1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 52 #include "internal.h" 53 54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 56 enum rw_hint hint, struct writeback_control *wbc); 57 58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 59 60 inline void touch_buffer(struct buffer_head *bh) 61 { 62 trace_block_touch_buffer(bh); 63 mark_page_accessed(bh->b_page); 64 } 65 EXPORT_SYMBOL(touch_buffer); 66 67 void __lock_buffer(struct buffer_head *bh) 68 { 69 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 70 } 71 EXPORT_SYMBOL(__lock_buffer); 72 73 void unlock_buffer(struct buffer_head *bh) 74 { 75 clear_bit_unlock(BH_Lock, &bh->b_state); 76 smp_mb__after_atomic(); 77 wake_up_bit(&bh->b_state, BH_Lock); 78 } 79 EXPORT_SYMBOL(unlock_buffer); 80 81 /* 82 * Returns if the page has dirty or writeback buffers. If all the buffers 83 * are unlocked and clean then the PageDirty information is stale. If 84 * any of the pages are locked, it is assumed they are locked for IO. 85 */ 86 void buffer_check_dirty_writeback(struct page *page, 87 bool *dirty, bool *writeback) 88 { 89 struct buffer_head *head, *bh; 90 *dirty = false; 91 *writeback = false; 92 93 BUG_ON(!PageLocked(page)); 94 95 if (!page_has_buffers(page)) 96 return; 97 98 if (PageWriteback(page)) 99 *writeback = true; 100 101 head = page_buffers(page); 102 bh = head; 103 do { 104 if (buffer_locked(bh)) 105 *writeback = true; 106 107 if (buffer_dirty(bh)) 108 *dirty = true; 109 110 bh = bh->b_this_page; 111 } while (bh != head); 112 } 113 EXPORT_SYMBOL(buffer_check_dirty_writeback); 114 115 /* 116 * Block until a buffer comes unlocked. This doesn't stop it 117 * from becoming locked again - you have to lock it yourself 118 * if you want to preserve its state. 119 */ 120 void __wait_on_buffer(struct buffer_head * bh) 121 { 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 123 } 124 EXPORT_SYMBOL(__wait_on_buffer); 125 126 static void buffer_io_error(struct buffer_head *bh, char *msg) 127 { 128 if (!test_bit(BH_Quiet, &bh->b_state)) 129 printk_ratelimited(KERN_ERR 130 "Buffer I/O error on dev %pg, logical block %llu%s\n", 131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 132 } 133 134 /* 135 * End-of-IO handler helper function which does not touch the bh after 136 * unlocking it. 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 138 * a race there is benign: unlock_buffer() only use the bh's address for 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh 140 * itself. 141 */ 142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 143 { 144 if (uptodate) { 145 set_buffer_uptodate(bh); 146 } else { 147 /* This happens, due to failed read-ahead attempts. */ 148 clear_buffer_uptodate(bh); 149 } 150 unlock_buffer(bh); 151 } 152 153 /* 154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 155 * unlock the buffer. This is what ll_rw_block uses too. 156 */ 157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 158 { 159 __end_buffer_read_notouch(bh, uptodate); 160 put_bh(bh); 161 } 162 EXPORT_SYMBOL(end_buffer_read_sync); 163 164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 165 { 166 if (uptodate) { 167 set_buffer_uptodate(bh); 168 } else { 169 buffer_io_error(bh, ", lost sync page write"); 170 mark_buffer_write_io_error(bh); 171 clear_buffer_uptodate(bh); 172 } 173 unlock_buffer(bh); 174 put_bh(bh); 175 } 176 EXPORT_SYMBOL(end_buffer_write_sync); 177 178 /* 179 * Various filesystems appear to want __find_get_block to be non-blocking. 180 * But it's the page lock which protects the buffers. To get around this, 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's 182 * private_lock. 183 * 184 * Hack idea: for the blockdev mapping, private_lock contention 185 * may be quite high. This code could TryLock the page, and if that 186 * succeeds, there is no need to take private_lock. 187 */ 188 static struct buffer_head * 189 __find_get_block_slow(struct block_device *bdev, sector_t block) 190 { 191 struct inode *bd_inode = bdev->bd_inode; 192 struct address_space *bd_mapping = bd_inode->i_mapping; 193 struct buffer_head *ret = NULL; 194 pgoff_t index; 195 struct buffer_head *bh; 196 struct buffer_head *head; 197 struct page *page; 198 int all_mapped = 1; 199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 200 201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 202 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 203 if (!page) 204 goto out; 205 206 spin_lock(&bd_mapping->private_lock); 207 if (!page_has_buffers(page)) 208 goto out_unlock; 209 head = page_buffers(page); 210 bh = head; 211 do { 212 if (!buffer_mapped(bh)) 213 all_mapped = 0; 214 else if (bh->b_blocknr == block) { 215 ret = bh; 216 get_bh(bh); 217 goto out_unlock; 218 } 219 bh = bh->b_this_page; 220 } while (bh != head); 221 222 /* we might be here because some of the buffers on this page are 223 * not mapped. This is due to various races between 224 * file io on the block device and getblk. It gets dealt with 225 * elsewhere, don't buffer_error if we had some unmapped buffers 226 */ 227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 228 if (all_mapped && __ratelimit(&last_warned)) { 229 printk("__find_get_block_slow() failed. block=%llu, " 230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 231 "device %pg blocksize: %d\n", 232 (unsigned long long)block, 233 (unsigned long long)bh->b_blocknr, 234 bh->b_state, bh->b_size, bdev, 235 1 << bd_inode->i_blkbits); 236 } 237 out_unlock: 238 spin_unlock(&bd_mapping->private_lock); 239 put_page(page); 240 out: 241 return ret; 242 } 243 244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 245 { 246 unsigned long flags; 247 struct buffer_head *first; 248 struct buffer_head *tmp; 249 struct page *page; 250 int page_uptodate = 1; 251 252 BUG_ON(!buffer_async_read(bh)); 253 254 page = bh->b_page; 255 if (uptodate) { 256 set_buffer_uptodate(bh); 257 } else { 258 clear_buffer_uptodate(bh); 259 buffer_io_error(bh, ", async page read"); 260 SetPageError(page); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = page_buffers(page); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 page_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 /* 285 * If none of the buffers had errors and they are all 286 * uptodate then we can set the page uptodate. 287 */ 288 if (page_uptodate && !PageError(page)) 289 SetPageUptodate(page); 290 unlock_page(page); 291 return; 292 293 still_busy: 294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 295 return; 296 } 297 298 struct decrypt_bh_ctx { 299 struct work_struct work; 300 struct buffer_head *bh; 301 }; 302 303 static void decrypt_bh(struct work_struct *work) 304 { 305 struct decrypt_bh_ctx *ctx = 306 container_of(work, struct decrypt_bh_ctx, work); 307 struct buffer_head *bh = ctx->bh; 308 int err; 309 310 err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size, 311 bh_offset(bh)); 312 end_buffer_async_read(bh, err == 0); 313 kfree(ctx); 314 } 315 316 /* 317 * I/O completion handler for block_read_full_page() - pages 318 * which come unlocked at the end of I/O. 319 */ 320 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 321 { 322 /* Decrypt if needed */ 323 if (uptodate && 324 fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) { 325 struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC); 326 327 if (ctx) { 328 INIT_WORK(&ctx->work, decrypt_bh); 329 ctx->bh = bh; 330 fscrypt_enqueue_decrypt_work(&ctx->work); 331 return; 332 } 333 uptodate = 0; 334 } 335 end_buffer_async_read(bh, uptodate); 336 } 337 338 /* 339 * Completion handler for block_write_full_page() - pages which are unlocked 340 * during I/O, and which have PageWriteback cleared upon I/O completion. 341 */ 342 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 343 { 344 unsigned long flags; 345 struct buffer_head *first; 346 struct buffer_head *tmp; 347 struct page *page; 348 349 BUG_ON(!buffer_async_write(bh)); 350 351 page = bh->b_page; 352 if (uptodate) { 353 set_buffer_uptodate(bh); 354 } else { 355 buffer_io_error(bh, ", lost async page write"); 356 mark_buffer_write_io_error(bh); 357 clear_buffer_uptodate(bh); 358 SetPageError(page); 359 } 360 361 first = page_buffers(page); 362 spin_lock_irqsave(&first->b_uptodate_lock, flags); 363 364 clear_buffer_async_write(bh); 365 unlock_buffer(bh); 366 tmp = bh->b_this_page; 367 while (tmp != bh) { 368 if (buffer_async_write(tmp)) { 369 BUG_ON(!buffer_locked(tmp)); 370 goto still_busy; 371 } 372 tmp = tmp->b_this_page; 373 } 374 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 375 end_page_writeback(page); 376 return; 377 378 still_busy: 379 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 380 return; 381 } 382 EXPORT_SYMBOL(end_buffer_async_write); 383 384 /* 385 * If a page's buffers are under async readin (end_buffer_async_read 386 * completion) then there is a possibility that another thread of 387 * control could lock one of the buffers after it has completed 388 * but while some of the other buffers have not completed. This 389 * locked buffer would confuse end_buffer_async_read() into not unlocking 390 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 391 * that this buffer is not under async I/O. 392 * 393 * The page comes unlocked when it has no locked buffer_async buffers 394 * left. 395 * 396 * PageLocked prevents anyone starting new async I/O reads any of 397 * the buffers. 398 * 399 * PageWriteback is used to prevent simultaneous writeout of the same 400 * page. 401 * 402 * PageLocked prevents anyone from starting writeback of a page which is 403 * under read I/O (PageWriteback is only ever set against a locked page). 404 */ 405 static void mark_buffer_async_read(struct buffer_head *bh) 406 { 407 bh->b_end_io = end_buffer_async_read_io; 408 set_buffer_async_read(bh); 409 } 410 411 static void mark_buffer_async_write_endio(struct buffer_head *bh, 412 bh_end_io_t *handler) 413 { 414 bh->b_end_io = handler; 415 set_buffer_async_write(bh); 416 } 417 418 void mark_buffer_async_write(struct buffer_head *bh) 419 { 420 mark_buffer_async_write_endio(bh, end_buffer_async_write); 421 } 422 EXPORT_SYMBOL(mark_buffer_async_write); 423 424 425 /* 426 * fs/buffer.c contains helper functions for buffer-backed address space's 427 * fsync functions. A common requirement for buffer-based filesystems is 428 * that certain data from the backing blockdev needs to be written out for 429 * a successful fsync(). For example, ext2 indirect blocks need to be 430 * written back and waited upon before fsync() returns. 431 * 432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 434 * management of a list of dependent buffers at ->i_mapping->private_list. 435 * 436 * Locking is a little subtle: try_to_free_buffers() will remove buffers 437 * from their controlling inode's queue when they are being freed. But 438 * try_to_free_buffers() will be operating against the *blockdev* mapping 439 * at the time, not against the S_ISREG file which depends on those buffers. 440 * So the locking for private_list is via the private_lock in the address_space 441 * which backs the buffers. Which is different from the address_space 442 * against which the buffers are listed. So for a particular address_space, 443 * mapping->private_lock does *not* protect mapping->private_list! In fact, 444 * mapping->private_list will always be protected by the backing blockdev's 445 * ->private_lock. 446 * 447 * Which introduces a requirement: all buffers on an address_space's 448 * ->private_list must be from the same address_space: the blockdev's. 449 * 450 * address_spaces which do not place buffers at ->private_list via these 451 * utility functions are free to use private_lock and private_list for 452 * whatever they want. The only requirement is that list_empty(private_list) 453 * be true at clear_inode() time. 454 * 455 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 456 * filesystems should do that. invalidate_inode_buffers() should just go 457 * BUG_ON(!list_empty). 