidated by a truncate operation. 1446 * 1447 * block_invalidatepage() does not have to release all buffers, but it must 1448 * ensure that no dirty buffer is left outside @offset and that no I/O 1449 * is underway against any of the blocks which are outside the truncation 1450 * point. Because the caller is about to free (and possibly reuse) those 1451 * blocks on-disk. 1452 */ 1453 void block_invalidatepage(struct page *page, unsigned long offset) 1454 { 1455 struct buffer_head *head, *bh, *next; 1456 unsigned int curr_off = 0; 1457 1458 BUG_ON(!PageLocked(page)); 1459 if (!page_has_buffers(page)) 1460 goto out; 1461 1462 head = page_buffers(page); 1463 bh = head; 1464 do { 1465 unsigned int next_off = curr_off + bh->b_size; 1466 next = bh->b_this_page; 1467 1468 /* 1469 * is this block fully invalidated? 1470 */ 1471 if (offset <= curr_off) 1472 discard_buffer(bh); 1473 curr_off = next_off; 1474 bh = next; 1475 } while (bh != head); 1476 1477 /* 1478 * We release buffers only if the entire page is being invalidated. 1479 * The get_block cached value has been unconditionally invalidated, 1480 * so real IO is not possible anymore. 1481 */ 1482 if (offset == 0) 1483 try_to_release_page(page, 0); 1484 out: 1485 return; 1486 } 1487 EXPORT_SYMBOL(block_invalidatepage); 1488 1489 /* 1490 * We attach and possibly dirty the buffers atomically wrt 1491 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1492 * is already excluded via the page lock. 1493 */ 1494 void create_empty_buffers(struct page *page, 1495 unsigned long blocksize, unsigned long b_state) 1496 { 1497 struct buffer_head *bh, *head, *tail; 1498 1499 head = alloc_page_buffers(page, blocksize, 1); 1500 bh = head; 1501 do { 1502 bh->b_state |= b_state; 1503 tail = bh; 1504 bh = bh->b_this_page; 1505 } while (bh); 1506 tail->b_this_page = head; 1507 1508 spin_lock(&page->mapping->private_lock); 1509 if (PageUptodate(page) || PageDirty(page)) { 1510 bh = head; 1511 do { 1512 if (PageDirty(page)) 1513 set_buffer_dirty(bh); 1514 if (PageUptodate(page)) 1515 set_buffer_uptodate(bh); 1516 bh = bh->b_this_page; 1517 } while (bh != head); 1518 } 1519 attach_page_buffers(page, head); 1520 spin_unlock(&page->mapping->private_lock); 1521 } 1522 EXPORT_SYMBOL(create_empty_buffers); 1523 1524 /* 1525 * We are taking a block for data and we don't want any output from any 1526 * buffer-cache aliases starting from return from that function and 1527 * until the moment when something will explicitly mark the buffer 1528 * dirty (hopefully that will not happen until we will free that block ;-) 1529 * We don't even need to mark it not-uptodate - nobody can expect 1530 * anything from a newly allocated buffer anyway. We used to used 1531 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1532 * don't want to mark the alias unmapped, for example - it would confuse 1533 * anyone who might pick it with bread() afterwards... 1534 * 1535 * Also.. Note that bforget() doesn't lock the buffer. So there can 1536 * be writeout I/O going on against recently-freed buffers. We don't 1537 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1538 * only if we really need to. That happens here. 1539 */ 1540 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1541 { 1542 struct buffer_head *old_bh; 1543 1544 might_sleep(); 1545 1546 old_bh = __find_get_block_slow(bdev, block); 1547 if (old_bh) { 1548 clear_buffer_dirty(old_bh); 1549 wait_on_buffer(old_bh); 1550 clear_buffer_req(old_bh); 1551 __brelse(old_bh); 1552 } 1553 } 1554 EXPORT_SYMBOL(unmap_underlying_metadata); 1555 1556 /* 1557 * NOTE! All mapped/uptodate combinations are valid: 1558 * 1559 * Mapped Uptodate Meaning 1560 * 1561 * No No "unknown" - must do get_block() 1562 * No Yes "hole" - zero-filled 1563 * Yes No "allocated" - allocated on disk, not read in 1564 * Yes Yes "valid" - allocated and up-to-date in memory. 1565 * 1566 * "Dirty" is valid only with the last case (mapped+uptodate). 1567 */ 1568 1569 /* 1570 * While block_write_full_page is writing back the dirty buffers under 1571 * the page lock, whoever dirtied the buffers may decide to clean them 1572 * again at any time. We handle that by only looking at the buffer 1573 * state inside lock_buffer(). 1574 * 1575 * If block_write_full_page() is called for regular writeback 1576 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1577 * locked buffer. This only can happen if someone has written the buffer 1578 * directly, with submit_bh(). At the address_space level PageWriteback 1579 * prevents this contention from occurring. 1580 * 1581 * If block_write_full_page() is called with wbc->sync_mode == 1582 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1583 * causes the writes to be flagged as synchronous writes. 1584 */ 1585 static int __block_write_full_page(struct inode *inode, struct page *page, 1586 get_block_t *get_block, struct writeback_control *wbc, 1587 bh_end_io_t *handler) 1588 { 1589 int err; 1590 sector_t block; 1591 sector_t last_block; 1592 struct buffer_head *bh, *head; 1593 const unsigned blocksize = 1 << inode->i_blkbits; 1594 int nr_underway = 0; 1595 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1596 WRITE_SYNC : WRITE); 1597 1598 BUG_ON(!PageLocked(page)); 1599 1600 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1601 1602 if (!page_has_buffers(page)) { 1603 create_empty_buffers(page, blocksize, 1604 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1605 } 1606 1607 /* 1608 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1609 * here, and the (potentially unmapped) buffers may become dirty at 1610 * any time. If a buffer becomes dirty here after we've inspected it 1611 * then we just miss that fact, and the page stays dirty. 1612 * 1613 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1614 * handle that here by just cleaning them. 1615 */ 1616 1617 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1618 head = page_buffers(page); 1619 bh = head; 1620 1621 /* 1622 * Get all the dirty buffers mapped to disk addresses and 1623 * handle any aliases from the underlying blockdev's mapping. 1624 */ 1625 do { 1626 if (block > last_block) { 1627 /* 1628 * mapped buffers outside i_size will occur, because 1629 * this page can be outside i_size when there is a 1630 * truncate in progress. 1631 */ 1632 /* 1633 * The buffer was zeroed by block_write_full_page() 1634 */ 1635 clear_buffer_dirty(bh); 1636 set_buffer_uptodate(bh); 1637 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1638 buffer_dirty(bh)) { 1639 WARN_ON(bh->b_size != blocksize); 1640 err = get_block(inode, block, bh, 1); 1641 if (err) 1642 goto recover; 1643 clear_buffer_delay(bh); 1644 if (buffer_new(bh)) { 1645 /* blockdev mappings never come here */ 1646 clear_buffer_new(bh); 1647 unmap_underlying_metadata(bh->b_bdev, 1648 bh->b_blocknr); 1649 } 1650 } 1651 bh = bh->b_this_page; 1652 block++; 1653 } while (bh != head); 1654 1655 do { 1656 if (!buffer_mapped(bh)) 1657 continue; 1658 /* 1659 * If it's a fully non-blocking write attempt and we cannot 1660 * lock the buffer then redirty the page. Note that this can 1661 * potentially cause a busy-wait loop from writeback threads 1662 * and kswapd activity, but those code paths have their own 1663 * higher-level throttling. 