xref: /linux/fs/buffer.c (revision 6d729e44a55547c009d7a87ea66bff21a8e0afea)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 static int sync_buffer(void *word)
58 {
59 	struct block_device *bd;
60 	struct buffer_head *bh
61 		= container_of(word, struct buffer_head, b_state);
62 
63 	smp_mb();
64 	bd = bh->b_bdev;
65 	if (bd)
66 		blk_run_address_space(bd->bd_inode->i_mapping);
67 	io_schedule();
68 	return 0;
69 }
70 
71 void __lock_buffer(struct buffer_head *bh)
72 {
73 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 							TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77 
78 void unlock_buffer(struct buffer_head *bh)
79 {
80 	clear_bit_unlock(BH_Lock, &bh->b_state);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 EXPORT_SYMBOL(unlock_buffer);
85 
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95 EXPORT_SYMBOL(__wait_on_buffer);
96 
97 static void
98 __clear_page_buffers(struct page *page)
99 {
100 	ClearPagePrivate(page);
101 	set_page_private(page, 0);
102 	page_cache_release(page);
103 }
104 
105 
106 static int quiet_error(struct buffer_head *bh)
107 {
108 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109 		return 0;
110 	return 1;
111 }
112 
113 
114 static void buffer_io_error(struct buffer_head *bh)
115 {
116 	char b[BDEVNAME_SIZE];
117 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118 			bdevname(bh->b_bdev, b),
119 			(unsigned long long)bh->b_blocknr);
120 }
121 
122 /*
123  * End-of-IO handler helper function which does not touch the bh after
124  * unlocking it.
125  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126  * a race there is benign: unlock_buffer() only use the bh's address for
127  * hashing after unlocking the buffer, so it doesn't actually touch the bh
128  * itself.
129  */
130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
131 {
132 	if (uptodate) {
133 		set_buffer_uptodate(bh);
134 	} else {
135 		/* This happens, due to failed READA attempts. */
136 		clear_buffer_uptodate(bh);
137 	}
138 	unlock_buffer(bh);
139 }
140 
141 /*
142  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
143  * unlock the buffer. This is what ll_rw_block uses too.
144  */
145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146 {
147 	__end_buffer_read_notouch(bh, uptodate);
148 	put_bh(bh);
149 }
150 EXPORT_SYMBOL(end_buffer_read_sync);
151 
152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153 {
154 	char b[BDEVNAME_SIZE];
155 
156 	if (uptodate) {
157 		set_buffer_uptodate(bh);
158 	} else {
159 		if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
160 			buffer_io_error(bh);
161 			printk(KERN_WARNING "lost page write due to "
162 					"I/O error on %s\n",
163 				       bdevname(bh->b_bdev, b));
164 		}
165 		set_buffer_write_io_error(bh);
166 		clear_buffer_uptodate(bh);
167 	}
168 	unlock_buffer(bh);
169 	put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_write_sync);
172 
173 /*
174  * Various filesystems appear to want __find_get_block to be non-blocking.
175  * But it's the page lock which protects the buffers.  To get around this,
176  * we get exclusion from try_to_free_buffers with the blockdev mapping's
177  * private_lock.
178  *
179  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180  * may be quite high.  This code could TryLock the page, and if that
181  * succeeds, there is no need to take private_lock. (But if
182  * private_lock is contended then so is mapping->tree_lock).
183  */
184 static struct buffer_head *
185 __find_get_block_slow(struct block_device *bdev, sector_t block)
186 {
187 	struct inode *bd_inode = bdev->bd_inode;
188 	struct address_space *bd_mapping = bd_inode->i_mapping;
189 	struct buffer_head *ret = NULL;
190 	pgoff_t index;
191 	struct buffer_head *bh;
192 	struct buffer_head *head;
193 	struct page *page;
194 	int all_mapped = 1;
195 
196 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197 	page = find_get_page(bd_mapping, index);
198 	if (!page)
199 		goto out;
200 
201 	spin_lock(&bd_mapping->private_lock);
202 	if (!page_has_buffers(page))
203 		goto out_unlock;
204 	head = page_buffers(page);
205 	bh = head;
206 	do {
207 		if (!buffer_mapped(bh))
208 			all_mapped = 0;
209 		else if (bh->b_blocknr == block) {
210 			ret = bh;
211 			get_bh(bh);
212 			goto out_unlock;
213 		}
214 		bh = bh->b_this_page;
215 	} while (bh != head);
216 
217 	/* we might be here because some of the buffers on this page are
218 	 * not mapped.  This is due to various races between
219 	 * file io on the block device and getblk.  It gets dealt with
220 	 * elsewhere, don't buffer_error if we had some unmapped buffers
221 	 */
222 	if (all_mapped) {
223 		printk("__find_get_block_slow() failed. "
224 			"block=%llu, b_blocknr=%llu\n",
225 			(unsigned long long)block,
226 			(unsigned long long)bh->b_blocknr);
227 		printk("b_state=0x%08lx, b_size=%zu\n",
228 			bh->b_state, bh->b_size);
229 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230 	}
231 out_unlock:
232 	spin_unlock(&bd_mapping->private_lock);
233 	page_cache_release(page);
234 out:
235 	return ret;
236 }
237 
238 /* If invalidate_buffers() will trash dirty buffers, it means some kind
239    of fs corruption is going on. Trashing dirty data always imply losing
240    information that was supposed to be just stored on the physical layer
241    by the user.
242 
243    Thus invalidate_buffers in general usage is not allwowed to trash
244    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245    be preserved.  These buffers are simply skipped.
246 
247    We also skip buffers which are still in use.  For example this can
248    happen if a userspace program is reading the block device.
249 
250    NOTE: In the case where the user removed a removable-media-disk even if
251    there's still dirty data not synced on disk (due a bug in the device driver
252    or due an error of the user), by not destroying the dirty buffers we could
253    generate corruption also on the next media inserted, thus a parameter is
254    necessary to handle this case in the most safe way possible (trying
255    to not corrupt also the new disk inserted with the data belonging to
256    the old now corrupted disk). Also for the ramdisk the natural thing
257    to do in order to release the ramdisk memory is to destroy dirty buffers.
258 
259    These are two special cases. Normal usage imply the device driver
260    to issue a sync on the device (without waiting I/O completion) and
261    then an invalidate_buffers call that doesn't trash dirty buffers.
262 
263    For handling cache coherency with the blkdev pagecache the 'update' case
264    is been introduced. It is needed to re-read from disk any pinned
265    buffer. NOTE: re-reading from disk is destructive so we can do it only
266    when we assume nobody is changing the buffercache under our I/O and when
267    we think the disk contains more recent information than the buffercache.
268    The update == 1 pass marks the buffers we need to update, the update == 2
269    pass does the actual I/O. */
270 void invalidate_bdev(struct block_device *bdev)
271 {
272 	struct address_space *mapping = bdev->bd_inode->i_mapping;
273 
274 	if (mapping->nrpages == 0)
275 		return;
276 
277 	invalidate_bh_lrus();
278 	invalidate_mapping_pages(mapping, 0, -1);
279 }
280 EXPORT_SYMBOL(invalidate_bdev);
281 
282 /*
283  * Kick pdflush then try to free up some ZONE_NORMAL memory.
284  */
285 static void free_more_memory(void)
286 {
287 	struct zone *zone;
288 	int nid;
289 
290 	wakeup_flusher_threads(1024);
291 	yield();
292 
293 	for_each_online_node(nid) {
294 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
295 						gfp_zone(GFP_NOFS), NULL,
296 						&zone);
297 		if (zone)
298 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
299 						GFP_NOFS, NULL);
300 	}
301 }
302 
303 /*
304  * I/O completion handler for block_read_full_page() - pages
305  * which come unlocked at the end of I/O.
306  */
307 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
308 {
309 	unsigned long flags;
310 	struct buffer_head *first;
311 	struct buffer_head *tmp;
312 	struct page *page;
313 	int page_uptodate = 1;
314 
315 	BUG_ON(!buffer_async_read(bh));
316 
317 	page = bh->b_page;
318 	if (uptodate) {
319 		set_buffer_uptodate(bh);
320 	} else {
321 		clear_buffer_uptodate(bh);
322 		if (!quiet_error(bh))
323 			buffer_io_error(bh);
324 		SetPageError(page);
325 	}
326 
327 	/*
328 	 * Be _very_ careful from here on. Bad things can happen if
329 	 * two buffer heads end IO at almost the same time and both
330 	 * decide that the page is now completely done.
331 	 */
332 	first = page_buffers(page);
333 	local_irq_save(flags);
334 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
335 	clear_buffer_async_read(bh);
336 	unlock_buffer(bh);
337 	tmp = bh;
338 	do {
339 		if (!buffer_uptodate(tmp))
340 			page_uptodate = 0;
341 		if (buffer_async_read(tmp)) {
342 			BUG_ON(!buffer_locked(tmp));
343 			goto still_busy;
344 		}
345 		tmp = tmp->b_this_page;
346 	} while (tmp != bh);
347 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
348 	local_irq_restore(flags);
349 
350 	/*
351 	 * If none of the buffers had errors and they are all
352 	 * uptodate then we can set the page uptodate.
353 	 */
354 	if (page_uptodate && !PageError(page))
355 		SetPageUptodate(page);
356 	unlock_page(page);
357 	return;
358 
359 still_busy:
360 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361 	local_irq_restore(flags);
362 	return;
363 }
364 
365 /*
366  * Completion handler for block_write_full_page() - pages which are unlocked
367  * during I/O, and which have PageWriteback cleared upon I/O completion.
368  */
369 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
370 {
371 	char b[BDEVNAME_SIZE];
372 	unsigned long flags;
373 	struct buffer_head *first;
374 	struct buffer_head *tmp;
375 	struct page *page;
376 
377 	BUG_ON(!buffer_async_write(bh));
378 
379 	page = bh->b_page;
380 	if (uptodate) {
381 		set_buffer_uptodate(bh);
382 	} else {
383 		if (!quiet_error(bh)) {
384 			buffer_io_error(bh);
385 			printk(KERN_WARNING "lost page write due to "
386 					"I/O error on %s\n",
387 			       bdevname(bh->b_bdev, b));
388 		}
389 		set_bit(AS_EIO, &page->mapping->flags);
390 		set_buffer_write_io_error(bh);
391 		clear_buffer_uptodate(bh);
392 		SetPageError(page);
393 	}
394 
395 	first = page_buffers(page);
396 	local_irq_save(flags);
397 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
398 
399 	clear_buffer_async_write(bh);
400 	unlock_buffer(bh);
401 	tmp = bh->b_this_page;
402 	while (tmp != bh) {
403 		if (buffer_async_write(tmp)) {
404 			BUG_ON(!buffer_locked(tmp));
405 			goto still_busy;
406 		}
407 		tmp = tmp->b_this_page;
408 	}
409 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410 	local_irq_restore(flags);
411 	end_page_writeback(page);
412 	return;
413 
414 still_busy:
415 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
416 	local_irq_restore(flags);
417 	return;
418 }
419 EXPORT_SYMBOL(end_buffer_async_write);
420 
421 /*
422  * If a page's buffers are under async readin (end_buffer_async_read
423  * completion) then there is a possibility that another thread of
424  * control could lock one of the buffers after it has completed
425  * but while some of the other buffers have not completed.  This
426  * locked buffer would confuse end_buffer_async_read() into not unlocking
427  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
428  * that this buffer is not under async I/O.
429  *
430  * The page comes unlocked when it has no locked buffer_async buffers
431  * left.
432  *
433  * PageLocked prevents anyone starting new async I/O reads any of
434  * the buffers.
435  *
436  * PageWriteback is used to prevent simultaneous writeout of the same
437  * page.
438  *
439  * PageLocked prevents anyone from starting writeback of a page which is
440  * under read I/O (PageWriteback is only ever set against a locked page).
441  */
442 static void mark_buffer_async_read(struct buffer_head *bh)
443 {
444 	bh->b_end_io = end_buffer_async_read;
445 	set_buffer_async_read(bh);
446 }
447 
448 static void mark_buffer_async_write_endio(struct buffer_head *bh,
449 					  bh_end_io_t *handler)
450 {
451 	bh->b_end_io = handler;
452 	set_buffer_async_write(bh);
453 }
454 
455 void mark_buffer_async_write(struct buffer_head *bh)
456 {
457 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
458 }
459 EXPORT_SYMBOL(mark_buffer_async_write);
460 
461 
462 /*
463  * fs/buffer.c contains helper functions for buffer-backed address space's
464  * fsync functions.  A common requirement for buffer-based filesystems is
465  * that certain data from the backing blockdev needs to be written out for
466  * a successful fsync().  For example, ext2 indirect blocks need to be
467  * written back and waited upon before fsync() returns.
468  *
469  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
470  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
471  * management of a list of dependent buffers at ->i_mapping->private_list.
472  *
473  * Locking is a little subtle: try_to_free_buffers() will remove buffers
474  * from their controlling inode's queue when they are being freed.  But
475  * try_to_free_buffers() will be operating against the *blockdev* mapping
476  * at the time, not against the S_ISREG file which depends on those buffers.
477  * So the locking for private_list is via the private_lock in the address_space
478  * which backs the buffers.  Which is different from the address_space
479  * against which the buffers are listed.  So for a particular address_space,
480  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
481  * mapping->private_list will always be protected by the backing blockdev's
482  * ->private_lock.
483  *
484  * Which introduces a requirement: all buffers on an address_space's
485  * ->private_list must be from the same address_space: the blockdev's.
486  *
487  * address_spaces which do not place buffers at ->private_list via these
488  * utility functions are free to use private_lock and private_list for
489  * whatever they want.  The only requirement is that list_empty(private_list)
490  * be true at clear_inode() time.
491  *
492  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
493  * filesystems should do that.  invalidate_inode_buffers() should just go
494  * BUG_ON(!list_empty).
