1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 51 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 52 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 53 enum rw_hint hint, struct writeback_control *wbc); 54 55 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 56 57 inline void touch_buffer(struct buffer_head *bh) 58 { 59 trace_block_touch_buffer(bh); 60 mark_page_accessed(bh->b_page); 61 } 62 EXPORT_SYMBOL(touch_buffer); 63 64 void __lock_buffer(struct buffer_head *bh) 65 { 66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 67 } 68 EXPORT_SYMBOL(__lock_buffer); 69 70 void unlock_buffer(struct buffer_head *bh) 71 { 72 clear_bit_unlock(BH_Lock, &bh->b_state); 73 smp_mb__after_atomic(); 74 wake_up_bit(&bh->b_state, BH_Lock); 75 } 76 EXPORT_SYMBOL(unlock_buffer); 77 78 /* 79 * Returns if the page has dirty or writeback buffers. If all the buffers 80 * are unlocked and clean then the PageDirty information is stale. If 81 * any of the pages are locked, it is assumed they are locked for IO. 82 */ 83 void buffer_check_dirty_writeback(struct page *page, 84 bool *dirty, bool *writeback) 85 { 86 struct buffer_head *head, *bh; 87 *dirty = false; 88 *writeback = false; 89 90 BUG_ON(!PageLocked(page)); 91 92 if (!page_has_buffers(page)) 93 return; 94 95 if (PageWriteback(page)) 96 *writeback = true; 97 98 head = page_buffers(page); 99 bh = head; 100 do { 101 if (buffer_locked(bh)) 102 *writeback = true; 103 104 if (buffer_dirty(bh)) 105 *dirty = true; 106 107 bh = bh->b_this_page; 108 } while (bh != head); 109 } 110 EXPORT_SYMBOL(buffer_check_dirty_writeback); 111 112 /* 113 * Block until a buffer comes unlocked. This doesn't stop it 114 * from becoming locked again - you have to lock it yourself 115 * if you want to preserve its state. 116 */ 117 void __wait_on_buffer(struct buffer_head * bh) 118 { 119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 120 } 121 EXPORT_SYMBOL(__wait_on_buffer); 122 123 static void 124 __clear_page_buffers(struct page *page) 125 { 126 ClearPagePrivate(page); 127 set_page_private(page, 0); 128 put_page(page); 129 } 130 131 static void buffer_io_error(struct buffer_head *bh, char *msg) 132 { 133 if (!test_bit(BH_Quiet, &bh->b_state)) 134 printk_ratelimited(KERN_ERR 135 "Buffer I/O error on dev %pg, logical block %llu%s\n", 136 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 137 } 138 139 /* 140 * End-of-IO handler helper function which does not touch the bh after 141 * unlocking it. 142 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 143 * a race there is benign: unlock_buffer() only use the bh's address for 144 * hashing after unlocking the buffer, so it doesn't actually touch the bh 145 * itself. 146 */ 147 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 148 { 149 if (uptodate) { 150 set_buffer_uptodate(bh); 151 } else { 152 /* This happens, due to failed read-ahead attempts. */ 153 clear_buffer_uptodate(bh); 154 } 155 unlock_buffer(bh); 156 } 157 158 /* 159 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 160 * unlock the buffer. This is what ll_rw_block uses too. 161 */ 162 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 163 { 164 __end_buffer_read_notouch(bh, uptodate); 165 put_bh(bh); 166 } 167 EXPORT_SYMBOL(end_buffer_read_sync); 168 169 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 170 { 171 if (uptodate) { 172 set_buffer_uptodate(bh); 173 } else { 174 buffer_io_error(bh, ", lost sync page write"); 175 mark_buffer_write_io_error(bh); 176 clear_buffer_uptodate(bh); 177 } 178 unlock_buffer(bh); 179 put_bh(bh); 180 } 181 EXPORT_SYMBOL(end_buffer_write_sync); 182 183 /* 184 * Various filesystems appear to want __find_get_block to be non-blocking. 185 * But it's the page lock which protects the buffers. To get around this, 186 * we get exclusion from try_to_free_buffers with the blockdev mapping's 187 * private_lock. 188 * 189 * Hack idea: for the blockdev mapping, private_lock contention 190 * may be quite high. This code could TryLock the page, and if that 191 * succeeds, there is no need to take private_lock. 192 */ 193 static struct buffer_head * 194 __find_get_block_slow(struct block_device *bdev, sector_t block) 195 { 196 struct inode *bd_inode = bdev->bd_inode; 197 struct address_space *bd_mapping = bd_inode->i_mapping; 198 struct buffer_head *ret = NULL; 199 pgoff_t index; 200 struct buffer_head *bh; 201 struct buffer_head *head; 202 struct page *page; 203 int all_mapped = 1; 204 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 205 206 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 207 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 208 if (!page) 209 goto out; 210 211 spin_lock(&bd_mapping->private_lock); 212 if (!page_has_buffers(page)) 213 goto out_unlock; 214 head = page_buffers(page); 215 bh = head; 216 do { 217 if (!buffer_mapped(bh)) 218 all_mapped = 0; 219 else if (bh->b_blocknr == block) { 220 ret = bh; 221 get_bh(bh); 222 goto out_unlock; 223 } 224 bh = bh->b_this_page; 225 } while (bh != head); 226 227 /* we might be here because some of the buffers on this page are 228 * not mapped. This is due to various races between 229 * file io on the block device and getblk. It gets dealt with 230 * elsewhere, don't buffer_error if we had some unmapped buffers 231 */ 232 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 233 if (all_mapped && __ratelimit(&last_warned)) { 234 printk("__find_get_block_slow() failed. block=%llu, " 235 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 236 "device %pg blocksize: %d\n", 237 (unsigned long long)block, 238 (unsigned long long)bh->b_blocknr, 239 bh->b_state, bh->b_size, bdev, 240 1 << bd_inode->i_blkbits); 241 } 242 out_unlock: 243 spin_unlock(&bd_mapping->private_lock); 244 put_page(page); 245 out: 246 return ret; 247 } 248 249 /* 250 * I/O completion handler for block_read_full_page() - pages 251 * which come unlocked at the end of I/O. 252 */ 253 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 254 { 255 unsigned long flags; 256 struct buffer_head *first; 257 struct buffer_head *tmp; 258 struct page *page; 259 int page_uptodate = 1; 260 261 BUG_ON(!buffer_async_read(bh)); 262 263 page = bh->b_page; 264 if (uptodate) { 265 set_buffer_uptodate(bh); 266 } else { 267 clear_buffer_uptodate(bh); 268 buffer_io_error(bh, ", async page read"); 269 SetPageError(page); 270 } 271 272 /* 273 * Be _very_ careful from here on. Bad things can happen if 274 * two buffer heads end IO at almost the same time and both 275 * decide that the page is now completely done. 276 */ 277 first = page_buffers(page); 278 local_irq_save(flags); 279 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 280 clear_buffer_async_read(bh); 281 unlock_buffer(bh); 282 tmp = bh; 283 do { 284 if (!buffer_uptodate(tmp)) 285 page_uptodate = 0; 286 if (buffer_async_read(tmp)) { 287 BUG_ON(!buffer_locked(tmp)); 288 goto still_busy; 289 } 290 tmp = tmp->b_this_page; 291 } while (tmp != bh); 292 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 293 local_irq_restore(flags); 294 295 /* 296 * If none of the buffers had errors and they are all 297 * uptodate then we can set the page uptodate. 298 */ 299 if (page_uptodate && !PageError(page)) 300 SetPageUptodate(page); 301 unlock_page(page); 302 return; 303 304 still_busy: 305 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 306 local_irq_restore(flags); 307 return; 308 } 309 310 /* 311 * Completion handler for block_write_full_page() - pages which are unlocked 312 * during I/O, and which have PageWriteback cleared upon I/O completion. 313 */ 314 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 315 { 316 unsigned long flags; 317 struct buffer_head *first; 318 struct buffer_head *tmp; 319 struct page *page; 320 321 BUG_ON(!buffer_async_write(bh)); 322 323 page = bh->b_page; 324 if (uptodate) { 325 set_buffer_uptodate(bh); 326 } else { 327 buffer_io_error(bh, ", lost async page write"); 328 mark_buffer_write_io_error(bh); 329 clear_buffer_uptodate(bh); 330 SetPageError(page); 331 } 332 333 first = page_buffers(page); 334 local_irq_save(flags); 335 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 336 337 clear_buffer_async_write(bh); 338 unlock_buffer(bh); 339 tmp = bh->b_this_page; 340 while (tmp != bh) { 341 if (buffer_async_write(tmp)) { 342 BUG_ON(!buffer_locked(tmp)); 343 goto still_busy; 344 } 345 tmp = tmp->b_this_page; 346 } 347 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 348 local_irq_restore(flags); 349 end_page_writeback(page); 350 return; 351 352 still_busy: 353 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 354 local_irq_restore(flags); 355 return; 356 } 357 EXPORT_SYMBOL(end_buffer_async_write); 358 359 /* 360 * If a page's buffers are under async readin (end_buffer_async_read 361 * completion) then there is a possibility that another thread of 362 * control could lock one of the buffers after it has completed 363 * but while some of the other buffers have not completed. This 364 * locked buffer would confuse end_buffer_async_read() into not unlocking 365 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 366 * that this buffer is not under async I/O. 367 * 368 * The page comes unlocked when it has no locked buffer_async buffers 369 * left. 370 * 371 * PageLocked prevents anyone starting new async I/O reads any of 372 * the buffers. 373 * 374 * PageWriteback is used to prevent simultaneous writeout of the same 375 * page. 376 * 377 * PageLocked prevents anyone from starting writeback of a page which is 378 * under read I/O (PageWriteback is only ever set against a locked page). 379 */ 380 static void mark_buffer_async_read(struct buffer_head *bh) 381 { 382 bh->b_end_io = end_buffer_async_read; 383 set_buffer_async_read(bh); 384 } 385 386 static void mark_buffer_async_write_endio(struct buffer_head *bh, 387 bh_end_io_t *handler) 388 { 389 bh->b_end_io = handler; 390 set_buffer_async_write(bh); 391 } 392 393 void mark_buffer_async_write(struct buffer_head *bh) 394 { 395 mark_buffer_async_write_endio(bh, end_buffer_async_write); 396 } 397 EXPORT_SYMBOL(mark_buffer_async_write); 398 399 400 /* 401 * fs/buffer.c contains helper functions for buffer-backed address space's 402 * fsync functions. A common requirement for buffer-based filesystems is 403 * that certain data from the backing blockdev needs to be written out for 404 * a successful fsync(). For example, ext2 indirect blocks need to be 405 * written back and waited upon before fsync() returns. 406 * 407 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 408 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 409 * management of a list of dependent buffers at ->i_mapping->private_list. 410 * 411 * Locking is a little subtle: try_to_free_buffers() will remove buffers 412 * from their controlling inode's queue when they are being freed. But 413 * try_to_free_buffers() will be operating against the *blockdev* mapping 414 * at the time, not against the S_ISREG file which depends on those buffers. 415 * So the locking for private_list is via the private_lock in the address_space 416 * which backs the buffers. Which is different from the address_space 417 * against which the buffers are listed. So for a particular address_space, 418 * mapping->private_lock does *not* protect mapping->private_list! In fact, 419 * mapping->private_list will always be protected by the backing blockdev's 420 * ->private_lock. 421 * 422 * Which introduces a requirement: all buffers on an address_space's 423 * ->private_list must be from the same address_space: the blockdev's. 424 * 425 * address_spaces which do not place buffers at ->private_list via these 426 * utility functions are free to use private_lock and private_list for 427 * whatever they want. The only requirement is that list_empty(private_list) 428 * be true at clear_inode() time. 429 * 430 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 431 * filesystems should do that. invalidate_inode_buffers() should just go 432 * BUG_ON(!list_empty). 