1664 */ 1665 if (wbc->sync_mode != WB_SYNC_NONE) { 1666 lock_buffer(bh); 1667 } else if (!trylock_buffer(bh)) { 1668 redirty_page_for_writepage(wbc, page); 1669 continue; 1670 } 1671 if (test_clear_buffer_dirty(bh)) { 1672 mark_buffer_async_write_endio(bh, handler); 1673 } else { 1674 unlock_buffer(bh); 1675 } 1676 } while ((bh = bh->b_this_page) != head); 1677 1678 /* 1679 * The page and its buffers are protected by PageWriteback(), so we can 1680 * drop the bh refcounts early. 1681 */ 1682 BUG_ON(PageWriteback(page)); 1683 set_page_writeback(page); 1684 1685 do { 1686 struct buffer_head *next = bh->b_this_page; 1687 if (buffer_async_write(bh)) { 1688 submit_bh(write_op, bh); 1689 nr_underway++; 1690 } 1691 bh = next; 1692 } while (bh != head); 1693 unlock_page(page); 1694 1695 err = 0; 1696 done: 1697 if (nr_underway == 0) { 1698 /* 1699 * The page was marked dirty, but the buffers were 1700 * clean. Someone wrote them back by hand with 1701 * ll_rw_block/submit_bh. A rare case. 1702 */ 1703 end_page_writeback(page); 1704 1705 /* 1706 * The page and buffer_heads can be released at any time from 1707 * here on. 1708 */ 1709 } 1710 return err; 1711 1712 recover: 1713 /* 1714 * ENOSPC, or some other error. We may already have added some 1715 * blocks to the file, so we need to write these out to avoid 1716 * exposing stale data. 1717 * The page is currently locked and not marked for writeback 1718 */ 1719 bh = head; 1720 /* Recovery: lock and submit the mapped buffers */ 1721 do { 1722 if (buffer_mapped(bh) && buffer_dirty(bh) && 1723 !buffer_delay(bh)) { 1724 lock_buffer(bh); 1725 mark_buffer_async_write_endio(bh, handler); 1726 } else { 1727 /* 1728 * The buffer may have been set dirty during 1729 * attachment to a dirty page. 1730 */ 1731 clear_buffer_dirty(bh); 1732 } 1733 } while ((bh = bh->b_this_page) != head); 1734 SetPageError(page); 1735 BUG_ON(PageWriteback(page)); 1736 mapping_set_error(page->mapping, err); 1737 set_page_writeback(page); 1738 do { 1739 struct buffer_head *next = bh->b_this_page; 1740 if (buffer_async_write(bh)) { 1741 clear_buffer_dirty(bh); 1742 submit_bh(write_op, bh); 1743 nr_underway++; 1744 } 1745 bh = next; 1746 } while (bh != head); 1747 unlock_page(page); 1748 goto done; 1749 } 1750 1751 /* 1752 * If a page has any new buffers, zero them out here, and mark them uptodate 1753 * and dirty so they'll be written out (in order to prevent uninitialised 1754 * block data from leaking). And clear the new bit. 1755 */ 1756 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1757 { 1758 unsigned int block_start, block_end; 1759 struct buffer_head *head, *bh; 1760 1761 BUG_ON(!PageLocked(page)); 1762 if (!page_has_buffers(page)) 1763 return; 1764 1765 bh = head = page_buffers(page); 1766 block_start = 0; 1767 do { 1768 block_end = block_start + bh->b_size; 1769 1770 if (buffer_new(bh)) { 1771 if (block_end > from && block_start < to) { 1772 if (!PageUptodate(page)) { 1773 unsigned start, size; 1774 1775 start = max(from, block_start); 1776 size = min(to, block_end) - start; 1777 1778 zero_user(page, start, size); 1779 set_buffer_uptodate(bh); 1780 } 1781 1782 clear_buffer_new(bh); 1783 mark_buffer_dirty(bh); 1784 } 1785 } 1786 1787 block_start = block_end; 1788 bh = bh->b_this_page; 1789 } while (bh != head); 1790 } 1791 EXPORT_SYMBOL(page_zero_new_buffers); 1792 1793 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1794 get_block_t *get_block) 1795 { 1796 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1797 unsigned to = from + len; 1798 struct inode *inode = page->mapping->host; 1799 unsigned block_start, block_end; 1800 sector_t block; 1801 int err = 0; 1802 unsigned blocksize, bbits; 1803 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1804 1805 BUG_ON(!PageLocked(page)); 1806 BUG_ON(from > PAGE_CACHE_SIZE); 1807 BUG_ON(to > PAGE_CACHE_SIZE); 1808 BUG_ON(from > to); 1809 1810 blocksize = 1 << inode->i_blkbits; 1811 if (!page_has_buffers(page)) 1812 create_empty_buffers(page, blocksize, 0); 1813 head = page_buffers(page); 1814 1815 bbits = inode->i_blkbits; 1816 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1817 1818 for(bh = head, block_start = 0; bh != head || !block_start; 1819 block++, block_start=block_end, bh = bh->b_this_page) { 1820 block_end = block_start + blocksize; 1821 if (block_end <= from || block_start >= to) { 1822 if (PageUptodate(page)) { 1823 if (!buffer_uptodate(bh)) 1824 set_buffer_uptodate(bh); 1825 } 1826 continue; 1827 } 1828 if (buffer_new(bh)) 1829 clear_buffer_new(bh); 1830 if (!buffer_mapped(bh)) { 1831 WARN_ON(bh->b_size != blocksize); 1832 err = get_block(inode, block, bh, 1); 1833 if (err) 1834 break; 1835 if (buffer_new(bh)) { 1836 unmap_underlying_metadata(bh->b_bdev, 1837 bh->b_blocknr); 1838 if (PageUptodate(page)) { 1839 clear_buffer_new(bh); 1840 set_buffer_uptodate(bh); 1841 mark_buffer_dirty(bh); 1842 continue; 1843 } 1844 if (block_end > to || block_start < from) 1845 zero_user_segments(page, 1846 to, block_end, 1847 block_start, from); 1848 continue; 1849 } 1850 } 1851 if (PageUptodate(page)) { 1852 if (!buffer_uptodate(bh)) 1853 set_buffer_uptodate(bh); 1854 continue; 1855 } 1856 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1857 !buffer_unwritten(bh) && 1858 (block_start < from || block_end > to)) { 1859 ll_rw_block(READ, 1, &bh); 1860 *wait_bh++=bh; 1861 } 1862 } 1863 /* 1864 * If we issued read requests - let them complete. 1865 */ 1866 while(wait_bh > wait) { 1867 wait_on_buffer(*--wait_bh); 1868 if (!buffer_uptodate(*wait_bh)) 1869 err = -EIO; 1870 } 1871 if (unlikely(err)) 1872 page_zero_new_buffers(page, from, to); 1873 return err; 1874 } 1875 EXPORT_SYMBOL(__block_write_begin); 1876 1877 static int __block_commit_write(struct inode *inode, struct page *page, 1878 unsigned from, unsigned to) 1879 { 1880 unsigned block_start, block_end; 1881 int partial = 0; 1882 unsigned blocksize; 1883 struct buffer_head *bh, *head; 1884 1885 blocksize = 1 << inode->i_blkbits; 1886 1887 for(bh = head = page_buffers(page), block_start = 0; 1888 bh != head || !block_start; 1889 block_start=block_end, bh = bh->b_this_page) { 1890 block_end = block_start + blocksize; 1891 if (block_end <= from || block_start >= to) { 1892 if (!buffer_uptodate(bh)) 1893 partial = 1; 1894 } else { 1895 set_buffer_uptodate(bh); 1896 mark_buffer_dirty(bh); 1897 } 1898 clear_buffer_new(bh); 1899 } 1900 1901 /* 1902 * If this is a partial write which happened to make all buffers 1903 * uptodate then we can optimize away a bogus readpage() for 1904 * the next read(). Here we 'discover' whether the page went 1905 * uptodate as a result of this (potentially partial) write. 