1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 #include <trace/events/block.h> 45 46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 47 48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 49 50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 inline void touch_buffer(struct buffer_head *bh) 58 { 59 trace_block_touch_buffer(bh); 60 mark_page_accessed(bh->b_page); 61 } 62 EXPORT_SYMBOL(touch_buffer); 63 64 static int sleep_on_buffer(void *word) 65 { 66 io_schedule(); 67 return 0; 68 } 69 70 void __lock_buffer(struct buffer_head *bh) 71 { 72 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer, 73 TASK_UNINTERRUPTIBLE); 74 } 75 EXPORT_SYMBOL(__lock_buffer); 76 77 void unlock_buffer(struct buffer_head *bh) 78 { 79 clear_bit_unlock(BH_Lock, &bh->b_state); 80 smp_mb__after_clear_bit(); 81 wake_up_bit(&bh->b_state, BH_Lock); 82 } 83 EXPORT_SYMBOL(unlock_buffer); 84 85 /* 86 * Block until a buffer comes unlocked. This doesn't stop it 87 * from becoming locked again - you have to lock it yourself 88 * if you want to preserve its state. 89 */ 90 void __wait_on_buffer(struct buffer_head * bh) 91 { 92 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE); 93 } 94 EXPORT_SYMBOL(__wait_on_buffer); 95 96 static void 97 __clear_page_buffers(struct page *page) 98 { 99 ClearPagePrivate(page); 100 set_page_private(page, 0); 101 page_cache_release(page); 102 } 103 104 105 static int quiet_error(struct buffer_head *bh) 106 { 107 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 108 return 0; 109 return 1; 110 } 111 112 113 static void buffer_io_error(struct buffer_head *bh) 114 { 115 char b[BDEVNAME_SIZE]; 116 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 117 bdevname(bh->b_bdev, b), 118 (unsigned long long)bh->b_blocknr); 119 } 120 121 /* 122 * End-of-IO handler helper function which does not touch the bh after 123 * unlocking it. 124 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 125 * a race there is benign: unlock_buffer() only use the bh's address for 126 * hashing after unlocking the buffer, so it doesn't actually touch the bh 127 * itself. 128 */ 129 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 130 { 131 if (uptodate) { 132 set_buffer_uptodate(bh); 133 } else { 134 /* This happens, due to failed READA attempts. */ 135 clear_buffer_uptodate(bh); 136 } 137 unlock_buffer(bh); 138 } 139 140 /* 141 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 142 * unlock the buffer. This is what ll_rw_block uses too. 143 */ 144 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 145 { 146 __end_buffer_read_notouch(bh, uptodate); 147 put_bh(bh); 148 } 149 EXPORT_SYMBOL(end_buffer_read_sync); 150 151 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 152 { 153 char b[BDEVNAME_SIZE]; 154 155 if (uptodate) { 156 set_buffer_uptodate(bh); 157 } else { 158 if (!quiet_error(bh)) { 159 buffer_io_error(bh); 160 printk(KERN_WARNING "lost page write due to " 161 "I/O error on %s\n", 162 bdevname(bh->b_bdev, b)); 163 } 164 set_buffer_write_io_error(bh); 165 clear_buffer_uptodate(bh); 166 } 167 unlock_buffer(bh); 168 put_bh(bh); 169 } 170 EXPORT_SYMBOL(end_buffer_write_sync); 171 172 /* 173 * Various filesystems appear to want __find_get_block to be non-blocking. 174 * But it's the page lock which protects the buffers. To get around this, 175 * we get exclusion from try_to_free_buffers with the blockdev mapping's 176 * private_lock. 177 * 178 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 179 * may be quite high. This code could TryLock the page, and if that 180 * succeeds, there is no need to take private_lock. (But if 181 * private_lock is contended then so is mapping->tree_lock). 182 */ 183 static struct buffer_head * 184 __find_get_block_slow(struct block_device *bdev, sector_t block) 185 { 186 struct inode *bd_inode = bdev->bd_inode; 187 struct address_space *bd_mapping = bd_inode->i_mapping; 188 struct buffer_head *ret = NULL; 189 pgoff_t index; 190 struct buffer_head *bh; 191 struct buffer_head *head; 192 struct page *page; 193 int all_mapped = 1; 194 195 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 196 page = find_get_page(bd_mapping, index); 197 if (!page) 198 goto out; 199 200 spin_lock(&bd_mapping->private_lock); 201 if (!page_has_buffers(page)) 202 goto out_unlock; 203 head = page_buffers(page); 204 bh = head; 205 do { 206 if (!buffer_mapped(bh)) 207 all_mapped = 0; 208 else if (bh->b_blocknr == block) { 209 ret = bh; 210 get_bh(bh); 211 goto out_unlock; 212 } 213 bh = bh->b_this_page; 214 } while (bh != head); 215 216 /* we might be here because some of the buffers on this page are 217 * not mapped. This is due to various races between 218 * file io on the block device and getblk. It gets dealt with 219 * elsewhere, don't buffer_error if we had some unmapped buffers 220 */ 221 if (all_mapped) { 222 char b[BDEVNAME_SIZE]; 223 224 printk("__find_get_block_slow() failed. " 225 "block=%llu, b_blocknr=%llu\n", 226 (unsigned long long)block, 227 (unsigned long long)bh->b_blocknr); 228 printk("b_state=0x%08lx, b_size=%zu\n", 229 bh->b_state, bh->b_size); 230 printk("device %s blocksize: %d\n", bdevname(bdev, b), 231 1 << bd_inode->i_blkbits); 232 } 233 out_unlock: 234 spin_unlock(&bd_mapping->private_lock); 235 page_cache_release(page); 236 out: 237 return ret; 238 } 239 240 /* 241 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 242 */ 243 static void free_more_memory(void) 244 { 245 struct zone *zone; 246 int nid; 247 248 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 249 yield(); 250 251 for_each_online_node(nid) { 252 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 253 gfp_zone(GFP_NOFS), NULL, 254 &zone); 255 if (zone) 256 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 257 GFP_NOFS, NULL); 258 } 259 } 260 261 /* 262 * I/O completion handler for block_read_full_page() - pages 263 * which come unlocked at the end of I/O. 264 */ 265 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 266 { 267 unsigned long flags; 268 struct buffer_head *first; 269 struct buffer_head *tmp; 270 struct page *page; 271 int page_uptodate = 1; 272 273 BUG_ON(!buffer_async_read(bh)); 274 275 page = bh->b_page; 276 if (uptodate) { 277 set_buffer_uptodate(bh); 278 } else { 279 clear_buffer_uptodate(bh); 280 if (!quiet_error(bh)) 281 buffer_io_error(bh); 282 SetPageError(page); 283 } 284 285 /* 286 * Be _very_ careful from here on. Bad things can happen if 287 * two buffer heads end IO at almost the same time and both 288 * decide that the page is now completely done. 289 */ 290 first = page_buffers(page); 291 local_irq_save(flags); 292 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 293 clear_buffer_async_read(bh); 294 unlock_buffer(bh); 295 tmp = bh; 296 do { 297 if (!buffer_uptodate(tmp)) 298 page_uptodate = 0; 299 if (buffer_async_read(tmp)) { 300 BUG_ON(!buffer_locked(tmp)); 301 goto still_busy; 302 } 303 tmp = tmp->b_this_page; 304 } while (tmp != bh); 305 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 306 local_irq_restore(flags); 307 308 /* 309 * If none of the buffers had errors and they are all 310 * uptodate then we can set the page uptodate. 311 */ 312 if (page_uptodate && !PageError(page)) 313 SetPageUptodate(page); 314 unlock_page(page); 315 return; 316 317 still_busy: 318 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 319 local_irq_restore(flags); 320 return; 321 } 322 323 /* 324 * Completion handler for block_write_full_page() - pages which are unlocked 325 * during I/O, and which have PageWriteback cleared upon I/O completion. 326 */ 327 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 328 { 329 char b[BDEVNAME_SIZE]; 330 unsigned long flags; 331 struct buffer_head *first; 332 struct buffer_head *tmp; 333 struct page *page; 334 335 BUG_ON(!buffer_async_write(bh)); 336 337 page = bh->b_page; 338 if (uptodate) { 339 set_buffer_uptodate(bh); 340 } else { 341 if (!quiet_error(bh)) { 342 buffer_io_error(bh); 343 printk(KERN_WARNING "lost page write due to " 344 "I/O error on %s\n", 345 bdevname(bh->b_bdev, b)); 346 } 347 set_bit(AS_EIO, &page->mapping->flags); 348 set_buffer_write_io_error(bh); 349 clear_buffer_uptodate(bh); 350 SetPageError(page); 351 } 352 353 first = page_buffers(page); 354 local_irq_save(flags); 355 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 356 357 clear_buffer_async_write(bh); 358 unlock_buffer(bh); 359 tmp = bh->b_this_page; 360 while (tmp != bh) { 361 if (buffer_async_write(tmp)) { 362 BUG_ON(!buffer_locked(tmp)); 363 goto still_busy; 364 } 365 tmp = tmp->b_this_page; 366 } 367 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 368 local_irq_restore(flags); 369 end_page_writeback(page); 370 return; 371 372 still_busy: 373 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 374 local_irq_restore(flags); 375 return; 376 } 377 EXPORT_SYMBOL(end_buffer_async_write); 378 379 /* 380 * If a page's buffers are under async readin (end_buffer_async_read 381 * completion) then there is a possibility that another thread of 382 * control could lock one of the buffers after it has completed 383 * but while some of the other buffers have not completed. This 384 * locked buffer would confuse end_buffer_async_read() into not unlocking 385 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 386 * that this buffer is not under async I/O. 387 * 388 * The page comes unlocked when it has no locked buffer_async buffers 389 * left. 390 * 391 * PageLocked prevents anyone starting new async I/O reads any of 392 * the buffers. 393 * 394 * PageWriteback is used to prevent simultaneous writeout of the same 395 * page. 396 * 397 * PageLocked prevents anyone from starting writeback of a page which is 398 * under read I/O (PageWriteback is only ever set against a locked page). 399 */ 400 static void mark_buffer_async_read(struct buffer_head *bh) 401 { 402 bh->b_end_io = end_buffer_async_read; 403 set_buffer_async_read(bh); 404 } 405 406 static void mark_buffer_async_write_endio(struct buffer_head *bh, 407 bh_end_io_t *handler) 408 { 409 bh->b_end_io = handler; 410 set_buffer_async_write(bh); 411 } 412 413 void mark_buffer_async_write(struct buffer_head *bh) 414 { 415 mark_buffer_async_write_endio(bh, end_buffer_async_write); 416 } 417 EXPORT_SYMBOL(mark_buffer_async_write); 418 419 420 /* 421 * fs/buffer.c contains helper functions for buffer-backed address space's 422 * fsync functions. A common requirement for buffer-based filesystems is 423 * that certain data from the backing blockdev needs to be written out for 424 * a successful fsync(). For example, ext2 indirect blocks need to be 425 * written back and waited upon before fsync() returns. 426 * 427 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 428 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 429 * management of a list of dependent buffers at ->i_mapping->private_list. 430 * 431 * Locking is a little subtle: try_to_free_buffers() will remove buffers 432 * from their controlling inode's queue when they are being freed. But 433 * try_to_free_buffers() will be operating against the *blockdev* mapping 434 * at the time, not against the S_ISREG file which depends on those buffers. 435 * So the locking for private_list is via the private_lock in the address_space 436 * which backs the buffers. Which is different from the address_space 437 * against which the buffers are listed. So for a particular address_space, 438 * mapping->private_lock does *not* protect mapping->private_list! In fact, 439 * mapping->private_list will always be protected by the backing blockdev's 440 * ->private_lock. 441 * 442 * Which introduces a requirement: all buffers on an address_space's 443 * ->private_list must be from the same address_space: the blockdev's. 444 * 445 * address_spaces which do not place buffers at ->private_list via these 446 * utility functions are free to use private_lock and private_list for 447 * whatever they want. The only requirement is that list_empty(private_list) 448 * be true at clear_inode() time. 449 * 450 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 451 * filesystems should do that. invalidate_inode_buffers() should just go 452 * BUG_ON(!list_empty). 