433 * 434 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 435 * take an address_space, not an inode. And it should be called 436 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 437 * queued up. 438 * 439 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 440 * list if it is already on a list. Because if the buffer is on a list, 441 * it *must* already be on the right one. If not, the filesystem is being 442 * silly. This will save a ton of locking. But first we have to ensure 443 * that buffers are taken *off* the old inode's list when they are freed 444 * (presumably in truncate). That requires careful auditing of all 445 * filesystems (do it inside bforget()). It could also be done by bringing 446 * b_inode back. 447 */ 448 449 /* 450 * The buffer's backing address_space's private_lock must be held 451 */ 452 static void __remove_assoc_queue(struct buffer_head *bh) 453 { 454 list_del_init(&bh->b_assoc_buffers); 455 WARN_ON(!bh->b_assoc_map); 456 bh->b_assoc_map = NULL; 457 } 458 459 int inode_has_buffers(struct inode *inode) 460 { 461 return !list_empty(&inode->i_data.private_list); 462 } 463 464 /* 465 * osync is designed to support O_SYNC io. It waits synchronously for 466 * all already-submitted IO to complete, but does not queue any new 467 * writes to the disk. 468 * 469 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 470 * you dirty the buffers, and then use osync_inode_buffers to wait for 471 * completion. Any other dirty buffers which are not yet queued for 472 * write will not be flushed to disk by the osync. 473 */ 474 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 475 { 476 struct buffer_head *bh; 477 struct list_head *p; 478 int err = 0; 479 480 spin_lock(lock); 481 repeat: 482 list_for_each_prev(p, list) { 483 bh = BH_ENTRY(p); 484 if (buffer_locked(bh)) { 485 get_bh(bh); 486 spin_unlock(lock); 487 wait_on_buffer(bh); 488 if (!buffer_uptodate(bh)) 489 err = -EIO; 490 brelse(bh); 491 spin_lock(lock); 492 goto repeat; 493 } 494 } 495 spin_unlock(lock); 496 return err; 497 } 498 499 void emergency_thaw_bdev(struct super_block *sb) 500 { 501 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 502 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 503 } 504 505 /** 506 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 507 * @mapping: the mapping which wants those buffers written 508 * 509 * Starts I/O against the buffers at mapping->private_list, and waits upon 510 * that I/O. 511 * 512 * Basically, this is a convenience function for fsync(). 513 * @mapping is a file or directory which needs those buffers to be written for 514 * a successful fsync(). 515 */ 516 int sync_mapping_buffers(struct address_space *mapping) 517 { 518 struct address_space *buffer_mapping = mapping->private_data; 519 520 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 521 return 0; 522 523 return fsync_buffers_list(&buffer_mapping->private_lock, 524 &mapping->private_list); 525 } 526 EXPORT_SYMBOL(sync_mapping_buffers); 527 528 /* 529 * Called when we've recently written block `bblock', and it is known that 530 * `bblock' was for a buffer_boundary() buffer. This means that the block at 531 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 532 * dirty, schedule it for IO. So that indirects merge nicely with their data. 533 */ 534 void write_boundary_block(struct block_device *bdev, 535 sector_t bblock, unsigned blocksize) 536 { 537 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 538 if (bh) { 539 if (buffer_dirty(bh)) 540 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 541 put_bh(bh); 542 } 543 } 544 545 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 546 { 547 struct address_space *mapping = inode->i_mapping; 548 struct address_space *buffer_mapping = bh->b_page->mapping; 549 550 mark_buffer_dirty(bh); 551 if (!mapping->private_data) { 552 mapping->private_data = buffer_mapping; 553 } else { 554 BUG_ON(mapping->private_data != buffer_mapping); 555 } 556 if (!bh->b_assoc_map) { 557 spin_lock(&buffer_mapping->private_lock); 558 list_move_tail(&bh->b_assoc_buffers, 559 &mapping->private_list); 560 bh->b_assoc_map = mapping; 561 spin_unlock(&buffer_mapping->private_lock); 562 } 563 } 564 EXPORT_SYMBOL(mark_buffer_dirty_inode); 565 566 /* 567 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 568 * dirty. 569 * 570 * If warn is true, then emit a warning if the page is not uptodate and has 571 * not been truncated. 572 * 573 * The caller must hold lock_page_memcg(). 574 */ 575 void __set_page_dirty(struct page *page, struct address_space *mapping, 576 int warn) 577 { 578 unsigned long flags; 579 580 xa_lock_irqsave(&mapping->i_pages, flags); 581 if (page->mapping) { /* Race with truncate? */ 582 WARN_ON_ONCE(warn && !PageUptodate(page)); 583 account_page_dirtied(page, mapping); 584 __xa_set_mark(&mapping->i_pages, page_index(page), 585 PAGECACHE_TAG_DIRTY); 586 } 587 xa_unlock_irqrestore(&mapping->i_pages, flags); 588 } 589 EXPORT_SYMBOL_GPL(__set_page_dirty); 590 591 /* 592 * Add a page to the dirty page list. 593 * 594 * It is a sad fact of life that this function is called from several places 595 * deeply under spinlocking. It may not sleep. 596 * 597 * If the page has buffers, the uptodate buffers are set dirty, to preserve 598 * dirty-state coherency between the page and the buffers. It the page does 599 * not have buffers then when they are later attached they will all be set 600 * dirty. 601 * 602 * The buffers are dirtied before the page is dirtied. There's a small race 603 * window in which a writepage caller may see the page cleanness but not the 604 * buffer dirtiness. That's fine. If this code were to set the page dirty 605 * before the buffers, a concurrent writepage caller could clear the page dirty 606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 607 * page on the dirty page list. 608 * 609 * We use private_lock to lock against try_to_free_buffers while using the 610 * page's buffer list. Also use this to protect against clean buffers being 611 * added to the page after it was set dirty. 612 * 613 * FIXME: may need to call ->reservepage here as well. That's rather up to the 614 * address_space though. 615 */ 616 int __set_page_dirty_buffers(struct page *page) 617 { 618 int newly_dirty; 619 struct address_space *mapping = page_mapping(page); 620 621 if (unlikely(!mapping)) 622 return !TestSetPageDirty(page); 623 624 spin_lock(&mapping->private_lock); 625 if (page_has_buffers(page)) { 626 struct buffer_head *head = page_buffers(page); 627 struct buffer_head *bh = head; 628 629 do { 630 set_buffer_dirty(bh); 631 bh = bh->b_this_page; 632 } while (bh != head); 633 } 634 /* 635 * Lock out page->mem_cgroup migration to keep PageDirty 636 * synchronized with per-memcg dirty page counters. 637 */ 638 lock_page_memcg(page); 639 newly_dirty = !TestSetPageDirty(page); 640 spin_unlock(&mapping->private_lock); 641 642 if (newly_dirty) 643 __set_page_dirty(page, mapping, 1); 644 645 unlock_page_memcg(page); 646 647 if (newly_dirty) 648 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 649 650 return newly_dirty; 651 } 652 EXPORT_SYMBOL(__set_page_dirty_buffers); 653 654 /* 655 * Write out and wait upon a list of buffers. 656 * 657 * We have conflicting pressures: we want to make sure that all 658 * initially dirty buffers get waited on, but that any subsequently 659 * dirtied buffers don't. After all, we don't want fsync to last 660 * forever if somebody is actively writing to the file. 661 * 662 * Do this in two main stages: first we copy dirty buffers to a 663 * temporary inode list, queueing the writes as we go. Then we clean 664 * up, waiting for those writes to complete. 665 * 666 * During this second stage, any subsequent updates to the file may end 667 * up refiling the buffer on the original inode's dirty list again, so 668 * there is a chance we will end up with a buffer queued for write but 669 * not yet completed on that list. So, as a final cleanup we go through 670 * the osync code to catch these locked, dirty buffers without requeuing 671 * any newly dirty buffers for write. 672 */ 673 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 674 { 675 struct buffer_head *bh; 676 struct list_head tmp; 677 struct address_space *mapping; 678 int err = 0, err2; 679 struct blk_plug plug; 680 681 INIT_LIST_HEAD(&tmp); 682 blk_start_plug(&plug); 683 684 spin_lock(lock); 685 while (!list_empty(list)) { 686 bh = BH_ENTRY(list->next); 687 mapping = bh->b_assoc_map; 688 __remove_assoc_queue(bh); 689 /* Avoid race with mark_buffer_dirty_inode() which does 690 * a lockless check and we rely on seeing the dirty bit */ 691 smp_mb(); 692 if (buffer_dirty(bh) || buffer_locked(bh)) { 693 list_add(&bh->b_assoc_buffers, &tmp); 694 bh->b_assoc_map = mapping; 695 if (buffer_dirty(bh)) { 696 get_bh(bh); 697 spin_unlock(lock); 698 /* 699 * Ensure any pending I/O completes so that 700 * write_dirty_buffer() actually writes the 701 * current contents - it is a noop if I/O is 702 * still in flight on potentially older 703 * contents. 704 */ 705 write_dirty_buffer(bh, REQ_SYNC); 706 707 /* 708 * Kick off IO for the previous mapping. Note 709 * that we will not run the very last mapping, 710 * wait_on_buffer() will do that for us 711 * through sync_buffer(). 712 */ 713 brelse(bh); 714 spin_lock(lock); 715 } 716 } 717 } 718 719 spin_unlock(lock); 720 blk_finish_plug(&plug); 721 spin_lock(lock); 722 723 while (!list_empty(&tmp)) { 724 bh = BH_ENTRY(tmp.prev); 725 get_bh(bh); 726 mapping = bh->b_assoc_map; 727 __remove_assoc_queue(bh); 728 /* Avoid race with mark_buffer_dirty_inode() which does 729 * a lockless check and we rely on seeing the dirty bit */ 730 smp_mb(); 731 if (buffer_dirty(bh)) { 732 list_add(&bh->b_assoc_buffers, 733 &mapping->private_list); 734 bh->b_assoc_map = mapping; 735 } 736 spin_unlock(lock); 737 wait_on_buffer(bh); 738 if (!buffer_uptodate(bh)) 739 err = -EIO; 740 brelse(bh); 741 spin_lock(lock); 742 } 743 744 spin_unlock(lock); 745 err2 = osync_buffers_list(lock, list); 746 if (err) 747 return err; 748 else 749 return err2; 750 } 751 752 /* 753 * Invalidate any and all dirty buffers on a given inode. We are 754 * probably unmounting the fs, but that doesn't mean we have already 755 * done a sync(). Just drop the buffers from the inode list. 756 * 757 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 758 * assumes that all the buffers are against the blockdev. Not true 759 * for reiserfs. 760 */ 761 void invalidate_inode_buffers(struct inode *inode) 762 { 763 if (inode_has_buffers(inode)) { 764 struct address_space *mapping = &inode->i_data; 765 struct list_head *list = &mapping->private_list; 766 struct address_space *buffer_mapping = mapping->private_data; 767 768 spin_lock(&buffer_mapping->private_lock); 769 while (!list_empty(list)) 770 __remove_assoc_queue(BH_ENTRY(list->next)); 771 spin_unlock(&buffer_mapping->private_lock); 772 } 773 } 774 EXPORT_SYMBOL(invalidate_inode_buffers); 775 776 /* 777 * Remove any clean buffers from the inode's buffer list. This is called 778 * when we're trying to free the inode itself. Those buffers can pin it. 779 * 780 * Returns true if all buffers were removed. 