495  *
496  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
497  * take an address_space, not an inode.  And it should be called
498  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
499  * queued up.
500  *
501  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
502  * list if it is already on a list.  Because if the buffer is on a list,
503  * it *must* already be on the right one.  If not, the filesystem is being
504  * silly.  This will save a ton of locking.  But first we have to ensure
505  * that buffers are taken *off* the old inode's list when they are freed
506  * (presumably in truncate).  That requires careful auditing of all
507  * filesystems (do it inside bforget()).  It could also be done by bringing
508  * b_inode back.
509  */
510 
511 /*
512  * The buffer's backing address_space's private_lock must be held
513  */
514 static void __remove_assoc_queue(struct buffer_head *bh)
515 {
516 	list_del_init(&bh->b_assoc_buffers);
517 	WARN_ON(!bh->b_assoc_map);
518 	if (buffer_write_io_error(bh))
519 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
520 	bh->b_assoc_map = NULL;
521 }
522 
523 int inode_has_buffers(struct inode *inode)
524 {
525 	return !list_empty(&inode->i_data.private_list);
526 }
527 
528 /*
529  * osync is designed to support O_SYNC io.  It waits synchronously for
530  * all already-submitted IO to complete, but does not queue any new
531  * writes to the disk.
532  *
533  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
534  * you dirty the buffers, and then use osync_inode_buffers to wait for
535  * completion.  Any other dirty buffers which are not yet queued for
536  * write will not be flushed to disk by the osync.
537  */
538 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
539 {
540 	struct buffer_head *bh;
541 	struct list_head *p;
542 	int err = 0;
543 
544 	spin_lock(lock);
545 repeat:
546 	list_for_each_prev(p, list) {
547 		bh = BH_ENTRY(p);
548 		if (buffer_locked(bh)) {
549 			get_bh(bh);
550 			spin_unlock(lock);
551 			wait_on_buffer(bh);
552 			if (!buffer_uptodate(bh))
553 				err = -EIO;
554 			brelse(bh);
555 			spin_lock(lock);
556 			goto repeat;
557 		}
558 	}
559 	spin_unlock(lock);
560 	return err;
561 }
562 
563 static void do_thaw_all(struct work_struct *work)
564 {
565 	struct super_block *sb;
566 	char b[BDEVNAME_SIZE];
567 
568 	spin_lock(&sb_lock);
569 restart:
570 	list_for_each_entry(sb, &super_blocks, s_list) {
571 		sb->s_count++;
572 		spin_unlock(&sb_lock);
573 		down_read(&sb->s_umount);
574 		while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
575 			printk(KERN_WARNING "Emergency Thaw on %s\n",
576 			       bdevname(sb->s_bdev, b));
577 		up_read(&sb->s_umount);
578 		spin_lock(&sb_lock);
579 		if (__put_super_and_need_restart(sb))
580 			goto restart;
581 	}
582 	spin_unlock(&sb_lock);
583 	kfree(work);
584 	printk(KERN_WARNING "Emergency Thaw complete\n");
585 }
586 
587 /**
588  * emergency_thaw_all -- forcibly thaw every frozen filesystem
589  *
590  * Used for emergency unfreeze of all filesystems via SysRq
591  */
592 void emergency_thaw_all(void)
593 {
594 	struct work_struct *work;
595 
596 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
597 	if (work) {
598 		INIT_WORK(work, do_thaw_all);
599 		schedule_work(work);
600 	}
601 }
602 
603 /**
604  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
605  * @mapping: the mapping which wants those buffers written
606  *
607  * Starts I/O against the buffers at mapping->private_list, and waits upon
608  * that I/O.
609  *
610  * Basically, this is a convenience function for fsync().
611  * @mapping is a file or directory which needs those buffers to be written for
612  * a successful fsync().
613  */
614 int sync_mapping_buffers(struct address_space *mapping)
615 {
616 	struct address_space *buffer_mapping = mapping->assoc_mapping;
617 
618 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
619 		return 0;
620 
621 	return fsync_buffers_list(&buffer_mapping->private_lock,
622 					&mapping->private_list);
623 }
624 EXPORT_SYMBOL(sync_mapping_buffers);
625 
626 /*
627  * Called when we've recently written block `bblock', and it is known that
628  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
629  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
630  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
631  */
632 void write_boundary_block(struct block_device *bdev,
633 			sector_t bblock, unsigned blocksize)
634 {
635 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
636 	if (bh) {
637 		if (buffer_dirty(bh))
638 			ll_rw_block(WRITE, 1, &bh);
639 		put_bh(bh);
640 	}
641 }
642 
643 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
644 {
645 	struct address_space *mapping = inode->i_mapping;
646 	struct address_space *buffer_mapping = bh->b_page->mapping;
647 
648 	mark_buffer_dirty(bh);
649 	if (!mapping->assoc_mapping) {
650 		mapping->assoc_mapping = buffer_mapping;
651 	} else {
652 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
653 	}
654 	if (!bh->b_assoc_map) {
655 		spin_lock(&buffer_mapping->private_lock);
656 		list_move_tail(&bh->b_assoc_buffers,
657 				&mapping->private_list);
658 		bh->b_assoc_map = mapping;
659 		spin_unlock(&buffer_mapping->private_lock);
660 	}
661 }
662 EXPORT_SYMBOL(mark_buffer_dirty_inode);
663 
664 /*
665  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
666  * dirty.
667  *
668  * If warn is true, then emit a warning if the page is not uptodate and has
669  * not been truncated.
670  */
671 static void __set_page_dirty(struct page *page,
672 		struct address_space *mapping, int warn)
673 {
674 	spin_lock_irq(&mapping->tree_lock);
675 	if (page->mapping) {	/* Race with truncate? */
676 		WARN_ON_ONCE(warn && !PageUptodate(page));
677 		account_page_dirtied(page, mapping);
678 		radix_tree_tag_set(&mapping->page_tree,
679 				page_index(page), PAGECACHE_TAG_DIRTY);
680 	}
681 	spin_unlock_irq(&mapping->tree_lock);
682 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
683 }
684 
685 /*
686  * Add a page to the dirty page list.
687  *
688  * It is a sad fact of life that this function is called from several places
689  * deeply under spinlocking.  It may not sleep.
690  *
691  * If the page has buffers, the uptodate buffers are set dirty, to preserve
692  * dirty-state coherency between the page and the buffers.  It the page does
693  * not have buffers then when they are later attached they will all be set
694  * dirty.
695  *
696  * The buffers are dirtied before the page is dirtied.  There's a small race
697  * window in which a writepage caller may see the page cleanness but not the
698  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
699  * before the buffers, a concurrent writepage caller could clear the page dirty
700  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
701  * page on the dirty page list.
702  *
703  * We use private_lock to lock against try_to_free_buffers while using the
704  * page's buffer list.  Also use this to protect against clean buffers being
705  * added to the page after it was set dirty.
706  *
707  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
708  * address_space though.
709  */
710 int __set_page_dirty_buffers(struct page *page)
711 {
712 	int newly_dirty;
713 	struct address_space *mapping = page_mapping(page);
714 
715 	if (unlikely(!mapping))
716 		return !TestSetPageDirty(page);
717 
718 	spin_lock(&mapping->private_lock);
719 	if (page_has_buffers(page)) {
720 		struct buffer_head *head = page_buffers(page);
721 		struct buffer_head *bh = head;
722 
723 		do {
724 			set_buffer_dirty(bh);
725 			bh = bh->b_this_page;
726 		} while (bh != head);
727 	}
728 	newly_dirty = !TestSetPageDirty(page);
729 	spin_unlock(&mapping->private_lock);
730 
731 	if (newly_dirty)
732 		__set_page_dirty(page, mapping, 1);
733 	return newly_dirty;
734 }
735 EXPORT_SYMBOL(__set_page_dirty_buffers);
736 
737 /*
738  * Write out and wait upon a list of buffers.
739  *
740  * We have conflicting pressures: we want to make sure that all
741  * initially dirty buffers get waited on, but that any subsequently
742  * dirtied buffers don't.  After all, we don't want fsync to last
743  * forever if somebody is actively writing to the file.
744  *
745  * Do this in two main stages: first we copy dirty buffers to a
746  * temporary inode list, queueing the writes as we go.  Then we clean
747  * up, waiting for those writes to complete.
748  *
749  * During this second stage, any subsequent updates to the file may end
750  * up refiling the buffer on the original inode's dirty list again, so
751  * there is a chance we will end up with a buffer queued for write but
752  * not yet completed on that list.  So, as a final cleanup we go through
753  * the osync code to catch these locked, dirty buffers without requeuing
754  * any newly dirty buffers for write.
755  */
756 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
757 {
758 	struct buffer_head *bh;
759 	struct list_head tmp;
760 	struct address_space *mapping, *prev_mapping = NULL;
761 	int err = 0, err2;
762 
763 	INIT_LIST_HEAD(&tmp);
764 
765 	spin_lock(lock);
766 	while (!list_empty(list)) {
767 		bh = BH_ENTRY(list->next);
768 		mapping = bh->b_assoc_map;
769 		__remove_assoc_queue(bh);
770 		/* Avoid race with mark_buffer_dirty_inode() which does
771 		 * a lockless check and we rely on seeing the dirty bit */
772 		smp_mb();
773 		if (buffer_dirty(bh) || buffer_locked(bh)) {
774 			list_add(&bh->b_assoc_buffers, &tmp);
775 			bh->b_assoc_map = mapping;
776 			if (buffer_dirty(bh)) {
777 				get_bh(bh);
778 				spin_unlock(lock);
779 				/*
780 				 * Ensure any pending I/O completes so that
781 				 * ll_rw_block() actually writes the current
782 				 * contents - it is a noop if I/O is still in
783 				 * flight on potentially older contents.
784 				 */
785 				ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
786 
787 				/*
788 				 * Kick off IO for the previous mapping. Note
789 				 * that we will not run the very last mapping,
790 				 * wait_on_buffer() will do that for us
791 				 * through sync_buffer().
792 				 */
793 				if (prev_mapping && prev_mapping != mapping)
794 					blk_run_address_space(prev_mapping);
795 				prev_mapping = mapping;
796 
797 				brelse(bh);
798 				spin_lock(lock);
799 			}
800 		}
801 	}
802 
803 	while (!list_empty(&tmp)) {
804 		bh = BH_ENTRY(tmp.prev);
805 		get_bh(bh);
806 		mapping = bh->b_assoc_map;
807 		__remove_assoc_queue(bh);
808 		/* Avoid race with mark_buffer_dirty_inode() which does
809 		 * a lockless check and we rely on seeing the dirty bit */
810 		smp_mb();
811 		if (buffer_dirty(bh)) {
812 			list_add(&bh->b_assoc_buffers,
813 				 &mapping->private_list);
814 			bh->b_assoc_map = mapping;
815 		}
816 		spin_unlock(lock);
817 		wait_on_buffer(bh);
818 		if (!buffer_uptodate(bh))
819 			err = -EIO;
820 		brelse(bh);
821 		spin_lock(lock);
822 	}
823 
824 	spin_unlock(lock);
825 	err2 = osync_buffers_list(lock, list);
826 	if (err)
827 		return err;
828 	else
829 		return err2;
830 }
831 
832 /*
833  * Invalidate any and all dirty buffers on a given inode.  We are
834  * probably unmounting the fs, but that doesn't mean we have already
835  * done a sync().  Just drop the buffers from the inode list.
836  *
837  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
838  * assumes that all the buffers are against the blockdev.  Not true
839  * for reiserfs.
840  */
841 void invalidate_inode_buffers(struct inode *inode)
842 {
843 	if (inode_has_buffers(inode)) {
844 		struct address_space *mapping = &inode->i_data;
845 		struct list_head *list = &mapping->private_list;
846 		struct address_space *buffer_mapping = mapping->assoc_mapping;
847 
848 		spin_lock(&buffer_mapping->private_lock);
849 		while (!list_empty(list))
850 			__remove_assoc_queue(BH_ENTRY(list->next));
851 		spin_unlock(&buffer_mapping->private_lock);
852 	}
853 }
854 EXPORT_SYMBOL(invalidate_inode_buffers);
855 
856 /*
857  * Remove any clean buffers from the inode's buffer list.  This is called
858  * when we're trying to free the inode itself.  Those buffers can pin it.
859  *
860  * Returns true if all buffers were removed.
861  */
862 int remove_inode_buffers(struct inode *inode)
863 {
864 	int ret = 1;
865 
866 	if (inode_has_buffers(inode)) {
867 		struct address_space *mapping = &inode->i_data;
868 		struct list_head *list = &mapping->private_list;
869 		struct address_space *buffer_mapping = mapping->assoc_mapping;
870 
871 		spin_lock(&buffer_mapping->private_lock);
872 		while (!list_empty(list)) {
873 			struct buffer_head *bh = BH_ENTRY(list->next);
874 			if (buffer_dirty(bh)) {
875 				ret = 0;
876 				break;
877 			}
878 			__remove_assoc_queue(bh);
879 		}
880 		spin_unlock(&buffer_mapping->private_lock);
881 	}
882 	return ret;
883 }
884 
885 /*
886  * Create the appropriate buffers when given a page for data area and
887  * the size of each buffer.. Use the bh->b_this_page linked list to
888  * follow the buffers created.  Return NULL if unable to create more
889  * buffers.
890  *
891  * The retry flag is used to differentiate async IO (paging, swapping)
892  * which may not fail from ordinary buffer allocations.
