1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/smp_lock.h> 28 #include <linux/capability.h> 29 #include <linux/blkdev.h> 30 #include <linux/file.h> 31 #include <linux/quotaops.h> 32 #include <linux/highmem.h> 33 #include <linux/module.h> 34 #include <linux/writeback.h> 35 #include <linux/hash.h> 36 #include <linux/suspend.h> 37 #include <linux/buffer_head.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 static void invalidate_bh_lrus(void); 47 48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 49 50 inline void 51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 52 { 53 bh->b_end_io = handler; 54 bh->b_private = private; 55 } 56 57 static int sync_buffer(void *word) 58 { 59 struct block_device *bd; 60 struct buffer_head *bh 61 = container_of(word, struct buffer_head, b_state); 62 63 smp_mb(); 64 bd = bh->b_bdev; 65 if (bd) 66 blk_run_address_space(bd->bd_inode->i_mapping); 67 io_schedule(); 68 return 0; 69 } 70 71 void fastcall __lock_buffer(struct buffer_head *bh) 72 { 73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 74 TASK_UNINTERRUPTIBLE); 75 } 76 EXPORT_SYMBOL(__lock_buffer); 77 78 void fastcall unlock_buffer(struct buffer_head *bh) 79 { 80 clear_buffer_locked(bh); 81 smp_mb__after_clear_bit(); 82 wake_up_bit(&bh->b_state, BH_Lock); 83 } 84 85 /* 86 * Block until a buffer comes unlocked. This doesn't stop it 87 * from becoming locked again - you have to lock it yourself 88 * if you want to preserve its state. 89 */ 90 void __wait_on_buffer(struct buffer_head * bh) 91 { 92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 93 } 94 95 static void 96 __clear_page_buffers(struct page *page) 97 { 98 ClearPagePrivate(page); 99 set_page_private(page, 0); 100 page_cache_release(page); 101 } 102 103 static void buffer_io_error(struct buffer_head *bh) 104 { 105 char b[BDEVNAME_SIZE]; 106 107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 108 bdevname(bh->b_bdev, b), 109 (unsigned long long)bh->b_blocknr); 110 } 111 112 /* 113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 114 * unlock the buffer. This is what ll_rw_block uses too. 115 */ 116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 117 { 118 if (uptodate) { 119 set_buffer_uptodate(bh); 120 } else { 121 /* This happens, due to failed READA attempts. */ 122 clear_buffer_uptodate(bh); 123 } 124 unlock_buffer(bh); 125 put_bh(bh); 126 } 127 128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 129 { 130 char b[BDEVNAME_SIZE]; 131 132 if (uptodate) { 133 set_buffer_uptodate(bh); 134 } else { 135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 136 buffer_io_error(bh); 137 printk(KERN_WARNING "lost page write due to " 138 "I/O error on %s\n", 139 bdevname(bh->b_bdev, b)); 140 } 141 set_buffer_write_io_error(bh); 142 clear_buffer_uptodate(bh); 143 } 144 unlock_buffer(bh); 145 put_bh(bh); 146 } 147 148 /* 149 * Write out and wait upon all the dirty data associated with a block 150 * device via its mapping. Does not take the superblock lock. 151 */ 152 int sync_blockdev(struct block_device *bdev) 153 { 154 int ret = 0; 155 156 if (bdev) 157 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); 158 return ret; 159 } 160 EXPORT_SYMBOL(sync_blockdev); 161 162 static void __fsync_super(struct super_block *sb) 163 { 164 sync_inodes_sb(sb, 0); 165 DQUOT_SYNC(sb); 166 lock_super(sb); 167 if (sb->s_dirt && sb->s_op->write_super) 168 sb->s_op->write_super(sb); 169 unlock_super(sb); 170 if (sb->s_op->sync_fs) 171 sb->s_op->sync_fs(sb, 1); 172 sync_blockdev(sb->s_bdev); 173 sync_inodes_sb(sb, 1); 174 } 175 176 /* 177 * Write out and wait upon all dirty data associated with this 178 * superblock. Filesystem data as well as the underlying block 179 * device. Takes the superblock lock. 180 */ 181 int fsync_super(struct super_block *sb) 182 { 183 __fsync_super(sb); 184 return sync_blockdev(sb->s_bdev); 185 } 186 187 /* 188 * Write out and wait upon all dirty data associated with this 189 * device. Filesystem data as well as the underlying block 190 * device. Takes the superblock lock. 191 */ 192 int fsync_bdev(struct block_device *bdev) 193 { 194 struct super_block *sb = get_super(bdev); 195 if (sb) { 196 int res = fsync_super(sb); 197 drop_super(sb); 198 return res; 199 } 200 return sync_blockdev(bdev); 201 } 202 203 /** 204 * freeze_bdev -- lock a filesystem and force it into a consistent state 205 * @bdev: blockdevice to lock 206 * 207 * This takes the block device bd_mount_mutex to make sure no new mounts 208 * happen on bdev until thaw_bdev() is called. 209 * If a superblock is found on this device, we take the s_umount semaphore 210 * on it to make sure nobody unmounts until the snapshot creation is done. 211 */ 212 struct super_block *freeze_bdev(struct block_device *bdev) 213 { 214 struct super_block *sb; 215 216 mutex_lock(&bdev->bd_mount_mutex); 217 sb = get_super(bdev); 218 if (sb && !(sb->s_flags & MS_RDONLY)) { 219 sb->s_frozen = SB_FREEZE_WRITE; 220 smp_wmb(); 221 222 __fsync_super(sb); 223 224 sb->s_frozen = SB_FREEZE_TRANS; 225 smp_wmb(); 226 227 sync_blockdev(sb->s_bdev); 228 229 if (sb->s_op->write_super_lockfs) 230 sb->s_op->write_super_lockfs(sb); 231 } 232 233 sync_blockdev(bdev); 234 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ 235 } 236 EXPORT_SYMBOL(freeze_bdev); 237 238 /** 239 * thaw_bdev -- unlock filesystem 240 * @bdev: blockdevice to unlock 241 * @sb: associated superblock 242 * 243 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 244 */ 245 void thaw_bdev(struct block_device *bdev, struct super_block *sb) 246 { 247 if (sb) { 248 BUG_ON(sb->s_bdev != bdev); 249 250 if (sb->s_op->unlockfs) 251 sb->s_op->unlockfs(sb); 252 sb->s_frozen = SB_UNFROZEN; 253 smp_wmb(); 254 wake_up(&sb->s_wait_unfrozen); 255 drop_super(sb); 256 } 257 258 mutex_unlock(&bdev->bd_mount_mutex); 259 } 260 EXPORT_SYMBOL(thaw_bdev); 261 262 /* 263 * sync everything. Start out by waking pdflush, because that writes back 264 * all queues in parallel. 265 */ 266 static void do_sync(unsigned long wait) 267 { 268 wakeup_pdflush(0); 269 sync_inodes(0); /* All mappings, inodes and their blockdevs */ 270 DQUOT_SYNC(NULL); 271 sync_supers(); /* Write the superblocks */ 272 sync_filesystems(0); /* Start syncing the filesystems */ 273 sync_filesystems(wait); /* Waitingly sync the filesystems */ 274 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */ 275 if (!wait) 276 printk("Emergency Sync complete\n"); 277 if (unlikely(laptop_mode)) 278 laptop_sync_completion(); 279 } 280 281 asmlinkage long sys_sync(void) 282 { 283 do_sync(1); 284 return 0; 285 } 286 287 void emergency_sync(void) 288 { 289 pdflush_operation(do_sync, 0); 290 } 291 292 /* 293 * Generic function to fsync a file. 294 * 295 * filp may be NULL if called via the msync of a vma. 296 */ 297 298 int file_fsync(struct file *filp, struct dentry *dentry, int datasync) 299 { 300 struct inode * inode = dentry->d_inode; 301 struct super_block * sb; 302 int ret, err; 303 304 /* sync the inode to buffers */ 305 ret = write_inode_now(inode, 0); 306 307 /* sync the superblock to buffers */ 308 sb = inode->i_sb; 309 lock_super(sb); 310 if (sb->s_op->write_super) 311 sb->s_op->write_super(sb); 312 unlock_super(sb); 313 314 /* .. finally sync the buffers to disk */ 315 err = sync_blockdev(sb->s_bdev); 316 if (!ret) 317 ret = err; 318 return ret; 319 } 320 321 long do_fsync(struct file *file, int datasync) 322 { 323 int ret; 324 int err; 325 struct address_space *mapping = file->f_mapping; 326 327 if (!file->f_op || !file->f_op->fsync) { 328 /* Why? We can still call filemap_fdatawrite */ 329 ret = -EINVAL; 330 goto out; 331 } 332 333 ret = filemap_fdatawrite(mapping); 334 335 /* 336 * We need to protect against concurrent writers, which could cause 337 * livelocks in fsync_buffers_list(). 338 */ 339 mutex_lock(&mapping->host->i_mutex); 340 err = file->f_op->fsync(file, file->f_dentry, datasync); 341 if (!ret) 342 ret = err; 343 mutex_unlock(&mapping->host->i_mutex); 344 err = filemap_fdatawait(mapping); 345 if (!ret) 346 ret = err; 347 out: 348 return ret; 349 } 350 351 static long __do_fsync(unsigned int fd, int datasync) 352 { 353 struct file *file; 354 int ret = -EBADF; 355 356 file = fget(fd); 357 if (file) { 358 ret = do_fsync(file, datasync); 359 fput(file); 360 } 361 return ret; 362 } 363 364 asmlinkage long sys_fsync(unsigned int fd) 365 { 366 return __do_fsync(fd, 0); 367 } 368 369 asmlinkage long sys_fdatasync(unsigned int fd) 370 { 371 return __do_fsync(fd, 1); 372 } 373 374 /* 375 * Various filesystems appear to want __find_get_block to be non-blocking. 376 * But it's the page lock which protects the buffers. To get around this, 377 * we get exclusion from try_to_free_buffers with the blockdev mapping's 378 * private_lock. 379 * 380 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 381 * may be quite high. This code could TryLock the page, and if that 382 * succeeds, there is no need to take private_lock. (But if 383 * private_lock is contended then so is mapping->tree_lock). 384 */ 385 static struct buffer_head * 386 __find_get_block_slow(struct block_device *bdev, sector_t block) 387 { 388 struct inode *bd_inode = bdev->bd_inode; 389 struct address_space *bd_mapping = bd_inode->i_mapping; 390 struct buffer_head *ret = NULL; 391 pgoff_t index; 392 struct buffer_head *bh; 393 struct buffer_head *head; 394 struct page *page; 395 int all_mapped = 1; 396 397 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 398 page = find_get_page(bd_mapping, index); 399 if (!page) 400 goto out; 401 402 spin_lock(&bd_mapping->private_lock); 403 if (!page_has_buffers(page)) 404 goto out_unlock; 405 head = page_buffers(page); 406 bh = head; 407 do { 408 if (bh->b_blocknr == block) { 409 ret = bh; 410 get_bh(bh); 411 goto out_unlock; 412 } 413 if (!buffer_mapped(bh)) 414 all_mapped = 0; 415 bh = bh->b_this_page; 416 } while (bh != head); 417 418 /* we might be here because some of the buffers on this page are 419 * not mapped. This is due to various races between 420 * file io on the block device and getblk. It gets dealt with 421 * elsewhere, don't buffer_error if we had some unmapped buffers 422 */ 423 if (all_mapped) { 424 printk("__find_get_block_slow() failed. " 425 "block=%llu, b_blocknr=%llu\n", 426 (unsigned long long)block, 427 (unsigned long long)bh->b_blocknr); 428 printk("b_state=0x%08lx, b_size=%zu\n", 429 bh->b_state, bh->b_size); 430 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 431 } 432 out_unlock: 433 spin_unlock(&bd_mapping->private_lock); 434 page_cache_release(page); 435 out: 436 return ret; 437 } 438 439 /* If invalidate_buffers() will trash dirty buffers, it means some kind 440 of fs corruption is going on. Trashing dirty data always imply losing 441 information that was supposed to be just stored on the physical layer 442 by the user. 443 444 Thus invalidate_buffers in general usage is not allwowed to trash 445 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 446 be preserved. These buffers are simply skipped. 447 448 We also skip buffers which are still in use. For example this can 449 happen if a userspace program is reading the block device. 450 451 NOTE: In the case where the user removed a removable-media-disk even if 452 there's still dirty data not synced on disk (due a bug in the device driver 453 or due an error of the user), by not destroying the dirty buffers we could 454 generate corruption also on the next media inserted, thus a parameter is 455 necessary to handle this case in the most safe way possible (trying 456 to not corrupt also the new disk inserted with the data belonging to 457 the old now corrupted disk). Also for the ramdisk the natural thing 458 to do in order to release the ramdisk memory is to destroy dirty buffers. 