781 */ 782 int remove_inode_buffers(struct inode *inode) 783 { 784 int ret = 1; 785 786 if (inode_has_buffers(inode)) { 787 struct address_space *mapping = &inode->i_data; 788 struct list_head *list = &mapping->private_list; 789 struct address_space *buffer_mapping = mapping->private_data; 790 791 spin_lock(&buffer_mapping->private_lock); 792 while (!list_empty(list)) { 793 struct buffer_head *bh = BH_ENTRY(list->next); 794 if (buffer_dirty(bh)) { 795 ret = 0; 796 break; 797 } 798 __remove_assoc_queue(bh); 799 } 800 spin_unlock(&buffer_mapping->private_lock); 801 } 802 return ret; 803 } 804 805 /* 806 * Create the appropriate buffers when given a page for data area and 807 * the size of each buffer.. Use the bh->b_this_page linked list to 808 * follow the buffers created. Return NULL if unable to create more 809 * buffers. 810 * 811 * The retry flag is used to differentiate async IO (paging, swapping) 812 * which may not fail from ordinary buffer allocations. 813 */ 814 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 815 bool retry) 816 { 817 struct buffer_head *bh, *head; 818 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 819 long offset; 820 struct mem_cgroup *memcg; 821 822 if (retry) 823 gfp |= __GFP_NOFAIL; 824 825 memcg = get_mem_cgroup_from_page(page); 826 memalloc_use_memcg(memcg); 827 828 head = NULL; 829 offset = PAGE_SIZE; 830 while ((offset -= size) >= 0) { 831 bh = alloc_buffer_head(gfp); 832 if (!bh) 833 goto no_grow; 834 835 bh->b_this_page = head; 836 bh->b_blocknr = -1; 837 head = bh; 838 839 bh->b_size = size; 840 841 /* Link the buffer to its page */ 842 set_bh_page(bh, page, offset); 843 } 844 out: 845 memalloc_unuse_memcg(); 846 mem_cgroup_put(memcg); 847 return head; 848 /* 849 * In case anything failed, we just free everything we got. 850 */ 851 no_grow: 852 if (head) { 853 do { 854 bh = head; 855 head = head->b_this_page; 856 free_buffer_head(bh); 857 } while (head); 858 } 859 860 goto out; 861 } 862 EXPORT_SYMBOL_GPL(alloc_page_buffers); 863 864 static inline void 865 link_dev_buffers(struct page *page, struct buffer_head *head) 866 { 867 struct buffer_head *bh, *tail; 868 869 bh = head; 870 do { 871 tail = bh; 872 bh = bh->b_this_page; 873 } while (bh); 874 tail->b_this_page = head; 875 attach_page_buffers(page, head); 876 } 877 878 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 879 { 880 sector_t retval = ~((sector_t)0); 881 loff_t sz = i_size_read(bdev->bd_inode); 882 883 if (sz) { 884 unsigned int sizebits = blksize_bits(size); 885 retval = (sz >> sizebits); 886 } 887 return retval; 888 } 889 890 /* 891 * Initialise the state of a blockdev page's buffers. 892 */ 893 static sector_t 894 init_page_buffers(struct page *page, struct block_device *bdev, 895 sector_t block, int size) 896 { 897 struct buffer_head *head = page_buffers(page); 898 struct buffer_head *bh = head; 899 int uptodate = PageUptodate(page); 900 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 901 902 do { 903 if (!buffer_mapped(bh)) { 904 bh->b_end_io = NULL; 905 bh->b_private = NULL; 906 bh->b_bdev = bdev; 907 bh->b_blocknr = block; 908 if (uptodate) 909 set_buffer_uptodate(bh); 910 if (block < end_block) 911 set_buffer_mapped(bh); 912 } 913 block++; 914 bh = bh->b_this_page; 915 } while (bh != head); 916 917 /* 918 * Caller needs to validate requested block against end of device. 919 */ 920 return end_block; 921 } 922 923 /* 924 * Create the page-cache page that contains the requested block. 925 * 926 * This is used purely for blockdev mappings. 927 */ 928 static int 929 grow_dev_page(struct block_device *bdev, sector_t block, 930 pgoff_t index, int size, int sizebits, gfp_t gfp) 931 { 932 struct inode *inode = bdev->bd_inode; 933 struct page *page; 934 struct buffer_head *bh; 935 sector_t end_block; 936 int ret = 0; /* Will call free_more_memory() */ 937 gfp_t gfp_mask; 938 939 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 940 941 /* 942 * XXX: __getblk_slow() can not really deal with failure and 943 * will endlessly loop on improvised global reclaim. Prefer 944 * looping in the allocator rather than here, at least that 945 * code knows what it's doing. 946 */ 947 gfp_mask |= __GFP_NOFAIL; 948 949 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 950 951 BUG_ON(!PageLocked(page)); 952 953 if (page_has_buffers(page)) { 954 bh = page_buffers(page); 955 if (bh->b_size == size) { 956 end_block = init_page_buffers(page, bdev, 957 (sector_t)index << sizebits, 958 size); 959 goto done; 960 } 961 if (!try_to_free_buffers(page)) 962 goto failed; 963 } 964 965 /* 966 * Allocate some buffers for this page 967 */ 968 bh = alloc_page_buffers(page, size, true); 969 970 /* 971 * Link the page to the buffers and initialise them. Take the 972 * lock to be atomic wrt __find_get_block(), which does not 973 * run under the page lock. 974 */ 975 spin_lock(&inode->i_mapping->private_lock); 976 link_dev_buffers(page, bh); 977 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 978 size); 979 spin_unlock(&inode->i_mapping->private_lock); 980 done: 981 ret = (block < end_block) ? 1 : -ENXIO; 982 failed: 983 unlock_page(page); 984 put_page(page); 985 return ret; 986 } 987 988 /* 989 * Create buffers for the specified block device block's page. If 990 * that page was dirty, the buffers are set dirty also. 991 */ 992 static int 993 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 994 { 995 pgoff_t index; 996 int sizebits; 997 998 sizebits = -1; 999 do { 1000 sizebits++; 1001 } while ((size << sizebits) < PAGE_SIZE); 1002 1003 index = block >> sizebits; 1004 1005 /* 1006 * Check for a block which wants to lie outside our maximum possible 1007 * pagecache index. (this comparison is done using sector_t types). 1008 */ 1009 if (unlikely(index != block >> sizebits)) { 1010 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1011 "device %pg\n", 1012 __func__, (unsigned long long)block, 1013 bdev); 1014 return -EIO; 1015 } 1016 1017 /* Create a page with the proper size buffers.. */ 1018 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1019 } 1020 1021 static struct buffer_head * 1022 __getblk_slow(struct block_device *bdev, sector_t block, 1023 unsigned size, gfp_t gfp) 1024 { 1025 /* Size must be multiple of hard sectorsize */ 1026 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1027 (size < 512 || size > PAGE_SIZE))) { 1028 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1029 size); 1030 printk(KERN_ERR "logical block size: %d\n", 1031 bdev_logical_block_size(bdev)); 1032 1033 dump_stack(); 1034 return NULL; 1035 } 1036 1037 for (;;) { 1038 struct buffer_head *bh; 1039 int ret; 1040 1041 bh = __find_get_block(bdev, block, size); 1042 if (bh) 1043 return bh; 1044 1045 ret = grow_buffers(bdev, block, size, gfp); 1046 if (ret < 0) 1047 return NULL; 1048 } 1049 } 1050 1051 /* 1052 * The relationship between dirty buffers and dirty pages: 1053 * 1054 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1055 * the page is tagged dirty in the page cache. 1056 * 1057 * At all times, the dirtiness of the buffers represents the dirtiness of 1058 * subsections of the page. If the page has buffers, the page dirty bit is 1059 * merely a hint about the true dirty state. 1060 * 1061 * When a page is set dirty in its entirety, all its buffers are marked dirty 1062 * (if the page has buffers). 1063 * 1064 * When a buffer is marked dirty, its page is dirtied, but the page's other 1065 * buffers are not. 1066 * 1067 * Also. When blockdev buffers are explicitly read with bread(), they 1068 * individually become uptodate. But their backing page remains not 1069 * uptodate - even if all of its buffers are uptodate. A subsequent 1070 * block_read_full_page() against that page will discover all the uptodate 1071 * buffers, will set the page uptodate and will perform no I/O. 1072 */ 1073 1074 /** 1075 * mark_buffer_dirty - mark a buffer_head as needing writeout 1076 * @bh: the buffer_head to mark dirty 1077 * 1078 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1079 * its backing page dirty, then tag the page as dirty in the page cache 1080 * and then attach the address_space's inode to its superblock's dirty 1081 * inode list. 1082 * 1083 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1084 * i_pages lock and mapping->host->i_lock. 1085 */ 1086 void mark_buffer_dirty(struct buffer_head *bh) 1087 { 1088 WARN_ON_ONCE(!buffer_uptodate(bh)); 1089 1090 trace_block_dirty_buffer(bh); 1091 1092 /* 1093 * Very *carefully* optimize the it-is-already-dirty case. 1094 * 1095 * Don't let the final "is it dirty" escape to before we 1096 * perhaps modified the buffer. 1097 */ 1098 if (buffer_dirty(bh)) { 1099 smp_mb(); 1100 if (buffer_dirty(bh)) 1101 return; 1102 } 1103 1104 if (!test_set_buffer_dirty(bh)) { 1105 struct page *page = bh->b_page; 1106 struct address_space *mapping = NULL; 1107 1108 lock_page_memcg(page); 1109 if (!TestSetPageDirty(page)) { 1110 mapping = page_mapping(page); 1111 if (mapping) 1112 __set_page_dirty(page, mapping, 0); 1113 } 1114 unlock_page_memcg(page); 1115 if (mapping) 1116 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1117 } 1118 } 1119 EXPORT_SYMBOL(mark_buffer_dirty); 1120 1121 void mark_buffer_write_io_error(struct buffer_head *bh) 1122 { 1123 set_buffer_write_io_error(bh); 1124 /* FIXME: do we need to set this in both places? */ 1125 if (bh->b_page && bh->b_page->mapping) 1126 mapping_set_error(bh->b_page->mapping, -EIO); 1127 if (bh->b_assoc_map) 1128 mapping_set_error(bh->b_assoc_map, -EIO); 1129 } 1130 EXPORT_SYMBOL(mark_buffer_write_io_error); 1131 1132 /* 1133 * Decrement a buffer_head's reference count. If all buffers against a page 1134 * have zero reference count, are clean and unlocked, and if the page is clean 1135 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1136 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1137 * a page but it ends up not being freed, and buffers may later be reattached). 1138 */ 1139 void __brelse(struct buffer_head * buf) 1140 { 1141 if (atomic_read(&buf->b_count)) { 1142 put_bh(buf); 1143 return; 1144 } 1145 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1146 } 1147 EXPORT_SYMBOL(__brelse); 1148 1149 /* 1150 * bforget() is like brelse(), except it discards any 1151 * potentially dirty data. 1152 */ 1153 void __bforget(struct buffer_head *bh) 1154 { 1155 clear_buffer_dirty(bh); 1156 if (bh->b_assoc_map) { 1157 struct address_space *buffer_mapping = bh->b_page->mapping; 1158 1159 spin_lock(&buffer_mapping->private_lock); 1160 list_del_init(&bh->b_assoc_buffers); 1161 bh->b_assoc_map = NULL; 1162 spin_unlock(&buffer_mapping->private_lock); 1163 } 1164 __brelse(bh); 1165 } 1166 EXPORT_SYMBOL(__bforget); 1167 1168 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1169 { 1170 lock_buffer(bh); 1171 if (buffer_uptodate(bh)) { 1172 unlock_buffer(bh); 1173 return bh; 1174 } else { 1175 get_bh(bh); 1176 bh->b_end_io = end_buffer_read_sync; 1177 submit_bh(REQ_OP_READ, 0, bh); 1178 wait_on_buffer(bh); 1179 if (buffer_uptodate(bh)) 1180 return bh; 1181 } 1182 brelse(bh); 1183 return NULL; 1184 } 1185 1186 /* 1187 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1188 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1189 * refcount elevated by one when they're in an LRU. A buffer can only appear 1190 * once in a particular CPU's LRU. A single buffer can be present in multiple 1191 * CPU's LRUs at the same time. 1192 * 1193 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1194 * sb_find_get_block(). 