1906 */ 1907 if (!partial) 1908 SetPageUptodate(page); 1909 return 0; 1910 } 1911 1912 /* 1913 * block_write_begin takes care of the basic task of block allocation and 1914 * bringing partial write blocks uptodate first. 1915 * 1916 * The filesystem needs to handle block truncation upon failure. 1917 */ 1918 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 1919 unsigned flags, struct page **pagep, get_block_t *get_block) 1920 { 1921 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1922 struct page *page; 1923 int status; 1924 1925 page = grab_cache_page_write_begin(mapping, index, flags); 1926 if (!page) 1927 return -ENOMEM; 1928 1929 status = __block_write_begin(page, pos, len, get_block); 1930 if (unlikely(status)) { 1931 unlock_page(page); 1932 page_cache_release(page); 1933 page = NULL; 1934 } 1935 1936 *pagep = page; 1937 return status; 1938 } 1939 EXPORT_SYMBOL(block_write_begin); 1940 1941 int block_write_end(struct file *file, struct address_space *mapping, 1942 loff_t pos, unsigned len, unsigned copied, 1943 struct page *page, void *fsdata) 1944 { 1945 struct inode *inode = mapping->host; 1946 unsigned start; 1947 1948 start = pos & (PAGE_CACHE_SIZE - 1); 1949 1950 if (unlikely(copied < len)) { 1951 /* 1952 * The buffers that were written will now be uptodate, so we 1953 * don't have to worry about a readpage reading them and 1954 * overwriting a partial write. However if we have encountered 1955 * a short write and only partially written into a buffer, it 1956 * will not be marked uptodate, so a readpage might come in and 1957 * destroy our partial write. 1958 * 1959 * Do the simplest thing, and just treat any short write to a 1960 * non uptodate page as a zero-length write, and force the 1961 * caller to redo the whole thing. 1962 */ 1963 if (!PageUptodate(page)) 1964 copied = 0; 1965 1966 page_zero_new_buffers(page, start+copied, start+len); 1967 } 1968 flush_dcache_page(page); 1969 1970 /* This could be a short (even 0-length) commit */ 1971 __block_commit_write(inode, page, start, start+copied); 1972 1973 return copied; 1974 } 1975 EXPORT_SYMBOL(block_write_end); 1976 1977 int generic_write_end(struct file *file, struct address_space *mapping, 1978 loff_t pos, unsigned len, unsigned copied, 1979 struct page *page, void *fsdata) 1980 { 1981 struct inode *inode = mapping->host; 1982 int i_size_changed = 0; 1983 1984 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1985 1986 /* 1987 * No need to use i_size_read() here, the i_size 1988 * cannot change under us because we hold i_mutex. 1989 * 1990 * But it's important to update i_size while still holding page lock: 1991 * page writeout could otherwise come in and zero beyond i_size. 1992 */ 1993 if (pos+copied > inode->i_size) { 1994 i_size_write(inode, pos+copied); 1995 i_size_changed = 1; 1996 } 1997 1998 unlock_page(page); 1999 page_cache_release(page); 2000 2001 /* 2002 * Don't mark the inode dirty under page lock. First, it unnecessarily 2003 * makes the holding time of page lock longer. Second, it forces lock 2004 * ordering of page lock and transaction start for journaling 2005 * filesystems. 2006 */ 2007 if (i_size_changed) 2008 mark_inode_dirty(inode); 2009 2010 return copied; 2011 } 2012 EXPORT_SYMBOL(generic_write_end); 2013 2014 /* 2015 * block_is_partially_uptodate checks whether buffers within a page are 2016 * uptodate or not. 2017 * 2018 * Returns true if all buffers which correspond to a file portion 2019 * we want to read are uptodate. 2020 */ 2021 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2022 unsigned long from) 2023 { 2024 struct inode *inode = page->mapping->host; 2025 unsigned block_start, block_end, blocksize; 2026 unsigned to; 2027 struct buffer_head *bh, *head; 2028 int ret = 1; 2029 2030 if (!page_has_buffers(page)) 2031 return 0; 2032 2033 blocksize = 1 << inode->i_blkbits; 2034 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2035 to = from + to; 2036 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2037 return 0; 2038 2039 head = page_buffers(page); 2040 bh = head; 2041 block_start = 0; 2042 do { 2043 block_end = block_start + blocksize; 2044 if (block_end > from && block_start < to) { 2045 if (!buffer_uptodate(bh)) { 2046 ret = 0; 2047 break; 2048 } 2049 if (block_end >= to) 2050 break; 2051 } 2052 block_start = block_end; 2053 bh = bh->b_this_page; 2054 } while (bh != head); 2055 2056 return ret; 2057 } 2058 EXPORT_SYMBOL(block_is_partially_uptodate); 2059 2060 /* 2061 * Generic "read page" function for block devices that have the normal 2062 * get_block functionality. This is most of the block device filesystems. 2063 * Reads the page asynchronously --- the unlock_buffer() and 2064 * set/clear_buffer_uptodate() functions propagate buffer state into the 2065 * page struct once IO has completed. 2066 */ 2067 int block_read_full_page(struct page *page, get_block_t *get_block) 2068 { 2069 struct inode *inode = page->mapping->host; 2070 sector_t iblock, lblock; 2071 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2072 unsigned int blocksize; 2073 int nr, i; 2074 int fully_mapped = 1; 2075 2076 BUG_ON(!PageLocked(page)); 2077 blocksize = 1 << inode->i_blkbits; 2078 if (!page_has_buffers(page)) 2079 create_empty_buffers(page, blocksize, 0); 2080 head = page_buffers(page); 2081 2082 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2083 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2084 bh = head; 2085 nr = 0; 2086 i = 0; 2087 2088 do { 2089 if (buffer_uptodate(bh)) 2090 continue; 2091 2092 if (!buffer_mapped(bh)) { 2093 int err = 0; 2094 2095 fully_mapped = 0; 2096 if (iblock < lblock) { 2097 WARN_ON(bh->b_size != blocksize); 2098 err = get_block(inode, iblock, bh, 0); 2099 if (err) 2100 SetPageError(page); 2101 } 2102 if (!buffer_mapped(bh)) { 2103 zero_user(page, i * blocksize, blocksize); 2104 if (!err) 2105 set_buffer_uptodate(bh); 2106 continue; 2107 } 2108 /* 2109 * get_block() might have updated the buffer 2110 * synchronously 2111 */ 2112 if (buffer_uptodate(bh)) 2113 continue; 2114 } 2115 arr[nr++] = bh; 2116 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2117 2118 if (fully_mapped) 2119 SetPageMappedToDisk(page); 2120 2121 if (!nr) { 2122 /* 2123 * All buffers are uptodate - we can set the page uptodate 2124 * as well. But not if get_block() returned an error. 