453 * 454 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 455 * take an address_space, not an inode. And it should be called 456 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 457 * queued up. 458 * 459 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 460 * list if it is already on a list. Because if the buffer is on a list, 461 * it *must* already be on the right one. If not, the filesystem is being 462 * silly. This will save a ton of locking. But first we have to ensure 463 * that buffers are taken *off* the old inode's list when they are freed 464 * (presumably in truncate). That requires careful auditing of all 465 * filesystems (do it inside bforget()). It could also be done by bringing 466 * b_inode back. 467 */ 468 469 /* 470 * The buffer's backing address_space's private_lock must be held 471 */ 472 static void __remove_assoc_queue(struct buffer_head *bh) 473 { 474 list_del_init(&bh->b_assoc_buffers); 475 WARN_ON(!bh->b_assoc_map); 476 if (buffer_write_io_error(bh)) 477 set_bit(AS_EIO, &bh->b_assoc_map->flags); 478 bh->b_assoc_map = NULL; 479 } 480 481 int inode_has_buffers(struct inode *inode) 482 { 483 return !list_empty(&inode->i_data.private_list); 484 } 485 486 /* 487 * osync is designed to support O_SYNC io. It waits synchronously for 488 * all already-submitted IO to complete, but does not queue any new 489 * writes to the disk. 490 * 491 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 492 * you dirty the buffers, and then use osync_inode_buffers to wait for 493 * completion. Any other dirty buffers which are not yet queued for 494 * write will not be flushed to disk by the osync. 495 */ 496 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 497 { 498 struct buffer_head *bh; 499 struct list_head *p; 500 int err = 0; 501 502 spin_lock(lock); 503 repeat: 504 list_for_each_prev(p, list) { 505 bh = BH_ENTRY(p); 506 if (buffer_locked(bh)) { 507 get_bh(bh); 508 spin_unlock(lock); 509 wait_on_buffer(bh); 510 if (!buffer_uptodate(bh)) 511 err = -EIO; 512 brelse(bh); 513 spin_lock(lock); 514 goto repeat; 515 } 516 } 517 spin_unlock(lock); 518 return err; 519 } 520 521 static void do_thaw_one(struct super_block *sb, void *unused) 522 { 523 char b[BDEVNAME_SIZE]; 524 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 525 printk(KERN_WARNING "Emergency Thaw on %s\n", 526 bdevname(sb->s_bdev, b)); 527 } 528 529 static void do_thaw_all(struct work_struct *work) 530 { 531 iterate_supers(do_thaw_one, NULL); 532 kfree(work); 533 printk(KERN_WARNING "Emergency Thaw complete\n"); 534 } 535 536 /** 537 * emergency_thaw_all -- forcibly thaw every frozen filesystem 538 * 539 * Used for emergency unfreeze of all filesystems via SysRq 540 */ 541 void emergency_thaw_all(void) 542 { 543 struct work_struct *work; 544 545 work = kmalloc(sizeof(*work), GFP_ATOMIC); 546 if (work) { 547 INIT_WORK(work, do_thaw_all); 548 schedule_work(work); 549 } 550 } 551 552 /** 553 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 554 * @mapping: the mapping which wants those buffers written 555 * 556 * Starts I/O against the buffers at mapping->private_list, and waits upon 557 * that I/O. 558 * 559 * Basically, this is a convenience function for fsync(). 560 * @mapping is a file or directory which needs those buffers to be written for 561 * a successful fsync(). 562 */ 563 int sync_mapping_buffers(struct address_space *mapping) 564 { 565 struct address_space *buffer_mapping = mapping->private_data; 566 567 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 568 return 0; 569 570 return fsync_buffers_list(&buffer_mapping->private_lock, 571 &mapping->private_list); 572 } 573 EXPORT_SYMBOL(sync_mapping_buffers); 574 575 /* 576 * Called when we've recently written block `bblock', and it is known that 577 * `bblock' was for a buffer_boundary() buffer. This means that the block at 578 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 579 * dirty, schedule it for IO. So that indirects merge nicely with their data. 580 */ 581 void write_boundary_block(struct block_device *bdev, 582 sector_t bblock, unsigned blocksize) 583 { 584 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 585 if (bh) { 586 if (buffer_dirty(bh)) 587 ll_rw_block(WRITE, 1, &bh); 588 put_bh(bh); 589 } 590 } 591 592 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 593 { 594 struct address_space *mapping = inode->i_mapping; 595 struct address_space *buffer_mapping = bh->b_page->mapping; 596 597 mark_buffer_dirty(bh); 598 if (!mapping->private_data) { 599 mapping->private_data = buffer_mapping; 600 } else { 601 BUG_ON(mapping->private_data != buffer_mapping); 602 } 603 if (!bh->b_assoc_map) { 604 spin_lock(&buffer_mapping->private_lock); 605 list_move_tail(&bh->b_assoc_buffers, 606 &mapping->private_list); 607 bh->b_assoc_map = mapping; 608 spin_unlock(&buffer_mapping->private_lock); 609 } 610 } 611 EXPORT_SYMBOL(mark_buffer_dirty_inode); 612 613 /* 614 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 615 * dirty. 616 * 617 * If warn is true, then emit a warning if the page is not uptodate and has 618 * not been truncated. 619 */ 620 static void __set_page_dirty(struct page *page, 621 struct address_space *mapping, int warn) 622 { 623 spin_lock_irq(&mapping->tree_lock); 624 if (page->mapping) { /* Race with truncate? */ 625 WARN_ON_ONCE(warn && !PageUptodate(page)); 626 account_page_dirtied(page, mapping); 627 radix_tree_tag_set(&mapping->page_tree, 628 page_index(page), PAGECACHE_TAG_DIRTY); 629 } 630 spin_unlock_irq(&mapping->tree_lock); 631 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 632 } 633 634 /* 635 * Add a page to the dirty page list. 636 * 637 * It is a sad fact of life that this function is called from several places 638 * deeply under spinlocking. It may not sleep. 639 * 640 * If the page has buffers, the uptodate buffers are set dirty, to preserve 641 * dirty-state coherency between the page and the buffers. It the page does 642 * not have buffers then when they are later attached they will all be set 643 * dirty. 644 * 645 * The buffers are dirtied before the page is dirtied. There's a small race 646 * window in which a writepage caller may see the page cleanness but not the 647 * buffer dirtiness. That's fine. If this code were to set the page dirty 648 * before the buffers, a concurrent writepage caller could clear the page dirty 649 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 650 * page on the dirty page list. 651 * 652 * We use private_lock to lock against try_to_free_buffers while using the 653 * page's buffer list. Also use this to protect against clean buffers being 654 * added to the page after it was set dirty. 655 * 656 * FIXME: may need to call ->reservepage here as well. That's rather up to the 657 * address_space though. 658 */ 659 int __set_page_dirty_buffers(struct page *page) 660 { 661 int newly_dirty; 662 struct address_space *mapping = page_mapping(page); 663 664 if (unlikely(!mapping)) 665 return !TestSetPageDirty(page); 666 667 spin_lock(&mapping->private_lock); 668 if (page_has_buffers(page)) { 669 struct buffer_head *head = page_buffers(page); 670 struct buffer_head *bh = head; 671 672 do { 673 set_buffer_dirty(bh); 674 bh = bh->b_this_page; 675 } while (bh != head); 676 } 677 newly_dirty = !TestSetPageDirty(page); 678 spin_unlock(&mapping->private_lock); 679 680 if (newly_dirty) 681 __set_page_dirty(page, mapping, 1); 682 return newly_dirty; 683 } 684 EXPORT_SYMBOL(__set_page_dirty_buffers); 685 686 /* 687 * Write out and wait upon a list of buffers. 688 * 689 * We have conflicting pressures: we want to make sure that all 690 * initially dirty buffers get waited on, but that any subsequently 691 * dirtied buffers don't. After all, we don't want fsync to last 692 * forever if somebody is actively writing to the file. 693 * 694 * Do this in two main stages: first we copy dirty buffers to a 695 * temporary inode list, queueing the writes as we go. Then we clean 696 * up, waiting for those writes to complete. 697 * 698 * During this second stage, any subsequent updates to the file may end 699 * up refiling the buffer on the original inode's dirty list again, so 700 * there is a chance we will end up with a buffer queued for write but 701 * not yet completed on that list. So, as a final cleanup we go through 702 * the osync code to catch these locked, dirty buffers without requeuing 703 * any newly dirty buffers for write. 704 */ 705 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 706 { 707 struct buffer_head *bh; 708 struct list_head tmp; 709 struct address_space *mapping; 710 int err = 0, err2; 711 struct blk_plug plug; 712 713 INIT_LIST_HEAD(&tmp); 714 blk_start_plug(&plug); 715 716 spin_lock(lock); 717 while (!list_empty(list)) { 718 bh = BH_ENTRY(list->next); 719 mapping = bh->b_assoc_map; 720 __remove_assoc_queue(bh); 721 /* Avoid race with mark_buffer_dirty_inode() which does 722 * a lockless check and we rely on seeing the dirty bit */ 723 smp_mb(); 724 if (buffer_dirty(bh) || buffer_locked(bh)) { 725 list_add(&bh->b_assoc_buffers, &tmp); 726 bh->b_assoc_map = mapping; 727 if (buffer_dirty(bh)) { 728 get_bh(bh); 729 spin_unlock(lock); 730 /* 731 * Ensure any pending I/O completes so that 732 * write_dirty_buffer() actually writes the 733 * current contents - it is a noop if I/O is 734 * still in flight on potentially older 735 * contents. 736 */ 737 write_dirty_buffer(bh, WRITE_SYNC); 738 739 /* 740 * Kick off IO for the previous mapping. Note 741 * that we will not run the very last mapping, 742 * wait_on_buffer() will do that for us 743 * through sync_buffer(). 744 */ 745 brelse(bh); 746 spin_lock(lock); 747 } 748 } 749 } 750 751 spin_unlock(lock); 752 blk_finish_plug(&plug); 753 spin_lock(lock); 754 755 while (!list_empty(&tmp)) { 756 bh = BH_ENTRY(tmp.prev); 757 get_bh(bh); 758 mapping = bh->b_assoc_map; 759 __remove_assoc_queue(bh); 760 /* Avoid race with mark_buffer_dirty_inode() which does 761 * a lockless check and we rely on seeing the dirty bit */ 762 smp_mb(); 763 if (buffer_dirty(bh)) { 764 list_add(&bh->b_assoc_buffers, 765 &mapping->private_list); 766 bh->b_assoc_map = mapping; 767 } 768 spin_unlock(lock); 769 wait_on_buffer(bh); 770 if (!buffer_uptodate(bh)) 771 err = -EIO; 772 brelse(bh); 773 spin_lock(lock); 774 } 775 776 spin_unlock(lock); 777 err2 = osync_buffers_list(lock, list); 778 if (err) 779 return err; 780 else 781 return err2; 782 } 783 784 /* 785 * Invalidate any and all dirty buffers on a given inode. We are 786 * probably unmounting the fs, but that doesn't mean we have already 787 * done a sync(). Just drop the buffers from the inode list. 788 * 789 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 790 * assumes that all the buffers are against the blockdev. Not true 791 * for reiserfs. 792 */ 793 void invalidate_inode_buffers(struct inode *inode) 794 { 795 if (inode_has_buffers(inode)) { 796 struct address_space *mapping = &inode->i_data; 797 struct list_head *list = &mapping->private_list; 798 struct address_space *buffer_mapping = mapping->private_data; 799 800 spin_lock(&buffer_mapping->private_lock); 801 while (!list_empty(list)) 802 __remove_assoc_queue(BH_ENTRY(list->next)); 803 spin_unlock(&buffer_mapping->private_lock); 804 } 805 } 806 EXPORT_SYMBOL(invalidate_inode_buffers); 807 808 /* 809 * Remove any clean buffers from the inode's buffer list. This is called 810 * when we're trying to free the inode itself. Those buffers can pin it. 811 * 812 * Returns true if all buffers were removed. 813 */ 814 int remove_inode_buffers(struct inode *inode) 815 { 816 int ret = 1; 817 818 if (inode_has_buffers(inode)) { 819 struct address_space *mapping = &inode->i_data; 820 struct list_head *list = &mapping->private_list; 821 struct address_space *buffer_mapping = mapping->private_data; 822 823 spin_lock(&buffer_mapping->private_lock); 824 while (!list_empty(list)) { 825 struct buffer_head *bh = BH_ENTRY(list->next); 826 if (buffer_dirty(bh)) { 827 ret = 0; 828 break; 829 } 830 __remove_assoc_queue(bh); 831 } 832 spin_unlock(&buffer_mapping->private_lock); 833 } 834 return ret; 835 } 836 837 /* 838 * Create the appropriate buffers when given a page for data area and 839 * the size of each buffer.. Use the bh->b_this_page linked list to 840 * follow the buffers created. Return NULL if unable to create more 841 * buffers. 