1195 * 1196 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1197 * a local interrupt disable for that. 1198 */ 1199 1200 #define BH_LRU_SIZE 16 1201 1202 struct bh_lru { 1203 struct buffer_head *bhs[BH_LRU_SIZE]; 1204 }; 1205 1206 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1207 1208 #ifdef CONFIG_SMP 1209 #define bh_lru_lock() local_irq_disable() 1210 #define bh_lru_unlock() local_irq_enable() 1211 #else 1212 #define bh_lru_lock() preempt_disable() 1213 #define bh_lru_unlock() preempt_enable() 1214 #endif 1215 1216 static inline void check_irqs_on(void) 1217 { 1218 #ifdef irqs_disabled 1219 BUG_ON(irqs_disabled()); 1220 #endif 1221 } 1222 1223 /* 1224 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1225 * inserted at the front, and the buffer_head at the back if any is evicted. 1226 * Or, if already in the LRU it is moved to the front. 1227 */ 1228 static void bh_lru_install(struct buffer_head *bh) 1229 { 1230 struct buffer_head *evictee = bh; 1231 struct bh_lru *b; 1232 int i; 1233 1234 check_irqs_on(); 1235 bh_lru_lock(); 1236 1237 b = this_cpu_ptr(&bh_lrus); 1238 for (i = 0; i < BH_LRU_SIZE; i++) { 1239 swap(evictee, b->bhs[i]); 1240 if (evictee == bh) { 1241 bh_lru_unlock(); 1242 return; 1243 } 1244 } 1245 1246 get_bh(bh); 1247 bh_lru_unlock(); 1248 brelse(evictee); 1249 } 1250 1251 /* 1252 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1253 */ 1254 static struct buffer_head * 1255 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1256 { 1257 struct buffer_head *ret = NULL; 1258 unsigned int i; 1259 1260 check_irqs_on(); 1261 bh_lru_lock(); 1262 for (i = 0; i < BH_LRU_SIZE; i++) { 1263 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1264 1265 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1266 bh->b_size == size) { 1267 if (i) { 1268 while (i) { 1269 __this_cpu_write(bh_lrus.bhs[i], 1270 __this_cpu_read(bh_lrus.bhs[i - 1])); 1271 i--; 1272 } 1273 __this_cpu_write(bh_lrus.bhs[0], bh); 1274 } 1275 get_bh(bh); 1276 ret = bh; 1277 break; 1278 } 1279 } 1280 bh_lru_unlock(); 1281 return ret; 1282 } 1283 1284 /* 1285 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1286 * it in the LRU and mark it as accessed. If it is not present then return 1287 * NULL 1288 */ 1289 struct buffer_head * 1290 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1291 { 1292 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1293 1294 if (bh == NULL) { 1295 /* __find_get_block_slow will mark the page accessed */ 1296 bh = __find_get_block_slow(bdev, block); 1297 if (bh) 1298 bh_lru_install(bh); 1299 } else 1300 touch_buffer(bh); 1301 1302 return bh; 1303 } 1304 EXPORT_SYMBOL(__find_get_block); 1305 1306 /* 1307 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1308 * which corresponds to the passed block_device, block and size. The 1309 * returned buffer has its reference count incremented. 1310 * 1311 * __getblk_gfp() will lock up the machine if grow_dev_page's 1312 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1313 */ 1314 struct buffer_head * 1315 __getblk_gfp(struct block_device *bdev, sector_t block, 1316 unsigned size, gfp_t gfp) 1317 { 1318 struct buffer_head *bh = __find_get_block(bdev, block, size); 1319 1320 might_sleep(); 1321 if (bh == NULL) 1322 bh = __getblk_slow(bdev, block, size, gfp); 1323 return bh; 1324 } 1325 EXPORT_SYMBOL(__getblk_gfp); 1326 1327 /* 1328 * Do async read-ahead on a buffer.. 1329 */ 1330 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1331 { 1332 struct buffer_head *bh = __getblk(bdev, block, size); 1333 if (likely(bh)) { 1334 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1335 brelse(bh); 1336 } 1337 } 1338 EXPORT_SYMBOL(__breadahead); 1339 1340 /** 1341 * __bread_gfp() - reads a specified block and returns the bh 1342 * @bdev: the block_device to read from 1343 * @block: number of block 1344 * @size: size (in bytes) to read 1345 * @gfp: page allocation flag 1346 * 1347 * Reads a specified block, and returns buffer head that contains it. 1348 * The page cache can be allocated from non-movable area 1349 * not to prevent page migration if you set gfp to zero. 1350 * It returns NULL if the block was unreadable. 1351 */ 1352 struct buffer_head * 1353 __bread_gfp(struct block_device *bdev, sector_t block, 1354 unsigned size, gfp_t gfp) 1355 { 1356 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1357 1358 if (likely(bh) && !buffer_uptodate(bh)) 1359 bh = __bread_slow(bh); 1360 return bh; 1361 } 1362 EXPORT_SYMBOL(__bread_gfp); 1363 1364 /* 1365 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1366 * This doesn't race because it runs in each cpu either in irq 1367 * or with preempt disabled. 1368 */ 1369 static void invalidate_bh_lru(void *arg) 1370 { 1371 struct bh_lru *b = &get_cpu_var(bh_lrus); 1372 int i; 1373 1374 for (i = 0; i < BH_LRU_SIZE; i++) { 1375 brelse(b->bhs[i]); 1376 b->bhs[i] = NULL; 1377 } 1378 put_cpu_var(bh_lrus); 1379 } 1380 1381 static bool has_bh_in_lru(int cpu, void *dummy) 1382 { 1383 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1384 int i; 1385 1386 for (i = 0; i < BH_LRU_SIZE; i++) { 1387 if (b->bhs[i]) 1388 return 1; 1389 } 1390 1391 return 0; 1392 } 1393 1394 void invalidate_bh_lrus(void) 1395 { 1396 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1397 } 1398 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1399 1400 void set_bh_page(struct buffer_head *bh, 1401 struct page *page, unsigned long offset) 1402 { 1403 bh->b_page = page; 1404 BUG_ON(offset >= PAGE_SIZE); 1405 if (PageHighMem(page)) 1406 /* 1407 * This catches illegal uses and preserves the offset: 1408 */ 1409 bh->b_data = (char *)(0 + offset); 1410 else 1411 bh->b_data = page_address(page) + offset; 1412 } 1413 EXPORT_SYMBOL(set_bh_page); 1414 1415 /* 1416 * Called when truncating a buffer on a page completely. 1417 */ 1418 1419 /* Bits that are cleared during an invalidate */ 1420 #define BUFFER_FLAGS_DISCARD \ 1421 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1422 1 << BH_Delay | 1 << BH_Unwritten) 1423 1424 static void discard_buffer(struct buffer_head * bh) 1425 { 1426 unsigned long b_state, b_state_old; 1427 1428 lock_buffer(bh); 1429 clear_buffer_dirty(bh); 1430 bh->b_bdev = NULL; 1431 b_state = bh->b_state; 1432 for (;;) { 1433 b_state_old = cmpxchg(&bh->b_state, b_state, 1434 (b_state & ~BUFFER_FLAGS_DISCARD)); 1435 if (b_state_old == b_state) 1436 break; 1437 b_state = b_state_old; 1438 } 1439 unlock_buffer(bh); 1440 } 1441 1442 /** 1443 * block_invalidatepage - invalidate part or all of a buffer-backed page 1444 * 1445 * @page: the page which is affected 1446 * @offset: start of the range to invalidate 1447 * @length: length of the range to invalidate 1448 * 1449 * block_invalidatepage() is called when all or part of the page has become 1450 * invalidated by a truncate operation. 1451 * 1452 * block_invalidatepage() does not have to release all buffers, but it must 1453 * ensure that no dirty buffer is left outside @offset and that no I/O 1454 * is underway against any of the blocks which are outside the truncation 1455 * point. Because the caller is about to free (and possibly reuse) those 1456 * blocks on-disk. 1457 */ 1458 void block_invalidatepage(struct page *page, unsigned int offset, 1459 unsigned int length) 1460 { 1461 struct buffer_head *head, *bh, *next; 1462 unsigned int curr_off = 0; 1463 unsigned int stop = length + offset; 1464 1465 BUG_ON(!PageLocked(page)); 1466 if (!page_has_buffers(page)) 1467 goto out; 1468 1469 /* 1470 * Check for overflow 1471 */ 1472 BUG_ON(stop > PAGE_SIZE || stop < length); 1473 1474 head = page_buffers(page); 1475 bh = head; 1476 do { 1477 unsigned int next_off = curr_off + bh->b_size; 1478 next = bh->b_this_page; 1479 1480 /* 1481 * Are we still fully in range ? 1482 */ 1483 if (next_off > stop) 1484 goto out; 1485 1486 /* 1487 * is this block fully invalidated? 1488 */ 1489 if (offset <= curr_off) 1490 discard_buffer(bh); 1491 curr_off = next_off; 1492 bh = next; 1493 } while (bh != head); 1494 1495 /* 1496 * We release buffers only if the entire page is being invalidated. 1497 * The get_block cached value has been unconditionally invalidated, 1498 * so real IO is not possible anymore. 1499 */ 1500 if (length == PAGE_SIZE) 1501 try_to_release_page(page, 0); 1502 out: 1503 return; 1504 } 1505 EXPORT_SYMBOL(block_invalidatepage); 1506 1507 1508 /* 1509 * We attach and possibly dirty the buffers atomically wrt 1510 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1511 * is already excluded via the page lock. 1512 */ 1513 void create_empty_buffers(struct page *page, 1514 unsigned long blocksize, unsigned long b_state) 1515 { 1516 struct buffer_head *bh, *head, *tail; 1517 1518 head = alloc_page_buffers(page, blocksize, true); 1519 bh = head; 1520 do { 1521 bh->b_state |= b_state; 1522 tail = bh; 1523 bh = bh->b_this_page; 1524 } while (bh); 1525 tail->b_this_page = head; 1526 1527 spin_lock(&page->mapping->private_lock); 1528 if (PageUptodate(page) || PageDirty(page)) { 1529 bh = head; 1530 do { 1531 if (PageDirty(page)) 1532 set_buffer_dirty(bh); 1533 if (PageUptodate(page)) 1534 set_buffer_uptodate(bh); 1535 bh = bh->b_this_page; 1536 } while (bh != head); 1537 } 1538 attach_page_buffers(page, head); 1539 spin_unlock(&page->mapping->private_lock); 1540 } 1541 EXPORT_SYMBOL(create_empty_buffers); 1542 1543 /** 1544 * clean_bdev_aliases: clean a range of buffers in block device 1545 * @bdev: Block device to clean buffers in 1546 * @block: Start of a range of blocks to clean 1547 * @len: Number of blocks to clean 1548 * 1549 * We are taking a range of blocks for data and we don't want writeback of any 1550 * buffer-cache aliases starting from return from this function and until the 1551 * moment when something will explicitly mark the buffer dirty (hopefully that 1552 * will not happen until we will free that block ;-) We don't even need to mark 1553 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1554 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1555 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1556 * would confuse anyone who might pick it with bread() afterwards... 