xref: /linux/fs/buffer.c (revision 757dea93e136b219af09d3cd56a81063fdbdef1a)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/bio.h>
40 #include <linux/notifier.h>
41 #include <linux/cpu.h>
42 #include <linux/bitops.h>
43 #include <linux/mpage.h>
44 #include <linux/bit_spinlock.h>
45 
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
50 inline void
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
52 {
53 	bh->b_end_io = handler;
54 	bh->b_private = private;
55 }
56 
57 static int sync_buffer(void *word)
58 {
59 	struct block_device *bd;
60 	struct buffer_head *bh
61 		= container_of(word, struct buffer_head, b_state);
62 
63 	smp_mb();
64 	bd = bh->b_bdev;
65 	if (bd)
66 		blk_run_address_space(bd->bd_inode->i_mapping);
67 	io_schedule();
68 	return 0;
69 }
70 
71 void fastcall __lock_buffer(struct buffer_head *bh)
72 {
73 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 							TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77 
78 void fastcall unlock_buffer(struct buffer_head *bh)
79 {
80 	smp_mb__before_clear_bit();
81 	clear_buffer_locked(bh);
82 	smp_mb__after_clear_bit();
83 	wake_up_bit(&bh->b_state, BH_Lock);
84 }
85 
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95 
96 static void
97 __clear_page_buffers(struct page *page)
98 {
99 	ClearPagePrivate(page);
100 	set_page_private(page, 0);
101 	page_cache_release(page);
102 }
103 
104 static void buffer_io_error(struct buffer_head *bh)
105 {
106 	char b[BDEVNAME_SIZE];
107 
108 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109 			bdevname(bh->b_bdev, b),
110 			(unsigned long long)bh->b_blocknr);
111 }
112 
113 /*
114  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
115  * unlock the buffer. This is what ll_rw_block uses too.
116  */
117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118 {
119 	if (uptodate) {
120 		set_buffer_uptodate(bh);
121 	} else {
122 		/* This happens, due to failed READA attempts. */
123 		clear_buffer_uptodate(bh);
124 	}
125 	unlock_buffer(bh);
126 	put_bh(bh);
127 }
128 
129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 {
131 	char b[BDEVNAME_SIZE];
132 
133 	if (uptodate) {
134 		set_buffer_uptodate(bh);
135 	} else {
136 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137 			buffer_io_error(bh);
138 			printk(KERN_WARNING "lost page write due to "
139 					"I/O error on %s\n",
140 				       bdevname(bh->b_bdev, b));
141 		}
142 		set_buffer_write_io_error(bh);
143 		clear_buffer_uptodate(bh);
144 	}
145 	unlock_buffer(bh);
146 	put_bh(bh);
147 }
148 
149 /*
150  * Write out and wait upon all the dirty data associated with a block
151  * device via its mapping.  Does not take the superblock lock.
152  */
153 int sync_blockdev(struct block_device *bdev)
154 {
155 	int ret = 0;
156 
157 	if (bdev)
158 		ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
159 	return ret;
160 }
161 EXPORT_SYMBOL(sync_blockdev);
162 
163 /*
164  * Write out and wait upon all dirty data associated with this
165  * device.   Filesystem data as well as the underlying block
166  * device.  Takes the superblock lock.
167  */
168 int fsync_bdev(struct block_device *bdev)
169 {
170 	struct super_block *sb = get_super(bdev);
171 	if (sb) {
172 		int res = fsync_super(sb);
173 		drop_super(sb);
174 		return res;
175 	}
176 	return sync_blockdev(bdev);
177 }
178 
179 /**
180  * freeze_bdev  --  lock a filesystem and force it into a consistent state
181  * @bdev:	blockdevice to lock
182  *
183  * This takes the block device bd_mount_sem to make sure no new mounts
184  * happen on bdev until thaw_bdev() is called.
185  * If a superblock is found on this device, we take the s_umount semaphore
186  * on it to make sure nobody unmounts until the snapshot creation is done.
187  */
188 struct super_block *freeze_bdev(struct block_device *bdev)
189 {
190 	struct super_block *sb;
191 
192 	down(&bdev->bd_mount_sem);
193 	sb = get_super(bdev);
194 	if (sb && !(sb->s_flags & MS_RDONLY)) {
195 		sb->s_frozen = SB_FREEZE_WRITE;
196 		smp_wmb();
197 
198 		__fsync_super(sb);
199 
200 		sb->s_frozen = SB_FREEZE_TRANS;
201 		smp_wmb();
202 
203 		sync_blockdev(sb->s_bdev);
204 
205 		if (sb->s_op->write_super_lockfs)
206 			sb->s_op->write_super_lockfs(sb);
207 	}
208 
209 	sync_blockdev(bdev);
210 	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
211 }
212 EXPORT_SYMBOL(freeze_bdev);
213 
214 /**
215  * thaw_bdev  -- unlock filesystem
216  * @bdev:	blockdevice to unlock
217  * @sb:		associated superblock
218  *
219  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
220  */
221 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
222 {
223 	if (sb) {
224 		BUG_ON(sb->s_bdev != bdev);
225 
226 		if (sb->s_op->unlockfs)
227 			sb->s_op->unlockfs(sb);
228 		sb->s_frozen = SB_UNFROZEN;
229 		smp_wmb();
230 		wake_up(&sb->s_wait_unfrozen);
231 		drop_super(sb);
232 	}
233 
234 	up(&bdev->bd_mount_sem);
235 }
236 EXPORT_SYMBOL(thaw_bdev);
237 
238 /*
239  * Various filesystems appear to want __find_get_block to be non-blocking.
240  * But it's the page lock which protects the buffers.  To get around this,
241  * we get exclusion from try_to_free_buffers with the blockdev mapping's
242  * private_lock.
243  *
244  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
245  * may be quite high.  This code could TryLock the page, and if that
246  * succeeds, there is no need to take private_lock. (But if
247  * private_lock is contended then so is mapping->tree_lock).
248  */
249 static struct buffer_head *
250 __find_get_block_slow(struct block_device *bdev, sector_t block)
251 {
252 	struct inode *bd_inode = bdev->bd_inode;
253 	struct address_space *bd_mapping = bd_inode->i_mapping;
254 	struct buffer_head *ret = NULL;
255 	pgoff_t index;
256 	struct buffer_head *bh;
257 	struct buffer_head *head;
258 	struct page *page;
259 	int all_mapped = 1;
260 
261 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
262 	page = find_get_page(bd_mapping, index);
263 	if (!page)
264 		goto out;
265 
266 	spin_lock(&bd_mapping->private_lock);
267 	if (!page_has_buffers(page))
268 		goto out_unlock;
269 	head = page_buffers(page);
270 	bh = head;
271 	do {
272 		if (bh->b_blocknr == block) {
273 			ret = bh;
274 			get_bh(bh);
275 			goto out_unlock;
276 		}
277 		if (!buffer_mapped(bh))
278 			all_mapped = 0;
279 		bh = bh->b_this_page;
280 	} while (bh != head);
281 
282 	/* we might be here because some of the buffers on this page are
283 	 * not mapped.  This is due to various races between
284 	 * file io on the block device and getblk.  It gets dealt with
285 	 * elsewhere, don't buffer_error if we had some unmapped buffers
286 	 */
287 	if (all_mapped) {
288 		printk("__find_get_block_slow() failed. "
289 			"block=%llu, b_blocknr=%llu\n",
290 			(unsigned long long)block,
291 			(unsigned long long)bh->b_blocknr);
292 		printk("b_state=0x%08lx, b_size=%zu\n",
293 			bh->b_state, bh->b_size);
294 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
295 	}
296 out_unlock:
297 	spin_unlock(&bd_mapping->private_lock);
298 	page_cache_release(page);
299 out:
300 	return ret;
301 }
302 
303 /* If invalidate_buffers() will trash dirty buffers, it means some kind
304    of fs corruption is going on. Trashing dirty data always imply losing
305    information that was supposed to be just stored on the physical layer
306    by the user.
307 
308    Thus invalidate_buffers in general usage is not allwowed to trash
309    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
310    be preserved.  These buffers are simply skipped.
311 
312    We also skip buffers which are still in use.  For example this can
313    happen if a userspace program is reading the block device.
314 
315    NOTE: In the case where the user removed a removable-media-disk even if
316    there's still dirty data not synced on disk (due a bug in the device driver
317    or due an error of the user), by not destroying the dirty buffers we could
318    generate corruption also on the next media inserted, thus a parameter is
319    necessary to handle this case in the most safe way possible (trying
320    to not corrupt also the new disk inserted with the data belonging to
321    the old now corrupted disk). Also for the ramdisk the natural thing
322    to do in order to release the ramdisk memory is to destroy dirty buffers.
323 
324    These are two special cases. Normal usage imply the device driver
325    to issue a sync on the device (without waiting I/O completion) and
326    then an invalidate_buffers call that doesn't trash dirty buffers.
327 
328    For handling cache coherency with the blkdev pagecache the 'update' case
329    is been introduced. It is needed to re-read from disk any pinned
330    buffer. NOTE: re-reading from disk is destructive so we can do it only
331    when we assume nobody is changing the buffercache under our I/O and when
332    we think the disk contains more recent information than the buffercache.
333    The update == 1 pass marks the buffers we need to update, the update == 2
334    pass does the actual I/O. */
335 void invalidate_bdev(struct block_device *bdev)
336 {
337 	struct address_space *mapping = bdev->bd_inode->i_mapping;
338 
339 	if (mapping->nrpages == 0)
340 		return;
341 
342 	invalidate_bh_lrus();
343 	invalidate_mapping_pages(mapping, 0, -1);
344 }
345 
346 /*
347  * Kick pdflush then try to free up some ZONE_NORMAL memory.
348  */
349 static void free_more_memory(void)
350 {
351 	struct zone **zones;
352 	pg_data_t *pgdat;
353 
354 	wakeup_pdflush(1024);
355 	yield();
356 
357 	for_each_online_pgdat(pgdat) {
358 		zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
359 		if (*zones)
360 			try_to_free_pages(zones, GFP_NOFS);
361 	}
362 }
363 
364 /*
365  * I/O completion handler for block_read_full_page() - pages
366  * which come unlocked at the end of I/O.
367  */
368 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
369 {
370 	unsigned long flags;
371 	struct buffer_head *first;
372 	struct buffer_head *tmp;
373 	struct page *page;
374 	int page_uptodate = 1;
375 
376 	BUG_ON(!buffer_async_read(bh));
377 
378 	page = bh->b_page;
379 	if (uptodate) {
380 		set_buffer_uptodate(bh);
381 	} else {
382 		clear_buffer_uptodate(bh);
383 		if (printk_ratelimit())
384 			buffer_io_error(bh);
385 		SetPageError(page);
386 	}
387 
388 	/*
389 	 * Be _very_ careful from here on. Bad things can happen if
390 	 * two buffer heads end IO at almost the same time and both
391 	 * decide that the page is now completely done.
392 	 */
393 	first = page_buffers(page);
394 	local_irq_save(flags);
395 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
396 	clear_buffer_async_read(bh);
397 	unlock_buffer(bh);
398 	tmp = bh;
399 	do {
400 		if (!buffer_uptodate(tmp))
401 			page_uptodate = 0;
402 		if (buffer_async_read(tmp)) {
403 			BUG_ON(!buffer_locked(tmp));
404 			goto still_busy;
405 		}
406 		tmp = tmp->b_this_page;
407 	} while (tmp != bh);
408 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
409 	local_irq_restore(flags);
410 
411 	/*
412 	 * If none of the buffers had errors and they are all
413 	 * uptodate then we can set the page uptodate.
414 	 */
415 	if (page_uptodate && !PageError(page))
416 		SetPageUptodate(page);
417 	unlock_page(page);
418 	return;
419 
420 still_busy:
421 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
422 	local_irq_restore(flags);
423 	return;
424 }
425 
426 /*
427  * Completion handler for block_write_full_page() - pages which are unlocked
428  * during I/O, and which have PageWriteback cleared upon I/O completion.