842 * 843 * The retry flag is used to differentiate async IO (paging, swapping) 844 * which may not fail from ordinary buffer allocations. 845 */ 846 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 847 int retry) 848 { 849 struct buffer_head *bh, *head; 850 long offset; 851 852 try_again: 853 head = NULL; 854 offset = PAGE_SIZE; 855 while ((offset -= size) >= 0) { 856 bh = alloc_buffer_head(GFP_NOFS); 857 if (!bh) 858 goto no_grow; 859 860 bh->b_this_page = head; 861 bh->b_blocknr = -1; 862 head = bh; 863 864 bh->b_size = size; 865 866 /* Link the buffer to its page */ 867 set_bh_page(bh, page, offset); 868 } 869 return head; 870 /* 871 * In case anything failed, we just free everything we got. 872 */ 873 no_grow: 874 if (head) { 875 do { 876 bh = head; 877 head = head->b_this_page; 878 free_buffer_head(bh); 879 } while (head); 880 } 881 882 /* 883 * Return failure for non-async IO requests. Async IO requests 884 * are not allowed to fail, so we have to wait until buffer heads 885 * become available. But we don't want tasks sleeping with 886 * partially complete buffers, so all were released above. 887 */ 888 if (!retry) 889 return NULL; 890 891 /* We're _really_ low on memory. Now we just 892 * wait for old buffer heads to become free due to 893 * finishing IO. Since this is an async request and 894 * the reserve list is empty, we're sure there are 895 * async buffer heads in use. 896 */ 897 free_more_memory(); 898 goto try_again; 899 } 900 EXPORT_SYMBOL_GPL(alloc_page_buffers); 901 902 static inline void 903 link_dev_buffers(struct page *page, struct buffer_head *head) 904 { 905 struct buffer_head *bh, *tail; 906 907 bh = head; 908 do { 909 tail = bh; 910 bh = bh->b_this_page; 911 } while (bh); 912 tail->b_this_page = head; 913 attach_page_buffers(page, head); 914 } 915 916 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 917 { 918 sector_t retval = ~((sector_t)0); 919 loff_t sz = i_size_read(bdev->bd_inode); 920 921 if (sz) { 922 unsigned int sizebits = blksize_bits(size); 923 retval = (sz >> sizebits); 924 } 925 return retval; 926 } 927 928 /* 929 * Initialise the state of a blockdev page's buffers. 930 */ 931 static sector_t 932 init_page_buffers(struct page *page, struct block_device *bdev, 933 sector_t block, int size) 934 { 935 struct buffer_head *head = page_buffers(page); 936 struct buffer_head *bh = head; 937 int uptodate = PageUptodate(page); 938 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 939 940 do { 941 if (!buffer_mapped(bh)) { 942 init_buffer(bh, NULL, NULL); 943 bh->b_bdev = bdev; 944 bh->b_blocknr = block; 945 if (uptodate) 946 set_buffer_uptodate(bh); 947 if (block < end_block) 948 set_buffer_mapped(bh); 949 } 950 block++; 951 bh = bh->b_this_page; 952 } while (bh != head); 953 954 /* 955 * Caller needs to validate requested block against end of device. 956 */ 957 return end_block; 958 } 959 960 /* 961 * Create the page-cache page that contains the requested block. 962 * 963 * This is used purely for blockdev mappings. 964 */ 965 static int 966 grow_dev_page(struct block_device *bdev, sector_t block, 967 pgoff_t index, int size, int sizebits) 968 { 969 struct inode *inode = bdev->bd_inode; 970 struct page *page; 971 struct buffer_head *bh; 972 sector_t end_block; 973 int ret = 0; /* Will call free_more_memory() */ 974 975 page = find_or_create_page(inode->i_mapping, index, 976 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 977 if (!page) 978 return ret; 979 980 BUG_ON(!PageLocked(page)); 981 982 if (page_has_buffers(page)) { 983 bh = page_buffers(page); 984 if (bh->b_size == size) { 985 end_block = init_page_buffers(page, bdev, 986 index << sizebits, size); 987 goto done; 988 } 989 if (!try_to_free_buffers(page)) 990 goto failed; 991 } 992 993 /* 994 * Allocate some buffers for this page 995 */ 996 bh = alloc_page_buffers(page, size, 0); 997 if (!bh) 998 goto failed; 999 1000 /* 1001 * Link the page to the buffers and initialise them. Take the 1002 * lock to be atomic wrt __find_get_block(), which does not 1003 * run under the page lock. 1004 */ 1005 spin_lock(&inode->i_mapping->private_lock); 1006 link_dev_buffers(page, bh); 1007 end_block = init_page_buffers(page, bdev, index << sizebits, size); 1008 spin_unlock(&inode->i_mapping->private_lock); 1009 done: 1010 ret = (block < end_block) ? 1 : -ENXIO; 1011 failed: 1012 unlock_page(page); 1013 page_cache_release(page); 1014 return ret; 1015 } 1016 1017 /* 1018 * Create buffers for the specified block device block's page. If 1019 * that page was dirty, the buffers are set dirty also. 1020 */ 1021 static int 1022 grow_buffers(struct block_device *bdev, sector_t block, int size) 1023 { 1024 pgoff_t index; 1025 int sizebits; 1026 1027 sizebits = -1; 1028 do { 1029 sizebits++; 1030 } while ((size << sizebits) < PAGE_SIZE); 1031 1032 index = block >> sizebits; 1033 1034 /* 1035 * Check for a block which wants to lie outside our maximum possible 1036 * pagecache index. (this comparison is done using sector_t types). 1037 */ 1038 if (unlikely(index != block >> sizebits)) { 1039 char b[BDEVNAME_SIZE]; 1040 1041 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1042 "device %s\n", 1043 __func__, (unsigned long long)block, 1044 bdevname(bdev, b)); 1045 return -EIO; 1046 } 1047 1048 /* Create a page with the proper size buffers.. */ 1049 return grow_dev_page(bdev, block, index, size, sizebits); 1050 } 1051 1052 static struct buffer_head * 1053 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1054 { 1055 /* Size must be multiple of hard sectorsize */ 1056 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1057 (size < 512 || size > PAGE_SIZE))) { 1058 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1059 size); 1060 printk(KERN_ERR "logical block size: %d\n", 1061 bdev_logical_block_size(bdev)); 1062 1063 dump_stack(); 1064 return NULL; 1065 } 1066 1067 for (;;) { 1068 struct buffer_head *bh; 1069 int ret; 1070 1071 bh = __find_get_block(bdev, block, size); 1072 if (bh) 1073 return bh; 1074 1075 ret = grow_buffers(bdev, block, size); 1076 if (ret < 0) 1077 return NULL; 1078 if (ret == 0) 1079 free_more_memory(); 1080 } 1081 } 1082 1083 /* 1084 * The relationship between dirty buffers and dirty pages: 1085 * 1086 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1087 * the page is tagged dirty in its radix tree. 1088 * 1089 * At all times, the dirtiness of the buffers represents the dirtiness of 1090 * subsections of the page. If the page has buffers, the page dirty bit is 1091 * merely a hint about the true dirty state. 1092 * 1093 * When a page is set dirty in its entirety, all its buffers are marked dirty 1094 * (if the page has buffers). 1095 * 1096 * When a buffer is marked dirty, its page is dirtied, but the page's other 1097 * buffers are not. 1098 * 1099 * Also. When blockdev buffers are explicitly read with bread(), they 1100 * individually become uptodate. But their backing page remains not 1101 * uptodate - even if all of its buffers are uptodate. A subsequent 1102 * block_read_full_page() against that page will discover all the uptodate 1103 * buffers, will set the page uptodate and will perform no I/O. 1104 */ 1105 1106 /** 1107 * mark_buffer_dirty - mark a buffer_head as needing writeout 1108 * @bh: the buffer_head to mark dirty 1109 * 1110 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1111 * backing page dirty, then tag the page as dirty in its address_space's radix 1112 * tree and then attach the address_space's inode to its superblock's dirty 1113 * inode list. 1114 * 1115 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1116 * mapping->tree_lock and mapping->host->i_lock. 1117 */ 1118 void mark_buffer_dirty(struct buffer_head *bh) 1119 { 1120 WARN_ON_ONCE(!buffer_uptodate(bh)); 1121 1122 trace_block_dirty_buffer(bh); 1123 1124 /* 1125 * Very *carefully* optimize the it-is-already-dirty case. 1126 * 1127 * Don't let the final "is it dirty" escape to before we 1128 * perhaps modified the buffer. 1129 */ 1130 if (buffer_dirty(bh)) { 1131 smp_mb(); 1132 if (buffer_dirty(bh)) 1133 return; 1134 } 1135 1136 if (!test_set_buffer_dirty(bh)) { 1137 struct page *page = bh->b_page; 1138 if (!TestSetPageDirty(page)) { 1139 struct address_space *mapping = page_mapping(page); 1140 if (mapping) 1141 __set_page_dirty(page, mapping, 0); 1142 } 1143 } 1144 } 1145 EXPORT_SYMBOL(mark_buffer_dirty); 1146 1147 /* 1148 * Decrement a buffer_head's reference count. If all buffers against a page 1149 * have zero reference count, are clean and unlocked, and if the page is clean 1150 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1151 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1152 * a page but it ends up not being freed, and buffers may later be reattached). 1153 */ 1154 void __brelse(struct buffer_head * buf) 1155 { 1156 if (atomic_read(&buf->b_count)) { 1157 put_bh(buf); 1158 return; 1159 } 1160 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1161 } 1162 EXPORT_SYMBOL(__brelse); 1163 1164 /* 1165 * bforget() is like brelse(), except it discards any 1166 * potentially dirty data. 1167 */ 1168 void __bforget(struct buffer_head *bh) 1169 { 1170 clear_buffer_dirty(bh); 1171 if (bh->b_assoc_map) { 1172 struct address_space *buffer_mapping = bh->b_page->mapping; 1173 1174 spin_lock(&buffer_mapping->private_lock); 1175 list_del_init(&bh->b_assoc_buffers); 1176 bh->b_assoc_map = NULL; 1177 spin_unlock(&buffer_mapping->private_lock); 1178 } 1179 __brelse(bh); 1180 } 1181 EXPORT_SYMBOL(__bforget); 1182 1183 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1184 { 1185 lock_buffer(bh); 1186 if (buffer_uptodate(bh)) { 1187 unlock_buffer(bh); 1188 return bh; 1189 } else { 1190 get_bh(bh); 1191 bh->b_end_io = end_buffer_read_sync; 1192 submit_bh(READ, bh); 1193 wait_on_buffer(bh); 1194 if (buffer_uptodate(bh)) 1195 return bh; 1196 } 1197 brelse(bh); 1198 return NULL; 1199 } 1200 1201 /* 1202 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1203 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1204 * refcount elevated by one when they're in an LRU. A buffer can only appear 1205 * once in a particular CPU's LRU. A single buffer can be present in multiple 1206 * CPU's LRUs at the same time. 1207 * 1208 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1209 * sb_find_get_block(). 1210 * 1211 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1212 * a local interrupt disable for that. 1213 */ 1214 1215 #define BH_LRU_SIZE 8 1216 1217 struct bh_lru { 1218 struct buffer_head *bhs[BH_LRU_SIZE]; 1219 }; 1220 1221 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1222 1223 #ifdef CONFIG_SMP 1224 #define bh_lru_lock() local_irq_disable() 1225 #define bh_lru_unlock() local_irq_enable() 1226 #else 1227 #define bh_lru_lock() preempt_disable() 1228 #define bh_lru_unlock() preempt_enable() 1229 #endif 1230 1231 static inline void check_irqs_on(void) 1232 { 1233 #ifdef irqs_disabled 1234 BUG_ON(irqs_disabled()); 1235 #endif 1236 } 1237 1238 /* 1239 * The LRU management algorithm is dopey-but-simple. Sorry. 