1557 * 1558 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1559 * writeout I/O going on against recently-freed buffers. We don't wait on that 1560 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1561 * need to. That happens here. 1562 */ 1563 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1564 { 1565 struct inode *bd_inode = bdev->bd_inode; 1566 struct address_space *bd_mapping = bd_inode->i_mapping; 1567 struct pagevec pvec; 1568 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1569 pgoff_t end; 1570 int i, count; 1571 struct buffer_head *bh; 1572 struct buffer_head *head; 1573 1574 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1575 pagevec_init(&pvec); 1576 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1577 count = pagevec_count(&pvec); 1578 for (i = 0; i < count; i++) { 1579 struct page *page = pvec.pages[i]; 1580 1581 if (!page_has_buffers(page)) 1582 continue; 1583 /* 1584 * We use page lock instead of bd_mapping->private_lock 1585 * to pin buffers here since we can afford to sleep and 1586 * it scales better than a global spinlock lock. 1587 */ 1588 lock_page(page); 1589 /* Recheck when the page is locked which pins bhs */ 1590 if (!page_has_buffers(page)) 1591 goto unlock_page; 1592 head = page_buffers(page); 1593 bh = head; 1594 do { 1595 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1596 goto next; 1597 if (bh->b_blocknr >= block + len) 1598 break; 1599 clear_buffer_dirty(bh); 1600 wait_on_buffer(bh); 1601 clear_buffer_req(bh); 1602 next: 1603 bh = bh->b_this_page; 1604 } while (bh != head); 1605 unlock_page: 1606 unlock_page(page); 1607 } 1608 pagevec_release(&pvec); 1609 cond_resched(); 1610 /* End of range already reached? */ 1611 if (index > end || !index) 1612 break; 1613 } 1614 } 1615 EXPORT_SYMBOL(clean_bdev_aliases); 1616 1617 /* 1618 * Size is a power-of-two in the range 512..PAGE_SIZE, 1619 * and the case we care about most is PAGE_SIZE. 1620 * 1621 * So this *could* possibly be written with those 1622 * constraints in mind (relevant mostly if some 1623 * architecture has a slow bit-scan instruction) 1624 */ 1625 static inline int block_size_bits(unsigned int blocksize) 1626 { 1627 return ilog2(blocksize); 1628 } 1629 1630 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1631 { 1632 BUG_ON(!PageLocked(page)); 1633 1634 if (!page_has_buffers(page)) 1635 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1636 b_state); 1637 return page_buffers(page); 1638 } 1639 1640 /* 1641 * NOTE! All mapped/uptodate combinations are valid: 1642 * 1643 * Mapped Uptodate Meaning 1644 * 1645 * No No "unknown" - must do get_block() 1646 * No Yes "hole" - zero-filled 1647 * Yes No "allocated" - allocated on disk, not read in 1648 * Yes Yes "valid" - allocated and up-to-date in memory. 1649 * 1650 * "Dirty" is valid only with the last case (mapped+uptodate). 1651 */ 1652 1653 /* 1654 * While block_write_full_page is writing back the dirty buffers under 1655 * the page lock, whoever dirtied the buffers may decide to clean them 1656 * again at any time. We handle that by only looking at the buffer 1657 * state inside lock_buffer(). 1658 * 1659 * If block_write_full_page() is called for regular writeback 1660 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1661 * locked buffer. This only can happen if someone has written the buffer 1662 * directly, with submit_bh(). At the address_space level PageWriteback 1663 * prevents this contention from occurring. 1664 * 1665 * If block_write_full_page() is called with wbc->sync_mode == 1666 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1667 * causes the writes to be flagged as synchronous writes. 1668 */ 1669 int __block_write_full_page(struct inode *inode, struct page *page, 1670 get_block_t *get_block, struct writeback_control *wbc, 1671 bh_end_io_t *handler) 1672 { 1673 int err; 1674 sector_t block; 1675 sector_t last_block; 1676 struct buffer_head *bh, *head; 1677 unsigned int blocksize, bbits; 1678 int nr_underway = 0; 1679 int write_flags = wbc_to_write_flags(wbc); 1680 1681 head = create_page_buffers(page, inode, 1682 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1683 1684 /* 1685 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1686 * here, and the (potentially unmapped) buffers may become dirty at 1687 * any time. If a buffer becomes dirty here after we've inspected it 1688 * then we just miss that fact, and the page stays dirty. 1689 * 1690 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1691 * handle that here by just cleaning them. 1692 */ 1693 1694 bh = head; 1695 blocksize = bh->b_size; 1696 bbits = block_size_bits(blocksize); 1697 1698 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1699 last_block = (i_size_read(inode) - 1) >> bbits; 1700 1701 /* 1702 * Get all the dirty buffers mapped to disk addresses and 1703 * handle any aliases from the underlying blockdev's mapping. 1704 */ 1705 do { 1706 if (block > last_block) { 1707 /* 1708 * mapped buffers outside i_size will occur, because 1709 * this page can be outside i_size when there is a 1710 * truncate in progress. 1711 */ 1712 /* 1713 * The buffer was zeroed by block_write_full_page() 1714 */ 1715 clear_buffer_dirty(bh); 1716 set_buffer_uptodate(bh); 1717 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1718 buffer_dirty(bh)) { 1719 WARN_ON(bh->b_size != blocksize); 1720 err = get_block(inode, block, bh, 1); 1721 if (err) 1722 goto recover; 1723 clear_buffer_delay(bh); 1724 if (buffer_new(bh)) { 1725 /* blockdev mappings never come here */ 1726 clear_buffer_new(bh); 1727 clean_bdev_bh_alias(bh); 1728 } 1729 } 1730 bh = bh->b_this_page; 1731 block++; 1732 } while (bh != head); 1733 1734 do { 1735 if (!buffer_mapped(bh)) 1736 continue; 1737 /* 1738 * If it's a fully non-blocking write attempt and we cannot 1739 * lock the buffer then redirty the page. Note that this can 1740 * potentially cause a busy-wait loop from writeback threads 1741 * and kswapd activity, but those code paths have their own 1742 * higher-level throttling. 1743 */ 1744 if (wbc->sync_mode != WB_SYNC_NONE) { 1745 lock_buffer(bh); 1746 } else if (!trylock_buffer(bh)) { 1747 redirty_page_for_writepage(wbc, page); 1748 continue; 1749 } 1750 if (test_clear_buffer_dirty(bh)) { 1751 mark_buffer_async_write_endio(bh, handler); 1752 } else { 1753 unlock_buffer(bh); 1754 } 1755 } while ((bh = bh->b_this_page) != head); 1756 1757 /* 1758 * The page and its buffers are protected by PageWriteback(), so we can 1759 * drop the bh refcounts early. 1760 */ 1761 BUG_ON(PageWriteback(page)); 1762 set_page_writeback(page); 1763 1764 do { 1765 struct buffer_head *next = bh->b_this_page; 1766 if (buffer_async_write(bh)) { 1767 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1768 inode->i_write_hint, wbc); 1769 nr_underway++; 1770 } 1771 bh = next; 1772 } while (bh != head); 1773 unlock_page(page); 1774 1775 err = 0; 1776 done: 1777 if (nr_underway == 0) { 1778 /* 1779 * The page was marked dirty, but the buffers were 1780 * clean. Someone wrote them back by hand with 1781 * ll_rw_block/submit_bh. A rare case. 1782 */ 1783 end_page_writeback(page); 1784 1785 /* 1786 * The page and buffer_heads can be released at any time from 1787 * here on. 1788 */ 1789 } 1790 return err; 1791 1792 recover: 1793 /* 1794 * ENOSPC, or some other error. We may already have added some 1795 * blocks to the file, so we need to write these out to avoid 1796 * exposing stale data. 1797 * The page is currently locked and not marked for writeback 1798 */ 1799 bh = head; 1800 /* Recovery: lock and submit the mapped buffers */ 1801 do { 1802 if (buffer_mapped(bh) && buffer_dirty(bh) && 1803 !buffer_delay(bh)) { 1804 lock_buffer(bh); 1805 mark_buffer_async_write_endio(bh, handler); 1806 } else { 1807 /* 1808 * The buffer may have been set dirty during 1809 * attachment to a dirty page. 1810 */ 1811 clear_buffer_dirty(bh); 1812 } 1813 } while ((bh = bh->b_this_page) != head); 1814 SetPageError(page); 1815 BUG_ON(PageWriteback(page)); 1816 mapping_set_error(page->mapping, err); 1817 set_page_writeback(page); 1818 do { 1819 struct buffer_head *next = bh->b_this_page; 1820 if (buffer_async_write(bh)) { 1821 clear_buffer_dirty(bh); 1822 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1823 inode->i_write_hint, wbc); 1824 nr_underway++; 1825 } 1826 bh = next; 1827 } while (bh != head); 1828 unlock_page(page); 1829 goto done; 1830 } 1831 EXPORT_SYMBOL(__block_write_full_page); 1832 1833 /* 1834 * If a page has any new buffers, zero them out here, and mark them uptodate 1835 * and dirty so they'll be written out (in order to prevent uninitialised 1836 * block data from leaking). And clear the new bit. 1837 */ 1838 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1839 { 1840 unsigned int block_start, block_end; 1841 struct buffer_head *head, *bh; 1842 1843 BUG_ON(!PageLocked(page)); 1844 if (!page_has_buffers(page)) 1845 return; 1846 1847 bh = head = page_buffers(page); 1848 block_start = 0; 1849 do { 1850 block_end = block_start + bh->b_size; 1851 1852 if (buffer_new(bh)) { 1853 if (block_end > from && block_start < to) { 1854 if (!PageUptodate(page)) { 1855 unsigned start, size; 1856 1857 start = max(from, block_start); 1858 size = min(to, block_end) - start; 1859 1860 zero_user(page, start, size); 1861 set_buffer_uptodate(bh); 1862 } 1863 1864 clear_buffer_new(bh); 1865 mark_buffer_dirty(bh); 1866 } 1867 } 1868 1869 block_start = block_end; 1870 bh = bh->b_this_page; 1871 } while (bh != head); 1872 } 1873 EXPORT_SYMBOL(page_zero_new_buffers); 1874 1875 static void 1876 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1877 struct iomap *iomap) 1878 { 1879 loff_t offset = block << inode->i_blkbits; 1880 1881 bh->b_bdev = iomap->bdev; 1882 1883 /* 1884 * Block points to offset in file we need to map, iomap contains 1885 * the offset at which the map starts. If the map ends before the 1886 * current block, then do not map the buffer and let the caller 1887 * handle it. 1888 */ 1889 BUG_ON(offset >= iomap->offset + iomap->length); 1890 1891 switch (iomap->type) { 1892 case IOMAP_HOLE: 1893 /* 1894 * If the buffer is not up to date or beyond the current EOF, 1895 * we need to mark it as new to ensure sub-block zeroing is 1896 * executed if necessary. 1897 */ 1898 if (!buffer_uptodate(bh) || 1899 (offset >= i_size_read(inode))) 1900 set_buffer_new(bh); 1901 break; 1902 case IOMAP_DELALLOC: 1903 if (!buffer_uptodate(bh) || 1904 (offset >= i_size_read(inode))) 1905 set_buffer_new(bh); 1906 set_buffer_uptodate(bh); 1907 set_buffer_mapped(bh); 1908 set_buffer_delay(bh); 1909 break; 1910 case IOMAP_UNWRITTEN: 1911 /* 1912 * For unwritten regions, we always need to ensure that regions 1913 * in the block we are not writing to are zeroed. Mark the 1914 * buffer as new to ensure this. 1915 */ 1916 set_buffer_new(bh); 1917 set_buffer_unwritten(bh); 1918 /* FALLTHRU */ 1919 case IOMAP_MAPPED: 1920 if ((iomap->flags & IOMAP_F_NEW) || 1921 offset >= i_size_read(inode)) 1922 set_buffer_new(bh); 1923 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1924 inode->i_blkbits; 1925 set_buffer_mapped(bh); 1926 break; 1927 } 1928 } 1929 1930 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1931 get_block_t *get_block, struct iomap *iomap) 1932 { 1933 unsigned from = pos & (PAGE_SIZE - 1); 1934 unsigned to = from + len; 1935 struct inode *inode = page->mapping->host; 1936 unsigned block_start, block_end; 1937 sector_t block; 1938 int err = 0; 1939 unsigned blocksize, bbits; 1940 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1941 1942 BUG_ON(!PageLocked(page)); 1943 BUG_ON(from > PAGE_SIZE); 1944 BUG_ON(to > PAGE_SIZE); 1945 BUG_ON(from > to); 1946 1947 head = create_page_buffers(page, inode, 0); 1948 blocksize = head->b_size; 1949 bbits = block_size_bits(blocksize); 1950 1951 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1952 1953 for(bh = head, block_start = 0; bh != head || !block_start; 1954 block++, block_start=block_end, bh = bh->b_this_page) { 1955 block_end = block_start + blocksize; 1956 if (block_end <= from || block_start >= to) { 1957 if (PageUptodate(page)) { 1958 if (!buffer_uptodate(bh)) 1959 set_buffer_uptodate(bh); 1960 } 1961 continue; 1962 } 1963 if (buffer_new(bh)) 1964 clear_buffer_new(bh); 1965 if (!buffer_mapped(bh)) { 1966 WARN_ON(bh->b_size != blocksize); 1967 if (get_block) { 1968 err = get_block(inode, block, bh, 1); 1969 if (err) 1970 break; 1971 } else { 1972 iomap_to_bh(inode, block, bh, iomap); 1973 } 1974 1975 if (buffer_new(bh)) { 1976 clean_bdev_bh_alias(bh); 1977 if (PageUptodate(page)) { 1978 clear_buffer_new(bh); 1979 set_buffer_uptodate(bh); 1980 mark_buffer_dirty(bh); 1981 continue; 1982 } 1983 if (block_end > to || block_start < from) 1984 zero_user_segments(page, 1985 to, block_end, 1986 block_start, from); 1987 continue; 1988 } 1989 } 1990 if (PageUptodate(page)) { 1991 if (!buffer_uptodate(bh)) 1992 set_buffer_uptodate(bh); 1993 continue; 1994 } 1995 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1996 !buffer_unwritten(bh) && 1997 (block_start < from || block_end > to)) { 1998 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1999 *wait_bh++=bh; 2000 } 2001 } 2002 /* 2003 * If we issued read requests - let them complete. 