459 460 These are two special cases. Normal usage imply the device driver 461 to issue a sync on the device (without waiting I/O completion) and 462 then an invalidate_buffers call that doesn't trash dirty buffers. 463 464 For handling cache coherency with the blkdev pagecache the 'update' case 465 is been introduced. It is needed to re-read from disk any pinned 466 buffer. NOTE: re-reading from disk is destructive so we can do it only 467 when we assume nobody is changing the buffercache under our I/O and when 468 we think the disk contains more recent information than the buffercache. 469 The update == 1 pass marks the buffers we need to update, the update == 2 470 pass does the actual I/O. */ 471 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers) 472 { 473 struct address_space *mapping = bdev->bd_inode->i_mapping; 474 475 if (mapping->nrpages == 0) 476 return; 477 478 invalidate_bh_lrus(); 479 /* 480 * FIXME: what about destroy_dirty_buffers? 481 * We really want to use invalidate_inode_pages2() for 482 * that, but not until that's cleaned up. 483 */ 484 invalidate_inode_pages(mapping); 485 } 486 487 /* 488 * Kick pdflush then try to free up some ZONE_NORMAL memory. 489 */ 490 static void free_more_memory(void) 491 { 492 struct zone **zones; 493 pg_data_t *pgdat; 494 495 wakeup_pdflush(1024); 496 yield(); 497 498 for_each_online_pgdat(pgdat) { 499 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones; 500 if (*zones) 501 try_to_free_pages(zones, GFP_NOFS); 502 } 503 } 504 505 /* 506 * I/O completion handler for block_read_full_page() - pages 507 * which come unlocked at the end of I/O. 508 */ 509 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 510 { 511 unsigned long flags; 512 struct buffer_head *first; 513 struct buffer_head *tmp; 514 struct page *page; 515 int page_uptodate = 1; 516 517 BUG_ON(!buffer_async_read(bh)); 518 519 page = bh->b_page; 520 if (uptodate) { 521 set_buffer_uptodate(bh); 522 } else { 523 clear_buffer_uptodate(bh); 524 if (printk_ratelimit()) 525 buffer_io_error(bh); 526 SetPageError(page); 527 } 528 529 /* 530 * Be _very_ careful from here on. Bad things can happen if 531 * two buffer heads end IO at almost the same time and both 532 * decide that the page is now completely done. 533 */ 534 first = page_buffers(page); 535 local_irq_save(flags); 536 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 537 clear_buffer_async_read(bh); 538 unlock_buffer(bh); 539 tmp = bh; 540 do { 541 if (!buffer_uptodate(tmp)) 542 page_uptodate = 0; 543 if (buffer_async_read(tmp)) { 544 BUG_ON(!buffer_locked(tmp)); 545 goto still_busy; 546 } 547 tmp = tmp->b_this_page; 548 } while (tmp != bh); 549 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 550 local_irq_restore(flags); 551 552 /* 553 * If none of the buffers had errors and they are all 554 * uptodate then we can set the page uptodate. 555 */ 556 if (page_uptodate && !PageError(page)) 557 SetPageUptodate(page); 558 unlock_page(page); 559 return; 560 561 still_busy: 562 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 563 local_irq_restore(flags); 564 return; 565 } 566 567 /* 568 * Completion handler for block_write_full_page() - pages which are unlocked 569 * during I/O, and which have PageWriteback cleared upon I/O completion. 570 */ 571 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 572 { 573 char b[BDEVNAME_SIZE]; 574 unsigned long flags; 575 struct buffer_head *first; 576 struct buffer_head *tmp; 577 struct page *page; 578 579 BUG_ON(!buffer_async_write(bh)); 580 581 page = bh->b_page; 582 if (uptodate) { 583 set_buffer_uptodate(bh); 584 } else { 585 if (printk_ratelimit()) { 586 buffer_io_error(bh); 587 printk(KERN_WARNING "lost page write due to " 588 "I/O error on %s\n", 589 bdevname(bh->b_bdev, b)); 590 } 591 set_bit(AS_EIO, &page->mapping->flags); 592 clear_buffer_uptodate(bh); 593 SetPageError(page); 594 } 595 596 first = page_buffers(page); 597 local_irq_save(flags); 598 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 599 600 clear_buffer_async_write(bh); 601 unlock_buffer(bh); 602 tmp = bh->b_this_page; 603 while (tmp != bh) { 604 if (buffer_async_write(tmp)) { 605 BUG_ON(!buffer_locked(tmp)); 606 goto still_busy; 607 } 608 tmp = tmp->b_this_page; 609 } 610 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 611 local_irq_restore(flags); 612 end_page_writeback(page); 613 return; 614 615 still_busy: 616 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 617 local_irq_restore(flags); 618 return; 619 } 620 621 /* 622 * If a page's buffers are under async readin (end_buffer_async_read 623 * completion) then there is a possibility that another thread of 624 * control could lock one of the buffers after it has completed 625 * but while some of the other buffers have not completed. This 626 * locked buffer would confuse end_buffer_async_read() into not unlocking 627 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 628 * that this buffer is not under async I/O. 629 * 630 * The page comes unlocked when it has no locked buffer_async buffers 631 * left. 632 * 633 * PageLocked prevents anyone starting new async I/O reads any of 634 * the buffers. 635 * 636 * PageWriteback is used to prevent simultaneous writeout of the same 637 * page. 638 * 639 * PageLocked prevents anyone from starting writeback of a page which is 640 * under read I/O (PageWriteback is only ever set against a locked page). 641 */ 642 static void mark_buffer_async_read(struct buffer_head *bh) 643 { 644 bh->b_end_io = end_buffer_async_read; 645 set_buffer_async_read(bh); 646 } 647 648 void mark_buffer_async_write(struct buffer_head *bh) 649 { 650 bh->b_end_io = end_buffer_async_write; 651 set_buffer_async_write(bh); 652 } 653 EXPORT_SYMBOL(mark_buffer_async_write); 654 655 656 /* 657 * fs/buffer.c contains helper functions for buffer-backed address space's 658 * fsync functions. A common requirement for buffer-based filesystems is 659 * that certain data from the backing blockdev needs to be written out for 660 * a successful fsync(). For example, ext2 indirect blocks need to be 661 * written back and waited upon before fsync() returns. 662 * 663 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 664 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 665 * management of a list of dependent buffers at ->i_mapping->private_list. 666 * 667 * Locking is a little subtle: try_to_free_buffers() will remove buffers 668 * from their controlling inode's queue when they are being freed. But 669 * try_to_free_buffers() will be operating against the *blockdev* mapping 670 * at the time, not against the S_ISREG file which depends on those buffers. 671 * So the locking for private_list is via the private_lock in the address_space 672 * which backs the buffers. Which is different from the address_space 673 * against which the buffers are listed. So for a particular address_space, 674 * mapping->private_lock does *not* protect mapping->private_list! In fact, 675 * mapping->private_list will always be protected by the backing blockdev's 676 * ->private_lock. 677 * 678 * Which introduces a requirement: all buffers on an address_space's 679 * ->private_list must be from the same address_space: the blockdev's. 680 * 681 * address_spaces which do not place buffers at ->private_list via these 682 * utility functions are free to use private_lock and private_list for 683 * whatever they want. The only requirement is that list_empty(private_list) 684 * be true at clear_inode() time. 685 * 686 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 687 * filesystems should do that. invalidate_inode_buffers() should just go 688 * BUG_ON(!list_empty). 689 * 690 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 691 * take an address_space, not an inode. And it should be called 692 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 693 * queued up. 694 * 695 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 696 * list if it is already on a list. Because if the buffer is on a list, 697 * it *must* already be on the right one. If not, the filesystem is being 698 * silly. This will save a ton of locking. But first we have to ensure 699 * that buffers are taken *off* the old inode's list when they are freed 700 * (presumably in truncate). That requires careful auditing of all 701 * filesystems (do it inside bforget()). It could also be done by bringing 702 * b_inode back. 703 */ 704 705 /* 706 * The buffer's backing address_space's private_lock must be held 707 */ 708 static inline void __remove_assoc_queue(struct buffer_head *bh) 709 { 710 list_del_init(&bh->b_assoc_buffers); 711 } 712 713 int inode_has_buffers(struct inode *inode) 714 { 715 return !list_empty(&inode->i_data.private_list); 716 } 717 718 /* 719 * osync is designed to support O_SYNC io. It waits synchronously for 720 * all already-submitted IO to complete, but does not queue any new 721 * writes to the disk. 722 * 723 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 724 * you dirty the buffers, and then use osync_inode_buffers to wait for 725 * completion. Any other dirty buffers which are not yet queued for 726 * write will not be flushed to disk by the osync. 727 */ 728 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 729 { 730 struct buffer_head *bh; 731 struct list_head *p; 732 int err = 0; 733 734 spin_lock(lock); 735 repeat: 736 list_for_each_prev(p, list) { 737 bh = BH_ENTRY(p); 738 if (buffer_locked(bh)) { 739 get_bh(bh); 740 spin_unlock(lock); 741 wait_on_buffer(bh); 742 if (!buffer_uptodate(bh)) 743 err = -EIO; 744 brelse(bh); 745 spin_lock(lock); 746 goto repeat; 747 } 748 } 749 spin_unlock(lock); 750 return err; 751 } 752 753 /** 754 * sync_mapping_buffers - write out and wait upon a mapping's "associated" 755 * buffers 756 * @mapping: the mapping which wants those buffers written 757 * 758 * Starts I/O against the buffers at mapping->private_list, and waits upon 759 * that I/O. 760 * 761 * Basically, this is a convenience function for fsync(). 762 * @mapping is a file or directory which needs those buffers to be written for 763 * a successful fsync(). 764 */ 765 int sync_mapping_buffers(struct address_space *mapping) 766 { 767 struct address_space *buffer_mapping = mapping->assoc_mapping; 768 769 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 770 return 0; 771 772 return fsync_buffers_list(&buffer_mapping->private_lock, 773 &mapping->private_list); 774 } 775 EXPORT_SYMBOL(sync_mapping_buffers); 776 777 /* 778 * Called when we've recently written block `bblock', and it is known that 779 * `bblock' was for a buffer_boundary() buffer. This means that the block at 780 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 781 * dirty, schedule it for IO. So that indirects merge nicely with their data. 782 */ 783 void write_boundary_block(struct block_device *bdev, 784 sector_t bblock, unsigned blocksize) 785 { 786 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 787 if (bh) { 788 if (buffer_dirty(bh)) 789 ll_rw_block(WRITE, 1, &bh); 790 put_bh(bh); 791 } 792 } 793 794 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 795 { 796 struct address_space *mapping = inode->i_mapping; 797 struct address_space *buffer_mapping = bh->b_page->mapping; 798 799 mark_buffer_dirty(bh); 800 if (!mapping->assoc_mapping) { 801 mapping->assoc_mapping = buffer_mapping; 802 } else { 803 BUG_ON(mapping->assoc_mapping != buffer_mapping); 804 } 805 if (list_empty(&bh->b_assoc_buffers)) { 806 spin_lock(&buffer_mapping->private_lock); 807 list_move_tail(&bh->b_assoc_buffers, 808 &mapping->private_list); 809 spin_unlock(&buffer_mapping->private_lock); 810 } 811 } 812 EXPORT_SYMBOL(mark_buffer_dirty_inode); 813 814 /* 815 * Add a page to the dirty page list. 816 * 817 * It is a sad fact of life that this function is called from several places 818 * deeply under spinlocking. It may not sleep. 