1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/smp_lock.h> 28 #include <linux/capability.h> 29 #include <linux/blkdev.h> 30 #include <linux/file.h> 31 #include <linux/quotaops.h> 32 #include <linux/highmem.h> 33 #include <linux/module.h> 34 #include <linux/writeback.h> 35 #include <linux/hash.h> 36 #include <linux/suspend.h> 37 #include <linux/buffer_head.h> 38 #include <linux/task_io_accounting_ops.h> 39 #include <linux/bio.h> 40 #include <linux/notifier.h> 41 #include <linux/cpu.h> 42 #include <linux/bitops.h> 43 #include <linux/mpage.h> 44 #include <linux/bit_spinlock.h> 45 46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 47 48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 49 50 inline void 51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 52 { 53 bh->b_end_io = handler; 54 bh->b_private = private; 55 } 56 57 static int sync_buffer(void *word) 58 { 59 struct block_device *bd; 60 struct buffer_head *bh 61 = container_of(word, struct buffer_head, b_state); 62 63 smp_mb(); 64 bd = bh->b_bdev; 65 if (bd) 66 blk_run_address_space(bd->bd_inode->i_mapping); 67 io_schedule(); 68 return 0; 69 } 70 71 void fastcall __lock_buffer(struct buffer_head *bh) 72 { 73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 74 TASK_UNINTERRUPTIBLE); 75 } 76 EXPORT_SYMBOL(__lock_buffer); 77 78 void fastcall unlock_buffer(struct buffer_head *bh) 79 { 80 smp_mb__before_clear_bit(); 81 clear_buffer_locked(bh); 82 smp_mb__after_clear_bit(); 83 wake_up_bit(&bh->b_state, BH_Lock); 84 } 85 86 /* 87 * Block until a buffer comes unlocked. This doesn't stop it 88 * from becoming locked again - you have to lock it yourself 89 * if you want to preserve its state. 90 */ 91 void __wait_on_buffer(struct buffer_head * bh) 92 { 93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 94 } 95 96 static void 97 __clear_page_buffers(struct page *page) 98 { 99 ClearPagePrivate(page); 100 set_page_private(page, 0); 101 page_cache_release(page); 102 } 103 104 static void buffer_io_error(struct buffer_head *bh) 105 { 106 char b[BDEVNAME_SIZE]; 107 108 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 109 bdevname(bh->b_bdev, b), 110 (unsigned long long)bh->b_blocknr); 111 } 112 113 /* 114 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 115 * unlock the buffer. This is what ll_rw_block uses too. 116 */ 117 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 118 { 119 if (uptodate) { 120 set_buffer_uptodate(bh); 121 } else { 122 /* This happens, due to failed READA attempts. */ 123 clear_buffer_uptodate(bh); 124 } 125 unlock_buffer(bh); 126 put_bh(bh); 127 } 128 129 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 130 { 131 char b[BDEVNAME_SIZE]; 132 133 if (uptodate) { 134 set_buffer_uptodate(bh); 135 } else { 136 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 137 buffer_io_error(bh); 138 printk(KERN_WARNING "lost page write due to " 139 "I/O error on %s\n", 140 bdevname(bh->b_bdev, b)); 141 } 142 set_buffer_write_io_error(bh); 143 clear_buffer_uptodate(bh); 144 } 145 unlock_buffer(bh); 146 put_bh(bh); 147 } 148 149 /* 150 * Write out and wait upon all the dirty data associated with a block 151 * device via its mapping. Does not take the superblock lock. 152 */ 153 int sync_blockdev(struct block_device *bdev) 154 { 155 int ret = 0; 156 157 if (bdev) 158 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); 159 return ret; 160 } 161 EXPORT_SYMBOL(sync_blockdev); 162 163 /* 164 * Write out and wait upon all dirty data associated with this 165 * device. Filesystem data as well as the underlying block 166 * device. Takes the superblock lock. 167 */ 168 int fsync_bdev(struct block_device *bdev) 169 { 170 struct super_block *sb = get_super(bdev); 171 if (sb) { 172 int res = fsync_super(sb); 173 drop_super(sb); 174 return res; 175 } 176 return sync_blockdev(bdev); 177 } 178 179 /** 180 * freeze_bdev -- lock a filesystem and force it into a consistent state 181 * @bdev: blockdevice to lock 182 * 183 * This takes the block device bd_mount_sem to make sure no new mounts 184 * happen on bdev until thaw_bdev() is called. 185 * If a superblock is found on this device, we take the s_umount semaphore 186 * on it to make sure nobody unmounts until the snapshot creation is done. 187 */ 188 struct super_block *freeze_bdev(struct block_device *bdev) 189 { 190 struct super_block *sb; 191 192 down(&bdev->bd_mount_sem); 193 sb = get_super(bdev); 194 if (sb && !(sb->s_flags & MS_RDONLY)) { 195 sb->s_frozen = SB_FREEZE_WRITE; 196 smp_wmb(); 197 198 __fsync_super(sb); 199 200 sb->s_frozen = SB_FREEZE_TRANS; 201 smp_wmb(); 202 203 sync_blockdev(sb->s_bdev); 204 205 if (sb->s_op->write_super_lockfs) 206 sb->s_op->write_super_lockfs(sb); 207 } 208 209 sync_blockdev(bdev); 210 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ 211 } 212 EXPORT_SYMBOL(freeze_bdev); 213 214 /** 215 * thaw_bdev -- unlock filesystem 216 * @bdev: blockdevice to unlock 217 * @sb: associated superblock 218 * 219 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 220 */ 221 void thaw_bdev(struct block_device *bdev, struct super_block *sb) 222 { 223 if (sb) { 224 BUG_ON(sb->s_bdev != bdev); 225 226 if (sb->s_op->unlockfs) 227 sb->s_op->unlockfs(sb); 228 sb->s_frozen = SB_UNFROZEN; 229 smp_wmb(); 230 wake_up(&sb->s_wait_unfrozen); 231 drop_super(sb); 232 } 233 234 up(&bdev->bd_mount_sem); 235 } 236 EXPORT_SYMBOL(thaw_bdev); 237 238 /* 239 * Various filesystems appear to want __find_get_block to be non-blocking. 240 * But it's the page lock which protects the buffers. To get around this, 241 * we get exclusion from try_to_free_buffers with the blockdev mapping's 242 * private_lock. 243 * 244 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 245 * may be quite high. This code could TryLock the page, and if that 246 * succeeds, there is no need to take private_lock. (But if 247 * private_lock is contended then so is mapping->tree_lock). 248 */ 249 static struct buffer_head * 250 __find_get_block_slow(struct block_device *bdev, sector_t block) 251 { 252 struct inode *bd_inode = bdev->bd_inode; 253 struct address_space *bd_mapping = bd_inode->i_mapping; 254 struct buffer_head *ret = NULL; 255 pgoff_t index; 256 struct buffer_head *bh; 257 struct buffer_head *head; 258 struct page *page; 259 int all_mapped = 1; 260 261 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 262 page = find_get_page(bd_mapping, index); 263 if (!page) 264 goto out; 265 266 spin_lock(&bd_mapping->private_lock); 267 if (!page_has_buffers(page)) 268 goto out_unlock; 269 head = page_buffers(page); 270 bh = head; 271 do { 272 if (bh->b_blocknr == block) { 273 ret = bh; 274 get_bh(bh); 275 goto out_unlock; 276 } 277 if (!buffer_mapped(bh)) 278 all_mapped = 0; 279 bh = bh->b_this_page; 280 } while (bh != head); 281 282 /* we might be here because some of the buffers on this page are 283 * not mapped. This is due to various races between 284 * file io on the block device and getblk. It gets dealt with 285 * elsewhere, don't buffer_error if we had some unmapped buffers 286 */ 287 if (all_mapped) { 288 printk("__find_get_block_slow() failed. " 289 "block=%llu, b_blocknr=%llu\n", 290 (unsigned long long)block, 291 (unsigned long long)bh->b_blocknr); 292 printk("b_state=0x%08lx, b_size=%zu\n", 293 bh->b_state, bh->b_size); 294 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 295 } 296 out_unlock: 297 spin_unlock(&bd_mapping->private_lock); 298 page_cache_release(page); 299 out: 300 return ret; 301 } 302 303 /* If invalidate_buffers() will trash dirty buffers, it means some kind 304 of fs corruption is going on. Trashing dirty data always imply losing 305 information that was supposed to be just stored on the physical layer 306 by the user. 307 308 Thus invalidate_buffers in general usage is not allwowed to trash 309 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 310 be preserved. These buffers are simply skipped. 311 312 We also skip buffers which are still in use. For example this can 313 happen if a userspace program is reading the block device. 314 315 NOTE: In the case where the user removed a removable-media-disk even if 316 there's still dirty data not synced on disk (due a bug in the device driver 317 or due an error of the user), by not destroying the dirty buffers we could 318 generate corruption also on the next media inserted, thus a parameter is 319 necessary to handle this case in the most safe way possible (trying 320 to not corrupt also the new disk inserted with the data belonging to 321 the old now corrupted disk). Also for the ramdisk the natural thing 322 to do in order to release the ramdisk memory is to destroy dirty buffers. 323 324 These are two special cases. Normal usage imply the device driver 325 to issue a sync on the device (without waiting I/O completion) and 326 then an invalidate_buffers call that doesn't trash dirty buffers. 327 328 For handling cache coherency with the blkdev pagecache the 'update' case 329 is been introduced. It is needed to re-read from disk any pinned 330 buffer. NOTE: re-reading from disk is destructive so we can do it only 331 when we assume nobody is changing the buffercache under our I/O and when 332 we think the disk contains more recent information than the buffercache. 333 The update == 1 pass marks the buffers we need to update, the update == 2 334 pass does the actual I/O. */ 335 void invalidate_bdev(struct block_device *bdev) 336 { 337 struct address_space *mapping = bdev->bd_inode->i_mapping; 338 339 if (mapping->nrpages == 0) 340 return; 341 342 invalidate_bh_lrus(); 343 invalidate_mapping_pages(mapping, 0, -1); 344 } 345 346 /* 347 * Kick pdflush then try to free up some ZONE_NORMAL memory. 348 */ 349 static void free_more_memory(void) 350 { 351 struct zone **zones; 352 pg_data_t *pgdat; 353 354 wakeup_pdflush(1024); 355 yield(); 356 357 for_each_online_pgdat(pgdat) { 358 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones; 359 if (*zones) 360 try_to_free_pages(zones, GFP_NOFS); 361 } 362 } 363 364 /* 365 * I/O completion handler for block_read_full_page() - pages 366 * which come unlocked at the end of I/O. 367 */ 368 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 369 { 370 unsigned long flags; 371 struct buffer_head *first; 372 struct buffer_head *tmp; 373 struct page *page; 374 int page_uptodate = 1; 375 376 BUG_ON(!buffer_async_read(bh)); 377 378 page = bh->b_page; 379 if (uptodate) { 380 set_buffer_uptodate(bh); 381 } else { 382 clear_buffer_uptodate(bh); 383 if (printk_ratelimit()) 384 buffer_io_error(bh); 385 SetPageError(page); 386 } 387 388 /* 389 * Be _very_ careful from here on. Bad things can happen if 390 * two buffer heads end IO at almost the same time and both 391 * decide that the page is now completely done. 392 */ 393 first = page_buffers(page); 394 local_irq_save(flags); 395 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 396 clear_buffer_async_read(bh); 397 unlock_buffer(bh); 398 tmp = bh; 399 do { 400 if (!buffer_uptodate(tmp)) 401 page_uptodate = 0; 402 if (buffer_async_read(tmp)) { 403 BUG_ON(!buffer_locked(tmp)); 404 goto still_busy; 405 } 406 tmp = tmp->b_this_page; 407 } while (tmp != bh); 408 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 409 local_irq_restore(flags); 410 411 /* 412 * If none of the buffers had errors and they are all 413 * uptodate then we can set the page uptodate. 