458 * 459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 460 * take an address_space, not an inode. And it should be called 461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 462 * queued up. 463 * 464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 465 * list if it is already on a list. Because if the buffer is on a list, 466 * it *must* already be on the right one. If not, the filesystem is being 467 * silly. This will save a ton of locking. But first we have to ensure 468 * that buffers are taken *off* the old inode's list when they are freed 469 * (presumably in truncate). That requires careful auditing of all 470 * filesystems (do it inside bforget()). It could also be done by bringing 471 * b_inode back. 472 */ 473 474 /* 475 * The buffer's backing address_space's private_lock must be held 476 */ 477 static void __remove_assoc_queue(struct buffer_head *bh) 478 { 479 list_del_init(&bh->b_assoc_buffers); 480 WARN_ON(!bh->b_assoc_map); 481 bh->b_assoc_map = NULL; 482 } 483 484 int inode_has_buffers(struct inode *inode) 485 { 486 return !list_empty(&inode->i_data.private_list); 487 } 488 489 /* 490 * osync is designed to support O_SYNC io. It waits synchronously for 491 * all already-submitted IO to complete, but does not queue any new 492 * writes to the disk. 493 * 494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 495 * you dirty the buffers, and then use osync_inode_buffers to wait for 496 * completion. Any other dirty buffers which are not yet queued for 497 * write will not be flushed to disk by the osync. 498 */ 499 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 500 { 501 struct buffer_head *bh; 502 struct list_head *p; 503 int err = 0; 504 505 spin_lock(lock); 506 repeat: 507 list_for_each_prev(p, list) { 508 bh = BH_ENTRY(p); 509 if (buffer_locked(bh)) { 510 get_bh(bh); 511 spin_unlock(lock); 512 wait_on_buffer(bh); 513 if (!buffer_uptodate(bh)) 514 err = -EIO; 515 brelse(bh); 516 spin_lock(lock); 517 goto repeat; 518 } 519 } 520 spin_unlock(lock); 521 return err; 522 } 523 524 void emergency_thaw_bdev(struct super_block *sb) 525 { 526 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 527 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 528 } 529 530 /** 531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 532 * @mapping: the mapping which wants those buffers written 533 * 534 * Starts I/O against the buffers at mapping->private_list, and waits upon 535 * that I/O. 536 * 537 * Basically, this is a convenience function for fsync(). 538 * @mapping is a file or directory which needs those buffers to be written for 539 * a successful fsync(). 540 */ 541 int sync_mapping_buffers(struct address_space *mapping) 542 { 543 struct address_space *buffer_mapping = mapping->private_data; 544 545 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 546 return 0; 547 548 return fsync_buffers_list(&buffer_mapping->private_lock, 549 &mapping->private_list); 550 } 551 EXPORT_SYMBOL(sync_mapping_buffers); 552 553 /* 554 * Called when we've recently written block `bblock', and it is known that 555 * `bblock' was for a buffer_boundary() buffer. This means that the block at 556 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 557 * dirty, schedule it for IO. So that indirects merge nicely with their data. 558 */ 559 void write_boundary_block(struct block_device *bdev, 560 sector_t bblock, unsigned blocksize) 561 { 562 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 563 if (bh) { 564 if (buffer_dirty(bh)) 565 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 566 put_bh(bh); 567 } 568 } 569 570 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 571 { 572 struct address_space *mapping = inode->i_mapping; 573 struct address_space *buffer_mapping = bh->b_page->mapping; 574 575 mark_buffer_dirty(bh); 576 if (!mapping->private_data) { 577 mapping->private_data = buffer_mapping; 578 } else { 579 BUG_ON(mapping->private_data != buffer_mapping); 580 } 581 if (!bh->b_assoc_map) { 582 spin_lock(&buffer_mapping->private_lock); 583 list_move_tail(&bh->b_assoc_buffers, 584 &mapping->private_list); 585 bh->b_assoc_map = mapping; 586 spin_unlock(&buffer_mapping->private_lock); 587 } 588 } 589 EXPORT_SYMBOL(mark_buffer_dirty_inode); 590 591 /* 592 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 593 * dirty. 594 * 595 * If warn is true, then emit a warning if the page is not uptodate and has 596 * not been truncated. 597 * 598 * The caller must hold lock_page_memcg(). 599 */ 600 void __set_page_dirty(struct page *page, struct address_space *mapping, 601 int warn) 602 { 603 unsigned long flags; 604 605 xa_lock_irqsave(&mapping->i_pages, flags); 606 if (page->mapping) { /* Race with truncate? */ 607 WARN_ON_ONCE(warn && !PageUptodate(page)); 608 account_page_dirtied(page, mapping); 609 __xa_set_mark(&mapping->i_pages, page_index(page), 610 PAGECACHE_TAG_DIRTY); 611 } 612 xa_unlock_irqrestore(&mapping->i_pages, flags); 613 } 614 EXPORT_SYMBOL_GPL(__set_page_dirty); 615 616 /* 617 * Add a page to the dirty page list. 618 * 619 * It is a sad fact of life that this function is called from several places 620 * deeply under spinlocking. It may not sleep. 621 * 622 * If the page has buffers, the uptodate buffers are set dirty, to preserve 623 * dirty-state coherency between the page and the buffers. It the page does 624 * not have buffers then when they are later attached they will all be set 625 * dirty. 626 * 627 * The buffers are dirtied before the page is dirtied. There's a small race 628 * window in which a writepage caller may see the page cleanness but not the 629 * buffer dirtiness. That's fine. If this code were to set the page dirty 630 * before the buffers, a concurrent writepage caller could clear the page dirty 631 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 632 * page on the dirty page list. 633 * 634 * We use private_lock to lock against try_to_free_buffers while using the 635 * page's buffer list. Also use this to protect against clean buffers being 636 * added to the page after it was set dirty. 637 * 638 * FIXME: may need to call ->reservepage here as well. That's rather up to the 639 * address_space though. 640 */ 641 int __set_page_dirty_buffers(struct page *page) 642 { 643 int newly_dirty; 644 struct address_space *mapping = page_mapping(page); 645 646 if (unlikely(!mapping)) 647 return !TestSetPageDirty(page); 648 649 spin_lock(&mapping->private_lock); 650 if (page_has_buffers(page)) { 651 struct buffer_head *head = page_buffers(page); 652 struct buffer_head *bh = head; 653 654 do { 655 set_buffer_dirty(bh); 656 bh = bh->b_this_page; 657 } while (bh != head); 658 } 659 /* 660 * Lock out page's memcg migration to keep PageDirty 661 * synchronized with per-memcg dirty page counters. 662 */ 663 lock_page_memcg(page); 664 newly_dirty = !TestSetPageDirty(page); 665 spin_unlock(&mapping->private_lock); 666 667 if (newly_dirty) 668 __set_page_dirty(page, mapping, 1); 669 670 unlock_page_memcg(page); 671 672 if (newly_dirty) 673 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 674 675 return newly_dirty; 676 } 677 EXPORT_SYMBOL(__set_page_dirty_buffers); 678 679 /* 680 * Write out and wait upon a list of buffers. 681 * 682 * We have conflicting pressures: we want to make sure that all 683 * initially dirty buffers get waited on, but that any subsequently 684 * dirtied buffers don't. After all, we don't want fsync to last 685 * forever if somebody is actively writing to the file. 686 * 687 * Do this in two main stages: first we copy dirty buffers to a 688 * temporary inode list, queueing the writes as we go. Then we clean 689 * up, waiting for those writes to complete. 690 * 691 * During this second stage, any subsequent updates to the file may end 692 * up refiling the buffer on the original inode's dirty list again, so 693 * there is a chance we will end up with a buffer queued for write but 694 * not yet completed on that list. So, as a final cleanup we go through 695 * the osync code to catch these locked, dirty buffers without requeuing 696 * any newly dirty buffers for write. 697 */ 698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 699 { 700 struct buffer_head *bh; 701 struct list_head tmp; 702 struct address_space *mapping; 703 int err = 0, err2; 704 struct blk_plug plug; 705 706 INIT_LIST_HEAD(&tmp); 707 blk_start_plug(&plug); 708 709 spin_lock(lock); 710 while (!list_empty(list)) { 711 bh = BH_ENTRY(list->next); 712 mapping = bh->b_assoc_map; 713 __remove_assoc_queue(bh); 714 /* Avoid race with mark_buffer_dirty_inode() which does 715 * a lockless check and we rely on seeing the dirty bit */ 716 smp_mb(); 717 if (buffer_dirty(bh) || buffer_locked(bh)) { 718 list_add(&bh->b_assoc_buffers, &tmp); 719 bh->b_assoc_map = mapping; 720 if (buffer_dirty(bh)) { 721 get_bh(bh); 722 spin_unlock(lock); 723 /* 724 * Ensure any pending I/O completes so that 725 * write_dirty_buffer() actually writes the 726 * current contents - it is a noop if I/O is 727 * still in flight on potentially older 728 * contents. 729 */ 730 write_dirty_buffer(bh, REQ_SYNC); 731 732 /* 733 * Kick off IO for the previous mapping. Note 734 * that we will not run the very last mapping, 735 * wait_on_buffer() will do that for us 736 * through sync_buffer(). 737 */ 738 brelse(bh); 739 spin_lock(lock); 740 } 741 } 742 } 743 744 spin_unlock(lock); 745 blk_finish_plug(&plug); 746 spin_lock(lock); 747 748 while (!list_empty(&tmp)) { 749 bh = BH_ENTRY(tmp.prev); 750 get_bh(bh); 751 mapping = bh->b_assoc_map; 752 __remove_assoc_queue(bh); 753 /* Avoid race with mark_buffer_dirty_inode() which does 754 * a lockless check and we rely on seeing the dirty bit */ 755 smp_mb(); 756 if (buffer_dirty(bh)) { 757 list_add(&bh->b_assoc_buffers, 758 &mapping->private_list); 759 bh->b_assoc_map = mapping; 760 } 761 spin_unlock(lock); 762 wait_on_buffer(bh); 763 if (!buffer_uptodate(bh)) 764 err = -EIO; 765 brelse(bh); 766 spin_lock(lock); 767 } 768 769 spin_unlock(lock); 770 err2 = osync_buffers_list(lock, list); 771 if (err) 772 return err; 773 else 774 return err2; 775 } 776 777 /* 778 * Invalidate any and all dirty buffers on a given inode. We are 779 * probably unmounting the fs, but that doesn't mean we have already 780 * done a sync(). Just drop the buffers from the inode list. 781 * 782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 783 * assumes that all the buffers are against the blockdev. Not true 784 * for reiserfs. 785 */ 786 void invalidate_inode_buffers(struct inode *inode) 787 { 788 if (inode_has_buffers(inode)) { 789 struct address_space *mapping = &inode->i_data; 790 struct list_head *list = &mapping->private_list; 791 struct address_space *buffer_mapping = mapping->private_data; 792 793 spin_lock(&buffer_mapping->private_lock); 794 while (!list_empty(list)) 795 __remove_assoc_queue(BH_ENTRY(list->next)); 796 spin_unlock(&buffer_mapping->private_lock); 797 } 798 } 799 EXPORT_SYMBOL(invalidate_inode_buffers); 800 801 /* 802 * Remove any clean buffers from the inode's buffer list. This is called 803 * when we're trying to free the inode itself. Those buffers can pin it. 804 * 805 * Returns true if all buffers were removed. 806 */ 807 int remove_inode_buffers(struct inode *inode) 808 { 809 int ret = 1; 810 811 if (inode_has_buffers(inode)) { 812 struct address_space *mapping = &inode->i_data; 813 struct list_head *list = &mapping->private_list; 814 struct address_space *buffer_mapping = mapping->private_data; 815 816 spin_lock(&buffer_mapping->private_lock); 817 while (!list_empty(list)) { 818 struct buffer_head *bh = BH_ENTRY(list->next); 819 if (buffer_dirty(bh)) { 820 ret = 0; 821 break; 822 } 823 __remove_assoc_queue(bh); 824 } 825 spin_unlock(&buffer_mapping->private_lock); 826 } 827 return ret; 828 } 829 830 /* 831 * Create the appropriate buffers when given a page for data area and 832 * the size of each buffer.. Use the bh->b_this_page linked list to 833 * follow the buffers created. Return NULL if unable to create more 834 * buffers. 835 * 836 * The retry flag is used to differentiate async IO (paging, swapping) 837 * which may not fail from ordinary buffer allocations. 