819 * 820 * If the page has buffers, the uptodate buffers are set dirty, to preserve 821 * dirty-state coherency between the page and the buffers. It the page does 822 * not have buffers then when they are later attached they will all be set 823 * dirty. 824 * 825 * The buffers are dirtied before the page is dirtied. There's a small race 826 * window in which a writepage caller may see the page cleanness but not the 827 * buffer dirtiness. That's fine. If this code were to set the page dirty 828 * before the buffers, a concurrent writepage caller could clear the page dirty 829 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 830 * page on the dirty page list. 831 * 832 * We use private_lock to lock against try_to_free_buffers while using the 833 * page's buffer list. Also use this to protect against clean buffers being 834 * added to the page after it was set dirty. 835 * 836 * FIXME: may need to call ->reservepage here as well. That's rather up to the 837 * address_space though. 838 */ 839 int __set_page_dirty_buffers(struct page *page) 840 { 841 struct address_space * const mapping = page->mapping; 842 843 spin_lock(&mapping->private_lock); 844 if (page_has_buffers(page)) { 845 struct buffer_head *head = page_buffers(page); 846 struct buffer_head *bh = head; 847 848 do { 849 set_buffer_dirty(bh); 850 bh = bh->b_this_page; 851 } while (bh != head); 852 } 853 spin_unlock(&mapping->private_lock); 854 855 if (!TestSetPageDirty(page)) { 856 write_lock_irq(&mapping->tree_lock); 857 if (page->mapping) { /* Race with truncate? */ 858 if (mapping_cap_account_dirty(mapping)) 859 __inc_zone_page_state(page, NR_FILE_DIRTY); 860 radix_tree_tag_set(&mapping->page_tree, 861 page_index(page), 862 PAGECACHE_TAG_DIRTY); 863 } 864 write_unlock_irq(&mapping->tree_lock); 865 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 866 return 1; 867 } 868 return 0; 869 } 870 EXPORT_SYMBOL(__set_page_dirty_buffers); 871 872 /* 873 * Write out and wait upon a list of buffers. 874 * 875 * We have conflicting pressures: we want to make sure that all 876 * initially dirty buffers get waited on, but that any subsequently 877 * dirtied buffers don't. After all, we don't want fsync to last 878 * forever if somebody is actively writing to the file. 879 * 880 * Do this in two main stages: first we copy dirty buffers to a 881 * temporary inode list, queueing the writes as we go. Then we clean 882 * up, waiting for those writes to complete. 883 * 884 * During this second stage, any subsequent updates to the file may end 885 * up refiling the buffer on the original inode's dirty list again, so 886 * there is a chance we will end up with a buffer queued for write but 887 * not yet completed on that list. So, as a final cleanup we go through 888 * the osync code to catch these locked, dirty buffers without requeuing 889 * any newly dirty buffers for write. 890 */ 891 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 892 { 893 struct buffer_head *bh; 894 struct list_head tmp; 895 int err = 0, err2; 896 897 INIT_LIST_HEAD(&tmp); 898 899 spin_lock(lock); 900 while (!list_empty(list)) { 901 bh = BH_ENTRY(list->next); 902 list_del_init(&bh->b_assoc_buffers); 903 if (buffer_dirty(bh) || buffer_locked(bh)) { 904 list_add(&bh->b_assoc_buffers, &tmp); 905 if (buffer_dirty(bh)) { 906 get_bh(bh); 907 spin_unlock(lock); 908 /* 909 * Ensure any pending I/O completes so that 910 * ll_rw_block() actually writes the current 911 * contents - it is a noop if I/O is still in 912 * flight on potentially older contents. 913 */ 914 ll_rw_block(SWRITE, 1, &bh); 915 brelse(bh); 916 spin_lock(lock); 917 } 918 } 919 } 920 921 while (!list_empty(&tmp)) { 922 bh = BH_ENTRY(tmp.prev); 923 __remove_assoc_queue(bh); 924 get_bh(bh); 925 spin_unlock(lock); 926 wait_on_buffer(bh); 927 if (!buffer_uptodate(bh)) 928 err = -EIO; 929 brelse(bh); 930 spin_lock(lock); 931 } 932 933 spin_unlock(lock); 934 err2 = osync_buffers_list(lock, list); 935 if (err) 936 return err; 937 else 938 return err2; 939 } 940 941 /* 942 * Invalidate any and all dirty buffers on a given inode. We are 943 * probably unmounting the fs, but that doesn't mean we have already 944 * done a sync(). Just drop the buffers from the inode list. 945 * 946 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 947 * assumes that all the buffers are against the blockdev. Not true 948 * for reiserfs. 949 */ 950 void invalidate_inode_buffers(struct inode *inode) 951 { 952 if (inode_has_buffers(inode)) { 953 struct address_space *mapping = &inode->i_data; 954 struct list_head *list = &mapping->private_list; 955 struct address_space *buffer_mapping = mapping->assoc_mapping; 956 957 spin_lock(&buffer_mapping->private_lock); 958 while (!list_empty(list)) 959 __remove_assoc_queue(BH_ENTRY(list->next)); 960 spin_unlock(&buffer_mapping->private_lock); 961 } 962 } 963 964 /* 965 * Remove any clean buffers from the inode's buffer list. This is called 966 * when we're trying to free the inode itself. Those buffers can pin it. 967 * 968 * Returns true if all buffers were removed. 969 */ 970 int remove_inode_buffers(struct inode *inode) 971 { 972 int ret = 1; 973 974 if (inode_has_buffers(inode)) { 975 struct address_space *mapping = &inode->i_data; 976 struct list_head *list = &mapping->private_list; 977 struct address_space *buffer_mapping = mapping->assoc_mapping; 978 979 spin_lock(&buffer_mapping->private_lock); 980 while (!list_empty(list)) { 981 struct buffer_head *bh = BH_ENTRY(list->next); 982 if (buffer_dirty(bh)) { 983 ret = 0; 984 break; 985 } 986 __remove_assoc_queue(bh); 987 } 988 spin_unlock(&buffer_mapping->private_lock); 989 } 990 return ret; 991 } 992 993 /* 994 * Create the appropriate buffers when given a page for data area and 995 * the size of each buffer.. Use the bh->b_this_page linked list to 996 * follow the buffers created. Return NULL if unable to create more 997 * buffers. 998 * 999 * The retry flag is used to differentiate async IO (paging, swapping) 1000 * which may not fail from ordinary buffer allocations. 1001 */ 1002 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 1003 int retry) 1004 { 1005 struct buffer_head *bh, *head; 1006 long offset; 1007 1008 try_again: 1009 head = NULL; 1010 offset = PAGE_SIZE; 1011 while ((offset -= size) >= 0) { 1012 bh = alloc_buffer_head(GFP_NOFS); 1013 if (!bh) 1014 goto no_grow; 1015 1016 bh->b_bdev = NULL; 1017 bh->b_this_page = head; 1018 bh->b_blocknr = -1; 1019 head = bh; 1020 1021 bh->b_state = 0; 1022 atomic_set(&bh->b_count, 0); 1023 bh->b_private = NULL; 1024 bh->b_size = size; 1025 1026 /* Link the buffer to its page */ 1027 set_bh_page(bh, page, offset); 1028 1029 init_buffer(bh, NULL, NULL); 1030 } 1031 return head; 1032 /* 1033 * In case anything failed, we just free everything we got. 1034 */ 1035 no_grow: 1036 if (head) { 1037 do { 1038 bh = head; 1039 head = head->b_this_page; 1040 free_buffer_head(bh); 1041 } while (head); 1042 } 1043 1044 /* 1045 * Return failure for non-async IO requests. Async IO requests 1046 * are not allowed to fail, so we have to wait until buffer heads 1047 * become available. But we don't want tasks sleeping with 1048 * partially complete buffers, so all were released above. 1049 */ 1050 if (!retry) 1051 return NULL; 1052 1053 /* We're _really_ low on memory. Now we just 1054 * wait for old buffer heads to become free due to 1055 * finishing IO. Since this is an async request and 1056 * the reserve list is empty, we're sure there are 1057 * async buffer heads in use. 1058 */ 1059 free_more_memory(); 1060 goto try_again; 1061 } 1062 EXPORT_SYMBOL_GPL(alloc_page_buffers); 1063 1064 static inline void 1065 link_dev_buffers(struct page *page, struct buffer_head *head) 1066 { 1067 struct buffer_head *bh, *tail; 1068 1069 bh = head; 1070 do { 1071 tail = bh; 1072 bh = bh->b_this_page; 1073 } while (bh); 1074 tail->b_this_page = head; 1075 attach_page_buffers(page, head); 1076 } 1077 1078 /* 1079 * Initialise the state of a blockdev page's buffers. 1080 */ 1081 static void 1082 init_page_buffers(struct page *page, struct block_device *bdev, 1083 sector_t block, int size) 1084 { 1085 struct buffer_head *head = page_buffers(page); 1086 struct buffer_head *bh = head; 1087 int uptodate = PageUptodate(page); 1088 1089 do { 1090 if (!buffer_mapped(bh)) { 1091 init_buffer(bh, NULL, NULL); 1092 bh->b_bdev = bdev; 1093 bh->b_blocknr = block; 1094 if (uptodate) 1095 set_buffer_uptodate(bh); 1096 set_buffer_mapped(bh); 1097 } 1098 block++; 1099 bh = bh->b_this_page; 1100 } while (bh != head); 1101 } 1102 1103 /* 1104 * Create the page-cache page that contains the requested block. 1105 * 1106 * This is user purely for blockdev mappings. 1107 */ 1108 static struct page * 1109 grow_dev_page(struct block_device *bdev, sector_t block, 1110 pgoff_t index, int size) 1111 { 1112 struct inode *inode = bdev->bd_inode; 1113 struct page *page; 1114 struct buffer_head *bh; 1115 1116 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); 1117 if (!page) 1118 return NULL; 1119 1120 BUG_ON(!PageLocked(page)); 1121 1122 if (page_has_buffers(page)) { 1123 bh = page_buffers(page); 1124 if (bh->b_size == size) { 1125 init_page_buffers(page, bdev, block, size); 1126 return page; 1127 } 1128 if (!try_to_free_buffers(page)) 1129 goto failed; 1130 } 1131 1132 /* 1133 * Allocate some buffers for this page 1134 */ 1135 bh = alloc_page_buffers(page, size, 0); 1136 if (!bh) 1137 goto failed; 1138 1139 /* 1140 * Link the page to the buffers and initialise them. Take the 1141 * lock to be atomic wrt __find_get_block(), which does not 1142 * run under the page lock. 1143 */ 1144 spin_lock(&inode->i_mapping->private_lock); 1145 link_dev_buffers(page, bh); 1146 init_page_buffers(page, bdev, block, size); 1147 spin_unlock(&inode->i_mapping->private_lock); 1148 return page; 1149 1150 failed: 1151 BUG(); 1152 unlock_page(page); 1153 page_cache_release(page); 1154 return NULL; 1155 } 1156 1157 /* 1158 * Create buffers for the specified block device block's page. If 1159 * that page was dirty, the buffers are set dirty also. 1160 * 1161 * Except that's a bug. Attaching dirty buffers to a dirty 1162 * blockdev's page can result in filesystem corruption, because 1163 * some of those buffers may be aliases of filesystem data. 1164 * grow_dev_page() will go BUG() if this happens. 1165 */ 1166 static int 1167 grow_buffers(struct block_device *bdev, sector_t block, int size) 1168 { 1169 struct page *page; 1170 pgoff_t index; 1171 int sizebits; 1172 1173 sizebits = -1; 1174 do { 1175 sizebits++; 1176 } while ((size << sizebits) < PAGE_SIZE); 1177 1178 index = block >> sizebits; 1179 block = index << sizebits; 1180 1181 /* Create a page with the proper size buffers.. */ 1182 page = grow_dev_page(bdev, block, index, size); 1183 if (!page) 1184 return 0; 1185 unlock_page(page); 1186 page_cache_release(page); 1187 return 1; 1188 } 1189 1190 static struct buffer_head * 1191 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1192 { 1193 /* Size must be multiple of hard sectorsize */ 1194 if (unlikely(size & (bdev_hardsect_size(bdev)-1) || 1195 (size < 512 || size > PAGE_SIZE))) { 1196 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1197 size); 1198 printk(KERN_ERR "hardsect size: %d\n", 1199 bdev_hardsect_size(bdev)); 1200 1201 dump_stack(); 1202 return NULL; 1203 } 1204 1205 for (;;) { 1206 struct buffer_head * bh; 1207 1208 bh = __find_get_block(bdev, block, size); 1209 if (bh) 1210 return bh; 1211 1212 if (!grow_buffers(bdev, block, size)) 1213 free_more_memory(); 1214 } 1215 } 1216 1217 /* 1218 * The relationship between dirty buffers and dirty pages: 1219 * 1220 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1221 * the page is tagged dirty in its radix tree. 1222 * 1223 * At all times, the dirtiness of the buffers represents the dirtiness of 1224 * subsections of the page. If the page has buffers, the page dirty bit is 1225 * merely a hint about the true dirty state. 