1240 */ 1241 static void bh_lru_install(struct buffer_head *bh) 1242 { 1243 struct buffer_head *evictee = NULL; 1244 1245 check_irqs_on(); 1246 bh_lru_lock(); 1247 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1248 struct buffer_head *bhs[BH_LRU_SIZE]; 1249 int in; 1250 int out = 0; 1251 1252 get_bh(bh); 1253 bhs[out++] = bh; 1254 for (in = 0; in < BH_LRU_SIZE; in++) { 1255 struct buffer_head *bh2 = 1256 __this_cpu_read(bh_lrus.bhs[in]); 1257 1258 if (bh2 == bh) { 1259 __brelse(bh2); 1260 } else { 1261 if (out >= BH_LRU_SIZE) { 1262 BUG_ON(evictee != NULL); 1263 evictee = bh2; 1264 } else { 1265 bhs[out++] = bh2; 1266 } 1267 } 1268 } 1269 while (out < BH_LRU_SIZE) 1270 bhs[out++] = NULL; 1271 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1272 } 1273 bh_lru_unlock(); 1274 1275 if (evictee) 1276 __brelse(evictee); 1277 } 1278 1279 /* 1280 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1281 */ 1282 static struct buffer_head * 1283 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1284 { 1285 struct buffer_head *ret = NULL; 1286 unsigned int i; 1287 1288 check_irqs_on(); 1289 bh_lru_lock(); 1290 for (i = 0; i < BH_LRU_SIZE; i++) { 1291 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1292 1293 if (bh && bh->b_bdev == bdev && 1294 bh->b_blocknr == block && bh->b_size == size) { 1295 if (i) { 1296 while (i) { 1297 __this_cpu_write(bh_lrus.bhs[i], 1298 __this_cpu_read(bh_lrus.bhs[i - 1])); 1299 i--; 1300 } 1301 __this_cpu_write(bh_lrus.bhs[0], bh); 1302 } 1303 get_bh(bh); 1304 ret = bh; 1305 break; 1306 } 1307 } 1308 bh_lru_unlock(); 1309 return ret; 1310 } 1311 1312 /* 1313 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1314 * it in the LRU and mark it as accessed. If it is not present then return 1315 * NULL 1316 */ 1317 struct buffer_head * 1318 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1319 { 1320 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1321 1322 if (bh == NULL) { 1323 bh = __find_get_block_slow(bdev, block); 1324 if (bh) 1325 bh_lru_install(bh); 1326 } 1327 if (bh) 1328 touch_buffer(bh); 1329 return bh; 1330 } 1331 EXPORT_SYMBOL(__find_get_block); 1332 1333 /* 1334 * __getblk will locate (and, if necessary, create) the buffer_head 1335 * which corresponds to the passed block_device, block and size. The 1336 * returned buffer has its reference count incremented. 1337 * 1338 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1339 * attempt is failing. FIXME, perhaps? 1340 */ 1341 struct buffer_head * 1342 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1343 { 1344 struct buffer_head *bh = __find_get_block(bdev, block, size); 1345 1346 might_sleep(); 1347 if (bh == NULL) 1348 bh = __getblk_slow(bdev, block, size); 1349 return bh; 1350 } 1351 EXPORT_SYMBOL(__getblk); 1352 1353 /* 1354 * Do async read-ahead on a buffer.. 1355 */ 1356 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1357 { 1358 struct buffer_head *bh = __getblk(bdev, block, size); 1359 if (likely(bh)) { 1360 ll_rw_block(READA, 1, &bh); 1361 brelse(bh); 1362 } 1363 } 1364 EXPORT_SYMBOL(__breadahead); 1365 1366 /** 1367 * __bread() - reads a specified block and returns the bh 1368 * @bdev: the block_device to read from 1369 * @block: number of block 1370 * @size: size (in bytes) to read 1371 * 1372 * Reads a specified block, and returns buffer head that contains it. 1373 * It returns NULL if the block was unreadable. 1374 */ 1375 struct buffer_head * 1376 __bread(struct block_device *bdev, sector_t block, unsigned size) 1377 { 1378 struct buffer_head *bh = __getblk(bdev, block, size); 1379 1380 if (likely(bh) && !buffer_uptodate(bh)) 1381 bh = __bread_slow(bh); 1382 return bh; 1383 } 1384 EXPORT_SYMBOL(__bread); 1385 1386 /* 1387 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1388 * This doesn't race because it runs in each cpu either in irq 1389 * or with preempt disabled. 1390 */ 1391 static void invalidate_bh_lru(void *arg) 1392 { 1393 struct bh_lru *b = &get_cpu_var(bh_lrus); 1394 int i; 1395 1396 for (i = 0; i < BH_LRU_SIZE; i++) { 1397 brelse(b->bhs[i]); 1398 b->bhs[i] = NULL; 1399 } 1400 put_cpu_var(bh_lrus); 1401 } 1402 1403 static bool has_bh_in_lru(int cpu, void *dummy) 1404 { 1405 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1406 int i; 1407 1408 for (i = 0; i < BH_LRU_SIZE; i++) { 1409 if (b->bhs[i]) 1410 return 1; 1411 } 1412 1413 return 0; 1414 } 1415 1416 void invalidate_bh_lrus(void) 1417 { 1418 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1419 } 1420 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1421 1422 void set_bh_page(struct buffer_head *bh, 1423 struct page *page, unsigned long offset) 1424 { 1425 bh->b_page = page; 1426 BUG_ON(offset >= PAGE_SIZE); 1427 if (PageHighMem(page)) 1428 /* 1429 * This catches illegal uses and preserves the offset: 1430 */ 1431 bh->b_data = (char *)(0 + offset); 1432 else 1433 bh->b_data = page_address(page) + offset; 1434 } 1435 EXPORT_SYMBOL(set_bh_page); 1436 1437 /* 1438 * Called when truncating a buffer on a page completely. 1439 */ 1440 static void discard_buffer(struct buffer_head * bh) 1441 { 1442 lock_buffer(bh); 1443 clear_buffer_dirty(bh); 1444 bh->b_bdev = NULL; 1445 clear_buffer_mapped(bh); 1446 clear_buffer_req(bh); 1447 clear_buffer_new(bh); 1448 clear_buffer_delay(bh); 1449 clear_buffer_unwritten(bh); 1450 unlock_buffer(bh); 1451 } 1452 1453 /** 1454 * block_invalidatepage - invalidate part or all of a buffer-backed page 1455 * 1456 * @page: the page which is affected 1457 * @offset: start of the range to invalidate 1458 * @length: length of the range to invalidate 1459 * 1460 * block_invalidatepage() is called when all or part of the page has become 1461 * invalidated by a truncate operation. 1462 * 1463 * block_invalidatepage() does not have to release all buffers, but it must 1464 * ensure that no dirty buffer is left outside @offset and that no I/O 1465 * is underway against any of the blocks which are outside the truncation 1466 * point. Because the caller is about to free (and possibly reuse) those 1467 * blocks on-disk. 1468 */ 1469 void block_invalidatepage(struct page *page, unsigned int offset, 1470 unsigned int length) 1471 { 1472 struct buffer_head *head, *bh, *next; 1473 unsigned int curr_off = 0; 1474 unsigned int stop = length + offset; 1475 1476 BUG_ON(!PageLocked(page)); 1477 if (!page_has_buffers(page)) 1478 goto out; 1479 1480 /* 1481 * Check for overflow 1482 */ 1483 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1484 1485 head = page_buffers(page); 1486 bh = head; 1487 do { 1488 unsigned int next_off = curr_off + bh->b_size; 1489 next = bh->b_this_page; 1490 1491 /* 1492 * Are we still fully in range ? 1493 */ 1494 if (next_off > stop) 1495 goto out; 1496 1497 /* 1498 * is this block fully invalidated? 1499 */ 1500 if (offset <= curr_off) 1501 discard_buffer(bh); 1502 curr_off = next_off; 1503 bh = next; 1504 } while (bh != head); 1505 1506 /* 1507 * We release buffers only if the entire page is being invalidated. 1508 * The get_block cached value has been unconditionally invalidated, 1509 * so real IO is not possible anymore. 1510 */ 1511 if (offset == 0) 1512 try_to_release_page(page, 0); 1513 out: 1514 return; 1515 } 1516 EXPORT_SYMBOL(block_invalidatepage); 1517 1518 1519 /* 1520 * We attach and possibly dirty the buffers atomically wrt 1521 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1522 * is already excluded via the page lock. 1523 */ 1524 void create_empty_buffers(struct page *page, 1525 unsigned long blocksize, unsigned long b_state) 1526 { 1527 struct buffer_head *bh, *head, *tail; 1528 1529 head = alloc_page_buffers(page, blocksize, 1); 1530 bh = head; 1531 do { 1532 bh->b_state |= b_state; 1533 tail = bh; 1534 bh = bh->b_this_page; 1535 } while (bh); 1536 tail->b_this_page = head; 1537 1538 spin_lock(&page->mapping->private_lock); 1539 if (PageUptodate(page) || PageDirty(page)) { 1540 bh = head; 1541 do { 1542 if (PageDirty(page)) 1543 set_buffer_dirty(bh); 1544 if (PageUptodate(page)) 1545 set_buffer_uptodate(bh); 1546 bh = bh->b_this_page; 1547 } while (bh != head); 1548 } 1549 attach_page_buffers(page, head); 1550 spin_unlock(&page->mapping->private_lock); 1551 } 1552 EXPORT_SYMBOL(create_empty_buffers); 1553 1554 /* 1555 * We are taking a block for data and we don't want any output from any 1556 * buffer-cache aliases starting from return from that function and 1557 * until the moment when something will explicitly mark the buffer 1558 * dirty (hopefully that will not happen until we will free that block ;-) 1559 * We don't even need to mark it not-uptodate - nobody can expect 1560 * anything from a newly allocated buffer anyway. We used to used 1561 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1562 * don't want to mark the alias unmapped, for example - it would confuse 1563 * anyone who might pick it with bread() afterwards... 1564 * 1565 * Also.. Note that bforget() doesn't lock the buffer. So there can 1566 * be writeout I/O going on against recently-freed buffers. We don't 1567 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1568 * only if we really need to. That happens here. 1569 */ 1570 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1571 { 1572 struct buffer_head *old_bh; 1573 1574 might_sleep(); 1575 1576 old_bh = __find_get_block_slow(bdev, block); 1577 if (old_bh) { 1578 clear_buffer_dirty(old_bh); 1579 wait_on_buffer(old_bh); 1580 clear_buffer_req(old_bh); 1581 __brelse(old_bh); 1582 } 1583 } 1584 EXPORT_SYMBOL(unmap_underlying_metadata); 1585 1586 /* 1587 * Size is a power-of-two in the range 512..PAGE_SIZE, 1588 * and the case we care about most is PAGE_SIZE. 1589 * 1590 * So this *could* possibly be written with those 1591 * constraints in mind (relevant mostly if some 1592 * architecture has a slow bit-scan instruction) 1593 */ 1594 static inline int block_size_bits(unsigned int blocksize) 1595 { 1596 return ilog2(blocksize); 1597 } 1598 1599 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1600 { 1601 BUG_ON(!PageLocked(page)); 1602 1603 if (!page_has_buffers(page)) 1604 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1605 return page_buffers(page); 1606 } 1607 1608 /* 1609 * NOTE! All mapped/uptodate combinations are valid: 1610 * 1611 * Mapped Uptodate Meaning 1612 * 1613 * No No "unknown" - must do get_block() 1614 * No Yes "hole" - zero-filled 1615 * Yes No "allocated" - allocated on disk, not read in 1616 * Yes Yes "valid" - allocated and up-to-date in memory. 1617 * 1618 * "Dirty" is valid only with the last case (mapped+uptodate). 1619 */ 1620 1621 /* 1622 * While block_write_full_page is writing back the dirty buffers under 1623 * the page lock, whoever dirtied the buffers may decide to clean them 1624 * again at any time. We handle that by only looking at the buffer 1625 * state inside lock_buffer(). 1626 * 1627 * If block_write_full_page() is called for regular writeback 1628 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1629 * locked buffer. This only can happen if someone has written the buffer 1630 * directly, with submit_bh(). At the address_space level PageWriteback 1631 * prevents this contention from occurring. 1632 * 1633 * If block_write_full_page() is called with wbc->sync_mode == 1634 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1635 * causes the writes to be flagged as synchronous writes. 1636 */ 1637 static int __block_write_full_page(struct inode *inode, struct page *page, 1638 get_block_t *get_block, struct writeback_control *wbc, 1639 bh_end_io_t *handler) 1640 { 1641 int err; 1642 sector_t block; 1643 sector_t last_block; 1644 struct buffer_head *bh, *head; 1645 unsigned int blocksize, bbits; 1646 int nr_underway = 0; 1647 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1648 WRITE_SYNC : WRITE); 1649 1650 head = create_page_buffers(page, inode, 1651 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1652 1653 /* 1654 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1655 * here, and the (potentially unmapped) buffers may become dirty at 1656 * any time. If a buffer becomes dirty here after we've inspected it 1657 * then we just miss that fact, and the page stays dirty. 1658 * 1659 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1660 * handle that here by just cleaning them. 1661 */ 1662 1663 bh = head; 1664 blocksize = bh->b_size; 1665 bbits = block_size_bits(blocksize); 1666 1667 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1668 last_block = (i_size_read(inode) - 1) >> bbits; 1669 1670 /* 1671 * Get all the dirty buffers mapped to disk addresses and 1672 * handle any aliases from the underlying blockdev's mapping. 1673 */ 1674 do { 1675 if (block > last_block) { 1676 /* 1677 * mapped buffers outside i_size will occur, because 1678 * this page can be outside i_size when there is a 1679 * truncate in progress. 