893  */
894 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
895 		int retry)
896 {
897 	struct buffer_head *bh, *head;
898 	long offset;
899 
900 try_again:
901 	head = NULL;
902 	offset = PAGE_SIZE;
903 	while ((offset -= size) >= 0) {
904 		bh = alloc_buffer_head(GFP_NOFS);
905 		if (!bh)
906 			goto no_grow;
907 
908 		bh->b_bdev = NULL;
909 		bh->b_this_page = head;
910 		bh->b_blocknr = -1;
911 		head = bh;
912 
913 		bh->b_state = 0;
914 		atomic_set(&bh->b_count, 0);
915 		bh->b_private = NULL;
916 		bh->b_size = size;
917 
918 		/* Link the buffer to its page */
919 		set_bh_page(bh, page, offset);
920 
921 		init_buffer(bh, NULL, NULL);
922 	}
923 	return head;
924 /*
925  * In case anything failed, we just free everything we got.
926  */
927 no_grow:
928 	if (head) {
929 		do {
930 			bh = head;
931 			head = head->b_this_page;
932 			free_buffer_head(bh);
933 		} while (head);
934 	}
935 
936 	/*
937 	 * Return failure for non-async IO requests.  Async IO requests
938 	 * are not allowed to fail, so we have to wait until buffer heads
939 	 * become available.  But we don't want tasks sleeping with
940 	 * partially complete buffers, so all were released above.
941 	 */
942 	if (!retry)
943 		return NULL;
944 
945 	/* We're _really_ low on memory. Now we just
946 	 * wait for old buffer heads to become free due to
947 	 * finishing IO.  Since this is an async request and
948 	 * the reserve list is empty, we're sure there are
949 	 * async buffer heads in use.
950 	 */
951 	free_more_memory();
952 	goto try_again;
953 }
954 EXPORT_SYMBOL_GPL(alloc_page_buffers);
955 
956 static inline void
957 link_dev_buffers(struct page *page, struct buffer_head *head)
958 {
959 	struct buffer_head *bh, *tail;
960 
961 	bh = head;
962 	do {
963 		tail = bh;
964 		bh = bh->b_this_page;
965 	} while (bh);
966 	tail->b_this_page = head;
967 	attach_page_buffers(page, head);
968 }
969 
970 /*
971  * Initialise the state of a blockdev page's buffers.
972  */
973 static void
974 init_page_buffers(struct page *page, struct block_device *bdev,
975 			sector_t block, int size)
976 {
977 	struct buffer_head *head = page_buffers(page);
978 	struct buffer_head *bh = head;
979 	int uptodate = PageUptodate(page);
980 
981 	do {
982 		if (!buffer_mapped(bh)) {
983 			init_buffer(bh, NULL, NULL);
984 			bh->b_bdev = bdev;
985 			bh->b_blocknr = block;
986 			if (uptodate)
987 				set_buffer_uptodate(bh);
988 			set_buffer_mapped(bh);
989 		}
990 		block++;
991 		bh = bh->b_this_page;
992 	} while (bh != head);
993 }
994 
995 /*
996  * Create the page-cache page that contains the requested block.
997  *
998  * This is user purely for blockdev mappings.
999  */
1000 static struct page *
1001 grow_dev_page(struct block_device *bdev, sector_t block,
1002 		pgoff_t index, int size)
1003 {
1004 	struct inode *inode = bdev->bd_inode;
1005 	struct page *page;
1006 	struct buffer_head *bh;
1007 
1008 	page = find_or_create_page(inode->i_mapping, index,
1009 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1010 	if (!page)
1011 		return NULL;
1012 
1013 	BUG_ON(!PageLocked(page));
1014 
1015 	if (page_has_buffers(page)) {
1016 		bh = page_buffers(page);
1017 		if (bh->b_size == size) {
1018 			init_page_buffers(page, bdev, block, size);
1019 			return page;
1020 		}
1021 		if (!try_to_free_buffers(page))
1022 			goto failed;
1023 	}
1024 
1025 	/*
1026 	 * Allocate some buffers for this page
1027 	 */
1028 	bh = alloc_page_buffers(page, size, 0);
1029 	if (!bh)
1030 		goto failed;
1031 
1032 	/*
1033 	 * Link the page to the buffers and initialise them.  Take the
1034 	 * lock to be atomic wrt __find_get_block(), which does not
1035 	 * run under the page lock.
1036 	 */
1037 	spin_lock(&inode->i_mapping->private_lock);
1038 	link_dev_buffers(page, bh);
1039 	init_page_buffers(page, bdev, block, size);
1040 	spin_unlock(&inode->i_mapping->private_lock);
1041 	return page;
1042 
1043 failed:
1044 	BUG();
1045 	unlock_page(page);
1046 	page_cache_release(page);
1047 	return NULL;
1048 }
1049 
1050 /*
1051  * Create buffers for the specified block device block's page.  If
1052  * that page was dirty, the buffers are set dirty also.
1053  */
1054 static int
1055 grow_buffers(struct block_device *bdev, sector_t block, int size)
1056 {
1057 	struct page *page;
1058 	pgoff_t index;
1059 	int sizebits;
1060 
1061 	sizebits = -1;
1062 	do {
1063 		sizebits++;
1064 	} while ((size << sizebits) < PAGE_SIZE);
1065 
1066 	index = block >> sizebits;
1067 
1068 	/*
1069 	 * Check for a block which wants to lie outside our maximum possible
1070 	 * pagecache index.  (this comparison is done using sector_t types).
1071 	 */
1072 	if (unlikely(index != block >> sizebits)) {
1073 		char b[BDEVNAME_SIZE];
1074 
1075 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1076 			"device %s\n",
1077 			__func__, (unsigned long long)block,
1078 			bdevname(bdev, b));
1079 		return -EIO;
1080 	}
1081 	block = index << sizebits;
1082 	/* Create a page with the proper size buffers.. */
1083 	page = grow_dev_page(bdev, block, index, size);
1084 	if (!page)
1085 		return 0;
1086 	unlock_page(page);
1087 	page_cache_release(page);
1088 	return 1;
1089 }
1090 
1091 static struct buffer_head *
1092 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1093 {
1094 	/* Size must be multiple of hard sectorsize */
1095 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1096 			(size < 512 || size > PAGE_SIZE))) {
1097 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1098 					size);
1099 		printk(KERN_ERR "logical block size: %d\n",
1100 					bdev_logical_block_size(bdev));
1101 
1102 		dump_stack();
1103 		return NULL;
1104 	}
1105 
1106 	for (;;) {
1107 		struct buffer_head * bh;
1108 		int ret;
1109 
1110 		bh = __find_get_block(bdev, block, size);
1111 		if (bh)
1112 			return bh;
1113 
1114 		ret = grow_buffers(bdev, block, size);
1115 		if (ret < 0)
1116 			return NULL;
1117 		if (ret == 0)
1118 			free_more_memory();
1119 	}
1120 }
1121 
1122 /*
1123  * The relationship between dirty buffers and dirty pages:
1124  *
1125  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1126  * the page is tagged dirty in its radix tree.
1127  *
1128  * At all times, the dirtiness of the buffers represents the dirtiness of
1129  * subsections of the page.  If the page has buffers, the page dirty bit is
1130  * merely a hint about the true dirty state.
1131  *
1132  * When a page is set dirty in its entirety, all its buffers are marked dirty
1133  * (if the page has buffers).
1134  *
1135  * When a buffer is marked dirty, its page is dirtied, but the page's other
1136  * buffers are not.
1137  *
1138  * Also.  When blockdev buffers are explicitly read with bread(), they
1139  * individually become uptodate.  But their backing page remains not
1140  * uptodate - even if all of its buffers are uptodate.  A subsequent
1141  * block_read_full_page() against that page will discover all the uptodate
1142  * buffers, will set the page uptodate and will perform no I/O.
1143  */
1144 
1145 /**
1146  * mark_buffer_dirty - mark a buffer_head as needing writeout
1147  * @bh: the buffer_head to mark dirty
1148  *
1149  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1150  * backing page dirty, then tag the page as dirty in its address_space's radix
1151  * tree and then attach the address_space's inode to its superblock's dirty
1152  * inode list.
1153  *
1154  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1155  * mapping->tree_lock and the global inode_lock.
1156  */
1157 void mark_buffer_dirty(struct buffer_head *bh)
1158 {
1159 	WARN_ON_ONCE(!buffer_uptodate(bh));
1160 
1161 	/*
1162 	 * Very *carefully* optimize the it-is-already-dirty case.
1163 	 *
1164 	 * Don't let the final "is it dirty" escape to before we
1165 	 * perhaps modified the buffer.
1166 	 */
1167 	if (buffer_dirty(bh)) {
1168 		smp_mb();
1169 		if (buffer_dirty(bh))
1170 			return;
1171 	}
1172 
1173 	if (!test_set_buffer_dirty(bh)) {
1174 		struct page *page = bh->b_page;
1175 		if (!TestSetPageDirty(page)) {
1176 			struct address_space *mapping = page_mapping(page);
1177 			if (mapping)
1178 				__set_page_dirty(page, mapping, 0);
1179 		}
1180 	}
1181 }
1182 EXPORT_SYMBOL(mark_buffer_dirty);
1183 
1184 /*
1185  * Decrement a buffer_head's reference count.  If all buffers against a page
1186  * have zero reference count, are clean and unlocked, and if the page is clean
1187  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189  * a page but it ends up not being freed, and buffers may later be reattached).
1190  */
1191 void __brelse(struct buffer_head * buf)
1192 {
1193 	if (atomic_read(&buf->b_count)) {
1194 		put_bh(buf);
1195 		return;
1196 	}
1197 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198 }
1199 EXPORT_SYMBOL(__brelse);
1200 
1201 /*
1202  * bforget() is like brelse(), except it discards any
1203  * potentially dirty data.
1204  */
1205 void __bforget(struct buffer_head *bh)
1206 {
1207 	clear_buffer_dirty(bh);
1208 	if (bh->b_assoc_map) {
1209 		struct address_space *buffer_mapping = bh->b_page->mapping;
1210 
1211 		spin_lock(&buffer_mapping->private_lock);
1212 		list_del_init(&bh->b_assoc_buffers);
1213 		bh->b_assoc_map = NULL;
1214 		spin_unlock(&buffer_mapping->private_lock);
1215 	}
1216 	__brelse(bh);
1217 }
1218 EXPORT_SYMBOL(__bforget);
1219 
1220 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221 {
1222 	lock_buffer(bh);
1223 	if (buffer_uptodate(bh)) {
1224 		unlock_buffer(bh);
1225 		return bh;
1226 	} else {
1227 		get_bh(bh);
1228 		bh->b_end_io = end_buffer_read_sync;
1229 		submit_bh(READ, bh);
1230 		wait_on_buffer(bh);
1231 		if (buffer_uptodate(bh))
1232 			return bh;
1233 	}
1234 	brelse(bh);
1235 	return NULL;
1236 }
1237 
1238 /*
1239  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1240  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1241  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1242  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1243  * CPU's LRUs at the same time.
1244  *
1245  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246  * sb_find_get_block().
1247  *
1248  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1249  * a local interrupt disable for that.
1250  */
1251 
1252 #define BH_LRU_SIZE	8
1253 
1254 struct bh_lru {
1255 	struct buffer_head *bhs[BH_LRU_SIZE];
1256 };
1257 
1258 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259 
1260 #ifdef CONFIG_SMP
1261 #define bh_lru_lock()	local_irq_disable()
1262 #define bh_lru_unlock()	local_irq_enable()
1263 #else
1264 #define bh_lru_lock()	preempt_disable()
1265 #define bh_lru_unlock()	preempt_enable()
1266 #endif
1267 
1268 static inline void check_irqs_on(void)
1269 {
1270 #ifdef irqs_disabled
1271 	BUG_ON(irqs_disabled());
1272 #endif
1273 }
1274 
1275 /*
1276  * The LRU management algorithm is dopey-but-simple.  Sorry.
1277  */
1278 static void bh_lru_install(struct buffer_head *bh)
1279 {
1280 	struct buffer_head *evictee = NULL;
1281 	struct bh_lru *lru;
1282 
1283 	check_irqs_on();
1284 	bh_lru_lock();
1285 	lru = &__get_cpu_var(bh_lrus);
1286 	if (lru->bhs[0] != bh) {
1287 		struct buffer_head *bhs[BH_LRU_SIZE];
1288 		int in;
1289 		int out = 0;
1290 
1291 		get_bh(bh);
1292 		bhs[out++] = bh;
1293 		for (in = 0; in < BH_LRU_SIZE; in++) {
1294 			struct buffer_head *bh2 = lru->bhs[in];
1295 
1296 			if (bh2 == bh) {
1297 				__brelse(bh2);
1298 			} else {
1299 				if (out >= BH_LRU_SIZE) {
1300 					BUG_ON(evictee != NULL);
1301 					evictee = bh2;
1302 				} else {
1303 					bhs[out++] = bh2;
1304 				}
1305 			}
1306 		}
1307 		while (out < BH_LRU_SIZE)
1308 			bhs[out++] = NULL;
1309 		memcpy(lru->bhs, bhs, sizeof(bhs));
1310 	}
1311 	bh_lru_unlock();
1312 
1313 	if (evictee)
1314 		__brelse(evictee);
1315 }
1316 
1317 /*
1318  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1319  */
1320 static struct buffer_head *
1321 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1322 {
1323 	struct buffer_head *ret = NULL;
1324 	struct bh_lru *lru;
1325 	unsigned int i;
1326 
1327 	check_irqs_on();
1328 	bh_lru_lock();
1329 	lru = &__get_cpu_var(bh_lrus);
1330 	for (i = 0; i < BH_LRU_SIZE; i++) {
1331 		struct buffer_head *bh = lru->bhs[i];
1332 
1333 		if (bh && bh->b_bdev == bdev &&
1334 				bh->b_blocknr == block && bh->b_size == size) {
1335 			if (i) {
1336 				while (i) {
1337 					lru->bhs[i] = lru->bhs[i - 1];
1338 					i--;
1339 				}
1340 				lru->bhs[0] = bh;
1341 			}
1342 			get_bh(bh);
1343 			ret = bh;
1344 			break;
1345 		}
1346 	}
1347 	bh_lru_unlock();
1348 	return ret;
1349 }
1350 
1351 /*
1352  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1353  * it in the LRU and mark it as accessed.  If it is not present then return
1354  * NULL
1355  */
1356 struct buffer_head *
1357 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1358 {
1359 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1360 
1361 	if (bh == NULL) {
1362 		bh = __find_get_block_slow(bdev, block);
1363 		if (bh)
1364 			bh_lru_install(bh);
1365 	}
1366 	if (bh)
1367 		touch_buffer(bh);
1368 	return bh;
1369 }
1370 EXPORT_SYMBOL(__find_get_block);
1371 
1372 /*
1373  * __getblk will locate (and, if necessary, create) the buffer_head
1374  * which corresponds to the passed block_device, block and size. The
1375  * returned buffer has its reference count incremented.