1226 * 1227 * When a page is set dirty in its entirety, all its buffers are marked dirty 1228 * (if the page has buffers). 1229 * 1230 * When a buffer is marked dirty, its page is dirtied, but the page's other 1231 * buffers are not. 1232 * 1233 * Also. When blockdev buffers are explicitly read with bread(), they 1234 * individually become uptodate. But their backing page remains not 1235 * uptodate - even if all of its buffers are uptodate. A subsequent 1236 * block_read_full_page() against that page will discover all the uptodate 1237 * buffers, will set the page uptodate and will perform no I/O. 1238 */ 1239 1240 /** 1241 * mark_buffer_dirty - mark a buffer_head as needing writeout 1242 * @bh: the buffer_head to mark dirty 1243 * 1244 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1245 * backing page dirty, then tag the page as dirty in its address_space's radix 1246 * tree and then attach the address_space's inode to its superblock's dirty 1247 * inode list. 1248 * 1249 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1250 * mapping->tree_lock and the global inode_lock. 1251 */ 1252 void fastcall mark_buffer_dirty(struct buffer_head *bh) 1253 { 1254 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) 1255 __set_page_dirty_nobuffers(bh->b_page); 1256 } 1257 1258 /* 1259 * Decrement a buffer_head's reference count. If all buffers against a page 1260 * have zero reference count, are clean and unlocked, and if the page is clean 1261 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1262 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1263 * a page but it ends up not being freed, and buffers may later be reattached). 1264 */ 1265 void __brelse(struct buffer_head * buf) 1266 { 1267 if (atomic_read(&buf->b_count)) { 1268 put_bh(buf); 1269 return; 1270 } 1271 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1272 WARN_ON(1); 1273 } 1274 1275 /* 1276 * bforget() is like brelse(), except it discards any 1277 * potentially dirty data. 1278 */ 1279 void __bforget(struct buffer_head *bh) 1280 { 1281 clear_buffer_dirty(bh); 1282 if (!list_empty(&bh->b_assoc_buffers)) { 1283 struct address_space *buffer_mapping = bh->b_page->mapping; 1284 1285 spin_lock(&buffer_mapping->private_lock); 1286 list_del_init(&bh->b_assoc_buffers); 1287 spin_unlock(&buffer_mapping->private_lock); 1288 } 1289 __brelse(bh); 1290 } 1291 1292 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1293 { 1294 lock_buffer(bh); 1295 if (buffer_uptodate(bh)) { 1296 unlock_buffer(bh); 1297 return bh; 1298 } else { 1299 get_bh(bh); 1300 bh->b_end_io = end_buffer_read_sync; 1301 submit_bh(READ, bh); 1302 wait_on_buffer(bh); 1303 if (buffer_uptodate(bh)) 1304 return bh; 1305 } 1306 brelse(bh); 1307 return NULL; 1308 } 1309 1310 /* 1311 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1312 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1313 * refcount elevated by one when they're in an LRU. A buffer can only appear 1314 * once in a particular CPU's LRU. A single buffer can be present in multiple 1315 * CPU's LRUs at the same time. 1316 * 1317 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1318 * sb_find_get_block(). 1319 * 1320 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1321 * a local interrupt disable for that. 1322 */ 1323 1324 #define BH_LRU_SIZE 8 1325 1326 struct bh_lru { 1327 struct buffer_head *bhs[BH_LRU_SIZE]; 1328 }; 1329 1330 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1331 1332 #ifdef CONFIG_SMP 1333 #define bh_lru_lock() local_irq_disable() 1334 #define bh_lru_unlock() local_irq_enable() 1335 #else 1336 #define bh_lru_lock() preempt_disable() 1337 #define bh_lru_unlock() preempt_enable() 1338 #endif 1339 1340 static inline void check_irqs_on(void) 1341 { 1342 #ifdef irqs_disabled 1343 BUG_ON(irqs_disabled()); 1344 #endif 1345 } 1346 1347 /* 1348 * The LRU management algorithm is dopey-but-simple. Sorry. 1349 */ 1350 static void bh_lru_install(struct buffer_head *bh) 1351 { 1352 struct buffer_head *evictee = NULL; 1353 struct bh_lru *lru; 1354 1355 check_irqs_on(); 1356 bh_lru_lock(); 1357 lru = &__get_cpu_var(bh_lrus); 1358 if (lru->bhs[0] != bh) { 1359 struct buffer_head *bhs[BH_LRU_SIZE]; 1360 int in; 1361 int out = 0; 1362 1363 get_bh(bh); 1364 bhs[out++] = bh; 1365 for (in = 0; in < BH_LRU_SIZE; in++) { 1366 struct buffer_head *bh2 = lru->bhs[in]; 1367 1368 if (bh2 == bh) { 1369 __brelse(bh2); 1370 } else { 1371 if (out >= BH_LRU_SIZE) { 1372 BUG_ON(evictee != NULL); 1373 evictee = bh2; 1374 } else { 1375 bhs[out++] = bh2; 1376 } 1377 } 1378 } 1379 while (out < BH_LRU_SIZE) 1380 bhs[out++] = NULL; 1381 memcpy(lru->bhs, bhs, sizeof(bhs)); 1382 } 1383 bh_lru_unlock(); 1384 1385 if (evictee) 1386 __brelse(evictee); 1387 } 1388 1389 /* 1390 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1391 */ 1392 static struct buffer_head * 1393 lookup_bh_lru(struct block_device *bdev, sector_t block, int size) 1394 { 1395 struct buffer_head *ret = NULL; 1396 struct bh_lru *lru; 1397 int i; 1398 1399 check_irqs_on(); 1400 bh_lru_lock(); 1401 lru = &__get_cpu_var(bh_lrus); 1402 for (i = 0; i < BH_LRU_SIZE; i++) { 1403 struct buffer_head *bh = lru->bhs[i]; 1404 1405 if (bh && bh->b_bdev == bdev && 1406 bh->b_blocknr == block && bh->b_size == size) { 1407 if (i) { 1408 while (i) { 1409 lru->bhs[i] = lru->bhs[i - 1]; 1410 i--; 1411 } 1412 lru->bhs[0] = bh; 1413 } 1414 get_bh(bh); 1415 ret = bh; 1416 break; 1417 } 1418 } 1419 bh_lru_unlock(); 1420 return ret; 1421 } 1422 1423 /* 1424 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1425 * it in the LRU and mark it as accessed. If it is not present then return 1426 * NULL 1427 */ 1428 struct buffer_head * 1429 __find_get_block(struct block_device *bdev, sector_t block, int size) 1430 { 1431 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1432 1433 if (bh == NULL) { 1434 bh = __find_get_block_slow(bdev, block); 1435 if (bh) 1436 bh_lru_install(bh); 1437 } 1438 if (bh) 1439 touch_buffer(bh); 1440 return bh; 1441 } 1442 EXPORT_SYMBOL(__find_get_block); 1443 1444 /* 1445 * __getblk will locate (and, if necessary, create) the buffer_head 1446 * which corresponds to the passed block_device, block and size. The 1447 * returned buffer has its reference count incremented. 1448 * 1449 * __getblk() cannot fail - it just keeps trying. If you pass it an 1450 * illegal block number, __getblk() will happily return a buffer_head 1451 * which represents the non-existent block. Very weird. 1452 * 1453 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1454 * attempt is failing. FIXME, perhaps? 1455 */ 1456 struct buffer_head * 1457 __getblk(struct block_device *bdev, sector_t block, int size) 1458 { 1459 struct buffer_head *bh = __find_get_block(bdev, block, size); 1460 1461 might_sleep(); 1462 if (bh == NULL) 1463 bh = __getblk_slow(bdev, block, size); 1464 return bh; 1465 } 1466 EXPORT_SYMBOL(__getblk); 1467 1468 /* 1469 * Do async read-ahead on a buffer.. 1470 */ 1471 void __breadahead(struct block_device *bdev, sector_t block, int size) 1472 { 1473 struct buffer_head *bh = __getblk(bdev, block, size); 1474 if (likely(bh)) { 1475 ll_rw_block(READA, 1, &bh); 1476 brelse(bh); 1477 } 1478 } 1479 EXPORT_SYMBOL(__breadahead); 1480 1481 /** 1482 * __bread() - reads a specified block and returns the bh 1483 * @bdev: the block_device to read from 1484 * @block: number of block 1485 * @size: size (in bytes) to read 1486 * 1487 * Reads a specified block, and returns buffer head that contains it. 1488 * It returns NULL if the block was unreadable. 1489 */ 1490 struct buffer_head * 1491 __bread(struct block_device *bdev, sector_t block, int size) 1492 { 1493 struct buffer_head *bh = __getblk(bdev, block, size); 1494 1495 if (likely(bh) && !buffer_uptodate(bh)) 1496 bh = __bread_slow(bh); 1497 return bh; 1498 } 1499 EXPORT_SYMBOL(__bread); 1500 1501 /* 1502 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1503 * This doesn't race because it runs in each cpu either in irq 1504 * or with preempt disabled. 1505 */ 1506 static void invalidate_bh_lru(void *arg) 1507 { 1508 struct bh_lru *b = &get_cpu_var(bh_lrus); 1509 int i; 1510 1511 for (i = 0; i < BH_LRU_SIZE; i++) { 1512 brelse(b->bhs[i]); 1513 b->bhs[i] = NULL; 1514 } 1515 put_cpu_var(bh_lrus); 1516 } 1517 1518 static void invalidate_bh_lrus(void) 1519 { 1520 on_each_cpu(invalidate_bh_lru, NULL, 1, 1); 1521 } 1522 1523 void set_bh_page(struct buffer_head *bh, 1524 struct page *page, unsigned long offset) 1525 { 1526 bh->b_page = page; 1527 BUG_ON(offset >= PAGE_SIZE); 1528 if (PageHighMem(page)) 1529 /* 1530 * This catches illegal uses and preserves the offset: 1531 */ 1532 bh->b_data = (char *)(0 + offset); 1533 else 1534 bh->b_data = page_address(page) + offset; 1535 } 1536 EXPORT_SYMBOL(set_bh_page); 1537 1538 /* 1539 * Called when truncating a buffer on a page completely. 1540 */ 1541 static void discard_buffer(struct buffer_head * bh) 1542 { 1543 lock_buffer(bh); 1544 clear_buffer_dirty(bh); 1545 bh->b_bdev = NULL; 1546 clear_buffer_mapped(bh); 1547 clear_buffer_req(bh); 1548 clear_buffer_new(bh); 1549 clear_buffer_delay(bh); 1550 unlock_buffer(bh); 1551 } 1552 1553 /** 1554 * try_to_release_page() - release old fs-specific metadata on a page 1555 * 1556 * @page: the page which the kernel is trying to free 1557 * @gfp_mask: memory allocation flags (and I/O mode) 1558 * 1559 * The address_space is to try to release any data against the page 1560 * (presumably at page->private). If the release was successful, return `1'. 1561 * Otherwise return zero. 1562 * 1563 * The @gfp_mask argument specifies whether I/O may be performed to release 1564 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). 1565 * 1566 * NOTE: @gfp_mask may go away, and this function may become non-blocking. 1567 */ 1568 int try_to_release_page(struct page *page, gfp_t gfp_mask) 1569 { 1570 struct address_space * const mapping = page->mapping; 1571 1572 BUG_ON(!PageLocked(page)); 1573 if (PageWriteback(page)) 1574 return 0; 1575 1576 if (mapping && mapping->a_ops->releasepage) 1577 return mapping->a_ops->releasepage(page, gfp_mask); 1578 return try_to_free_buffers(page); 1579 } 1580 EXPORT_SYMBOL(try_to_release_page); 1581 1582 /** 1583 * block_invalidatepage - invalidate part of all of a buffer-backed page 1584 * 1585 * @page: the page which is affected 1586 * @offset: the index of the truncation point 1587 * 1588 * block_invalidatepage() is called when all or part of the page has become 1589 * invalidatedby a truncate operation. 1590 * 1591 * block_invalidatepage() does not have to release all buffers, but it must 1592 * ensure that no dirty buffer is left outside @offset and that no I/O 1593 * is underway against any of the blocks which are outside the truncation 1594 * point. Because the caller is about to free (and possibly reuse) those 1595 * blocks on-disk. 1596 */ 1597 void block_invalidatepage(struct page *page, unsigned long offset) 1598 { 1599 struct buffer_head *head, *bh, *next; 1600 unsigned int curr_off = 0; 1601 1602 BUG_ON(!PageLocked(page)); 1603 if (!page_has_buffers(page)) 1604 goto out; 1605 1606 head = page_buffers(page); 1607 bh = head; 1608 do { 1609 unsigned int next_off = curr_off + bh->b_size; 1610 next = bh->b_this_page; 1611 1612 /* 1613 * is this block fully invalidated? 