1680 */ 1681 /* 1682 * The buffer was zeroed by block_write_full_page() 1683 */ 1684 clear_buffer_dirty(bh); 1685 set_buffer_uptodate(bh); 1686 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1687 buffer_dirty(bh)) { 1688 WARN_ON(bh->b_size != blocksize); 1689 err = get_block(inode, block, bh, 1); 1690 if (err) 1691 goto recover; 1692 clear_buffer_delay(bh); 1693 if (buffer_new(bh)) { 1694 /* blockdev mappings never come here */ 1695 clear_buffer_new(bh); 1696 unmap_underlying_metadata(bh->b_bdev, 1697 bh->b_blocknr); 1698 } 1699 } 1700 bh = bh->b_this_page; 1701 block++; 1702 } while (bh != head); 1703 1704 do { 1705 if (!buffer_mapped(bh)) 1706 continue; 1707 /* 1708 * If it's a fully non-blocking write attempt and we cannot 1709 * lock the buffer then redirty the page. Note that this can 1710 * potentially cause a busy-wait loop from writeback threads 1711 * and kswapd activity, but those code paths have their own 1712 * higher-level throttling. 1713 */ 1714 if (wbc->sync_mode != WB_SYNC_NONE) { 1715 lock_buffer(bh); 1716 } else if (!trylock_buffer(bh)) { 1717 redirty_page_for_writepage(wbc, page); 1718 continue; 1719 } 1720 if (test_clear_buffer_dirty(bh)) { 1721 mark_buffer_async_write_endio(bh, handler); 1722 } else { 1723 unlock_buffer(bh); 1724 } 1725 } while ((bh = bh->b_this_page) != head); 1726 1727 /* 1728 * The page and its buffers are protected by PageWriteback(), so we can 1729 * drop the bh refcounts early. 1730 */ 1731 BUG_ON(PageWriteback(page)); 1732 set_page_writeback(page); 1733 1734 do { 1735 struct buffer_head *next = bh->b_this_page; 1736 if (buffer_async_write(bh)) { 1737 submit_bh(write_op, bh); 1738 nr_underway++; 1739 } 1740 bh = next; 1741 } while (bh != head); 1742 unlock_page(page); 1743 1744 err = 0; 1745 done: 1746 if (nr_underway == 0) { 1747 /* 1748 * The page was marked dirty, but the buffers were 1749 * clean. Someone wrote them back by hand with 1750 * ll_rw_block/submit_bh. A rare case. 1751 */ 1752 end_page_writeback(page); 1753 1754 /* 1755 * The page and buffer_heads can be released at any time from 1756 * here on. 1757 */ 1758 } 1759 return err; 1760 1761 recover: 1762 /* 1763 * ENOSPC, or some other error. We may already have added some 1764 * blocks to the file, so we need to write these out to avoid 1765 * exposing stale data. 1766 * The page is currently locked and not marked for writeback 1767 */ 1768 bh = head; 1769 /* Recovery: lock and submit the mapped buffers */ 1770 do { 1771 if (buffer_mapped(bh) && buffer_dirty(bh) && 1772 !buffer_delay(bh)) { 1773 lock_buffer(bh); 1774 mark_buffer_async_write_endio(bh, handler); 1775 } else { 1776 /* 1777 * The buffer may have been set dirty during 1778 * attachment to a dirty page. 1779 */ 1780 clear_buffer_dirty(bh); 1781 } 1782 } while ((bh = bh->b_this_page) != head); 1783 SetPageError(page); 1784 BUG_ON(PageWriteback(page)); 1785 mapping_set_error(page->mapping, err); 1786 set_page_writeback(page); 1787 do { 1788 struct buffer_head *next = bh->b_this_page; 1789 if (buffer_async_write(bh)) { 1790 clear_buffer_dirty(bh); 1791 submit_bh(write_op, bh); 1792 nr_underway++; 1793 } 1794 bh = next; 1795 } while (bh != head); 1796 unlock_page(page); 1797 goto done; 1798 } 1799 1800 /* 1801 * If a page has any new buffers, zero them out here, and mark them uptodate 1802 * and dirty so they'll be written out (in order to prevent uninitialised 1803 * block data from leaking). And clear the new bit. 1804 */ 1805 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1806 { 1807 unsigned int block_start, block_end; 1808 struct buffer_head *head, *bh; 1809 1810 BUG_ON(!PageLocked(page)); 1811 if (!page_has_buffers(page)) 1812 return; 1813 1814 bh = head = page_buffers(page); 1815 block_start = 0; 1816 do { 1817 block_end = block_start + bh->b_size; 1818 1819 if (buffer_new(bh)) { 1820 if (block_end > from && block_start < to) { 1821 if (!PageUptodate(page)) { 1822 unsigned start, size; 1823 1824 start = max(from, block_start); 1825 size = min(to, block_end) - start; 1826 1827 zero_user(page, start, size); 1828 set_buffer_uptodate(bh); 1829 } 1830 1831 clear_buffer_new(bh); 1832 mark_buffer_dirty(bh); 1833 } 1834 } 1835 1836 block_start = block_end; 1837 bh = bh->b_this_page; 1838 } while (bh != head); 1839 } 1840 EXPORT_SYMBOL(page_zero_new_buffers); 1841 1842 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1843 get_block_t *get_block) 1844 { 1845 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1846 unsigned to = from + len; 1847 struct inode *inode = page->mapping->host; 1848 unsigned block_start, block_end; 1849 sector_t block; 1850 int err = 0; 1851 unsigned blocksize, bbits; 1852 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1853 1854 BUG_ON(!PageLocked(page)); 1855 BUG_ON(from > PAGE_CACHE_SIZE); 1856 BUG_ON(to > PAGE_CACHE_SIZE); 1857 BUG_ON(from > to); 1858 1859 head = create_page_buffers(page, inode, 0); 1860 blocksize = head->b_size; 1861 bbits = block_size_bits(blocksize); 1862 1863 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1864 1865 for(bh = head, block_start = 0; bh != head || !block_start; 1866 block++, block_start=block_end, bh = bh->b_this_page) { 1867 block_end = block_start + blocksize; 1868 if (block_end <= from || block_start >= to) { 1869 if (PageUptodate(page)) { 1870 if (!buffer_uptodate(bh)) 1871 set_buffer_uptodate(bh); 1872 } 1873 continue; 1874 } 1875 if (buffer_new(bh)) 1876 clear_buffer_new(bh); 1877 if (!buffer_mapped(bh)) { 1878 WARN_ON(bh->b_size != blocksize); 1879 err = get_block(inode, block, bh, 1); 1880 if (err) 1881 break; 1882 if (buffer_new(bh)) { 1883 unmap_underlying_metadata(bh->b_bdev, 1884 bh->b_blocknr); 1885 if (PageUptodate(page)) { 1886 clear_buffer_new(bh); 1887 set_buffer_uptodate(bh); 1888 mark_buffer_dirty(bh); 1889 continue; 1890 } 1891 if (block_end > to || block_start < from) 1892 zero_user_segments(page, 1893 to, block_end, 1894 block_start, from); 1895 continue; 1896 } 1897 } 1898 if (PageUptodate(page)) { 1899 if (!buffer_uptodate(bh)) 1900 set_buffer_uptodate(bh); 1901 continue; 1902 } 1903 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1904 !buffer_unwritten(bh) && 1905 (block_start < from || block_end > to)) { 1906 ll_rw_block(READ, 1, &bh); 1907 *wait_bh++=bh; 1908 } 1909 } 1910 /* 1911 * If we issued read requests - let them complete. 1912 */ 1913 while(wait_bh > wait) { 1914 wait_on_buffer(*--wait_bh); 1915 if (!buffer_uptodate(*wait_bh)) 1916 err = -EIO; 1917 } 1918 if (unlikely(err)) 1919 page_zero_new_buffers(page, from, to); 1920 return err; 1921 } 1922 EXPORT_SYMBOL(__block_write_begin); 1923 1924 static int __block_commit_write(struct inode *inode, struct page *page, 1925 unsigned from, unsigned to) 1926 { 1927 unsigned block_start, block_end; 1928 int partial = 0; 1929 unsigned blocksize; 1930 struct buffer_head *bh, *head; 1931 1932 bh = head = page_buffers(page); 1933 blocksize = bh->b_size; 1934 1935 block_start = 0; 1936 do { 1937 block_end = block_start + blocksize; 1938 if (block_end <= from || block_start >= to) { 1939 if (!buffer_uptodate(bh)) 1940 partial = 1; 1941 } else { 1942 set_buffer_uptodate(bh); 1943 mark_buffer_dirty(bh); 1944 } 1945 clear_buffer_new(bh); 1946 1947 block_start = block_end; 1948 bh = bh->b_this_page; 1949 } while (bh != head); 1950 1951 /* 1952 * If this is a partial write which happened to make all buffers 1953 * uptodate then we can optimize away a bogus readpage() for 1954 * the next read(). Here we 'discover' whether the page went 1955 * uptodate as a result of this (potentially partial) write. 1956 */ 1957 if (!partial) 1958 SetPageUptodate(page); 1959 return 0; 1960 } 1961 1962 /* 1963 * block_write_begin takes care of the basic task of block allocation and 1964 * bringing partial write blocks uptodate first. 1965 * 1966 * The filesystem needs to handle block truncation upon failure. 1967 */ 1968 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 1969 unsigned flags, struct page **pagep, get_block_t *get_block) 1970 { 1971 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1972 struct page *page; 1973 int status; 1974 1975 page = grab_cache_page_write_begin(mapping, index, flags); 1976 if (!page) 1977 return -ENOMEM; 1978 1979 status = __block_write_begin(page, pos, len, get_block); 1980 if (unlikely(status)) { 1981 unlock_page(page); 1982 page_cache_release(page); 1983 page = NULL; 1984 } 1985 1986 *pagep = page; 1987 return status; 1988 } 1989 EXPORT_SYMBOL(block_write_begin); 1990 1991 int block_write_end(struct file *file, struct address_space *mapping, 1992 loff_t pos, unsigned len, unsigned copied, 1993 struct page *page, void *fsdata) 1994 { 1995 struct inode *inode = mapping->host; 1996 unsigned start; 1997 1998 start = pos & (PAGE_CACHE_SIZE - 1); 1999 2000 if (unlikely(copied < len)) { 2001 /* 2002 * The buffers that were written will now be uptodate, so we 2003 * don't have to worry about a readpage reading them and 2004 * overwriting a partial write. However if we have encountered 2005 * a short write and only partially written into a buffer, it 2006 * will not be marked uptodate, so a readpage might come in and 2007 * destroy our partial write. 2008 * 2009 * Do the simplest thing, and just treat any short write to a 2010 * non uptodate page as a zero-length write, and force the 2011 * caller to redo the whole thing. 2012 */ 2013 if (!PageUptodate(page)) 2014 copied = 0; 2015 2016 page_zero_new_buffers(page, start+copied, start+len); 2017 } 2018 flush_dcache_page(page); 2019 2020 /* This could be a short (even 0-length) commit */ 2021 __block_commit_write(inode, page, start, start+copied); 2022 2023 return copied; 2024 } 2025 EXPORT_SYMBOL(block_write_end); 2026 2027 int generic_write_end(struct file *file, struct address_space *mapping, 2028 loff_t pos, unsigned len, unsigned copied, 2029 struct page *page, void *fsdata) 2030 { 2031 struct inode *inode = mapping->host; 2032 int i_size_changed = 0; 2033 2034 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2035 2036 /* 2037 * No need to use i_size_read() here, the i_size 2038 * cannot change under us because we hold i_mutex. 2039 * 2040 * But it's important to update i_size while still holding page lock: 2041 * page writeout could otherwise come in and zero beyond i_size. 2042 */ 2043 if (pos+copied > inode->i_size) { 2044 i_size_write(inode, pos+copied); 2045 i_size_changed = 1; 2046 } 2047 2048 unlock_page(page); 2049 page_cache_release(page); 2050 2051 /* 2052 * Don't mark the inode dirty under page lock. First, it unnecessarily 2053 * makes the holding time of page lock longer. Second, it forces lock 2054 * ordering of page lock and transaction start for journaling 2055 * filesystems. 2056 */ 2057 if (i_size_changed) 2058 mark_inode_dirty(inode); 2059 2060 return copied; 2061 } 2062 EXPORT_SYMBOL(generic_write_end); 2063 2064 /* 2065 * block_is_partially_uptodate checks whether buffers within a page are 2066 * uptodate or not. 2067 * 2068 * Returns true if all buffers which correspond to a file portion 2069 * we want to read are uptodate. 2070 */ 2071 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2072 unsigned long from) 2073 { 2074 unsigned block_start, block_end, blocksize; 2075 unsigned to; 2076 struct buffer_head *bh, *head; 2077 int ret = 1; 2078 2079 if (!page_has_buffers(page)) 2080 return 0; 2081 2082 head = page_buffers(page); 2083 blocksize = head->b_size; 2084 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2085 to = from + to; 2086 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2087 return 0; 2088 2089 bh = head; 2090 block_start = 0; 2091 do { 2092 block_end = block_start + blocksize; 2093 if (block_end > from && block_start < to) { 2094 if (!buffer_uptodate(bh)) { 2095 ret = 0; 2096 break; 2097 } 2098 if (block_end >= to) 2099 break; 2100 } 2101 block_start = block_end; 2102 bh = bh->b_this_page; 2103 } while (bh != head); 2104 2105 return ret; 2106 } 2107 EXPORT_SYMBOL(block_is_partially_uptodate); 2108 2109 /* 2110 * Generic "read page" function for block devices that have the normal 2111 * get_block functionality. This is most of the block device filesystems. 2112 * Reads the page asynchronously --- the unlock_buffer() and 2113 * set/clear_buffer_uptodate() functions propagate buffer state into the 2114 * page struct once IO has completed. 