2125 */ 2126 if (!PageError(page)) 2127 SetPageUptodate(page); 2128 unlock_page(page); 2129 return 0; 2130 } 2131 2132 /* Stage two: lock the buffers */ 2133 for (i = 0; i < nr; i++) { 2134 bh = arr[i]; 2135 lock_buffer(bh); 2136 mark_buffer_async_read(bh); 2137 } 2138 2139 /* 2140 * Stage 3: start the IO. Check for uptodateness 2141 * inside the buffer lock in case another process reading 2142 * the underlying blockdev brought it uptodate (the sct fix). 2143 */ 2144 for (i = 0; i < nr; i++) { 2145 bh = arr[i]; 2146 if (buffer_uptodate(bh)) 2147 end_buffer_async_read(bh, 1); 2148 else 2149 submit_bh(READ, bh); 2150 } 2151 return 0; 2152 } 2153 EXPORT_SYMBOL(block_read_full_page); 2154 2155 /* utility function for filesystems that need to do work on expanding 2156 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2157 * deal with the hole. 2158 */ 2159 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2160 { 2161 struct address_space *mapping = inode->i_mapping; 2162 struct page *page; 2163 void *fsdata; 2164 int err; 2165 2166 err = inode_newsize_ok(inode, size); 2167 if (err) 2168 goto out; 2169 2170 err = pagecache_write_begin(NULL, mapping, size, 0, 2171 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2172 &page, &fsdata); 2173 if (err) 2174 goto out; 2175 2176 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2177 BUG_ON(err > 0); 2178 2179 out: 2180 return err; 2181 } 2182 EXPORT_SYMBOL(generic_cont_expand_simple); 2183 2184 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2185 loff_t pos, loff_t *bytes) 2186 { 2187 struct inode *inode = mapping->host; 2188 unsigned blocksize = 1 << inode->i_blkbits; 2189 struct page *page; 2190 void *fsdata; 2191 pgoff_t index, curidx; 2192 loff_t curpos; 2193 unsigned zerofrom, offset, len; 2194 int err = 0; 2195 2196 index = pos >> PAGE_CACHE_SHIFT; 2197 offset = pos & ~PAGE_CACHE_MASK; 2198 2199 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2200 zerofrom = curpos & ~PAGE_CACHE_MASK; 2201 if (zerofrom & (blocksize-1)) { 2202 *bytes |= (blocksize-1); 2203 (*bytes)++; 2204 } 2205 len = PAGE_CACHE_SIZE - zerofrom; 2206 2207 err = pagecache_write_begin(file, mapping, curpos, len, 2208 AOP_FLAG_UNINTERRUPTIBLE, 2209 &page, &fsdata); 2210 if (err) 2211 goto out; 2212 zero_user(page, zerofrom, len); 2213 err = pagecache_write_end(file, mapping, curpos, len, len, 2214 page, fsdata); 2215 if (err < 0) 2216 goto out; 2217 BUG_ON(err != len); 2218 err = 0; 2219 2220 balance_dirty_pages_ratelimited(mapping); 2221 } 2222 2223 /* page covers the boundary, find the boundary offset */ 2224 if (index == curidx) { 2225 zerofrom = curpos & ~PAGE_CACHE_MASK; 2226 /* if we will expand the thing last block will be filled */ 2227 if (offset <= zerofrom) { 2228 goto out; 2229 } 2230 if (zerofrom & (blocksize-1)) { 2231 *bytes |= (blocksize-1); 2232 (*bytes)++; 2233 } 2234 len = offset - zerofrom; 2235 2236 err = pagecache_write_begin(file, mapping, curpos, len, 2237 AOP_FLAG_UNINTERRUPTIBLE, 2238 &page, &fsdata); 2239 if (err) 2240 goto out; 2241 zero_user(page, zerofrom, len); 2242 err = pagecache_write_end(file, mapping, curpos, len, len, 2243 page, fsdata); 2244 if (err < 0) 2245 goto out; 2246 BUG_ON(err != len); 2247 err = 0; 2248 } 2249 out: 2250 return err; 2251 } 2252 2253 /* 2254 * For moronic filesystems that do not allow holes in file. 2255 * We may have to extend the file. 2256 */ 2257 int cont_write_begin(struct file *file, struct address_space *mapping, 2258 loff_t pos, unsigned len, unsigned flags, 2259 struct page **pagep, void **fsdata, 2260 get_block_t *get_block, loff_t *bytes) 2261 { 2262 struct inode *inode = mapping->host; 2263 unsigned blocksize = 1 << inode->i_blkbits; 2264 unsigned zerofrom; 2265 int err; 2266 2267 err = cont_expand_zero(file, mapping, pos, bytes); 2268 if (err) 2269 return err; 2270 2271 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2272 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2273 *bytes |= (blocksize-1); 2274 (*bytes)++; 2275 } 2276 2277 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2278 } 2279 EXPORT_SYMBOL(cont_write_begin); 2280 2281 int block_commit_write(struct page *page, unsigned from, unsigned to) 2282 { 2283 struct inode *inode = page->mapping->host; 2284 __block_commit_write(inode,page,from,to); 2285 return 0; 2286 } 2287 EXPORT_SYMBOL(block_commit_write); 2288 2289 /* 2290 * block_page_mkwrite() is not allowed to change the file size as it gets 2291 * called from a page fault handler when a page is first dirtied. Hence we must 2292 * be careful to check for EOF conditions here. We set the page up correctly 2293 * for a written page which means we get ENOSPC checking when writing into 2294 * holes and correct delalloc and unwritten extent mapping on filesystems that 2295 * support these features. 2296 * 2297 * We are not allowed to take the i_mutex here so we have to play games to 2298 * protect against truncate races as the page could now be beyond EOF. Because 2299 * truncate writes the inode size before removing pages, once we have the 2300 * page lock we can determine safely if the page is beyond EOF. If it is not 2301 * beyond EOF, then the page is guaranteed safe against truncation until we 2302 * unlock the page. 2303 * 2304 * Direct callers of this function should call vfs_check_frozen() so that page 2305 * fault does not busyloop until the fs is thawed. 2306 */ 2307 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2308 get_block_t get_block) 2309 { 2310 struct page *page = vmf->page; 2311 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2312 unsigned long end; 2313 loff_t size; 2314 int ret; 2315 2316 lock_page(page); 2317 size = i_size_read(inode); 2318 if ((page->mapping != inode->i_mapping) || 2319 (page_offset(page) > size)) { 2320 /* We overload EFAULT to mean page got truncated */ 2321 ret = -EFAULT; 2322 goto out_unlock; 2323 } 2324 2325 /* page is wholly or partially inside EOF */ 2326 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2327 end = size & ~PAGE_CACHE_MASK; 2328 else 2329 end = PAGE_CACHE_SIZE; 2330 2331 ret = __block_write_begin(page, 0, end, get_block); 2332 if (!ret) 2333 ret = block_commit_write(page, 0, end); 2334 2335 if (unlikely(ret < 0)) 2336 goto out_unlock; 2337 /* 2338 * Freezing in progress? We check after the page is marked dirty and 2339 * with page lock held so if the test here fails, we are sure freezing 2340 * code will wait during syncing until the page fault is done - at that 2341 * point page will be dirty and unlocked so freezing code will write it 2342 * and writeprotect it again. 