1614 */ 1615 if (offset <= curr_off) 1616 discard_buffer(bh); 1617 curr_off = next_off; 1618 bh = next; 1619 } while (bh != head); 1620 1621 /* 1622 * We release buffers only if the entire page is being invalidated. 1623 * The get_block cached value has been unconditionally invalidated, 1624 * so real IO is not possible anymore. 1625 */ 1626 if (offset == 0) 1627 try_to_release_page(page, 0); 1628 out: 1629 return; 1630 } 1631 EXPORT_SYMBOL(block_invalidatepage); 1632 1633 void do_invalidatepage(struct page *page, unsigned long offset) 1634 { 1635 void (*invalidatepage)(struct page *, unsigned long); 1636 invalidatepage = page->mapping->a_ops->invalidatepage ? : 1637 block_invalidatepage; 1638 (*invalidatepage)(page, offset); 1639 } 1640 1641 /* 1642 * We attach and possibly dirty the buffers atomically wrt 1643 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1644 * is already excluded via the page lock. 1645 */ 1646 void create_empty_buffers(struct page *page, 1647 unsigned long blocksize, unsigned long b_state) 1648 { 1649 struct buffer_head *bh, *head, *tail; 1650 1651 head = alloc_page_buffers(page, blocksize, 1); 1652 bh = head; 1653 do { 1654 bh->b_state |= b_state; 1655 tail = bh; 1656 bh = bh->b_this_page; 1657 } while (bh); 1658 tail->b_this_page = head; 1659 1660 spin_lock(&page->mapping->private_lock); 1661 if (PageUptodate(page) || PageDirty(page)) { 1662 bh = head; 1663 do { 1664 if (PageDirty(page)) 1665 set_buffer_dirty(bh); 1666 if (PageUptodate(page)) 1667 set_buffer_uptodate(bh); 1668 bh = bh->b_this_page; 1669 } while (bh != head); 1670 } 1671 attach_page_buffers(page, head); 1672 spin_unlock(&page->mapping->private_lock); 1673 } 1674 EXPORT_SYMBOL(create_empty_buffers); 1675 1676 /* 1677 * We are taking a block for data and we don't want any output from any 1678 * buffer-cache aliases starting from return from that function and 1679 * until the moment when something will explicitly mark the buffer 1680 * dirty (hopefully that will not happen until we will free that block ;-) 1681 * We don't even need to mark it not-uptodate - nobody can expect 1682 * anything from a newly allocated buffer anyway. We used to used 1683 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1684 * don't want to mark the alias unmapped, for example - it would confuse 1685 * anyone who might pick it with bread() afterwards... 1686 * 1687 * Also.. Note that bforget() doesn't lock the buffer. So there can 1688 * be writeout I/O going on against recently-freed buffers. We don't 1689 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1690 * only if we really need to. That happens here. 1691 */ 1692 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1693 { 1694 struct buffer_head *old_bh; 1695 1696 might_sleep(); 1697 1698 old_bh = __find_get_block_slow(bdev, block); 1699 if (old_bh) { 1700 clear_buffer_dirty(old_bh); 1701 wait_on_buffer(old_bh); 1702 clear_buffer_req(old_bh); 1703 __brelse(old_bh); 1704 } 1705 } 1706 EXPORT_SYMBOL(unmap_underlying_metadata); 1707 1708 /* 1709 * NOTE! All mapped/uptodate combinations are valid: 1710 * 1711 * Mapped Uptodate Meaning 1712 * 1713 * No No "unknown" - must do get_block() 1714 * No Yes "hole" - zero-filled 1715 * Yes No "allocated" - allocated on disk, not read in 1716 * Yes Yes "valid" - allocated and up-to-date in memory. 1717 * 1718 * "Dirty" is valid only with the last case (mapped+uptodate). 1719 */ 1720 1721 /* 1722 * While block_write_full_page is writing back the dirty buffers under 1723 * the page lock, whoever dirtied the buffers may decide to clean them 1724 * again at any time. We handle that by only looking at the buffer 1725 * state inside lock_buffer(). 1726 * 1727 * If block_write_full_page() is called for regular writeback 1728 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1729 * locked buffer. This only can happen if someone has written the buffer 1730 * directly, with submit_bh(). At the address_space level PageWriteback 1731 * prevents this contention from occurring. 1732 */ 1733 static int __block_write_full_page(struct inode *inode, struct page *page, 1734 get_block_t *get_block, struct writeback_control *wbc) 1735 { 1736 int err; 1737 sector_t block; 1738 sector_t last_block; 1739 struct buffer_head *bh, *head; 1740 const unsigned blocksize = 1 << inode->i_blkbits; 1741 int nr_underway = 0; 1742 1743 BUG_ON(!PageLocked(page)); 1744 1745 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1746 1747 if (!page_has_buffers(page)) { 1748 create_empty_buffers(page, blocksize, 1749 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1750 } 1751 1752 /* 1753 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1754 * here, and the (potentially unmapped) buffers may become dirty at 1755 * any time. If a buffer becomes dirty here after we've inspected it 1756 * then we just miss that fact, and the page stays dirty. 1757 * 1758 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1759 * handle that here by just cleaning them. 1760 */ 1761 1762 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1763 head = page_buffers(page); 1764 bh = head; 1765 1766 /* 1767 * Get all the dirty buffers mapped to disk addresses and 1768 * handle any aliases from the underlying blockdev's mapping. 1769 */ 1770 do { 1771 if (block > last_block) { 1772 /* 1773 * mapped buffers outside i_size will occur, because 1774 * this page can be outside i_size when there is a 1775 * truncate in progress. 1776 */ 1777 /* 1778 * The buffer was zeroed by block_write_full_page() 1779 */ 1780 clear_buffer_dirty(bh); 1781 set_buffer_uptodate(bh); 1782 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { 1783 WARN_ON(bh->b_size != blocksize); 1784 err = get_block(inode, block, bh, 1); 1785 if (err) 1786 goto recover; 1787 if (buffer_new(bh)) { 1788 /* blockdev mappings never come here */ 1789 clear_buffer_new(bh); 1790 unmap_underlying_metadata(bh->b_bdev, 1791 bh->b_blocknr); 1792 } 1793 } 1794 bh = bh->b_this_page; 1795 block++; 1796 } while (bh != head); 1797 1798 do { 1799 if (!buffer_mapped(bh)) 1800 continue; 1801 /* 1802 * If it's a fully non-blocking write attempt and we cannot 1803 * lock the buffer then redirty the page. Note that this can 1804 * potentially cause a busy-wait loop from pdflush and kswapd 1805 * activity, but those code paths have their own higher-level 1806 * throttling. 1807 */ 1808 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1809 lock_buffer(bh); 1810 } else if (test_set_buffer_locked(bh)) { 1811 redirty_page_for_writepage(wbc, page); 1812 continue; 1813 } 1814 if (test_clear_buffer_dirty(bh)) { 1815 mark_buffer_async_write(bh); 1816 } else { 1817 unlock_buffer(bh); 1818 } 1819 } while ((bh = bh->b_this_page) != head); 1820 1821 /* 1822 * The page and its buffers are protected by PageWriteback(), so we can 1823 * drop the bh refcounts early. 1824 */ 1825 BUG_ON(PageWriteback(page)); 1826 set_page_writeback(page); 1827 1828 do { 1829 struct buffer_head *next = bh->b_this_page; 1830 if (buffer_async_write(bh)) { 1831 submit_bh(WRITE, bh); 1832 nr_underway++; 1833 } 1834 bh = next; 1835 } while (bh != head); 1836 unlock_page(page); 1837 1838 err = 0; 1839 done: 1840 if (nr_underway == 0) { 1841 /* 1842 * The page was marked dirty, but the buffers were 1843 * clean. Someone wrote them back by hand with 1844 * ll_rw_block/submit_bh. A rare case. 1845 */ 1846 int uptodate = 1; 1847 do { 1848 if (!buffer_uptodate(bh)) { 1849 uptodate = 0; 1850 break; 1851 } 1852 bh = bh->b_this_page; 1853 } while (bh != head); 1854 if (uptodate) 1855 SetPageUptodate(page); 1856 end_page_writeback(page); 1857 /* 1858 * The page and buffer_heads can be released at any time from 1859 * here on. 1860 */ 1861 wbc->pages_skipped++; /* We didn't write this page */ 1862 } 1863 return err; 1864 1865 recover: 1866 /* 1867 * ENOSPC, or some other error. We may already have added some 1868 * blocks to the file, so we need to write these out to avoid 1869 * exposing stale data. 1870 * The page is currently locked and not marked for writeback 1871 */ 1872 bh = head; 1873 /* Recovery: lock and submit the mapped buffers */ 1874 do { 1875 if (buffer_mapped(bh) && buffer_dirty(bh)) { 1876 lock_buffer(bh); 1877 mark_buffer_async_write(bh); 1878 } else { 1879 /* 1880 * The buffer may have been set dirty during 1881 * attachment to a dirty page. 1882 */ 1883 clear_buffer_dirty(bh); 1884 } 1885 } while ((bh = bh->b_this_page) != head); 1886 SetPageError(page); 1887 BUG_ON(PageWriteback(page)); 1888 set_page_writeback(page); 1889 unlock_page(page); 1890 do { 1891 struct buffer_head *next = bh->b_this_page; 1892 if (buffer_async_write(bh)) { 1893 clear_buffer_dirty(bh); 1894 submit_bh(WRITE, bh); 1895 nr_underway++; 1896 } 1897 bh = next; 1898 } while (bh != head); 1899 goto done; 1900 } 1901 1902 static int __block_prepare_write(struct inode *inode, struct page *page, 1903 unsigned from, unsigned to, get_block_t *get_block) 1904 { 1905 unsigned block_start, block_end; 1906 sector_t block; 1907 int err = 0; 1908 unsigned blocksize, bbits; 1909 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1910 1911 BUG_ON(!PageLocked(page)); 1912 BUG_ON(from > PAGE_CACHE_SIZE); 1913 BUG_ON(to > PAGE_CACHE_SIZE); 1914 BUG_ON(from > to); 1915 1916 blocksize = 1 << inode->i_blkbits; 1917 if (!page_has_buffers(page)) 1918 create_empty_buffers(page, blocksize, 0); 1919 head = page_buffers(page); 1920 1921 bbits = inode->i_blkbits; 1922 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1923 1924 for(bh = head, block_start = 0; bh != head || !block_start; 1925 block++, block_start=block_end, bh = bh->b_this_page) { 1926 block_end = block_start + blocksize; 1927 if (block_end <= from || block_start >= to) { 1928 if (PageUptodate(page)) { 1929 if (!buffer_uptodate(bh)) 1930 set_buffer_uptodate(bh); 1931 } 1932 continue; 1933 } 1934 if (buffer_new(bh)) 1935 clear_buffer_new(bh); 1936 if (!buffer_mapped(bh)) { 1937 WARN_ON(bh->b_size != blocksize); 1938 err = get_block(inode, block, bh, 1); 1939 if (err) 1940 break; 1941 if (buffer_new(bh)) { 1942 unmap_underlying_metadata(bh->b_bdev, 1943 bh->b_blocknr); 1944 if (PageUptodate(page)) { 1945 set_buffer_uptodate(bh); 1946 continue; 1947 } 1948 if (block_end > to || block_start < from) { 1949 void *kaddr; 1950 1951 kaddr = kmap_atomic(page, KM_USER0); 1952 if (block_end > to) 1953 memset(kaddr+to, 0, 1954 block_end-to); 1955 if (block_start < from) 1956 memset(kaddr+block_start, 1957 0, from-block_start); 1958 flush_dcache_page(page); 1959 kunmap_atomic(kaddr, KM_USER0); 1960 } 1961 continue; 1962 } 1963 } 1964 if (PageUptodate(page)) { 1965 if (!buffer_uptodate(bh)) 1966 set_buffer_uptodate(bh); 1967 continue; 1968 } 1969 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1970 (block_start < from || block_end > to)) { 1971 ll_rw_block(READ, 1, &bh); 1972 *wait_bh++=bh; 1973 } 1974 } 1975 /* 1976 * If we issued read requests - let them complete. 