1376  *
1377  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1378  * illegal block number, __getblk() will happily return a buffer_head
1379  * which represents the non-existent block.  Very weird.
1380  *
1381  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1382  * attempt is failing.  FIXME, perhaps?
1383  */
1384 struct buffer_head *
1385 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1386 {
1387 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1388 
1389 	might_sleep();
1390 	if (bh == NULL)
1391 		bh = __getblk_slow(bdev, block, size);
1392 	return bh;
1393 }
1394 EXPORT_SYMBOL(__getblk);
1395 
1396 /*
1397  * Do async read-ahead on a buffer..
1398  */
1399 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1400 {
1401 	struct buffer_head *bh = __getblk(bdev, block, size);
1402 	if (likely(bh)) {
1403 		ll_rw_block(READA, 1, &bh);
1404 		brelse(bh);
1405 	}
1406 }
1407 EXPORT_SYMBOL(__breadahead);
1408 
1409 /**
1410  *  __bread() - reads a specified block and returns the bh
1411  *  @bdev: the block_device to read from
1412  *  @block: number of block
1413  *  @size: size (in bytes) to read
1414  *
1415  *  Reads a specified block, and returns buffer head that contains it.
1416  *  It returns NULL if the block was unreadable.
1417  */
1418 struct buffer_head *
1419 __bread(struct block_device *bdev, sector_t block, unsigned size)
1420 {
1421 	struct buffer_head *bh = __getblk(bdev, block, size);
1422 
1423 	if (likely(bh) && !buffer_uptodate(bh))
1424 		bh = __bread_slow(bh);
1425 	return bh;
1426 }
1427 EXPORT_SYMBOL(__bread);
1428 
1429 /*
1430  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431  * This doesn't race because it runs in each cpu either in irq
1432  * or with preempt disabled.
1433  */
1434 static void invalidate_bh_lru(void *arg)
1435 {
1436 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1437 	int i;
1438 
1439 	for (i = 0; i < BH_LRU_SIZE; i++) {
1440 		brelse(b->bhs[i]);
1441 		b->bhs[i] = NULL;
1442 	}
1443 	put_cpu_var(bh_lrus);
1444 }
1445 
1446 void invalidate_bh_lrus(void)
1447 {
1448 	on_each_cpu(invalidate_bh_lru, NULL, 1);
1449 }
1450 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1451 
1452 void set_bh_page(struct buffer_head *bh,
1453 		struct page *page, unsigned long offset)
1454 {
1455 	bh->b_page = page;
1456 	BUG_ON(offset >= PAGE_SIZE);
1457 	if (PageHighMem(page))
1458 		/*
1459 		 * This catches illegal uses and preserves the offset:
1460 		 */
1461 		bh->b_data = (char *)(0 + offset);
1462 	else
1463 		bh->b_data = page_address(page) + offset;
1464 }
1465 EXPORT_SYMBOL(set_bh_page);
1466 
1467 /*
1468  * Called when truncating a buffer on a page completely.
1469  */
1470 static void discard_buffer(struct buffer_head * bh)
1471 {
1472 	lock_buffer(bh);
1473 	clear_buffer_dirty(bh);
1474 	bh->b_bdev = NULL;
1475 	clear_buffer_mapped(bh);
1476 	clear_buffer_req(bh);
1477 	clear_buffer_new(bh);
1478 	clear_buffer_delay(bh);
1479 	clear_buffer_unwritten(bh);
1480 	unlock_buffer(bh);
1481 }
1482 
1483 /**
1484  * block_invalidatepage - invalidate part of all of a buffer-backed page
1485  *
1486  * @page: the page which is affected
1487  * @offset: the index of the truncation point
1488  *
1489  * block_invalidatepage() is called when all or part of the page has become
1490  * invalidatedby a truncate operation.
1491  *
1492  * block_invalidatepage() does not have to release all buffers, but it must
1493  * ensure that no dirty buffer is left outside @offset and that no I/O
1494  * is underway against any of the blocks which are outside the truncation
1495  * point.  Because the caller is about to free (and possibly reuse) those
1496  * blocks on-disk.
1497  */
1498 void block_invalidatepage(struct page *page, unsigned long offset)
1499 {
1500 	struct buffer_head *head, *bh, *next;
1501 	unsigned int curr_off = 0;
1502 
1503 	BUG_ON(!PageLocked(page));
1504 	if (!page_has_buffers(page))
1505 		goto out;
1506 
1507 	head = page_buffers(page);
1508 	bh = head;
1509 	do {
1510 		unsigned int next_off = curr_off + bh->b_size;
1511 		next = bh->b_this_page;
1512 
1513 		/*
1514 		 * is this block fully invalidated?
1515 		 */
1516 		if (offset <= curr_off)
1517 			discard_buffer(bh);
1518 		curr_off = next_off;
1519 		bh = next;
1520 	} while (bh != head);
1521 
1522 	/*
1523 	 * We release buffers only if the entire page is being invalidated.
1524 	 * The get_block cached value has been unconditionally invalidated,
1525 	 * so real IO is not possible anymore.
1526 	 */
1527 	if (offset == 0)
1528 		try_to_release_page(page, 0);
1529 out:
1530 	return;
1531 }
1532 EXPORT_SYMBOL(block_invalidatepage);
1533 
1534 /*
1535  * We attach and possibly dirty the buffers atomically wrt
1536  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1537  * is already excluded via the page lock.
1538  */
1539 void create_empty_buffers(struct page *page,
1540 			unsigned long blocksize, unsigned long b_state)
1541 {
1542 	struct buffer_head *bh, *head, *tail;
1543 
1544 	head = alloc_page_buffers(page, blocksize, 1);
1545 	bh = head;
1546 	do {
1547 		bh->b_state |= b_state;
1548 		tail = bh;
1549 		bh = bh->b_this_page;
1550 	} while (bh);
1551 	tail->b_this_page = head;
1552 
1553 	spin_lock(&page->mapping->private_lock);
1554 	if (PageUptodate(page) || PageDirty(page)) {
1555 		bh = head;
1556 		do {
1557 			if (PageDirty(page))
1558 				set_buffer_dirty(bh);
1559 			if (PageUptodate(page))
1560 				set_buffer_uptodate(bh);
1561 			bh = bh->b_this_page;
1562 		} while (bh != head);
1563 	}
1564 	attach_page_buffers(page, head);
1565 	spin_unlock(&page->mapping->private_lock);
1566 }
1567 EXPORT_SYMBOL(create_empty_buffers);
1568 
1569 /*
1570  * We are taking a block for data and we don't want any output from any
1571  * buffer-cache aliases starting from return from that function and
1572  * until the moment when something will explicitly mark the buffer
1573  * dirty (hopefully that will not happen until we will free that block ;-)
1574  * We don't even need to mark it not-uptodate - nobody can expect
1575  * anything from a newly allocated buffer anyway. We used to used
1576  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1577  * don't want to mark the alias unmapped, for example - it would confuse
1578  * anyone who might pick it with bread() afterwards...
1579  *
1580  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1581  * be writeout I/O going on against recently-freed buffers.  We don't
1582  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1583  * only if we really need to.  That happens here.
1584  */
1585 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1586 {
1587 	struct buffer_head *old_bh;
1588 
1589 	might_sleep();
1590 
1591 	old_bh = __find_get_block_slow(bdev, block);
1592 	if (old_bh) {
1593 		clear_buffer_dirty(old_bh);
1594 		wait_on_buffer(old_bh);
1595 		clear_buffer_req(old_bh);
1596 		__brelse(old_bh);
1597 	}
1598 }
1599 EXPORT_SYMBOL(unmap_underlying_metadata);
1600 
1601 /*
1602  * NOTE! All mapped/uptodate combinations are valid:
1603  *
1604  *	Mapped	Uptodate	Meaning
1605  *
1606  *	No	No		"unknown" - must do get_block()
1607  *	No	Yes		"hole" - zero-filled
1608  *	Yes	No		"allocated" - allocated on disk, not read in
1609  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1610  *
1611  * "Dirty" is valid only with the last case (mapped+uptodate).
1612  */
1613 
1614 /*
1615  * While block_write_full_page is writing back the dirty buffers under
1616  * the page lock, whoever dirtied the buffers may decide to clean them
1617  * again at any time.  We handle that by only looking at the buffer
1618  * state inside lock_buffer().
1619  *
1620  * If block_write_full_page() is called for regular writeback
1621  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1622  * locked buffer.   This only can happen if someone has written the buffer
1623  * directly, with submit_bh().  At the address_space level PageWriteback
1624  * prevents this contention from occurring.
1625  *
1626  * If block_write_full_page() is called with wbc->sync_mode ==
1627  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1628  * causes the writes to be flagged as synchronous writes, but the
1629  * block device queue will NOT be unplugged, since usually many pages
1630  * will be pushed to the out before the higher-level caller actually
1631  * waits for the writes to be completed.  The various wait functions,
1632  * such as wait_on_writeback_range() will ultimately call sync_page()
1633  * which will ultimately call blk_run_backing_dev(), which will end up
1634  * unplugging the device queue.
1635  */
1636 static int __block_write_full_page(struct inode *inode, struct page *page,
1637 			get_block_t *get_block, struct writeback_control *wbc,
1638 			bh_end_io_t *handler)
1639 {
1640 	int err;
1641 	sector_t block;
1642 	sector_t last_block;
1643 	struct buffer_head *bh, *head;
1644 	const unsigned blocksize = 1 << inode->i_blkbits;
1645 	int nr_underway = 0;
1646 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1647 			WRITE_SYNC_PLUG : WRITE);
1648 
1649 	BUG_ON(!PageLocked(page));
1650 
1651 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1652 
1653 	if (!page_has_buffers(page)) {
1654 		create_empty_buffers(page, blocksize,
1655 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1656 	}
1657 
1658 	/*
1659 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1660 	 * here, and the (potentially unmapped) buffers may become dirty at
1661 	 * any time.  If a buffer becomes dirty here after we've inspected it
1662 	 * then we just miss that fact, and the page stays dirty.
1663 	 *
1664 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1665 	 * handle that here by just cleaning them.
1666 	 */
1667 
1668 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1669 	head = page_buffers(page);
1670 	bh = head;
1671 
1672 	/*
1673 	 * Get all the dirty buffers mapped to disk addresses and
1674 	 * handle any aliases from the underlying blockdev's mapping.
1675 	 */
1676 	do {
1677 		if (block > last_block) {
1678 			/*
1679 			 * mapped buffers outside i_size will occur, because
1680 			 * this page can be outside i_size when there is a
1681 			 * truncate in progress.
1682 			 */
1683 			/*
1684 			 * The buffer was zeroed by block_write_full_page()
1685 			 */
1686 			clear_buffer_dirty(bh);
1687 			set_buffer_uptodate(bh);
1688 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1689 			   buffer_dirty(bh)) {
1690 			WARN_ON(bh->b_size != blocksize);
1691 			err = get_block(inode, block, bh, 1);
1692 			if (err)
1693 				goto recover;
1694 			clear_buffer_delay(bh);
1695 			if (buffer_new(bh)) {
1696 				/* blockdev mappings never come here */
1697 				clear_buffer_new(bh);
1698 				unmap_underlying_metadata(bh->b_bdev,
1699 							bh->b_blocknr);
1700 			}
1701 		}
1702 		bh = bh->b_this_page;
1703 		block++;
1704 	} while (bh != head);
1705 
1706 	do {
1707 		if (!buffer_mapped(bh))
1708 			continue;
1709 		/*
1710 		 * If it's a fully non-blocking write attempt and we cannot
1711 		 * lock the buffer then redirty the page.  Note that this can
1712 		 * potentially cause a busy-wait loop from pdflush and kswapd
1713 		 * activity, but those code paths have their own higher-level
1714 		 * throttling.
1715 		 */
1716 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1717 			lock_buffer(bh);
1718 		} else if (!trylock_buffer(bh)) {
1719 			redirty_page_for_writepage(wbc, page);
1720 			continue;
1721 		}
1722 		if (test_clear_buffer_dirty(bh)) {
1723 			mark_buffer_async_write_endio(bh, handler);
1724 		} else {
1725 			unlock_buffer(bh);
1726 		}
1727 	} while ((bh = bh->b_this_page) != head);
1728 
1729 	/*
1730 	 * The page and its buffers are protected by PageWriteback(), so we can
1731 	 * drop the bh refcounts early.
1732 	 */
1733 	BUG_ON(PageWriteback(page));
1734 	set_page_writeback(page);
1735 
1736 	do {
1737 		struct buffer_head *next = bh->b_this_page;
1738 		if (buffer_async_write(bh)) {
1739 			submit_bh(write_op, bh);
1740 			nr_underway++;
1741 		}
1742 		bh = next;
1743 	} while (bh != head);
1744 	unlock_page(page);
1745 
1746 	err = 0;
1747 done:
1748 	if (nr_underway == 0) {
1749 		/*
1750 		 * The page was marked dirty, but the buffers were
1751 		 * clean.  Someone wrote them back by hand with
1752 		 * ll_rw_block/submit_bh.  A rare case.