429  */
430 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
431 {
432 	char b[BDEVNAME_SIZE];
433 	unsigned long flags;
434 	struct buffer_head *first;
435 	struct buffer_head *tmp;
436 	struct page *page;
437 
438 	BUG_ON(!buffer_async_write(bh));
439 
440 	page = bh->b_page;
441 	if (uptodate) {
442 		set_buffer_uptodate(bh);
443 	} else {
444 		if (printk_ratelimit()) {
445 			buffer_io_error(bh);
446 			printk(KERN_WARNING "lost page write due to "
447 					"I/O error on %s\n",
448 			       bdevname(bh->b_bdev, b));
449 		}
450 		set_bit(AS_EIO, &page->mapping->flags);
451 		set_buffer_write_io_error(bh);
452 		clear_buffer_uptodate(bh);
453 		SetPageError(page);
454 	}
455 
456 	first = page_buffers(page);
457 	local_irq_save(flags);
458 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
459 
460 	clear_buffer_async_write(bh);
461 	unlock_buffer(bh);
462 	tmp = bh->b_this_page;
463 	while (tmp != bh) {
464 		if (buffer_async_write(tmp)) {
465 			BUG_ON(!buffer_locked(tmp));
466 			goto still_busy;
467 		}
468 		tmp = tmp->b_this_page;
469 	}
470 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
471 	local_irq_restore(flags);
472 	end_page_writeback(page);
473 	return;
474 
475 still_busy:
476 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
477 	local_irq_restore(flags);
478 	return;
479 }
480 
481 /*
482  * If a page's buffers are under async readin (end_buffer_async_read
483  * completion) then there is a possibility that another thread of
484  * control could lock one of the buffers after it has completed
485  * but while some of the other buffers have not completed.  This
486  * locked buffer would confuse end_buffer_async_read() into not unlocking
487  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
488  * that this buffer is not under async I/O.
489  *
490  * The page comes unlocked when it has no locked buffer_async buffers
491  * left.
492  *
493  * PageLocked prevents anyone starting new async I/O reads any of
494  * the buffers.
495  *
496  * PageWriteback is used to prevent simultaneous writeout of the same
497  * page.
498  *
499  * PageLocked prevents anyone from starting writeback of a page which is
500  * under read I/O (PageWriteback is only ever set against a locked page).
501  */
502 static void mark_buffer_async_read(struct buffer_head *bh)
503 {
504 	bh->b_end_io = end_buffer_async_read;
505 	set_buffer_async_read(bh);
506 }
507 
508 void mark_buffer_async_write(struct buffer_head *bh)
509 {
510 	bh->b_end_io = end_buffer_async_write;
511 	set_buffer_async_write(bh);
512 }
513 EXPORT_SYMBOL(mark_buffer_async_write);
514 
515 
516 /*
517  * fs/buffer.c contains helper functions for buffer-backed address space's
518  * fsync functions.  A common requirement for buffer-based filesystems is
519  * that certain data from the backing blockdev needs to be written out for
520  * a successful fsync().  For example, ext2 indirect blocks need to be
521  * written back and waited upon before fsync() returns.
522  *
523  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
524  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
525  * management of a list of dependent buffers at ->i_mapping->private_list.
526  *
527  * Locking is a little subtle: try_to_free_buffers() will remove buffers
528  * from their controlling inode's queue when they are being freed.  But
529  * try_to_free_buffers() will be operating against the *blockdev* mapping
530  * at the time, not against the S_ISREG file which depends on those buffers.
531  * So the locking for private_list is via the private_lock in the address_space
532  * which backs the buffers.  Which is different from the address_space
533  * against which the buffers are listed.  So for a particular address_space,
534  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
535  * mapping->private_list will always be protected by the backing blockdev's
536  * ->private_lock.
537  *
538  * Which introduces a requirement: all buffers on an address_space's
539  * ->private_list must be from the same address_space: the blockdev's.
540  *
541  * address_spaces which do not place buffers at ->private_list via these
542  * utility functions are free to use private_lock and private_list for
543  * whatever they want.  The only requirement is that list_empty(private_list)
544  * be true at clear_inode() time.
545  *
546  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
547  * filesystems should do that.  invalidate_inode_buffers() should just go
548  * BUG_ON(!list_empty).
549  *
550  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
551  * take an address_space, not an inode.  And it should be called
552  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
553  * queued up.
554  *
555  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
556  * list if it is already on a list.  Because if the buffer is on a list,
557  * it *must* already be on the right one.  If not, the filesystem is being
558  * silly.  This will save a ton of locking.  But first we have to ensure
559  * that buffers are taken *off* the old inode's list when they are freed
560  * (presumably in truncate).  That requires careful auditing of all
561  * filesystems (do it inside bforget()).  It could also be done by bringing
562  * b_inode back.
563  */
564 
565 /*
566  * The buffer's backing address_space's private_lock must be held
567  */
568 static inline void __remove_assoc_queue(struct buffer_head *bh)
569 {
570 	list_del_init(&bh->b_assoc_buffers);
571 	WARN_ON(!bh->b_assoc_map);
572 	if (buffer_write_io_error(bh))
573 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
574 	bh->b_assoc_map = NULL;
575 }
576 
577 int inode_has_buffers(struct inode *inode)
578 {
579 	return !list_empty(&inode->i_data.private_list);
580 }
581 
582 /*
583  * osync is designed to support O_SYNC io.  It waits synchronously for
584  * all already-submitted IO to complete, but does not queue any new
585  * writes to the disk.
586  *
587  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
588  * you dirty the buffers, and then use osync_inode_buffers to wait for
589  * completion.  Any other dirty buffers which are not yet queued for
590  * write will not be flushed to disk by the osync.
591  */
592 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
593 {
594 	struct buffer_head *bh;
595 	struct list_head *p;
596 	int err = 0;
597 
598 	spin_lock(lock);
599 repeat:
600 	list_for_each_prev(p, list) {
601 		bh = BH_ENTRY(p);
602 		if (buffer_locked(bh)) {
603 			get_bh(bh);
604 			spin_unlock(lock);
605 			wait_on_buffer(bh);
606 			if (!buffer_uptodate(bh))
607 				err = -EIO;
608 			brelse(bh);
609 			spin_lock(lock);
610 			goto repeat;
611 		}
612 	}
613 	spin_unlock(lock);
614 	return err;
615 }
616 
617 /**
618  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
619  *                        buffers
620  * @mapping: the mapping which wants those buffers written
621  *
622  * Starts I/O against the buffers at mapping->private_list, and waits upon
623  * that I/O.
624  *
625  * Basically, this is a convenience function for fsync().
626  * @mapping is a file or directory which needs those buffers to be written for
627  * a successful fsync().
628  */
629 int sync_mapping_buffers(struct address_space *mapping)
630 {
631 	struct address_space *buffer_mapping = mapping->assoc_mapping;
632 
633 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
634 		return 0;
635 
636 	return fsync_buffers_list(&buffer_mapping->private_lock,
637 					&mapping->private_list);
638 }
639 EXPORT_SYMBOL(sync_mapping_buffers);
640 
641 /*
642  * Called when we've recently written block `bblock', and it is known that
643  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
644  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
645  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
646  */
647 void write_boundary_block(struct block_device *bdev,
648 			sector_t bblock, unsigned blocksize)
649 {
650 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
651 	if (bh) {
652 		if (buffer_dirty(bh))
653 			ll_rw_block(WRITE, 1, &bh);
654 		put_bh(bh);
655 	}
656 }
657 
658 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
659 {
660 	struct address_space *mapping = inode->i_mapping;
661 	struct address_space *buffer_mapping = bh->b_page->mapping;
662 
663 	mark_buffer_dirty(bh);
664 	if (!mapping->assoc_mapping) {
665 		mapping->assoc_mapping = buffer_mapping;
666 	} else {
667 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
668 	}
669 	if (list_empty(&bh->b_assoc_buffers)) {
670 		spin_lock(&buffer_mapping->private_lock);
671 		list_move_tail(&bh->b_assoc_buffers,
672 				&mapping->private_list);
673 		bh->b_assoc_map = mapping;
674 		spin_unlock(&buffer_mapping->private_lock);
675 	}
676 }
677 EXPORT_SYMBOL(mark_buffer_dirty_inode);
678 
679 /*
680  * Add a page to the dirty page list.
681  *
682  * It is a sad fact of life that this function is called from several places
683  * deeply under spinlocking.  It may not sleep.
684  *
685  * If the page has buffers, the uptodate buffers are set dirty, to preserve
686  * dirty-state coherency between the page and the buffers.  It the page does
687  * not have buffers then when they are later attached they will all be set
688  * dirty.
689  *
690  * The buffers are dirtied before the page is dirtied.  There's a small race
691  * window in which a writepage caller may see the page cleanness but not the
692  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
693  * before the buffers, a concurrent writepage caller could clear the page dirty
694  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
695  * page on the dirty page list.
696  *
697  * We use private_lock to lock against try_to_free_buffers while using the
698  * page's buffer list.  Also use this to protect against clean buffers being
699  * added to the page after it was set dirty.
700  *
701  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
702  * address_space though.
703  */
704 int __set_page_dirty_buffers(struct page *page)
705 {
706 	struct address_space * const mapping = page_mapping(page);
707 
708 	if (unlikely(!mapping))
709 		return !TestSetPageDirty(page);
710 
711 	spin_lock(&mapping->private_lock);
712 	if (page_has_buffers(page)) {
713 		struct buffer_head *head = page_buffers(page);
714 		struct buffer_head *bh = head;
715 
716 		do {
717 			set_buffer_dirty(bh);
718 			bh = bh->b_this_page;
719 		} while (bh != head);
720 	}
721 	spin_unlock(&mapping->private_lock);
722 
723 	if (TestSetPageDirty(page))
724 		return 0;
725 
726 	write_lock_irq(&mapping->tree_lock);
727 	if (page->mapping) {	/* Race with truncate? */
728 		if (mapping_cap_account_dirty(mapping)) {
729 			__inc_zone_page_state(page, NR_FILE_DIRTY);
730 			task_io_account_write(PAGE_CACHE_SIZE);
731 		}
732 		radix_tree_tag_set(&mapping->page_tree,
733 				page_index(page), PAGECACHE_TAG_DIRTY);
734 	}
735 	write_unlock_irq(&mapping->tree_lock);
736 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
737 	return 1;
738 }
739 EXPORT_SYMBOL(__set_page_dirty_buffers);
740 
741 /*
742  * Write out and wait upon a list of buffers.
743  *
744  * We have conflicting pressures: we want to make sure that all
745  * initially dirty buffers get waited on, but that any subsequently
746  * dirtied buffers don't.  After all, we don't want fsync to last
747  * forever if somebody is actively writing to the file.
748  *
749  * Do this in two main stages: first we copy dirty buffers to a
750  * temporary inode list, queueing the writes as we go.  Then we clean
751  * up, waiting for those writes to complete.
752  *
753  * During this second stage, any subsequent updates to the file may end
754  * up refiling the buffer on the original inode's dirty list again, so
755  * there is a chance we will end up with a buffer queued for write but
756  * not yet completed on that list.  So, as a final cleanup we go through
757  * the osync code to catch these locked, dirty buffers without requeuing
758  * any newly dirty buffers for write.
759  */
760 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
761 {
762 	struct buffer_head *bh;
763 	struct list_head tmp;
764 	int err = 0, err2;
765 
766 	INIT_LIST_HEAD(&tmp);
767 
768 	spin_lock(lock);
769 	while (!list_empty(list)) {
770 		bh = BH_ENTRY(list->next);
771 		__remove_assoc_queue(bh);
772 		if (buffer_dirty(bh) || buffer_locked(bh)) {
773 			list_add(&bh->b_assoc_buffers, &tmp);
774 			if (buffer_dirty(bh)) {
775 				get_bh(bh);
776 				spin_unlock(lock);
777 				/*
778 				 * Ensure any pending I/O completes so that
779 				 * ll_rw_block() actually writes the current
780 				 * contents - it is a noop if I/O is still in
781 				 * flight on potentially older contents.
782 				 */
783 				ll_rw_block(SWRITE, 1, &bh);
784 				brelse(bh);
785 				spin_lock(lock);
786 			}
787 		}
788 	}
789 
790 	while (!list_empty(&tmp)) {
791 		bh = BH_ENTRY(tmp.prev);
792 		list_del_init(&bh->b_assoc_buffers);
793 		get_bh(bh);
794 		spin_unlock(lock);
795 		wait_on_buffer(bh);
796 		if (!buffer_uptodate(bh))
797 			err = -EIO;
798 		brelse(bh);
799 		spin_lock(lock);
800 	}
801 
802 	spin_unlock(lock);
803 	err2 = osync_buffers_list(lock, list);
804 	if (err)
805 		return err;
806 	else
807 		return err2;
808 }
809 
810 /*
811  * Invalidate any and all dirty buffers on a given inode.  We are
812  * probably unmounting the fs, but that doesn't mean we have already
813  * done a sync().  Just drop the buffers from the inode list.