1977 */ 1978 while(wait_bh > wait) { 1979 wait_on_buffer(*--wait_bh); 1980 if (!buffer_uptodate(*wait_bh)) 1981 err = -EIO; 1982 } 1983 if (!err) { 1984 bh = head; 1985 do { 1986 if (buffer_new(bh)) 1987 clear_buffer_new(bh); 1988 } while ((bh = bh->b_this_page) != head); 1989 return 0; 1990 } 1991 /* Error case: */ 1992 /* 1993 * Zero out any newly allocated blocks to avoid exposing stale 1994 * data. If BH_New is set, we know that the block was newly 1995 * allocated in the above loop. 1996 */ 1997 bh = head; 1998 block_start = 0; 1999 do { 2000 block_end = block_start+blocksize; 2001 if (block_end <= from) 2002 goto next_bh; 2003 if (block_start >= to) 2004 break; 2005 if (buffer_new(bh)) { 2006 void *kaddr; 2007 2008 clear_buffer_new(bh); 2009 kaddr = kmap_atomic(page, KM_USER0); 2010 memset(kaddr+block_start, 0, bh->b_size); 2011 kunmap_atomic(kaddr, KM_USER0); 2012 set_buffer_uptodate(bh); 2013 mark_buffer_dirty(bh); 2014 } 2015 next_bh: 2016 block_start = block_end; 2017 bh = bh->b_this_page; 2018 } while (bh != head); 2019 return err; 2020 } 2021 2022 static int __block_commit_write(struct inode *inode, struct page *page, 2023 unsigned from, unsigned to) 2024 { 2025 unsigned block_start, block_end; 2026 int partial = 0; 2027 unsigned blocksize; 2028 struct buffer_head *bh, *head; 2029 2030 blocksize = 1 << inode->i_blkbits; 2031 2032 for(bh = head = page_buffers(page), block_start = 0; 2033 bh != head || !block_start; 2034 block_start=block_end, bh = bh->b_this_page) { 2035 block_end = block_start + blocksize; 2036 if (block_end <= from || block_start >= to) { 2037 if (!buffer_uptodate(bh)) 2038 partial = 1; 2039 } else { 2040 set_buffer_uptodate(bh); 2041 mark_buffer_dirty(bh); 2042 } 2043 } 2044 2045 /* 2046 * If this is a partial write which happened to make all buffers 2047 * uptodate then we can optimize away a bogus readpage() for 2048 * the next read(). Here we 'discover' whether the page went 2049 * uptodate as a result of this (potentially partial) write. 2050 */ 2051 if (!partial) 2052 SetPageUptodate(page); 2053 return 0; 2054 } 2055 2056 /* 2057 * Generic "read page" function for block devices that have the normal 2058 * get_block functionality. This is most of the block device filesystems. 2059 * Reads the page asynchronously --- the unlock_buffer() and 2060 * set/clear_buffer_uptodate() functions propagate buffer state into the 2061 * page struct once IO has completed. 2062 */ 2063 int block_read_full_page(struct page *page, get_block_t *get_block) 2064 { 2065 struct inode *inode = page->mapping->host; 2066 sector_t iblock, lblock; 2067 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2068 unsigned int blocksize; 2069 int nr, i; 2070 int fully_mapped = 1; 2071 2072 BUG_ON(!PageLocked(page)); 2073 blocksize = 1 << inode->i_blkbits; 2074 if (!page_has_buffers(page)) 2075 create_empty_buffers(page, blocksize, 0); 2076 head = page_buffers(page); 2077 2078 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2079 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2080 bh = head; 2081 nr = 0; 2082 i = 0; 2083 2084 do { 2085 if (buffer_uptodate(bh)) 2086 continue; 2087 2088 if (!buffer_mapped(bh)) { 2089 int err = 0; 2090 2091 fully_mapped = 0; 2092 if (iblock < lblock) { 2093 WARN_ON(bh->b_size != blocksize); 2094 err = get_block(inode, iblock, bh, 0); 2095 if (err) 2096 SetPageError(page); 2097 } 2098 if (!buffer_mapped(bh)) { 2099 void *kaddr = kmap_atomic(page, KM_USER0); 2100 memset(kaddr + i * blocksize, 0, blocksize); 2101 flush_dcache_page(page); 2102 kunmap_atomic(kaddr, KM_USER0); 2103 if (!err) 2104 set_buffer_uptodate(bh); 2105 continue; 2106 } 2107 /* 2108 * get_block() might have updated the buffer 2109 * synchronously 2110 */ 2111 if (buffer_uptodate(bh)) 2112 continue; 2113 } 2114 arr[nr++] = bh; 2115 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2116 2117 if (fully_mapped) 2118 SetPageMappedToDisk(page); 2119 2120 if (!nr) { 2121 /* 2122 * All buffers are uptodate - we can set the page uptodate 2123 * as well. But not if get_block() returned an error. 2124 */ 2125 if (!PageError(page)) 2126 SetPageUptodate(page); 2127 unlock_page(page); 2128 return 0; 2129 } 2130 2131 /* Stage two: lock the buffers */ 2132 for (i = 0; i < nr; i++) { 2133 bh = arr[i]; 2134 lock_buffer(bh); 2135 mark_buffer_async_read(bh); 2136 } 2137 2138 /* 2139 * Stage 3: start the IO. Check for uptodateness 2140 * inside the buffer lock in case another process reading 2141 * the underlying blockdev brought it uptodate (the sct fix). 2142 */ 2143 for (i = 0; i < nr; i++) { 2144 bh = arr[i]; 2145 if (buffer_uptodate(bh)) 2146 end_buffer_async_read(bh, 1); 2147 else 2148 submit_bh(READ, bh); 2149 } 2150 return 0; 2151 } 2152 2153 /* utility function for filesystems that need to do work on expanding 2154 * truncates. Uses prepare/commit_write to allow the filesystem to 2155 * deal with the hole. 2156 */ 2157 static int __generic_cont_expand(struct inode *inode, loff_t size, 2158 pgoff_t index, unsigned int offset) 2159 { 2160 struct address_space *mapping = inode->i_mapping; 2161 struct page *page; 2162 unsigned long limit; 2163 int err; 2164 2165 err = -EFBIG; 2166 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2167 if (limit != RLIM_INFINITY && size > (loff_t)limit) { 2168 send_sig(SIGXFSZ, current, 0); 2169 goto out; 2170 } 2171 if (size > inode->i_sb->s_maxbytes) 2172 goto out; 2173 2174 err = -ENOMEM; 2175 page = grab_cache_page(mapping, index); 2176 if (!page) 2177 goto out; 2178 err = mapping->a_ops->prepare_write(NULL, page, offset, offset); 2179 if (err) { 2180 /* 2181 * ->prepare_write() may have instantiated a few blocks 2182 * outside i_size. Trim these off again. 2183 */ 2184 unlock_page(page); 2185 page_cache_release(page); 2186 vmtruncate(inode, inode->i_size); 2187 goto out; 2188 } 2189 2190 err = mapping->a_ops->commit_write(NULL, page, offset, offset); 2191 2192 unlock_page(page); 2193 page_cache_release(page); 2194 if (err > 0) 2195 err = 0; 2196 out: 2197 return err; 2198 } 2199 2200 int generic_cont_expand(struct inode *inode, loff_t size) 2201 { 2202 pgoff_t index; 2203 unsigned int offset; 2204 2205 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */ 2206 2207 /* ugh. in prepare/commit_write, if from==to==start of block, we 2208 ** skip the prepare. make sure we never send an offset for the start 2209 ** of a block 2210 */ 2211 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) { 2212 /* caller must handle this extra byte. */ 2213 offset++; 2214 } 2215 index = size >> PAGE_CACHE_SHIFT; 2216 2217 return __generic_cont_expand(inode, size, index, offset); 2218 } 2219 2220 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2221 { 2222 loff_t pos = size - 1; 2223 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2224 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1; 2225 2226 /* prepare/commit_write can handle even if from==to==start of block. */ 2227 return __generic_cont_expand(inode, size, index, offset); 2228 } 2229 2230 /* 2231 * For moronic filesystems that do not allow holes in file. 2232 * We may have to extend the file. 2233 */ 2234 2235 int cont_prepare_write(struct page *page, unsigned offset, 2236 unsigned to, get_block_t *get_block, loff_t *bytes) 2237 { 2238 struct address_space *mapping = page->mapping; 2239 struct inode *inode = mapping->host; 2240 struct page *new_page; 2241 pgoff_t pgpos; 2242 long status; 2243 unsigned zerofrom; 2244 unsigned blocksize = 1 << inode->i_blkbits; 2245 void *kaddr; 2246 2247 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) { 2248 status = -ENOMEM; 2249 new_page = grab_cache_page(mapping, pgpos); 2250 if (!new_page) 2251 goto out; 2252 /* we might sleep */ 2253 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) { 2254 unlock_page(new_page); 2255 page_cache_release(new_page); 2256 continue; 2257 } 2258 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2259 if (zerofrom & (blocksize-1)) { 2260 *bytes |= (blocksize-1); 2261 (*bytes)++; 2262 } 2263 status = __block_prepare_write(inode, new_page, zerofrom, 2264 PAGE_CACHE_SIZE, get_block); 2265 if (status) 2266 goto out_unmap; 2267 kaddr = kmap_atomic(new_page, KM_USER0); 2268 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom); 2269 flush_dcache_page(new_page); 2270 kunmap_atomic(kaddr, KM_USER0); 2271 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE); 2272 unlock_page(new_page); 2273 page_cache_release(new_page); 2274 } 2275 2276 if (page->index < pgpos) { 2277 /* completely inside the area */ 2278 zerofrom = offset; 2279 } else { 2280 /* page covers the boundary, find the boundary offset */ 2281 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2282 2283 /* if we will expand the thing last block will be filled */ 2284 if (to > zerofrom && (zerofrom & (blocksize-1))) { 2285 *bytes |= (blocksize-1); 2286 (*bytes)++; 2287 } 2288 2289 /* starting below the boundary? Nothing to zero out */ 2290 if (offset <= zerofrom) 2291 zerofrom = offset; 2292 } 2293 status = __block_prepare_write(inode, page, zerofrom, to, get_block); 2294 if (status) 2295 goto out1; 2296 if (zerofrom < offset) { 2297 kaddr = kmap_atomic(page, KM_USER0); 2298 memset(kaddr+zerofrom, 0, offset-zerofrom); 2299 flush_dcache_page(page); 2300 kunmap_atomic(kaddr, KM_USER0); 2301 __block_commit_write(inode, page, zerofrom, offset); 2302 } 2303 return 0; 2304 out1: 2305 ClearPageUptodate(page); 2306 return status; 2307 2308 out_unmap: 2309 ClearPageUptodate(new_page); 2310 unlock_page(new_page); 2311 page_cache_release(new_page); 2312 out: 2313 return status; 2314 } 2315 2316 int block_prepare_write(struct page *page, unsigned from, unsigned to, 2317 get_block_t *get_block) 2318 { 2319 struct inode *inode = page->mapping->host; 2320 int err = __block_prepare_write(inode, page, from, to, get_block); 2321 if (err) 2322 ClearPageUptodate(page); 2323 return err; 2324 } 2325 2326 int block_commit_write(struct page *page, unsigned from, unsigned to) 2327 { 2328 struct inode *inode = page->mapping->host; 2329 __block_commit_write(inode,page,from,to); 2330 return 0; 2331 } 2332 2333 int generic_commit_write(struct file *file, struct page *page, 2334 unsigned from, unsigned to) 2335 { 2336 struct inode *inode = page->mapping->host; 2337 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2338 __block_commit_write(inode,page,from,to); 2339 /* 2340 * No need to use i_size_read() here, the i_size 2341 * cannot change under us because we hold i_mutex. 2342 */ 2343 if (pos > inode->i_size) { 2344 i_size_write(inode, pos); 2345 mark_inode_dirty(inode); 2346 } 2347 return 0; 2348 } 2349 2350 2351 /* 2352 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed 2353 * immediately, while under the page lock. So it needs a special end_io 2354 * handler which does not touch the bh after unlocking it. 2355 * 2356 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 2357 * a race there is benign: unlock_buffer() only use the bh's address for 2358 * hashing after unlocking the buffer, so it doesn't actually touch the bh 2359 * itself. 2360 */ 2361 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2362 { 2363 if (uptodate) { 2364 set_buffer_uptodate(bh); 2365 } else { 2366 /* This happens, due to failed READA attempts. */ 2367 clear_buffer_uptodate(bh); 2368 } 2369 unlock_buffer(bh); 2370 } 2371 2372 /* 2373 * On entry, the page is fully not uptodate. 