838 */ 839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 840 bool retry) 841 { 842 struct buffer_head *bh, *head; 843 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 844 long offset; 845 struct mem_cgroup *memcg, *old_memcg; 846 847 if (retry) 848 gfp |= __GFP_NOFAIL; 849 850 /* The page lock pins the memcg */ 851 memcg = page_memcg(page); 852 old_memcg = set_active_memcg(memcg); 853 854 head = NULL; 855 offset = PAGE_SIZE; 856 while ((offset -= size) >= 0) { 857 bh = alloc_buffer_head(gfp); 858 if (!bh) 859 goto no_grow; 860 861 bh->b_this_page = head; 862 bh->b_blocknr = -1; 863 head = bh; 864 865 bh->b_size = size; 866 867 /* Link the buffer to its page */ 868 set_bh_page(bh, page, offset); 869 } 870 out: 871 set_active_memcg(old_memcg); 872 return head; 873 /* 874 * In case anything failed, we just free everything we got. 875 */ 876 no_grow: 877 if (head) { 878 do { 879 bh = head; 880 head = head->b_this_page; 881 free_buffer_head(bh); 882 } while (head); 883 } 884 885 goto out; 886 } 887 EXPORT_SYMBOL_GPL(alloc_page_buffers); 888 889 static inline void 890 link_dev_buffers(struct page *page, struct buffer_head *head) 891 { 892 struct buffer_head *bh, *tail; 893 894 bh = head; 895 do { 896 tail = bh; 897 bh = bh->b_this_page; 898 } while (bh); 899 tail->b_this_page = head; 900 attach_page_private(page, head); 901 } 902 903 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 904 { 905 sector_t retval = ~((sector_t)0); 906 loff_t sz = i_size_read(bdev->bd_inode); 907 908 if (sz) { 909 unsigned int sizebits = blksize_bits(size); 910 retval = (sz >> sizebits); 911 } 912 return retval; 913 } 914 915 /* 916 * Initialise the state of a blockdev page's buffers. 917 */ 918 static sector_t 919 init_page_buffers(struct page *page, struct block_device *bdev, 920 sector_t block, int size) 921 { 922 struct buffer_head *head = page_buffers(page); 923 struct buffer_head *bh = head; 924 int uptodate = PageUptodate(page); 925 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 926 927 do { 928 if (!buffer_mapped(bh)) { 929 bh->b_end_io = NULL; 930 bh->b_private = NULL; 931 bh->b_bdev = bdev; 932 bh->b_blocknr = block; 933 if (uptodate) 934 set_buffer_uptodate(bh); 935 if (block < end_block) 936 set_buffer_mapped(bh); 937 } 938 block++; 939 bh = bh->b_this_page; 940 } while (bh != head); 941 942 /* 943 * Caller needs to validate requested block against end of device. 944 */ 945 return end_block; 946 } 947 948 /* 949 * Create the page-cache page that contains the requested block. 950 * 951 * This is used purely for blockdev mappings. 952 */ 953 static int 954 grow_dev_page(struct block_device *bdev, sector_t block, 955 pgoff_t index, int size, int sizebits, gfp_t gfp) 956 { 957 struct inode *inode = bdev->bd_inode; 958 struct page *page; 959 struct buffer_head *bh; 960 sector_t end_block; 961 int ret = 0; 962 gfp_t gfp_mask; 963 964 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 965 966 /* 967 * XXX: __getblk_slow() can not really deal with failure and 968 * will endlessly loop on improvised global reclaim. Prefer 969 * looping in the allocator rather than here, at least that 970 * code knows what it's doing. 971 */ 972 gfp_mask |= __GFP_NOFAIL; 973 974 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 975 976 BUG_ON(!PageLocked(page)); 977 978 if (page_has_buffers(page)) { 979 bh = page_buffers(page); 980 if (bh->b_size == size) { 981 end_block = init_page_buffers(page, bdev, 982 (sector_t)index << sizebits, 983 size); 984 goto done; 985 } 986 if (!try_to_free_buffers(page)) 987 goto failed; 988 } 989 990 /* 991 * Allocate some buffers for this page 992 */ 993 bh = alloc_page_buffers(page, size, true); 994 995 /* 996 * Link the page to the buffers and initialise them. Take the 997 * lock to be atomic wrt __find_get_block(), which does not 998 * run under the page lock. 999 */ 1000 spin_lock(&inode->i_mapping->private_lock); 1001 link_dev_buffers(page, bh); 1002 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1003 size); 1004 spin_unlock(&inode->i_mapping->private_lock); 1005 done: 1006 ret = (block < end_block) ? 1 : -ENXIO; 1007 failed: 1008 unlock_page(page); 1009 put_page(page); 1010 return ret; 1011 } 1012 1013 /* 1014 * Create buffers for the specified block device block's page. If 1015 * that page was dirty, the buffers are set dirty also. 1016 */ 1017 static int 1018 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1019 { 1020 pgoff_t index; 1021 int sizebits; 1022 1023 sizebits = -1; 1024 do { 1025 sizebits++; 1026 } while ((size << sizebits) < PAGE_SIZE); 1027 1028 index = block >> sizebits; 1029 1030 /* 1031 * Check for a block which wants to lie outside our maximum possible 1032 * pagecache index. (this comparison is done using sector_t types). 1033 */ 1034 if (unlikely(index != block >> sizebits)) { 1035 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1036 "device %pg\n", 1037 __func__, (unsigned long long)block, 1038 bdev); 1039 return -EIO; 1040 } 1041 1042 /* Create a page with the proper size buffers.. */ 1043 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1044 } 1045 1046 static struct buffer_head * 1047 __getblk_slow(struct block_device *bdev, sector_t block, 1048 unsigned size, gfp_t gfp) 1049 { 1050 /* Size must be multiple of hard sectorsize */ 1051 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1052 (size < 512 || size > PAGE_SIZE))) { 1053 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1054 size); 1055 printk(KERN_ERR "logical block size: %d\n", 1056 bdev_logical_block_size(bdev)); 1057 1058 dump_stack(); 1059 return NULL; 1060 } 1061 1062 for (;;) { 1063 struct buffer_head *bh; 1064 int ret; 1065 1066 bh = __find_get_block(bdev, block, size); 1067 if (bh) 1068 return bh; 1069 1070 ret = grow_buffers(bdev, block, size, gfp); 1071 if (ret < 0) 1072 return NULL; 1073 } 1074 } 1075 1076 /* 1077 * The relationship between dirty buffers and dirty pages: 1078 * 1079 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1080 * the page is tagged dirty in the page cache. 1081 * 1082 * At all times, the dirtiness of the buffers represents the dirtiness of 1083 * subsections of the page. If the page has buffers, the page dirty bit is 1084 * merely a hint about the true dirty state. 1085 * 1086 * When a page is set dirty in its entirety, all its buffers are marked dirty 1087 * (if the page has buffers). 1088 * 1089 * When a buffer is marked dirty, its page is dirtied, but the page's other 1090 * buffers are not. 1091 * 1092 * Also. When blockdev buffers are explicitly read with bread(), they 1093 * individually become uptodate. But their backing page remains not 1094 * uptodate - even if all of its buffers are uptodate. A subsequent 1095 * block_read_full_page() against that page will discover all the uptodate 1096 * buffers, will set the page uptodate and will perform no I/O. 1097 */ 1098 1099 /** 1100 * mark_buffer_dirty - mark a buffer_head as needing writeout 1101 * @bh: the buffer_head to mark dirty 1102 * 1103 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1104 * its backing page dirty, then tag the page as dirty in the page cache 1105 * and then attach the address_space's inode to its superblock's dirty 1106 * inode list. 1107 * 1108 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1109 * i_pages lock and mapping->host->i_lock. 1110 */ 1111 void mark_buffer_dirty(struct buffer_head *bh) 1112 { 1113 WARN_ON_ONCE(!buffer_uptodate(bh)); 1114 1115 trace_block_dirty_buffer(bh); 1116 1117 /* 1118 * Very *carefully* optimize the it-is-already-dirty case. 1119 * 1120 * Don't let the final "is it dirty" escape to before we 1121 * perhaps modified the buffer. 1122 */ 1123 if (buffer_dirty(bh)) { 1124 smp_mb(); 1125 if (buffer_dirty(bh)) 1126 return; 1127 } 1128 1129 if (!test_set_buffer_dirty(bh)) { 1130 struct page *page = bh->b_page; 1131 struct address_space *mapping = NULL; 1132 1133 lock_page_memcg(page); 1134 if (!TestSetPageDirty(page)) { 1135 mapping = page_mapping(page); 1136 if (mapping) 1137 __set_page_dirty(page, mapping, 0); 1138 } 1139 unlock_page_memcg(page); 1140 if (mapping) 1141 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1142 } 1143 } 1144 EXPORT_SYMBOL(mark_buffer_dirty); 1145 1146 void mark_buffer_write_io_error(struct buffer_head *bh) 1147 { 1148 struct super_block *sb; 1149 1150 set_buffer_write_io_error(bh); 1151 /* FIXME: do we need to set this in both places? */ 1152 if (bh->b_page && bh->b_page->mapping) 1153 mapping_set_error(bh->b_page->mapping, -EIO); 1154 if (bh->b_assoc_map) 1155 mapping_set_error(bh->b_assoc_map, -EIO); 1156 rcu_read_lock(); 1157 sb = READ_ONCE(bh->b_bdev->bd_super); 1158 if (sb) 1159 errseq_set(&sb->s_wb_err, -EIO); 1160 rcu_read_unlock(); 1161 } 1162 EXPORT_SYMBOL(mark_buffer_write_io_error); 1163 1164 /* 1165 * Decrement a buffer_head's reference count. If all buffers against a page 1166 * have zero reference count, are clean and unlocked, and if the page is clean 1167 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1168 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1169 * a page but it ends up not being freed, and buffers may later be reattached). 1170 */ 1171 void __brelse(struct buffer_head * buf) 1172 { 1173 if (atomic_read(&buf->b_count)) { 1174 put_bh(buf); 1175 return; 1176 } 1177 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1178 } 1179 EXPORT_SYMBOL(__brelse); 1180 1181 /* 1182 * bforget() is like brelse(), except it discards any 1183 * potentially dirty data. 1184 */ 1185 void __bforget(struct buffer_head *bh) 1186 { 1187 clear_buffer_dirty(bh); 1188 if (bh->b_assoc_map) { 1189 struct address_space *buffer_mapping = bh->b_page->mapping; 1190 1191 spin_lock(&buffer_mapping->private_lock); 1192 list_del_init(&bh->b_assoc_buffers); 1193 bh->b_assoc_map = NULL; 1194 spin_unlock(&buffer_mapping->private_lock); 1195 } 1196 __brelse(bh); 1197 } 1198 EXPORT_SYMBOL(__bforget); 1199 1200 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1201 { 1202 lock_buffer(bh); 1203 if (buffer_uptodate(bh)) { 1204 unlock_buffer(bh); 1205 return bh; 1206 } else { 1207 get_bh(bh); 1208 bh->b_end_io = end_buffer_read_sync; 1209 submit_bh(REQ_OP_READ, 0, bh); 1210 wait_on_buffer(bh); 1211 if (buffer_uptodate(bh)) 1212 return bh; 1213 } 1214 brelse(bh); 1215 return NULL; 1216 } 1217 1218 /* 1219 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1220 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1221 * refcount elevated by one when they're in an LRU. A buffer can only appear 1222 * once in a particular CPU's LRU. A single buffer can be present in multiple 1223 * CPU's LRUs at the same time. 1224 * 1225 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1226 * sb_find_get_block(). 1227 * 1228 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1229 * a local interrupt disable for that. 1230 */ 1231 1232 #define BH_LRU_SIZE 16 1233 1234 struct bh_lru { 1235 struct buffer_head *bhs[BH_LRU_SIZE]; 1236 }; 1237 1238 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1239 1240 #ifdef CONFIG_SMP 1241 #define bh_lru_lock() local_irq_disable() 1242 #define bh_lru_unlock() local_irq_enable() 1243 #else 1244 #define bh_lru_lock() preempt_disable() 1245 #define bh_lru_unlock() preempt_enable() 1246 #endif 1247 1248 static inline void check_irqs_on(void) 1249 { 1250 #ifdef irqs_disabled 1251 BUG_ON(irqs_disabled()); 1252 #endif 1253 } 1254 1255 /* 1256 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1257 * inserted at the front, and the buffer_head at the back if any is evicted. 1258 * Or, if already in the LRU it is moved to the front. 1259 */ 1260 static void bh_lru_install(struct buffer_head *bh) 1261 { 1262 struct buffer_head *evictee = bh; 1263 struct bh_lru *b; 1264 int i; 1265 1266 check_irqs_on(); 1267 /* 1268 * the refcount of buffer_head in bh_lru prevents dropping the 1269 * attached page(i.e., try_to_free_buffers) so it could cause 1270 * failing page migration. 1271 * Skip putting upcoming bh into bh_lru until migration is done. 1272 */ 1273 if (lru_cache_disabled()) 1274 return; 1275 1276 bh_lru_lock(); 1277 1278 b = this_cpu_ptr(&bh_lrus); 1279 for (i = 0; i < BH_LRU_SIZE; i++) { 1280 swap(evictee, b->bhs[i]); 1281 if (evictee == bh) { 1282 bh_lru_unlock(); 1283 return; 1284 } 1285 } 1286 1287 get_bh(bh); 1288 bh_lru_unlock(); 1289 brelse(evictee); 1290 } 1291 1292 /* 1293 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1294 */ 1295 static struct buffer_head * 1296 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1297 { 1298 struct buffer_head *ret = NULL; 1299 unsigned int i; 1300 1301 check_irqs_on(); 1302 bh_lru_lock(); 1303 for (i = 0; i < BH_LRU_SIZE; i++) { 1304 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1305 1306 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1307 bh->b_size == size) { 1308 if (i) { 1309 while (i) { 1310 __this_cpu_write(bh_lrus.bhs[i], 1311 __this_cpu_read(bh_lrus.bhs[i - 1])); 1312 i--; 1313 } 1314 __this_cpu_write(bh_lrus.bhs[0], bh); 1315 } 1316 get_bh(bh); 1317 ret = bh; 1318 break; 1319 } 1320 } 1321 bh_lru_unlock(); 1322 return ret; 1323 } 1324 1325 /* 1326 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1327 * it in the LRU and mark it as accessed. If it is not present then return 1328 * NULL 1329 */ 1330 struct buffer_head * 1331 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1332 { 1333 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1334 1335 if (bh == NULL) { 1336 /* __find_get_block_slow will mark the page accessed */ 1337 bh = __find_get_block_slow(bdev, block); 1338 if (bh) 1339 bh_lru_install(bh); 1340 } else 1341 touch_buffer(bh); 1342 1343 return bh; 1344 } 1345 EXPORT_SYMBOL(__find_get_block); 1346 1347 /* 1348 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1349 * which corresponds to the passed block_device, block and size. The 1350 * returned buffer has its reference count incremented. 