414 */ 415 if (page_uptodate && !PageError(page)) 416 SetPageUptodate(page); 417 unlock_page(page); 418 return; 419 420 still_busy: 421 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 422 local_irq_restore(flags); 423 return; 424 } 425 426 /* 427 * Completion handler for block_write_full_page() - pages which are unlocked 428 * during I/O, and which have PageWriteback cleared upon I/O completion. 429 */ 430 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 431 { 432 char b[BDEVNAME_SIZE]; 433 unsigned long flags; 434 struct buffer_head *first; 435 struct buffer_head *tmp; 436 struct page *page; 437 438 BUG_ON(!buffer_async_write(bh)); 439 440 page = bh->b_page; 441 if (uptodate) { 442 set_buffer_uptodate(bh); 443 } else { 444 if (printk_ratelimit()) { 445 buffer_io_error(bh); 446 printk(KERN_WARNING "lost page write due to " 447 "I/O error on %s\n", 448 bdevname(bh->b_bdev, b)); 449 } 450 set_bit(AS_EIO, &page->mapping->flags); 451 set_buffer_write_io_error(bh); 452 clear_buffer_uptodate(bh); 453 SetPageError(page); 454 } 455 456 first = page_buffers(page); 457 local_irq_save(flags); 458 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 459 460 clear_buffer_async_write(bh); 461 unlock_buffer(bh); 462 tmp = bh->b_this_page; 463 while (tmp != bh) { 464 if (buffer_async_write(tmp)) { 465 BUG_ON(!buffer_locked(tmp)); 466 goto still_busy; 467 } 468 tmp = tmp->b_this_page; 469 } 470 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 471 local_irq_restore(flags); 472 end_page_writeback(page); 473 return; 474 475 still_busy: 476 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 477 local_irq_restore(flags); 478 return; 479 } 480 481 /* 482 * If a page's buffers are under async readin (end_buffer_async_read 483 * completion) then there is a possibility that another thread of 484 * control could lock one of the buffers after it has completed 485 * but while some of the other buffers have not completed. This 486 * locked buffer would confuse end_buffer_async_read() into not unlocking 487 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 488 * that this buffer is not under async I/O. 489 * 490 * The page comes unlocked when it has no locked buffer_async buffers 491 * left. 492 * 493 * PageLocked prevents anyone starting new async I/O reads any of 494 * the buffers. 495 * 496 * PageWriteback is used to prevent simultaneous writeout of the same 497 * page. 498 * 499 * PageLocked prevents anyone from starting writeback of a page which is 500 * under read I/O (PageWriteback is only ever set against a locked page). 501 */ 502 static void mark_buffer_async_read(struct buffer_head *bh) 503 { 504 bh->b_end_io = end_buffer_async_read; 505 set_buffer_async_read(bh); 506 } 507 508 void mark_buffer_async_write(struct buffer_head *bh) 509 { 510 bh->b_end_io = end_buffer_async_write; 511 set_buffer_async_write(bh); 512 } 513 EXPORT_SYMBOL(mark_buffer_async_write); 514 515 516 /* 517 * fs/buffer.c contains helper functions for buffer-backed address space's 518 * fsync functions. A common requirement for buffer-based filesystems is 519 * that certain data from the backing blockdev needs to be written out for 520 * a successful fsync(). For example, ext2 indirect blocks need to be 521 * written back and waited upon before fsync() returns. 522 * 523 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 524 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 525 * management of a list of dependent buffers at ->i_mapping->private_list. 526 * 527 * Locking is a little subtle: try_to_free_buffers() will remove buffers 528 * from their controlling inode's queue when they are being freed. But 529 * try_to_free_buffers() will be operating against the *blockdev* mapping 530 * at the time, not against the S_ISREG file which depends on those buffers. 531 * So the locking for private_list is via the private_lock in the address_space 532 * which backs the buffers. Which is different from the address_space 533 * against which the buffers are listed. So for a particular address_space, 534 * mapping->private_lock does *not* protect mapping->private_list! In fact, 535 * mapping->private_list will always be protected by the backing blockdev's 536 * ->private_lock. 537 * 538 * Which introduces a requirement: all buffers on an address_space's 539 * ->private_list must be from the same address_space: the blockdev's. 540 * 541 * address_spaces which do not place buffers at ->private_list via these 542 * utility functions are free to use private_lock and private_list for 543 * whatever they want. The only requirement is that list_empty(private_list) 544 * be true at clear_inode() time. 545 * 546 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 547 * filesystems should do that. invalidate_inode_buffers() should just go 548 * BUG_ON(!list_empty). 549 * 550 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 551 * take an address_space, not an inode. And it should be called 552 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 553 * queued up. 554 * 555 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 556 * list if it is already on a list. Because if the buffer is on a list, 557 * it *must* already be on the right one. If not, the filesystem is being 558 * silly. This will save a ton of locking. But first we have to ensure 559 * that buffers are taken *off* the old inode's list when they are freed 560 * (presumably in truncate). That requires careful auditing of all 561 * filesystems (do it inside bforget()). It could also be done by bringing 562 * b_inode back. 563 */ 564 565 /* 566 * The buffer's backing address_space's private_lock must be held 567 */ 568 static inline void __remove_assoc_queue(struct buffer_head *bh) 569 { 570 list_del_init(&bh->b_assoc_buffers); 571 WARN_ON(!bh->b_assoc_map); 572 if (buffer_write_io_error(bh)) 573 set_bit(AS_EIO, &bh->b_assoc_map->flags); 574 bh->b_assoc_map = NULL; 575 } 576 577 int inode_has_buffers(struct inode *inode) 578 { 579 return !list_empty(&inode->i_data.private_list); 580 } 581 582 /* 583 * osync is designed to support O_SYNC io. It waits synchronously for 584 * all already-submitted IO to complete, but does not queue any new 585 * writes to the disk. 586 * 587 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 588 * you dirty the buffers, and then use osync_inode_buffers to wait for 589 * completion. Any other dirty buffers which are not yet queued for 590 * write will not be flushed to disk by the osync. 591 */ 592 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 593 { 594 struct buffer_head *bh; 595 struct list_head *p; 596 int err = 0; 597 598 spin_lock(lock); 599 repeat: 600 list_for_each_prev(p, list) { 601 bh = BH_ENTRY(p); 602 if (buffer_locked(bh)) { 603 get_bh(bh); 604 spin_unlock(lock); 605 wait_on_buffer(bh); 606 if (!buffer_uptodate(bh)) 607 err = -EIO; 608 brelse(bh); 609 spin_lock(lock); 610 goto repeat; 611 } 612 } 613 spin_unlock(lock); 614 return err; 615 } 616 617 /** 618 * sync_mapping_buffers - write out and wait upon a mapping's "associated" 619 * buffers 620 * @mapping: the mapping which wants those buffers written 621 * 622 * Starts I/O against the buffers at mapping->private_list, and waits upon 623 * that I/O. 624 * 625 * Basically, this is a convenience function for fsync(). 626 * @mapping is a file or directory which needs those buffers to be written for 627 * a successful fsync(). 628 */ 629 int sync_mapping_buffers(struct address_space *mapping) 630 { 631 struct address_space *buffer_mapping = mapping->assoc_mapping; 632 633 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 634 return 0; 635 636 return fsync_buffers_list(&buffer_mapping->private_lock, 637 &mapping->private_list); 638 } 639 EXPORT_SYMBOL(sync_mapping_buffers); 640 641 /* 642 * Called when we've recently written block `bblock', and it is known that 643 * `bblock' was for a buffer_boundary() buffer. This means that the block at 644 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 645 * dirty, schedule it for IO. So that indirects merge nicely with their data. 646 */ 647 void write_boundary_block(struct block_device *bdev, 648 sector_t bblock, unsigned blocksize) 649 { 650 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 651 if (bh) { 652 if (buffer_dirty(bh)) 653 ll_rw_block(WRITE, 1, &bh); 654 put_bh(bh); 655 } 656 } 657 658 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 659 { 660 struct address_space *mapping = inode->i_mapping; 661 struct address_space *buffer_mapping = bh->b_page->mapping; 662 663 mark_buffer_dirty(bh); 664 if (!mapping->assoc_mapping) { 665 mapping->assoc_mapping = buffer_mapping; 666 } else { 667 BUG_ON(mapping->assoc_mapping != buffer_mapping); 668 } 669 if (list_empty(&bh->b_assoc_buffers)) { 670 spin_lock(&buffer_mapping->private_lock); 671 list_move_tail(&bh->b_assoc_buffers, 672 &mapping->private_list); 673 bh->b_assoc_map = mapping; 674 spin_unlock(&buffer_mapping->private_lock); 675 } 676 } 677 EXPORT_SYMBOL(mark_buffer_dirty_inode); 678 679 /* 680 * Add a page to the dirty page list. 681 * 682 * It is a sad fact of life that this function is called from several places 683 * deeply under spinlocking. It may not sleep. 684 * 685 * If the page has buffers, the uptodate buffers are set dirty, to preserve 686 * dirty-state coherency between the page and the buffers. It the page does 687 * not have buffers then when they are later attached they will all be set 688 * dirty. 689 * 690 * The buffers are dirtied before the page is dirtied. There's a small race 691 * window in which a writepage caller may see the page cleanness but not the 692 * buffer dirtiness. That's fine. If this code were to set the page dirty 693 * before the buffers, a concurrent writepage caller could clear the page dirty 694 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 695 * page on the dirty page list. 696 * 697 * We use private_lock to lock against try_to_free_buffers while using the 698 * page's buffer list. Also use this to protect against clean buffers being 699 * added to the page after it was set dirty. 700 * 701 * FIXME: may need to call ->reservepage here as well. That's rather up to the 702 * address_space though. 703 */ 704 int __set_page_dirty_buffers(struct page *page) 705 { 706 struct address_space * const mapping = page_mapping(page); 707 708 if (unlikely(!mapping)) 709 return !TestSetPageDirty(page); 710 711 spin_lock(&mapping->private_lock); 712 if (page_has_buffers(page)) { 713 struct buffer_head *head = page_buffers(page); 714 struct buffer_head *bh = head; 715 716 do { 717 set_buffer_dirty(bh); 718 bh = bh->b_this_page; 719 } while (bh != head); 720 } 721 spin_unlock(&mapping->private_lock); 722 723 if (TestSetPageDirty(page)) 724 return 0; 725 726 write_lock_irq(&mapping->tree_lock); 727 if (page->mapping) { /* Race with truncate? */ 728 if (mapping_cap_account_dirty(mapping)) { 729 __inc_zone_page_state(page, NR_FILE_DIRTY); 730 task_io_account_write(PAGE_CACHE_SIZE); 731 } 732 radix_tree_tag_set(&mapping->page_tree, 733 page_index(page), PAGECACHE_TAG_DIRTY); 734 } 735 write_unlock_irq(&mapping->tree_lock); 736 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 737 return 1; 738 } 739 EXPORT_SYMBOL(__set_page_dirty_buffers); 740 741 /* 742 * Write out and wait upon a list of buffers. 