814  *
815  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
816  * assumes that all the buffers are against the blockdev.  Not true
817  * for reiserfs.
818  */
819 void invalidate_inode_buffers(struct inode *inode)
820 {
821 	if (inode_has_buffers(inode)) {
822 		struct address_space *mapping = &inode->i_data;
823 		struct list_head *list = &mapping->private_list;
824 		struct address_space *buffer_mapping = mapping->assoc_mapping;
825 
826 		spin_lock(&buffer_mapping->private_lock);
827 		while (!list_empty(list))
828 			__remove_assoc_queue(BH_ENTRY(list->next));
829 		spin_unlock(&buffer_mapping->private_lock);
830 	}
831 }
832 
833 /*
834  * Remove any clean buffers from the inode's buffer list.  This is called
835  * when we're trying to free the inode itself.  Those buffers can pin it.
836  *
837  * Returns true if all buffers were removed.
838  */
839 int remove_inode_buffers(struct inode *inode)
840 {
841 	int ret = 1;
842 
843 	if (inode_has_buffers(inode)) {
844 		struct address_space *mapping = &inode->i_data;
845 		struct list_head *list = &mapping->private_list;
846 		struct address_space *buffer_mapping = mapping->assoc_mapping;
847 
848 		spin_lock(&buffer_mapping->private_lock);
849 		while (!list_empty(list)) {
850 			struct buffer_head *bh = BH_ENTRY(list->next);
851 			if (buffer_dirty(bh)) {
852 				ret = 0;
853 				break;
854 			}
855 			__remove_assoc_queue(bh);
856 		}
857 		spin_unlock(&buffer_mapping->private_lock);
858 	}
859 	return ret;
860 }
861 
862 /*
863  * Create the appropriate buffers when given a page for data area and
864  * the size of each buffer.. Use the bh->b_this_page linked list to
865  * follow the buffers created.  Return NULL if unable to create more
866  * buffers.
867  *
868  * The retry flag is used to differentiate async IO (paging, swapping)
869  * which may not fail from ordinary buffer allocations.
870  */
871 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
872 		int retry)
873 {
874 	struct buffer_head *bh, *head;
875 	long offset;
876 
877 try_again:
878 	head = NULL;
879 	offset = PAGE_SIZE;
880 	while ((offset -= size) >= 0) {
881 		bh = alloc_buffer_head(GFP_NOFS);
882 		if (!bh)
883 			goto no_grow;
884 
885 		bh->b_bdev = NULL;
886 		bh->b_this_page = head;
887 		bh->b_blocknr = -1;
888 		head = bh;
889 
890 		bh->b_state = 0;
891 		atomic_set(&bh->b_count, 0);
892 		bh->b_private = NULL;
893 		bh->b_size = size;
894 
895 		/* Link the buffer to its page */
896 		set_bh_page(bh, page, offset);
897 
898 		init_buffer(bh, NULL, NULL);
899 	}
900 	return head;
901 /*
902  * In case anything failed, we just free everything we got.
903  */
904 no_grow:
905 	if (head) {
906 		do {
907 			bh = head;
908 			head = head->b_this_page;
909 			free_buffer_head(bh);
910 		} while (head);
911 	}
912 
913 	/*
914 	 * Return failure for non-async IO requests.  Async IO requests
915 	 * are not allowed to fail, so we have to wait until buffer heads
916 	 * become available.  But we don't want tasks sleeping with
917 	 * partially complete buffers, so all were released above.
918 	 */
919 	if (!retry)
920 		return NULL;
921 
922 	/* We're _really_ low on memory. Now we just
923 	 * wait for old buffer heads to become free due to
924 	 * finishing IO.  Since this is an async request and
925 	 * the reserve list is empty, we're sure there are
926 	 * async buffer heads in use.
927 	 */
928 	free_more_memory();
929 	goto try_again;
930 }
931 EXPORT_SYMBOL_GPL(alloc_page_buffers);
932 
933 static inline void
934 link_dev_buffers(struct page *page, struct buffer_head *head)
935 {
936 	struct buffer_head *bh, *tail;
937 
938 	bh = head;
939 	do {
940 		tail = bh;
941 		bh = bh->b_this_page;
942 	} while (bh);
943 	tail->b_this_page = head;
944 	attach_page_buffers(page, head);
945 }
946 
947 /*
948  * Initialise the state of a blockdev page's buffers.
949  */
950 static void
951 init_page_buffers(struct page *page, struct block_device *bdev,
952 			sector_t block, int size)
953 {
954 	struct buffer_head *head = page_buffers(page);
955 	struct buffer_head *bh = head;
956 	int uptodate = PageUptodate(page);
957 
958 	do {
959 		if (!buffer_mapped(bh)) {
960 			init_buffer(bh, NULL, NULL);
961 			bh->b_bdev = bdev;
962 			bh->b_blocknr = block;
963 			if (uptodate)
964 				set_buffer_uptodate(bh);
965 			set_buffer_mapped(bh);
966 		}
967 		block++;
968 		bh = bh->b_this_page;
969 	} while (bh != head);
970 }
971 
972 /*
973  * Create the page-cache page that contains the requested block.
974  *
975  * This is user purely for blockdev mappings.
976  */
977 static struct page *
978 grow_dev_page(struct block_device *bdev, sector_t block,
979 		pgoff_t index, int size)
980 {
981 	struct inode *inode = bdev->bd_inode;
982 	struct page *page;
983 	struct buffer_head *bh;
984 
985 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
986 	if (!page)
987 		return NULL;
988 
989 	BUG_ON(!PageLocked(page));
990 
991 	if (page_has_buffers(page)) {
992 		bh = page_buffers(page);
993 		if (bh->b_size == size) {
994 			init_page_buffers(page, bdev, block, size);
995 			return page;
996 		}
997 		if (!try_to_free_buffers(page))
998 			goto failed;
999 	}
1000 
1001 	/*
1002 	 * Allocate some buffers for this page
1003 	 */
1004 	bh = alloc_page_buffers(page, size, 0);
1005 	if (!bh)
1006 		goto failed;
1007 
1008 	/*
1009 	 * Link the page to the buffers and initialise them.  Take the
1010 	 * lock to be atomic wrt __find_get_block(), which does not
1011 	 * run under the page lock.
1012 	 */
1013 	spin_lock(&inode->i_mapping->private_lock);
1014 	link_dev_buffers(page, bh);
1015 	init_page_buffers(page, bdev, block, size);
1016 	spin_unlock(&inode->i_mapping->private_lock);
1017 	return page;
1018 
1019 failed:
1020 	BUG();
1021 	unlock_page(page);
1022 	page_cache_release(page);
1023 	return NULL;
1024 }
1025 
1026 /*
1027  * Create buffers for the specified block device block's page.  If
1028  * that page was dirty, the buffers are set dirty also.
1029  *
1030  * Except that's a bug.  Attaching dirty buffers to a dirty
1031  * blockdev's page can result in filesystem corruption, because
1032  * some of those buffers may be aliases of filesystem data.
1033  * grow_dev_page() will go BUG() if this happens.
1034  */
1035 static int
1036 grow_buffers(struct block_device *bdev, sector_t block, int size)
1037 {
1038 	struct page *page;
1039 	pgoff_t index;
1040 	int sizebits;
1041 
1042 	sizebits = -1;
1043 	do {
1044 		sizebits++;
1045 	} while ((size << sizebits) < PAGE_SIZE);
1046 
1047 	index = block >> sizebits;
1048 
1049 	/*
1050 	 * Check for a block which wants to lie outside our maximum possible
1051 	 * pagecache index.  (this comparison is done using sector_t types).
1052 	 */
1053 	if (unlikely(index != block >> sizebits)) {
1054 		char b[BDEVNAME_SIZE];
1055 
1056 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1057 			"device %s\n",
1058 			__FUNCTION__, (unsigned long long)block,
1059 			bdevname(bdev, b));
1060 		return -EIO;
1061 	}
1062 	block = index << sizebits;
1063 	/* Create a page with the proper size buffers.. */
1064 	page = grow_dev_page(bdev, block, index, size);
1065 	if (!page)
1066 		return 0;
1067 	unlock_page(page);
1068 	page_cache_release(page);
1069 	return 1;
1070 }
1071 
1072 static struct buffer_head *
1073 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1074 {
1075 	/* Size must be multiple of hard sectorsize */
1076 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1077 			(size < 512 || size > PAGE_SIZE))) {
1078 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1079 					size);
1080 		printk(KERN_ERR "hardsect size: %d\n",
1081 					bdev_hardsect_size(bdev));
1082 
1083 		dump_stack();
1084 		return NULL;
1085 	}
1086 
1087 	for (;;) {
1088 		struct buffer_head * bh;
1089 		int ret;
1090 
1091 		bh = __find_get_block(bdev, block, size);
1092 		if (bh)
1093 			return bh;
1094 
1095 		ret = grow_buffers(bdev, block, size);
1096 		if (ret < 0)
1097 			return NULL;
1098 		if (ret == 0)
1099 			free_more_memory();
1100 	}
1101 }
1102 
1103 /*
1104  * The relationship between dirty buffers and dirty pages:
1105  *
1106  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1107  * the page is tagged dirty in its radix tree.
1108  *
1109  * At all times, the dirtiness of the buffers represents the dirtiness of
1110  * subsections of the page.  If the page has buffers, the page dirty bit is
1111  * merely a hint about the true dirty state.
1112  *
1113  * When a page is set dirty in its entirety, all its buffers are marked dirty
1114  * (if the page has buffers).
1115  *
1116  * When a buffer is marked dirty, its page is dirtied, but the page's other
1117  * buffers are not.
1118  *
1119  * Also.  When blockdev buffers are explicitly read with bread(), they
1120  * individually become uptodate.  But their backing page remains not
1121  * uptodate - even if all of its buffers are uptodate.  A subsequent
1122  * block_read_full_page() against that page will discover all the uptodate
1123  * buffers, will set the page uptodate and will perform no I/O.
1124  */
1125 
1126 /**
1127  * mark_buffer_dirty - mark a buffer_head as needing writeout
1128  * @bh: the buffer_head to mark dirty
1129  *
1130  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1131  * backing page dirty, then tag the page as dirty in its address_space's radix
1132  * tree and then attach the address_space's inode to its superblock's dirty
1133  * inode list.
1134  *
1135  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1136  * mapping->tree_lock and the global inode_lock.
1137  */
1138 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1139 {
1140 	if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1141 		__set_page_dirty_nobuffers(bh->b_page);
1142 }
1143 
1144 /*
1145  * Decrement a buffer_head's reference count.  If all buffers against a page
1146  * have zero reference count, are clean and unlocked, and if the page is clean
1147  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1148  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1149  * a page but it ends up not being freed, and buffers may later be reattached).
1150  */
1151 void __brelse(struct buffer_head * buf)
1152 {
1153 	if (atomic_read(&buf->b_count)) {
1154 		put_bh(buf);
1155 		return;
1156 	}
1157 	printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1158 	WARN_ON(1);
1159 }
1160 
1161 /*
1162  * bforget() is like brelse(), except it discards any
1163  * potentially dirty data.
1164  */
1165 void __bforget(struct buffer_head *bh)
1166 {
1167 	clear_buffer_dirty(bh);
1168 	if (!list_empty(&bh->b_assoc_buffers)) {
1169 		struct address_space *buffer_mapping = bh->b_page->mapping;
1170 
1171 		spin_lock(&buffer_mapping->private_lock);
1172 		list_del_init(&bh->b_assoc_buffers);
1173 		bh->b_assoc_map = NULL;
1174 		spin_unlock(&buffer_mapping->private_lock);
1175 	}
1176 	__brelse(bh);
1177 }
1178 
1179 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1180 {
1181 	lock_buffer(bh);
1182 	if (buffer_uptodate(bh)) {
1183 		unlock_buffer(bh);
1184 		return bh;
1185 	} else {
1186 		get_bh(bh);
1187 		bh->b_end_io = end_buffer_read_sync;
1188 		submit_bh(READ, bh);
1189 		wait_on_buffer(bh);
1190 		if (buffer_uptodate(bh))
1191 			return bh;
1192 	}
1193 	brelse(bh);
1194 	return NULL;
1195 }
1196 
1197 /*
1198  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1199  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1200  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1201  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1202  * CPU's LRUs at the same time.
1203  *
1204  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1205  * sb_find_get_block().