2115 */ 2116 int block_read_full_page(struct page *page, get_block_t *get_block) 2117 { 2118 struct inode *inode = page->mapping->host; 2119 sector_t iblock, lblock; 2120 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2121 unsigned int blocksize, bbits; 2122 int nr, i; 2123 int fully_mapped = 1; 2124 2125 head = create_page_buffers(page, inode, 0); 2126 blocksize = head->b_size; 2127 bbits = block_size_bits(blocksize); 2128 2129 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 2130 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2131 bh = head; 2132 nr = 0; 2133 i = 0; 2134 2135 do { 2136 if (buffer_uptodate(bh)) 2137 continue; 2138 2139 if (!buffer_mapped(bh)) { 2140 int err = 0; 2141 2142 fully_mapped = 0; 2143 if (iblock < lblock) { 2144 WARN_ON(bh->b_size != blocksize); 2145 err = get_block(inode, iblock, bh, 0); 2146 if (err) 2147 SetPageError(page); 2148 } 2149 if (!buffer_mapped(bh)) { 2150 zero_user(page, i * blocksize, blocksize); 2151 if (!err) 2152 set_buffer_uptodate(bh); 2153 continue; 2154 } 2155 /* 2156 * get_block() might have updated the buffer 2157 * synchronously 2158 */ 2159 if (buffer_uptodate(bh)) 2160 continue; 2161 } 2162 arr[nr++] = bh; 2163 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2164 2165 if (fully_mapped) 2166 SetPageMappedToDisk(page); 2167 2168 if (!nr) { 2169 /* 2170 * All buffers are uptodate - we can set the page uptodate 2171 * as well. But not if get_block() returned an error. 2172 */ 2173 if (!PageError(page)) 2174 SetPageUptodate(page); 2175 unlock_page(page); 2176 return 0; 2177 } 2178 2179 /* Stage two: lock the buffers */ 2180 for (i = 0; i < nr; i++) { 2181 bh = arr[i]; 2182 lock_buffer(bh); 2183 mark_buffer_async_read(bh); 2184 } 2185 2186 /* 2187 * Stage 3: start the IO. Check for uptodateness 2188 * inside the buffer lock in case another process reading 2189 * the underlying blockdev brought it uptodate (the sct fix). 2190 */ 2191 for (i = 0; i < nr; i++) { 2192 bh = arr[i]; 2193 if (buffer_uptodate(bh)) 2194 end_buffer_async_read(bh, 1); 2195 else 2196 submit_bh(READ, bh); 2197 } 2198 return 0; 2199 } 2200 EXPORT_SYMBOL(block_read_full_page); 2201 2202 /* utility function for filesystems that need to do work on expanding 2203 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2204 * deal with the hole. 2205 */ 2206 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2207 { 2208 struct address_space *mapping = inode->i_mapping; 2209 struct page *page; 2210 void *fsdata; 2211 int err; 2212 2213 err = inode_newsize_ok(inode, size); 2214 if (err) 2215 goto out; 2216 2217 err = pagecache_write_begin(NULL, mapping, size, 0, 2218 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2219 &page, &fsdata); 2220 if (err) 2221 goto out; 2222 2223 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2224 BUG_ON(err > 0); 2225 2226 out: 2227 return err; 2228 } 2229 EXPORT_SYMBOL(generic_cont_expand_simple); 2230 2231 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2232 loff_t pos, loff_t *bytes) 2233 { 2234 struct inode *inode = mapping->host; 2235 unsigned blocksize = 1 << inode->i_blkbits; 2236 struct page *page; 2237 void *fsdata; 2238 pgoff_t index, curidx; 2239 loff_t curpos; 2240 unsigned zerofrom, offset, len; 2241 int err = 0; 2242 2243 index = pos >> PAGE_CACHE_SHIFT; 2244 offset = pos & ~PAGE_CACHE_MASK; 2245 2246 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2247 zerofrom = curpos & ~PAGE_CACHE_MASK; 2248 if (zerofrom & (blocksize-1)) { 2249 *bytes |= (blocksize-1); 2250 (*bytes)++; 2251 } 2252 len = PAGE_CACHE_SIZE - zerofrom; 2253 2254 err = pagecache_write_begin(file, mapping, curpos, len, 2255 AOP_FLAG_UNINTERRUPTIBLE, 2256 &page, &fsdata); 2257 if (err) 2258 goto out; 2259 zero_user(page, zerofrom, len); 2260 err = pagecache_write_end(file, mapping, curpos, len, len, 2261 page, fsdata); 2262 if (err < 0) 2263 goto out; 2264 BUG_ON(err != len); 2265 err = 0; 2266 2267 balance_dirty_pages_ratelimited(mapping); 2268 } 2269 2270 /* page covers the boundary, find the boundary offset */ 2271 if (index == curidx) { 2272 zerofrom = curpos & ~PAGE_CACHE_MASK; 2273 /* if we will expand the thing last block will be filled */ 2274 if (offset <= zerofrom) { 2275 goto out; 2276 } 2277 if (zerofrom & (blocksize-1)) { 2278 *bytes |= (blocksize-1); 2279 (*bytes)++; 2280 } 2281 len = offset - zerofrom; 2282 2283 err = pagecache_write_begin(file, mapping, curpos, len, 2284 AOP_FLAG_UNINTERRUPTIBLE, 2285 &page, &fsdata); 2286 if (err) 2287 goto out; 2288 zero_user(page, zerofrom, len); 2289 err = pagecache_write_end(file, mapping, curpos, len, len, 2290 page, fsdata); 2291 if (err < 0) 2292 goto out; 2293 BUG_ON(err != len); 2294 err = 0; 2295 } 2296 out: 2297 return err; 2298 } 2299 2300 /* 2301 * For moronic filesystems that do not allow holes in file. 2302 * We may have to extend the file. 2303 */ 2304 int cont_write_begin(struct file *file, struct address_space *mapping, 2305 loff_t pos, unsigned len, unsigned flags, 2306 struct page **pagep, void **fsdata, 2307 get_block_t *get_block, loff_t *bytes) 2308 { 2309 struct inode *inode = mapping->host; 2310 unsigned blocksize = 1 << inode->i_blkbits; 2311 unsigned zerofrom; 2312 int err; 2313 2314 err = cont_expand_zero(file, mapping, pos, bytes); 2315 if (err) 2316 return err; 2317 2318 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2319 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2320 *bytes |= (blocksize-1); 2321 (*bytes)++; 2322 } 2323 2324 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2325 } 2326 EXPORT_SYMBOL(cont_write_begin); 2327 2328 int block_commit_write(struct page *page, unsigned from, unsigned to) 2329 { 2330 struct inode *inode = page->mapping->host; 2331 __block_commit_write(inode,page,from,to); 2332 return 0; 2333 } 2334 EXPORT_SYMBOL(block_commit_write); 2335 2336 /* 2337 * block_page_mkwrite() is not allowed to change the file size as it gets 2338 * called from a page fault handler when a page is first dirtied. Hence we must 2339 * be careful to check for EOF conditions here. We set the page up correctly 2340 * for a written page which means we get ENOSPC checking when writing into 2341 * holes and correct delalloc and unwritten extent mapping on filesystems that 2342 * support these features. 2343 * 2344 * We are not allowed to take the i_mutex here so we have to play games to 2345 * protect against truncate races as the page could now be beyond EOF. Because 2346 * truncate writes the inode size before removing pages, once we have the 2347 * page lock we can determine safely if the page is beyond EOF. If it is not 2348 * beyond EOF, then the page is guaranteed safe against truncation until we 2349 * unlock the page. 2350 * 2351 * Direct callers of this function should protect against filesystem freezing 2352 * using sb_start_write() - sb_end_write() functions. 2353 */ 2354 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2355 get_block_t get_block) 2356 { 2357 struct page *page = vmf->page; 2358 struct inode *inode = file_inode(vma->vm_file); 2359 unsigned long end; 2360 loff_t size; 2361 int ret; 2362 2363 lock_page(page); 2364 size = i_size_read(inode); 2365 if ((page->mapping != inode->i_mapping) || 2366 (page_offset(page) > size)) { 2367 /* We overload EFAULT to mean page got truncated */ 2368 ret = -EFAULT; 2369 goto out_unlock; 2370 } 2371 2372 /* page is wholly or partially inside EOF */ 2373 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2374 end = size & ~PAGE_CACHE_MASK; 2375 else 2376 end = PAGE_CACHE_SIZE; 2377 2378 ret = __block_write_begin(page, 0, end, get_block); 2379 if (!ret) 2380 ret = block_commit_write(page, 0, end); 2381 2382 if (unlikely(ret < 0)) 2383 goto out_unlock; 2384 set_page_dirty(page); 2385 wait_for_stable_page(page); 2386 return 0; 2387 out_unlock: 2388 unlock_page(page); 2389 return ret; 2390 } 2391 EXPORT_SYMBOL(__block_page_mkwrite); 2392 2393 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2394 get_block_t get_block) 2395 { 2396 int ret; 2397 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 2398 2399 sb_start_pagefault(sb); 2400 2401 /* 2402 * Update file times before taking page lock. We may end up failing the 2403 * fault so this update may be superfluous but who really cares... 2404 */ 2405 file_update_time(vma->vm_file); 2406 2407 ret = __block_page_mkwrite(vma, vmf, get_block); 2408 sb_end_pagefault(sb); 2409 return block_page_mkwrite_return(ret); 2410 } 2411 EXPORT_SYMBOL(block_page_mkwrite); 2412 2413 /* 2414 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2415 * immediately, while under the page lock. So it needs a special end_io 2416 * handler which does not touch the bh after unlocking it. 2417 */ 2418 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2419 { 2420 __end_buffer_read_notouch(bh, uptodate); 2421 } 2422 2423 /* 2424 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2425 * the page (converting it to circular linked list and taking care of page 2426 * dirty races). 2427 */ 2428 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2429 { 2430 struct buffer_head *bh; 2431 2432 BUG_ON(!PageLocked(page)); 2433 2434 spin_lock(&page->mapping->private_lock); 2435 bh = head; 2436 do { 2437 if (PageDirty(page)) 2438 set_buffer_dirty(bh); 2439 if (!bh->b_this_page) 2440 bh->b_this_page = head; 2441 bh = bh->b_this_page; 2442 } while (bh != head); 2443 attach_page_buffers(page, head); 2444 spin_unlock(&page->mapping->private_lock); 2445 } 2446 2447 /* 2448 * On entry, the page is fully not uptodate. 2449 * On exit the page is fully uptodate in the areas outside (from,to) 2450 * The filesystem needs to handle block truncation upon failure. 2451 */ 2452 int nobh_write_begin(struct address_space *mapping, 2453 loff_t pos, unsigned len, unsigned flags, 2454 struct page **pagep, void **fsdata, 2455 get_block_t *get_block) 2456 { 2457 struct inode *inode = mapping->host; 2458 const unsigned blkbits = inode->i_blkbits; 2459 const unsigned blocksize = 1 << blkbits; 2460 struct buffer_head *head, *bh; 2461 struct page *page; 2462 pgoff_t index; 2463 unsigned from, to; 2464 unsigned block_in_page; 2465 unsigned block_start, block_end; 2466 sector_t block_in_file; 2467 int nr_reads = 0; 2468 int ret = 0; 2469 int is_mapped_to_disk = 1; 2470 2471 index = pos >> PAGE_CACHE_SHIFT; 2472 from = pos & (PAGE_CACHE_SIZE - 1); 2473 to = from + len; 2474 2475 page = grab_cache_page_write_begin(mapping, index, flags); 2476 if (!page) 2477 return -ENOMEM; 2478 *pagep = page; 2479 *fsdata = NULL; 2480 2481 if (page_has_buffers(page)) { 2482 ret = __block_write_begin(page, pos, len, get_block); 2483 if (unlikely(ret)) 2484 goto out_release; 2485 return ret; 2486 } 2487 2488 if (PageMappedToDisk(page)) 2489 return 0; 2490 2491 /* 2492 * Allocate buffers so that we can keep track of state, and potentially 2493 * attach them to the page if an error occurs. In the common case of 2494 * no error, they will just be freed again without ever being attached 2495 * to the page (which is all OK, because we're under the page lock). 2496 * 2497 * Be careful: the buffer linked list is a NULL terminated one, rather 2498 * than the circular one we're used to. 2499 */ 2500 head = alloc_page_buffers(page, blocksize, 0); 2501 if (!head) { 2502 ret = -ENOMEM; 2503 goto out_release; 2504 } 2505 2506 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2507 2508 /* 2509 * We loop across all blocks in the page, whether or not they are 2510 * part of the affected region. This is so we can discover if the 2511 * page is fully mapped-to-disk. 2512 */ 2513 for (block_start = 0, block_in_page = 0, bh = head; 2514 block_start < PAGE_CACHE_SIZE; 2515 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2516 int create; 2517 2518 block_end = block_start + blocksize; 2519 bh->b_state = 0; 2520 create = 1; 2521 if (block_start >= to) 2522 create = 0; 2523 ret = get_block(inode, block_in_file + block_in_page, 2524 bh, create); 2525 if (ret) 2526 goto failed; 2527 if (!buffer_mapped(bh)) 2528 is_mapped_to_disk = 0; 2529 if (buffer_new(bh)) 2530 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2531 if (PageUptodate(page)) { 2532 set_buffer_uptodate(bh); 2533 continue; 2534 } 2535 if (buffer_new(bh) || !buffer_mapped(bh)) { 2536 zero_user_segments(page, block_start, from, 2537 to, block_end); 2538 continue; 2539 } 2540 if (buffer_uptodate(bh)) 2541 continue; /* reiserfs does this */ 2542 if (block_start < from || block_end > to) { 2543 lock_buffer(bh); 2544 bh->b_end_io = end_buffer_read_nobh; 2545 submit_bh(READ, bh); 2546 nr_reads++; 2547 } 2548 } 2549 2550 if (nr_reads) { 2551 /* 2552 * The page is locked, so these buffers are protected from 2553 * any VM or truncate activity. Hence we don't need to care 2554 * for the buffer_head refcounts. 