743 * 744 * We have conflicting pressures: we want to make sure that all 745 * initially dirty buffers get waited on, but that any subsequently 746 * dirtied buffers don't. After all, we don't want fsync to last 747 * forever if somebody is actively writing to the file. 748 * 749 * Do this in two main stages: first we copy dirty buffers to a 750 * temporary inode list, queueing the writes as we go. Then we clean 751 * up, waiting for those writes to complete. 752 * 753 * During this second stage, any subsequent updates to the file may end 754 * up refiling the buffer on the original inode's dirty list again, so 755 * there is a chance we will end up with a buffer queued for write but 756 * not yet completed on that list. So, as a final cleanup we go through 757 * the osync code to catch these locked, dirty buffers without requeuing 758 * any newly dirty buffers for write. 759 */ 760 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 761 { 762 struct buffer_head *bh; 763 struct list_head tmp; 764 int err = 0, err2; 765 766 INIT_LIST_HEAD(&tmp); 767 768 spin_lock(lock); 769 while (!list_empty(list)) { 770 bh = BH_ENTRY(list->next); 771 __remove_assoc_queue(bh); 772 if (buffer_dirty(bh) || buffer_locked(bh)) { 773 list_add(&bh->b_assoc_buffers, &tmp); 774 if (buffer_dirty(bh)) { 775 get_bh(bh); 776 spin_unlock(lock); 777 /* 778 * Ensure any pending I/O completes so that 779 * ll_rw_block() actually writes the current 780 * contents - it is a noop if I/O is still in 781 * flight on potentially older contents. 782 */ 783 ll_rw_block(SWRITE, 1, &bh); 784 brelse(bh); 785 spin_lock(lock); 786 } 787 } 788 } 789 790 while (!list_empty(&tmp)) { 791 bh = BH_ENTRY(tmp.prev); 792 list_del_init(&bh->b_assoc_buffers); 793 get_bh(bh); 794 spin_unlock(lock); 795 wait_on_buffer(bh); 796 if (!buffer_uptodate(bh)) 797 err = -EIO; 798 brelse(bh); 799 spin_lock(lock); 800 } 801 802 spin_unlock(lock); 803 err2 = osync_buffers_list(lock, list); 804 if (err) 805 return err; 806 else 807 return err2; 808 } 809 810 /* 811 * Invalidate any and all dirty buffers on a given inode. We are 812 * probably unmounting the fs, but that doesn't mean we have already 813 * done a sync(). Just drop the buffers from the inode list. 814 * 815 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 816 * assumes that all the buffers are against the blockdev. Not true 817 * for reiserfs. 818 */ 819 void invalidate_inode_buffers(struct inode *inode) 820 { 821 if (inode_has_buffers(inode)) { 822 struct address_space *mapping = &inode->i_data; 823 struct list_head *list = &mapping->private_list; 824 struct address_space *buffer_mapping = mapping->assoc_mapping; 825 826 spin_lock(&buffer_mapping->private_lock); 827 while (!list_empty(list)) 828 __remove_assoc_queue(BH_ENTRY(list->next)); 829 spin_unlock(&buffer_mapping->private_lock); 830 } 831 } 832 833 /* 834 * Remove any clean buffers from the inode's buffer list. This is called 835 * when we're trying to free the inode itself. Those buffers can pin it. 836 * 837 * Returns true if all buffers were removed. 838 */ 839 int remove_inode_buffers(struct inode *inode) 840 { 841 int ret = 1; 842 843 if (inode_has_buffers(inode)) { 844 struct address_space *mapping = &inode->i_data; 845 struct list_head *list = &mapping->private_list; 846 struct address_space *buffer_mapping = mapping->assoc_mapping; 847 848 spin_lock(&buffer_mapping->private_lock); 849 while (!list_empty(list)) { 850 struct buffer_head *bh = BH_ENTRY(list->next); 851 if (buffer_dirty(bh)) { 852 ret = 0; 853 break; 854 } 855 __remove_assoc_queue(bh); 856 } 857 spin_unlock(&buffer_mapping->private_lock); 858 } 859 return ret; 860 } 861 862 /* 863 * Create the appropriate buffers when given a page for data area and 864 * the size of each buffer.. Use the bh->b_this_page linked list to 865 * follow the buffers created. Return NULL if unable to create more 866 * buffers. 867 * 868 * The retry flag is used to differentiate async IO (paging, swapping) 869 * which may not fail from ordinary buffer allocations. 870 */ 871 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 872 int retry) 873 { 874 struct buffer_head *bh, *head; 875 long offset; 876 877 try_again: 878 head = NULL; 879 offset = PAGE_SIZE; 880 while ((offset -= size) >= 0) { 881 bh = alloc_buffer_head(GFP_NOFS); 882 if (!bh) 883 goto no_grow; 884 885 bh->b_bdev = NULL; 886 bh->b_this_page = head; 887 bh->b_blocknr = -1; 888 head = bh; 889 890 bh->b_state = 0; 891 atomic_set(&bh->b_count, 0); 892 bh->b_private = NULL; 893 bh->b_size = size; 894 895 /* Link the buffer to its page */ 896 set_bh_page(bh, page, offset); 897 898 init_buffer(bh, NULL, NULL); 899 } 900 return head; 901 /* 902 * In case anything failed, we just free everything we got. 903 */ 904 no_grow: 905 if (head) { 906 do { 907 bh = head; 908 head = head->b_this_page; 909 free_buffer_head(bh); 910 } while (head); 911 } 912 913 /* 914 * Return failure for non-async IO requests. Async IO requests 915 * are not allowed to fail, so we have to wait until buffer heads 916 * become available. But we don't want tasks sleeping with 917 * partially complete buffers, so all were released above. 918 */ 919 if (!retry) 920 return NULL; 921 922 /* We're _really_ low on memory. Now we just 923 * wait for old buffer heads to become free due to 924 * finishing IO. Since this is an async request and 925 * the reserve list is empty, we're sure there are 926 * async buffer heads in use. 927 */ 928 free_more_memory(); 929 goto try_again; 930 } 931 EXPORT_SYMBOL_GPL(alloc_page_buffers); 932 933 static inline void 934 link_dev_buffers(struct page *page, struct buffer_head *head) 935 { 936 struct buffer_head *bh, *tail; 937 938 bh = head; 939 do { 940 tail = bh; 941 bh = bh->b_this_page; 942 } while (bh); 943 tail->b_this_page = head; 944 attach_page_buffers(page, head); 945 } 946 947 /* 948 * Initialise the state of a blockdev page's buffers. 949 */ 950 static void 951 init_page_buffers(struct page *page, struct block_device *bdev, 952 sector_t block, int size) 953 { 954 struct buffer_head *head = page_buffers(page); 955 struct buffer_head *bh = head; 956 int uptodate = PageUptodate(page); 957 958 do { 959 if (!buffer_mapped(bh)) { 960 init_buffer(bh, NULL, NULL); 961 bh->b_bdev = bdev; 962 bh->b_blocknr = block; 963 if (uptodate) 964 set_buffer_uptodate(bh); 965 set_buffer_mapped(bh); 966 } 967 block++; 968 bh = bh->b_this_page; 969 } while (bh != head); 970 } 971 972 /* 973 * Create the page-cache page that contains the requested block. 974 * 975 * This is user purely for blockdev mappings. 976 */ 977 static struct page * 978 grow_dev_page(struct block_device *bdev, sector_t block, 979 pgoff_t index, int size) 980 { 981 struct inode *inode = bdev->bd_inode; 982 struct page *page; 983 struct buffer_head *bh; 984 985 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 986 if (!page) 987 return NULL; 988 989 BUG_ON(!PageLocked(page)); 990 991 if (page_has_buffers(page)) { 992 bh = page_buffers(page); 993 if (bh->b_size == size) { 994 init_page_buffers(page, bdev, block, size); 995 return page; 996 } 997 if (!try_to_free_buffers(page)) 998 goto failed; 999 } 1000 1001 /* 1002 * Allocate some buffers for this page 1003 */ 1004 bh = alloc_page_buffers(page, size, 0); 1005 if (!bh) 1006 goto failed; 1007 1008 /* 1009 * Link the page to the buffers and initialise them. Take the 1010 * lock to be atomic wrt __find_get_block(), which does not 1011 * run under the page lock. 1012 */ 1013 spin_lock(&inode->i_mapping->private_lock); 1014 link_dev_buffers(page, bh); 1015 init_page_buffers(page, bdev, block, size); 1016 spin_unlock(&inode->i_mapping->private_lock); 1017 return page; 1018 1019 failed: 1020 BUG(); 1021 unlock_page(page); 1022 page_cache_release(page); 1023 return NULL; 1024 } 1025 1026 /* 1027 * Create buffers for the specified block device block's page. If 1028 * that page was dirty, the buffers are set dirty also. 1029 * 1030 * Except that's a bug. Attaching dirty buffers to a dirty 1031 * blockdev's page can result in filesystem corruption, because 1032 * some of those buffers may be aliases of filesystem data. 1033 * grow_dev_page() will go BUG() if this happens. 1034 */ 1035 static int 1036 grow_buffers(struct block_device *bdev, sector_t block, int size) 1037 { 1038 struct page *page; 1039 pgoff_t index; 1040 int sizebits; 1041 1042 sizebits = -1; 1043 do { 1044 sizebits++; 1045 } while ((size << sizebits) < PAGE_SIZE); 1046 1047 index = block >> sizebits; 1048 1049 /* 1050 * Check for a block which wants to lie outside our maximum possible 1051 * pagecache index. (this comparison is done using sector_t types). 1052 */ 1053 if (unlikely(index != block >> sizebits)) { 1054 char b[BDEVNAME_SIZE]; 1055 1056 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1057 "device %s\n", 1058 __FUNCTION__, (unsigned long long)block, 1059 bdevname(bdev, b)); 1060 return -EIO; 1061 } 1062 block = index << sizebits; 1063 /* Create a page with the proper size buffers.. */ 1064 page = grow_dev_page(bdev, block, index, size); 1065 if (!page) 1066 return 0; 1067 unlock_page(page); 1068 page_cache_release(page); 1069 return 1; 1070 } 1071 1072 static struct buffer_head * 1073 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1074 { 1075 /* Size must be multiple of hard sectorsize */ 1076 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1077 (size < 512 || size > PAGE_SIZE))) { 1078 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1079 size); 1080 printk(KERN_ERR "hardsect size: %d\n", 1081 bdev_hardsect_size(bdev)); 1082 1083 dump_stack(); 1084 return NULL; 1085 } 1086 1087 for (;;) { 1088 struct buffer_head * bh; 1089 int ret; 1090 1091 bh = __find_get_block(bdev, block, size); 1092 if (bh) 1093 return bh; 1094 1095 ret = grow_buffers(bdev, block, size); 1096 if (ret < 0) 1097 return NULL; 1098 if (ret == 0) 1099 free_more_memory(); 1100 } 1101 } 1102 1103 /* 1104 * The relationship between dirty buffers and dirty pages: 1105 * 1106 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1107 * the page is tagged dirty in its radix tree. 1108 * 1109 * At all times, the dirtiness of the buffers represents the dirtiness of 1110 * subsections of the page. If the page has buffers, the page dirty bit is 1111 * merely a hint about the true dirty state. 1112 * 1113 * When a page is set dirty in its entirety, all its buffers are marked dirty 1114 * (if the page has buffers). 