2343 */ 2344 set_page_dirty(page); 2345 if (inode->i_sb->s_frozen != SB_UNFROZEN) { 2346 ret = -EAGAIN; 2347 goto out_unlock; 2348 } 2349 wait_on_page_writeback(page); 2350 return 0; 2351 out_unlock: 2352 unlock_page(page); 2353 return ret; 2354 } 2355 EXPORT_SYMBOL(__block_page_mkwrite); 2356 2357 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2358 get_block_t get_block) 2359 { 2360 int ret; 2361 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb; 2362 2363 /* 2364 * This check is racy but catches the common case. The check in 2365 * __block_page_mkwrite() is reliable. 2366 */ 2367 vfs_check_frozen(sb, SB_FREEZE_WRITE); 2368 ret = __block_page_mkwrite(vma, vmf, get_block); 2369 return block_page_mkwrite_return(ret); 2370 } 2371 EXPORT_SYMBOL(block_page_mkwrite); 2372 2373 /* 2374 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2375 * immediately, while under the page lock. So it needs a special end_io 2376 * handler which does not touch the bh after unlocking it. 2377 */ 2378 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2379 { 2380 __end_buffer_read_notouch(bh, uptodate); 2381 } 2382 2383 /* 2384 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2385 * the page (converting it to circular linked list and taking care of page 2386 * dirty races). 2387 */ 2388 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2389 { 2390 struct buffer_head *bh; 2391 2392 BUG_ON(!PageLocked(page)); 2393 2394 spin_lock(&page->mapping->private_lock); 2395 bh = head; 2396 do { 2397 if (PageDirty(page)) 2398 set_buffer_dirty(bh); 2399 if (!bh->b_this_page) 2400 bh->b_this_page = head; 2401 bh = bh->b_this_page; 2402 } while (bh != head); 2403 attach_page_buffers(page, head); 2404 spin_unlock(&page->mapping->private_lock); 2405 } 2406 2407 /* 2408 * On entry, the page is fully not uptodate. 2409 * On exit the page is fully uptodate in the areas outside (from,to) 2410 * The filesystem needs to handle block truncation upon failure. 2411 */ 2412 int nobh_write_begin(struct address_space *mapping, 2413 loff_t pos, unsigned len, unsigned flags, 2414 struct page **pagep, void **fsdata, 2415 get_block_t *get_block) 2416 { 2417 struct inode *inode = mapping->host; 2418 const unsigned blkbits = inode->i_blkbits; 2419 const unsigned blocksize = 1 << blkbits; 2420 struct buffer_head *head, *bh; 2421 struct page *page; 2422 pgoff_t index; 2423 unsigned from, to; 2424 unsigned block_in_page; 2425 unsigned block_start, block_end; 2426 sector_t block_in_file; 2427 int nr_reads = 0; 2428 int ret = 0; 2429 int is_mapped_to_disk = 1; 2430 2431 index = pos >> PAGE_CACHE_SHIFT; 2432 from = pos & (PAGE_CACHE_SIZE - 1); 2433 to = from + len; 2434 2435 page = grab_cache_page_write_begin(mapping, index, flags); 2436 if (!page) 2437 return -ENOMEM; 2438 *pagep = page; 2439 *fsdata = NULL; 2440 2441 if (page_has_buffers(page)) { 2442 ret = __block_write_begin(page, pos, len, get_block); 2443 if (unlikely(ret)) 2444 goto out_release; 2445 return ret; 2446 } 2447 2448 if (PageMappedToDisk(page)) 2449 return 0; 2450 2451 /* 2452 * Allocate buffers so that we can keep track of state, and potentially 2453 * attach them to the page if an error occurs. In the common case of 2454 * no error, they will just be freed again without ever being attached 2455 * to the page (which is all OK, because we're under the page lock). 2456 * 2457 * Be careful: the buffer linked list is a NULL terminated one, rather 2458 * than the circular one we're used to. 2459 */ 2460 head = alloc_page_buffers(page, blocksize, 0); 2461 if (!head) { 2462 ret = -ENOMEM; 2463 goto out_release; 2464 } 2465 2466 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2467 2468 /* 2469 * We loop across all blocks in the page, whether or not they are 2470 * part of the affected region. This is so we can discover if the 2471 * page is fully mapped-to-disk. 2472 */ 2473 for (block_start = 0, block_in_page = 0, bh = head; 2474 block_start < PAGE_CACHE_SIZE; 2475 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2476 int create; 2477 2478 block_end = block_start + blocksize; 2479 bh->b_state = 0; 2480 create = 1; 2481 if (block_start >= to) 2482 create = 0; 2483 ret = get_block(inode, block_in_file + block_in_page, 2484 bh, create); 2485 if (ret) 2486 goto failed; 2487 if (!buffer_mapped(bh)) 2488 is_mapped_to_disk = 0; 2489 if (buffer_new(bh)) 2490 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2491 if (PageUptodate(page)) { 2492 set_buffer_uptodate(bh); 2493 continue; 2494 } 2495 if (buffer_new(bh) || !buffer_mapped(bh)) { 2496 zero_user_segments(page, block_start, from, 2497 to, block_end); 2498 continue; 2499 } 2500 if (buffer_uptodate(bh)) 2501 continue; /* reiserfs does this */ 2502 if (block_start < from || block_end > to) { 2503 lock_buffer(bh); 2504 bh->b_end_io = end_buffer_read_nobh; 2505 submit_bh(READ, bh); 2506 nr_reads++; 2507 } 2508 } 2509 2510 if (nr_reads) { 2511 /* 2512 * The page is locked, so these buffers are protected from 2513 * any VM or truncate activity. Hence we don't need to care 2514 * for the buffer_head refcounts. 2515 */ 2516 for (bh = head; bh; bh = bh->b_this_page) { 2517 wait_on_buffer(bh); 2518 if (!buffer_uptodate(bh)) 2519 ret = -EIO; 2520 } 2521 if (ret) 2522 goto failed; 2523 } 2524 2525 if (is_mapped_to_disk) 2526 SetPageMappedToDisk(page); 2527 2528 *fsdata = head; /* to be released by nobh_write_end */ 2529 2530 return 0; 2531 2532 failed: 2533 BUG_ON(!ret); 2534 /* 2535 * Error recovery is a bit difficult. We need to zero out blocks that 2536 * were newly allocated, and dirty them to ensure they get written out. 2537 * Buffers need to be attached to the page at this point, otherwise 2538 * the handling of potential IO errors during writeout would be hard 2539 * (could try doing synchronous writeout, but what if that fails too?) 2540 */ 2541 attach_nobh_buffers(page, head); 2542 page_zero_new_buffers(page, from, to); 2543 2544 out_release: 2545 unlock_page(page); 2546 page_cache_release(page); 2547 *pagep = NULL; 2548 2549 return ret; 2550 } 2551 EXPORT_SYMBOL(nobh_write_begin); 2552 2553 int nobh_write_end(struct file *file, struct address_space *mapping, 2554 loff_t pos, unsigned len, unsigned copied, 2555 struct page *page, void *fsdata) 2556 { 2557 struct inode *inode = page->mapping->host; 2558 struct buffer_head *head = fsdata; 2559 struct buffer_head *bh; 2560 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2561 2562 if (unlikely(copied < len) && head) 2563 attach_nobh_buffers(page, head); 2564 if (page_has_buffers(page)) 2565 return generic_write_end(file, mapping, pos, len, 2566 copied, page, fsdata); 2567 2568 SetPageUptodate(page); 2569 set_page_dirty(page); 2570 if (pos+copied > inode->i_size) { 2571 i_size_write(inode, pos+copied); 2572 mark_inode_dirty(inode); 2573 } 2574 2575 unlock_page(page); 2576 page_cache_release(page); 2577 2578 while (head) { 2579 bh = head; 2580 head = head->b_this_page; 2581 free_buffer_head(bh); 2582 } 2583 2584 return copied; 2585 } 2586 EXPORT_SYMBOL(nobh_write_end); 2587 2588 /* 