2004 */ 2005 while(wait_bh > wait) { 2006 wait_on_buffer(*--wait_bh); 2007 if (!buffer_uptodate(*wait_bh)) 2008 err = -EIO; 2009 } 2010 if (unlikely(err)) 2011 page_zero_new_buffers(page, from, to); 2012 return err; 2013 } 2014 2015 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2016 get_block_t *get_block) 2017 { 2018 return __block_write_begin_int(page, pos, len, get_block, NULL); 2019 } 2020 EXPORT_SYMBOL(__block_write_begin); 2021 2022 static int __block_commit_write(struct inode *inode, struct page *page, 2023 unsigned from, unsigned to) 2024 { 2025 unsigned block_start, block_end; 2026 int partial = 0; 2027 unsigned blocksize; 2028 struct buffer_head *bh, *head; 2029 2030 bh = head = page_buffers(page); 2031 blocksize = bh->b_size; 2032 2033 block_start = 0; 2034 do { 2035 block_end = block_start + blocksize; 2036 if (block_end <= from || block_start >= to) { 2037 if (!buffer_uptodate(bh)) 2038 partial = 1; 2039 } else { 2040 set_buffer_uptodate(bh); 2041 mark_buffer_dirty(bh); 2042 } 2043 clear_buffer_new(bh); 2044 2045 block_start = block_end; 2046 bh = bh->b_this_page; 2047 } while (bh != head); 2048 2049 /* 2050 * If this is a partial write which happened to make all buffers 2051 * uptodate then we can optimize away a bogus readpage() for 2052 * the next read(). Here we 'discover' whether the page went 2053 * uptodate as a result of this (potentially partial) write. 2054 */ 2055 if (!partial) 2056 SetPageUptodate(page); 2057 return 0; 2058 } 2059 2060 /* 2061 * block_write_begin takes care of the basic task of block allocation and 2062 * bringing partial write blocks uptodate first. 2063 * 2064 * The filesystem needs to handle block truncation upon failure. 2065 */ 2066 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2067 unsigned flags, struct page **pagep, get_block_t *get_block) 2068 { 2069 pgoff_t index = pos >> PAGE_SHIFT; 2070 struct page *page; 2071 int status; 2072 2073 page = grab_cache_page_write_begin(mapping, index, flags); 2074 if (!page) 2075 return -ENOMEM; 2076 2077 status = __block_write_begin(page, pos, len, get_block); 2078 if (unlikely(status)) { 2079 unlock_page(page); 2080 put_page(page); 2081 page = NULL; 2082 } 2083 2084 *pagep = page; 2085 return status; 2086 } 2087 EXPORT_SYMBOL(block_write_begin); 2088 2089 void __generic_write_end(struct inode *inode, loff_t pos, unsigned copied, 2090 struct page *page) 2091 { 2092 loff_t old_size = inode->i_size; 2093 bool i_size_changed = false; 2094 2095 /* 2096 * No need to use i_size_read() here, the i_size cannot change under us 2097 * because we hold i_rwsem. 2098 * 2099 * But it's important to update i_size while still holding page lock: 2100 * page writeout could otherwise come in and zero beyond i_size. 2101 */ 2102 if (pos + copied > inode->i_size) { 2103 i_size_write(inode, pos + copied); 2104 i_size_changed = true; 2105 } 2106 2107 unlock_page(page); 2108 2109 if (old_size < pos) 2110 pagecache_isize_extended(inode, old_size, pos); 2111 /* 2112 * Don't mark the inode dirty under page lock. First, it unnecessarily 2113 * makes the holding time of page lock longer. Second, it forces lock 2114 * ordering of page lock and transaction start for journaling 2115 * filesystems. 2116 */ 2117 if (i_size_changed) 2118 mark_inode_dirty(inode); 2119 } 2120 2121 int block_write_end(struct file *file, struct address_space *mapping, 2122 loff_t pos, unsigned len, unsigned copied, 2123 struct page *page, void *fsdata) 2124 { 2125 struct inode *inode = mapping->host; 2126 unsigned start; 2127 2128 start = pos & (PAGE_SIZE - 1); 2129 2130 if (unlikely(copied < len)) { 2131 /* 2132 * The buffers that were written will now be uptodate, so we 2133 * don't have to worry about a readpage reading them and 2134 * overwriting a partial write. However if we have encountered 2135 * a short write and only partially written into a buffer, it 2136 * will not be marked uptodate, so a readpage might come in and 2137 * destroy our partial write. 2138 * 2139 * Do the simplest thing, and just treat any short write to a 2140 * non uptodate page as a zero-length write, and force the 2141 * caller to redo the whole thing. 2142 */ 2143 if (!PageUptodate(page)) 2144 copied = 0; 2145 2146 page_zero_new_buffers(page, start+copied, start+len); 2147 } 2148 flush_dcache_page(page); 2149 2150 /* This could be a short (even 0-length) commit */ 2151 __block_commit_write(inode, page, start, start+copied); 2152 2153 return copied; 2154 } 2155 EXPORT_SYMBOL(block_write_end); 2156 2157 int generic_write_end(struct file *file, struct address_space *mapping, 2158 loff_t pos, unsigned len, unsigned copied, 2159 struct page *page, void *fsdata) 2160 { 2161 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2162 __generic_write_end(mapping->host, pos, copied, page); 2163 put_page(page); 2164 return copied; 2165 } 2166 EXPORT_SYMBOL(generic_write_end); 2167 2168 /* 2169 * block_is_partially_uptodate checks whether buffers within a page are 2170 * uptodate or not. 2171 * 2172 * Returns true if all buffers which correspond to a file portion 2173 * we want to read are uptodate. 2174 */ 2175 int block_is_partially_uptodate(struct page *page, unsigned long from, 2176 unsigned long count) 2177 { 2178 unsigned block_start, block_end, blocksize; 2179 unsigned to; 2180 struct buffer_head *bh, *head; 2181 int ret = 1; 2182 2183 if (!page_has_buffers(page)) 2184 return 0; 2185 2186 head = page_buffers(page); 2187 blocksize = head->b_size; 2188 to = min_t(unsigned, PAGE_SIZE - from, count); 2189 to = from + to; 2190 if (from < blocksize && to > PAGE_SIZE - blocksize) 2191 return 0; 2192 2193 bh = head; 2194 block_start = 0; 2195 do { 2196 block_end = block_start + blocksize; 2197 if (block_end > from && block_start < to) { 2198 if (!buffer_uptodate(bh)) { 2199 ret = 0; 2200 break; 2201 } 2202 if (block_end >= to) 2203 break; 2204 } 2205 block_start = block_end; 2206 bh = bh->b_this_page; 2207 } while (bh != head); 2208 2209 return ret; 2210 } 2211 EXPORT_SYMBOL(block_is_partially_uptodate); 2212 2213 /* 2214 * Generic "read page" function for block devices that have the normal 2215 * get_block functionality. This is most of the block device filesystems. 2216 * Reads the page asynchronously --- the unlock_buffer() and 2217 * set/clear_buffer_uptodate() functions propagate buffer state into the 2218 * page struct once IO has completed. 2219 */ 2220 int block_read_full_page(struct page *page, get_block_t *get_block) 2221 { 2222 struct inode *inode = page->mapping->host; 2223 sector_t iblock, lblock; 2224 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2225 unsigned int blocksize, bbits; 2226 int nr, i; 2227 int fully_mapped = 1; 2228 2229 head = create_page_buffers(page, inode, 0); 2230 blocksize = head->b_size; 2231 bbits = block_size_bits(blocksize); 2232 2233 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2234 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2235 bh = head; 2236 nr = 0; 2237 i = 0; 2238 2239 do { 2240 if (buffer_uptodate(bh)) 2241 continue; 2242 2243 if (!buffer_mapped(bh)) { 2244 int err = 0; 2245 2246 fully_mapped = 0; 2247 if (iblock < lblock) { 2248 WARN_ON(bh->b_size != blocksize); 2249 err = get_block(inode, iblock, bh, 0); 2250 if (err) 2251 SetPageError(page); 2252 } 2253 if (!buffer_mapped(bh)) { 2254 zero_user(page, i * blocksize, blocksize); 2255 if (!err) 2256 set_buffer_uptodate(bh); 2257 continue; 2258 } 2259 /* 2260 * get_block() might have updated the buffer 2261 * synchronously 2262 */ 2263 if (buffer_uptodate(bh)) 2264 continue; 2265 } 2266 arr[nr++] = bh; 2267 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2268 2269 if (fully_mapped) 2270 SetPageMappedToDisk(page); 2271 2272 if (!nr) { 2273 /* 2274 * All buffers are uptodate - we can set the page uptodate 2275 * as well. But not if get_block() returned an error. 2276 */ 2277 if (!PageError(page)) 2278 SetPageUptodate(page); 2279 unlock_page(page); 2280 return 0; 2281 } 2282 2283 /* Stage two: lock the buffers */ 2284 for (i = 0; i < nr; i++) { 2285 bh = arr[i]; 2286 lock_buffer(bh); 2287 mark_buffer_async_read(bh); 2288 } 2289 2290 /* 2291 * Stage 3: start the IO. Check for uptodateness 2292 * inside the buffer lock in case another process reading 2293 * the underlying blockdev brought it uptodate (the sct fix). 2294 */ 2295 for (i = 0; i < nr; i++) { 2296 bh = arr[i]; 2297 if (buffer_uptodate(bh)) 2298 end_buffer_async_read(bh, 1); 2299 else 2300 submit_bh(REQ_OP_READ, 0, bh); 2301 } 2302 return 0; 2303 } 2304 EXPORT_SYMBOL(block_read_full_page); 2305 2306 /* utility function for filesystems that need to do work on expanding 2307 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2308 * deal with the hole. 2309 */ 2310 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2311 { 2312 struct address_space *mapping = inode->i_mapping; 2313 struct page *page; 2314 void *fsdata; 2315 int err; 2316 2317 err = inode_newsize_ok(inode, size); 2318 if (err) 2319 goto out; 2320 2321 err = pagecache_write_begin(NULL, mapping, size, 0, 2322 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2323 if (err) 2324 goto out; 2325 2326 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2327 BUG_ON(err > 0); 2328 2329 out: 2330 return err; 2331 } 2332 EXPORT_SYMBOL(generic_cont_expand_simple); 2333 2334 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2335 loff_t pos, loff_t *bytes) 2336 { 2337 struct inode *inode = mapping->host; 2338 unsigned int blocksize = i_blocksize(inode); 2339 struct page *page; 2340 void *fsdata; 2341 pgoff_t index, curidx; 2342 loff_t curpos; 2343 unsigned zerofrom, offset, len; 2344 int err = 0; 2345 2346 index = pos >> PAGE_SHIFT; 2347 offset = pos & ~PAGE_MASK; 2348 2349 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2350 zerofrom = curpos & ~PAGE_MASK; 2351 if (zerofrom & (blocksize-1)) { 2352 *bytes |= (blocksize-1); 2353 (*bytes)++; 2354 } 2355 len = PAGE_SIZE - zerofrom; 2356 2357 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2358 &page, &fsdata); 2359 if (err) 2360 goto out; 2361 zero_user(page, zerofrom, len); 2362 err = pagecache_write_end(file, mapping, curpos, len, len, 2363 page, fsdata); 2364 if (err < 0) 2365 goto out; 2366 BUG_ON(err != len); 2367 err = 0; 2368 2369 balance_dirty_pages_ratelimited(mapping); 2370 2371 if (fatal_signal_pending(current)) { 2372 err = -EINTR; 2373 goto out; 2374 } 2375 } 2376 2377 /* page covers the boundary, find the boundary offset */ 2378 if (index == curidx) { 2379 zerofrom = curpos & ~PAGE_MASK; 2380 /* if we will expand the thing last block will be filled */ 2381 if (offset <= zerofrom) { 2382 goto out; 2383 } 2384 if (zerofrom & (blocksize-1)) { 2385 *bytes |= (blocksize-1); 2386 (*bytes)++; 2387 } 2388 len = offset - zerofrom; 2389 2390 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2391 &page, &fsdata); 2392 if (err) 2393 goto out; 2394 zero_user(page, zerofrom, len); 2395 err = pagecache_write_end(file, mapping, curpos, len, len, 2396 page, fsdata); 2397 if (err < 0) 2398 goto out; 2399 BUG_ON(err != len); 2400 err = 0; 2401 } 2402 out: 2403 return err; 2404 } 2405 2406 /* 2407 * For moronic filesystems that do not allow holes in file. 2408 * We may have to extend the file. 2409 */ 2410 int cont_write_begin(struct file *file, struct address_space *mapping, 2411 loff_t pos, unsigned len, unsigned flags, 2412 struct page **pagep, void **fsdata, 2413 get_block_t *get_block, loff_t *bytes) 2414 { 2415 struct inode *inode = mapping->host; 2416 unsigned int blocksize = i_blocksize(inode); 2417 unsigned int zerofrom; 2418 int err; 2419 2420 err = cont_expand_zero(file, mapping, pos, bytes); 2421 if (err) 2422 return err; 2423 2424 zerofrom = *bytes & ~PAGE_MASK; 2425 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2426 *bytes |= (blocksize-1); 2427 (*bytes)++; 2428 } 2429 2430 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2431 } 2432 EXPORT_SYMBOL(cont_write_begin); 2433 2434 int block_commit_write(struct page *page, unsigned from, unsigned to) 2435 { 2436 struct inode *inode = page->mapping->host; 2437 __block_commit_write(inode,page,from,to); 2438 return 0; 2439 } 2440 EXPORT_SYMBOL(block_commit_write); 2441 2442 /* 2443 * block_page_mkwrite() is not allowed to change the file size as it gets 2444 * called from a page fault handler when a page is first dirtied. Hence we must 2445 * be careful to check for EOF conditions here. We set the page up correctly 2446 * for a written page which means we get ENOSPC checking when writing into 2447 * holes and correct delalloc and unwritten extent mapping on filesystems that 2448 * support these features. 