1206  *
1207  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1208  * a local interrupt disable for that.
1209  */
1210 
1211 #define BH_LRU_SIZE	8
1212 
1213 struct bh_lru {
1214 	struct buffer_head *bhs[BH_LRU_SIZE];
1215 };
1216 
1217 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1218 
1219 #ifdef CONFIG_SMP
1220 #define bh_lru_lock()	local_irq_disable()
1221 #define bh_lru_unlock()	local_irq_enable()
1222 #else
1223 #define bh_lru_lock()	preempt_disable()
1224 #define bh_lru_unlock()	preempt_enable()
1225 #endif
1226 
1227 static inline void check_irqs_on(void)
1228 {
1229 #ifdef irqs_disabled
1230 	BUG_ON(irqs_disabled());
1231 #endif
1232 }
1233 
1234 /*
1235  * The LRU management algorithm is dopey-but-simple.  Sorry.
1236  */
1237 static void bh_lru_install(struct buffer_head *bh)
1238 {
1239 	struct buffer_head *evictee = NULL;
1240 	struct bh_lru *lru;
1241 
1242 	check_irqs_on();
1243 	bh_lru_lock();
1244 	lru = &__get_cpu_var(bh_lrus);
1245 	if (lru->bhs[0] != bh) {
1246 		struct buffer_head *bhs[BH_LRU_SIZE];
1247 		int in;
1248 		int out = 0;
1249 
1250 		get_bh(bh);
1251 		bhs[out++] = bh;
1252 		for (in = 0; in < BH_LRU_SIZE; in++) {
1253 			struct buffer_head *bh2 = lru->bhs[in];
1254 
1255 			if (bh2 == bh) {
1256 				__brelse(bh2);
1257 			} else {
1258 				if (out >= BH_LRU_SIZE) {
1259 					BUG_ON(evictee != NULL);
1260 					evictee = bh2;
1261 				} else {
1262 					bhs[out++] = bh2;
1263 				}
1264 			}
1265 		}
1266 		while (out < BH_LRU_SIZE)
1267 			bhs[out++] = NULL;
1268 		memcpy(lru->bhs, bhs, sizeof(bhs));
1269 	}
1270 	bh_lru_unlock();
1271 
1272 	if (evictee)
1273 		__brelse(evictee);
1274 }
1275 
1276 /*
1277  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1278  */
1279 static struct buffer_head *
1280 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1281 {
1282 	struct buffer_head *ret = NULL;
1283 	struct bh_lru *lru;
1284 	unsigned int i;
1285 
1286 	check_irqs_on();
1287 	bh_lru_lock();
1288 	lru = &__get_cpu_var(bh_lrus);
1289 	for (i = 0; i < BH_LRU_SIZE; i++) {
1290 		struct buffer_head *bh = lru->bhs[i];
1291 
1292 		if (bh && bh->b_bdev == bdev &&
1293 				bh->b_blocknr == block && bh->b_size == size) {
1294 			if (i) {
1295 				while (i) {
1296 					lru->bhs[i] = lru->bhs[i - 1];
1297 					i--;
1298 				}
1299 				lru->bhs[0] = bh;
1300 			}
1301 			get_bh(bh);
1302 			ret = bh;
1303 			break;
1304 		}
1305 	}
1306 	bh_lru_unlock();
1307 	return ret;
1308 }
1309 
1310 /*
1311  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1312  * it in the LRU and mark it as accessed.  If it is not present then return
1313  * NULL
1314  */
1315 struct buffer_head *
1316 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1317 {
1318 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1319 
1320 	if (bh == NULL) {
1321 		bh = __find_get_block_slow(bdev, block);
1322 		if (bh)
1323 			bh_lru_install(bh);
1324 	}
1325 	if (bh)
1326 		touch_buffer(bh);
1327 	return bh;
1328 }
1329 EXPORT_SYMBOL(__find_get_block);
1330 
1331 /*
1332  * __getblk will locate (and, if necessary, create) the buffer_head
1333  * which corresponds to the passed block_device, block and size. The
1334  * returned buffer has its reference count incremented.
1335  *
1336  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1337  * illegal block number, __getblk() will happily return a buffer_head
1338  * which represents the non-existent block.  Very weird.
1339  *
1340  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1341  * attempt is failing.  FIXME, perhaps?
1342  */
1343 struct buffer_head *
1344 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1347 
1348 	might_sleep();
1349 	if (bh == NULL)
1350 		bh = __getblk_slow(bdev, block, size);
1351 	return bh;
1352 }
1353 EXPORT_SYMBOL(__getblk);
1354 
1355 /*
1356  * Do async read-ahead on a buffer..
1357  */
1358 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1359 {
1360 	struct buffer_head *bh = __getblk(bdev, block, size);
1361 	if (likely(bh)) {
1362 		ll_rw_block(READA, 1, &bh);
1363 		brelse(bh);
1364 	}
1365 }
1366 EXPORT_SYMBOL(__breadahead);
1367 
1368 /**
1369  *  __bread() - reads a specified block and returns the bh
1370  *  @bdev: the block_device to read from
1371  *  @block: number of block
1372  *  @size: size (in bytes) to read
1373  *
1374  *  Reads a specified block, and returns buffer head that contains it.
1375  *  It returns NULL if the block was unreadable.
1376  */
1377 struct buffer_head *
1378 __bread(struct block_device *bdev, sector_t block, unsigned size)
1379 {
1380 	struct buffer_head *bh = __getblk(bdev, block, size);
1381 
1382 	if (likely(bh) && !buffer_uptodate(bh))
1383 		bh = __bread_slow(bh);
1384 	return bh;
1385 }
1386 EXPORT_SYMBOL(__bread);
1387 
1388 /*
1389  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1390  * This doesn't race because it runs in each cpu either in irq
1391  * or with preempt disabled.
1392  */
1393 static void invalidate_bh_lru(void *arg)
1394 {
1395 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1396 	int i;
1397 
1398 	for (i = 0; i < BH_LRU_SIZE; i++) {
1399 		brelse(b->bhs[i]);
1400 		b->bhs[i] = NULL;
1401 	}
1402 	put_cpu_var(bh_lrus);
1403 }
1404 
1405 void invalidate_bh_lrus(void)
1406 {
1407 	on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1408 }
1409 
1410 void set_bh_page(struct buffer_head *bh,
1411 		struct page *page, unsigned long offset)
1412 {
1413 	bh->b_page = page;
1414 	BUG_ON(offset >= PAGE_SIZE);
1415 	if (PageHighMem(page))
1416 		/*
1417 		 * This catches illegal uses and preserves the offset:
1418 		 */
1419 		bh->b_data = (char *)(0 + offset);
1420 	else
1421 		bh->b_data = page_address(page) + offset;
1422 }
1423 EXPORT_SYMBOL(set_bh_page);
1424 
1425 /*
1426  * Called when truncating a buffer on a page completely.
1427  */
1428 static void discard_buffer(struct buffer_head * bh)
1429 {
1430 	lock_buffer(bh);
1431 	clear_buffer_dirty(bh);
1432 	bh->b_bdev = NULL;
1433 	clear_buffer_mapped(bh);
1434 	clear_buffer_req(bh);
1435 	clear_buffer_new(bh);
1436 	clear_buffer_delay(bh);
1437 	clear_buffer_unwritten(bh);
1438 	unlock_buffer(bh);
1439 }
1440 
1441 /**
1442  * block_invalidatepage - invalidate part of all of a buffer-backed page
1443  *
1444  * @page: the page which is affected
1445  * @offset: the index of the truncation point
1446  *
1447  * block_invalidatepage() is called when all or part of the page has become
1448  * invalidatedby a truncate operation.
1449  *
1450  * block_invalidatepage() does not have to release all buffers, but it must
1451  * ensure that no dirty buffer is left outside @offset and that no I/O
1452  * is underway against any of the blocks which are outside the truncation
1453  * point.  Because the caller is about to free (and possibly reuse) those
1454  * blocks on-disk.
1455  */
1456 void block_invalidatepage(struct page *page, unsigned long offset)
1457 {
1458 	struct buffer_head *head, *bh, *next;
1459 	unsigned int curr_off = 0;
1460 
1461 	BUG_ON(!PageLocked(page));
1462 	if (!page_has_buffers(page))
1463 		goto out;
1464 
1465 	head = page_buffers(page);
1466 	bh = head;
1467 	do {
1468 		unsigned int next_off = curr_off + bh->b_size;
1469 		next = bh->b_this_page;
1470 
1471 		/*
1472 		 * is this block fully invalidated?
1473 		 */
1474 		if (offset <= curr_off)
1475 			discard_buffer(bh);
1476 		curr_off = next_off;
1477 		bh = next;
1478 	} while (bh != head);
1479 
1480 	/*
1481 	 * We release buffers only if the entire page is being invalidated.
1482 	 * The get_block cached value has been unconditionally invalidated,
1483 	 * so real IO is not possible anymore.
1484 	 */
1485 	if (offset == 0)
1486 		try_to_release_page(page, 0);
1487 out:
1488 	return;
1489 }
1490 EXPORT_SYMBOL(block_invalidatepage);
1491 
1492 /*
1493  * We attach and possibly dirty the buffers atomically wrt
1494  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1495  * is already excluded via the page lock.
1496  */
1497 void create_empty_buffers(struct page *page,
1498 			unsigned long blocksize, unsigned long b_state)
1499 {
1500 	struct buffer_head *bh, *head, *tail;
1501 
1502 	head = alloc_page_buffers(page, blocksize, 1);
1503 	bh = head;
1504 	do {
1505 		bh->b_state |= b_state;
1506 		tail = bh;
1507 		bh = bh->b_this_page;
1508 	} while (bh);
1509 	tail->b_this_page = head;
1510 
1511 	spin_lock(&page->mapping->private_lock);
1512 	if (PageUptodate(page) || PageDirty(page)) {
1513 		bh = head;
1514 		do {
1515 			if (PageDirty(page))
1516 				set_buffer_dirty(bh);
1517 			if (PageUptodate(page))
1518 				set_buffer_uptodate(bh);
1519 			bh = bh->b_this_page;
1520 		} while (bh != head);
1521 	}
1522 	attach_page_buffers(page, head);
1523 	spin_unlock(&page->mapping->private_lock);
1524 }
1525 EXPORT_SYMBOL(create_empty_buffers);
1526 
1527 /*
1528  * We are taking a block for data and we don't want any output from any
1529  * buffer-cache aliases starting from return from that function and
1530  * until the moment when something will explicitly mark the buffer
1531  * dirty (hopefully that will not happen until we will free that block ;-)
1532  * We don't even need to mark it not-uptodate - nobody can expect
1533  * anything from a newly allocated buffer anyway. We used to used
1534  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1535  * don't want to mark the alias unmapped, for example - it would confuse
1536  * anyone who might pick it with bread() afterwards...
1537  *
1538  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1539  * be writeout I/O going on against recently-freed buffers.  We don't
1540  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1541  * only if we really need to.  That happens here.
1542  */
1543 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1544 {
1545 	struct buffer_head *old_bh;
1546 
1547 	might_sleep();
1548 
1549 	old_bh = __find_get_block_slow(bdev, block);
1550 	if (old_bh) {
1551 		clear_buffer_dirty(old_bh);
1552 		wait_on_buffer(old_bh);
1553 		clear_buffer_req(old_bh);
1554 		__brelse(old_bh);
1555 	}
1556 }
1557 EXPORT_SYMBOL(unmap_underlying_metadata);
1558 
1559 /*
1560  * NOTE! All mapped/uptodate combinations are valid:
1561  *
1562  *	Mapped	Uptodate	Meaning
1563  *
1564  *	No	No		"unknown" - must do get_block()
1565  *	No	Yes		"hole" - zero-filled
1566  *	Yes	No		"allocated" - allocated on disk, not read in
1567  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1568  *
1569  * "Dirty" is valid only with the last case (mapped+uptodate).
1570  */
1571 
1572 /*
1573  * While block_write_full_page is writing back the dirty buffers under
1574  * the page lock, whoever dirtied the buffers may decide to clean them
1575  * again at any time.  We handle that by only looking at the buffer
1576  * state inside lock_buffer().
1577  *
1578  * If block_write_full_page() is called for regular writeback
1579  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1580  * locked buffer.   This only can happen if someone has written the buffer
1581  * directly, with submit_bh().  At the address_space level PageWriteback
1582  * prevents this contention from occurring.