1351 * 1352 * __getblk_gfp() will lock up the machine if grow_dev_page's 1353 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1354 */ 1355 struct buffer_head * 1356 __getblk_gfp(struct block_device *bdev, sector_t block, 1357 unsigned size, gfp_t gfp) 1358 { 1359 struct buffer_head *bh = __find_get_block(bdev, block, size); 1360 1361 might_sleep(); 1362 if (bh == NULL) 1363 bh = __getblk_slow(bdev, block, size, gfp); 1364 return bh; 1365 } 1366 EXPORT_SYMBOL(__getblk_gfp); 1367 1368 /* 1369 * Do async read-ahead on a buffer.. 1370 */ 1371 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1372 { 1373 struct buffer_head *bh = __getblk(bdev, block, size); 1374 if (likely(bh)) { 1375 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1376 brelse(bh); 1377 } 1378 } 1379 EXPORT_SYMBOL(__breadahead); 1380 1381 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size, 1382 gfp_t gfp) 1383 { 1384 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1385 if (likely(bh)) { 1386 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1387 brelse(bh); 1388 } 1389 } 1390 EXPORT_SYMBOL(__breadahead_gfp); 1391 1392 /** 1393 * __bread_gfp() - reads a specified block and returns the bh 1394 * @bdev: the block_device to read from 1395 * @block: number of block 1396 * @size: size (in bytes) to read 1397 * @gfp: page allocation flag 1398 * 1399 * Reads a specified block, and returns buffer head that contains it. 1400 * The page cache can be allocated from non-movable area 1401 * not to prevent page migration if you set gfp to zero. 1402 * It returns NULL if the block was unreadable. 1403 */ 1404 struct buffer_head * 1405 __bread_gfp(struct block_device *bdev, sector_t block, 1406 unsigned size, gfp_t gfp) 1407 { 1408 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1409 1410 if (likely(bh) && !buffer_uptodate(bh)) 1411 bh = __bread_slow(bh); 1412 return bh; 1413 } 1414 EXPORT_SYMBOL(__bread_gfp); 1415 1416 static void __invalidate_bh_lrus(struct bh_lru *b) 1417 { 1418 int i; 1419 1420 for (i = 0; i < BH_LRU_SIZE; i++) { 1421 brelse(b->bhs[i]); 1422 b->bhs[i] = NULL; 1423 } 1424 } 1425 /* 1426 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1427 * This doesn't race because it runs in each cpu either in irq 1428 * or with preempt disabled. 1429 */ 1430 static void invalidate_bh_lru(void *arg) 1431 { 1432 struct bh_lru *b = &get_cpu_var(bh_lrus); 1433 1434 __invalidate_bh_lrus(b); 1435 put_cpu_var(bh_lrus); 1436 } 1437 1438 bool has_bh_in_lru(int cpu, void *dummy) 1439 { 1440 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1441 int i; 1442 1443 for (i = 0; i < BH_LRU_SIZE; i++) { 1444 if (b->bhs[i]) 1445 return true; 1446 } 1447 1448 return false; 1449 } 1450 1451 void invalidate_bh_lrus(void) 1452 { 1453 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1454 } 1455 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1456 1457 void invalidate_bh_lrus_cpu(int cpu) 1458 { 1459 struct bh_lru *b; 1460 1461 bh_lru_lock(); 1462 b = per_cpu_ptr(&bh_lrus, cpu); 1463 __invalidate_bh_lrus(b); 1464 bh_lru_unlock(); 1465 } 1466 1467 void set_bh_page(struct buffer_head *bh, 1468 struct page *page, unsigned long offset) 1469 { 1470 bh->b_page = page; 1471 BUG_ON(offset >= PAGE_SIZE); 1472 if (PageHighMem(page)) 1473 /* 1474 * This catches illegal uses and preserves the offset: 1475 */ 1476 bh->b_data = (char *)(0 + offset); 1477 else 1478 bh->b_data = page_address(page) + offset; 1479 } 1480 EXPORT_SYMBOL(set_bh_page); 1481 1482 /* 1483 * Called when truncating a buffer on a page completely. 1484 */ 1485 1486 /* Bits that are cleared during an invalidate */ 1487 #define BUFFER_FLAGS_DISCARD \ 1488 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1489 1 << BH_Delay | 1 << BH_Unwritten) 1490 1491 static void discard_buffer(struct buffer_head * bh) 1492 { 1493 unsigned long b_state, b_state_old; 1494 1495 lock_buffer(bh); 1496 clear_buffer_dirty(bh); 1497 bh->b_bdev = NULL; 1498 b_state = bh->b_state; 1499 for (;;) { 1500 b_state_old = cmpxchg(&bh->b_state, b_state, 1501 (b_state & ~BUFFER_FLAGS_DISCARD)); 1502 if (b_state_old == b_state) 1503 break; 1504 b_state = b_state_old; 1505 } 1506 unlock_buffer(bh); 1507 } 1508 1509 /** 1510 * block_invalidatepage - invalidate part or all of a buffer-backed page 1511 * 1512 * @page: the page which is affected 1513 * @offset: start of the range to invalidate 1514 * @length: length of the range to invalidate 1515 * 1516 * block_invalidatepage() is called when all or part of the page has become 1517 * invalidated by a truncate operation. 1518 * 1519 * block_invalidatepage() does not have to release all buffers, but it must 1520 * ensure that no dirty buffer is left outside @offset and that no I/O 1521 * is underway against any of the blocks which are outside the truncation 1522 * point. Because the caller is about to free (and possibly reuse) those 1523 * blocks on-disk. 1524 */ 1525 void block_invalidatepage(struct page *page, unsigned int offset, 1526 unsigned int length) 1527 { 1528 struct buffer_head *head, *bh, *next; 1529 unsigned int curr_off = 0; 1530 unsigned int stop = length + offset; 1531 1532 BUG_ON(!PageLocked(page)); 1533 if (!page_has_buffers(page)) 1534 goto out; 1535 1536 /* 1537 * Check for overflow 1538 */ 1539 BUG_ON(stop > PAGE_SIZE || stop < length); 1540 1541 head = page_buffers(page); 1542 bh = head; 1543 do { 1544 unsigned int next_off = curr_off + bh->b_size; 1545 next = bh->b_this_page; 1546 1547 /* 1548 * Are we still fully in range ? 1549 */ 1550 if (next_off > stop) 1551 goto out; 1552 1553 /* 1554 * is this block fully invalidated? 1555 */ 1556 if (offset <= curr_off) 1557 discard_buffer(bh); 1558 curr_off = next_off; 1559 bh = next; 1560 } while (bh != head); 1561 1562 /* 1563 * We release buffers only if the entire page is being invalidated. 1564 * The get_block cached value has been unconditionally invalidated, 1565 * so real IO is not possible anymore. 1566 */ 1567 if (length == PAGE_SIZE) 1568 try_to_release_page(page, 0); 1569 out: 1570 return; 1571 } 1572 EXPORT_SYMBOL(block_invalidatepage); 1573 1574 1575 /* 1576 * We attach and possibly dirty the buffers atomically wrt 1577 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1578 * is already excluded via the page lock. 1579 */ 1580 void create_empty_buffers(struct page *page, 1581 unsigned long blocksize, unsigned long b_state) 1582 { 1583 struct buffer_head *bh, *head, *tail; 1584 1585 head = alloc_page_buffers(page, blocksize, true); 1586 bh = head; 1587 do { 1588 bh->b_state |= b_state; 1589 tail = bh; 1590 bh = bh->b_this_page; 1591 } while (bh); 1592 tail->b_this_page = head; 1593 1594 spin_lock(&page->mapping->private_lock); 1595 if (PageUptodate(page) || PageDirty(page)) { 1596 bh = head; 1597 do { 1598 if (PageDirty(page)) 1599 set_buffer_dirty(bh); 1600 if (PageUptodate(page)) 1601 set_buffer_uptodate(bh); 1602 bh = bh->b_this_page; 1603 } while (bh != head); 1604 } 1605 attach_page_private(page, head); 1606 spin_unlock(&page->mapping->private_lock); 1607 } 1608 EXPORT_SYMBOL(create_empty_buffers); 1609 1610 /** 1611 * clean_bdev_aliases: clean a range of buffers in block device 1612 * @bdev: Block device to clean buffers in 1613 * @block: Start of a range of blocks to clean 1614 * @len: Number of blocks to clean 1615 * 1616 * We are taking a range of blocks for data and we don't want writeback of any 1617 * buffer-cache aliases starting from return from this function and until the 1618 * moment when something will explicitly mark the buffer dirty (hopefully that 1619 * will not happen until we will free that block ;-) We don't even need to mark 1620 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1621 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1622 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1623 * would confuse anyone who might pick it with bread() afterwards... 1624 * 1625 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1626 * writeout I/O going on against recently-freed buffers. We don't wait on that 1627 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1628 * need to. That happens here. 1629 */ 1630 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1631 { 1632 struct inode *bd_inode = bdev->bd_inode; 1633 struct address_space *bd_mapping = bd_inode->i_mapping; 1634 struct pagevec pvec; 1635 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1636 pgoff_t end; 1637 int i, count; 1638 struct buffer_head *bh; 1639 struct buffer_head *head; 1640 1641 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1642 pagevec_init(&pvec); 1643 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1644 count = pagevec_count(&pvec); 1645 for (i = 0; i < count; i++) { 1646 struct page *page = pvec.pages[i]; 1647 1648 if (!page_has_buffers(page)) 1649 continue; 1650 /* 1651 * We use page lock instead of bd_mapping->private_lock 1652 * to pin buffers here since we can afford to sleep and 1653 * it scales better than a global spinlock lock. 1654 */ 1655 lock_page(page); 1656 /* Recheck when the page is locked which pins bhs */ 1657 if (!page_has_buffers(page)) 1658 goto unlock_page; 1659 head = page_buffers(page); 1660 bh = head; 1661 do { 1662 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1663 goto next; 1664 if (bh->b_blocknr >= block + len) 1665 break; 1666 clear_buffer_dirty(bh); 1667 wait_on_buffer(bh); 1668 clear_buffer_req(bh); 1669 next: 1670 bh = bh->b_this_page; 1671 } while (bh != head); 1672 unlock_page: 1673 unlock_page(page); 1674 } 1675 pagevec_release(&pvec); 1676 cond_resched(); 1677 /* End of range already reached? */ 1678 if (index > end || !index) 1679 break; 1680 } 1681 } 1682 EXPORT_SYMBOL(clean_bdev_aliases); 1683 1684 /* 1685 * Size is a power-of-two in the range 512..PAGE_SIZE, 1686 * and the case we care about most is PAGE_SIZE. 1687 * 1688 * So this *could* possibly be written with those 1689 * constraints in mind (relevant mostly if some 1690 * architecture has a slow bit-scan instruction) 1691 */ 1692 static inline int block_size_bits(unsigned int blocksize) 1693 { 1694 return ilog2(blocksize); 1695 } 1696 1697 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1698 { 1699 BUG_ON(!PageLocked(page)); 1700 1701 if (!page_has_buffers(page)) 1702 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1703 b_state); 1704 return page_buffers(page); 1705 } 1706 1707 /* 1708 * NOTE! All mapped/uptodate combinations are valid: 1709 * 1710 * Mapped Uptodate Meaning 1711 * 1712 * No No "unknown" - must do get_block() 1713 * No Yes "hole" - zero-filled 1714 * Yes No "allocated" - allocated on disk, not read in 1715 * Yes Yes "valid" - allocated and up-to-date in memory. 1716 * 1717 * "Dirty" is valid only with the last case (mapped+uptodate). 1718 */ 1719 1720 /* 1721 * While block_write_full_page is writing back the dirty buffers under 1722 * the page lock, whoever dirtied the buffers may decide to clean them 1723 * again at any time. We handle that by only looking at the buffer 1724 * state inside lock_buffer(). 1725 * 1726 * If block_write_full_page() is called for regular writeback 1727 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1728 * locked buffer. This only can happen if someone has written the buffer 1729 * directly, with submit_bh(). At the address_space level PageWriteback 1730 * prevents this contention from occurring. 