1115 * 1116 * When a buffer is marked dirty, its page is dirtied, but the page's other 1117 * buffers are not. 1118 * 1119 * Also. When blockdev buffers are explicitly read with bread(), they 1120 * individually become uptodate. But their backing page remains not 1121 * uptodate - even if all of its buffers are uptodate. A subsequent 1122 * block_read_full_page() against that page will discover all the uptodate 1123 * buffers, will set the page uptodate and will perform no I/O. 1124 */ 1125 1126 /** 1127 * mark_buffer_dirty - mark a buffer_head as needing writeout 1128 * @bh: the buffer_head to mark dirty 1129 * 1130 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1131 * backing page dirty, then tag the page as dirty in its address_space's radix 1132 * tree and then attach the address_space's inode to its superblock's dirty 1133 * inode list. 1134 * 1135 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1136 * mapping->tree_lock and the global inode_lock. 1137 */ 1138 void fastcall mark_buffer_dirty(struct buffer_head *bh) 1139 { 1140 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) 1141 __set_page_dirty_nobuffers(bh->b_page); 1142 } 1143 1144 /* 1145 * Decrement a buffer_head's reference count. If all buffers against a page 1146 * have zero reference count, are clean and unlocked, and if the page is clean 1147 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1148 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1149 * a page but it ends up not being freed, and buffers may later be reattached). 1150 */ 1151 void __brelse(struct buffer_head * buf) 1152 { 1153 if (atomic_read(&buf->b_count)) { 1154 put_bh(buf); 1155 return; 1156 } 1157 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1158 WARN_ON(1); 1159 } 1160 1161 /* 1162 * bforget() is like brelse(), except it discards any 1163 * potentially dirty data. 1164 */ 1165 void __bforget(struct buffer_head *bh) 1166 { 1167 clear_buffer_dirty(bh); 1168 if (!list_empty(&bh->b_assoc_buffers)) { 1169 struct address_space *buffer_mapping = bh->b_page->mapping; 1170 1171 spin_lock(&buffer_mapping->private_lock); 1172 list_del_init(&bh->b_assoc_buffers); 1173 bh->b_assoc_map = NULL; 1174 spin_unlock(&buffer_mapping->private_lock); 1175 } 1176 __brelse(bh); 1177 } 1178 1179 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1180 { 1181 lock_buffer(bh); 1182 if (buffer_uptodate(bh)) { 1183 unlock_buffer(bh); 1184 return bh; 1185 } else { 1186 get_bh(bh); 1187 bh->b_end_io = end_buffer_read_sync; 1188 submit_bh(READ, bh); 1189 wait_on_buffer(bh); 1190 if (buffer_uptodate(bh)) 1191 return bh; 1192 } 1193 brelse(bh); 1194 return NULL; 1195 } 1196 1197 /* 1198 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1199 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1200 * refcount elevated by one when they're in an LRU. A buffer can only appear 1201 * once in a particular CPU's LRU. A single buffer can be present in multiple 1202 * CPU's LRUs at the same time. 1203 * 1204 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1205 * sb_find_get_block(). 1206 * 1207 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1208 * a local interrupt disable for that. 1209 */ 1210 1211 #define BH_LRU_SIZE 8 1212 1213 struct bh_lru { 1214 struct buffer_head *bhs[BH_LRU_SIZE]; 1215 }; 1216 1217 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1218 1219 #ifdef CONFIG_SMP 1220 #define bh_lru_lock() local_irq_disable() 1221 #define bh_lru_unlock() local_irq_enable() 1222 #else 1223 #define bh_lru_lock() preempt_disable() 1224 #define bh_lru_unlock() preempt_enable() 1225 #endif 1226 1227 static inline void check_irqs_on(void) 1228 { 1229 #ifdef irqs_disabled 1230 BUG_ON(irqs_disabled()); 1231 #endif 1232 } 1233 1234 /* 1235 * The LRU management algorithm is dopey-but-simple. Sorry. 1236 */ 1237 static void bh_lru_install(struct buffer_head *bh) 1238 { 1239 struct buffer_head *evictee = NULL; 1240 struct bh_lru *lru; 1241 1242 check_irqs_on(); 1243 bh_lru_lock(); 1244 lru = &__get_cpu_var(bh_lrus); 1245 if (lru->bhs[0] != bh) { 1246 struct buffer_head *bhs[BH_LRU_SIZE]; 1247 int in; 1248 int out = 0; 1249 1250 get_bh(bh); 1251 bhs[out++] = bh; 1252 for (in = 0; in < BH_LRU_SIZE; in++) { 1253 struct buffer_head *bh2 = lru->bhs[in]; 1254 1255 if (bh2 == bh) { 1256 __brelse(bh2); 1257 } else { 1258 if (out >= BH_LRU_SIZE) { 1259 BUG_ON(evictee != NULL); 1260 evictee = bh2; 1261 } else { 1262 bhs[out++] = bh2; 1263 } 1264 } 1265 } 1266 while (out < BH_LRU_SIZE) 1267 bhs[out++] = NULL; 1268 memcpy(lru->bhs, bhs, sizeof(bhs)); 1269 } 1270 bh_lru_unlock(); 1271 1272 if (evictee) 1273 __brelse(evictee); 1274 } 1275 1276 /* 1277 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1278 */ 1279 static struct buffer_head * 1280 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1281 { 1282 struct buffer_head *ret = NULL; 1283 struct bh_lru *lru; 1284 unsigned int i; 1285 1286 check_irqs_on(); 1287 bh_lru_lock(); 1288 lru = &__get_cpu_var(bh_lrus); 1289 for (i = 0; i < BH_LRU_SIZE; i++) { 1290 struct buffer_head *bh = lru->bhs[i]; 1291 1292 if (bh && bh->b_bdev == bdev && 1293 bh->b_blocknr == block && bh->b_size == size) { 1294 if (i) { 1295 while (i) { 1296 lru->bhs[i] = lru->bhs[i - 1]; 1297 i--; 1298 } 1299 lru->bhs[0] = bh; 1300 } 1301 get_bh(bh); 1302 ret = bh; 1303 break; 1304 } 1305 } 1306 bh_lru_unlock(); 1307 return ret; 1308 } 1309 1310 /* 1311 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1312 * it in the LRU and mark it as accessed. If it is not present then return 1313 * NULL 1314 */ 1315 struct buffer_head * 1316 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1317 { 1318 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1319 1320 if (bh == NULL) { 1321 bh = __find_get_block_slow(bdev, block); 1322 if (bh) 1323 bh_lru_install(bh); 1324 } 1325 if (bh) 1326 touch_buffer(bh); 1327 return bh; 1328 } 1329 EXPORT_SYMBOL(__find_get_block); 1330 1331 /* 1332 * __getblk will locate (and, if necessary, create) the buffer_head 1333 * which corresponds to the passed block_device, block and size. The 1334 * returned buffer has its reference count incremented. 1335 * 1336 * __getblk() cannot fail - it just keeps trying. If you pass it an 1337 * illegal block number, __getblk() will happily return a buffer_head 1338 * which represents the non-existent block. Very weird. 1339 * 1340 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1341 * attempt is failing. FIXME, perhaps? 1342 */ 1343 struct buffer_head * 1344 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1345 { 1346 struct buffer_head *bh = __find_get_block(bdev, block, size); 1347 1348 might_sleep(); 1349 if (bh == NULL) 1350 bh = __getblk_slow(bdev, block, size); 1351 return bh; 1352 } 1353 EXPORT_SYMBOL(__getblk); 1354 1355 /* 1356 * Do async read-ahead on a buffer.. 1357 */ 1358 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1359 { 1360 struct buffer_head *bh = __getblk(bdev, block, size); 1361 if (likely(bh)) { 1362 ll_rw_block(READA, 1, &bh); 1363 brelse(bh); 1364 } 1365 } 1366 EXPORT_SYMBOL(__breadahead); 1367 1368 /** 1369 * __bread() - reads a specified block and returns the bh 1370 * @bdev: the block_device to read from 1371 * @block: number of block 1372 * @size: size (in bytes) to read 1373 * 1374 * Reads a specified block, and returns buffer head that contains it. 1375 * It returns NULL if the block was unreadable. 1376 */ 1377 struct buffer_head * 1378 __bread(struct block_device *bdev, sector_t block, unsigned size) 1379 { 1380 struct buffer_head *bh = __getblk(bdev, block, size); 1381 1382 if (likely(bh) && !buffer_uptodate(bh)) 1383 bh = __bread_slow(bh); 1384 return bh; 1385 } 1386 EXPORT_SYMBOL(__bread); 1387 1388 /* 1389 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1390 * This doesn't race because it runs in each cpu either in irq 1391 * or with preempt disabled. 1392 */ 1393 static void invalidate_bh_lru(void *arg) 1394 { 1395 struct bh_lru *b = &get_cpu_var(bh_lrus); 1396 int i; 1397 1398 for (i = 0; i < BH_LRU_SIZE; i++) { 1399 brelse(b->bhs[i]); 1400 b->bhs[i] = NULL; 1401 } 1402 put_cpu_var(bh_lrus); 1403 } 1404 1405 void invalidate_bh_lrus(void) 1406 { 1407 on_each_cpu(invalidate_bh_lru, NULL, 1, 1); 1408 } 1409 1410 void set_bh_page(struct buffer_head *bh, 1411 struct page *page, unsigned long offset) 1412 { 1413 bh->b_page = page; 1414 BUG_ON(offset >= PAGE_SIZE); 1415 if (PageHighMem(page)) 1416 /* 1417 * This catches illegal uses and preserves the offset: 1418 */ 1419 bh->b_data = (char *)(0 + offset); 1420 else 1421 bh->b_data = page_address(page) + offset; 1422 } 1423 EXPORT_SYMBOL(set_bh_page); 1424 1425 /* 1426 * Called when truncating a buffer on a page completely. 1427 */ 1428 static void discard_buffer(struct buffer_head * bh) 1429 { 1430 lock_buffer(bh); 1431 clear_buffer_dirty(bh); 1432 bh->b_bdev = NULL; 1433 clear_buffer_mapped(bh); 1434 clear_buffer_req(bh); 1435 clear_buffer_new(bh); 1436 clear_buffer_delay(bh); 1437 clear_buffer_unwritten(bh); 1438 unlock_buffer(bh); 1439 } 1440 1441 /** 1442 * block_invalidatepage - invalidate part of all of a buffer-backed page 1443 * 1444 * @page: the page which is affected 1445 * @offset: the index of the truncation point 1446 * 1447 * block_invalidatepage() is called when all or part of the page has become 1448 * invalidatedby a truncate operation. 1449 * 1450 * block_invalidatepage() does not have to release all buffers, but it must 1451 * ensure that no dirty buffer is left outside @offset and that no I/O 1452 * is underway against any of the blocks which are outside the truncation 1453 * point. Because the caller is about to free (and possibly reuse) those 1454 * blocks on-disk. 1455 */ 1456 void block_invalidatepage(struct page *page, unsigned long offset) 1457 { 1458 struct buffer_head *head, *bh, *next; 1459 unsigned int curr_off = 0; 1460 1461 BUG_ON(!PageLocked(page)); 1462 if (!page_has_buffers(page)) 1463 goto out; 1464 1465 head = page_buffers(page); 1466 bh = head; 1467 do { 1468 unsigned int next_off = curr_off + bh->b_size; 1469 next = bh->b_this_page; 1470 1471 /* 1472 * is this block fully invalidated? 1473 */ 1474 if (offset <= curr_off) 1475 discard_buffer(bh); 1476 curr_off = next_off; 1477 bh = next; 1478 } while (bh != head); 1479 1480 /* 1481 * We release buffers only if the entire page is being invalidated. 1482 * The get_block cached value has been unconditionally invalidated, 1483 * so real IO is not possible anymore. 1484 */ 1485 if (offset == 0) 1486 try_to_release_page(page, 0); 1487 out: 1488 return; 1489 } 1490 EXPORT_SYMBOL(block_invalidatepage); 1491 1492 /* 1493 * We attach and possibly dirty the buffers atomically wrt 1494 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1495 * is already excluded via the page lock. 1496 */ 1497 void create_empty_buffers(struct page *page, 1498 unsigned long blocksize, unsigned long b_state) 1499 { 1500 struct buffer_head *bh, *head, *tail; 1501 1502 head = alloc_page_buffers(page, blocksize, 1); 1503 bh = head; 1504 do { 1505 bh->b_state |= b_state; 1506 tail = bh; 1507 bh = bh->b_this_page; 1508 } while (bh); 1509 tail->b_this_page = head; 1510 1511 spin_lock(&page->mapping->private_lock); 1512 if (PageUptodate(page) || PageDirty(page)) { 1513 bh = head; 1514 do { 1515 if (PageDirty(page)) 1516 set_buffer_dirty(bh); 1517 if (PageUptodate(page)) 1518 set_buffer_uptodate(bh); 1519 bh = bh->b_this_page; 1520 } while (bh != head); 1521 } 1522 attach_page_buffers(page, head); 1523 spin_unlock(&page->mapping->private_lock); 1524 } 1525 EXPORT_SYMBOL(create_empty_buffers); 1526 1527 /* 1528 * We are taking a block for data and we don't want any output from any 1529 * buffer-cache aliases starting from return from that function and 1530 * until the moment when something will explicitly mark the buffer 1531 * dirty (hopefully that will not happen until we will free that block ;-) 1532 * We don't even need to mark it not-uptodate - nobody can expect 1533 * anything from a newly allocated buffer anyway. We used to used 1534 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1535 * don't want to mark the alias unmapped, for example - it would confuse 1536 * anyone who might pick it with bread() afterwards... 