2555 */ 2556 for (bh = head; bh; bh = bh->b_this_page) { 2557 wait_on_buffer(bh); 2558 if (!buffer_uptodate(bh)) 2559 ret = -EIO; 2560 } 2561 if (ret) 2562 goto failed; 2563 } 2564 2565 if (is_mapped_to_disk) 2566 SetPageMappedToDisk(page); 2567 2568 *fsdata = head; /* to be released by nobh_write_end */ 2569 2570 return 0; 2571 2572 failed: 2573 BUG_ON(!ret); 2574 /* 2575 * Error recovery is a bit difficult. We need to zero out blocks that 2576 * were newly allocated, and dirty them to ensure they get written out. 2577 * Buffers need to be attached to the page at this point, otherwise 2578 * the handling of potential IO errors during writeout would be hard 2579 * (could try doing synchronous writeout, but what if that fails too?) 2580 */ 2581 attach_nobh_buffers(page, head); 2582 page_zero_new_buffers(page, from, to); 2583 2584 out_release: 2585 unlock_page(page); 2586 page_cache_release(page); 2587 *pagep = NULL; 2588 2589 return ret; 2590 } 2591 EXPORT_SYMBOL(nobh_write_begin); 2592 2593 int nobh_write_end(struct file *file, struct address_space *mapping, 2594 loff_t pos, unsigned len, unsigned copied, 2595 struct page *page, void *fsdata) 2596 { 2597 struct inode *inode = page->mapping->host; 2598 struct buffer_head *head = fsdata; 2599 struct buffer_head *bh; 2600 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2601 2602 if (unlikely(copied < len) && head) 2603 attach_nobh_buffers(page, head); 2604 if (page_has_buffers(page)) 2605 return generic_write_end(file, mapping, pos, len, 2606 copied, page, fsdata); 2607 2608 SetPageUptodate(page); 2609 set_page_dirty(page); 2610 if (pos+copied > inode->i_size) { 2611 i_size_write(inode, pos+copied); 2612 mark_inode_dirty(inode); 2613 } 2614 2615 unlock_page(page); 2616 page_cache_release(page); 2617 2618 while (head) { 2619 bh = head; 2620 head = head->b_this_page; 2621 free_buffer_head(bh); 2622 } 2623 2624 return copied; 2625 } 2626 EXPORT_SYMBOL(nobh_write_end); 2627 2628 /* 2629 * nobh_writepage() - based on block_full_write_page() except 2630 * that it tries to operate without attaching bufferheads to 2631 * the page. 2632 */ 2633 int nobh_writepage(struct page *page, get_block_t *get_block, 2634 struct writeback_control *wbc) 2635 { 2636 struct inode * const inode = page->mapping->host; 2637 loff_t i_size = i_size_read(inode); 2638 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2639 unsigned offset; 2640 int ret; 2641 2642 /* Is the page fully inside i_size? */ 2643 if (page->index < end_index) 2644 goto out; 2645 2646 /* Is the page fully outside i_size? (truncate in progress) */ 2647 offset = i_size & (PAGE_CACHE_SIZE-1); 2648 if (page->index >= end_index+1 || !offset) { 2649 /* 2650 * The page may have dirty, unmapped buffers. For example, 2651 * they may have been added in ext3_writepage(). Make them 2652 * freeable here, so the page does not leak. 2653 */ 2654 #if 0 2655 /* Not really sure about this - do we need this ? */ 2656 if (page->mapping->a_ops->invalidatepage) 2657 page->mapping->a_ops->invalidatepage(page, offset); 2658 #endif 2659 unlock_page(page); 2660 return 0; /* don't care */ 2661 } 2662 2663 /* 2664 * The page straddles i_size. It must be zeroed out on each and every 2665 * writepage invocation because it may be mmapped. "A file is mapped 2666 * in multiples of the page size. For a file that is not a multiple of 2667 * the page size, the remaining memory is zeroed when mapped, and 2668 * writes to that region are not written out to the file." 2669 */ 2670 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2671 out: 2672 ret = mpage_writepage(page, get_block, wbc); 2673 if (ret == -EAGAIN) 2674 ret = __block_write_full_page(inode, page, get_block, wbc, 2675 end_buffer_async_write); 2676 return ret; 2677 } 2678 EXPORT_SYMBOL(nobh_writepage); 2679 2680 int nobh_truncate_page(struct address_space *mapping, 2681 loff_t from, get_block_t *get_block) 2682 { 2683 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2684 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2685 unsigned blocksize; 2686 sector_t iblock; 2687 unsigned length, pos; 2688 struct inode *inode = mapping->host; 2689 struct page *page; 2690 struct buffer_head map_bh; 2691 int err; 2692 2693 blocksize = 1 << inode->i_blkbits; 2694 length = offset & (blocksize - 1); 2695 2696 /* Block boundary? Nothing to do */ 2697 if (!length) 2698 return 0; 2699 2700 length = blocksize - length; 2701 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2702 2703 page = grab_cache_page(mapping, index); 2704 err = -ENOMEM; 2705 if (!page) 2706 goto out; 2707 2708 if (page_has_buffers(page)) { 2709 has_buffers: 2710 unlock_page(page); 2711 page_cache_release(page); 2712 return block_truncate_page(mapping, from, get_block); 2713 } 2714 2715 /* Find the buffer that contains "offset" */ 2716 pos = blocksize; 2717 while (offset >= pos) { 2718 iblock++; 2719 pos += blocksize; 2720 } 2721 2722 map_bh.b_size = blocksize; 2723 map_bh.b_state = 0; 2724 err = get_block(inode, iblock, &map_bh, 0); 2725 if (err) 2726 goto unlock; 2727 /* unmapped? It's a hole - nothing to do */ 2728 if (!buffer_mapped(&map_bh)) 2729 goto unlock; 2730 2731 /* Ok, it's mapped. Make sure it's up-to-date */ 2732 if (!PageUptodate(page)) { 2733 err = mapping->a_ops->readpage(NULL, page); 2734 if (err) { 2735 page_cache_release(page); 2736 goto out; 2737 } 2738 lock_page(page); 2739 if (!PageUptodate(page)) { 2740 err = -EIO; 2741 goto unlock; 2742 } 2743 if (page_has_buffers(page)) 2744 goto has_buffers; 2745 } 2746 zero_user(page, offset, length); 2747 set_page_dirty(page); 2748 err = 0; 2749 2750 unlock: 2751 unlock_page(page); 2752 page_cache_release(page); 2753 out: 2754 return err; 2755 } 2756 EXPORT_SYMBOL(nobh_truncate_page); 2757 2758 int block_truncate_page(struct address_space *mapping, 2759 loff_t from, get_block_t *get_block) 2760 { 2761 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2762 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2763 unsigned blocksize; 2764 sector_t iblock; 2765 unsigned length, pos; 2766 struct inode *inode = mapping->host; 2767 struct page *page; 2768 struct buffer_head *bh; 2769 int err; 2770 2771 blocksize = 1 << inode->i_blkbits; 2772 length = offset & (blocksize - 1); 2773 2774 /* Block boundary? Nothing to do */ 2775 if (!length) 2776 return 0; 2777 2778 length = blocksize - length; 2779 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2780 2781 page = grab_cache_page(mapping, index); 2782 err = -ENOMEM; 2783 if (!page) 2784 goto out; 2785 2786 if (!page_has_buffers(page)) 2787 create_empty_buffers(page, blocksize, 0); 2788 2789 /* Find the buffer that contains "offset" */ 2790 bh = page_buffers(page); 2791 pos = blocksize; 2792 while (offset >= pos) { 2793 bh = bh->b_this_page; 2794 iblock++; 2795 pos += blocksize; 2796 } 2797 2798 err = 0; 2799 if (!buffer_mapped(bh)) { 2800 WARN_ON(bh->b_size != blocksize); 2801 err = get_block(inode, iblock, bh, 0); 2802 if (err) 2803 goto unlock; 2804 /* unmapped? It's a hole - nothing to do */ 2805 if (!buffer_mapped(bh)) 2806 goto unlock; 2807 } 2808 2809 /* Ok, it's mapped. Make sure it's up-to-date */ 2810 if (PageUptodate(page)) 2811 set_buffer_uptodate(bh); 2812 2813 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2814 err = -EIO; 2815 ll_rw_block(READ, 1, &bh); 2816 wait_on_buffer(bh); 2817 /* Uhhuh. Read error. Complain and punt. */ 2818 if (!buffer_uptodate(bh)) 2819 goto unlock; 2820 } 2821 2822 zero_user(page, offset, length); 2823 mark_buffer_dirty(bh); 2824 err = 0; 2825 2826 unlock: 2827 unlock_page(page); 2828 page_cache_release(page); 2829 out: 2830 return err; 2831 } 2832 EXPORT_SYMBOL(block_truncate_page); 2833 2834 /* 2835 * The generic ->writepage function for buffer-backed address_spaces 2836 * this form passes in the end_io handler used to finish the IO. 2837 */ 2838 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2839 struct writeback_control *wbc, bh_end_io_t *handler) 2840 { 2841 struct inode * const inode = page->mapping->host; 2842 loff_t i_size = i_size_read(inode); 2843 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2844 unsigned offset; 2845 2846 /* Is the page fully inside i_size? */ 2847 if (page->index < end_index) 2848 return __block_write_full_page(inode, page, get_block, wbc, 2849 handler); 2850 2851 /* Is the page fully outside i_size? (truncate in progress) */ 2852 offset = i_size & (PAGE_CACHE_SIZE-1); 2853 if (page->index >= end_index+1 || !offset) { 2854 /* 2855 * The page may have dirty, unmapped buffers. For example, 2856 * they may have been added in ext3_writepage(). Make them 2857 * freeable here, so the page does not leak. 2858 */ 2859 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 2860 unlock_page(page); 2861 return 0; /* don't care */ 2862 } 2863 2864 /* 2865 * The page straddles i_size. It must be zeroed out on each and every 2866 * writepage invocation because it may be mmapped. "A file is mapped 2867 * in multiples of the page size. For a file that is not a multiple of 2868 * the page size, the remaining memory is zeroed when mapped, and 2869 * writes to that region are not written out to the file." 2870 */ 2871 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2872 return __block_write_full_page(inode, page, get_block, wbc, handler); 2873 } 2874 EXPORT_SYMBOL(block_write_full_page_endio); 2875 2876 /* 2877 * The generic ->writepage function for buffer-backed address_spaces 2878 */ 2879 int block_write_full_page(struct page *page, get_block_t *get_block, 2880 struct writeback_control *wbc) 2881 { 2882 return block_write_full_page_endio(page, get_block, wbc, 2883 end_buffer_async_write); 2884 } 2885 EXPORT_SYMBOL(block_write_full_page); 2886 2887 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2888 get_block_t *get_block) 2889 { 2890 struct buffer_head tmp; 2891 struct inode *inode = mapping->host; 2892 tmp.b_state = 0; 2893 tmp.b_blocknr = 0; 2894 tmp.b_size = 1 << inode->i_blkbits; 2895 get_block(inode, block, &tmp, 0); 2896 return tmp.b_blocknr; 2897 } 2898 EXPORT_SYMBOL(generic_block_bmap); 2899 2900 static void end_bio_bh_io_sync(struct bio *bio, int err) 2901 { 2902 struct buffer_head *bh = bio->bi_private; 2903 2904 if (err == -EOPNOTSUPP) { 2905 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2906 } 2907 2908 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2909 set_bit(BH_Quiet, &bh->b_state); 2910 2911 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2912 bio_put(bio); 2913 } 2914 2915 /* 2916 * This allows us to do IO even on the odd last sectors 2917 * of a device, even if the bh block size is some multiple 2918 * of the physical sector size. 2919 * 2920 * We'll just truncate the bio to the size of the device, 2921 * and clear the end of the buffer head manually. 