2589 * nobh_writepage() - based on block_full_write_page() except 2590 * that it tries to operate without attaching bufferheads to 2591 * the page. 2592 */ 2593 int nobh_writepage(struct page *page, get_block_t *get_block, 2594 struct writeback_control *wbc) 2595 { 2596 struct inode * const inode = page->mapping->host; 2597 loff_t i_size = i_size_read(inode); 2598 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2599 unsigned offset; 2600 int ret; 2601 2602 /* Is the page fully inside i_size? */ 2603 if (page->index < end_index) 2604 goto out; 2605 2606 /* Is the page fully outside i_size? (truncate in progress) */ 2607 offset = i_size & (PAGE_CACHE_SIZE-1); 2608 if (page->index >= end_index+1 || !offset) { 2609 /* 2610 * The page may have dirty, unmapped buffers. For example, 2611 * they may have been added in ext3_writepage(). Make them 2612 * freeable here, so the page does not leak. 2613 */ 2614 #if 0 2615 /* Not really sure about this - do we need this ? */ 2616 if (page->mapping->a_ops->invalidatepage) 2617 page->mapping->a_ops->invalidatepage(page, offset); 2618 #endif 2619 unlock_page(page); 2620 return 0; /* don't care */ 2621 } 2622 2623 /* 2624 * The page straddles i_size. It must be zeroed out on each and every 2625 * writepage invocation because it may be mmapped. "A file is mapped 2626 * in multiples of the page size. For a file that is not a multiple of 2627 * the page size, the remaining memory is zeroed when mapped, and 2628 * writes to that region are not written out to the file." 2629 */ 2630 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2631 out: 2632 ret = mpage_writepage(page, get_block, wbc); 2633 if (ret == -EAGAIN) 2634 ret = __block_write_full_page(inode, page, get_block, wbc, 2635 end_buffer_async_write); 2636 return ret; 2637 } 2638 EXPORT_SYMBOL(nobh_writepage); 2639 2640 int nobh_truncate_page(struct address_space *mapping, 2641 loff_t from, get_block_t *get_block) 2642 { 2643 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2644 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2645 unsigned blocksize; 2646 sector_t iblock; 2647 unsigned length, pos; 2648 struct inode *inode = mapping->host; 2649 struct page *page; 2650 struct buffer_head map_bh; 2651 int err; 2652 2653 blocksize = 1 << inode->i_blkbits; 2654 length = offset & (blocksize - 1); 2655 2656 /* Block boundary? Nothing to do */ 2657 if (!length) 2658 return 0; 2659 2660 length = blocksize - length; 2661 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2662 2663 page = grab_cache_page(mapping, index); 2664 err = -ENOMEM; 2665 if (!page) 2666 goto out; 2667 2668 if (page_has_buffers(page)) { 2669 has_buffers: 2670 unlock_page(page); 2671 page_cache_release(page); 2672 return block_truncate_page(mapping, from, get_block); 2673 } 2674 2675 /* Find the buffer that contains "offset" */ 2676 pos = blocksize; 2677 while (offset >= pos) { 2678 iblock++; 2679 pos += blocksize; 2680 } 2681 2682 map_bh.b_size = blocksize; 2683 map_bh.b_state = 0; 2684 err = get_block(inode, iblock, &map_bh, 0); 2685 if (err) 2686 goto unlock; 2687 /* unmapped? It's a hole - nothing to do */ 2688 if (!buffer_mapped(&map_bh)) 2689 goto unlock; 2690 2691 /* Ok, it's mapped. Make sure it's up-to-date */ 2692 if (!PageUptodate(page)) { 2693 err = mapping->a_ops->readpage(NULL, page); 2694 if (err) { 2695 page_cache_release(page); 2696 goto out; 2697 } 2698 lock_page(page); 2699 if (!PageUptodate(page)) { 2700 err = -EIO; 2701 goto unlock; 2702 } 2703 if (page_has_buffers(page)) 2704 goto has_buffers; 2705 } 2706 zero_user(page, offset, length); 2707 set_page_dirty(page); 2708 err = 0; 2709 2710 unlock: 2711 unlock_page(page); 2712 page_cache_release(page); 2713 out: 2714 return err; 2715 } 2716 EXPORT_SYMBOL(nobh_truncate_page); 2717 2718 int block_truncate_page(struct address_space *mapping, 2719 loff_t from, get_block_t *get_block) 2720 { 2721 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2722 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2723 unsigned blocksize; 2724 sector_t iblock; 2725 unsigned length, pos; 2726 struct inode *inode = mapping->host; 2727 struct page *page; 2728 struct buffer_head *bh; 2729 int err; 2730 2731 blocksize = 1 << inode->i_blkbits; 2732 length = offset & (blocksize - 1); 2733 2734 /* Block boundary? Nothing to do */ 2735 if (!length) 2736 return 0; 2737 2738 length = blocksize - length; 2739 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2740 2741 page = grab_cache_page(mapping, index); 2742 err = -ENOMEM; 2743 if (!page) 2744 goto out; 2745 2746 if (!page_has_buffers(page)) 2747 create_empty_buffers(page, blocksize, 0); 2748 2749 /* Find the buffer that contains "offset" */ 2750 bh = page_buffers(page); 2751 pos = blocksize; 2752 while (offset >= pos) { 2753 bh = bh->b_this_page; 2754 iblock++; 2755 pos += blocksize; 2756 } 2757 2758 err = 0; 2759 if (!buffer_mapped(bh)) { 2760 WARN_ON(bh->b_size != blocksize); 2761 err = get_block(inode, iblock, bh, 0); 2762 if (err) 2763 goto unlock; 2764 /* unmapped? It's a hole - nothing to do */ 2765 if (!buffer_mapped(bh)) 2766 goto unlock; 2767 } 2768 2769 /* Ok, it's mapped. Make sure it's up-to-date */ 2770 if (PageUptodate(page)) 2771 set_buffer_uptodate(bh); 2772 2773 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2774 err = -EIO; 2775 ll_rw_block(READ, 1, &bh); 2776 wait_on_buffer(bh); 2777 /* Uhhuh. Read error. Complain and punt. */ 2778 if (!buffer_uptodate(bh)) 2779 goto unlock; 2780 } 2781 2782 zero_user(page, offset, length); 2783 mark_buffer_dirty(bh); 2784 err = 0; 2785 2786 unlock: 2787 unlock_page(page); 2788 page_cache_release(page); 2789 out: 2790 return err; 2791 } 2792 EXPORT_SYMBOL(block_truncate_page); 2793 2794 /* 2795 * The generic ->writepage function for buffer-backed address_spaces 2796 * this form passes in the end_io handler used to finish the IO. 2797 */ 2798 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2799 struct writeback_control *wbc, bh_end_io_t *handler) 2800 { 2801 struct inode * const inode = page->mapping->host; 2802 loff_t i_size = i_size_read(inode); 2803 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2804 unsigned offset; 2805 2806 /* Is the page fully inside i_size? */ 2807 if (page->index < end_index) 2808 return __block_write_full_page(inode, page, get_block, wbc, 2809 handler); 2810 2811 /* Is the page fully outside i_size? (truncate in progress) */ 2812 offset = i_size & (PAGE_CACHE_SIZE-1); 2813 if (page->index >= end_index+1 || !offset) { 2814 /* 2815 * The page may have dirty, unmapped buffers. For example, 2816 * they may have been added in ext3_writepage(). Make them 2817 * freeable here, so the page does not leak. 2818 */ 2819 do_invalidatepage(page, 0); 2820 unlock_page(page); 2821 return 0; /* don't care */ 2822 } 2823 2824 /* 2825 * The page straddles i_size. It must be zeroed out on each and every 2826 * writepage invocation because it may be mmapped. "A file is mapped 2827 * in multiples of the page size. For a file that is not a multiple of 2828 * the page size, the remaining memory is zeroed when mapped, and 2829 * writes to that region are not written out to the file." 2830 */ 2831 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2832 return __block_write_full_page(inode, page, get_block, wbc, handler); 2833 } 2834 EXPORT_SYMBOL(block_write_full_page_endio); 2835 2836 /* 2837 * The generic ->writepage function for buffer-backed address_spaces 2838 */ 2839 int block_write_full_page(struct page *page, get_block_t *get_block, 2840 struct writeback_control *wbc) 2841 { 2842 return block_write_full_page_endio(page, get_block, wbc, 2843 end_buffer_async_write); 2844 } 2845 EXPORT_SYMBOL(block_write_full_page); 2846 2847 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2848 get_block_t *get_block) 2849 { 2850 struct buffer_head tmp; 2851 struct inode *inode = mapping->host; 2852 tmp.b_state = 0; 2853 tmp.b_blocknr = 0; 2854 tmp.b_size = 1 << inode->i_blkbits; 2855 get_block(inode, block, &tmp, 0); 2856 return tmp.b_blocknr; 2857 } 2858 EXPORT_SYMBOL(generic_block_bmap); 2859 2860 static void end_bio_bh_io_sync(struct bio *bio, int err) 2861 { 2862 struct buffer_head *bh = bio->bi_private; 2863 2864 if (err == -EOPNOTSUPP) { 2865 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2866 } 2867 2868 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2869 set_bit(BH_Quiet, &bh->b_state); 2870 2871 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2872 bio_put(bio); 2873 } 2874 2875 int submit_bh(int rw, struct buffer_head * bh) 2876 { 2877 struct bio *bio; 2878 int ret = 0; 2879 2880 BUG_ON(!buffer_locked(bh)); 2881 BUG_ON(!buffer_mapped(bh)); 2882 BUG_ON(!bh->b_end_io); 2883 BUG_ON(buffer_delay(bh)); 2884 BUG_ON(buffer_unwritten(bh)); 2885 2886 /* 2887 * Only clear out a write error when rewriting 2888 */ 2889 if (test_set_buffer_req(bh) && (rw & WRITE)) 2890 clear_buffer_write_io_error(bh); 2891 2892 /* 2893 * from here on down, it's all bio -- do the initial mapping, 2894 * submit_bio -> generic_make_request may further map this bio around 2895 */ 2896 bio = bio_alloc(GFP_NOIO, 1); 2897 2898 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2899 bio->bi_bdev = bh->b_bdev; 2900 bio->bi_io_vec[0].bv_page = bh->b_page; 2901 bio->bi_io_vec[0].bv_len = bh->b_size; 2902 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2903 2904 bio->bi_vcnt = 1; 2905 bio->bi_idx = 0; 2906 bio->bi_size = bh->b_size; 2907 2908 bio->bi_end_io = end_bio_bh_io_sync; 2909 bio->bi_private = bh; 2910 2911 bio_get(bio); 2912 submit_bio(rw, bio); 2913 2914 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2915 ret = -EOPNOTSUPP; 2916 2917 bio_put(bio); 2918 return ret; 2919 } 2920 EXPORT_SYMBOL(submit_bh); 2921 2922 /** 2923 * ll_rw_block: low-level access to block devices (DEPRECATED) 2924 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 2925 * @nr: number of &struct buffer_heads in the array 2926 * @bhs: array of pointers to &struct buffer_head 2927 * 2928 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2929 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2930 * %READA option is described in the documentation for generic_make_request() 2931 * which ll_rw_block() calls. 2932 * 2933 * This function drops any buffer that it cannot get a lock on (with the 2934 * BH_Lock state bit), any buffer that appears to be clean when doing a write 2935 * request, and any buffer that appears to be up-to-date when doing read 2936 * request. Further it marks as clean buffers that are processed for 2937 * writing (the buffer cache won't assume that they are actually clean 2938 * until the buffer gets unlocked). 2939 * 2940 * ll_rw_block sets b_end_io to simple completion handler that marks 2941 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2942 * any waiters. 2943 * 2944 * All of the buffers must be for the same device, and must also be a 2945 * multiple of the current approved size for the device. 2946 */ 2947 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2948 { 2949 int i; 2950 2951 for (i = 0; i < nr; i++) { 2952 struct buffer_head *bh = bhs[i]; 2953 2954 if (!trylock_buffer(bh)) 2955 continue; 2956 if (rw == WRITE) { 2957 if (test_clear_buffer_dirty(bh)) { 2958 bh->b_end_io = end_buffer_write_sync; 2959 get_bh(bh); 2960 submit_bh(WRITE, bh); 2961 continue; 2962 } 2963 } else { 2964 if (!buffer_uptodate(bh)) { 2965 bh->b_end_io = end_buffer_read_sync; 2966 get_bh(bh); 2967 submit_bh(rw, bh); 2968 continue; 2969 } 2970 } 2971 unlock_buffer(bh); 2972 } 2973 } 2974 EXPORT_SYMBOL(ll_rw_block); 2975 2976 void write_dirty_buffer(struct buffer_head *bh, int rw) 2977 { 2978 lock_buffer(bh); 2979 if (!test_clear_buffer_dirty(bh)) { 2980 unlock_buffer(bh); 2981 return; 2982 } 2983 bh->b_end_io = end_buffer_write_sync; 2984 get_bh(bh); 2985 submit_bh(rw, bh); 2986 } 2987 EXPORT_SYMBOL(write_dirty_buffer); 2988 2989 /* 2990 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2991 * and then start new I/O and then wait upon it. The caller must have a ref on 2992 * the buffer_head. 2993 */ 2994 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 2995 { 2996 int ret = 0; 2997 2998 WARN_ON(atomic_read(&bh->b_count) < 1); 2999 lock_buffer(bh); 3000 if (test_clear_buffer_dirty(bh)) { 3001 get_bh(bh); 3002 bh->b_end_io = end_buffer_write_sync; 3003 ret = submit_bh(rw, bh); 3004 wait_on_buffer(bh); 3005 if (!ret && !buffer_uptodate(bh)) 3006 ret = -EIO; 3007 } else { 3008 unlock_buffer(bh); 3009 } 3010 return ret; 3011 } 3012 EXPORT_SYMBOL(__sync_dirty_buffer); 3013 3014 int sync_dirty_buffer(struct buffer_head *bh) 3015 { 3016 return __sync_dirty_buffer(bh, WRITE_SYNC); 3017 } 3018 EXPORT_SYMBOL(sync_dirty_buffer); 3019 3020 /* 3021 * try_to_free_buffers() checks if all the buffers on this particular page 3022 * are unused, and releases them if so. 3023 * 3024 * Exclusion against try_to_free_buffers may be obtained by either 3025 * locking the page or by holding its mapping's private_lock. 3026 * 3027 * If the page is dirty but all the buffers are clean then we need to 3028 * be sure to mark the page clean as well. This is because the page 3029 * may be against a block device, and a later reattachment of buffers 3030 * to a dirty page will set *all* buffers dirty. Which would corrupt 3031 * filesystem data on the same device. 3032 * 3033 * The same applies to regular filesystem pages: if all the buffers are 3034 * clean then we set the page clean and proceed. To do that, we require 3035 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3036 * private_lock. 3037 * 3038 * try_to_free_buffers() is non-blocking. 