1537 * 1538 * Also.. Note that bforget() doesn't lock the buffer. So there can 1539 * be writeout I/O going on against recently-freed buffers. We don't 1540 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1541 * only if we really need to. That happens here. 1542 */ 1543 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1544 { 1545 struct buffer_head *old_bh; 1546 1547 might_sleep(); 1548 1549 old_bh = __find_get_block_slow(bdev, block); 1550 if (old_bh) { 1551 clear_buffer_dirty(old_bh); 1552 wait_on_buffer(old_bh); 1553 clear_buffer_req(old_bh); 1554 __brelse(old_bh); 1555 } 1556 } 1557 EXPORT_SYMBOL(unmap_underlying_metadata); 1558 1559 /* 1560 * NOTE! All mapped/uptodate combinations are valid: 1561 * 1562 * Mapped Uptodate Meaning 1563 * 1564 * No No "unknown" - must do get_block() 1565 * No Yes "hole" - zero-filled 1566 * Yes No "allocated" - allocated on disk, not read in 1567 * Yes Yes "valid" - allocated and up-to-date in memory. 1568 * 1569 * "Dirty" is valid only with the last case (mapped+uptodate). 1570 */ 1571 1572 /* 1573 * While block_write_full_page is writing back the dirty buffers under 1574 * the page lock, whoever dirtied the buffers may decide to clean them 1575 * again at any time. We handle that by only looking at the buffer 1576 * state inside lock_buffer(). 1577 * 1578 * If block_write_full_page() is called for regular writeback 1579 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1580 * locked buffer. This only can happen if someone has written the buffer 1581 * directly, with submit_bh(). At the address_space level PageWriteback 1582 * prevents this contention from occurring. 1583 */ 1584 static int __block_write_full_page(struct inode *inode, struct page *page, 1585 get_block_t *get_block, struct writeback_control *wbc) 1586 { 1587 int err; 1588 sector_t block; 1589 sector_t last_block; 1590 struct buffer_head *bh, *head; 1591 const unsigned blocksize = 1 << inode->i_blkbits; 1592 int nr_underway = 0; 1593 1594 BUG_ON(!PageLocked(page)); 1595 1596 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1597 1598 if (!page_has_buffers(page)) { 1599 create_empty_buffers(page, blocksize, 1600 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1601 } 1602 1603 /* 1604 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1605 * here, and the (potentially unmapped) buffers may become dirty at 1606 * any time. If a buffer becomes dirty here after we've inspected it 1607 * then we just miss that fact, and the page stays dirty. 1608 * 1609 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1610 * handle that here by just cleaning them. 1611 */ 1612 1613 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1614 head = page_buffers(page); 1615 bh = head; 1616 1617 /* 1618 * Get all the dirty buffers mapped to disk addresses and 1619 * handle any aliases from the underlying blockdev's mapping. 1620 */ 1621 do { 1622 if (block > last_block) { 1623 /* 1624 * mapped buffers outside i_size will occur, because 1625 * this page can be outside i_size when there is a 1626 * truncate in progress. 1627 */ 1628 /* 1629 * The buffer was zeroed by block_write_full_page() 1630 */ 1631 clear_buffer_dirty(bh); 1632 set_buffer_uptodate(bh); 1633 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { 1634 WARN_ON(bh->b_size != blocksize); 1635 err = get_block(inode, block, bh, 1); 1636 if (err) 1637 goto recover; 1638 if (buffer_new(bh)) { 1639 /* blockdev mappings never come here */ 1640 clear_buffer_new(bh); 1641 unmap_underlying_metadata(bh->b_bdev, 1642 bh->b_blocknr); 1643 } 1644 } 1645 bh = bh->b_this_page; 1646 block++; 1647 } while (bh != head); 1648 1649 do { 1650 if (!buffer_mapped(bh)) 1651 continue; 1652 /* 1653 * If it's a fully non-blocking write attempt and we cannot 1654 * lock the buffer then redirty the page. Note that this can 1655 * potentially cause a busy-wait loop from pdflush and kswapd 1656 * activity, but those code paths have their own higher-level 1657 * throttling. 1658 */ 1659 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1660 lock_buffer(bh); 1661 } else if (test_set_buffer_locked(bh)) { 1662 redirty_page_for_writepage(wbc, page); 1663 continue; 1664 } 1665 if (test_clear_buffer_dirty(bh)) { 1666 mark_buffer_async_write(bh); 1667 } else { 1668 unlock_buffer(bh); 1669 } 1670 } while ((bh = bh->b_this_page) != head); 1671 1672 /* 1673 * The page and its buffers are protected by PageWriteback(), so we can 1674 * drop the bh refcounts early. 1675 */ 1676 BUG_ON(PageWriteback(page)); 1677 set_page_writeback(page); 1678 1679 do { 1680 struct buffer_head *next = bh->b_this_page; 1681 if (buffer_async_write(bh)) { 1682 submit_bh(WRITE, bh); 1683 nr_underway++; 1684 } 1685 bh = next; 1686 } while (bh != head); 1687 unlock_page(page); 1688 1689 err = 0; 1690 done: 1691 if (nr_underway == 0) { 1692 /* 1693 * The page was marked dirty, but the buffers were 1694 * clean. Someone wrote them back by hand with 1695 * ll_rw_block/submit_bh. A rare case. 1696 */ 1697 end_page_writeback(page); 1698 1699 /* 1700 * The page and buffer_heads can be released at any time from 1701 * here on. 1702 */ 1703 wbc->pages_skipped++; /* We didn't write this page */ 1704 } 1705 return err; 1706 1707 recover: 1708 /* 1709 * ENOSPC, or some other error. We may already have added some 1710 * blocks to the file, so we need to write these out to avoid 1711 * exposing stale data. 1712 * The page is currently locked and not marked for writeback 1713 */ 1714 bh = head; 1715 /* Recovery: lock and submit the mapped buffers */ 1716 do { 1717 if (buffer_mapped(bh) && buffer_dirty(bh)) { 1718 lock_buffer(bh); 1719 mark_buffer_async_write(bh); 1720 } else { 1721 /* 1722 * The buffer may have been set dirty during 1723 * attachment to a dirty page. 1724 */ 1725 clear_buffer_dirty(bh); 1726 } 1727 } while ((bh = bh->b_this_page) != head); 1728 SetPageError(page); 1729 BUG_ON(PageWriteback(page)); 1730 mapping_set_error(page->mapping, err); 1731 set_page_writeback(page); 1732 do { 1733 struct buffer_head *next = bh->b_this_page; 1734 if (buffer_async_write(bh)) { 1735 clear_buffer_dirty(bh); 1736 submit_bh(WRITE, bh); 1737 nr_underway++; 1738 } 1739 bh = next; 1740 } while (bh != head); 1741 unlock_page(page); 1742 goto done; 1743 } 1744 1745 static int __block_prepare_write(struct inode *inode, struct page *page, 1746 unsigned from, unsigned to, get_block_t *get_block) 1747 { 1748 unsigned block_start, block_end; 1749 sector_t block; 1750 int err = 0; 1751 unsigned blocksize, bbits; 1752 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1753 1754 BUG_ON(!PageLocked(page)); 1755 BUG_ON(from > PAGE_CACHE_SIZE); 1756 BUG_ON(to > PAGE_CACHE_SIZE); 1757 BUG_ON(from > to); 1758 1759 blocksize = 1 << inode->i_blkbits; 1760 if (!page_has_buffers(page)) 1761 create_empty_buffers(page, blocksize, 0); 1762 head = page_buffers(page); 1763 1764 bbits = inode->i_blkbits; 1765 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1766 1767 for(bh = head, block_start = 0; bh != head || !block_start; 1768 block++, block_start=block_end, bh = bh->b_this_page) { 1769 block_end = block_start + blocksize; 1770 if (block_end <= from || block_start >= to) { 1771 if (PageUptodate(page)) { 1772 if (!buffer_uptodate(bh)) 1773 set_buffer_uptodate(bh); 1774 } 1775 continue; 1776 } 1777 if (buffer_new(bh)) 1778 clear_buffer_new(bh); 1779 if (!buffer_mapped(bh)) { 1780 WARN_ON(bh->b_size != blocksize); 1781 err = get_block(inode, block, bh, 1); 1782 if (err) 1783 break; 1784 if (buffer_new(bh)) { 1785 unmap_underlying_metadata(bh->b_bdev, 1786 bh->b_blocknr); 1787 if (PageUptodate(page)) { 1788 set_buffer_uptodate(bh); 1789 continue; 1790 } 1791 if (block_end > to || block_start < from) { 1792 void *kaddr; 1793 1794 kaddr = kmap_atomic(page, KM_USER0); 1795 if (block_end > to) 1796 memset(kaddr+to, 0, 1797 block_end-to); 1798 if (block_start < from) 1799 memset(kaddr+block_start, 1800 0, from-block_start); 1801 flush_dcache_page(page); 1802 kunmap_atomic(kaddr, KM_USER0); 1803 } 1804 continue; 1805 } 1806 } 1807 if (PageUptodate(page)) { 1808 if (!buffer_uptodate(bh)) 1809 set_buffer_uptodate(bh); 1810 continue; 1811 } 1812 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1813 !buffer_unwritten(bh) && 1814 (block_start < from || block_end > to)) { 1815 ll_rw_block(READ, 1, &bh); 1816 *wait_bh++=bh; 1817 } 1818 } 1819 /* 1820 * If we issued read requests - let them complete. 1821 */ 1822 while(wait_bh > wait) { 1823 wait_on_buffer(*--wait_bh); 1824 if (!buffer_uptodate(*wait_bh)) 1825 err = -EIO; 1826 } 1827 if (!err) { 1828 bh = head; 1829 do { 1830 if (buffer_new(bh)) 1831 clear_buffer_new(bh); 1832 } while ((bh = bh->b_this_page) != head); 1833 return 0; 1834 } 1835 /* Error case: */ 1836 /* 1837 * Zero out any newly allocated blocks to avoid exposing stale 1838 * data. If BH_New is set, we know that the block was newly 1839 * allocated in the above loop. 1840 */ 1841 bh = head; 1842 block_start = 0; 1843 do { 1844 block_end = block_start+blocksize; 1845 if (block_end <= from) 1846 goto next_bh; 1847 if (block_start >= to) 1848 break; 1849 if (buffer_new(bh)) { 1850 void *kaddr; 1851 1852 clear_buffer_new(bh); 1853 kaddr = kmap_atomic(page, KM_USER0); 1854 memset(kaddr+block_start, 0, bh->b_size); 1855 flush_dcache_page(page); 1856 kunmap_atomic(kaddr, KM_USER0); 1857 set_buffer_uptodate(bh); 1858 mark_buffer_dirty(bh); 1859 } 1860 next_bh: 1861 block_start = block_end; 1862 bh = bh->b_this_page; 1863 } while (bh != head); 1864 return err; 1865 } 1866 1867 static int __block_commit_write(struct inode *inode, struct page *page, 1868 unsigned from, unsigned to) 1869 { 1870 unsigned block_start, block_end; 1871 int partial = 0; 1872 unsigned blocksize; 1873 struct buffer_head *bh, *head; 1874 1875 blocksize = 1 << inode->i_blkbits; 1876 1877 for(bh = head = page_buffers(page), block_start = 0; 1878 bh != head || !block_start; 1879 block_start=block_end, bh = bh->b_this_page) { 1880 block_end = block_start + blocksize; 1881 if (block_end <= from || block_start >= to) { 1882 if (!buffer_uptodate(bh)) 1883 partial = 1; 1884 } else { 1885 set_buffer_uptodate(bh); 1886 mark_buffer_dirty(bh); 1887 } 1888 } 1889 1890 /* 1891 * If this is a partial write which happened to make all buffers 1892 * uptodate then we can optimize away a bogus readpage() for 1893 * the next read(). Here we 'discover' whether the page went 1894 * uptodate as a result of this (potentially partial) write. 