1753 		 */
1754 		end_page_writeback(page);
1755 
1756 		/*
1757 		 * The page and buffer_heads can be released at any time from
1758 		 * here on.
1759 		 */
1760 	}
1761 	return err;
1762 
1763 recover:
1764 	/*
1765 	 * ENOSPC, or some other error.  We may already have added some
1766 	 * blocks to the file, so we need to write these out to avoid
1767 	 * exposing stale data.
1768 	 * The page is currently locked and not marked for writeback
1769 	 */
1770 	bh = head;
1771 	/* Recovery: lock and submit the mapped buffers */
1772 	do {
1773 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1774 		    !buffer_delay(bh)) {
1775 			lock_buffer(bh);
1776 			mark_buffer_async_write_endio(bh, handler);
1777 		} else {
1778 			/*
1779 			 * The buffer may have been set dirty during
1780 			 * attachment to a dirty page.
1781 			 */
1782 			clear_buffer_dirty(bh);
1783 		}
1784 	} while ((bh = bh->b_this_page) != head);
1785 	SetPageError(page);
1786 	BUG_ON(PageWriteback(page));
1787 	mapping_set_error(page->mapping, err);
1788 	set_page_writeback(page);
1789 	do {
1790 		struct buffer_head *next = bh->b_this_page;
1791 		if (buffer_async_write(bh)) {
1792 			clear_buffer_dirty(bh);
1793 			submit_bh(write_op, bh);
1794 			nr_underway++;
1795 		}
1796 		bh = next;
1797 	} while (bh != head);
1798 	unlock_page(page);
1799 	goto done;
1800 }
1801 
1802 /*
1803  * If a page has any new buffers, zero them out here, and mark them uptodate
1804  * and dirty so they'll be written out (in order to prevent uninitialised
1805  * block data from leaking). And clear the new bit.
1806  */
1807 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1808 {
1809 	unsigned int block_start, block_end;
1810 	struct buffer_head *head, *bh;
1811 
1812 	BUG_ON(!PageLocked(page));
1813 	if (!page_has_buffers(page))
1814 		return;
1815 
1816 	bh = head = page_buffers(page);
1817 	block_start = 0;
1818 	do {
1819 		block_end = block_start + bh->b_size;
1820 
1821 		if (buffer_new(bh)) {
1822 			if (block_end > from && block_start < to) {
1823 				if (!PageUptodate(page)) {
1824 					unsigned start, size;
1825 
1826 					start = max(from, block_start);
1827 					size = min(to, block_end) - start;
1828 
1829 					zero_user(page, start, size);
1830 					set_buffer_uptodate(bh);
1831 				}
1832 
1833 				clear_buffer_new(bh);
1834 				mark_buffer_dirty(bh);
1835 			}
1836 		}
1837 
1838 		block_start = block_end;
1839 		bh = bh->b_this_page;
1840 	} while (bh != head);
1841 }
1842 EXPORT_SYMBOL(page_zero_new_buffers);
1843 
1844 static int __block_prepare_write(struct inode *inode, struct page *page,
1845 		unsigned from, unsigned to, get_block_t *get_block)
1846 {
1847 	unsigned block_start, block_end;
1848 	sector_t block;
1849 	int err = 0;
1850 	unsigned blocksize, bbits;
1851 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1852 
1853 	BUG_ON(!PageLocked(page));
1854 	BUG_ON(from > PAGE_CACHE_SIZE);
1855 	BUG_ON(to > PAGE_CACHE_SIZE);
1856 	BUG_ON(from > to);
1857 
1858 	blocksize = 1 << inode->i_blkbits;
1859 	if (!page_has_buffers(page))
1860 		create_empty_buffers(page, blocksize, 0);
1861 	head = page_buffers(page);
1862 
1863 	bbits = inode->i_blkbits;
1864 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1865 
1866 	for(bh = head, block_start = 0; bh != head || !block_start;
1867 	    block++, block_start=block_end, bh = bh->b_this_page) {
1868 		block_end = block_start + blocksize;
1869 		if (block_end <= from || block_start >= to) {
1870 			if (PageUptodate(page)) {
1871 				if (!buffer_uptodate(bh))
1872 					set_buffer_uptodate(bh);
1873 			}
1874 			continue;
1875 		}
1876 		if (buffer_new(bh))
1877 			clear_buffer_new(bh);
1878 		if (!buffer_mapped(bh)) {
1879 			WARN_ON(bh->b_size != blocksize);
1880 			err = get_block(inode, block, bh, 1);
1881 			if (err)
1882 				break;
1883 			if (buffer_new(bh)) {
1884 				unmap_underlying_metadata(bh->b_bdev,
1885 							bh->b_blocknr);
1886 				if (PageUptodate(page)) {
1887 					clear_buffer_new(bh);
1888 					set_buffer_uptodate(bh);
1889 					mark_buffer_dirty(bh);
1890 					continue;
1891 				}
1892 				if (block_end > to || block_start < from)
1893 					zero_user_segments(page,
1894 						to, block_end,
1895 						block_start, from);
1896 				continue;
1897 			}
1898 		}
1899 		if (PageUptodate(page)) {
1900 			if (!buffer_uptodate(bh))
1901 				set_buffer_uptodate(bh);
1902 			continue;
1903 		}
1904 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1905 		    !buffer_unwritten(bh) &&
1906 		     (block_start < from || block_end > to)) {
1907 			ll_rw_block(READ, 1, &bh);
1908 			*wait_bh++=bh;
1909 		}
1910 	}
1911 	/*
1912 	 * If we issued read requests - let them complete.
1913 	 */
1914 	while(wait_bh > wait) {
1915 		wait_on_buffer(*--wait_bh);
1916 		if (!buffer_uptodate(*wait_bh))
1917 			err = -EIO;
1918 	}
1919 	if (unlikely(err))
1920 		page_zero_new_buffers(page, from, to);
1921 	return err;
1922 }
1923 
1924 static int __block_commit_write(struct inode *inode, struct page *page,
1925 		unsigned from, unsigned to)
1926 {
1927 	unsigned block_start, block_end;
1928 	int partial = 0;
1929 	unsigned blocksize;
1930 	struct buffer_head *bh, *head;
1931 
1932 	blocksize = 1 << inode->i_blkbits;
1933 
1934 	for(bh = head = page_buffers(page), block_start = 0;
1935 	    bh != head || !block_start;
1936 	    block_start=block_end, bh = bh->b_this_page) {
1937 		block_end = block_start + blocksize;
1938 		if (block_end <= from || block_start >= to) {
1939 			if (!buffer_uptodate(bh))
1940 				partial = 1;
1941 		} else {
1942 			set_buffer_uptodate(bh);
1943 			mark_buffer_dirty(bh);
1944 		}
1945 		clear_buffer_new(bh);
1946 	}
1947 
1948 	/*
1949 	 * If this is a partial write which happened to make all buffers
1950 	 * uptodate then we can optimize away a bogus readpage() for
1951 	 * the next read(). Here we 'discover' whether the page went
1952 	 * uptodate as a result of this (potentially partial) write.
1953 	 */
1954 	if (!partial)
1955 		SetPageUptodate(page);
1956 	return 0;
1957 }
1958 
1959 /*
1960  * block_write_begin takes care of the basic task of block allocation and
1961  * bringing partial write blocks uptodate first.
1962  *
1963  * If *pagep is not NULL, then block_write_begin uses the locked page
1964  * at *pagep rather than allocating its own. In this case, the page will
1965  * not be unlocked or deallocated on failure.
1966  */
1967 int block_write_begin(struct file *file, struct address_space *mapping,
1968 			loff_t pos, unsigned len, unsigned flags,
1969 			struct page **pagep, void **fsdata,
1970 			get_block_t *get_block)
1971 {
1972 	struct inode *inode = mapping->host;
1973 	int status = 0;
1974 	struct page *page;
1975 	pgoff_t index;
1976 	unsigned start, end;
1977 	int ownpage = 0;
1978 
1979 	index = pos >> PAGE_CACHE_SHIFT;
1980 	start = pos & (PAGE_CACHE_SIZE - 1);
1981 	end = start + len;
1982 
1983 	page = *pagep;
1984 	if (page == NULL) {
1985 		ownpage = 1;
1986 		page = grab_cache_page_write_begin(mapping, index, flags);
1987 		if (!page) {
1988 			status = -ENOMEM;
1989 			goto out;
1990 		}
1991 		*pagep = page;
1992 	} else
1993 		BUG_ON(!PageLocked(page));
1994 
1995 	status = __block_prepare_write(inode, page, start, end, get_block);
1996 	if (unlikely(status)) {
1997 		ClearPageUptodate(page);
1998 
1999 		if (ownpage) {
2000 			unlock_page(page);
2001 			page_cache_release(page);
2002 			*pagep = NULL;
2003 
2004 			/*
2005 			 * prepare_write() may have instantiated a few blocks
2006 			 * outside i_size.  Trim these off again. Don't need
2007 			 * i_size_read because we hold i_mutex.
2008 			 */
2009 			if (pos + len > inode->i_size)
2010 				vmtruncate(inode, inode->i_size);
2011 		}
2012 	}
2013 
2014 out:
2015 	return status;
2016 }
2017 EXPORT_SYMBOL(block_write_begin);
2018 
2019 int block_write_end(struct file *file, struct address_space *mapping,
2020 			loff_t pos, unsigned len, unsigned copied,
2021 			struct page *page, void *fsdata)
2022 {
2023 	struct inode *inode = mapping->host;
2024 	unsigned start;
2025 
2026 	start = pos & (PAGE_CACHE_SIZE - 1);
2027 
2028 	if (unlikely(copied < len)) {
2029 		/*
2030 		 * The buffers that were written will now be uptodate, so we
2031 		 * don't have to worry about a readpage reading them and
2032 		 * overwriting a partial write. However if we have encountered
2033 		 * a short write and only partially written into a buffer, it
2034 		 * will not be marked uptodate, so a readpage might come in and
2035 		 * destroy our partial write.
2036 		 *
2037 		 * Do the simplest thing, and just treat any short write to a
2038 		 * non uptodate page as a zero-length write, and force the
2039 		 * caller to redo the whole thing.
2040 		 */
2041 		if (!PageUptodate(page))
2042 			copied = 0;
2043 
2044 		page_zero_new_buffers(page, start+copied, start+len);
2045 	}
2046 	flush_dcache_page(page);
2047 
2048 	/* This could be a short (even 0-length) commit */
2049 	__block_commit_write(inode, page, start, start+copied);
2050 
2051 	return copied;
2052 }
2053 EXPORT_SYMBOL(block_write_end);
2054 
2055 int generic_write_end(struct file *file, struct address_space *mapping,
2056 			loff_t pos, unsigned len, unsigned copied,
2057 			struct page *page, void *fsdata)
2058 {
2059 	struct inode *inode = mapping->host;
2060 	int i_size_changed = 0;
2061 
2062 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2063 
2064 	/*
2065 	 * No need to use i_size_read() here, the i_size
2066 	 * cannot change under us because we hold i_mutex.
2067 	 *
2068 	 * But it's important to update i_size while still holding page lock:
2069 	 * page writeout could otherwise come in and zero beyond i_size.
2070 	 */
2071 	if (pos+copied > inode->i_size) {
2072 		i_size_write(inode, pos+copied);
2073 		i_size_changed = 1;
2074 	}
2075 
2076 	unlock_page(page);
2077 	page_cache_release(page);
2078 
2079 	/*
2080 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2081 	 * makes the holding time of page lock longer. Second, it forces lock
2082 	 * ordering of page lock and transaction start for journaling
2083 	 * filesystems.
2084 	 */
2085 	if (i_size_changed)
2086 		mark_inode_dirty(inode);
2087 
2088 	return copied;
2089 }
2090 EXPORT_SYMBOL(generic_write_end);
2091 
2092 /*
2093  * block_is_partially_uptodate checks whether buffers within a page are
2094  * uptodate or not.
2095  *
2096  * Returns true if all buffers which correspond to a file portion
2097  * we want to read are uptodate.
2098  */
2099 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2100 					unsigned long from)
2101 {
2102 	struct inode *inode = page->mapping->host;
2103 	unsigned block_start, block_end, blocksize;
2104 	unsigned to;
2105 	struct buffer_head *bh, *head;
2106 	int ret = 1;
2107 
2108 	if (!page_has_buffers(page))
2109 		return 0;
2110 
2111 	blocksize = 1 << inode->i_blkbits;
2112 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2113 	to = from + to;
2114 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2115 		return 0;
2116 
2117 	head = page_buffers(page);
2118 	bh = head;
2119 	block_start = 0;
2120 	do {
2121 		block_end = block_start + blocksize;
2122 		if (block_end > from && block_start < to) {
2123 			if (!buffer_uptodate(bh)) {
2124 				ret = 0;
2125 				break;
2126 			}
2127 			if (block_end >= to)
2128 				break;
2129 		}
2130 		block_start = block_end;
2131 		bh = bh->b_this_page;
2132 	} while (bh != head);
2133 
2134 	return ret;
2135 }
2136 EXPORT_SYMBOL(block_is_partially_uptodate);
2137 
2138 /*
2139  * Generic "read page" function for block devices that have the normal
2140  * get_block functionality. This is most of the block device filesystems.
2141  * Reads the page asynchronously --- the unlock_buffer() and
2142  * set/clear_buffer_uptodate() functions propagate buffer state into the
2143  * page struct once IO has completed.