1731 * 1732 * If block_write_full_page() is called with wbc->sync_mode == 1733 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1734 * causes the writes to be flagged as synchronous writes. 1735 */ 1736 int __block_write_full_page(struct inode *inode, struct page *page, 1737 get_block_t *get_block, struct writeback_control *wbc, 1738 bh_end_io_t *handler) 1739 { 1740 int err; 1741 sector_t block; 1742 sector_t last_block; 1743 struct buffer_head *bh, *head; 1744 unsigned int blocksize, bbits; 1745 int nr_underway = 0; 1746 int write_flags = wbc_to_write_flags(wbc); 1747 1748 head = create_page_buffers(page, inode, 1749 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1750 1751 /* 1752 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1753 * here, and the (potentially unmapped) buffers may become dirty at 1754 * any time. If a buffer becomes dirty here after we've inspected it 1755 * then we just miss that fact, and the page stays dirty. 1756 * 1757 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1758 * handle that here by just cleaning them. 1759 */ 1760 1761 bh = head; 1762 blocksize = bh->b_size; 1763 bbits = block_size_bits(blocksize); 1764 1765 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1766 last_block = (i_size_read(inode) - 1) >> bbits; 1767 1768 /* 1769 * Get all the dirty buffers mapped to disk addresses and 1770 * handle any aliases from the underlying blockdev's mapping. 1771 */ 1772 do { 1773 if (block > last_block) { 1774 /* 1775 * mapped buffers outside i_size will occur, because 1776 * this page can be outside i_size when there is a 1777 * truncate in progress. 1778 */ 1779 /* 1780 * The buffer was zeroed by block_write_full_page() 1781 */ 1782 clear_buffer_dirty(bh); 1783 set_buffer_uptodate(bh); 1784 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1785 buffer_dirty(bh)) { 1786 WARN_ON(bh->b_size != blocksize); 1787 err = get_block(inode, block, bh, 1); 1788 if (err) 1789 goto recover; 1790 clear_buffer_delay(bh); 1791 if (buffer_new(bh)) { 1792 /* blockdev mappings never come here */ 1793 clear_buffer_new(bh); 1794 clean_bdev_bh_alias(bh); 1795 } 1796 } 1797 bh = bh->b_this_page; 1798 block++; 1799 } while (bh != head); 1800 1801 do { 1802 if (!buffer_mapped(bh)) 1803 continue; 1804 /* 1805 * If it's a fully non-blocking write attempt and we cannot 1806 * lock the buffer then redirty the page. Note that this can 1807 * potentially cause a busy-wait loop from writeback threads 1808 * and kswapd activity, but those code paths have their own 1809 * higher-level throttling. 1810 */ 1811 if (wbc->sync_mode != WB_SYNC_NONE) { 1812 lock_buffer(bh); 1813 } else if (!trylock_buffer(bh)) { 1814 redirty_page_for_writepage(wbc, page); 1815 continue; 1816 } 1817 if (test_clear_buffer_dirty(bh)) { 1818 mark_buffer_async_write_endio(bh, handler); 1819 } else { 1820 unlock_buffer(bh); 1821 } 1822 } while ((bh = bh->b_this_page) != head); 1823 1824 /* 1825 * The page and its buffers are protected by PageWriteback(), so we can 1826 * drop the bh refcounts early. 1827 */ 1828 BUG_ON(PageWriteback(page)); 1829 set_page_writeback(page); 1830 1831 do { 1832 struct buffer_head *next = bh->b_this_page; 1833 if (buffer_async_write(bh)) { 1834 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1835 inode->i_write_hint, wbc); 1836 nr_underway++; 1837 } 1838 bh = next; 1839 } while (bh != head); 1840 unlock_page(page); 1841 1842 err = 0; 1843 done: 1844 if (nr_underway == 0) { 1845 /* 1846 * The page was marked dirty, but the buffers were 1847 * clean. Someone wrote them back by hand with 1848 * ll_rw_block/submit_bh. A rare case. 1849 */ 1850 end_page_writeback(page); 1851 1852 /* 1853 * The page and buffer_heads can be released at any time from 1854 * here on. 1855 */ 1856 } 1857 return err; 1858 1859 recover: 1860 /* 1861 * ENOSPC, or some other error. We may already have added some 1862 * blocks to the file, so we need to write these out to avoid 1863 * exposing stale data. 1864 * The page is currently locked and not marked for writeback 1865 */ 1866 bh = head; 1867 /* Recovery: lock and submit the mapped buffers */ 1868 do { 1869 if (buffer_mapped(bh) && buffer_dirty(bh) && 1870 !buffer_delay(bh)) { 1871 lock_buffer(bh); 1872 mark_buffer_async_write_endio(bh, handler); 1873 } else { 1874 /* 1875 * The buffer may have been set dirty during 1876 * attachment to a dirty page. 1877 */ 1878 clear_buffer_dirty(bh); 1879 } 1880 } while ((bh = bh->b_this_page) != head); 1881 SetPageError(page); 1882 BUG_ON(PageWriteback(page)); 1883 mapping_set_error(page->mapping, err); 1884 set_page_writeback(page); 1885 do { 1886 struct buffer_head *next = bh->b_this_page; 1887 if (buffer_async_write(bh)) { 1888 clear_buffer_dirty(bh); 1889 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1890 inode->i_write_hint, wbc); 1891 nr_underway++; 1892 } 1893 bh = next; 1894 } while (bh != head); 1895 unlock_page(page); 1896 goto done; 1897 } 1898 EXPORT_SYMBOL(__block_write_full_page); 1899 1900 /* 1901 * If a page has any new buffers, zero them out here, and mark them uptodate 1902 * and dirty so they'll be written out (in order to prevent uninitialised 1903 * block data from leaking). And clear the new bit. 1904 */ 1905 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1906 { 1907 unsigned int block_start, block_end; 1908 struct buffer_head *head, *bh; 1909 1910 BUG_ON(!PageLocked(page)); 1911 if (!page_has_buffers(page)) 1912 return; 1913 1914 bh = head = page_buffers(page); 1915 block_start = 0; 1916 do { 1917 block_end = block_start + bh->b_size; 1918 1919 if (buffer_new(bh)) { 1920 if (block_end > from && block_start < to) { 1921 if (!PageUptodate(page)) { 1922 unsigned start, size; 1923 1924 start = max(from, block_start); 1925 size = min(to, block_end) - start; 1926 1927 zero_user(page, start, size); 1928 set_buffer_uptodate(bh); 1929 } 1930 1931 clear_buffer_new(bh); 1932 mark_buffer_dirty(bh); 1933 } 1934 } 1935 1936 block_start = block_end; 1937 bh = bh->b_this_page; 1938 } while (bh != head); 1939 } 1940 EXPORT_SYMBOL(page_zero_new_buffers); 1941 1942 static void 1943 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1944 struct iomap *iomap) 1945 { 1946 loff_t offset = block << inode->i_blkbits; 1947 1948 bh->b_bdev = iomap->bdev; 1949 1950 /* 1951 * Block points to offset in file we need to map, iomap contains 1952 * the offset at which the map starts. If the map ends before the 1953 * current block, then do not map the buffer and let the caller 1954 * handle it. 1955 */ 1956 BUG_ON(offset >= iomap->offset + iomap->length); 1957 1958 switch (iomap->type) { 1959 case IOMAP_HOLE: 1960 /* 1961 * If the buffer is not up to date or beyond the current EOF, 1962 * we need to mark it as new to ensure sub-block zeroing is 1963 * executed if necessary. 1964 */ 1965 if (!buffer_uptodate(bh) || 1966 (offset >= i_size_read(inode))) 1967 set_buffer_new(bh); 1968 break; 1969 case IOMAP_DELALLOC: 1970 if (!buffer_uptodate(bh) || 1971 (offset >= i_size_read(inode))) 1972 set_buffer_new(bh); 1973 set_buffer_uptodate(bh); 1974 set_buffer_mapped(bh); 1975 set_buffer_delay(bh); 1976 break; 1977 case IOMAP_UNWRITTEN: 1978 /* 1979 * For unwritten regions, we always need to ensure that regions 1980 * in the block we are not writing to are zeroed. Mark the 1981 * buffer as new to ensure this. 1982 */ 1983 set_buffer_new(bh); 1984 set_buffer_unwritten(bh); 1985 fallthrough; 1986 case IOMAP_MAPPED: 1987 if ((iomap->flags & IOMAP_F_NEW) || 1988 offset >= i_size_read(inode)) 1989 set_buffer_new(bh); 1990 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1991 inode->i_blkbits; 1992 set_buffer_mapped(bh); 1993 break; 1994 } 1995 } 1996 1997 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1998 get_block_t *get_block, struct iomap *iomap) 1999 { 2000 unsigned from = pos & (PAGE_SIZE - 1); 2001 unsigned to = from + len; 2002 struct inode *inode = page->mapping->host; 2003 unsigned block_start, block_end; 2004 sector_t block; 2005 int err = 0; 2006 unsigned blocksize, bbits; 2007 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2008 2009 BUG_ON(!PageLocked(page)); 2010 BUG_ON(from > PAGE_SIZE); 2011 BUG_ON(to > PAGE_SIZE); 2012 BUG_ON(from > to); 2013 2014 head = create_page_buffers(page, inode, 0); 2015 blocksize = head->b_size; 2016 bbits = block_size_bits(blocksize); 2017 2018 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 2019 2020 for(bh = head, block_start = 0; bh != head || !block_start; 2021 block++, block_start=block_end, bh = bh->b_this_page) { 2022 block_end = block_start + blocksize; 2023 if (block_end <= from || block_start >= to) { 2024 if (PageUptodate(page)) { 2025 if (!buffer_uptodate(bh)) 2026 set_buffer_uptodate(bh); 2027 } 2028 continue; 2029 } 2030 if (buffer_new(bh)) 2031 clear_buffer_new(bh); 2032 if (!buffer_mapped(bh)) { 2033 WARN_ON(bh->b_size != blocksize); 2034 if (get_block) { 2035 err = get_block(inode, block, bh, 1); 2036 if (err) 2037 break; 2038 } else { 2039 iomap_to_bh(inode, block, bh, iomap); 2040 } 2041 2042 if (buffer_new(bh)) { 2043 clean_bdev_bh_alias(bh); 2044 if (PageUptodate(page)) { 2045 clear_buffer_new(bh); 2046 set_buffer_uptodate(bh); 2047 mark_buffer_dirty(bh); 2048 continue; 2049 } 2050 if (block_end > to || block_start < from) 2051 zero_user_segments(page, 2052 to, block_end, 2053 block_start, from); 2054 continue; 2055 } 2056 } 2057 if (PageUptodate(page)) { 2058 if (!buffer_uptodate(bh)) 2059 set_buffer_uptodate(bh); 2060 continue; 2061 } 2062 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2063 !buffer_unwritten(bh) && 2064 (block_start < from || block_end > to)) { 2065 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2066 *wait_bh++=bh; 2067 } 2068 } 2069 /* 2070 * If we issued read requests - let them complete. 2071 */ 2072 while(wait_bh > wait) { 2073 wait_on_buffer(*--wait_bh); 2074 if (!buffer_uptodate(*wait_bh)) 2075 err = -EIO; 2076 } 2077 if (unlikely(err)) 2078 page_zero_new_buffers(page, from, to); 2079 return err; 2080 } 2081 2082 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2083 get_block_t *get_block) 2084 { 2085 return __block_write_begin_int(page, pos, len, get_block, NULL); 2086 } 2087 EXPORT_SYMBOL(__block_write_begin); 2088 2089 static int __block_commit_write(struct inode *inode, struct page *page, 2090 unsigned from, unsigned to) 2091 { 2092 unsigned block_start, block_end; 2093 int partial = 0; 2094 unsigned blocksize; 2095 struct buffer_head *bh, *head; 2096 2097 bh = head = page_buffers(page); 2098 blocksize = bh->b_size; 2099 2100 block_start = 0; 2101 do { 2102 block_end = block_start + blocksize; 2103 if (block_end <= from || block_start >= to) { 2104 if (!buffer_uptodate(bh)) 2105 partial = 1; 2106 } else { 2107 set_buffer_uptodate(bh); 2108 mark_buffer_dirty(bh); 2109 } 2110 if (buffer_new(bh)) 2111 clear_buffer_new(bh); 2112 2113 block_start = block_end; 2114 bh = bh->b_this_page; 2115 } while (bh != head); 2116 2117 /* 2118 * If this is a partial write which happened to make all buffers 2119 * uptodate then we can optimize away a bogus readpage() for 2120 * the next read(). Here we 'discover' whether the page went 2121 * uptodate as a result of this (potentially partial) write. 2122 */ 2123 if (!partial) 2124 SetPageUptodate(page); 2125 return 0; 2126 } 2127 2128 /* 2129 * block_write_begin takes care of the basic task of block allocation and 2130 * bringing partial write blocks uptodate first. 2131 * 2132 * The filesystem needs to handle block truncation upon failure. 2133 */ 2134 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2135 unsigned flags, struct page **pagep, get_block_t *get_block) 2136 { 2137 pgoff_t index = pos >> PAGE_SHIFT; 2138 struct page *page; 2139 int status; 2140 2141 page = grab_cache_page_write_begin(mapping, index, flags); 2142 if (!page) 2143 return -ENOMEM; 2144 2145 status = __block_write_begin(page, pos, len, get_block); 2146 if (unlikely(status)) { 2147 unlock_page(page); 2148 put_page(page); 2149 page = NULL; 2150 } 2151 2152 *pagep = page; 2153 return status; 2154 } 2155 EXPORT_SYMBOL(block_write_begin); 2156 2157 int block_write_end(struct file *file, struct address_space *mapping, 2158 loff_t pos, unsigned len, unsigned copied, 2159 struct page *page, void *fsdata) 2160 { 2161 struct inode *inode = mapping->host; 2162 unsigned start; 2163 2164 start = pos & (PAGE_SIZE - 1); 2165 2166 if (unlikely(copied < len)) { 2167 /* 2168 * The buffers that were written will now be uptodate, so we 2169 * don't have to worry about a readpage reading them and 2170 * overwriting a partial write. However if we have encountered 2171 * a short write and only partially written into a buffer, it 2172 * will not be marked uptodate, so a readpage might come in and 2173 * destroy our partial write. 