2374 * On exit the page is fully uptodate in the areas outside (from,to) 2375 */ 2376 int nobh_prepare_write(struct page *page, unsigned from, unsigned to, 2377 get_block_t *get_block) 2378 { 2379 struct inode *inode = page->mapping->host; 2380 const unsigned blkbits = inode->i_blkbits; 2381 const unsigned blocksize = 1 << blkbits; 2382 struct buffer_head map_bh; 2383 struct buffer_head *read_bh[MAX_BUF_PER_PAGE]; 2384 unsigned block_in_page; 2385 unsigned block_start; 2386 sector_t block_in_file; 2387 char *kaddr; 2388 int nr_reads = 0; 2389 int i; 2390 int ret = 0; 2391 int is_mapped_to_disk = 1; 2392 int dirtied_it = 0; 2393 2394 if (PageMappedToDisk(page)) 2395 return 0; 2396 2397 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2398 map_bh.b_page = page; 2399 2400 /* 2401 * We loop across all blocks in the page, whether or not they are 2402 * part of the affected region. This is so we can discover if the 2403 * page is fully mapped-to-disk. 2404 */ 2405 for (block_start = 0, block_in_page = 0; 2406 block_start < PAGE_CACHE_SIZE; 2407 block_in_page++, block_start += blocksize) { 2408 unsigned block_end = block_start + blocksize; 2409 int create; 2410 2411 map_bh.b_state = 0; 2412 create = 1; 2413 if (block_start >= to) 2414 create = 0; 2415 map_bh.b_size = blocksize; 2416 ret = get_block(inode, block_in_file + block_in_page, 2417 &map_bh, create); 2418 if (ret) 2419 goto failed; 2420 if (!buffer_mapped(&map_bh)) 2421 is_mapped_to_disk = 0; 2422 if (buffer_new(&map_bh)) 2423 unmap_underlying_metadata(map_bh.b_bdev, 2424 map_bh.b_blocknr); 2425 if (PageUptodate(page)) 2426 continue; 2427 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) { 2428 kaddr = kmap_atomic(page, KM_USER0); 2429 if (block_start < from) { 2430 memset(kaddr+block_start, 0, from-block_start); 2431 dirtied_it = 1; 2432 } 2433 if (block_end > to) { 2434 memset(kaddr + to, 0, block_end - to); 2435 dirtied_it = 1; 2436 } 2437 flush_dcache_page(page); 2438 kunmap_atomic(kaddr, KM_USER0); 2439 continue; 2440 } 2441 if (buffer_uptodate(&map_bh)) 2442 continue; /* reiserfs does this */ 2443 if (block_start < from || block_end > to) { 2444 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS); 2445 2446 if (!bh) { 2447 ret = -ENOMEM; 2448 goto failed; 2449 } 2450 bh->b_state = map_bh.b_state; 2451 atomic_set(&bh->b_count, 0); 2452 bh->b_this_page = NULL; 2453 bh->b_page = page; 2454 bh->b_blocknr = map_bh.b_blocknr; 2455 bh->b_size = blocksize; 2456 bh->b_data = (char *)(long)block_start; 2457 bh->b_bdev = map_bh.b_bdev; 2458 bh->b_private = NULL; 2459 read_bh[nr_reads++] = bh; 2460 } 2461 } 2462 2463 if (nr_reads) { 2464 struct buffer_head *bh; 2465 2466 /* 2467 * The page is locked, so these buffers are protected from 2468 * any VM or truncate activity. Hence we don't need to care 2469 * for the buffer_head refcounts. 2470 */ 2471 for (i = 0; i < nr_reads; i++) { 2472 bh = read_bh[i]; 2473 lock_buffer(bh); 2474 bh->b_end_io = end_buffer_read_nobh; 2475 submit_bh(READ, bh); 2476 } 2477 for (i = 0; i < nr_reads; i++) { 2478 bh = read_bh[i]; 2479 wait_on_buffer(bh); 2480 if (!buffer_uptodate(bh)) 2481 ret = -EIO; 2482 free_buffer_head(bh); 2483 read_bh[i] = NULL; 2484 } 2485 if (ret) 2486 goto failed; 2487 } 2488 2489 if (is_mapped_to_disk) 2490 SetPageMappedToDisk(page); 2491 SetPageUptodate(page); 2492 2493 /* 2494 * Setting the page dirty here isn't necessary for the prepare_write 2495 * function - commit_write will do that. But if/when this function is 2496 * used within the pagefault handler to ensure that all mmapped pages 2497 * have backing space in the filesystem, we will need to dirty the page 2498 * if its contents were altered. 2499 */ 2500 if (dirtied_it) 2501 set_page_dirty(page); 2502 2503 return 0; 2504 2505 failed: 2506 for (i = 0; i < nr_reads; i++) { 2507 if (read_bh[i]) 2508 free_buffer_head(read_bh[i]); 2509 } 2510 2511 /* 2512 * Error recovery is pretty slack. Clear the page and mark it dirty 2513 * so we'll later zero out any blocks which _were_ allocated. 2514 */ 2515 kaddr = kmap_atomic(page, KM_USER0); 2516 memset(kaddr, 0, PAGE_CACHE_SIZE); 2517 kunmap_atomic(kaddr, KM_USER0); 2518 SetPageUptodate(page); 2519 set_page_dirty(page); 2520 return ret; 2521 } 2522 EXPORT_SYMBOL(nobh_prepare_write); 2523 2524 int nobh_commit_write(struct file *file, struct page *page, 2525 unsigned from, unsigned to) 2526 { 2527 struct inode *inode = page->mapping->host; 2528 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 2529 2530 set_page_dirty(page); 2531 if (pos > inode->i_size) { 2532 i_size_write(inode, pos); 2533 mark_inode_dirty(inode); 2534 } 2535 return 0; 2536 } 2537 EXPORT_SYMBOL(nobh_commit_write); 2538 2539 /* 2540 * nobh_writepage() - based on block_full_write_page() except 2541 * that it tries to operate without attaching bufferheads to 2542 * the page. 2543 */ 2544 int nobh_writepage(struct page *page, get_block_t *get_block, 2545 struct writeback_control *wbc) 2546 { 2547 struct inode * const inode = page->mapping->host; 2548 loff_t i_size = i_size_read(inode); 2549 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2550 unsigned offset; 2551 void *kaddr; 2552 int ret; 2553 2554 /* Is the page fully inside i_size? */ 2555 if (page->index < end_index) 2556 goto out; 2557 2558 /* Is the page fully outside i_size? (truncate in progress) */ 2559 offset = i_size & (PAGE_CACHE_SIZE-1); 2560 if (page->index >= end_index+1 || !offset) { 2561 /* 2562 * The page may have dirty, unmapped buffers. For example, 2563 * they may have been added in ext3_writepage(). Make them 2564 * freeable here, so the page does not leak. 2565 */ 2566 #if 0 2567 /* Not really sure about this - do we need this ? */ 2568 if (page->mapping->a_ops->invalidatepage) 2569 page->mapping->a_ops->invalidatepage(page, offset); 2570 #endif 2571 unlock_page(page); 2572 return 0; /* don't care */ 2573 } 2574 2575 /* 2576 * The page straddles i_size. It must be zeroed out on each and every 2577 * writepage invocation because it may be mmapped. "A file is mapped 2578 * in multiples of the page size. For a file that is not a multiple of 2579 * the page size, the remaining memory is zeroed when mapped, and 2580 * writes to that region are not written out to the file." 2581 */ 2582 kaddr = kmap_atomic(page, KM_USER0); 2583 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2584 flush_dcache_page(page); 2585 kunmap_atomic(kaddr, KM_USER0); 2586 out: 2587 ret = mpage_writepage(page, get_block, wbc); 2588 if (ret == -EAGAIN) 2589 ret = __block_write_full_page(inode, page, get_block, wbc); 2590 return ret; 2591 } 2592 EXPORT_SYMBOL(nobh_writepage); 2593 2594 /* 2595 * This function assumes that ->prepare_write() uses nobh_prepare_write(). 2596 */ 2597 int nobh_truncate_page(struct address_space *mapping, loff_t from) 2598 { 2599 struct inode *inode = mapping->host; 2600 unsigned blocksize = 1 << inode->i_blkbits; 2601 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2602 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2603 unsigned to; 2604 struct page *page; 2605 const struct address_space_operations *a_ops = mapping->a_ops; 2606 char *kaddr; 2607 int ret = 0; 2608 2609 if ((offset & (blocksize - 1)) == 0) 2610 goto out; 2611 2612 ret = -ENOMEM; 2613 page = grab_cache_page(mapping, index); 2614 if (!page) 2615 goto out; 2616 2617 to = (offset + blocksize) & ~(blocksize - 1); 2618 ret = a_ops->prepare_write(NULL, page, offset, to); 2619 if (ret == 0) { 2620 kaddr = kmap_atomic(page, KM_USER0); 2621 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2622 flush_dcache_page(page); 2623 kunmap_atomic(kaddr, KM_USER0); 2624 set_page_dirty(page); 2625 } 2626 unlock_page(page); 2627 page_cache_release(page); 2628 out: 2629 return ret; 2630 } 2631 EXPORT_SYMBOL(nobh_truncate_page); 2632 2633 int block_truncate_page(struct address_space *mapping, 2634 loff_t from, get_block_t *get_block) 2635 { 2636 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2637 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2638 unsigned blocksize; 2639 sector_t iblock; 2640 unsigned length, pos; 2641 struct inode *inode = mapping->host; 2642 struct page *page; 2643 struct buffer_head *bh; 2644 void *kaddr; 2645 int err; 2646 2647 blocksize = 1 << inode->i_blkbits; 2648 length = offset & (blocksize - 1); 2649 2650 /* Block boundary? Nothing to do */ 2651 if (!length) 2652 return 0; 2653 2654 length = blocksize - length; 2655 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2656 2657 page = grab_cache_page(mapping, index); 2658 err = -ENOMEM; 2659 if (!page) 2660 goto out; 2661 2662 if (!page_has_buffers(page)) 2663 create_empty_buffers(page, blocksize, 0); 2664 2665 /* Find the buffer that contains "offset" */ 2666 bh = page_buffers(page); 2667 pos = blocksize; 2668 while (offset >= pos) { 2669 bh = bh->b_this_page; 2670 iblock++; 2671 pos += blocksize; 2672 } 2673 2674 err = 0; 2675 if (!buffer_mapped(bh)) { 2676 WARN_ON(bh->b_size != blocksize); 2677 err = get_block(inode, iblock, bh, 0); 2678 if (err) 2679 goto unlock; 2680 /* unmapped? It's a hole - nothing to do */ 2681 if (!buffer_mapped(bh)) 2682 goto unlock; 2683 } 2684 2685 /* Ok, it's mapped. Make sure it's up-to-date */ 2686 if (PageUptodate(page)) 2687 set_buffer_uptodate(bh); 2688 2689 if (!buffer_uptodate(bh) && !buffer_delay(bh)) { 2690 err = -EIO; 2691 ll_rw_block(READ, 1, &bh); 2692 wait_on_buffer(bh); 2693 /* Uhhuh. Read error. Complain and punt. */ 2694 if (!buffer_uptodate(bh)) 2695 goto unlock; 2696 } 2697 2698 kaddr = kmap_atomic(page, KM_USER0); 2699 memset(kaddr + offset, 0, length); 2700 flush_dcache_page(page); 2701 kunmap_atomic(kaddr, KM_USER0); 2702 2703 mark_buffer_dirty(bh); 2704 err = 0; 2705 2706 unlock: 2707 unlock_page(page); 2708 page_cache_release(page); 2709 out: 2710 return err; 2711 } 2712 2713 /* 2714 * The generic ->writepage function for buffer-backed address_spaces 2715 */ 2716 int block_write_full_page(struct page *page, get_block_t *get_block, 2717 struct writeback_control *wbc) 2718 { 2719 struct inode * const inode = page->mapping->host; 2720 loff_t i_size = i_size_read(inode); 2721 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2722 unsigned offset; 2723 void *kaddr; 2724 2725 /* Is the page fully inside i_size? */ 2726 if (page->index < end_index) 2727 return __block_write_full_page(inode, page, get_block, wbc); 2728 2729 /* Is the page fully outside i_size? (truncate in progress) */ 2730 offset = i_size & (PAGE_CACHE_SIZE-1); 2731 if (page->index >= end_index+1 || !offset) { 2732 /* 2733 * The page may have dirty, unmapped buffers. For example, 2734 * they may have been added in ext3_writepage(). Make them 2735 * freeable here, so the page does not leak. 2736 */ 2737 do_invalidatepage(page, 0); 2738 unlock_page(page); 2739 return 0; /* don't care */ 2740 } 2741 2742 /* 2743 * The page straddles i_size. It must be zeroed out on each and every 2744 * writepage invokation because it may be mmapped. "A file is mapped 2745 * in multiples of the page size. For a file that is not a multiple of 2746 * the page size, the remaining memory is zeroed when mapped, and 2747 * writes to that region are not written out to the file." 2748 */ 2749 kaddr = kmap_atomic(page, KM_USER0); 2750 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2751 flush_dcache_page(page); 2752 kunmap_atomic(kaddr, KM_USER0); 2753 return __block_write_full_page(inode, page, get_block, wbc); 2754 } 2755 2756 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2757 get_block_t *get_block) 2758 { 2759 struct buffer_head tmp; 2760 struct inode *inode = mapping->host; 2761 tmp.b_state = 0; 2762 tmp.b_blocknr = 0; 2763 tmp.b_size = 1 << inode->i_blkbits; 2764 get_block(inode, block, &tmp, 0); 2765 return tmp.b_blocknr; 2766 } 2767 2768 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err) 2769 { 2770 struct buffer_head *bh = bio->bi_private; 2771 2772 if (bio->bi_size) 2773 return 1; 2774 2775 if (err == -EOPNOTSUPP) { 2776 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2777 set_bit(BH_Eopnotsupp, &bh->b_state); 2778 } 2779 2780 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2781 bio_put(bio); 2782 return 0; 2783 } 2784 2785 int submit_bh(int rw, struct buffer_head * bh) 2786 { 2787 struct bio *bio; 2788 int ret = 0; 2789 2790 BUG_ON(!buffer_locked(bh)); 2791 BUG_ON(!buffer_mapped(bh)); 2792 BUG_ON(!bh->b_end_io); 2793 2794 if (buffer_ordered(bh) && (rw == WRITE)) 2795 rw = WRITE_BARRIER; 2796 2797 /* 2798 * Only clear out a write error when rewriting, should this 2799 * include WRITE_SYNC as well? 2800 */ 2801 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) 2802 clear_buffer_write_io_error(bh); 2803 2804 /* 2805 * from here on down, it's all bio -- do the initial mapping, 2806 * submit_bio -> generic_make_request may further map this bio around 2807 */ 2808 bio = bio_alloc(GFP_NOIO, 1); 2809 2810 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2811 bio->bi_bdev = bh->b_bdev; 2812 bio->bi_io_vec[0].bv_page = bh->b_page; 2813 bio->bi_io_vec[0].bv_len = bh->b_size; 2814 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2815 2816 bio->bi_vcnt = 1; 2817 bio->bi_idx = 0; 2818 bio->bi_size = bh->b_size; 2819 2820 bio->bi_end_io = end_bio_bh_io_sync; 2821 bio->bi_private = bh; 2822 2823 bio_get(bio); 2824 submit_bio(rw, bio); 2825 2826 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2827 ret = -EOPNOTSUPP; 2828 2829 bio_put(bio); 2830 return ret; 2831 } 2832 2833 /** 2834 * ll_rw_block: low-level access to block devices (DEPRECATED) 2835 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 2836 * @nr: number of &struct buffer_heads in the array 2837 * @bhs: array of pointers to &struct buffer_head 2838 * 2839 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2840 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2841 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 2842 * are sent to disk. The fourth %READA option is described in the documentation 2843 * for generic_make_request() which ll_rw_block() calls. 