2144  */
2145 int block_read_full_page(struct page *page, get_block_t *get_block)
2146 {
2147 	struct inode *inode = page->mapping->host;
2148 	sector_t iblock, lblock;
2149 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2150 	unsigned int blocksize;
2151 	int nr, i;
2152 	int fully_mapped = 1;
2153 
2154 	BUG_ON(!PageLocked(page));
2155 	blocksize = 1 << inode->i_blkbits;
2156 	if (!page_has_buffers(page))
2157 		create_empty_buffers(page, blocksize, 0);
2158 	head = page_buffers(page);
2159 
2160 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2161 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2162 	bh = head;
2163 	nr = 0;
2164 	i = 0;
2165 
2166 	do {
2167 		if (buffer_uptodate(bh))
2168 			continue;
2169 
2170 		if (!buffer_mapped(bh)) {
2171 			int err = 0;
2172 
2173 			fully_mapped = 0;
2174 			if (iblock < lblock) {
2175 				WARN_ON(bh->b_size != blocksize);
2176 				err = get_block(inode, iblock, bh, 0);
2177 				if (err)
2178 					SetPageError(page);
2179 			}
2180 			if (!buffer_mapped(bh)) {
2181 				zero_user(page, i * blocksize, blocksize);
2182 				if (!err)
2183 					set_buffer_uptodate(bh);
2184 				continue;
2185 			}
2186 			/*
2187 			 * get_block() might have updated the buffer
2188 			 * synchronously
2189 			 */
2190 			if (buffer_uptodate(bh))
2191 				continue;
2192 		}
2193 		arr[nr++] = bh;
2194 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2195 
2196 	if (fully_mapped)
2197 		SetPageMappedToDisk(page);
2198 
2199 	if (!nr) {
2200 		/*
2201 		 * All buffers are uptodate - we can set the page uptodate
2202 		 * as well. But not if get_block() returned an error.
2203 		 */
2204 		if (!PageError(page))
2205 			SetPageUptodate(page);
2206 		unlock_page(page);
2207 		return 0;
2208 	}
2209 
2210 	/* Stage two: lock the buffers */
2211 	for (i = 0; i < nr; i++) {
2212 		bh = arr[i];
2213 		lock_buffer(bh);
2214 		mark_buffer_async_read(bh);
2215 	}
2216 
2217 	/*
2218 	 * Stage 3: start the IO.  Check for uptodateness
2219 	 * inside the buffer lock in case another process reading
2220 	 * the underlying blockdev brought it uptodate (the sct fix).
2221 	 */
2222 	for (i = 0; i < nr; i++) {
2223 		bh = arr[i];
2224 		if (buffer_uptodate(bh))
2225 			end_buffer_async_read(bh, 1);
2226 		else
2227 			submit_bh(READ, bh);
2228 	}
2229 	return 0;
2230 }
2231 EXPORT_SYMBOL(block_read_full_page);
2232 
2233 /* utility function for filesystems that need to do work on expanding
2234  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2235  * deal with the hole.
2236  */
2237 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2238 {
2239 	struct address_space *mapping = inode->i_mapping;
2240 	struct page *page;
2241 	void *fsdata;
2242 	unsigned long limit;
2243 	int err;
2244 
2245 	err = -EFBIG;
2246         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2247 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2248 		send_sig(SIGXFSZ, current, 0);
2249 		goto out;
2250 	}
2251 	if (size > inode->i_sb->s_maxbytes)
2252 		goto out;
2253 
2254 	err = pagecache_write_begin(NULL, mapping, size, 0,
2255 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2256 				&page, &fsdata);
2257 	if (err)
2258 		goto out;
2259 
2260 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2261 	BUG_ON(err > 0);
2262 
2263 out:
2264 	return err;
2265 }
2266 EXPORT_SYMBOL(generic_cont_expand_simple);
2267 
2268 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2269 			    loff_t pos, loff_t *bytes)
2270 {
2271 	struct inode *inode = mapping->host;
2272 	unsigned blocksize = 1 << inode->i_blkbits;
2273 	struct page *page;
2274 	void *fsdata;
2275 	pgoff_t index, curidx;
2276 	loff_t curpos;
2277 	unsigned zerofrom, offset, len;
2278 	int err = 0;
2279 
2280 	index = pos >> PAGE_CACHE_SHIFT;
2281 	offset = pos & ~PAGE_CACHE_MASK;
2282 
2283 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2284 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2285 		if (zerofrom & (blocksize-1)) {
2286 			*bytes |= (blocksize-1);
2287 			(*bytes)++;
2288 		}
2289 		len = PAGE_CACHE_SIZE - zerofrom;
2290 
2291 		err = pagecache_write_begin(file, mapping, curpos, len,
2292 						AOP_FLAG_UNINTERRUPTIBLE,
2293 						&page, &fsdata);
2294 		if (err)
2295 			goto out;
2296 		zero_user(page, zerofrom, len);
2297 		err = pagecache_write_end(file, mapping, curpos, len, len,
2298 						page, fsdata);
2299 		if (err < 0)
2300 			goto out;
2301 		BUG_ON(err != len);
2302 		err = 0;
2303 
2304 		balance_dirty_pages_ratelimited(mapping);
2305 	}
2306 
2307 	/* page covers the boundary, find the boundary offset */
2308 	if (index == curidx) {
2309 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2310 		/* if we will expand the thing last block will be filled */
2311 		if (offset <= zerofrom) {
2312 			goto out;
2313 		}
2314 		if (zerofrom & (blocksize-1)) {
2315 			*bytes |= (blocksize-1);
2316 			(*bytes)++;
2317 		}
2318 		len = offset - zerofrom;
2319 
2320 		err = pagecache_write_begin(file, mapping, curpos, len,
2321 						AOP_FLAG_UNINTERRUPTIBLE,
2322 						&page, &fsdata);
2323 		if (err)
2324 			goto out;
2325 		zero_user(page, zerofrom, len);
2326 		err = pagecache_write_end(file, mapping, curpos, len, len,
2327 						page, fsdata);
2328 		if (err < 0)
2329 			goto out;
2330 		BUG_ON(err != len);
2331 		err = 0;
2332 	}
2333 out:
2334 	return err;
2335 }
2336 
2337 /*
2338  * For moronic filesystems that do not allow holes in file.
2339  * We may have to extend the file.
2340  */
2341 int cont_write_begin(struct file *file, struct address_space *mapping,
2342 			loff_t pos, unsigned len, unsigned flags,
2343 			struct page **pagep, void **fsdata,
2344 			get_block_t *get_block, loff_t *bytes)
2345 {
2346 	struct inode *inode = mapping->host;
2347 	unsigned blocksize = 1 << inode->i_blkbits;
2348 	unsigned zerofrom;
2349 	int err;
2350 
2351 	err = cont_expand_zero(file, mapping, pos, bytes);
2352 	if (err)
2353 		goto out;
2354 
2355 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2356 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2357 		*bytes |= (blocksize-1);
2358 		(*bytes)++;
2359 	}
2360 
2361 	*pagep = NULL;
2362 	err = block_write_begin(file, mapping, pos, len,
2363 				flags, pagep, fsdata, get_block);
2364 out:
2365 	return err;
2366 }
2367 EXPORT_SYMBOL(cont_write_begin);
2368 
2369 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2370 			get_block_t *get_block)
2371 {
2372 	struct inode *inode = page->mapping->host;
2373 	int err = __block_prepare_write(inode, page, from, to, get_block);
2374 	if (err)
2375 		ClearPageUptodate(page);
2376 	return err;
2377 }
2378 EXPORT_SYMBOL(block_prepare_write);
2379 
2380 int block_commit_write(struct page *page, unsigned from, unsigned to)
2381 {
2382 	struct inode *inode = page->mapping->host;
2383 	__block_commit_write(inode,page,from,to);
2384 	return 0;
2385 }
2386 EXPORT_SYMBOL(block_commit_write);
2387 
2388 /*
2389  * block_page_mkwrite() is not allowed to change the file size as it gets
2390  * called from a page fault handler when a page is first dirtied. Hence we must
2391  * be careful to check for EOF conditions here. We set the page up correctly
2392  * for a written page which means we get ENOSPC checking when writing into
2393  * holes and correct delalloc and unwritten extent mapping on filesystems that
2394  * support these features.
2395  *
2396  * We are not allowed to take the i_mutex here so we have to play games to
2397  * protect against truncate races as the page could now be beyond EOF.  Because
2398  * vmtruncate() writes the inode size before removing pages, once we have the
2399  * page lock we can determine safely if the page is beyond EOF. If it is not
2400  * beyond EOF, then the page is guaranteed safe against truncation until we
2401  * unlock the page.
2402  */
2403 int
2404 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2405 		   get_block_t get_block)
2406 {
2407 	struct page *page = vmf->page;
2408 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2409 	unsigned long end;
2410 	loff_t size;
2411 	int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2412 
2413 	lock_page(page);
2414 	size = i_size_read(inode);
2415 	if ((page->mapping != inode->i_mapping) ||
2416 	    (page_offset(page) > size)) {
2417 		/* page got truncated out from underneath us */
2418 		unlock_page(page);
2419 		goto out;
2420 	}
2421 
2422 	/* page is wholly or partially inside EOF */
2423 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2424 		end = size & ~PAGE_CACHE_MASK;
2425 	else
2426 		end = PAGE_CACHE_SIZE;
2427 
2428 	ret = block_prepare_write(page, 0, end, get_block);
2429 	if (!ret)
2430 		ret = block_commit_write(page, 0, end);
2431 
2432 	if (unlikely(ret)) {
2433 		unlock_page(page);
2434 		if (ret == -ENOMEM)
2435 			ret = VM_FAULT_OOM;
2436 		else /* -ENOSPC, -EIO, etc */
2437 			ret = VM_FAULT_SIGBUS;
2438 	} else
2439 		ret = VM_FAULT_LOCKED;
2440 
2441 out:
2442 	return ret;
2443 }
2444 EXPORT_SYMBOL(block_page_mkwrite);
2445 
2446 /*
2447  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2448  * immediately, while under the page lock.  So it needs a special end_io
2449  * handler which does not touch the bh after unlocking it.
2450  */
2451 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2452 {
2453 	__end_buffer_read_notouch(bh, uptodate);
2454 }
2455 
2456 /*
2457  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2458  * the page (converting it to circular linked list and taking care of page
2459  * dirty races).
2460  */
2461 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2462 {
2463 	struct buffer_head *bh;
2464 
2465 	BUG_ON(!PageLocked(page));
2466 
2467 	spin_lock(&page->mapping->private_lock);
2468 	bh = head;
2469 	do {
2470 		if (PageDirty(page))
2471 			set_buffer_dirty(bh);
2472 		if (!bh->b_this_page)
2473 			bh->b_this_page = head;
2474 		bh = bh->b_this_page;
2475 	} while (bh != head);
2476 	attach_page_buffers(page, head);
2477 	spin_unlock(&page->mapping->private_lock);
2478 }
2479 
2480 /*
2481  * On entry, the page is fully not uptodate.
2482  * On exit the page is fully uptodate in the areas outside (from,to)
2483  */
2484 int nobh_write_begin(struct file *file, struct address_space *mapping,
2485 			loff_t pos, unsigned len, unsigned flags,
2486 			struct page **pagep, void **fsdata,
2487 			get_block_t *get_block)
2488 {
2489 	struct inode *inode = mapping->host;
2490 	const unsigned blkbits = inode->i_blkbits;
2491 	const unsigned blocksize = 1 << blkbits;
2492 	struct buffer_head *head, *bh;
2493 	struct page *page;
2494 	pgoff_t index;
2495 	unsigned from, to;
2496 	unsigned block_in_page;
2497 	unsigned block_start, block_end;
2498 	sector_t block_in_file;
2499 	int nr_reads = 0;
2500 	int ret = 0;
2501 	int is_mapped_to_disk = 1;
2502 
2503 	index = pos >> PAGE_CACHE_SHIFT;
2504 	from = pos & (PAGE_CACHE_SIZE - 1);
2505 	to = from + len;
2506 
2507 	page = grab_cache_page_write_begin(mapping, index, flags);
2508 	if (!page)
2509 		return -ENOMEM;
2510 	*pagep = page;
2511 	*fsdata = NULL;
2512 
2513 	if (page_has_buffers(page)) {
2514 		unlock_page(page);
2515 		page_cache_release(page);
2516 		*pagep = NULL;
2517 		return block_write_begin(file, mapping, pos, len, flags, pagep,
2518 					fsdata, get_block);
2519 	}
2520 
2521 	if (PageMappedToDisk(page))
2522 		return 0;
2523 
2524 	/*
2525 	 * Allocate buffers so that we can keep track of state, and potentially
2526 	 * attach them to the page if an error occurs. In the common case of
2527 	 * no error, they will just be freed again without ever being attached
2528 	 * to the page (which is all OK, because we're under the page lock).
2529 	 *
2530 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2531 	 * than the circular one we're used to.
2532 	 */
2533 	head = alloc_page_buffers(page, blocksize, 0);
2534 	if (!head) {
2535 		ret = -ENOMEM;
2536 		goto out_release;
2537 	}
2538 
2539 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2540 
2541 	/*
2542 	 * We loop across all blocks in the page, whether or not they are
2543 	 * part of the affected region.  This is so we can discover if the
2544 	 * page is fully mapped-to-disk.