2174 * 2175 * Do the simplest thing, and just treat any short write to a 2176 * non uptodate page as a zero-length write, and force the 2177 * caller to redo the whole thing. 2178 */ 2179 if (!PageUptodate(page)) 2180 copied = 0; 2181 2182 page_zero_new_buffers(page, start+copied, start+len); 2183 } 2184 flush_dcache_page(page); 2185 2186 /* This could be a short (even 0-length) commit */ 2187 __block_commit_write(inode, page, start, start+copied); 2188 2189 return copied; 2190 } 2191 EXPORT_SYMBOL(block_write_end); 2192 2193 int generic_write_end(struct file *file, struct address_space *mapping, 2194 loff_t pos, unsigned len, unsigned copied, 2195 struct page *page, void *fsdata) 2196 { 2197 struct inode *inode = mapping->host; 2198 loff_t old_size = inode->i_size; 2199 bool i_size_changed = false; 2200 2201 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2202 2203 /* 2204 * No need to use i_size_read() here, the i_size cannot change under us 2205 * because we hold i_rwsem. 2206 * 2207 * But it's important to update i_size while still holding page lock: 2208 * page writeout could otherwise come in and zero beyond i_size. 2209 */ 2210 if (pos + copied > inode->i_size) { 2211 i_size_write(inode, pos + copied); 2212 i_size_changed = true; 2213 } 2214 2215 unlock_page(page); 2216 put_page(page); 2217 2218 if (old_size < pos) 2219 pagecache_isize_extended(inode, old_size, pos); 2220 /* 2221 * Don't mark the inode dirty under page lock. First, it unnecessarily 2222 * makes the holding time of page lock longer. Second, it forces lock 2223 * ordering of page lock and transaction start for journaling 2224 * filesystems. 2225 */ 2226 if (i_size_changed) 2227 mark_inode_dirty(inode); 2228 return copied; 2229 } 2230 EXPORT_SYMBOL(generic_write_end); 2231 2232 /* 2233 * block_is_partially_uptodate checks whether buffers within a page are 2234 * uptodate or not. 2235 * 2236 * Returns true if all buffers which correspond to a file portion 2237 * we want to read are uptodate. 2238 */ 2239 int block_is_partially_uptodate(struct page *page, unsigned long from, 2240 unsigned long count) 2241 { 2242 unsigned block_start, block_end, blocksize; 2243 unsigned to; 2244 struct buffer_head *bh, *head; 2245 int ret = 1; 2246 2247 if (!page_has_buffers(page)) 2248 return 0; 2249 2250 head = page_buffers(page); 2251 blocksize = head->b_size; 2252 to = min_t(unsigned, PAGE_SIZE - from, count); 2253 to = from + to; 2254 if (from < blocksize && to > PAGE_SIZE - blocksize) 2255 return 0; 2256 2257 bh = head; 2258 block_start = 0; 2259 do { 2260 block_end = block_start + blocksize; 2261 if (block_end > from && block_start < to) { 2262 if (!buffer_uptodate(bh)) { 2263 ret = 0; 2264 break; 2265 } 2266 if (block_end >= to) 2267 break; 2268 } 2269 block_start = block_end; 2270 bh = bh->b_this_page; 2271 } while (bh != head); 2272 2273 return ret; 2274 } 2275 EXPORT_SYMBOL(block_is_partially_uptodate); 2276 2277 /* 2278 * Generic "read page" function for block devices that have the normal 2279 * get_block functionality. This is most of the block device filesystems. 2280 * Reads the page asynchronously --- the unlock_buffer() and 2281 * set/clear_buffer_uptodate() functions propagate buffer state into the 2282 * page struct once IO has completed. 2283 */ 2284 int block_read_full_page(struct page *page, get_block_t *get_block) 2285 { 2286 struct inode *inode = page->mapping->host; 2287 sector_t iblock, lblock; 2288 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2289 unsigned int blocksize, bbits; 2290 int nr, i; 2291 int fully_mapped = 1; 2292 2293 head = create_page_buffers(page, inode, 0); 2294 blocksize = head->b_size; 2295 bbits = block_size_bits(blocksize); 2296 2297 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2298 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2299 bh = head; 2300 nr = 0; 2301 i = 0; 2302 2303 do { 2304 if (buffer_uptodate(bh)) 2305 continue; 2306 2307 if (!buffer_mapped(bh)) { 2308 int err = 0; 2309 2310 fully_mapped = 0; 2311 if (iblock < lblock) { 2312 WARN_ON(bh->b_size != blocksize); 2313 err = get_block(inode, iblock, bh, 0); 2314 if (err) 2315 SetPageError(page); 2316 } 2317 if (!buffer_mapped(bh)) { 2318 zero_user(page, i * blocksize, blocksize); 2319 if (!err) 2320 set_buffer_uptodate(bh); 2321 continue; 2322 } 2323 /* 2324 * get_block() might have updated the buffer 2325 * synchronously 2326 */ 2327 if (buffer_uptodate(bh)) 2328 continue; 2329 } 2330 arr[nr++] = bh; 2331 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2332 2333 if (fully_mapped) 2334 SetPageMappedToDisk(page); 2335 2336 if (!nr) { 2337 /* 2338 * All buffers are uptodate - we can set the page uptodate 2339 * as well. But not if get_block() returned an error. 2340 */ 2341 if (!PageError(page)) 2342 SetPageUptodate(page); 2343 unlock_page(page); 2344 return 0; 2345 } 2346 2347 /* Stage two: lock the buffers */ 2348 for (i = 0; i < nr; i++) { 2349 bh = arr[i]; 2350 lock_buffer(bh); 2351 mark_buffer_async_read(bh); 2352 } 2353 2354 /* 2355 * Stage 3: start the IO. Check for uptodateness 2356 * inside the buffer lock in case another process reading 2357 * the underlying blockdev brought it uptodate (the sct fix). 2358 */ 2359 for (i = 0; i < nr; i++) { 2360 bh = arr[i]; 2361 if (buffer_uptodate(bh)) 2362 end_buffer_async_read(bh, 1); 2363 else 2364 submit_bh(REQ_OP_READ, 0, bh); 2365 } 2366 return 0; 2367 } 2368 EXPORT_SYMBOL(block_read_full_page); 2369 2370 /* utility function for filesystems that need to do work on expanding 2371 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2372 * deal with the hole. 2373 */ 2374 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2375 { 2376 struct address_space *mapping = inode->i_mapping; 2377 struct page *page; 2378 void *fsdata; 2379 int err; 2380 2381 err = inode_newsize_ok(inode, size); 2382 if (err) 2383 goto out; 2384 2385 err = pagecache_write_begin(NULL, mapping, size, 0, 2386 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2387 if (err) 2388 goto out; 2389 2390 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2391 BUG_ON(err > 0); 2392 2393 out: 2394 return err; 2395 } 2396 EXPORT_SYMBOL(generic_cont_expand_simple); 2397 2398 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2399 loff_t pos, loff_t *bytes) 2400 { 2401 struct inode *inode = mapping->host; 2402 unsigned int blocksize = i_blocksize(inode); 2403 struct page *page; 2404 void *fsdata; 2405 pgoff_t index, curidx; 2406 loff_t curpos; 2407 unsigned zerofrom, offset, len; 2408 int err = 0; 2409 2410 index = pos >> PAGE_SHIFT; 2411 offset = pos & ~PAGE_MASK; 2412 2413 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2414 zerofrom = curpos & ~PAGE_MASK; 2415 if (zerofrom & (blocksize-1)) { 2416 *bytes |= (blocksize-1); 2417 (*bytes)++; 2418 } 2419 len = PAGE_SIZE - zerofrom; 2420 2421 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2422 &page, &fsdata); 2423 if (err) 2424 goto out; 2425 zero_user(page, zerofrom, len); 2426 err = pagecache_write_end(file, mapping, curpos, len, len, 2427 page, fsdata); 2428 if (err < 0) 2429 goto out; 2430 BUG_ON(err != len); 2431 err = 0; 2432 2433 balance_dirty_pages_ratelimited(mapping); 2434 2435 if (fatal_signal_pending(current)) { 2436 err = -EINTR; 2437 goto out; 2438 } 2439 } 2440 2441 /* page covers the boundary, find the boundary offset */ 2442 if (index == curidx) { 2443 zerofrom = curpos & ~PAGE_MASK; 2444 /* if we will expand the thing last block will be filled */ 2445 if (offset <= zerofrom) { 2446 goto out; 2447 } 2448 if (zerofrom & (blocksize-1)) { 2449 *bytes |= (blocksize-1); 2450 (*bytes)++; 2451 } 2452 len = offset - zerofrom; 2453 2454 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2455 &page, &fsdata); 2456 if (err) 2457 goto out; 2458 zero_user(page, zerofrom, len); 2459 err = pagecache_write_end(file, mapping, curpos, len, len, 2460 page, fsdata); 2461 if (err < 0) 2462 goto out; 2463 BUG_ON(err != len); 2464 err = 0; 2465 } 2466 out: 2467 return err; 2468 } 2469 2470 /* 2471 * For moronic filesystems that do not allow holes in file. 2472 * We may have to extend the file. 2473 */ 2474 int cont_write_begin(struct file *file, struct address_space *mapping, 2475 loff_t pos, unsigned len, unsigned flags, 2476 struct page **pagep, void **fsdata, 2477 get_block_t *get_block, loff_t *bytes) 2478 { 2479 struct inode *inode = mapping->host; 2480 unsigned int blocksize = i_blocksize(inode); 2481 unsigned int zerofrom; 2482 int err; 2483 2484 err = cont_expand_zero(file, mapping, pos, bytes); 2485 if (err) 2486 return err; 2487 2488 zerofrom = *bytes & ~PAGE_MASK; 2489 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2490 *bytes |= (blocksize-1); 2491 (*bytes)++; 2492 } 2493 2494 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2495 } 2496 EXPORT_SYMBOL(cont_write_begin); 2497 2498 int block_commit_write(struct page *page, unsigned from, unsigned to) 2499 { 2500 struct inode *inode = page->mapping->host; 2501 __block_commit_write(inode,page,from,to); 2502 return 0; 2503 } 2504 EXPORT_SYMBOL(block_commit_write); 2505 2506 /* 2507 * block_page_mkwrite() is not allowed to change the file size as it gets 2508 * called from a page fault handler when a page is first dirtied. Hence we must 2509 * be careful to check for EOF conditions here. We set the page up correctly 2510 * for a written page which means we get ENOSPC checking when writing into 2511 * holes and correct delalloc and unwritten extent mapping on filesystems that 2512 * support these features. 2513 * 2514 * We are not allowed to take the i_mutex here so we have to play games to 2515 * protect against truncate races as the page could now be beyond EOF. Because 2516 * truncate writes the inode size before removing pages, once we have the 2517 * page lock we can determine safely if the page is beyond EOF. If it is not 2518 * beyond EOF, then the page is guaranteed safe against truncation until we 2519 * unlock the page. 2520 * 2521 * Direct callers of this function should protect against filesystem freezing 2522 * using sb_start_pagefault() - sb_end_pagefault() functions. 2523 */ 2524 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2525 get_block_t get_block) 2526 { 2527 struct page *page = vmf->page; 2528 struct inode *inode = file_inode(vma->vm_file); 2529 unsigned long end; 2530 loff_t size; 2531 int ret; 2532 2533 lock_page(page); 2534 size = i_size_read(inode); 2535 if ((page->mapping != inode->i_mapping) || 2536 (page_offset(page) > size)) { 2537 /* We overload EFAULT to mean page got truncated */ 2538 ret = -EFAULT; 2539 goto out_unlock; 2540 } 2541 2542 /* page is wholly or partially inside EOF */ 2543 if (((page->index + 1) << PAGE_SHIFT) > size) 2544 end = size & ~PAGE_MASK; 2545 else 2546 end = PAGE_SIZE; 2547 2548 ret = __block_write_begin(page, 0, end, get_block); 2549 if (!ret) 2550 ret = block_commit_write(page, 0, end); 2551 2552 if (unlikely(ret < 0)) 2553 goto out_unlock; 2554 set_page_dirty(page); 2555 wait_for_stable_page(page); 2556 return 0; 2557 out_unlock: 2558 unlock_page(page); 2559 return ret; 2560 } 2561 EXPORT_SYMBOL(block_page_mkwrite); 2562 2563 /* 2564 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2565 * immediately, while under the page lock. So it needs a special end_io 2566 * handler which does not touch the bh after unlocking it. 2567 */ 2568 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2569 { 2570 __end_buffer_read_notouch(bh, uptodate); 2571 } 2572 2573 /* 2574 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2575 * the page (converting it to circular linked list and taking care of page 2576 * dirty races). 2577 */ 2578 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2579 { 2580 struct buffer_head *bh; 2581 2582 BUG_ON(!PageLocked(page)); 2583 2584 spin_lock(&page->mapping->private_lock); 2585 bh = head; 2586 do { 2587 if (PageDirty(page)) 2588 set_buffer_dirty(bh); 2589 if (!bh->b_this_page) 2590 bh->b_this_page = head; 2591 bh = bh->b_this_page; 2592 } while (bh != head); 2593 attach_page_private(page, head); 2594 spin_unlock(&page->mapping->private_lock); 2595 } 2596 2597 /* 2598 * On entry, the page is fully not uptodate. 