2449 * 2450 * We are not allowed to take the i_mutex here so we have to play games to 2451 * protect against truncate races as the page could now be beyond EOF. Because 2452 * truncate writes the inode size before removing pages, once we have the 2453 * page lock we can determine safely if the page is beyond EOF. If it is not 2454 * beyond EOF, then the page is guaranteed safe against truncation until we 2455 * unlock the page. 2456 * 2457 * Direct callers of this function should protect against filesystem freezing 2458 * using sb_start_pagefault() - sb_end_pagefault() functions. 2459 */ 2460 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2461 get_block_t get_block) 2462 { 2463 struct page *page = vmf->page; 2464 struct inode *inode = file_inode(vma->vm_file); 2465 unsigned long end; 2466 loff_t size; 2467 int ret; 2468 2469 lock_page(page); 2470 size = i_size_read(inode); 2471 if ((page->mapping != inode->i_mapping) || 2472 (page_offset(page) > size)) { 2473 /* We overload EFAULT to mean page got truncated */ 2474 ret = -EFAULT; 2475 goto out_unlock; 2476 } 2477 2478 /* page is wholly or partially inside EOF */ 2479 if (((page->index + 1) << PAGE_SHIFT) > size) 2480 end = size & ~PAGE_MASK; 2481 else 2482 end = PAGE_SIZE; 2483 2484 ret = __block_write_begin(page, 0, end, get_block); 2485 if (!ret) 2486 ret = block_commit_write(page, 0, end); 2487 2488 if (unlikely(ret < 0)) 2489 goto out_unlock; 2490 set_page_dirty(page); 2491 wait_for_stable_page(page); 2492 return 0; 2493 out_unlock: 2494 unlock_page(page); 2495 return ret; 2496 } 2497 EXPORT_SYMBOL(block_page_mkwrite); 2498 2499 /* 2500 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2501 * immediately, while under the page lock. So it needs a special end_io 2502 * handler which does not touch the bh after unlocking it. 2503 */ 2504 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2505 { 2506 __end_buffer_read_notouch(bh, uptodate); 2507 } 2508 2509 /* 2510 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2511 * the page (converting it to circular linked list and taking care of page 2512 * dirty races). 2513 */ 2514 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2515 { 2516 struct buffer_head *bh; 2517 2518 BUG_ON(!PageLocked(page)); 2519 2520 spin_lock(&page->mapping->private_lock); 2521 bh = head; 2522 do { 2523 if (PageDirty(page)) 2524 set_buffer_dirty(bh); 2525 if (!bh->b_this_page) 2526 bh->b_this_page = head; 2527 bh = bh->b_this_page; 2528 } while (bh != head); 2529 attach_page_buffers(page, head); 2530 spin_unlock(&page->mapping->private_lock); 2531 } 2532 2533 /* 2534 * On entry, the page is fully not uptodate. 2535 * On exit the page is fully uptodate in the areas outside (from,to) 2536 * The filesystem needs to handle block truncation upon failure. 2537 */ 2538 int nobh_write_begin(struct address_space *mapping, 2539 loff_t pos, unsigned len, unsigned flags, 2540 struct page **pagep, void **fsdata, 2541 get_block_t *get_block) 2542 { 2543 struct inode *inode = mapping->host; 2544 const unsigned blkbits = inode->i_blkbits; 2545 const unsigned blocksize = 1 << blkbits; 2546 struct buffer_head *head, *bh; 2547 struct page *page; 2548 pgoff_t index; 2549 unsigned from, to; 2550 unsigned block_in_page; 2551 unsigned block_start, block_end; 2552 sector_t block_in_file; 2553 int nr_reads = 0; 2554 int ret = 0; 2555 int is_mapped_to_disk = 1; 2556 2557 index = pos >> PAGE_SHIFT; 2558 from = pos & (PAGE_SIZE - 1); 2559 to = from + len; 2560 2561 page = grab_cache_page_write_begin(mapping, index, flags); 2562 if (!page) 2563 return -ENOMEM; 2564 *pagep = page; 2565 *fsdata = NULL; 2566 2567 if (page_has_buffers(page)) { 2568 ret = __block_write_begin(page, pos, len, get_block); 2569 if (unlikely(ret)) 2570 goto out_release; 2571 return ret; 2572 } 2573 2574 if (PageMappedToDisk(page)) 2575 return 0; 2576 2577 /* 2578 * Allocate buffers so that we can keep track of state, and potentially 2579 * attach them to the page if an error occurs. In the common case of 2580 * no error, they will just be freed again without ever being attached 2581 * to the page (which is all OK, because we're under the page lock). 2582 * 2583 * Be careful: the buffer linked list is a NULL terminated one, rather 2584 * than the circular one we're used to. 2585 */ 2586 head = alloc_page_buffers(page, blocksize, false); 2587 if (!head) { 2588 ret = -ENOMEM; 2589 goto out_release; 2590 } 2591 2592 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2593 2594 /* 2595 * We loop across all blocks in the page, whether or not they are 2596 * part of the affected region. This is so we can discover if the 2597 * page is fully mapped-to-disk. 2598 */ 2599 for (block_start = 0, block_in_page = 0, bh = head; 2600 block_start < PAGE_SIZE; 2601 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2602 int create; 2603 2604 block_end = block_start + blocksize; 2605 bh->b_state = 0; 2606 create = 1; 2607 if (block_start >= to) 2608 create = 0; 2609 ret = get_block(inode, block_in_file + block_in_page, 2610 bh, create); 2611 if (ret) 2612 goto failed; 2613 if (!buffer_mapped(bh)) 2614 is_mapped_to_disk = 0; 2615 if (buffer_new(bh)) 2616 clean_bdev_bh_alias(bh); 2617 if (PageUptodate(page)) { 2618 set_buffer_uptodate(bh); 2619 continue; 2620 } 2621 if (buffer_new(bh) || !buffer_mapped(bh)) { 2622 zero_user_segments(page, block_start, from, 2623 to, block_end); 2624 continue; 2625 } 2626 if (buffer_uptodate(bh)) 2627 continue; /* reiserfs does this */ 2628 if (block_start < from || block_end > to) { 2629 lock_buffer(bh); 2630 bh->b_end_io = end_buffer_read_nobh; 2631 submit_bh(REQ_OP_READ, 0, bh); 2632 nr_reads++; 2633 } 2634 } 2635 2636 if (nr_reads) { 2637 /* 2638 * The page is locked, so these buffers are protected from 2639 * any VM or truncate activity. Hence we don't need to care 2640 * for the buffer_head refcounts. 2641 */ 2642 for (bh = head; bh; bh = bh->b_this_page) { 2643 wait_on_buffer(bh); 2644 if (!buffer_uptodate(bh)) 2645 ret = -EIO; 2646 } 2647 if (ret) 2648 goto failed; 2649 } 2650 2651 if (is_mapped_to_disk) 2652 SetPageMappedToDisk(page); 2653 2654 *fsdata = head; /* to be released by nobh_write_end */ 2655 2656 return 0; 2657 2658 failed: 2659 BUG_ON(!ret); 2660 /* 2661 * Error recovery is a bit difficult. We need to zero out blocks that 2662 * were newly allocated, and dirty them to ensure they get written out. 2663 * Buffers need to be attached to the page at this point, otherwise 2664 * the handling of potential IO errors during writeout would be hard 2665 * (could try doing synchronous writeout, but what if that fails too?) 2666 */ 2667 attach_nobh_buffers(page, head); 2668 page_zero_new_buffers(page, from, to); 2669 2670 out_release: 2671 unlock_page(page); 2672 put_page(page); 2673 *pagep = NULL; 2674 2675 return ret; 2676 } 2677 EXPORT_SYMBOL(nobh_write_begin); 2678 2679 int nobh_write_end(struct file *file, struct address_space *mapping, 2680 loff_t pos, unsigned len, unsigned copied, 2681 struct page *page, void *fsdata) 2682 { 2683 struct inode *inode = page->mapping->host; 2684 struct buffer_head *head = fsdata; 2685 struct buffer_head *bh; 2686 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2687 2688 if (unlikely(copied < len) && head) 2689 attach_nobh_buffers(page, head); 2690 if (page_has_buffers(page)) 2691 return generic_write_end(file, mapping, pos, len, 2692 copied, page, fsdata); 2693 2694 SetPageUptodate(page); 2695 set_page_dirty(page); 2696 if (pos+copied > inode->i_size) { 2697 i_size_write(inode, pos+copied); 2698 mark_inode_dirty(inode); 2699 } 2700 2701 unlock_page(page); 2702 put_page(page); 2703 2704 while (head) { 2705 bh = head; 2706 head = head->b_this_page; 2707 free_buffer_head(bh); 2708 } 2709 2710 return copied; 2711 } 2712 EXPORT_SYMBOL(nobh_write_end); 2713 2714 /* 2715 * nobh_writepage() - based on block_full_write_page() except 2716 * that it tries to operate without attaching bufferheads to 2717 * the page. 2718 */ 2719 int nobh_writepage(struct page *page, get_block_t *get_block, 2720 struct writeback_control *wbc) 2721 { 2722 struct inode * const inode = page->mapping->host; 2723 loff_t i_size = i_size_read(inode); 2724 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2725 unsigned offset; 2726 int ret; 2727 2728 /* Is the page fully inside i_size? */ 2729 if (page->index < end_index) 2730 goto out; 2731 2732 /* Is the page fully outside i_size? (truncate in progress) */ 2733 offset = i_size & (PAGE_SIZE-1); 2734 if (page->index >= end_index+1 || !offset) { 2735 /* 2736 * The page may have dirty, unmapped buffers. For example, 2737 * they may have been added in ext3_writepage(). Make them 2738 * freeable here, so the page does not leak. 2739 */ 2740 #if 0 2741 /* Not really sure about this - do we need this ? */ 2742 if (page->mapping->a_ops->invalidatepage) 2743 page->mapping->a_ops->invalidatepage(page, offset); 2744 #endif 2745 unlock_page(page); 2746 return 0; /* don't care */ 2747 } 2748 2749 /* 2750 * The page straddles i_size. It must be zeroed out on each and every 2751 * writepage invocation because it may be mmapped. "A file is mapped 2752 * in multiples of the page size. For a file that is not a multiple of 2753 * the page size, the remaining memory is zeroed when mapped, and 2754 * writes to that region are not written out to the file." 2755 */ 2756 zero_user_segment(page, offset, PAGE_SIZE); 2757 out: 2758 ret = mpage_writepage(page, get_block, wbc); 2759 if (ret == -EAGAIN) 2760 ret = __block_write_full_page(inode, page, get_block, wbc, 2761 end_buffer_async_write); 2762 return ret; 2763 } 2764 EXPORT_SYMBOL(nobh_writepage); 2765 2766 int nobh_truncate_page(struct address_space *mapping, 2767 loff_t from, get_block_t *get_block) 2768 { 2769 pgoff_t index = from >> PAGE_SHIFT; 2770 