2545 	 */
2546 	for (block_start = 0, block_in_page = 0, bh = head;
2547 		  block_start < PAGE_CACHE_SIZE;
2548 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2549 		int create;
2550 
2551 		block_end = block_start + blocksize;
2552 		bh->b_state = 0;
2553 		create = 1;
2554 		if (block_start >= to)
2555 			create = 0;
2556 		ret = get_block(inode, block_in_file + block_in_page,
2557 					bh, create);
2558 		if (ret)
2559 			goto failed;
2560 		if (!buffer_mapped(bh))
2561 			is_mapped_to_disk = 0;
2562 		if (buffer_new(bh))
2563 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2564 		if (PageUptodate(page)) {
2565 			set_buffer_uptodate(bh);
2566 			continue;
2567 		}
2568 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2569 			zero_user_segments(page, block_start, from,
2570 							to, block_end);
2571 			continue;
2572 		}
2573 		if (buffer_uptodate(bh))
2574 			continue;	/* reiserfs does this */
2575 		if (block_start < from || block_end > to) {
2576 			lock_buffer(bh);
2577 			bh->b_end_io = end_buffer_read_nobh;
2578 			submit_bh(READ, bh);
2579 			nr_reads++;
2580 		}
2581 	}
2582 
2583 	if (nr_reads) {
2584 		/*
2585 		 * The page is locked, so these buffers are protected from
2586 		 * any VM or truncate activity.  Hence we don't need to care
2587 		 * for the buffer_head refcounts.
2588 		 */
2589 		for (bh = head; bh; bh = bh->b_this_page) {
2590 			wait_on_buffer(bh);
2591 			if (!buffer_uptodate(bh))
2592 				ret = -EIO;
2593 		}
2594 		if (ret)
2595 			goto failed;
2596 	}
2597 
2598 	if (is_mapped_to_disk)
2599 		SetPageMappedToDisk(page);
2600 
2601 	*fsdata = head; /* to be released by nobh_write_end */
2602 
2603 	return 0;
2604 
2605 failed:
2606 	BUG_ON(!ret);
2607 	/*
2608 	 * Error recovery is a bit difficult. We need to zero out blocks that
2609 	 * were newly allocated, and dirty them to ensure they get written out.
2610 	 * Buffers need to be attached to the page at this point, otherwise
2611 	 * the handling of potential IO errors during writeout would be hard
2612 	 * (could try doing synchronous writeout, but what if that fails too?)
2613 	 */
2614 	attach_nobh_buffers(page, head);
2615 	page_zero_new_buffers(page, from, to);
2616 
2617 out_release:
2618 	unlock_page(page);
2619 	page_cache_release(page);
2620 	*pagep = NULL;
2621 
2622 	if (pos + len > inode->i_size)
2623 		vmtruncate(inode, inode->i_size);
2624 
2625 	return ret;
2626 }
2627 EXPORT_SYMBOL(nobh_write_begin);
2628 
2629 int nobh_write_end(struct file *file, struct address_space *mapping,
2630 			loff_t pos, unsigned len, unsigned copied,
2631 			struct page *page, void *fsdata)
2632 {
2633 	struct inode *inode = page->mapping->host;
2634 	struct buffer_head *head = fsdata;
2635 	struct buffer_head *bh;
2636 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2637 
2638 	if (unlikely(copied < len) && head)
2639 		attach_nobh_buffers(page, head);
2640 	if (page_has_buffers(page))
2641 		return generic_write_end(file, mapping, pos, len,
2642 					copied, page, fsdata);
2643 
2644 	SetPageUptodate(page);
2645 	set_page_dirty(page);
2646 	if (pos+copied > inode->i_size) {
2647 		i_size_write(inode, pos+copied);
2648 		mark_inode_dirty(inode);
2649 	}
2650 
2651 	unlock_page(page);
2652 	page_cache_release(page);
2653 
2654 	while (head) {
2655 		bh = head;
2656 		head = head->b_this_page;
2657 		free_buffer_head(bh);
2658 	}
2659 
2660 	return copied;
2661 }
2662 EXPORT_SYMBOL(nobh_write_end);
2663 
2664 /*
2665  * nobh_writepage() - based on block_full_write_page() except
2666  * that it tries to operate without attaching bufferheads to
2667  * the page.
2668  */
2669 int nobh_writepage(struct page *page, get_block_t *get_block,
2670 			struct writeback_control *wbc)
2671 {
2672 	struct inode * const inode = page->mapping->host;
2673 	loff_t i_size = i_size_read(inode);
2674 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2675 	unsigned offset;
2676 	int ret;
2677 
2678 	/* Is the page fully inside i_size? */
2679 	if (page->index < end_index)
2680 		goto out;
2681 
2682 	/* Is the page fully outside i_size? (truncate in progress) */
2683 	offset = i_size & (PAGE_CACHE_SIZE-1);
2684 	if (page->index >= end_index+1 || !offset) {
2685 		/*
2686 		 * The page may have dirty, unmapped buffers.  For example,
2687 		 * they may have been added in ext3_writepage().  Make them
2688 		 * freeable here, so the page does not leak.
2689 		 */
2690 #if 0
2691 		/* Not really sure about this  - do we need this ? */
2692 		if (page->mapping->a_ops->invalidatepage)
2693 			page->mapping->a_ops->invalidatepage(page, offset);
2694 #endif
2695 		unlock_page(page);
2696 		return 0; /* don't care */
2697 	}
2698 
2699 	/*
2700 	 * The page straddles i_size.  It must be zeroed out on each and every
2701 	 * writepage invocation because it may be mmapped.  "A file is mapped
2702 	 * in multiples of the page size.  For a file that is not a multiple of
2703 	 * the  page size, the remaining memory is zeroed when mapped, and
2704 	 * writes to that region are not written out to the file."
2705 	 */
2706 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2707 out:
2708 	ret = mpage_writepage(page, get_block, wbc);
2709 	if (ret == -EAGAIN)
2710 		ret = __block_write_full_page(inode, page, get_block, wbc,
2711 					      end_buffer_async_write);
2712 	return ret;
2713 }
2714 EXPORT_SYMBOL(nobh_writepage);
2715 
2716 int nobh_truncate_page(struct address_space *mapping,
2717 			loff_t from, get_block_t *get_block)
2718 {
2719 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2720 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2721 	unsigned blocksize;
2722 	sector_t iblock;
2723 	unsigned length, pos;
2724 	struct inode *inode = mapping->host;
2725 	struct page *page;
2726 	struct buffer_head map_bh;
2727 	int err;
2728 
2729 	blocksize = 1 << inode->i_blkbits;
2730 	length = offset & (blocksize - 1);
2731 
2732 	/* Block boundary? Nothing to do */
2733 	if (!length)
2734 		return 0;
2735 
2736 	length = blocksize - length;
2737 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2738 
2739 	page = grab_cache_page(mapping, index);
2740 	err = -ENOMEM;
2741 	if (!page)
2742 		goto out;
2743 
2744 	if (page_has_buffers(page)) {
2745 has_buffers:
2746 		unlock_page(page);
2747 		page_cache_release(page);
2748 		return block_truncate_page(mapping, from, get_block);
2749 	}
2750 
2751 	/* Find the buffer that contains "offset" */
2752 	pos = blocksize;
2753 	while (offset >= pos) {
2754 		iblock++;
2755 		pos += blocksize;
2756 	}
2757 
2758 	map_bh.b_size = blocksize;
2759 	map_bh.b_state = 0;
2760 	err = get_block(inode, iblock, &map_bh, 0);
2761 	if (err)
2762 		goto unlock;
2763 	/* unmapped? It's a hole - nothing to do */
2764 	if (!buffer_mapped(&map_bh))
2765 		goto unlock;
2766 
2767 	/* Ok, it's mapped. Make sure it's up-to-date */
2768 	if (!PageUptodate(page)) {
2769 		err = mapping->a_ops->readpage(NULL, page);
2770 		if (err) {
2771 			page_cache_release(page);
2772 			goto out;
2773 		}
2774 		lock_page(page);
2775 		if (!PageUptodate(page)) {
2776 			err = -EIO;
2777 			goto unlock;
2778 		}
2779 		if (page_has_buffers(page))
2780 			goto has_buffers;
2781 	}
2782 	zero_user(page, offset, length);
2783 	set_page_dirty(page);
2784 	err = 0;
2785 
2786 unlock:
2787 	unlock_page(page);
2788 	page_cache_release(page);
2789 out:
2790 	return err;
2791 }
2792 EXPORT_SYMBOL(nobh_truncate_page);
2793 
2794 int block_truncate_page(struct address_space *mapping,
2795 			loff_t from, get_block_t *get_block)
2796 {
2797 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2798 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2799 	unsigned blocksize;
2800 	sector_t iblock;
2801 	unsigned length, pos;
2802 	struct inode *inode = mapping->host;
2803 	struct page *page;
2804 	struct buffer_head *bh;
2805 	int err;
2806 
2807 	blocksize = 1 << inode->i_blkbits;
2808 	length = offset & (blocksize - 1);
2809 
2810 	/* Block boundary? Nothing to do */
2811 	if (!length)
2812 		return 0;
2813 
2814 	length = blocksize - length;
2815 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2816 
2817 	page = grab_cache_page(mapping, index);
2818 	err = -ENOMEM;
2819 	if (!page)
2820 		goto out;
2821 
2822 	if (!page_has_buffers(page))
2823 		create_empty_buffers(page, blocksize, 0);
2824 
2825 	/* Find the buffer that contains "offset" */
2826 	bh = page_buffers(page);
2827 	pos = blocksize;
2828 	while (offset >= pos) {
2829 		bh = bh->b_this_page;
2830 		iblock++;
2831 		pos += blocksize;
2832 	}
2833 
2834 	err = 0;
2835 	if (!buffer_mapped(bh)) {
2836 		WARN_ON(bh->b_size != blocksize);
2837 		err = get_block(inode, iblock, bh, 0);
2838 		if (err)
2839 			goto unlock;
2840 		/* unmapped? It's a hole - nothing to do */
2841 		if (!buffer_mapped(bh))
2842 			goto unlock;
2843 	}
2844 
2845 	/* Ok, it's mapped. Make sure it's up-to-date */
2846 	if (PageUptodate(page))
2847 		set_buffer_uptodate(bh);
2848 
2849 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2850 		err = -EIO;
2851 		ll_rw_block(READ, 1, &bh);
2852 		wait_on_buffer(bh);
2853 		/* Uhhuh. Read error. Complain and punt. */
2854 		if (!buffer_uptodate(bh))
2855 			goto unlock;
2856 	}
2857 
2858 	zero_user(page, offset, length);
2859 	mark_buffer_dirty(bh);
2860 	err = 0;
2861 
2862 unlock:
2863 	unlock_page(page);
2864 	page_cache_release(page);
2865 out:
2866 	return err;
2867 }
2868 EXPORT_SYMBOL(block_truncate_page);
2869 
2870 /*
2871  * The generic ->writepage function for buffer-backed address_spaces
2872  * this form passes in the end_io handler used to finish the IO.
2873  */
2874 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2875 			struct writeback_control *wbc, bh_end_io_t *handler)
2876 {
2877 	struct inode * const inode = page->mapping->host;
2878 	loff_t i_size = i_size_read(inode);
2879 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2880 	unsigned offset;
2881 
2882 	/* Is the page fully inside i_size? */
2883 	if (page->index < end_index)
2884 		return __block_write_full_page(inode, page, get_block, wbc,
2885 					       handler);
2886 
2887 	/* Is the page fully outside i_size? (truncate in progress) */
2888 	offset = i_size & (PAGE_CACHE_SIZE-1);
2889 	if (page->index >= end_index+1 || !offset) {
2890 		/*
2891 		 * The page may have dirty, unmapped buffers.  For example,
2892 		 * they may have been added in ext3_writepage().  Make them
2893 		 * freeable here, so the page does not leak.
2894 		 */
2895 		do_invalidatepage(page, 0);
2896 		unlock_page(page);
2897 		return 0; /* don't care */
2898 	}
2899 
2900 	/*
2901 	 * The page straddles i_size.  It must be zeroed out on each and every
2902 	 * writepage invokation because it may be mmapped.  "A file is mapped
2903 	 * in multiples of the page size.  For a file that is not a multiple of
2904 	 * the  page size, the remaining memory is zeroed when mapped, and
2905 	 * writes to that region are not written out to the file."
2906 	 */
2907 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2908 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2909 }
2910 EXPORT_SYMBOL(block_write_full_page_endio);
2911 
2912 /*
2913  * The generic ->writepage function for buffer-backed address_spaces
2914  */
2915 int block_write_full_page(struct page *page, get_block_t *get_block,
2916 			struct writeback_control *wbc)
2917 {
2918 	return block_write_full_page_endio(page, get_block, wbc,
2919 					   end_buffer_async_write);
2920 }
2921 EXPORT_SYMBOL(block_write_full_page);
2922 
2923 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2924 			    get_block_t *get_block)
2925 {
2926 	struct buffer_head tmp;
2927 	struct inode *inode = mapping->host;
2928 	tmp.b_state = 0;
2929 	tmp.b_blocknr = 0;
2930 	tmp.b_size = 1 << inode->i_blkbits;
2931 	get_block(inode, block, &tmp, 0);
2932 	return tmp.b_blocknr;
2933 }
2934 EXPORT_SYMBOL(generic_block_bmap);
2935 
2936 static void end_bio_bh_io_sync(struct bio *bio, int err)
2937 {
2938 	struct buffer_head *bh = bio->bi_private;
2939 
2940 	if (err == -EOPNOTSUPP) {
2941 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2942 		set_bit(BH_Eopnotsupp, &bh->b_state);
2943 	}
2944 
2945 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2946 		set_bit(BH_Quiet, &bh->b_state);
2947 
2948 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2949 	bio_put(bio);
2950 }
2951 
2952 int submit_bh(int rw, struct buffer_head * bh)
2953 {
2954 	struct bio *bio;
2955 	int ret = 0;
2956 
2957 	BUG_ON(!buffer_locked(bh));
2958 	BUG_ON(!buffer_mapped(bh));
2959 	BUG_ON(!bh->b_end_io);
2960 	BUG_ON(buffer_delay(bh));
2961 	BUG_ON(buffer_unwritten(bh));
2962 
2963 	/*
2964 	 * Mask in barrier bit for a write (could be either a WRITE or a
2965 	 * WRITE_SYNC
2966 	 */
2967 	if (buffer_ordered(bh) && (rw & WRITE))
2968 		rw |= WRITE_BARRIER;
2969 
2970 	/*
2971 	 * Only clear out a write error when rewriting
2972 	 */
2973 	if (test_set_buffer_req(bh) && (rw & WRITE))
2974 		clear_buffer_write_io_error(bh);
2975 
2976 	/*
2977 	 * from here on down, it's all bio -- do the initial mapping,
2978 	 * submit_bio -> generic_make_request may further map this bio around
2979 	 */
2980 	bio = bio_alloc(GFP_NOIO, 1);
2981 
2982 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2983 	bio->bi_bdev = bh->b_bdev;
2984 	bio->bi_io_vec[0].bv_page = bh->b_page;
2985 	bio->bi_io_vec[0].bv_len = bh->b_size;
2986 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2987 
2988 	bio->bi_vcnt = 1;
2989 	bio->bi_idx = 0;
2990 	bio->bi_size = bh->b_size;
2991 
2992 	bio->bi_end_io = end_bio_bh_io_sync;
2993 	bio->bi_private = bh;
2994 
2995 	bio_get(bio);
2996 	submit_bio(rw, bio);
2997 
2998 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2999 		ret = -EOPNOTSUPP;
3000 
3001 	bio_put(bio);
3002 	return ret;
3003 }
3004 EXPORT_SYMBOL(submit_bh);
3005 
3006 /**
3007  * ll_rw_block: low-level access to block devices (DEPRECATED)
3008  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
3009  * @nr: number of &struct buffer_heads in the array
3010  * @bhs: array of pointers to &struct buffer_head
3011  *
3012  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3013  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3014  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
3015  * are sent to disk. The fourth %READA option is described in the documentation
3016  * for generic_make_request() which ll_rw_block() calls.