1895 */ 1896 if (!partial) 1897 SetPageUptodate(page); 1898 return 0; 1899 } 1900 1901 /* 1902 * Generic "read page" function for block devices that have the normal 1903 * get_block functionality. This is most of the block device filesystems. 1904 * Reads the page asynchronously --- the unlock_buffer() and 1905 * set/clear_buffer_uptodate() functions propagate buffer state into the 1906 * page struct once IO has completed. 1907 */ 1908 int block_read_full_page(struct page *page, get_block_t *get_block) 1909 { 1910 struct inode *inode = page->mapping->host; 1911 sector_t iblock, lblock; 1912 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 1913 unsigned int blocksize; 1914 int nr, i; 1915 int fully_mapped = 1; 1916 1917 BUG_ON(!PageLocked(page)); 1918 blocksize = 1 << inode->i_blkbits; 1919 if (!page_has_buffers(page)) 1920 create_empty_buffers(page, blocksize, 0); 1921 head = page_buffers(page); 1922 1923 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1924 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 1925 bh = head; 1926 nr = 0; 1927 i = 0; 1928 1929 do { 1930 if (buffer_uptodate(bh)) 1931 continue; 1932 1933 if (!buffer_mapped(bh)) { 1934 int err = 0; 1935 1936 fully_mapped = 0; 1937 if (iblock < lblock) { 1938 WARN_ON(bh->b_size != blocksize); 1939 err = get_block(inode, iblock, bh, 0); 1940 if (err) 1941 SetPageError(page); 1942 } 1943 if (!buffer_mapped(bh)) { 1944 void *kaddr = kmap_atomic(page, KM_USER0); 1945 memset(kaddr + i * blocksize, 0, blocksize); 1946 flush_dcache_page(page); 1947 kunmap_atomic(kaddr, KM_USER0); 1948 if (!err) 1949 set_buffer_uptodate(bh); 1950 continue; 1951 } 1952 /* 1953 * get_block() might have updated the buffer 1954 * synchronously 1955 */ 1956 if (buffer_uptodate(bh)) 1957 continue; 1958 } 1959 arr[nr++] = bh; 1960 } while (i++, iblock++, (bh = bh->b_this_page) != head); 1961 1962 if (fully_mapped) 1963 SetPageMappedToDisk(page); 1964 1965 if (!nr) { 1966 /* 1967 * All buffers are uptodate - we can set the page uptodate 1968 * as well. But not if get_block() returned an error. 1969 */ 1970 if (!PageError(page)) 1971 SetPageUptodate(page); 1972 unlock_page(page); 1973 return 0; 1974 } 1975 1976 /* Stage two: lock the buffers */ 1977 for (i = 0; i < nr; i++) { 1978 bh = arr[i]; 1979 lock_buffer(bh); 1980 mark_buffer_async_read(bh); 1981 } 1982 1983 /* 1984 * Stage 3: start the IO. Check for uptodateness 1985 * inside the buffer lock in case another process reading 1986 * the underlying blockdev brought it uptodate (the sct fix). 1987 */ 1988 for (i = 0; i < nr; i++) { 1989 bh = arr[i]; 1990 if (buffer_uptodate(bh)) 1991 end_buffer_async_read(bh, 1); 1992 else 1993 submit_bh(READ, bh); 1994 } 1995 return 0; 1996 } 1997 1998 /* utility function for filesystems that need to do work on expanding 1999 * truncates. Uses prepare/commit_write to allow the filesystem to 2000 * deal with the hole. 2001 */ 2002 static int __generic_cont_expand(struct inode *inode, loff_t size, 2003 pgoff_t index, unsigned int offset) 2004 { 2005 struct address_space *mapping = inode->i_mapping; 2006 struct page *page; 2007 unsigned long limit; 2008 int err; 2009 2010 err = -EFBIG; 2011 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2012 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2013 send_sig(SIGXFSZ, current, 0); 2014 goto out; 2015 } 2016 if (size > inode->i_sb->s_maxbytes) 2017 goto out; 2018 2019 err = -ENOMEM; 2020 page = grab_cache_page(mapping, index); 2021 if (!page) 2022 goto out; 2023 err = mapping->a_ops->prepare_write(NULL, page, offset, offset); 2024 if (err) { 2025 /* 2026 * ->prepare_write() may have instantiated a few blocks 2027 * outside i_size. Trim these off again. 2028 */ 2029 unlock_page(page); 2030 page_cache_release(page); 2031 vmtruncate(inode, inode->i_size); 2032 goto out; 2033 } 2034 2035 err = mapping->a_ops->commit_write(NULL, page, offset, offset); 2036 2037 unlock_page(page); 2038 page_cache_release(page); 2039 if (err > 0) 2040 err = 0; 2041 out: 2042 return err; 2043 } 2044 2045 int generic_cont_expand(struct inode *inode, loff_t size) 2046 { 2047 pgoff_t index; 2048 unsigned int offset; 2049 2050 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */ 2051 2052 /* ugh. in prepare/commit_write, if from==to==start of block, we 2053 ** skip the prepare. make sure we never send an offset for the start 2054 ** of a block 2055 */ 2056 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) { 2057 /* caller must handle this extra byte. */ 2058 offset++; 2059 } 2060 index = size >> PAGE_CACHE_SHIFT; 2061 2062 return __generic_cont_expand(inode, size, index, offset); 2063 } 2064 2065 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2066 { 2067 loff_t pos = size - 1; 2068 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2069 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1; 2070 2071 /* prepare/commit_write can handle even if from==to==start of block. */ 2072 return __generic_cont_expand(inode, size, index, offset); 2073 } 2074 2075 /* 2076 * For moronic filesystems that do not allow holes in file. 2077 * We may have to extend the file. 2078 */ 2079 2080 int cont_prepare_write(struct page *page, unsigned offset, 2081 unsigned to, get_block_t *get_block, loff_t *bytes) 2082 { 2083 struct address_space *mapping = page->mapping; 2084 struct inode *inode = mapping->host; 2085 struct page *new_page; 2086 pgoff_t pgpos; 2087 long status; 2088 unsigned zerofrom; 2089 unsigned blocksize = 1 << inode->i_blkbits; 2090 void *kaddr; 2091 2092 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) { 2093 status = -ENOMEM; 2094 new_page = grab_cache_page(mapping, pgpos); 2095 if (!new_page) 2096 goto out; 2097 /* we might sleep */ 2098 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) { 2099 unlock_page(new_page); 2100 page_cache_release(new_page); 2101 continue; 2102 } 2103 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2104 if (zerofrom & (blocksize-1)) { 2105 *bytes |= (blocksize-1); 2106 (*bytes)++; 2107 } 2108 status = __block_prepare_write(inode, new_page, zerofrom, 2109 PAGE_CACHE_SIZE, get_block); 2110 if (status) 2111 goto out_unmap; 2112 kaddr = kmap_atomic(new_page, KM_USER0); 2113 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom); 2114 flush_dcache_page(new_page); 2115 kunmap_atomic(kaddr, KM_USER0); 2116 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE); 2117 unlock_page(new_page); 2118 page_cache_release(new_page); 2119 } 2120 2121 if (page->index < pgpos) { 2122 /* completely inside the area */ 2123 zerofrom = offset; 2124 } else { 2125 /* page covers the boundary, find the boundary offset */ 2126 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2127 2128 /* if we will expand the thing last block will be filled */ 2129 if (to > zerofrom && (zerofrom & (blocksize-1))) { 2130 *bytes |= (blocksize-1); 2131 (*bytes)++; 2132 } 2133 2134 /* starting below the boundary? Nothing to zero out */ 2135 if (offset <= zerofrom) 2136 zerofrom = offset; 2137 } 2138 status = __block_prepare_write(inode, page, zerofrom, to, get_block); 2139 if (status) 2140 goto out1; 2141 if (zerofrom < offset) { 2142 kaddr = kmap_atomic(page, KM_USER0); 2143 memset(kaddr+zerofrom, 0, offset-zerofrom); 2144 flush_dcache_page(page); 2145 kunmap_atomic(kaddr, KM_USER0); 2146 __block_commit_write(inode, page, zerofrom, offset); 2147 } 2148 return 0; 2149 out1: 2150 ClearPageUptodate(page); 2151 return status; 2152 2153 out_unmap: 2154 ClearPageUptodate(new_page); 2155 unlock_page(new_page); 2156 page_cache_release(new_page); 2157 out: 2158 return status; 2159 } 2160 2161 int block_prepare_write(struct page *page, unsigned from, unsigned to, 2162 get_block_t *get_block) 2163 { 2164 struct inode *inode = page->mapping->host; 2165 int err = __block_prepare_write(inode, page, from, to, get_block); 2166 if (err) 2167 ClearPageUptodate(page); 2168 return err; 2169 } 2170 2171 int block_commit_write(struct page *page, unsigned from, unsigned to) 2172 { 2173 struct inode *inode = page->mapping->host; 2174 __block_commit_write(inode,page,from,to); 2175 return 0; 2176 } 2177 2178 int generic_commit_write(struct file *file, struct page *page, 2179 unsigned from, unsigned to) 2180 { 2181 struct inode *inode = page->mapping->host; 2182 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2183 __block_commit_write(inode,page,from,to); 2184 /* 2185 * No need to use i_size_read() here, the i_size 2186 * cannot change under us because we hold i_mutex. 2187 */ 2188 if (pos > inode->i_size) { 2189 i_size_write(inode, pos); 2190 mark_inode_dirty(inode); 2191 } 2192 return 0; 2193 } 2194 2195 2196 /* 2197 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed 2198 * immediately, while under the page lock. So it needs a special end_io 2199 * handler which does not touch the bh after unlocking it. 2200 * 2201 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 2202 * a race there is benign: unlock_buffer() only use the bh's address for 2203 * hashing after unlocking the buffer, so it doesn't actually touch the bh 2204 * itself. 2205 */ 2206 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2207 { 2208 if (uptodate) { 2209 set_buffer_uptodate(bh); 2210 } else { 2211 /* This happens, due to failed READA attempts. */ 2212 clear_buffer_uptodate(bh); 2213 } 2214 unlock_buffer(bh); 2215 } 2216 2217 /* 2218 * On entry, the page is fully not uptodate. 2219 * On exit the page is fully uptodate in the areas outside (from,to) 2220 */ 2221 int nobh_prepare_write(struct page *page, unsigned from, unsigned to, 2222 get_block_t *get_block) 2223 { 2224 struct inode *inode = page->mapping->host; 2225 const unsigned blkbits = inode->i_blkbits; 2226 const unsigned blocksize = 1 << blkbits; 2227 struct buffer_head map_bh; 2228 struct buffer_head *read_bh[MAX_BUF_PER_PAGE]; 2229 unsigned block_in_page; 2230 unsigned block_start; 2231 sector_t block_in_file; 2232 char *kaddr; 2233 int nr_reads = 0; 2234 int i; 2235 int ret = 0; 2236 int is_mapped_to_disk = 1; 2237 2238 if (PageMappedToDisk(page)) 2239 return 0; 2240 2241 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2242 map_bh.b_page = page; 2243 2244 /* 2245 * We loop across all blocks in the page, whether or not they are 2246 * part of the affected region. This is so we can discover if the 2247 * page is fully mapped-to-disk. 2248 */ 2249 for (block_start = 0, block_in_page = 0; 2250 block_start < PAGE_CACHE_SIZE; 2251 block_in_page++, block_start += blocksize) { 2252 unsigned block_end = block_start + blocksize; 2253 int create; 2254 2255 map_bh.b_state = 0; 2256 create = 1; 2257 if (block_start >= to) 2258 create = 0; 2259 map_bh.b_size = blocksize; 2260 ret = get_block(inode, block_in_file + block_in_page, 2261 &map_bh, create); 2262 if (ret) 2263 goto failed; 2264 if (!buffer_mapped(&map_bh)) 2265 is_mapped_to_disk = 0; 2266 if (buffer_new(&map_bh)) 2267 unmap_underlying_metadata(map_bh.b_bdev, 2268 map_bh.b_blocknr); 2269 if (PageUptodate(page)) 2270 continue; 2271 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) { 2272 kaddr = kmap_atomic(page, KM_USER0); 2273 if (block_start < from) 2274 memset(kaddr+block_start, 0, from-block_start); 2275 if (block_end > to) 2276 memset(kaddr + to, 0, block_end - to); 2277 flush_dcache_page(page); 2278 kunmap_atomic(kaddr, KM_USER0); 2279 continue; 2280 } 2281 if (buffer_uptodate(&map_bh)) 2282 continue; /* reiserfs does this */ 2283 if (block_start < from || block_end > to) { 2284 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS); 2285 2286 if (!bh) { 2287 ret = -ENOMEM; 2288 goto failed; 2289 } 2290 bh->b_state = map_bh.b_state; 2291 atomic_set(&bh->b_count, 0); 2292 bh->b_this_page = NULL; 2293 bh->b_page = page; 2294 bh->b_blocknr = map_bh.b_blocknr; 2295 bh->b_size = blocksize; 2296 bh->b_data = (char *)(long)block_start; 2297 bh->b_bdev = map_bh.b_bdev; 2298 bh->b_private = NULL; 2299 read_bh[nr_reads++] = bh; 2300 } 2301 } 2302 2303 if (nr_reads) { 2304 struct buffer_head *bh; 2305 2306 /* 2307 * The page is locked, so these buffers are protected from 2308 * any VM or truncate activity. Hence we don't need to care 2309 * for the buffer_head refcounts. 