3039 */ 3040 static inline int buffer_busy(struct buffer_head *bh) 3041 { 3042 return atomic_read(&bh->b_count) | 3043 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3044 } 3045 3046 static int 3047 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3048 { 3049 struct buffer_head *head = page_buffers(page); 3050 struct buffer_head *bh; 3051 3052 bh = head; 3053 do { 3054 if (buffer_write_io_error(bh) && page->mapping) 3055 set_bit(AS_EIO, &page->mapping->flags); 3056 if (buffer_busy(bh)) 3057 goto failed; 3058 bh = bh->b_this_page; 3059 } while (bh != head); 3060 3061 do { 3062 struct buffer_head *next = bh->b_this_page; 3063 3064 if (bh->b_assoc_map) 3065 __remove_assoc_queue(bh); 3066 bh = next; 3067 } while (bh != head); 3068 *buffers_to_free = head; 3069 __clear_page_buffers(page); 3070 return 1; 3071 failed: 3072 return 0; 3073 } 3074 3075 int try_to_free_buffers(struct page *page) 3076 { 3077 struct address_space * const mapping = page->mapping; 3078 struct buffer_head *buffers_to_free = NULL; 3079 int ret = 0; 3080 3081 BUG_ON(!PageLocked(page)); 3082 if (PageWriteback(page)) 3083 return 0; 3084 3085 if (mapping == NULL) { /* can this still happen? */ 3086 ret = drop_buffers(page, &buffers_to_free); 3087 goto out; 3088 } 3089 3090 spin_lock(&mapping->private_lock); 3091 ret = drop_buffers(page, &buffers_to_free); 3092 3093 /* 3094 * If the filesystem writes its buffers by hand (eg ext3) 3095 * then we can have clean buffers against a dirty page. We 3096 * clean the page here; otherwise the VM will never notice 3097 * that the filesystem did any IO at all. 3098 * 3099 * Also, during truncate, discard_buffer will have marked all 3100 * the page's buffers clean. We discover that here and clean 3101 * the page also. 3102 * 3103 * private_lock must be held over this entire operation in order 3104 * to synchronise against __set_page_dirty_buffers and prevent the 3105 * dirty bit from being lost. 3106 */ 3107 if (ret) 3108 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3109 spin_unlock(&mapping->private_lock); 3110 out: 3111 if (buffers_to_free) { 3112 struct buffer_head *bh = buffers_to_free; 3113 3114 do { 3115 struct buffer_head *next = bh->b_this_page; 3116 free_buffer_head(bh); 3117 bh = next; 3118 } while (bh != buffers_to_free); 3119 } 3120 return ret; 3121 } 3122 EXPORT_SYMBOL(try_to_free_buffers); 3123 3124 /* 3125 * There are no bdflush tunables left. But distributions are 3126 * still running obsolete flush daemons, so we terminate them here. 3127 * 3128 * Use of bdflush() is deprecated and will be removed in a future kernel. 3129 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3130 */ 3131 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3132 { 3133 static int msg_count; 3134 3135 if (!capable(CAP_SYS_ADMIN)) 3136 return -EPERM; 3137 3138 if (msg_count < 5) { 3139 msg_count++; 3140 printk(KERN_INFO 3141 "warning: process `%s' used the obsolete bdflush" 3142 " system call\n", current->comm); 3143 printk(KERN_INFO "Fix your initscripts?\n"); 3144 } 3145 3146 if (func == 1) 3147 do_exit(0); 3148 return 0; 3149 } 3150 3151 /* 3152 * Buffer-head allocation 3153 */ 3154 static struct kmem_cache *bh_cachep; 3155 3156 /* 3157 * Once the number of bh's in the machine exceeds this level, we start 3158 * stripping them in writeback. 3159 */ 3160 static int max_buffer_heads; 3161 3162 int buffer_heads_over_limit; 3163 3164 struct bh_accounting { 3165 int nr; /* Number of live bh's */ 3166 int ratelimit; /* Limit cacheline bouncing */ 3167 }; 3168 3169 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3170 3171 static void recalc_bh_state(void) 3172 { 3173 int i; 3174 int tot = 0; 3175 3176 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3177 return; 3178 __this_cpu_write(bh_accounting.ratelimit, 0); 3179 for_each_online_cpu(i) 3180 tot += per_cpu(bh_accounting, i).nr; 3181 buffer_heads_over_limit = (tot > max_buffer_heads); 3182 } 3183 3184 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3185 { 3186 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3187 if (ret) { 3188 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3189 preempt_disable(); 3190 __this_cpu_inc(bh_accounting.nr); 3191 recalc_bh_state(); 3192 preempt_enable(); 3193 } 3194 return ret; 3195 } 3196 EXPORT_SYMBOL(alloc_buffer_head); 3197 3198 void free_buffer_head(struct buffer_head *bh) 3199 { 3200 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3201 kmem_cache_free(bh_cachep, bh); 3202 preempt_disable(); 3203 __this_cpu_dec(bh_accounting.nr); 3204 recalc_bh_state(); 3205 preempt_enable(); 3206 } 3207 EXPORT_SYMBOL(free_buffer_head); 3208 3209 static void buffer_exit_cpu(int cpu) 3210 { 3211 int i; 3212 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3213 3214 for (i = 0; i < BH_LRU_SIZE; i++) { 3215 brelse(b->bhs[i]); 3216 b->bhs[i] = NULL; 3217 } 3218 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3219 per_cpu(bh_accounting, cpu).nr = 0; 3220 } 3221 3222 static int buffer_cpu_notify(struct notifier_block *self, 3223 unsigned long action, void *hcpu) 3224 { 3225 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3226 buffer_exit_cpu((unsigned long)hcpu); 3227 return NOTIFY_OK; 3228 } 3229 3230 /** 3231 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3232 * @bh: struct buffer_head 3233 * 3234 * Return true if the buffer is up-to-date and false, 3235 * with the buffer locked, if not. 3236 */ 3237 int bh_uptodate_or_lock(struct buffer_head *bh) 3238 { 3239 if (!buffer_uptodate(bh)) { 3240 lock_buffer(bh); 3241 if (!buffer_uptodate(bh)) 3242 return 0; 3243 unlock_buffer(bh); 3244 } 3245 return 1; 3246 } 3247 EXPORT_SYMBOL(bh_uptodate_or_lock); 3248 3249 /** 3250 * bh_submit_read - Submit a locked buffer for reading 3251 * @bh: struct buffer_head 3252 * 3253 * Returns zero on success and -EIO on error. 3254 */ 3255 int bh_submit_read(struct buffer_head *bh) 3256 { 3257 BUG_ON(!buffer_locked(bh)); 3258 3259 if (buffer_uptodate(bh)) { 3260 unlock_buffer(bh); 3261 return 0; 3262 } 3263 3264 get_bh(bh); 3265 bh->b_end_io = end_buffer_read_sync; 3266 submit_bh(READ, bh); 3267 wait_on_buffer(bh); 3268 if (buffer_uptodate(bh)) 3269 return 0; 3270 return -EIO; 3271 } 3272 EXPORT_SYMBOL(bh_submit_read); 3273 3274 void __init buffer_init(void) 3275 { 3276 int nrpages; 3277 3278 bh_cachep = kmem_cache_create("buffer_head", 3279 sizeof(struct buffer_head), 0, 3280 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3281 SLAB_MEM_SPREAD), 3282 NULL); 3283 3284 /* 3285 * Limit the bh occupancy to 10% of ZONE_NORMAL 3286 */ 3287 nrpages = (nr_free_buffer_pages() * 10) / 100; 3288 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3289 hotcpu_notifier(buffer_cpu_notify, 0); 3290 } 3291