3017  *
3018  * This function drops any buffer that it cannot get a lock on (with the
3019  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
3020  * clean when doing a write request, and any buffer that appears to be
3021  * up-to-date when doing read request.  Further it marks as clean buffers that
3022  * are processed for writing (the buffer cache won't assume that they are
3023  * actually clean until the buffer gets unlocked).
3024  *
3025  * ll_rw_block sets b_end_io to simple completion handler that marks
3026  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3027  * any waiters.
3028  *
3029  * All of the buffers must be for the same device, and must also be a
3030  * multiple of the current approved size for the device.
3031  */
3032 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3033 {
3034 	int i;
3035 
3036 	for (i = 0; i < nr; i++) {
3037 		struct buffer_head *bh = bhs[i];
3038 
3039 		if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
3040 			lock_buffer(bh);
3041 		else if (!trylock_buffer(bh))
3042 			continue;
3043 
3044 		if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
3045 		    rw == SWRITE_SYNC_PLUG) {
3046 			if (test_clear_buffer_dirty(bh)) {
3047 				bh->b_end_io = end_buffer_write_sync;
3048 				get_bh(bh);
3049 				if (rw == SWRITE_SYNC)
3050 					submit_bh(WRITE_SYNC, bh);
3051 				else
3052 					submit_bh(WRITE, bh);
3053 				continue;
3054 			}
3055 		} else {
3056 			if (!buffer_uptodate(bh)) {
3057 				bh->b_end_io = end_buffer_read_sync;
3058 				get_bh(bh);
3059 				submit_bh(rw, bh);
3060 				continue;
3061 			}
3062 		}
3063 		unlock_buffer(bh);
3064 	}
3065 }
3066 EXPORT_SYMBOL(ll_rw_block);
3067 
3068 /*
3069  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3070  * and then start new I/O and then wait upon it.  The caller must have a ref on
3071  * the buffer_head.
3072  */
3073 int sync_dirty_buffer(struct buffer_head *bh)
3074 {
3075 	int ret = 0;
3076 
3077 	WARN_ON(atomic_read(&bh->b_count) < 1);
3078 	lock_buffer(bh);
3079 	if (test_clear_buffer_dirty(bh)) {
3080 		get_bh(bh);
3081 		bh->b_end_io = end_buffer_write_sync;
3082 		ret = submit_bh(WRITE_SYNC, bh);
3083 		wait_on_buffer(bh);
3084 		if (buffer_eopnotsupp(bh)) {
3085 			clear_buffer_eopnotsupp(bh);
3086 			ret = -EOPNOTSUPP;
3087 		}
3088 		if (!ret && !buffer_uptodate(bh))
3089 			ret = -EIO;
3090 	} else {
3091 		unlock_buffer(bh);
3092 	}
3093 	return ret;
3094 }
3095 EXPORT_SYMBOL(sync_dirty_buffer);
3096 
3097 /*
3098  * try_to_free_buffers() checks if all the buffers on this particular page
3099  * are unused, and releases them if so.
3100  *
3101  * Exclusion against try_to_free_buffers may be obtained by either
3102  * locking the page or by holding its mapping's private_lock.
3103  *
3104  * If the page is dirty but all the buffers are clean then we need to
3105  * be sure to mark the page clean as well.  This is because the page
3106  * may be against a block device, and a later reattachment of buffers
3107  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3108  * filesystem data on the same device.
3109  *
3110  * The same applies to regular filesystem pages: if all the buffers are
3111  * clean then we set the page clean and proceed.  To do that, we require
3112  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3113  * private_lock.
3114  *
3115  * try_to_free_buffers() is non-blocking.
3116  */
3117 static inline int buffer_busy(struct buffer_head *bh)
3118 {
3119 	return atomic_read(&bh->b_count) |
3120 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3121 }
3122 
3123 static int
3124 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3125 {
3126 	struct buffer_head *head = page_buffers(page);
3127 	struct buffer_head *bh;
3128 
3129 	bh = head;
3130 	do {
3131 		if (buffer_write_io_error(bh) && page->mapping)
3132 			set_bit(AS_EIO, &page->mapping->flags);
3133 		if (buffer_busy(bh))
3134 			goto failed;
3135 		bh = bh->b_this_page;
3136 	} while (bh != head);
3137 
3138 	do {
3139 		struct buffer_head *next = bh->b_this_page;
3140 
3141 		if (bh->b_assoc_map)
3142 			__remove_assoc_queue(bh);
3143 		bh = next;
3144 	} while (bh != head);
3145 	*buffers_to_free = head;
3146 	__clear_page_buffers(page);
3147 	return 1;
3148 failed:
3149 	return 0;
3150 }
3151 
3152 int try_to_free_buffers(struct page *page)
3153 {
3154 	struct address_space * const mapping = page->mapping;
3155 	struct buffer_head *buffers_to_free = NULL;
3156 	int ret = 0;
3157 
3158 	BUG_ON(!PageLocked(page));
3159 	if (PageWriteback(page))
3160 		return 0;
3161 
3162 	if (mapping == NULL) {		/* can this still happen? */
3163 		ret = drop_buffers(page, &buffers_to_free);
3164 		goto out;
3165 	}
3166 
3167 	spin_lock(&mapping->private_lock);
3168 	ret = drop_buffers(page, &buffers_to_free);
3169 
3170 	/*
3171 	 * If the filesystem writes its buffers by hand (eg ext3)
3172 	 * then we can have clean buffers against a dirty page.  We
3173 	 * clean the page here; otherwise the VM will never notice
3174 	 * that the filesystem did any IO at all.
3175 	 *
3176 	 * Also, during truncate, discard_buffer will have marked all
3177 	 * the page's buffers clean.  We discover that here and clean
3178 	 * the page also.
3179 	 *
3180 	 * private_lock must be held over this entire operation in order
3181 	 * to synchronise against __set_page_dirty_buffers and prevent the
3182 	 * dirty bit from being lost.
3183 	 */
3184 	if (ret)
3185 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3186 	spin_unlock(&mapping->private_lock);
3187 out:
3188 	if (buffers_to_free) {
3189 		struct buffer_head *bh = buffers_to_free;
3190 
3191 		do {
3192 			struct buffer_head *next = bh->b_this_page;
3193 			free_buffer_head(bh);
3194 			bh = next;
3195 		} while (bh != buffers_to_free);
3196 	}
3197 	return ret;
3198 }
3199 EXPORT_SYMBOL(try_to_free_buffers);
3200 
3201 void block_sync_page(struct page *page)
3202 {
3203 	struct address_space *mapping;
3204 
3205 	smp_mb();
3206 	mapping = page_mapping(page);
3207 	if (mapping)
3208 		blk_run_backing_dev(mapping->backing_dev_info, page);
3209 }
3210 EXPORT_SYMBOL(block_sync_page);
3211 
3212 /*
3213  * There are no bdflush tunables left.  But distributions are
3214  * still running obsolete flush daemons, so we terminate them here.
3215  *
3216  * Use of bdflush() is deprecated and will be removed in a future kernel.
3217  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3218  */
3219 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3220 {
3221 	static int msg_count;
3222 
3223 	if (!capable(CAP_SYS_ADMIN))
3224 		return -EPERM;
3225 
3226 	if (msg_count < 5) {
3227 		msg_count++;
3228 		printk(KERN_INFO
3229 			"warning: process `%s' used the obsolete bdflush"
3230 			" system call\n", current->comm);
3231 		printk(KERN_INFO "Fix your initscripts?\n");
3232 	}
3233 
3234 	if (func == 1)
3235 		do_exit(0);
3236 	return 0;
3237 }
3238 
3239 /*
3240  * Buffer-head allocation
3241  */
3242 static struct kmem_cache *bh_cachep;
3243 
3244 /*
3245  * Once the number of bh's in the machine exceeds this level, we start
3246  * stripping them in writeback.
3247  */
3248 static int max_buffer_heads;
3249 
3250 int buffer_heads_over_limit;
3251 
3252 struct bh_accounting {
3253 	int nr;			/* Number of live bh's */
3254 	int ratelimit;		/* Limit cacheline bouncing */
3255 };
3256 
3257 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3258 
3259 static void recalc_bh_state(void)
3260 {
3261 	int i;
3262 	int tot = 0;
3263 
3264 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3265 		return;
3266 	__get_cpu_var(bh_accounting).ratelimit = 0;
3267 	for_each_online_cpu(i)
3268 		tot += per_cpu(bh_accounting, i).nr;
3269 	buffer_heads_over_limit = (tot > max_buffer_heads);
3270 }
3271 
3272 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3273 {
3274 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3275 	if (ret) {
3276 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3277 		get_cpu_var(bh_accounting).nr++;
3278 		recalc_bh_state();
3279 		put_cpu_var(bh_accounting);
3280 	}
3281 	return ret;
3282 }
3283 EXPORT_SYMBOL(alloc_buffer_head);
3284 
3285 void free_buffer_head(struct buffer_head *bh)
3286 {
3287 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3288 	kmem_cache_free(bh_cachep, bh);
3289 	get_cpu_var(bh_accounting).nr--;
3290 	recalc_bh_state();
3291 	put_cpu_var(bh_accounting);
3292 }
3293 EXPORT_SYMBOL(free_buffer_head);
3294 
3295 static void buffer_exit_cpu(int cpu)
3296 {
3297 	int i;
3298 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3299 
3300 	for (i = 0; i < BH_LRU_SIZE; i++) {
3301 		brelse(b->bhs[i]);
3302 		b->bhs[i] = NULL;
3303 	}
3304 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3305 	per_cpu(bh_accounting, cpu).nr = 0;
3306 	put_cpu_var(bh_accounting);
3307 }
3308 
3309 static int buffer_cpu_notify(struct notifier_block *self,
3310 			      unsigned long action, void *hcpu)
3311 {
3312 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3313 		buffer_exit_cpu((unsigned long)hcpu);
3314 	return NOTIFY_OK;
3315 }
3316 
3317 /**
3318  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3319  * @bh: struct buffer_head
3320  *
3321  * Return true if the buffer is up-to-date and false,
3322  * with the buffer locked, if not.
3323  */
3324 int bh_uptodate_or_lock(struct buffer_head *bh)
3325 {
3326 	if (!buffer_uptodate(bh)) {
3327 		lock_buffer(bh);
3328 		if (!buffer_uptodate(bh))
3329 			return 0;
3330 		unlock_buffer(bh);
3331 	}
3332 	return 1;
3333 }
3334 EXPORT_SYMBOL(bh_uptodate_or_lock);
3335 
3336 /**
3337  * bh_submit_read - Submit a locked buffer for reading
3338  * @bh: struct buffer_head
3339  *
3340  * Returns zero on success and -EIO on error.
3341  */
3342 int bh_submit_read(struct buffer_head *bh)
3343 {
3344 	BUG_ON(!buffer_locked(bh));
3345 
3346 	if (buffer_uptodate(bh)) {
3347 		unlock_buffer(bh);
3348 		return 0;
3349 	}
3350 
3351 	get_bh(bh);
3352 	bh->b_end_io = end_buffer_read_sync;
3353 	submit_bh(READ, bh);
3354 	wait_on_buffer(bh);
3355 	if (buffer_uptodate(bh))
3356 		return 0;
3357 	return -EIO;
3358 }
3359 EXPORT_SYMBOL(bh_submit_read);
3360 
3361 static void
3362 init_buffer_head(void *data)
3363 {
3364 	struct buffer_head *bh = data;
3365 
3366 	memset(bh, 0, sizeof(*bh));
3367 	INIT_LIST_HEAD(&bh->b_assoc_buffers);
3368 }
3369 
3370 void __init buffer_init(void)
3371 {
3372 	int nrpages;
3373 
3374 	bh_cachep = kmem_cache_create("buffer_head",
3375 			sizeof(struct buffer_head), 0,
3376 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3377 				SLAB_MEM_SPREAD),
3378 				init_buffer_head);
3379 
3380 	/*
3381 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3382 	 */
3383 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3384 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3385 	hotcpu_notifier(buffer_cpu_notify, 0);
3386 }
3387