2310 */ 2311 for (i = 0; i < nr_reads; i++) { 2312 bh = read_bh[i]; 2313 lock_buffer(bh); 2314 bh->b_end_io = end_buffer_read_nobh; 2315 submit_bh(READ, bh); 2316 } 2317 for (i = 0; i < nr_reads; i++) { 2318 bh = read_bh[i]; 2319 wait_on_buffer(bh); 2320 if (!buffer_uptodate(bh)) 2321 ret = -EIO; 2322 free_buffer_head(bh); 2323 read_bh[i] = NULL; 2324 } 2325 if (ret) 2326 goto failed; 2327 } 2328 2329 if (is_mapped_to_disk) 2330 SetPageMappedToDisk(page); 2331 2332 return 0; 2333 2334 failed: 2335 for (i = 0; i < nr_reads; i++) { 2336 if (read_bh[i]) 2337 free_buffer_head(read_bh[i]); 2338 } 2339 2340 /* 2341 * Error recovery is pretty slack. Clear the page and mark it dirty 2342 * so we'll later zero out any blocks which _were_ allocated. 2343 */ 2344 kaddr = kmap_atomic(page, KM_USER0); 2345 memset(kaddr, 0, PAGE_CACHE_SIZE); 2346 flush_dcache_page(page); 2347 kunmap_atomic(kaddr, KM_USER0); 2348 SetPageUptodate(page); 2349 set_page_dirty(page); 2350 return ret; 2351 } 2352 EXPORT_SYMBOL(nobh_prepare_write); 2353 2354 /* 2355 * Make sure any changes to nobh_commit_write() are reflected in 2356 * nobh_truncate_page(), since it doesn't call commit_write(). 2357 */ 2358 int nobh_commit_write(struct file *file, struct page *page, 2359 unsigned from, unsigned to) 2360 { 2361 struct inode *inode = page->mapping->host; 2362 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2363 2364 SetPageUptodate(page); 2365 set_page_dirty(page); 2366 if (pos > inode->i_size) { 2367 i_size_write(inode, pos); 2368 mark_inode_dirty(inode); 2369 } 2370 return 0; 2371 } 2372 EXPORT_SYMBOL(nobh_commit_write); 2373 2374 /* 2375 * nobh_writepage() - based on block_full_write_page() except 2376 * that it tries to operate without attaching bufferheads to 2377 * the page. 2378 */ 2379 int nobh_writepage(struct page *page, get_block_t *get_block, 2380 struct writeback_control *wbc) 2381 { 2382 struct inode * const inode = page->mapping->host; 2383 loff_t i_size = i_size_read(inode); 2384 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2385 unsigned offset; 2386 void *kaddr; 2387 int ret; 2388 2389 /* Is the page fully inside i_size? */ 2390 if (page->index < end_index) 2391 goto out; 2392 2393 /* Is the page fully outside i_size? (truncate in progress) */ 2394 offset = i_size & (PAGE_CACHE_SIZE-1); 2395 if (page->index >= end_index+1 || !offset) { 2396 /* 2397 * The page may have dirty, unmapped buffers. For example, 2398 * they may have been added in ext3_writepage(). Make them 2399 * freeable here, so the page does not leak. 2400 */ 2401 #if 0 2402 /* Not really sure about this - do we need this ? */ 2403 if (page->mapping->a_ops->invalidatepage) 2404 page->mapping->a_ops->invalidatepage(page, offset); 2405 #endif 2406 unlock_page(page); 2407 return 0; /* don't care */ 2408 } 2409 2410 /* 2411 * The page straddles i_size. It must be zeroed out on each and every 2412 * writepage invocation because it may be mmapped. "A file is mapped 2413 * in multiples of the page size. For a file that is not a multiple of 2414 * the page size, the remaining memory is zeroed when mapped, and 2415 * writes to that region are not written out to the file." 2416 */ 2417 kaddr = kmap_atomic(page, KM_USER0); 2418 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2419 flush_dcache_page(page); 2420 kunmap_atomic(kaddr, KM_USER0); 2421 out: 2422 ret = mpage_writepage(page, get_block, wbc); 2423 if (ret == -EAGAIN) 2424 ret = __block_write_full_page(inode, page, get_block, wbc); 2425 return ret; 2426 } 2427 EXPORT_SYMBOL(nobh_writepage); 2428 2429 /* 2430 * This function assumes that ->prepare_write() uses nobh_prepare_write(). 2431 */ 2432 int nobh_truncate_page(struct address_space *mapping, loff_t from) 2433 { 2434 struct inode *inode = mapping->host; 2435 unsigned blocksize = 1 << inode->i_blkbits; 2436 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2437 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2438 unsigned to; 2439 struct page *page; 2440 const struct address_space_operations *a_ops = mapping->a_ops; 2441 char *kaddr; 2442 int ret = 0; 2443 2444 if ((offset & (blocksize - 1)) == 0) 2445 goto out; 2446 2447 ret = -ENOMEM; 2448 page = grab_cache_page(mapping, index); 2449 if (!page) 2450 goto out; 2451 2452 to = (offset + blocksize) & ~(blocksize - 1); 2453 ret = a_ops->prepare_write(NULL, page, offset, to); 2454 if (ret == 0) { 2455 kaddr = kmap_atomic(page, KM_USER0); 2456 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2457 flush_dcache_page(page); 2458 kunmap_atomic(kaddr, KM_USER0); 2459 /* 2460 * It would be more correct to call aops->commit_write() 2461 * here, but this is more efficient. 2462 */ 2463 SetPageUptodate(page); 2464 set_page_dirty(page); 2465 } 2466 unlock_page(page); 2467 page_cache_release(page); 2468 out: 2469 return ret; 2470 } 2471 EXPORT_SYMBOL(nobh_truncate_page); 2472 2473 int block_truncate_page(struct address_space *mapping, 2474 loff_t from, get_block_t *get_block) 2475 { 2476 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2477 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2478 unsigned blocksize; 2479 sector_t iblock; 2480 unsigned length, pos; 2481 struct inode *inode = mapping->host; 2482 struct page *page; 2483 struct buffer_head *bh; 2484 void *kaddr; 2485 int err; 2486 2487 blocksize = 1 << inode->i_blkbits; 2488 length = offset & (blocksize - 1); 2489 2490 /* Block boundary? Nothing to do */ 2491 if (!length) 2492 return 0; 2493 2494 length = blocksize - length; 2495 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2496 2497 page = grab_cache_page(mapping, index); 2498 err = -ENOMEM; 2499 if (!page) 2500 goto out; 2501 2502 if (!page_has_buffers(page)) 2503 create_empty_buffers(page, blocksize, 0); 2504 2505 /* Find the buffer that contains "offset" */ 2506 bh = page_buffers(page); 2507 pos = blocksize; 2508 while (offset >= pos) { 2509 bh = bh->b_this_page; 2510 iblock++; 2511 pos += blocksize; 2512 } 2513 2514 err = 0; 2515 if (!buffer_mapped(bh)) { 2516 WARN_ON(bh->b_size != blocksize); 2517 err = get_block(inode, iblock, bh, 0); 2518 if (err) 2519 goto unlock; 2520 /* unmapped? It's a hole - nothing to do */ 2521 if (!buffer_mapped(bh)) 2522 goto unlock; 2523 } 2524 2525 /* Ok, it's mapped. Make sure it's up-to-date */ 2526 if (PageUptodate(page)) 2527 set_buffer_uptodate(bh); 2528 2529 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2530 err = -EIO; 2531 ll_rw_block(READ, 1, &bh); 2532 wait_on_buffer(bh); 2533 /* Uhhuh. Read error. Complain and punt. */ 2534 if (!buffer_uptodate(bh)) 2535 goto unlock; 2536 } 2537 2538 kaddr = kmap_atomic(page, KM_USER0); 2539 memset(kaddr + offset, 0, length); 2540 flush_dcache_page(page); 2541 kunmap_atomic(kaddr, KM_USER0); 2542 2543 mark_buffer_dirty(bh); 2544 err = 0; 2545 2546 unlock: 2547 unlock_page(page); 2548 page_cache_release(page); 2549 out: 2550 return err; 2551 } 2552 2553 /* 2554 * The generic ->writepage function for buffer-backed address_spaces 2555 */ 2556 int block_write_full_page(struct page *page, get_block_t *get_block, 2557 struct writeback_control *wbc) 2558 { 2559 struct inode * const inode = page->mapping->host; 2560 loff_t i_size = i_size_read(inode); 2561 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2562 unsigned offset; 2563 void *kaddr; 2564 2565 /* Is the page fully inside i_size? */ 2566 if (page->index < end_index) 2567 return __block_write_full_page(inode, page, get_block, wbc); 2568 2569 /* Is the page fully outside i_size? (truncate in progress) */ 2570 offset = i_size & (PAGE_CACHE_SIZE-1); 2571 if (page->index >= end_index+1 || !offset) { 2572 /* 2573 * The page may have dirty, unmapped buffers. For example, 2574 * they may have been added in ext3_writepage(). Make them 2575 * freeable here, so the page does not leak. 2576 */ 2577 do_invalidatepage(page, 0); 2578 unlock_page(page); 2579 return 0; /* don't care */ 2580 } 2581 2582 /* 2583 * The page straddles i_size. It must be zeroed out on each and every 2584 * writepage invokation because it may be mmapped. "A file is mapped 2585 * in multiples of the page size. For a file that is not a multiple of 2586 * the page size, the remaining memory is zeroed when mapped, and 2587 * writes to that region are not written out to the file." 2588 */ 2589 kaddr = kmap_atomic(page, KM_USER0); 2590 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2591 flush_dcache_page(page); 2592 kunmap_atomic(kaddr, KM_USER0); 2593 return __block_write_full_page(inode, page, get_block, wbc); 2594 } 2595 2596 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2597 get_block_t *get_block) 2598 { 2599 struct buffer_head tmp; 2600 struct inode *inode = mapping->host; 2601 tmp.b_state = 0; 2602 tmp.b_blocknr = 0; 2603 tmp.b_size = 1 << inode->i_blkbits; 2604 get_block(inode, block, &tmp, 0); 2605 return tmp.b_blocknr; 2606 } 2607 2608 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err) 2609 { 2610 struct buffer_head *bh = bio->bi_private; 2611 2612 if (bio->bi_size) 2613 return 1; 2614 2615 if (err == -EOPNOTSUPP) { 2616 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2617 set_bit(BH_Eopnotsupp, &bh->b_state); 2618 } 2619 2620 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2621 bio_put(bio); 2622 return 0; 2623 } 2624 2625 int submit_bh(int rw, struct buffer_head * bh) 2626 { 2627 struct bio *bio; 2628 int ret = 0; 2629 2630 BUG_ON(!buffer_locked(bh)); 2631 BUG_ON(!buffer_mapped(bh)); 2632 BUG_ON(!bh->b_end_io); 2633 2634 if (buffer_ordered(bh) && (rw == WRITE)) 2635 rw = WRITE_BARRIER; 2636 2637 /* 2638 * Only clear out a write error when rewriting, should this 2639 * include WRITE_SYNC as well? 2640 */ 2641 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) 2642 clear_buffer_write_io_error(bh); 2643 2644 /* 2645 * from here on down, it's all bio -- do the initial mapping, 2646 * submit_bio -> generic_make_request may further map this bio around 2647 */ 2648 bio = bio_alloc(GFP_NOIO, 1); 2649 2650 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2651 bio->bi_bdev = bh->b_bdev; 2652 bio->bi_io_vec[0].bv_page = bh->b_page; 2653 bio->bi_io_vec[0].bv_len = bh->b_size; 2654 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2655 2656 bio->bi_vcnt = 1; 2657 bio->bi_idx = 0; 2658 bio->bi_size = bh->b_size; 2659 2660 bio->bi_end_io = end_bio_bh_io_sync; 2661 bio->bi_private = bh; 2662 2663 bio_get(bio); 2664 submit_bio(rw, bio); 2665 2666 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2667 ret = -EOPNOTSUPP; 2668 2669 bio_put(bio); 2670 return ret; 2671 } 2672 2673 /** 2674 * ll_rw_block: low-level access to block devices (DEPRECATED) 2675 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 2676 * @nr: number of &struct buffer_heads in the array 2677 * @bhs: array of pointers to &struct buffer_head 2678 * 2679 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2680 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2681 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 2682 * are sent to disk. The fourth %READA option is described in the documentation 2683 * for generic_make_request() which ll_rw_block() calls. 