1583  */
1584 static int __block_write_full_page(struct inode *inode, struct page *page,
1585 			get_block_t *get_block, struct writeback_control *wbc)
1586 {
1587 	int err;
1588 	sector_t block;
1589 	sector_t last_block;
1590 	struct buffer_head *bh, *head;
1591 	const unsigned blocksize = 1 << inode->i_blkbits;
1592 	int nr_underway = 0;
1593 
1594 	BUG_ON(!PageLocked(page));
1595 
1596 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1597 
1598 	if (!page_has_buffers(page)) {
1599 		create_empty_buffers(page, blocksize,
1600 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1601 	}
1602 
1603 	/*
1604 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1605 	 * here, and the (potentially unmapped) buffers may become dirty at
1606 	 * any time.  If a buffer becomes dirty here after we've inspected it
1607 	 * then we just miss that fact, and the page stays dirty.
1608 	 *
1609 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1610 	 * handle that here by just cleaning them.
1611 	 */
1612 
1613 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1614 	head = page_buffers(page);
1615 	bh = head;
1616 
1617 	/*
1618 	 * Get all the dirty buffers mapped to disk addresses and
1619 	 * handle any aliases from the underlying blockdev's mapping.
1620 	 */
1621 	do {
1622 		if (block > last_block) {
1623 			/*
1624 			 * mapped buffers outside i_size will occur, because
1625 			 * this page can be outside i_size when there is a
1626 			 * truncate in progress.
1627 			 */
1628 			/*
1629 			 * The buffer was zeroed by block_write_full_page()
1630 			 */
1631 			clear_buffer_dirty(bh);
1632 			set_buffer_uptodate(bh);
1633 		} else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1634 			WARN_ON(bh->b_size != blocksize);
1635 			err = get_block(inode, block, bh, 1);
1636 			if (err)
1637 				goto recover;
1638 			if (buffer_new(bh)) {
1639 				/* blockdev mappings never come here */
1640 				clear_buffer_new(bh);
1641 				unmap_underlying_metadata(bh->b_bdev,
1642 							bh->b_blocknr);
1643 			}
1644 		}
1645 		bh = bh->b_this_page;
1646 		block++;
1647 	} while (bh != head);
1648 
1649 	do {
1650 		if (!buffer_mapped(bh))
1651 			continue;
1652 		/*
1653 		 * If it's a fully non-blocking write attempt and we cannot
1654 		 * lock the buffer then redirty the page.  Note that this can
1655 		 * potentially cause a busy-wait loop from pdflush and kswapd
1656 		 * activity, but those code paths have their own higher-level
1657 		 * throttling.
1658 		 */
1659 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1660 			lock_buffer(bh);
1661 		} else if (test_set_buffer_locked(bh)) {
1662 			redirty_page_for_writepage(wbc, page);
1663 			continue;
1664 		}
1665 		if (test_clear_buffer_dirty(bh)) {
1666 			mark_buffer_async_write(bh);
1667 		} else {
1668 			unlock_buffer(bh);
1669 		}
1670 	} while ((bh = bh->b_this_page) != head);
1671 
1672 	/*
1673 	 * The page and its buffers are protected by PageWriteback(), so we can
1674 	 * drop the bh refcounts early.
1675 	 */
1676 	BUG_ON(PageWriteback(page));
1677 	set_page_writeback(page);
1678 
1679 	do {
1680 		struct buffer_head *next = bh->b_this_page;
1681 		if (buffer_async_write(bh)) {
1682 			submit_bh(WRITE, bh);
1683 			nr_underway++;
1684 		}
1685 		bh = next;
1686 	} while (bh != head);
1687 	unlock_page(page);
1688 
1689 	err = 0;
1690 done:
1691 	if (nr_underway == 0) {
1692 		/*
1693 		 * The page was marked dirty, but the buffers were
1694 		 * clean.  Someone wrote them back by hand with
1695 		 * ll_rw_block/submit_bh.  A rare case.
1696 		 */
1697 		end_page_writeback(page);
1698 
1699 		/*
1700 		 * The page and buffer_heads can be released at any time from
1701 		 * here on.
1702 		 */
1703 		wbc->pages_skipped++;	/* We didn't write this page */
1704 	}
1705 	return err;
1706 
1707 recover:
1708 	/*
1709 	 * ENOSPC, or some other error.  We may already have added some
1710 	 * blocks to the file, so we need to write these out to avoid
1711 	 * exposing stale data.
1712 	 * The page is currently locked and not marked for writeback
1713 	 */
1714 	bh = head;
1715 	/* Recovery: lock and submit the mapped buffers */
1716 	do {
1717 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
1718 			lock_buffer(bh);
1719 			mark_buffer_async_write(bh);
1720 		} else {
1721 			/*
1722 			 * The buffer may have been set dirty during
1723 			 * attachment to a dirty page.
1724 			 */
1725 			clear_buffer_dirty(bh);
1726 		}
1727 	} while ((bh = bh->b_this_page) != head);
1728 	SetPageError(page);
1729 	BUG_ON(PageWriteback(page));
1730 	mapping_set_error(page->mapping, err);
1731 	set_page_writeback(page);
1732 	do {
1733 		struct buffer_head *next = bh->b_this_page;
1734 		if (buffer_async_write(bh)) {
1735 			clear_buffer_dirty(bh);
1736 			submit_bh(WRITE, bh);
1737 			nr_underway++;
1738 		}
1739 		bh = next;
1740 	} while (bh != head);
1741 	unlock_page(page);
1742 	goto done;
1743 }
1744 
1745 static int __block_prepare_write(struct inode *inode, struct page *page,
1746 		unsigned from, unsigned to, get_block_t *get_block)
1747 {
1748 	unsigned block_start, block_end;
1749 	sector_t block;
1750 	int err = 0;
1751 	unsigned blocksize, bbits;
1752 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1753 
1754 	BUG_ON(!PageLocked(page));
1755 	BUG_ON(from > PAGE_CACHE_SIZE);
1756 	BUG_ON(to > PAGE_CACHE_SIZE);
1757 	BUG_ON(from > to);
1758 
1759 	blocksize = 1 << inode->i_blkbits;
1760 	if (!page_has_buffers(page))
1761 		create_empty_buffers(page, blocksize, 0);
1762 	head = page_buffers(page);
1763 
1764 	bbits = inode->i_blkbits;
1765 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1766 
1767 	for(bh = head, block_start = 0; bh != head || !block_start;
1768 	    block++, block_start=block_end, bh = bh->b_this_page) {
1769 		block_end = block_start + blocksize;
1770 		if (block_end <= from || block_start >= to) {
1771 			if (PageUptodate(page)) {
1772 				if (!buffer_uptodate(bh))
1773 					set_buffer_uptodate(bh);
1774 			}
1775 			continue;
1776 		}
1777 		if (buffer_new(bh))
1778 			clear_buffer_new(bh);
1779 		if (!buffer_mapped(bh)) {
1780 			WARN_ON(bh->b_size != blocksize);
1781 			err = get_block(inode, block, bh, 1);
1782 			if (err)
1783 				break;
1784 			if (buffer_new(bh)) {
1785 				unmap_underlying_metadata(bh->b_bdev,
1786 							bh->b_blocknr);
1787 				if (PageUptodate(page)) {
1788 					set_buffer_uptodate(bh);
1789 					continue;
1790 				}
1791 				if (block_end > to || block_start < from) {
1792 					void *kaddr;
1793 
1794 					kaddr = kmap_atomic(page, KM_USER0);
1795 					if (block_end > to)
1796 						memset(kaddr+to, 0,
1797 							block_end-to);
1798 					if (block_start < from)
1799 						memset(kaddr+block_start,
1800 							0, from-block_start);
1801 					flush_dcache_page(page);
1802 					kunmap_atomic(kaddr, KM_USER0);
1803 				}
1804 				continue;
1805 			}
1806 		}
1807 		if (PageUptodate(page)) {
1808 			if (!buffer_uptodate(bh))
1809 				set_buffer_uptodate(bh);
1810 			continue;
1811 		}
1812 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1813 		    !buffer_unwritten(bh) &&
1814 		     (block_start < from || block_end > to)) {
1815 			ll_rw_block(READ, 1, &bh);
1816 			*wait_bh++=bh;
1817 		}
1818 	}
1819 	/*
1820 	 * If we issued read requests - let them complete.
1821 	 */
1822 	while(wait_bh > wait) {
1823 		wait_on_buffer(*--wait_bh);
1824 		if (!buffer_uptodate(*wait_bh))
1825 			err = -EIO;
1826 	}
1827 	if (!err) {
1828 		bh = head;
1829 		do {
1830 			if (buffer_new(bh))
1831 				clear_buffer_new(bh);
1832 		} while ((bh = bh->b_this_page) != head);
1833 		return 0;
1834 	}
1835 	/* Error case: */
1836 	/*
1837 	 * Zero out any newly allocated blocks to avoid exposing stale
1838 	 * data.  If BH_New is set, we know that the block was newly
1839 	 * allocated in the above loop.
1840 	 */
1841 	bh = head;
1842 	block_start = 0;
1843 	do {
1844 		block_end = block_start+blocksize;
1845 		if (block_end <= from)
1846 			goto next_bh;
1847 		if (block_start >= to)
1848 			break;
1849 		if (buffer_new(bh)) {
1850 			void *kaddr;
1851 
1852 			clear_buffer_new(bh);
1853 			kaddr = kmap_atomic(page, KM_USER0);
1854 			memset(kaddr+block_start, 0, bh->b_size);
1855 			flush_dcache_page(page);
1856 			kunmap_atomic(kaddr, KM_USER0);
1857 			set_buffer_uptodate(bh);
1858 			mark_buffer_dirty(bh);
1859 		}
1860 next_bh:
1861 		block_start = block_end;
1862 		bh = bh->b_this_page;
1863 	} while (bh != head);
1864 	return err;
1865 }
1866 
1867 static int __block_commit_write(struct inode *inode, struct page *page,
1868 		unsigned from, unsigned to)
1869 {
1870 	unsigned block_start, block_end;
1871 	int partial = 0;
1872 	unsigned blocksize;
1873 	struct buffer_head *bh, *head;
1874 
1875 	blocksize = 1 << inode->i_blkbits;
1876 
1877 	for(bh = head = page_buffers(page), block_start = 0;
1878 	    bh != head || !block_start;
1879 	    block_start=block_end, bh = bh->b_this_page) {
1880 		block_end = block_start + blocksize;
1881 		if (block_end <= from || block_start >= to) {
1882 			if (!buffer_uptodate(bh))
1883 				partial = 1;
1884 		} else {
1885 			set_buffer_uptodate(bh);
1886 			mark_buffer_dirty(bh);
1887 		}
1888 	}
1889 
1890 	/*
1891 	 * If this is a partial write which happened to make all buffers
1892 	 * uptodate then we can optimize away a bogus readpage() for
1893 	 * the next read(). Here we 'discover' whether the page went
1894 	 * uptodate as a result of this (potentially partial) write.
1895 	 */
1896 	if (!partial)
1897 		SetPageUptodate(page);
1898 	return 0;
1899 }
1900 
1901 /*
1902  * Generic "read page" function for block devices that have the normal
1903  * get_block functionality. This is most of the block device filesystems.
1904  * Reads the page asynchronously --- the unlock_buffer() and
1905  * set/clear_buffer_uptodate() functions propagate buffer state into the
1906  * page struct once IO has completed.
1907  */
1908 int block_read_full_page(struct page *page, get_block_t *get_block)
1909 {
1910 	struct inode *inode = page->mapping->host;
1911 	sector_t iblock, lblock;
1912 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1913 	unsigned int blocksize;
1914 	int nr, i;
1915 	int fully_mapped = 1;
1916 
1917 	BUG_ON(!PageLocked(page));
1918 	blocksize = 1 << inode->i_blkbits;
1919 	if (!page_has_buffers(page))
1920 		create_empty_buffers(page, blocksize, 0);
1921 	head = page_buffers(page);
1922 
1923 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1924 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1925 	bh = head;
1926 	nr = 0;
1927 	i = 0;
1928 
1929 	do {
1930 		if (buffer_uptodate(bh))
1931 			continue;
1932 
1933 		if (!buffer_mapped(bh)) {
1934 			int err = 0;
1935 
1936 			fully_mapped = 0;
1937 			if (iblock < lblock) {
1938 				WARN_ON(bh->b_size != blocksize);
1939 				err = get_block(inode, iblock, bh, 0);
1940 				if (err)
1941 					SetPageError(page);
1942 			}
1943 			if (!buffer_mapped(bh)) {
1944 				void *kaddr = kmap_atomic(page, KM_USER0);
1945 				memset(kaddr + i * blocksize, 0, blocksize);
1946 				flush_dcache_page(page);
1947 				kunmap_atomic(kaddr, KM_USER0);
1948 				if (!err)
1949 					set_buffer_uptodate(bh);
1950 				continue;
1951 			}
1952 			/*
1953 			 * get_block() might have updated the buffer
1954 			 * synchronously
1955 			 */
1956 			if (buffer_uptodate(bh))
1957 				continue;
1958 		}
1959 		arr[nr++] = bh;
1960 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
1961 
1962 	if (fully_mapped)
1963 		SetPageMappedToDisk(page);
1964 
1965 	if (!nr) {
1966 		/*
1967 		 * All buffers are uptodate - we can set the page uptodate
1968 		 * as well. But not if get_block() returned an error.