2844 * 2845 * This function drops any buffer that it cannot get a lock on (with the 2846 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 2847 * clean when doing a write request, and any buffer that appears to be 2848 * up-to-date when doing read request. Further it marks as clean buffers that 2849 * are processed for writing (the buffer cache won't assume that they are 2850 * actually clean until the buffer gets unlocked). 2851 * 2852 * ll_rw_block sets b_end_io to simple completion handler that marks 2853 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2854 * any waiters. 2855 * 2856 * All of the buffers must be for the same device, and must also be a 2857 * multiple of the current approved size for the device. 2858 */ 2859 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2860 { 2861 int i; 2862 2863 for (i = 0; i < nr; i++) { 2864 struct buffer_head *bh = bhs[i]; 2865 2866 if (rw == SWRITE) 2867 lock_buffer(bh); 2868 else if (test_set_buffer_locked(bh)) 2869 continue; 2870 2871 if (rw == WRITE || rw == SWRITE) { 2872 if (test_clear_buffer_dirty(bh)) { 2873 bh->b_end_io = end_buffer_write_sync; 2874 get_bh(bh); 2875 submit_bh(WRITE, bh); 2876 continue; 2877 } 2878 } else { 2879 if (!buffer_uptodate(bh)) { 2880 bh->b_end_io = end_buffer_read_sync; 2881 get_bh(bh); 2882 submit_bh(rw, bh); 2883 continue; 2884 } 2885 } 2886 unlock_buffer(bh); 2887 } 2888 } 2889 2890 /* 2891 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2892 * and then start new I/O and then wait upon it. The caller must have a ref on 2893 * the buffer_head. 2894 */ 2895 int sync_dirty_buffer(struct buffer_head *bh) 2896 { 2897 int ret = 0; 2898 2899 WARN_ON(atomic_read(&bh->b_count) < 1); 2900 lock_buffer(bh); 2901 if (test_clear_buffer_dirty(bh)) { 2902 get_bh(bh); 2903 bh->b_end_io = end_buffer_write_sync; 2904 ret = submit_bh(WRITE, bh); 2905 wait_on_buffer(bh); 2906 if (buffer_eopnotsupp(bh)) { 2907 clear_buffer_eopnotsupp(bh); 2908 ret = -EOPNOTSUPP; 2909 } 2910 if (!ret && !buffer_uptodate(bh)) 2911 ret = -EIO; 2912 } else { 2913 unlock_buffer(bh); 2914 } 2915 return ret; 2916 } 2917 2918 /* 2919 * try_to_free_buffers() checks if all the buffers on this particular page 2920 * are unused, and releases them if so. 2921 * 2922 * Exclusion against try_to_free_buffers may be obtained by either 2923 * locking the page or by holding its mapping's private_lock. 2924 * 2925 * If the page is dirty but all the buffers are clean then we need to 2926 * be sure to mark the page clean as well. This is because the page 2927 * may be against a block device, and a later reattachment of buffers 2928 * to a dirty page will set *all* buffers dirty. Which would corrupt 2929 * filesystem data on the same device. 2930 * 2931 * The same applies to regular filesystem pages: if all the buffers are 2932 * clean then we set the page clean and proceed. To do that, we require 2933 * total exclusion from __set_page_dirty_buffers(). That is obtained with 2934 * private_lock. 2935 * 2936 * try_to_free_buffers() is non-blocking. 2937 */ 2938 static inline int buffer_busy(struct buffer_head *bh) 2939 { 2940 return atomic_read(&bh->b_count) | 2941 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2942 } 2943 2944 static int 2945 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 2946 { 2947 struct buffer_head *head = page_buffers(page); 2948 struct buffer_head *bh; 2949 2950 bh = head; 2951 do { 2952 if (buffer_write_io_error(bh) && page->mapping) 2953 set_bit(AS_EIO, &page->mapping->flags); 2954 if (buffer_busy(bh)) 2955 goto failed; 2956 bh = bh->b_this_page; 2957 } while (bh != head); 2958 2959 do { 2960 struct buffer_head *next = bh->b_this_page; 2961 2962 if (!list_empty(&bh->b_assoc_buffers)) 2963 __remove_assoc_queue(bh); 2964 bh = next; 2965 } while (bh != head); 2966 *buffers_to_free = head; 2967 __clear_page_buffers(page); 2968 return 1; 2969 failed: 2970 return 0; 2971 } 2972 2973 int try_to_free_buffers(struct page *page) 2974 { 2975 struct address_space * const mapping = page->mapping; 2976 struct buffer_head *buffers_to_free = NULL; 2977 int ret = 0; 2978 2979 BUG_ON(!PageLocked(page)); 2980 if (PageWriteback(page)) 2981 return 0; 2982 2983 if (mapping == NULL) { /* can this still happen? */ 2984 ret = drop_buffers(page, &buffers_to_free); 2985 goto out; 2986 } 2987 2988 spin_lock(&mapping->private_lock); 2989 ret = drop_buffers(page, &buffers_to_free); 2990 if (ret) { 2991 /* 2992 * If the filesystem writes its buffers by hand (eg ext3) 2993 * then we can have clean buffers against a dirty page. We 2994 * clean the page here; otherwise later reattachment of buffers 2995 * could encounter a non-uptodate page, which is unresolvable. 2996 * This only applies in the rare case where try_to_free_buffers 2997 * succeeds but the page is not freed. 2998 */ 2999 clear_page_dirty(page); 3000 } 3001 spin_unlock(&mapping->private_lock); 3002 out: 3003 if (buffers_to_free) { 3004 struct buffer_head *bh = buffers_to_free; 3005 3006 do { 3007 struct buffer_head *next = bh->b_this_page; 3008 free_buffer_head(bh); 3009 bh = next; 3010 } while (bh != buffers_to_free); 3011 } 3012 return ret; 3013 } 3014 EXPORT_SYMBOL(try_to_free_buffers); 3015 3016 void block_sync_page(struct page *page) 3017 { 3018 struct address_space *mapping; 3019 3020 smp_mb(); 3021 mapping = page_mapping(page); 3022 if (mapping) 3023 blk_run_backing_dev(mapping->backing_dev_info, page); 3024 } 3025 3026 /* 3027 * There are no bdflush tunables left. But distributions are 3028 * still running obsolete flush daemons, so we terminate them here. 3029 * 3030 * Use of bdflush() is deprecated and will be removed in a future kernel. 3031 * The `pdflush' kernel threads fully replace bdflush daemons and this call. 3032 */ 3033 asmlinkage long sys_bdflush(int func, long data) 3034 { 3035 static int msg_count; 3036 3037 if (!capable(CAP_SYS_ADMIN)) 3038 return -EPERM; 3039 3040 if (msg_count < 5) { 3041 msg_count++; 3042 printk(KERN_INFO 3043 "warning: process `%s' used the obsolete bdflush" 3044 " system call\n", current->comm); 3045 printk(KERN_INFO "Fix your initscripts?\n"); 3046 } 3047 3048 if (func == 1) 3049 do_exit(0); 3050 return 0; 3051 } 3052 3053 /* 3054 * Buffer-head allocation 3055 */ 3056 static kmem_cache_t *bh_cachep; 3057 3058 /* 3059 * Once the number of bh's in the machine exceeds this level, we start 3060 * stripping them in writeback. 3061 */ 3062 static int max_buffer_heads; 3063 3064 int buffer_heads_over_limit; 3065 3066 struct bh_accounting { 3067 int nr; /* Number of live bh's */ 3068 int ratelimit; /* Limit cacheline bouncing */ 3069 }; 3070 3071 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3072 3073 static void recalc_bh_state(void) 3074 { 3075 int i; 3076 int tot = 0; 3077 3078 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 3079 return; 3080 __get_cpu_var(bh_accounting).ratelimit = 0; 3081 for_each_online_cpu(i) 3082 tot += per_cpu(bh_accounting, i).nr; 3083 buffer_heads_over_limit = (tot > max_buffer_heads); 3084 } 3085 3086 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3087 { 3088 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); 3089 if (ret) { 3090 get_cpu_var(bh_accounting).nr++; 3091 recalc_bh_state(); 3092 put_cpu_var(bh_accounting); 3093 } 3094 return ret; 3095 } 3096 EXPORT_SYMBOL(alloc_buffer_head); 3097 3098 void free_buffer_head(struct buffer_head *bh) 3099 { 3100 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3101 kmem_cache_free(bh_cachep, bh); 3102 get_cpu_var(bh_accounting).nr--; 3103 recalc_bh_state(); 3104 put_cpu_var(bh_accounting); 3105 } 3106 EXPORT_SYMBOL(free_buffer_head); 3107 3108 static void 3109 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags) 3110 { 3111 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 3112 SLAB_CTOR_CONSTRUCTOR) { 3113 struct buffer_head * bh = (struct buffer_head *)data; 3114 3115 memset(bh, 0, sizeof(*bh)); 3116 INIT_LIST_HEAD(&bh->b_assoc_buffers); 3117 } 3118 } 3119 3120 #ifdef CONFIG_HOTPLUG_CPU 3121 static void buffer_exit_cpu(int cpu) 3122 { 3123 int i; 3124 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3125 3126 for (i = 0; i < BH_LRU_SIZE; i++) { 3127 brelse(b->bhs[i]); 3128 b->bhs[i] = NULL; 3129 } 3130 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 3131 per_cpu(bh_accounting, cpu).nr = 0; 3132 put_cpu_var(bh_accounting); 3133 } 3134 3135 static int buffer_cpu_notify(struct notifier_block *self, 3136 unsigned long action, void *hcpu) 3137 { 3138 if (action == CPU_DEAD) 3139 buffer_exit_cpu((unsigned long)hcpu); 3140 return NOTIFY_OK; 3141 } 3142 #endif /* CONFIG_HOTPLUG_CPU */ 3143 3144 void __init buffer_init(void) 3145 { 3146 int nrpages; 3147 3148 bh_cachep = kmem_cache_create("buffer_head", 3149 sizeof(struct buffer_head), 0, 3150 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3151 SLAB_MEM_SPREAD), 3152 init_buffer_head, 3153 NULL); 3154 3155 /* 3156 * Limit the bh occupancy to 10% of ZONE_NORMAL 3157 */ 3158 nrpages = (nr_free_buffer_pages() * 10) / 100; 3159 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3160 hotcpu_notifier(buffer_cpu_notify, 0); 3161 } 3162 3163 EXPORT_SYMBOL(__bforget); 3164 EXPORT_SYMBOL(__brelse); 3165 EXPORT_SYMBOL(__wait_on_buffer); 3166 EXPORT_SYMBOL(block_commit_write); 3167 EXPORT_SYMBOL(block_prepare_write); 3168 EXPORT_SYMBOL(block_read_full_page); 3169 EXPORT_SYMBOL(block_sync_page); 3170 EXPORT_SYMBOL(block_truncate_page); 3171 EXPORT_SYMBOL(block_write_full_page); 3172 EXPORT_SYMBOL(cont_prepare_write); 3173 EXPORT_SYMBOL(end_buffer_read_sync); 3174 EXPORT_SYMBOL(end_buffer_write_sync); 3175 EXPORT_SYMBOL(file_fsync); 3176 EXPORT_SYMBOL(fsync_bdev); 3177 EXPORT_SYMBOL(generic_block_bmap); 3178 EXPORT_SYMBOL(generic_commit_write); 3179 EXPORT_SYMBOL(generic_cont_expand); 3180 EXPORT_SYMBOL(generic_cont_expand_simple); 3181 EXPORT_SYMBOL(init_buffer); 3182 EXPORT_SYMBOL(invalidate_bdev); 3183 EXPORT_SYMBOL(ll_rw_block); 3184 EXPORT_SYMBOL(mark_buffer_dirty); 3185 EXPORT_SYMBOL(submit_bh); 3186 EXPORT_SYMBOL(sync_dirty_buffer); 3187 EXPORT_SYMBOL(unlock_buffer); 3188