2684 * 2685 * This function drops any buffer that it cannot get a lock on (with the 2686 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 2687 * clean when doing a write request, and any buffer that appears to be 2688 * up-to-date when doing read request. Further it marks as clean buffers that 2689 * are processed for writing (the buffer cache won't assume that they are 2690 * actually clean until the buffer gets unlocked). 2691 * 2692 * ll_rw_block sets b_end_io to simple completion handler that marks 2693 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2694 * any waiters. 2695 * 2696 * All of the buffers must be for the same device, and must also be a 2697 * multiple of the current approved size for the device. 2698 */ 2699 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2700 { 2701 int i; 2702 2703 for (i = 0; i < nr; i++) { 2704 struct buffer_head *bh = bhs[i]; 2705 2706 if (rw == SWRITE) 2707 lock_buffer(bh); 2708 else if (test_set_buffer_locked(bh)) 2709 continue; 2710 2711 if (rw == WRITE || rw == SWRITE) { 2712 if (test_clear_buffer_dirty(bh)) { 2713 bh->b_end_io = end_buffer_write_sync; 2714 get_bh(bh); 2715 submit_bh(WRITE, bh); 2716 continue; 2717 } 2718 } else { 2719 if (!buffer_uptodate(bh)) { 2720 bh->b_end_io = end_buffer_read_sync; 2721 get_bh(bh); 2722 submit_bh(rw, bh); 2723 continue; 2724 } 2725 } 2726 unlock_buffer(bh); 2727 } 2728 } 2729 2730 /* 2731 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2732 * and then start new I/O and then wait upon it. The caller must have a ref on 2733 * the buffer_head. 2734 */ 2735 int sync_dirty_buffer(struct buffer_head *bh) 2736 { 2737 int ret = 0; 2738 2739 WARN_ON(atomic_read(&bh->b_count) < 1); 2740 lock_buffer(bh); 2741 if (test_clear_buffer_dirty(bh)) { 2742 get_bh(bh); 2743 bh->b_end_io = end_buffer_write_sync; 2744 ret = submit_bh(WRITE, bh); 2745 wait_on_buffer(bh); 2746 if (buffer_eopnotsupp(bh)) { 2747 clear_buffer_eopnotsupp(bh); 2748 ret = -EOPNOTSUPP; 2749 } 2750 if (!ret && !buffer_uptodate(bh)) 2751 ret = -EIO; 2752 } else { 2753 unlock_buffer(bh); 2754 } 2755 return ret; 2756 } 2757 2758 /* 2759 * try_to_free_buffers() checks if all the buffers on this particular page 2760 * are unused, and releases them if so. 2761 * 2762 * Exclusion against try_to_free_buffers may be obtained by either 2763 * locking the page or by holding its mapping's private_lock. 2764 * 2765 * If the page is dirty but all the buffers are clean then we need to 2766 * be sure to mark the page clean as well. This is because the page 2767 * may be against a block device, and a later reattachment of buffers 2768 * to a dirty page will set *all* buffers dirty. Which would corrupt 2769 * filesystem data on the same device. 2770 * 2771 * The same applies to regular filesystem pages: if all the buffers are 2772 * clean then we set the page clean and proceed. To do that, we require 2773 * total exclusion from __set_page_dirty_buffers(). That is obtained with 2774 * private_lock. 2775 * 2776 * try_to_free_buffers() is non-blocking. 2777 */ 2778 static inline int buffer_busy(struct buffer_head *bh) 2779 { 2780 return atomic_read(&bh->b_count) | 2781 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2782 } 2783 2784 static int 2785 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 2786 { 2787 struct buffer_head *head = page_buffers(page); 2788 struct buffer_head *bh; 2789 2790 bh = head; 2791 do { 2792 if (buffer_write_io_error(bh) && page->mapping) 2793 set_bit(AS_EIO, &page->mapping->flags); 2794 if (buffer_busy(bh)) 2795 goto failed; 2796 bh = bh->b_this_page; 2797 } while (bh != head); 2798 2799 do { 2800 struct buffer_head *next = bh->b_this_page; 2801 2802 if (!list_empty(&bh->b_assoc_buffers)) 2803 __remove_assoc_queue(bh); 2804 bh = next; 2805 } while (bh != head); 2806 *buffers_to_free = head; 2807 __clear_page_buffers(page); 2808 return 1; 2809 failed: 2810 return 0; 2811 } 2812 2813 int try_to_free_buffers(struct page *page) 2814 { 2815 struct address_space * const mapping = page->mapping; 2816 struct buffer_head *buffers_to_free = NULL; 2817 int ret = 0; 2818 2819 BUG_ON(!PageLocked(page)); 2820 if (PageWriteback(page)) 2821 return 0; 2822 2823 if (mapping == NULL) { /* can this still happen? */ 2824 ret = drop_buffers(page, &buffers_to_free); 2825 goto out; 2826 } 2827 2828 spin_lock(&mapping->private_lock); 2829 ret = drop_buffers(page, &buffers_to_free); 2830 2831 /* 2832 * If the filesystem writes its buffers by hand (eg ext3) 2833 * then we can have clean buffers against a dirty page. We 2834 * clean the page here; otherwise the VM will never notice 2835 * that the filesystem did any IO at all. 2836 * 2837 * Also, during truncate, discard_buffer will have marked all 2838 * the page's buffers clean. We discover that here and clean 2839 * the page also. 2840 * 2841 * private_lock must be held over this entire operation in order 2842 * to synchronise against __set_page_dirty_buffers and prevent the 2843 * dirty bit from being lost. 2844 */ 2845 if (ret) 2846 cancel_dirty_page(page, PAGE_CACHE_SIZE); 2847 spin_unlock(&mapping->private_lock); 2848 out: 2849 if (buffers_to_free) { 2850 struct buffer_head *bh = buffers_to_free; 2851 2852 do { 2853 struct buffer_head *next = bh->b_this_page; 2854 free_buffer_head(bh); 2855 bh = next; 2856 } while (bh != buffers_to_free); 2857 } 2858 return ret; 2859 } 2860 EXPORT_SYMBOL(try_to_free_buffers); 2861 2862 void block_sync_page(struct page *page) 2863 { 2864 struct address_space *mapping; 2865 2866 smp_mb(); 2867 mapping = page_mapping(page); 2868 if (mapping) 2869 blk_run_backing_dev(mapping->backing_dev_info, page); 2870 } 2871 2872 /* 2873 * There are no bdflush tunables left. But distributions are 2874 * still running obsolete flush daemons, so we terminate them here. 2875 * 2876 * Use of bdflush() is deprecated and will be removed in a future kernel. 2877 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 2878 */ 2879 asmlinkage long sys_bdflush(int func, long data) 2880 { 2881 static int msg_count; 2882 2883 if (!capable(CAP_SYS_ADMIN)) 2884 return -EPERM; 2885 2886 if (msg_count < 5) { 2887 msg_count++; 2888 printk(KERN_INFO 2889 "warning: process `%s' used the obsolete bdflush" 2890 " system call\n", current->comm); 2891 printk(KERN_INFO "Fix your initscripts?\n"); 2892 } 2893 2894 if (func == 1) 2895 do_exit(0); 2896 return 0; 2897 } 2898 2899 /* 2900 * Buffer-head allocation 2901 */ 2902 static struct kmem_cache *bh_cachep; 2903 2904 /* 2905 * Once the number of bh's in the machine exceeds this level, we start 2906 * stripping them in writeback. 2907 */ 2908 static int max_buffer_heads; 2909 2910 int buffer_heads_over_limit; 2911 2912 struct bh_accounting { 2913 int nr; /* Number of live bh's */ 2914 int ratelimit; /* Limit cacheline bouncing */ 2915 }; 2916 2917 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 2918 2919 static void recalc_bh_state(void) 2920 { 2921 int i; 2922 int tot = 0; 2923 2924 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 2925 return; 2926 __get_cpu_var(bh_accounting).ratelimit = 0; 2927 for_each_online_cpu(i) 2928 tot += per_cpu(bh_accounting, i).nr; 2929 buffer_heads_over_limit = (tot > max_buffer_heads); 2930 } 2931 2932 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 2933 { 2934 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); 2935 if (ret) { 2936 get_cpu_var(bh_accounting).nr++; 2937 recalc_bh_state(); 2938 put_cpu_var(bh_accounting); 2939 } 2940 return ret; 2941 } 2942 EXPORT_SYMBOL(alloc_buffer_head); 2943 2944 void free_buffer_head(struct buffer_head *bh) 2945 { 2946 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 2947 kmem_cache_free(bh_cachep, bh); 2948 get_cpu_var(bh_accounting).nr--; 2949 recalc_bh_state(); 2950 put_cpu_var(bh_accounting); 2951 } 2952 EXPORT_SYMBOL(free_buffer_head); 2953 2954 static void 2955 init_buffer_head(void *data, struct kmem_cache *cachep, unsigned long flags) 2956 { 2957 if (flags & SLAB_CTOR_CONSTRUCTOR) { 2958 struct buffer_head * bh = (struct buffer_head *)data; 2959 2960 memset(bh, 0, sizeof(*bh)); 2961 INIT_LIST_HEAD(&bh->b_assoc_buffers); 2962 } 2963 } 2964 2965 static void buffer_exit_cpu(int cpu) 2966 { 2967 int i; 2968 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 2969 2970 for (i = 0; i < BH_LRU_SIZE; i++) { 2971 brelse(b->bhs[i]); 2972 b->bhs[i] = NULL; 2973 } 2974 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 2975 per_cpu(bh_accounting, cpu).nr = 0; 2976 put_cpu_var(bh_accounting); 2977 } 2978 2979 static int buffer_cpu_notify(struct notifier_block *self, 2980 unsigned long action, void *hcpu) 2981 { 2982 if (action == CPU_DEAD) 2983 buffer_exit_cpu((unsigned long)hcpu); 2984 return NOTIFY_OK; 2985 } 2986 2987 void __init buffer_init(void) 2988 { 2989 int nrpages; 2990 2991 bh_cachep = kmem_cache_create("buffer_head", 2992 sizeof(struct buffer_head), 0, 2993 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2994 SLAB_MEM_SPREAD), 2995 init_buffer_head, 2996 NULL); 2997 2998 /* 2999 * Limit the bh occupancy to 10% of ZONE_NORMAL 3000 */ 3001 nrpages = (nr_free_buffer_pages() * 10) / 100; 3002 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3003 hotcpu_notifier(buffer_cpu_notify, 0); 3004 } 3005 3006 EXPORT_SYMBOL(__bforget); 3007 EXPORT_SYMBOL(__brelse); 3008 EXPORT_SYMBOL(__wait_on_buffer); 3009 EXPORT_SYMBOL(block_commit_write); 3010 EXPORT_SYMBOL(block_prepare_write); 3011 EXPORT_SYMBOL(block_read_full_page); 3012 EXPORT_SYMBOL(block_sync_page); 3013 EXPORT_SYMBOL(block_truncate_page); 3014 EXPORT_SYMBOL(block_write_full_page); 3015 EXPORT_SYMBOL(cont_prepare_write); 3016 EXPORT_SYMBOL(end_buffer_read_sync); 3017 EXPORT_SYMBOL(end_buffer_write_sync); 3018 EXPORT_SYMBOL(file_fsync); 3019 EXPORT_SYMBOL(fsync_bdev); 3020 EXPORT_SYMBOL(generic_block_bmap); 3021 EXPORT_SYMBOL(generic_commit_write); 3022 EXPORT_SYMBOL(generic_cont_expand); 3023 EXPORT_SYMBOL(generic_cont_expand_simple); 3024 EXPORT_SYMBOL(init_buffer); 3025 EXPORT_SYMBOL(invalidate_bdev); 3026 EXPORT_SYMBOL(ll_rw_block); 3027 EXPORT_SYMBOL(mark_buffer_dirty); 3028 EXPORT_SYMBOL(submit_bh); 3029 EXPORT_SYMBOL(sync_dirty_buffer); 3030 EXPORT_SYMBOL(unlock_buffer); 3031