1969 		 */
1970 		if (!PageError(page))
1971 			SetPageUptodate(page);
1972 		unlock_page(page);
1973 		return 0;
1974 	}
1975 
1976 	/* Stage two: lock the buffers */
1977 	for (i = 0; i < nr; i++) {
1978 		bh = arr[i];
1979 		lock_buffer(bh);
1980 		mark_buffer_async_read(bh);
1981 	}
1982 
1983 	/*
1984 	 * Stage 3: start the IO.  Check for uptodateness
1985 	 * inside the buffer lock in case another process reading
1986 	 * the underlying blockdev brought it uptodate (the sct fix).
1987 	 */
1988 	for (i = 0; i < nr; i++) {
1989 		bh = arr[i];
1990 		if (buffer_uptodate(bh))
1991 			end_buffer_async_read(bh, 1);
1992 		else
1993 			submit_bh(READ, bh);
1994 	}
1995 	return 0;
1996 }
1997 
1998 /* utility function for filesystems that need to do work on expanding
1999  * truncates.  Uses prepare/commit_write to allow the filesystem to
2000  * deal with the hole.
2001  */
2002 static int __generic_cont_expand(struct inode *inode, loff_t size,
2003 				 pgoff_t index, unsigned int offset)
2004 {
2005 	struct address_space *mapping = inode->i_mapping;
2006 	struct page *page;
2007 	unsigned long limit;
2008 	int err;
2009 
2010 	err = -EFBIG;
2011         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2012 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2013 		send_sig(SIGXFSZ, current, 0);
2014 		goto out;
2015 	}
2016 	if (size > inode->i_sb->s_maxbytes)
2017 		goto out;
2018 
2019 	err = -ENOMEM;
2020 	page = grab_cache_page(mapping, index);
2021 	if (!page)
2022 		goto out;
2023 	err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2024 	if (err) {
2025 		/*
2026 		 * ->prepare_write() may have instantiated a few blocks
2027 		 * outside i_size.  Trim these off again.
2028 		 */
2029 		unlock_page(page);
2030 		page_cache_release(page);
2031 		vmtruncate(inode, inode->i_size);
2032 		goto out;
2033 	}
2034 
2035 	err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2036 
2037 	unlock_page(page);
2038 	page_cache_release(page);
2039 	if (err > 0)
2040 		err = 0;
2041 out:
2042 	return err;
2043 }
2044 
2045 int generic_cont_expand(struct inode *inode, loff_t size)
2046 {
2047 	pgoff_t index;
2048 	unsigned int offset;
2049 
2050 	offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2051 
2052 	/* ugh.  in prepare/commit_write, if from==to==start of block, we
2053 	** skip the prepare.  make sure we never send an offset for the start
2054 	** of a block
2055 	*/
2056 	if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2057 		/* caller must handle this extra byte. */
2058 		offset++;
2059 	}
2060 	index = size >> PAGE_CACHE_SHIFT;
2061 
2062 	return __generic_cont_expand(inode, size, index, offset);
2063 }
2064 
2065 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2066 {
2067 	loff_t pos = size - 1;
2068 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2069 	unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2070 
2071 	/* prepare/commit_write can handle even if from==to==start of block. */
2072 	return __generic_cont_expand(inode, size, index, offset);
2073 }
2074 
2075 /*
2076  * For moronic filesystems that do not allow holes in file.
2077  * We may have to extend the file.
2078  */
2079 
2080 int cont_prepare_write(struct page *page, unsigned offset,
2081 		unsigned to, get_block_t *get_block, loff_t *bytes)
2082 {
2083 	struct address_space *mapping = page->mapping;
2084 	struct inode *inode = mapping->host;
2085 	struct page *new_page;
2086 	pgoff_t pgpos;
2087 	long status;
2088 	unsigned zerofrom;
2089 	unsigned blocksize = 1 << inode->i_blkbits;
2090 	void *kaddr;
2091 
2092 	while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2093 		status = -ENOMEM;
2094 		new_page = grab_cache_page(mapping, pgpos);
2095 		if (!new_page)
2096 			goto out;
2097 		/* we might sleep */
2098 		if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2099 			unlock_page(new_page);
2100 			page_cache_release(new_page);
2101 			continue;
2102 		}
2103 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2104 		if (zerofrom & (blocksize-1)) {
2105 			*bytes |= (blocksize-1);
2106 			(*bytes)++;
2107 		}
2108 		status = __block_prepare_write(inode, new_page, zerofrom,
2109 						PAGE_CACHE_SIZE, get_block);
2110 		if (status)
2111 			goto out_unmap;
2112 		kaddr = kmap_atomic(new_page, KM_USER0);
2113 		memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2114 		flush_dcache_page(new_page);
2115 		kunmap_atomic(kaddr, KM_USER0);
2116 		generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2117 		unlock_page(new_page);
2118 		page_cache_release(new_page);
2119 	}
2120 
2121 	if (page->index < pgpos) {
2122 		/* completely inside the area */
2123 		zerofrom = offset;
2124 	} else {
2125 		/* page covers the boundary, find the boundary offset */
2126 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2127 
2128 		/* if we will expand the thing last block will be filled */
2129 		if (to > zerofrom && (zerofrom & (blocksize-1))) {
2130 			*bytes |= (blocksize-1);
2131 			(*bytes)++;
2132 		}
2133 
2134 		/* starting below the boundary? Nothing to zero out */
2135 		if (offset <= zerofrom)
2136 			zerofrom = offset;
2137 	}
2138 	status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2139 	if (status)
2140 		goto out1;
2141 	if (zerofrom < offset) {
2142 		kaddr = kmap_atomic(page, KM_USER0);
2143 		memset(kaddr+zerofrom, 0, offset-zerofrom);
2144 		flush_dcache_page(page);
2145 		kunmap_atomic(kaddr, KM_USER0);
2146 		__block_commit_write(inode, page, zerofrom, offset);
2147 	}
2148 	return 0;
2149 out1:
2150 	ClearPageUptodate(page);
2151 	return status;
2152 
2153 out_unmap:
2154 	ClearPageUptodate(new_page);
2155 	unlock_page(new_page);
2156 	page_cache_release(new_page);
2157 out:
2158 	return status;
2159 }
2160 
2161 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2162 			get_block_t *get_block)
2163 {
2164 	struct inode *inode = page->mapping->host;
2165 	int err = __block_prepare_write(inode, page, from, to, get_block);
2166 	if (err)
2167 		ClearPageUptodate(page);
2168 	return err;
2169 }
2170 
2171 int block_commit_write(struct page *page, unsigned from, unsigned to)
2172 {
2173 	struct inode *inode = page->mapping->host;
2174 	__block_commit_write(inode,page,from,to);
2175 	return 0;
2176 }
2177 
2178 int generic_commit_write(struct file *file, struct page *page,
2179 		unsigned from, unsigned to)
2180 {
2181 	struct inode *inode = page->mapping->host;
2182 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2183 	__block_commit_write(inode,page,from,to);
2184 	/*
2185 	 * No need to use i_size_read() here, the i_size
2186 	 * cannot change under us because we hold i_mutex.
2187 	 */
2188 	if (pos > inode->i_size) {
2189 		i_size_write(inode, pos);
2190 		mark_inode_dirty(inode);
2191 	}
2192 	return 0;
2193 }
2194 
2195 
2196 /*
2197  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2198  * immediately, while under the page lock.  So it needs a special end_io
2199  * handler which does not touch the bh after unlocking it.
2200  *
2201  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2202  * a race there is benign: unlock_buffer() only use the bh's address for
2203  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2204  * itself.
2205  */
2206 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2207 {
2208 	if (uptodate) {
2209 		set_buffer_uptodate(bh);
2210 	} else {
2211 		/* This happens, due to failed READA attempts. */
2212 		clear_buffer_uptodate(bh);
2213 	}
2214 	unlock_buffer(bh);
2215 }
2216 
2217 /*
2218  * On entry, the page is fully not uptodate.
2219  * On exit the page is fully uptodate in the areas outside (from,to)
2220  */
2221 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2222 			get_block_t *get_block)
2223 {
2224 	struct inode *inode = page->mapping->host;
2225 	const unsigned blkbits = inode->i_blkbits;
2226 	const unsigned blocksize = 1 << blkbits;
2227 	struct buffer_head map_bh;
2228 	struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2229 	unsigned block_in_page;
2230 	unsigned block_start;
2231 	sector_t block_in_file;
2232 	char *kaddr;
2233 	int nr_reads = 0;
2234 	int i;
2235 	int ret = 0;
2236 	int is_mapped_to_disk = 1;
2237 
2238 	if (PageMappedToDisk(page))
2239 		return 0;
2240 
2241 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2242 	map_bh.b_page = page;
2243 
2244 	/*
2245 	 * We loop across all blocks in the page, whether or not they are
2246 	 * part of the affected region.  This is so we can discover if the
2247 	 * page is fully mapped-to-disk.
2248 	 */
2249 	for (block_start = 0, block_in_page = 0;
2250 		  block_start < PAGE_CACHE_SIZE;
2251 		  block_in_page++, block_start += blocksize) {
2252 		unsigned block_end = block_start + blocksize;
2253 		int create;
2254 
2255 		map_bh.b_state = 0;
2256 		create = 1;
2257 		if (block_start >= to)
2258 			create = 0;
2259 		map_bh.b_size = blocksize;
2260 		ret = get_block(inode, block_in_file + block_in_page,
2261 					&map_bh, create);
2262 		if (ret)
2263 			goto failed;
2264 		if (!buffer_mapped(&map_bh))
2265 			is_mapped_to_disk = 0;
2266 		if (buffer_new(&map_bh))
2267 			unmap_underlying_metadata(map_bh.b_bdev,
2268 							map_bh.b_blocknr);
2269 		if (PageUptodate(page))
2270 			continue;
2271 		if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2272 			kaddr = kmap_atomic(page, KM_USER0);
2273 			if (block_start < from)
2274 				memset(kaddr+block_start, 0, from-block_start);
2275 			if (block_end > to)
2276 				memset(kaddr + to, 0, block_end - to);
2277 			flush_dcache_page(page);
2278 			kunmap_atomic(kaddr, KM_USER0);
2279 			continue;
2280 		}
2281 		if (buffer_uptodate(&map_bh))
2282 			continue;	/* reiserfs does this */
2283 		if (block_start < from || block_end > to) {
2284 			struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2285 
2286 			if (!bh) {
2287 				ret = -ENOMEM;
2288 				goto failed;
2289 			}
2290 			bh->b_state = map_bh.b_state;
2291 			atomic_set(&bh->b_count, 0);
2292 			bh->b_this_page = NULL;
2293 			bh->b_page = page;
2294 			bh->b_blocknr = map_bh.b_blocknr;
2295 			bh->b_size = blocksize;
2296 			bh->b_data = (char *)(long)block_start;
2297 			bh->b_bdev = map_bh.b_bdev;
2298 			bh->b_private = NULL;
2299 			read_bh[nr_reads++] = bh;
2300 		}
2301 	}
2302 
2303 	if (nr_reads) {
2304 		struct buffer_head *bh;
2305 
2306 		/*
2307 		 * The page is locked, so these buffers are protected from
2308 		 * any VM or truncate activity.  Hence we don't need to care
2309 		 * for the buffer_head refcounts.