2599 * On exit the page is fully uptodate in the areas outside (from,to) 2600 * The filesystem needs to handle block truncation upon failure. 2601 */ 2602 int nobh_write_begin(struct address_space *mapping, 2603 loff_t pos, unsigned len, unsigned flags, 2604 struct page **pagep, void **fsdata, 2605 get_block_t *get_block) 2606 { 2607 struct inode *inode = mapping->host; 2608 const unsigned blkbits = inode->i_blkbits; 2609 const unsigned blocksize = 1 << blkbits; 2610 struct buffer_head *head, *bh; 2611 struct page *page; 2612 pgoff_t index; 2613 unsigned from, to; 2614 unsigned block_in_page; 2615 unsigned block_start, block_end; 2616 sector_t block_in_file; 2617 int nr_reads = 0; 2618 int ret = 0; 2619 int is_mapped_to_disk = 1; 2620 2621 index = pos >> PAGE_SHIFT; 2622 from = pos & (PAGE_SIZE - 1); 2623 to = from + len; 2624 2625 page = grab_cache_page_write_begin(mapping, index, flags); 2626 if (!page) 2627 return -ENOMEM; 2628 *pagep = page; 2629 *fsdata = NULL; 2630 2631 if (page_has_buffers(page)) { 2632 ret = __block_write_begin(page, pos, len, get_block); 2633 if (unlikely(ret)) 2634 goto out_release; 2635 return ret; 2636 } 2637 2638 if (PageMappedToDisk(page)) 2639 return 0; 2640 2641 /* 2642 * Allocate buffers so that we can keep track of state, and potentially 2643 * attach them to the page if an error occurs. In the common case of 2644 * no error, they will just be freed again without ever being attached 2645 * to the page (which is all OK, because we're under the page lock). 2646 * 2647 * Be careful: the buffer linked list is a NULL terminated one, rather 2648 * than the circular one we're used to. 2649 */ 2650 head = alloc_page_buffers(page, blocksize, false); 2651 if (!head) { 2652 ret = -ENOMEM; 2653 goto out_release; 2654 } 2655 2656 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2657 2658 /* 2659 * We loop across all blocks in the page, whether or not they are 2660 * part of the affected region. This is so we can discover if the 2661 * page is fully mapped-to-disk. 2662 */ 2663 for (block_start = 0, block_in_page = 0, bh = head; 2664 block_start < PAGE_SIZE; 2665 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2666 int create; 2667 2668 block_end = block_start + blocksize; 2669 bh->b_state = 0; 2670 create = 1; 2671 if (block_start >= to) 2672 create = 0; 2673 ret = get_block(inode, block_in_file + block_in_page, 2674 bh, create); 2675 if (ret) 2676 goto failed; 2677 if (!buffer_mapped(bh)) 2678 is_mapped_to_disk = 0; 2679 if (buffer_new(bh)) 2680 clean_bdev_bh_alias(bh); 2681 if (PageUptodate(page)) { 2682 set_buffer_uptodate(bh); 2683 continue; 2684 } 2685 if (buffer_new(bh) || !buffer_mapped(bh)) { 2686 zero_user_segments(page, block_start, from, 2687 to, block_end); 2688 continue; 2689 } 2690 if (buffer_uptodate(bh)) 2691 continue; /* reiserfs does this */ 2692 if (block_start < from || block_end > to) { 2693 lock_buffer(bh); 2694 bh->b_end_io = end_buffer_read_nobh; 2695 submit_bh(REQ_OP_READ, 0, bh); 2696 nr_reads++; 2697 } 2698 } 2699 2700 if (nr_reads) { 2701 /* 2702 * The page is locked, so these buffers are protected from 2703 * any VM or truncate activity. Hence we don't need to care 2704 * for the buffer_head refcounts. 2705 */ 2706 for (bh = head; bh; bh = bh->b_this_page) { 2707 wait_on_buffer(bh); 2708 if (!buffer_uptodate(bh)) 2709 ret = -EIO; 2710 } 2711 if (ret) 2712 goto failed; 2713 } 2714 2715 if (is_mapped_to_disk) 2716 SetPageMappedToDisk(page); 2717 2718 *fsdata = head; /* to be released by nobh_write_end */ 2719 2720 return 0; 2721 2722 failed: 2723 BUG_ON(!ret); 2724 /* 2725 * Error recovery is a bit difficult. We need to zero out blocks that 2726 * were newly allocated, and dirty them to ensure they get written out. 2727 * Buffers need to be attached to the page at this point, otherwise 2728 * the handling of potential IO errors during writeout would be hard 2729 * (could try doing synchronous writeout, but what if that fails too?) 2730 */ 2731 attach_nobh_buffers(page, head); 2732 page_zero_new_buffers(page, from, to); 2733 2734 out_release: 2735 unlock_page(page); 2736 put_page(page); 2737 *pagep = NULL; 2738 2739 return ret; 2740 } 2741 EXPORT_SYMBOL(nobh_write_begin); 2742 2743 int nobh_write_end(struct file *file, struct address_space *mapping, 2744 loff_t pos, unsigned len, unsigned copied, 2745 struct page *page, void *fsdata) 2746 { 2747 struct inode *inode = page->mapping->host; 2748 struct buffer_head *head = fsdata; 2749 struct buffer_head *bh; 2750 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2751 2752 if (unlikely(copied < len) && head) 2753 attach_nobh_buffers(page, head); 2754 if (page_has_buffers(page)) 2755 return generic_write_end(file, mapping, pos, len, 2756 copied, page, fsdata); 2757 2758 SetPageUptodate(page); 2759 set_page_dirty(page); 2760 if (pos+copied > inode->i_size) { 2761 i_size_write(inode, pos+copied); 2762 mark_inode_dirty(inode); 2763 } 2764 2765 unlock_page(page); 2766 put_page(page); 2767 2768 while (head) { 2769 bh = head; 2770 head = head->b_this_page; 2771 free_buffer_head(bh); 2772 } 2773 2774 return copied; 2775 } 2776 EXPORT_SYMBOL(nobh_write_end); 2777 2778 /* 2779 * nobh_writepage() - based on block_full_write_page() except 2780 * that it tries to operate without attaching bufferheads to 2781 * the page. 2782 */ 2783 int nobh_writepage(struct page *page, get_block_t *get_block, 2784 struct writeback_control *wbc) 2785 { 2786 struct inode * const inode = page->mapping->host; 2787 loff_t i_size = i_size_read(inode); 2788 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2789 unsigned offset; 2790 int ret; 2791 2792 /* Is the page fully inside i_size? */ 2793 if (page->index < end_index) 2794 goto out; 2795 2796 /* Is the page fully outside i_size? (truncate in progress) */ 2797 offset = i_size & (PAGE_SIZE-1); 2798 if (page->index >= end_index+1 || !offset) { 2799 unlock_page(page); 2800 return 0; /* don't care */ 2801 } 2802 2803 /* 2804 * The page straddles i_size. It must be zeroed out on each and every 2805 * writepage invocation because it may be mmapped. "A file is mapped 2806 * in multiples of the page size. For a file that is not a multiple of 2807 * the page size, the remaining memory is zeroed when mapped, and 2808 * writes to that region are not written out to the file." 2809 */ 2810 zero_user_segment(page, offset, PAGE_SIZE); 2811 out: 2812 ret = mpage_writepage(page, get_block, wbc); 2813 if (ret == -EAGAIN) 2814 ret = __block_write_full_page(inode, page, get_block, wbc, 2815 end_buffer_async_write); 2816 return ret; 2817 } 2818 EXPORT_SYMBOL(nobh_writepage); 2819 2820 int nobh_truncate_page(struct address_space *mapping, 2821 loff_t from, get_block_t *get_block) 2822 { 2823 pgoff_t index = from >> PAGE_SHIFT; 2824 unsigned offset = from & (PAGE_SIZE-1); 2825 unsigned blocksize; 2826 sector_t iblock; 2827 unsigned length, pos; 2828 struct inode *inode = mapping->host; 2829 struct page *page; 2830 struct buffer_head map_bh; 2831 int err; 2832 2833 blocksize = i_blocksize(inode); 2834 length = offset & (blocksize - 1); 2835 2836 /* Block boundary? Nothing to do */ 2837 if (!length) 2838 return 0; 2839 2840 length = blocksize - length; 2841 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2842 2843 page = grab_cache_page(mapping, index); 2844 err = -ENOMEM; 2845 if (!page) 2846 goto out; 2847 2848 if (page_has_buffers(page)) { 2849 has_buffers: 2850 unlock_page(page); 2851 put_page(page); 2852 return block_truncate_page(mapping, from, get_block); 2853 } 2854 2855 /* Find the buffer that contains "offset" */ 2856 pos = blocksize; 2857 while (offset >= pos) { 2858 iblock++; 2859 pos += blocksize; 2860 } 2861 2862 map_bh.b_size = blocksize; 2863 map_bh.b_state = 0; 2864 err = get_block(inode, iblock, &map_bh, 0); 2865 if (err) 2866 goto unlock; 2867 /* unmapped? It's a hole - nothing to do */ 2868 if (!buffer_mapped(&map_bh)) 2869 goto unlock; 2870 2871 /* Ok, it's mapped. Make sure it's up-to-date */ 2872 if (!PageUptodate(page)) { 2873 err = mapping->a_ops->readpage(NULL, page); 2874 if (err) { 2875 put_page(page); 2876 goto out; 2877 } 2878 lock_page(page); 2879 if (!PageUptodate(page)) { 2880 err = -EIO; 2881 goto unlock; 2882 } 2883 if (page_has_buffers(page)) 2884 goto has_buffers; 2885 } 2886 zero_user(page, offset, length); 2887 set_page_dirty(page); 2888 err = 0; 2889 2890 unlock: 2891 unlock_page(page); 2892 put_page(page); 2893 out: 2894 return err; 2895 } 2896 EXPORT_SYMBOL(nobh_truncate_page); 2897 2898 int block_truncate_page(struct address_space *mapping, 2899 loff_t from, get_block_t *get_block) 2900 { 2901 pgoff_t index = from >> PAGE_SHIFT; 2902 unsigned offset = from & (PAGE_SIZE-1); 2903 unsigned blocksize; 2904 sector_t iblock; 2905 unsigned length, pos; 2906 struct inode *inode = mapping->host; 2907 struct page *page; 2908 struct buffer_head *bh; 2909 int err; 2910 2911 blocksize = i_blocksize(inode); 2912 length = offset & (blocksize - 1); 2913 2914 /* Block boundary? Nothing to do */ 2915 if (!length) 2916 return 0; 2917 2918 length = blocksize - length; 2919 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2920 2921 page = grab_cache_page(mapping, index); 2922 err = -ENOMEM; 2923 if (!page) 2924 goto out; 2925 2926 if (!page_has_buffers(page)) 2927 create_empty_buffers(page, blocksize, 0); 2928 2929 /* Find the buffer that contains "offset" */ 2930 bh = page_buffers(page); 2931 pos = blocksize; 2932 while (offset >= pos) { 2933 bh = bh->b_this_page; 2934 iblock++; 2935 pos += blocksize; 2936 } 2937 2938 err = 0; 2939 if (!buffer_mapped(bh)) { 2940 WARN_ON(bh->b_size != blocksize); 2941 err = get_block(inode, iblock, bh, 0); 2942 if (err) 2943 goto unlock; 2944 /* unmapped? It's a hole - nothing to do */ 2945 if (!buffer_mapped(bh)) 2946 goto unlock; 2947 } 2948 2949 /* Ok, it's mapped. Make sure it's up-to-date */ 2950 if (PageUptodate(page)) 2951 set_buffer_uptodate(bh); 2952 2953 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2954 err = -EIO; 2955 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2956 wait_on_buffer(bh); 2957 /* Uhhuh. Read error. Complain and punt. */ 2958 if (!buffer_uptodate(bh)) 2959 goto unlock; 2960 } 2961 2962 zero_user(page, offset, length); 2963 mark_buffer_dirty(bh); 2964 err = 0; 2965 2966 unlock: 2967 unlock_page(page); 2968 put_page(page); 2969 out: 2970 return err; 2971 } 2972 EXPORT_SYMBOL(block_truncate_page); 2973 2974 /* 2975 * The generic ->writepage function for buffer-backed address_spaces 2976 */ 2977 int block_write_full_page(struct page *page, get_block_t *get_block, 2978 struct writeback_control *wbc) 2979 { 2980 struct inode * const inode = page->mapping->host; 2981 loff_t i_size = i_size_read(inode); 2982 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2983 unsigned offset; 2984 2985 /* Is the page fully inside i_size? */ 2986 if (page->index < end_index) 2987 return __block_write_full_page(inode, page, get_block, wbc, 2988 end_buffer_async_write); 2989 2990 /* Is the page fully outside i_size? (truncate in progress) */ 2991 offset = i_size & (PAGE_SIZE-1); 2992 if (page->index >= end_index+1 || !offset) { 2993 unlock_page(page); 2994 return 0; /* don't care */ 2995 } 2996 2997 /* 2998 * The page straddles i_size. It must be zeroed out on each and every 2999 * writepage invocation because it may be mmapped. "A file is mapped 3000 * in multiples of the page size. For a file that is not a multiple of 3001 * the page size, the remaining memory is zeroed when mapped, and 3002 * writes to that region are not written out to the file." 3003 */ 3004 zero_user_segment(page, offset, PAGE_SIZE); 3005 return __block_write_full_page(inode, page, get_block, wbc, 3006 end_buffer_async_write); 3007 } 3008 EXPORT_SYMBOL(block_write_full_page); 3009 3010 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 3011 get_block_t *get_block) 3012 { 3013 struct inode *inode = mapping->host; 3014 struct buffer_head tmp = { 3015 .b_size = i_blocksize(inode), 3016 }; 3017 3018 get_block(inode, block, &tmp, 0); 3019 return tmp.b_blocknr; 3020 } 3021 EXPORT_SYMBOL(generic_block_bmap); 3022 3023 static void end_bio_bh_io_sync(struct bio *bio) 3024 { 3025 struct buffer_head *bh = bio->bi_private; 3026 3027 if (unlikely(bio_flagged(bio, BIO_QUIET))) 3028 set_bit(BH_Quiet, &bh->b_state); 3029 3030 bh->b_end_io(bh, !bio->bi_status); 3031 bio_put(bio); 3032 } 3033 3034 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3035 enum rw_hint write_hint, struct writeback_control *wbc) 3036 { 3037 struct bio *bio; 3038 3039 BUG_ON(!buffer_locked(bh)); 3040 BUG_ON(!buffer_mapped(bh)); 3041 BUG_ON(!bh->b_end_io); 3042 BUG_ON(buffer_delay(bh)); 3043 BUG_ON(buffer_unwritten(bh)); 3044 3045 /* 3046 * Only clear out a write error when rewriting 3047 */ 3048 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3049 clear_buffer_write_io_error(bh); 3050 3051 bio = bio_alloc(GFP_NOIO, 1); 3052 3053 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 3054 3055 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3056 bio_set_dev(bio, bh->b_bdev); 3057 bio->bi_write_hint = write_hint; 3058 3059 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3060 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3061 3062 bio->bi_end_io = end_bio_bh_io_sync; 3063 bio->bi_private = bh; 3064 3065 if (buffer_meta(bh)) 3066 op_flags |= REQ_META; 3067 if (buffer_prio(bh)) 3068 op_flags |= REQ_PRIO; 3069 bio_set_op_attrs(bio, op, op_flags); 3070 3071 /* Take care of bh's that straddle the end of the device */ 3072 guard_bio_eod(bio); 3073 3074 if (wbc) { 3075 wbc_init_bio(wbc, bio); 3076 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 3077 } 3078 3079 submit_bio(bio); 3080 return 0; 3081 } 3082 3083 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3084 { 3085 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3086 } 3087 EXPORT_SYMBOL(submit_bh); 3088 3089 /** 3090 * ll_rw_block: low-level access to block devices (DEPRECATED) 3091 * @op: whether to %READ or %WRITE 3092 * @op_flags: req_flag_bits 3093 * @nr: number of &struct buffer_heads in the array 3094 * @bhs: array of pointers to &struct buffer_head 3095 * 3096 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3097 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3098 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3099 * %REQ_RAHEAD. 3100 * 3101 * This function drops any buffer that it cannot get a lock on (with the 3102 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3103 * request, and any buffer that appears to be up-to-date when doing read 3104 * request. Further it marks as clean buffers that are processed for 3105 * writing (the buffer cache won't assume that they are actually clean 3106 * until the buffer gets unlocked). 3107 * 3108 * ll_rw_block sets b_end_io to simple completion handler that marks 3109 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3110 * any waiters. 3111 * 3112 * All of the buffers must be for the same device, and must also be a 3113 * multiple of the current approved size for the device. 3114 */ 3115 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3116 { 3117 int i; 3118 3119 for (i = 0; i < nr; i++) { 3120 struct buffer_head *bh = bhs[i]; 3121 3122 if (!trylock_buffer(bh)) 3123 continue; 3124 if (op == WRITE) { 3125 if (test_clear_buffer_dirty(bh)) { 3126 bh->b_end_io = end_buffer_write_sync; 3127 get_bh(bh); 3128 submit_bh(op, op_flags, bh); 3129 continue; 3130 } 3131 } else { 3132 if (!buffer_uptodate(bh)) { 3133 bh->b_end_io = end_buffer_read_sync; 3134 get_bh(bh); 3135 submit_bh(op, op_flags, bh); 3136 continue; 3137 } 3138 } 3139 unlock_buffer(bh); 3140 } 3141 } 3142 EXPORT_SYMBOL(ll_rw_block); 3143 3144 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3145 { 3146 lock_buffer(bh); 3147 if (!test_clear_buffer_dirty(bh)) { 3148 unlock_buffer(bh); 3149 return; 3150 } 3151 bh->b_end_io = end_buffer_write_sync; 3152 get_bh(bh); 3153 submit_bh(REQ_OP_WRITE, op_flags, bh); 3154 } 3155 EXPORT_SYMBOL(write_dirty_buffer); 3156 3157 /* 3158 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3159 * and then start new I/O and then wait upon it. The caller must have a ref on 3160 * the buffer_head. 3161 */ 3162 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3163 { 3164 int ret = 0; 3165 3166 WARN_ON(atomic_read(&bh->b_count) < 1); 3167 lock_buffer(bh); 3168 if (test_clear_buffer_dirty(bh)) { 3169 /* 3170 * The bh should be mapped, but it might not be if the 3171 * device was hot-removed. Not much we can do but fail the I/O. 3172 */ 3173 if (!buffer_mapped(bh)) { 3174 unlock_buffer(bh); 3175 return -EIO; 3176 } 3177 3178 get_bh(bh); 3179 bh->b_end_io = end_buffer_write_sync; 3180 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3181 wait_on_buffer(bh); 3182 if (!ret && !buffer_uptodate(bh)) 3183 ret = -EIO; 3184 } else { 3185 unlock_buffer(bh); 3186 } 3187 return ret; 3188 } 3189 EXPORT_SYMBOL(__sync_dirty_buffer); 3190 3191 int sync_dirty_buffer(struct buffer_head *bh) 3192 { 3193 return __sync_dirty_buffer(bh, REQ_SYNC); 3194 } 3195 EXPORT_SYMBOL(sync_dirty_buffer); 3196 3197 /* 3198 * try_to_free_buffers() checks if all the buffers on this particular page 3199 * are unused, and releases them if so. 3200 * 3201 * Exclusion against try_to_free_buffers may be obtained by either 3202 * locking the page or by holding its mapping's private_lock. 3203 * 3204 * If the page is dirty but all the buffers are clean then we need to 3205 * be sure to mark the page clean as well. This is because the page 3206 * may be against a block device, and a later reattachment of buffers 3207 * to a dirty page will set *all* buffers dirty. Which would corrupt 3208 * filesystem data on the same device. 3209 * 3210 * The same applies to regular filesystem pages: if all the buffers are 3211 * clean then we set the page clean and proceed. To do that, we require 3212 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3213 * private_lock. 3214 * 3215 * try_to_free_buffers() is non-blocking. 3216 */ 3217 static inline int buffer_busy(struct buffer_head *bh) 3218 { 3219 return atomic_read(&bh->b_count) | 3220 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3221 } 3222 3223 static int 3224 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3225 { 3226 struct buffer_head *head = page_buffers(page); 3227 struct buffer_head *bh; 3228 3229 bh = head; 3230 do { 3231 if (buffer_busy(bh)) 3232 goto failed; 3233 bh = bh->b_this_page; 3234 } while (bh != head); 3235 3236 do { 3237 struct buffer_head *next = bh->b_this_page; 3238 3239 if (bh->b_assoc_map) 3240 __remove_assoc_queue(bh); 3241 bh = next; 3242 } while (bh != head); 3243 *buffers_to_free = head; 3244 detach_page_private(page); 3245 return 1; 3246 failed: 3247 return 0; 3248 } 3249 3250 int try_to_free_buffers(struct page *page) 3251 { 3252 struct address_space * const mapping = page->mapping; 3253 struct buffer_head *buffers_to_free = NULL; 3254 int ret = 0; 3255 3256 BUG_ON(!PageLocked(page)); 3257 if (PageWriteback(page)) 3258 return 0; 3259 3260 if (mapping == NULL) { /* can this still happen? */ 3261 ret = drop_buffers(page, &buffers_to_free); 3262 goto out; 3263 } 3264 3265 spin_lock(&mapping->private_lock); 3266 ret = drop_buffers(page, &buffers_to_free); 3267 3268 /* 3269 * If the filesystem writes its buffers by hand (eg ext3) 3270 * then we can have clean buffers against a dirty page. We 3271 * clean the page here; otherwise the VM will never notice 3272 * that the filesystem did any IO at all. 3273 * 3274 * Also, during truncate, discard_buffer will have marked all 3275 * the page's buffers clean. We discover that here and clean 3276 * the page also. 3277 * 3278 * private_lock must be held over this entire operation in order 3279 * to synchronise against __set_page_dirty_buffers and prevent the 3280 * dirty bit from being lost. 3281 */ 3282 if (ret) 3283 cancel_dirty_page(page); 3284 spin_unlock(&mapping->private_lock); 3285 out: 3286 if (buffers_to_free) { 3287 struct buffer_head *bh = buffers_to_free; 3288 3289 do { 3290 struct buffer_head *next = bh->b_this_page; 3291 free_buffer_head(bh); 3292 bh = next; 3293 } while (bh != buffers_to_free); 3294 } 3295 return ret; 3296 } 3297 EXPORT_SYMBOL(try_to_free_buffers); 3298 3299 /* 3300 * There are no bdflush tunables left. But distributions are 3301 * still running obsolete flush daemons, so we terminate them here. 3302 * 3303 * Use of bdflush() is deprecated and will be removed in a future kernel. 3304 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3305 */ 3306 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3307 { 3308 static int msg_count; 3309 3310 if (!capable(CAP_SYS_ADMIN)) 3311 return -EPERM; 3312 3313 if (msg_count < 5) { 3314 msg_count++; 3315 printk(KERN_INFO 3316 "warning: process `%s' used the obsolete bdflush" 3317 " system call\n", current->comm); 3318 printk(KERN_INFO "Fix your initscripts?\n"); 3319 } 3320 3321 if (func == 1) 3322 do_exit(0); 3323 return 0; 3324 } 3325 3326 /* 3327 * Buffer-head allocation 3328 */ 3329 static struct kmem_cache *bh_cachep __read_mostly; 3330 3331 /* 3332 * Once the number of bh's in the machine exceeds this level, we start 3333 * stripping them in writeback. 3334 */ 3335 static unsigned long max_buffer_heads; 3336 3337 int buffer_heads_over_limit; 3338 3339 struct bh_accounting { 3340 int nr; /* Number of live bh's */ 3341 int ratelimit; /* Limit cacheline bouncing */ 3342 }; 3343 3344 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3345 3346 static void recalc_bh_state(void) 3347 { 3348 int i; 3349 int tot = 0; 3350 3351 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3352 return; 3353 __this_cpu_write(bh_accounting.ratelimit, 0); 3354 for_each_online_cpu(i) 3355 tot += per_cpu(bh_accounting, i).nr; 3356 buffer_heads_over_limit = (tot > max_buffer_heads); 3357 } 3358 3359 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3360 { 3361 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3362 if (ret) { 3363 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3364 spin_lock_init(&ret->b_uptodate_lock); 3365 preempt_disable(); 3366 __this_cpu_inc(bh_accounting.nr); 3367 recalc_bh_state(); 3368 preempt_enable(); 3369 } 3370 return ret; 3371 } 3372 EXPORT_SYMBOL(alloc_buffer_head); 3373 3374 void free_buffer_head(struct buffer_head *bh) 3375 { 3376 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3377 kmem_cache_free(bh_cachep, bh); 3378 preempt_disable(); 3379 __this_cpu_dec(bh_accounting.nr); 3380 recalc_bh_state(); 3381 preempt_enable(); 3382 } 3383 EXPORT_SYMBOL(free_buffer_head); 3384 3385 static int buffer_exit_cpu_dead(unsigned int cpu) 3386 { 3387 int i; 3388 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3389 3390 for (i = 0; i < BH_LRU_SIZE; i++) { 3391 brelse(b->bhs[i]); 3392 b->bhs[i] = NULL; 3393 } 3394 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3395 per_cpu(bh_accounting, cpu).nr = 0; 3396 return 0; 3397 } 3398 3399 /** 3400 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3401 * @bh: struct buffer_head 3402 * 3403 * Return true if the buffer is up-to-date and false, 3404 * with the buffer locked, if not. 3405 */ 3406 int bh_uptodate_or_lock(struct buffer_head *bh) 3407 { 3408 if (!buffer_uptodate(bh)) { 3409 lock_buffer(bh); 3410 if (!buffer_uptodate(bh)) 3411 return 0; 3412 unlock_buffer(bh); 3413 } 3414 return 1; 3415 } 3416 EXPORT_SYMBOL(bh_uptodate_or_lock); 3417 3418 /** 3419 * bh_submit_read - Submit a locked buffer for reading 3420 * @bh: struct buffer_head 3421 * 3422 * Returns zero on success and -EIO on error. 3423 */ 3424 int bh_submit_read(struct buffer_head *bh) 3425 { 3426 BUG_ON(!buffer_locked(bh)); 3427 3428 if (buffer_uptodate(bh)) { 3429 unlock_buffer(bh); 3430 return 0; 3431 } 3432 3433 get_bh(bh); 3434 bh->b_end_io = end_buffer_read_sync; 3435 submit_bh(REQ_OP_READ, 0, bh); 3436 wait_on_buffer(bh); 3437 if (buffer_uptodate(bh)) 3438 return 0; 3439 return -EIO; 3440 } 3441 EXPORT_SYMBOL(bh_submit_read); 3442 3443 void __init buffer_init(void) 3444 { 3445 unsigned long nrpages; 3446 int ret; 3447 3448 bh_cachep = kmem_cache_create("buffer_head", 3449 sizeof(struct buffer_head), 0, 3450 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3451 SLAB_MEM_SPREAD), 3452 NULL); 3453 3454 /* 3455 * Limit the bh occupancy to 10% of ZONE_NORMAL 3456 */ 3457 nrpages = (nr_free_buffer_pages() * 10) / 100; 3458 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3459 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3460 NULL, buffer_exit_cpu_dead); 3461 WARN_ON(ret < 0); 3462 } 3463