2922 * 2923 * Truly out-of-range accesses will turn into actual IO 2924 * errors, this only handles the "we need to be able to 2925 * do IO at the final sector" case. 2926 */ 2927 static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh) 2928 { 2929 sector_t maxsector; 2930 unsigned bytes; 2931 2932 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 2933 if (!maxsector) 2934 return; 2935 2936 /* 2937 * If the *whole* IO is past the end of the device, 2938 * let it through, and the IO layer will turn it into 2939 * an EIO. 2940 */ 2941 if (unlikely(bio->bi_sector >= maxsector)) 2942 return; 2943 2944 maxsector -= bio->bi_sector; 2945 bytes = bio->bi_size; 2946 if (likely((bytes >> 9) <= maxsector)) 2947 return; 2948 2949 /* Uhhuh. We've got a bh that straddles the device size! */ 2950 bytes = maxsector << 9; 2951 2952 /* Truncate the bio.. */ 2953 bio->bi_size = bytes; 2954 bio->bi_io_vec[0].bv_len = bytes; 2955 2956 /* ..and clear the end of the buffer for reads */ 2957 if ((rw & RW_MASK) == READ) { 2958 void *kaddr = kmap_atomic(bh->b_page); 2959 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes); 2960 kunmap_atomic(kaddr); 2961 flush_dcache_page(bh->b_page); 2962 } 2963 } 2964 2965 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags) 2966 { 2967 struct bio *bio; 2968 int ret = 0; 2969 2970 BUG_ON(!buffer_locked(bh)); 2971 BUG_ON(!buffer_mapped(bh)); 2972 BUG_ON(!bh->b_end_io); 2973 BUG_ON(buffer_delay(bh)); 2974 BUG_ON(buffer_unwritten(bh)); 2975 2976 /* 2977 * Only clear out a write error when rewriting 2978 */ 2979 if (test_set_buffer_req(bh) && (rw & WRITE)) 2980 clear_buffer_write_io_error(bh); 2981 2982 /* 2983 * from here on down, it's all bio -- do the initial mapping, 2984 * submit_bio -> generic_make_request may further map this bio around 2985 */ 2986 bio = bio_alloc(GFP_NOIO, 1); 2987 2988 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2989 bio->bi_bdev = bh->b_bdev; 2990 bio->bi_io_vec[0].bv_page = bh->b_page; 2991 bio->bi_io_vec[0].bv_len = bh->b_size; 2992 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2993 2994 bio->bi_vcnt = 1; 2995 bio->bi_size = bh->b_size; 2996 2997 bio->bi_end_io = end_bio_bh_io_sync; 2998 bio->bi_private = bh; 2999 bio->bi_flags |= bio_flags; 3000 3001 /* Take care of bh's that straddle the end of the device */ 3002 guard_bh_eod(rw, bio, bh); 3003 3004 if (buffer_meta(bh)) 3005 rw |= REQ_META; 3006 if (buffer_prio(bh)) 3007 rw |= REQ_PRIO; 3008 3009 bio_get(bio); 3010 submit_bio(rw, bio); 3011 3012 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 3013 ret = -EOPNOTSUPP; 3014 3015 bio_put(bio); 3016 return ret; 3017 } 3018 EXPORT_SYMBOL_GPL(_submit_bh); 3019 3020 int submit_bh(int rw, struct buffer_head *bh) 3021 { 3022 return _submit_bh(rw, bh, 0); 3023 } 3024 EXPORT_SYMBOL(submit_bh); 3025 3026 /** 3027 * ll_rw_block: low-level access to block devices (DEPRECATED) 3028 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 3029 * @nr: number of &struct buffer_heads in the array 3030 * @bhs: array of pointers to &struct buffer_head 3031 * 3032 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3033 * requests an I/O operation on them, either a %READ or a %WRITE. The third 3034 * %READA option is described in the documentation for generic_make_request() 3035 * which ll_rw_block() calls. 3036 * 3037 * This function drops any buffer that it cannot get a lock on (with the 3038 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3039 * request, and any buffer that appears to be up-to-date when doing read 3040 * request. Further it marks as clean buffers that are processed for 3041 * writing (the buffer cache won't assume that they are actually clean 3042 * until the buffer gets unlocked). 3043 * 3044 * ll_rw_block sets b_end_io to simple completion handler that marks 3045 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 3046 * any waiters. 3047 * 3048 * All of the buffers must be for the same device, and must also be a 3049 * multiple of the current approved size for the device. 3050 */ 3051 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 3052 { 3053 int i; 3054 3055 for (i = 0; i < nr; i++) { 3056 struct buffer_head *bh = bhs[i]; 3057 3058 if (!trylock_buffer(bh)) 3059 continue; 3060 if (rw == WRITE) { 3061 if (test_clear_buffer_dirty(bh)) { 3062 bh->b_end_io = end_buffer_write_sync; 3063 get_bh(bh); 3064 submit_bh(WRITE, bh); 3065 continue; 3066 } 3067 } else { 3068 if (!buffer_uptodate(bh)) { 3069 bh->b_end_io = end_buffer_read_sync; 3070 get_bh(bh); 3071 submit_bh(rw, bh); 3072 continue; 3073 } 3074 } 3075 unlock_buffer(bh); 3076 } 3077 } 3078 EXPORT_SYMBOL(ll_rw_block); 3079 3080 void write_dirty_buffer(struct buffer_head *bh, int rw) 3081 { 3082 lock_buffer(bh); 3083 if (!test_clear_buffer_dirty(bh)) { 3084 unlock_buffer(bh); 3085 return; 3086 } 3087 bh->b_end_io = end_buffer_write_sync; 3088 get_bh(bh); 3089 submit_bh(rw, bh); 3090 } 3091 EXPORT_SYMBOL(write_dirty_buffer); 3092 3093 /* 3094 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3095 * and then start new I/O and then wait upon it. The caller must have a ref on 3096 * the buffer_head. 3097 */ 3098 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3099 { 3100 int ret = 0; 3101 3102 WARN_ON(atomic_read(&bh->b_count) < 1); 3103 lock_buffer(bh); 3104 if (test_clear_buffer_dirty(bh)) { 3105 get_bh(bh); 3106 bh->b_end_io = end_buffer_write_sync; 3107 ret = submit_bh(rw, bh); 3108 wait_on_buffer(bh); 3109 if (!ret && !buffer_uptodate(bh)) 3110 ret = -EIO; 3111 } else { 3112 unlock_buffer(bh); 3113 } 3114 return ret; 3115 } 3116 EXPORT_SYMBOL(__sync_dirty_buffer); 3117 3118 int sync_dirty_buffer(struct buffer_head *bh) 3119 { 3120 return __sync_dirty_buffer(bh, WRITE_SYNC); 3121 } 3122 EXPORT_SYMBOL(sync_dirty_buffer); 3123 3124 /* 3125 * try_to_free_buffers() checks if all the buffers on this particular page 3126 * are unused, and releases them if so. 3127 * 3128 * Exclusion against try_to_free_buffers may be obtained by either 3129 * locking the page or by holding its mapping's private_lock. 3130 * 3131 * If the page is dirty but all the buffers are clean then we need to 3132 * be sure to mark the page clean as well. This is because the page 3133 * may be against a block device, and a later reattachment of buffers 3134 * to a dirty page will set *all* buffers dirty. Which would corrupt 3135 * filesystem data on the same device. 3136 * 3137 * The same applies to regular filesystem pages: if all the buffers are 3138 * clean then we set the page clean and proceed. To do that, we require 3139 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3140 * private_lock. 3141 * 3142 * try_to_free_buffers() is non-blocking. 3143 */ 3144 static inline int buffer_busy(struct buffer_head *bh) 3145 { 3146 return atomic_read(&bh->b_count) | 3147 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3148 } 3149 3150 static int 3151 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3152 { 3153 struct buffer_head *head = page_buffers(page); 3154 struct buffer_head *bh; 3155 3156 bh = head; 3157 do { 3158 if (buffer_write_io_error(bh) && page->mapping) 3159 set_bit(AS_EIO, &page->mapping->flags); 3160 if (buffer_busy(bh)) 3161 goto failed; 3162 bh = bh->b_this_page; 3163 } while (bh != head); 3164 3165 do { 3166 struct buffer_head *next = bh->b_this_page; 3167 3168 if (bh->b_assoc_map) 3169 __remove_assoc_queue(bh); 3170 bh = next; 3171 } while (bh != head); 3172 *buffers_to_free = head; 3173 __clear_page_buffers(page); 3174 return 1; 3175 failed: 3176 return 0; 3177 } 3178 3179 int try_to_free_buffers(struct page *page) 3180 { 3181 struct address_space * const mapping = page->mapping; 3182 struct buffer_head *buffers_to_free = NULL; 3183 int ret = 0; 3184 3185 BUG_ON(!PageLocked(page)); 3186 if (PageWriteback(page)) 3187 return 0; 3188 3189 if (mapping == NULL) { /* can this still happen? */ 3190 ret = drop_buffers(page, &buffers_to_free); 3191 goto out; 3192 } 3193 3194 spin_lock(&mapping->private_lock); 3195 ret = drop_buffers(page, &buffers_to_free); 3196 3197 /* 3198 * If the filesystem writes its buffers by hand (eg ext3) 3199 * then we can have clean buffers against a dirty page. We 3200 * clean the page here; otherwise the VM will never notice 3201 * that the filesystem did any IO at all. 3202 * 3203 * Also, during truncate, discard_buffer will have marked all 3204 * the page's buffers clean. We discover that here and clean 3205 * the page also. 3206 * 3207 * private_lock must be held over this entire operation in order 3208 * to synchronise against __set_page_dirty_buffers and prevent the 3209 * dirty bit from being lost. 3210 */ 3211 if (ret) 3212 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3213 spin_unlock(&mapping->private_lock); 3214 out: 3215 if (buffers_to_free) { 3216 struct buffer_head *bh = buffers_to_free; 3217 3218 do { 3219 struct buffer_head *next = bh->b_this_page; 3220 free_buffer_head(bh); 3221 bh = next; 3222 } while (bh != buffers_to_free); 3223 } 3224 return ret; 3225 } 3226 EXPORT_SYMBOL(try_to_free_buffers); 3227 3228 /* 3229 * There are no bdflush tunables left. But distributions are 3230 * still running obsolete flush daemons, so we terminate them here. 3231 * 3232 * Use of bdflush() is deprecated and will be removed in a future kernel. 3233 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3234 */ 3235 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3236 { 3237 static int msg_count; 3238 3239 if (!capable(CAP_SYS_ADMIN)) 3240 return -EPERM; 3241 3242 if (msg_count < 5) { 3243 msg_count++; 3244 printk(KERN_INFO 3245 "warning: process `%s' used the obsolete bdflush" 3246 " system call\n", current->comm); 3247 printk(KERN_INFO "Fix your initscripts?\n"); 3248 } 3249 3250 if (func == 1) 3251 do_exit(0); 3252 return 0; 3253 } 3254 3255 /* 3256 * Buffer-head allocation 3257 */ 3258 static struct kmem_cache *bh_cachep __read_mostly; 3259 3260 /* 3261 * Once the number of bh's in the machine exceeds this level, we start 3262 * stripping them in writeback. 3263 */ 3264 static unsigned long max_buffer_heads; 3265 3266 int buffer_heads_over_limit; 3267 3268 struct bh_accounting { 3269 int nr; /* Number of live bh's */ 3270 int ratelimit; /* Limit cacheline bouncing */ 3271 }; 3272 3273 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3274 3275 static void recalc_bh_state(void) 3276 { 3277 int i; 3278 int tot = 0; 3279 3280 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3281 return; 3282 __this_cpu_write(bh_accounting.ratelimit, 0); 3283 for_each_online_cpu(i) 3284 tot += per_cpu(bh_accounting, i).nr; 3285 buffer_heads_over_limit = (tot > max_buffer_heads); 3286 } 3287 3288 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3289 { 3290 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3291 if (ret) { 3292 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3293 preempt_disable(); 3294 __this_cpu_inc(bh_accounting.nr); 3295 recalc_bh_state(); 3296 preempt_enable(); 3297 } 3298 return ret; 3299 } 3300 EXPORT_SYMBOL(alloc_buffer_head); 3301 3302 void free_buffer_head(struct buffer_head *bh) 3303 { 3304 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3305 kmem_cache_free(bh_cachep, bh); 3306 preempt_disable(); 3307 __this_cpu_dec(bh_accounting.nr); 3308 recalc_bh_state(); 3309 preempt_enable(); 3310 } 3311 EXPORT_SYMBOL(free_buffer_head); 3312 3313 static void buffer_exit_cpu(int cpu) 3314 { 3315 int i; 3316 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3317 3318 for (i = 0; i < BH_LRU_SIZE; i++) { 3319 brelse(b->bhs[i]); 3320 b->bhs[i] = NULL; 3321 } 3322 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3323 per_cpu(bh_accounting, cpu).nr = 0; 3324 } 3325 3326 static int buffer_cpu_notify(struct notifier_block *self, 3327 unsigned long action, void *hcpu) 3328 { 3329 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3330 buffer_exit_cpu((unsigned long)hcpu); 3331 return NOTIFY_OK; 3332 } 3333 3334 /** 3335 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3336 * @bh: struct buffer_head 3337 * 3338 * Return true if the buffer is up-to-date and false, 3339 * with the buffer locked, if not. 3340 */ 3341 int bh_uptodate_or_lock(struct buffer_head *bh) 3342 { 3343 if (!buffer_uptodate(bh)) { 3344 lock_buffer(bh); 3345 if (!buffer_uptodate(bh)) 3346 return 0; 3347 unlock_buffer(bh); 3348 } 3349 return 1; 3350 } 3351 EXPORT_SYMBOL(bh_uptodate_or_lock); 3352 3353 /** 3354 * bh_submit_read - Submit a locked buffer for reading 3355 * @bh: struct buffer_head 3356 * 3357 * Returns zero on success and -EIO on error. 3358 */ 3359 int bh_submit_read(struct buffer_head *bh) 3360 { 3361 BUG_ON(!buffer_locked(bh)); 3362 3363 if (buffer_uptodate(bh)) { 3364 unlock_buffer(bh); 3365 return 0; 3366 } 3367 3368 get_bh(bh); 3369 bh->b_end_io = end_buffer_read_sync; 3370 submit_bh(READ, bh); 3371 wait_on_buffer(bh); 3372 if (buffer_uptodate(bh)) 3373 return 0; 3374 return -EIO; 3375 } 3376 EXPORT_SYMBOL(bh_submit_read); 3377 3378 void __init buffer_init(void) 3379 { 3380 unsigned long nrpages; 3381 3382 bh_cachep = kmem_cache_create("buffer_head", 3383 sizeof(struct buffer_head), 0, 3384 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3385 SLAB_MEM_SPREAD), 3386 NULL); 3387 3388 /* 3389 * Limit the bh occupancy to 10% of ZONE_NORMAL 3390 */ 3391 nrpages = (nr_free_buffer_pages() * 10) / 100; 3392 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3393 hotcpu_notifier(buffer_cpu_notify, 0); 3394 } 3395