2310 		 */
2311 		for (i = 0; i < nr_reads; i++) {
2312 			bh = read_bh[i];
2313 			lock_buffer(bh);
2314 			bh->b_end_io = end_buffer_read_nobh;
2315 			submit_bh(READ, bh);
2316 		}
2317 		for (i = 0; i < nr_reads; i++) {
2318 			bh = read_bh[i];
2319 			wait_on_buffer(bh);
2320 			if (!buffer_uptodate(bh))
2321 				ret = -EIO;
2322 			free_buffer_head(bh);
2323 			read_bh[i] = NULL;
2324 		}
2325 		if (ret)
2326 			goto failed;
2327 	}
2328 
2329 	if (is_mapped_to_disk)
2330 		SetPageMappedToDisk(page);
2331 
2332 	return 0;
2333 
2334 failed:
2335 	for (i = 0; i < nr_reads; i++) {
2336 		if (read_bh[i])
2337 			free_buffer_head(read_bh[i]);
2338 	}
2339 
2340 	/*
2341 	 * Error recovery is pretty slack.  Clear the page and mark it dirty
2342 	 * so we'll later zero out any blocks which _were_ allocated.
2343 	 */
2344 	kaddr = kmap_atomic(page, KM_USER0);
2345 	memset(kaddr, 0, PAGE_CACHE_SIZE);
2346 	flush_dcache_page(page);
2347 	kunmap_atomic(kaddr, KM_USER0);
2348 	SetPageUptodate(page);
2349 	set_page_dirty(page);
2350 	return ret;
2351 }
2352 EXPORT_SYMBOL(nobh_prepare_write);
2353 
2354 /*
2355  * Make sure any changes to nobh_commit_write() are reflected in
2356  * nobh_truncate_page(), since it doesn't call commit_write().
2357  */
2358 int nobh_commit_write(struct file *file, struct page *page,
2359 		unsigned from, unsigned to)
2360 {
2361 	struct inode *inode = page->mapping->host;
2362 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2363 
2364 	SetPageUptodate(page);
2365 	set_page_dirty(page);
2366 	if (pos > inode->i_size) {
2367 		i_size_write(inode, pos);
2368 		mark_inode_dirty(inode);
2369 	}
2370 	return 0;
2371 }
2372 EXPORT_SYMBOL(nobh_commit_write);
2373 
2374 /*
2375  * nobh_writepage() - based on block_full_write_page() except
2376  * that it tries to operate without attaching bufferheads to
2377  * the page.
2378  */
2379 int nobh_writepage(struct page *page, get_block_t *get_block,
2380 			struct writeback_control *wbc)
2381 {
2382 	struct inode * const inode = page->mapping->host;
2383 	loff_t i_size = i_size_read(inode);
2384 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2385 	unsigned offset;
2386 	void *kaddr;
2387 	int ret;
2388 
2389 	/* Is the page fully inside i_size? */
2390 	if (page->index < end_index)
2391 		goto out;
2392 
2393 	/* Is the page fully outside i_size? (truncate in progress) */
2394 	offset = i_size & (PAGE_CACHE_SIZE-1);
2395 	if (page->index >= end_index+1 || !offset) {
2396 		/*
2397 		 * The page may have dirty, unmapped buffers.  For example,
2398 		 * they may have been added in ext3_writepage().  Make them
2399 		 * freeable here, so the page does not leak.
2400 		 */
2401 #if 0
2402 		/* Not really sure about this  - do we need this ? */
2403 		if (page->mapping->a_ops->invalidatepage)
2404 			page->mapping->a_ops->invalidatepage(page, offset);
2405 #endif
2406 		unlock_page(page);
2407 		return 0; /* don't care */
2408 	}
2409 
2410 	/*
2411 	 * The page straddles i_size.  It must be zeroed out on each and every
2412 	 * writepage invocation because it may be mmapped.  "A file is mapped
2413 	 * in multiples of the page size.  For a file that is not a multiple of
2414 	 * the  page size, the remaining memory is zeroed when mapped, and
2415 	 * writes to that region are not written out to the file."
2416 	 */
2417 	kaddr = kmap_atomic(page, KM_USER0);
2418 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2419 	flush_dcache_page(page);
2420 	kunmap_atomic(kaddr, KM_USER0);
2421 out:
2422 	ret = mpage_writepage(page, get_block, wbc);
2423 	if (ret == -EAGAIN)
2424 		ret = __block_write_full_page(inode, page, get_block, wbc);
2425 	return ret;
2426 }
2427 EXPORT_SYMBOL(nobh_writepage);
2428 
2429 /*
2430  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2431  */
2432 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2433 {
2434 	struct inode *inode = mapping->host;
2435 	unsigned blocksize = 1 << inode->i_blkbits;
2436 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2437 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2438 	unsigned to;
2439 	struct page *page;
2440 	const struct address_space_operations *a_ops = mapping->a_ops;
2441 	char *kaddr;
2442 	int ret = 0;
2443 
2444 	if ((offset & (blocksize - 1)) == 0)
2445 		goto out;
2446 
2447 	ret = -ENOMEM;
2448 	page = grab_cache_page(mapping, index);
2449 	if (!page)
2450 		goto out;
2451 
2452 	to = (offset + blocksize) & ~(blocksize - 1);
2453 	ret = a_ops->prepare_write(NULL, page, offset, to);
2454 	if (ret == 0) {
2455 		kaddr = kmap_atomic(page, KM_USER0);
2456 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2457 		flush_dcache_page(page);
2458 		kunmap_atomic(kaddr, KM_USER0);
2459 		/*
2460 		 * It would be more correct to call aops->commit_write()
2461 		 * here, but this is more efficient.
2462 		 */
2463 		SetPageUptodate(page);
2464 		set_page_dirty(page);
2465 	}
2466 	unlock_page(page);
2467 	page_cache_release(page);
2468 out:
2469 	return ret;
2470 }
2471 EXPORT_SYMBOL(nobh_truncate_page);
2472 
2473 int block_truncate_page(struct address_space *mapping,
2474 			loff_t from, get_block_t *get_block)
2475 {
2476 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2477 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2478 	unsigned blocksize;
2479 	sector_t iblock;
2480 	unsigned length, pos;
2481 	struct inode *inode = mapping->host;
2482 	struct page *page;
2483 	struct buffer_head *bh;
2484 	void *kaddr;
2485 	int err;
2486 
2487 	blocksize = 1 << inode->i_blkbits;
2488 	length = offset & (blocksize - 1);
2489 
2490 	/* Block boundary? Nothing to do */
2491 	if (!length)
2492 		return 0;
2493 
2494 	length = blocksize - length;
2495 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2496 
2497 	page = grab_cache_page(mapping, index);
2498 	err = -ENOMEM;
2499 	if (!page)
2500 		goto out;
2501 
2502 	if (!page_has_buffers(page))
2503 		create_empty_buffers(page, blocksize, 0);
2504 
2505 	/* Find the buffer that contains "offset" */
2506 	bh = page_buffers(page);
2507 	pos = blocksize;
2508 	while (offset >= pos) {
2509 		bh = bh->b_this_page;
2510 		iblock++;
2511 		pos += blocksize;
2512 	}
2513 
2514 	err = 0;
2515 	if (!buffer_mapped(bh)) {
2516 		WARN_ON(bh->b_size != blocksize);
2517 		err = get_block(inode, iblock, bh, 0);
2518 		if (err)
2519 			goto unlock;
2520 		/* unmapped? It's a hole - nothing to do */
2521 		if (!buffer_mapped(bh))
2522 			goto unlock;
2523 	}
2524 
2525 	/* Ok, it's mapped. Make sure it's up-to-date */
2526 	if (PageUptodate(page))
2527 		set_buffer_uptodate(bh);
2528 
2529 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2530 		err = -EIO;
2531 		ll_rw_block(READ, 1, &bh);
2532 		wait_on_buffer(bh);
2533 		/* Uhhuh. Read error. Complain and punt. */
2534 		if (!buffer_uptodate(bh))
2535 			goto unlock;
2536 	}
2537 
2538 	kaddr = kmap_atomic(page, KM_USER0);
2539 	memset(kaddr + offset, 0, length);
2540 	flush_dcache_page(page);
2541 	kunmap_atomic(kaddr, KM_USER0);
2542 
2543 	mark_buffer_dirty(bh);
2544 	err = 0;
2545 
2546 unlock:
2547 	unlock_page(page);
2548 	page_cache_release(page);
2549 out:
2550 	return err;
2551 }
2552 
2553 /*
2554  * The generic ->writepage function for buffer-backed address_spaces
2555  */
2556 int block_write_full_page(struct page *page, get_block_t *get_block,
2557 			struct writeback_control *wbc)
2558 {
2559 	struct inode * const inode = page->mapping->host;
2560 	loff_t i_size = i_size_read(inode);
2561 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2562 	unsigned offset;
2563 	void *kaddr;
2564 
2565 	/* Is the page fully inside i_size? */
2566 	if (page->index < end_index)
2567 		return __block_write_full_page(inode, page, get_block, wbc);
2568 
2569 	/* Is the page fully outside i_size? (truncate in progress) */
2570 	offset = i_size & (PAGE_CACHE_SIZE-1);
2571 	if (page->index >= end_index+1 || !offset) {
2572 		/*
2573 		 * The page may have dirty, unmapped buffers.  For example,
2574 		 * they may have been added in ext3_writepage().  Make them
2575 		 * freeable here, so the page does not leak.
2576 		 */
2577 		do_invalidatepage(page, 0);
2578 		unlock_page(page);
2579 		return 0; /* don't care */
2580 	}
2581 
2582 	/*
2583 	 * The page straddles i_size.  It must be zeroed out on each and every
2584 	 * writepage invokation because it may be mmapped.  "A file is mapped
2585 	 * in multiples of the page size.  For a file that is not a multiple of
2586 	 * the  page size, the remaining memory is zeroed when mapped, and
2587 	 * writes to that region are not written out to the file."
2588 	 */
2589 	kaddr = kmap_atomic(page, KM_USER0);
2590 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2591 	flush_dcache_page(page);
2592 	kunmap_atomic(kaddr, KM_USER0);
2593 	return __block_write_full_page(inode, page, get_block, wbc);
2594 }
2595 
2596 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2597 			    get_block_t *get_block)
2598 {
2599 	struct buffer_head tmp;
2600 	struct inode *inode = mapping->host;
2601 	tmp.b_state = 0;
2602 	tmp.b_blocknr = 0;
2603 	tmp.b_size = 1 << inode->i_blkbits;
2604 	get_block(inode, block, &tmp, 0);
2605 	return tmp.b_blocknr;
2606 }
2607 
2608 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2609 {
2610 	struct buffer_head *bh = bio->bi_private;
2611 
2612 	if (bio->bi_size)
2613 		return 1;
2614 
2615 	if (err == -EOPNOTSUPP) {
2616 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2617 		set_bit(BH_Eopnotsupp, &bh->b_state);
2618 	}
2619 
2620 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2621 	bio_put(bio);
2622 	return 0;
2623 }
2624 
2625 int submit_bh(int rw, struct buffer_head * bh)
2626 {
2627 	struct bio *bio;
2628 	int ret = 0;
2629 
2630 	BUG_ON(!buffer_locked(bh));
2631 	BUG_ON(!buffer_mapped(bh));
2632 	BUG_ON(!bh->b_end_io);
2633 
2634 	if (buffer_ordered(bh) && (rw == WRITE))
2635 		rw = WRITE_BARRIER;
2636 
2637 	/*
2638 	 * Only clear out a write error when rewriting, should this
2639 	 * include WRITE_SYNC as well?
2640 	 */
2641 	if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2642 		clear_buffer_write_io_error(bh);
2643 
2644 	/*
2645 	 * from here on down, it's all bio -- do the initial mapping,
2646 	 * submit_bio -> generic_make_request may further map this bio around
2647 	 */
2648 	bio = bio_alloc(GFP_NOIO, 1);
2649 
2650 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2651 	bio->bi_bdev = bh->b_bdev;
2652 	bio->bi_io_vec[0].bv_page = bh->b_page;
2653 	bio->bi_io_vec[0].bv_len = bh->b_size;
2654 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2655 
2656 	bio->bi_vcnt = 1;
2657 	bio->bi_idx = 0;
2658 	bio->bi_size = bh->b_size;
2659 
2660 	bio->bi_end_io = end_bio_bh_io_sync;
2661 	bio->bi_private = bh;
2662 
2663 	bio_get(bio);
2664 	submit_bio(rw, bio);
2665 
2666 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2667 		ret = -EOPNOTSUPP;
2668 
2669 	bio_put(bio);
2670 	return ret;
2671 }
2672 
2673 /**
2674  * ll_rw_block: low-level access to block devices (DEPRECATED)
2675  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2676  * @nr: number of &struct buffer_heads in the array
2677  * @bhs: array of pointers to &struct buffer_head
2678  *
2679  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2680  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2681  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2682  * are sent to disk. The fourth %READA option is described in the documentation
2683  * for generic_make_request() which ll_rw_block() calls.
2684  *
2685  * This function drops any buffer that it cannot get a lock on (with the
2686  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2687  * clean when doing a write request, and any buffer that appears to be
2688  * up-to-date when doing read request.  Further it marks as clean buffers that
2689  * are processed for writing (the buffer cache won't assume that they are
2690  * actually clean until the buffer gets unlocked).
2691  *
2692  * ll_rw_block sets b_end_io to simple completion handler that marks
2693  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2694  * any waiters.
2695  *
2696  * All of the buffers must be for the same device, and must also be a
2697  * multiple of the current approved size for the device.
2698  */
2699 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2700 {
2701 	int i;
2702 
2703 	for (i = 0; i < nr; i++) {
2704 		struct buffer_head *bh = bhs[i];
2705 
2706 		if (rw == SWRITE)
2707 			lock_buffer(bh);
2708 		else if (test_set_buffer_locked(bh))
2709 			continue;
2710 
2711 		if (rw == WRITE || rw == SWRITE) {
2712 			if (test_clear_buffer_dirty(bh)) {
2713 				bh->b_end_io = end_buffer_write_sync;
2714 				get_bh(bh);
2715 				submit_bh(WRITE, bh);
2716 				continue;
2717 			}
2718 		} else {
2719 			if (!buffer_uptodate(bh)) {
2720 				bh->b_end_io = end_buffer_read_sync;
2721 				get_bh(bh);
2722 				submit_bh(rw, bh);
2723 				continue;
2724 			}
2725 		}
2726 		unlock_buffer(bh);
2727 	}
2728 }
2729 
2730 /*
2731  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2732  * and then start new I/O and then wait upon it.  The caller must have a ref on
2733  * the buffer_head.
2734  */
2735 int sync_dirty_buffer(struct buffer_head *bh)
2736 {
2737 	int ret = 0;
2738 
2739 	WARN_ON(atomic_read(&bh->b_count) < 1);
2740 	lock_buffer(bh);
2741 	if (test_clear_buffer_dirty(bh)) {
2742 		get_bh(bh);
2743 		bh->b_end_io = end_buffer_write_sync;
2744 		ret = submit_bh(WRITE, bh);
2745 		wait_on_buffer(bh);
2746 		if (buffer_eopnotsupp(bh)) {
2747 			clear_buffer_eopnotsupp(bh);
2748 			ret = -EOPNOTSUPP;
2749 		}
2750 		if (!ret && !buffer_uptodate(bh))
2751 			ret = -EIO;
2752 	} else {
2753 		unlock_buffer(bh);
2754 	}
2755 	return ret;
2756 }
2757 
2758 /*
2759  * try_to_free_buffers() checks if all the buffers on this particular page
2760  * are unused, and releases them if so.
2761  *
2762  * Exclusion against try_to_free_buffers may be obtained by either
2763  * locking the page or by holding its mapping's private_lock.
2764  *
2765  * If the page is dirty but all the buffers are clean then we need to
2766  * be sure to mark the page clean as well.  This is because the page
2767  * may be against a block device, and a later reattachment of buffers
2768  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2769  * filesystem data on the same device.
2770  *
2771  * The same applies to regular filesystem pages: if all the buffers are
2772  * clean then we set the page clean and proceed.  To do that, we require
2773  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2774  * private_lock.
2775  *
2776  * try_to_free_buffers() is non-blocking.
2777  */
2778 static inline int buffer_busy(struct buffer_head *bh)
2779 {
2780 	return atomic_read(&bh->b_count) |
2781 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2782 }
2783 
2784 static int
2785 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2786 {
2787 	struct buffer_head *head = page_buffers(page);
2788 	struct buffer_head *bh;
2789 
2790 	bh = head;
2791 	do {
2792 		if (buffer_write_io_error(bh) && page->mapping)
2793 			set_bit(AS_EIO, &page->mapping->flags);
2794 		if (buffer_busy(bh))
2795 			goto failed;
2796 		bh = bh->b_this_page;
2797 	} while (bh != head);
2798 
2799 	do {
2800 		struct buffer_head *next = bh->b_this_page;
2801 
2802 		if (!list_empty(&bh->b_assoc_buffers))
2803 			__remove_assoc_queue(bh);
2804 		bh = next;
2805 	} while (bh != head);
2806 	*buffers_to_free = head;
2807 	__clear_page_buffers(page);
2808 	return 1;
2809 failed:
2810 	return 0;
2811 }
2812 
2813 int try_to_free_buffers(struct page *page)
2814 {
2815 	struct address_space * const mapping = page->mapping;
2816 	struct buffer_head *buffers_to_free = NULL;
2817 	int ret = 0;
2818 
2819 	BUG_ON(!PageLocked(page));
2820 	if (PageWriteback(page))
2821 		return 0;
2822 
2823 	if (mapping == NULL) {		/* can this still happen? */
2824 		ret = drop_buffers(page, &buffers_to_free);
2825 		goto out;
2826 	}
2827 
2828 	spin_lock(&mapping->private_lock);
2829 	ret = drop_buffers(page, &buffers_to_free);
2830 
2831 	/*
2832 	 * If the filesystem writes its buffers by hand (eg ext3)
2833 	 * then we can have clean buffers against a dirty page.  We
2834 	 * clean the page here; otherwise the VM will never notice
2835 	 * that the filesystem did any IO at all.
2836 	 *
2837 	 * Also, during truncate, discard_buffer will have marked all
2838 	 * the page's buffers clean.  We discover that here and clean
2839 	 * the page also.
2840 	 *
2841 	 * private_lock must be held over this entire operation in order
2842 	 * to synchronise against __set_page_dirty_buffers and prevent the
2843 	 * dirty bit from being lost.
2844 	 */
2845 	if (ret)
2846 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
2847 	spin_unlock(&mapping->private_lock);
2848 out:
2849 	if (buffers_to_free) {
2850 		struct buffer_head *bh = buffers_to_free;
2851 
2852 		do {
2853 			struct buffer_head *next = bh->b_this_page;
2854 			free_buffer_head(bh);
2855 			bh = next;
2856 		} while (bh != buffers_to_free);
2857 	}
2858 	return ret;
2859 }
2860 EXPORT_SYMBOL(try_to_free_buffers);
2861 
2862 void block_sync_page(struct page *page)
2863 {
2864 	struct address_space *mapping;
2865 
2866 	smp_mb();
2867 	mapping = page_mapping(page);
2868 	if (mapping)
2869 		blk_run_backing_dev(mapping->backing_dev_info, page);
2870 }
2871 
2872 /*
2873  * There are no bdflush tunables left.  But distributions are
2874  * still running obsolete flush daemons, so we terminate them here.
2875  *
2876  * Use of bdflush() is deprecated and will be removed in a future kernel.
2877  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2878  */
2879 asmlinkage long sys_bdflush(int func, long data)
2880 {
2881 	static int msg_count;
2882 
2883 	if (!capable(CAP_SYS_ADMIN))
2884 		return -EPERM;
2885 
2886 	if (msg_count < 5) {
2887 		msg_count++;
2888 		printk(KERN_INFO
2889 			"warning: process `%s' used the obsolete bdflush"
2890 			" system call\n", current->comm);
2891 		printk(KERN_INFO "Fix your initscripts?\n");
2892 	}
2893 
2894 	if (func == 1)
2895 		do_exit(0);
2896 	return 0;
2897 }
2898 
2899 /*
2900  * Buffer-head allocation
2901  */
2902 static struct kmem_cache *bh_cachep;
2903 
2904 /*
2905  * Once the number of bh's in the machine exceeds this level, we start
2906  * stripping them in writeback.
2907  */
2908 static int max_buffer_heads;
2909 
2910 int buffer_heads_over_limit;
2911 
2912 struct bh_accounting {
2913 	int nr;			/* Number of live bh's */
2914 	int ratelimit;		/* Limit cacheline bouncing */
2915 };
2916 
2917 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2918 
2919 static void recalc_bh_state(void)
2920 {
2921 	int i;
2922 	int tot = 0;
2923 
2924 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2925 		return;
2926 	__get_cpu_var(bh_accounting).ratelimit = 0;
2927 	for_each_online_cpu(i)
2928 		tot += per_cpu(bh_accounting, i).nr;
2929 	buffer_heads_over_limit = (tot > max_buffer_heads);
2930 }
2931 
2932 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2933 {
2934 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2935 	if (ret) {
2936 		get_cpu_var(bh_accounting).nr++;
2937 		recalc_bh_state();
2938 		put_cpu_var(bh_accounting);
2939 	}
2940 	return ret;
2941 }
2942 EXPORT_SYMBOL(alloc_buffer_head);
2943 
2944 void free_buffer_head(struct buffer_head *bh)
2945 {
2946 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
2947 	kmem_cache_free(bh_cachep, bh);
2948 	get_cpu_var(bh_accounting).nr--;
2949 	recalc_bh_state();
2950 	put_cpu_var(bh_accounting);
2951 }
2952 EXPORT_SYMBOL(free_buffer_head);
2953 
2954 static void
2955 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags)
2956 {
2957 	if (flags & SLAB_CTOR_CONSTRUCTOR) {
2958 		struct buffer_head * bh = (struct buffer_head *)data;
2959 
2960 		memset(bh, 0, sizeof(*bh));
2961 		INIT_LIST_HEAD(&bh->b_assoc_buffers);
2962 	}
2963 }
2964 
2965 static void buffer_exit_cpu(int cpu)
2966 {
2967 	int i;
2968 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2969 
2970 	for (i = 0; i < BH_LRU_SIZE; i++) {
2971 		brelse(b->bhs[i]);
2972 		b->bhs[i] = NULL;
2973 	}
2974 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2975 	per_cpu(bh_accounting, cpu).nr = 0;
2976 	put_cpu_var(bh_accounting);
2977 }
2978 
2979 static int buffer_cpu_notify(struct notifier_block *self,
2980 			      unsigned long action, void *hcpu)
2981 {
2982 	if (action == CPU_DEAD)
2983 		buffer_exit_cpu((unsigned long)hcpu);
2984 	return NOTIFY_OK;
2985 }
2986 
2987 void __init buffer_init(void)
2988 {
2989 	int nrpages;
2990 
2991 	bh_cachep = kmem_cache_create("buffer_head",
2992 					sizeof(struct buffer_head), 0,
2993 					(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2994 					SLAB_MEM_SPREAD),
2995 					init_buffer_head,
2996 					NULL);
2997 
2998 	/*
2999 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3000 	 */
3001 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3002 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3003 	hotcpu_notifier(buffer_cpu_notify, 0);
3004 }
3005 
3006 EXPORT_SYMBOL(__bforget);
3007 EXPORT_SYMBOL(__brelse);
3008 EXPORT_SYMBOL(__wait_on_buffer);
3009 EXPORT_SYMBOL(block_commit_write);
3010 EXPORT_SYMBOL(block_prepare_write);
3011 EXPORT_SYMBOL(block_read_full_page);
3012 EXPORT_SYMBOL(block_sync_page);
3013 EXPORT_SYMBOL(block_truncate_page);
3014 EXPORT_SYMBOL(block_write_full_page);
3015 EXPORT_SYMBOL(cont_prepare_write);
3016 EXPORT_SYMBOL(end_buffer_read_sync);
3017 EXPORT_SYMBOL(end_buffer_write_sync);
3018 EXPORT_SYMBOL(file_fsync);
3019 EXPORT_SYMBOL(fsync_bdev);
3020 EXPORT_SYMBOL(generic_block_bmap);
3021 EXPORT_SYMBOL(generic_commit_write);
3022 EXPORT_SYMBOL(generic_cont_expand);
3023 EXPORT_SYMBOL(generic_cont_expand_simple);
3024 EXPORT_SYMBOL(init_buffer);
3025 EXPORT_SYMBOL(invalidate_bdev);
3026 EXPORT_SYMBOL(ll_rw_block);
3027 EXPORT_SYMBOL(mark_buffer_dirty);
3028 EXPORT_SYMBOL(submit_bh);
3029 EXPORT_SYMBOL(sync_dirty_buffer);
3030 EXPORT_SYMBOL(unlock_buffer);
3031