unsigned offset = from & (PAGE_SIZE-1); 2771 unsigned blocksize; 2772 sector_t iblock; 2773 unsigned length, pos; 2774 struct inode *inode = mapping->host; 2775 struct page *page; 2776 struct buffer_head map_bh; 2777 int err; 2778 2779 blocksize = i_blocksize(inode); 2780 length = offset & (blocksize - 1); 2781 2782 /* Block boundary? Nothing to do */ 2783 if (!length) 2784 return 0; 2785 2786 length = blocksize - length; 2787 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2788 2789 page = grab_cache_page(mapping, index); 2790 err = -ENOMEM; 2791 if (!page) 2792 goto out; 2793 2794 if (page_has_buffers(page)) { 2795 has_buffers: 2796 unlock_page(page); 2797 put_page(page); 2798 return block_truncate_page(mapping, from, get_block); 2799 } 2800 2801 /* Find the buffer that contains "offset" */ 2802 pos = blocksize; 2803 while (offset >= pos) { 2804 iblock++; 2805 pos += blocksize; 2806 } 2807 2808 map_bh.b_size = blocksize; 2809 map_bh.b_state = 0; 2810 err = get_block(inode, iblock, &map_bh, 0); 2811 if (err) 2812 goto unlock; 2813 /* unmapped? It's a hole - nothing to do */ 2814 if (!buffer_mapped(&map_bh)) 2815 goto unlock; 2816 2817 /* Ok, it's mapped. Make sure it's up-to-date */ 2818 if (!PageUptodate(page)) { 2819 err = mapping->a_ops->readpage(NULL, page); 2820 if (err) { 2821 put_page(page); 2822 goto out; 2823 } 2824 lock_page(page); 2825 if (!PageUptodate(page)) { 2826 err = -EIO; 2827 goto unlock; 2828 } 2829 if (page_has_buffers(page)) 2830 goto has_buffers; 2831 } 2832 zero_user(page, offset, length); 2833 set_page_dirty(page); 2834 err = 0; 2835 2836 unlock: 2837 unlock_page(page); 2838 put_page(page); 2839 out: 2840 return err; 2841 } 2842 EXPORT_SYMBOL(nobh_truncate_page); 2843 2844 int block_truncate_page(struct address_space *mapping, 2845 loff_t from, get_block_t *get_block) 2846 { 2847 pgoff_t index = from >> PAGE_SHIFT; 2848 unsigned offset = from & (PAGE_SIZE-1); 2849 unsigned blocksize; 2850 sector_t iblock; 2851 unsigned length, pos; 2852 struct inode *inode = mapping->host; 2853 struct page *page; 2854 struct buffer_head *bh; 2855 int err; 2856 2857 blocksize = i_blocksize(inode); 2858 length = offset & (blocksize - 1); 2859 2860 /* Block boundary? Nothing to do */ 2861 if (!length) 2862 return 0; 2863 2864 length = blocksize - length; 2865 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2866 2867 page = grab_cache_page(mapping, index); 2868 err = -ENOMEM; 2869 if (!page) 2870 goto out; 2871 2872 if (!page_has_buffers(page)) 2873 create_empty_buffers(page, blocksize, 0); 2874 2875 /* Find the buffer that contains "offset" */ 2876 bh = page_buffers(page); 2877 pos = blocksize; 2878 while (offset >= pos) { 2879 bh = bh->b_this_page; 2880 iblock++; 2881 pos += blocksize; 2882 } 2883 2884 err = 0; 2885 if (!buffer_mapped(bh)) { 2886 WARN_ON(bh->b_size != blocksize); 2887 err = get_block(inode, iblock, bh, 0); 2888 if (err) 2889 goto unlock; 2890 /* unmapped? It's a hole - nothing to do */ 2891 if (!buffer_mapped(bh)) 2892 goto unlock; 2893 } 2894 2895 /* Ok, it's mapped. Make sure it's up-to-date */ 2896 if (PageUptodate(page)) 2897 set_buffer_uptodate(bh); 2898 2899 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2900 err = -EIO; 2901 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2902 wait_on_buffer(bh); 2903 /* Uhhuh. Read error. Complain and punt. */ 2904 if (!buffer_uptodate(bh)) 2905 goto unlock; 2906 } 2907 2908 zero_user(page, offset, length); 2909 mark_buffer_dirty(bh); 2910 err = 0; 2911 2912 unlock: 2913 unlock_page(page); 2914 put_page(page); 2915 out: 2916 return err; 2917 } 2918 EXPORT_SYMBOL(block_truncate_page); 2919 2920 /* 2921 * The generic ->writepage function for buffer-backed address_spaces 2922 */ 2923 int block_write_full_page(struct page *page, get_block_t *get_block, 2924 struct writeback_control *wbc) 2925 { 2926 struct inode * const inode = page->mapping->host; 2927 loff_t i_size = i_size_read(inode); 2928 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2929 unsigned offset; 2930 2931 /* Is the page fully inside i_size? */ 2932 if (page->index < end_index) 2933 return __block_write_full_page(inode, page, get_block, wbc, 2934 end_buffer_async_write); 2935 2936 /* Is the page fully outside i_size? (truncate in progress) */ 2937 offset = i_size & (PAGE_SIZE-1); 2938 if (page->index >= end_index+1 || !offset) { 2939 /* 2940 * The page may have dirty, unmapped buffers. For example, 2941 * they may have been added in ext3_writepage(). Make them 2942 * freeable here, so the page does not leak. 2943 */ 2944 do_invalidatepage(page, 0, PAGE_SIZE); 2945 unlock_page(page); 2946 return 0; /* don't care */ 2947 } 2948 2949 /* 2950 * The page straddles i_size. It must be zeroed out on each and every 2951 * writepage invocation because it may be mmapped. "A file is mapped 2952 * in multiples of the page size. For a file that is not a multiple of 2953 * the page size, the remaining memory is zeroed when mapped, and 2954 * writes to that region are not written out to the file." 2955 */ 2956 zero_user_segment(page, offset, PAGE_SIZE); 2957 return __block_write_full_page(inode, page, get_block, wbc, 2958 end_buffer_async_write); 2959 } 2960 EXPORT_SYMBOL(block_write_full_page); 2961 2962 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2963 get_block_t *get_block) 2964 { 2965 struct inode *inode = mapping->host; 2966 struct buffer_head tmp = { 2967 .b_size = i_blocksize(inode), 2968 }; 2969 2970 get_block(inode, block, &tmp, 0); 2971 return tmp.b_blocknr; 2972 } 2973 EXPORT_SYMBOL(generic_block_bmap); 2974 2975 static void end_bio_bh_io_sync(struct bio *bio) 2976 { 2977 struct buffer_head *bh = bio->bi_private; 2978 2979 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2980 set_bit(BH_Quiet, &bh->b_state); 2981 2982 bh->b_end_io(bh, !bio->bi_status); 2983 bio_put(bio); 2984 } 2985 2986 /* 2987 * This allows us to do IO even on the odd last sectors 2988 * of a device, even if the block size is some multiple 2989 * of the physical sector size. 2990 * 2991 * We'll just truncate the bio to the size of the device, 2992 * and clear the end of the buffer head manually. 2993 * 2994 * Truly out-of-range accesses will turn into actual IO 2995 * errors, this only handles the "we need to be able to 2996 * do IO at the final sector" case. 2997 */ 2998 void guard_bio_eod(int op, struct bio *bio) 2999 { 3000 sector_t maxsector; 3001 struct bio_vec *bvec = bio_last_bvec_all(bio); 3002 unsigned truncated_bytes; 3003 struct hd_struct *part; 3004 3005 rcu_read_lock(); 3006 part = __disk_get_part(bio->bi_disk, bio->bi_partno); 3007 if (part) 3008 maxsector = part_nr_sects_read(part); 3009 else 3010 maxsector = get_capacity(bio->bi_disk); 3011 rcu_read_unlock(); 3012 3013 if (!maxsector) 3014 return; 3015 3016 /* 3017 * If the *whole* IO is past the end of the device, 3018 * let it through, and the IO layer will turn it into 3019 * an EIO. 3020 */ 3021 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3022 return; 3023 3024 maxsector -= bio->bi_iter.bi_sector; 3025 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3026 return; 3027 3028 /* Uhhuh. We've got a bio that straddles the device size! */ 3029 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3030 3031 /* 3032 * The bio contains more than one segment which spans EOD, just return 3033 * and let IO layer turn it into an EIO 3034 */ 3035 if (truncated_bytes > bvec->bv_len) 3036 return; 3037 3038 /* Truncate the bio.. */ 3039 bio->bi_iter.bi_size -= truncated_bytes; 3040 bvec->bv_len -= truncated_bytes; 3041 3042 /* ..and clear the end of the buffer for reads */ 3043 if (op == REQ_OP_READ) { 3044 struct bio_vec bv; 3045 3046 mp_bvec_last_segment(bvec, &bv); 3047 zero_user(bv.bv_page, bv.bv_offset + bv.bv_len, 3048 truncated_bytes); 3049 } 3050 } 3051 3052 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3053 enum rw_hint write_hint, struct writeback_control *wbc) 3054 { 3055 struct bio *bio; 3056 3057 BUG_ON(!buffer_locked(bh)); 3058 BUG_ON(!buffer_mapped(bh)); 3059 BUG_ON(!bh->b_end_io); 3060 BUG_ON(buffer_delay(bh)); 3061 BUG_ON(buffer_unwritten(bh)); 3062 3063 /* 3064 * Only clear out a write error when rewriting 3065 */ 3066 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3067 clear_buffer_write_io_error(bh); 3068 3069 /* 3070 * from here on down, it's all bio -- do the initial mapping, 3071 * submit_bio -> generic_make_request may further map this bio around 3072 */ 3073 bio = bio_alloc(GFP_NOIO, 1); 3074 3075 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3076 bio_set_dev(bio, bh->b_bdev); 3077 bio->bi_write_hint = write_hint; 3078 3079 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3080 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3081 3082 bio->bi_end_io = end_bio_bh_io_sync; 3083 bio->bi_private = bh; 3084 3085 /* Take care of bh's that straddle the end of the device */ 3086 guard_bio_eod(op, bio); 3087 3088 if (buffer_meta(bh)) 3089 op_flags |= REQ_META; 3090 if (buffer_prio(bh)) 3091 op_flags |= REQ_PRIO; 3092 bio_set_op_attrs(bio, op, op_flags); 3093 3094 if (wbc) { 3095 wbc_init_bio(wbc, bio); 3096 wbc_account_io(wbc, bh->b_page, bh->b_size); 3097 } 3098 3099 submit_bio(bio); 3100 return 0; 3101 } 3102 3103 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3104 { 3105 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3106 } 3107 EXPORT_SYMBOL(submit_bh); 3108 3109 /** 3110 * ll_rw_block: low-level access to block devices (DEPRECATED) 3111 * @op: whether to %READ or %WRITE 3112 * @op_flags: req_flag_bits 3113 * @nr: number of &struct buffer_heads in the array 3114 * @bhs: array of pointers to &struct buffer_head 3115 * 3116 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3117 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3118 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3119 * %REQ_RAHEAD. 3120 * 3121 * This function drops any buffer that it cannot get a lock on (with the 3122 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3123 * request, and any buffer that appears to be up-to-date when doing read 3124 * request. Further it marks as clean buffers that are processed for 3125 * writing (the buffer cache won't assume that they are actually clean 3126 * until the buffer gets unlocked). 3127 * 3128 * ll_rw_block sets b_end_io to simple completion handler that marks 3129 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3130 * any waiters. 3131 * 3132 * All of the buffers must be for the same device, and must also be a 3133 * multiple of the current approved size for the device. 3134 */ 3135 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3136 { 3137 int i; 3138 3139 for (i = 0; i < nr; i++) { 3140 struct buffer_head *bh = bhs[i]; 3141 3142 if (!trylock_buffer(bh)) 3143 continue; 3144 if (op == WRITE) { 3145 if (test_clear_buffer_dirty(bh)) { 3146 bh->b_end_io = end_buffer_write_sync; 3147 get_bh(bh); 3148 submit_bh(op, op_flags, bh); 3149 continue; 3150 } 3151 } else { 3152 if (!buffer_uptodate(bh)) { 3153 bh->b_end_io = end_buffer_read_sync; 3154 get_bh(bh); 3155 submit_bh(op, op_flags, bh); 3156 continue; 3157 } 3158 } 3159 unlock_buffer(bh); 3160 } 3161 } 3162 EXPORT_SYMBOL(ll_rw_block); 3163 3164 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3165 { 3166 lock_buffer(bh); 3167 if (!test_clear_buffer_dirty(bh)) { 3168 unlock_buffer(bh); 3169 return; 3170 } 3171 bh->b_end_io = end_buffer_write_sync; 3172 get_bh(bh); 3173 submit_bh(REQ_OP_WRITE, op_flags, bh); 3174 } 3175 EXPORT_SYMBOL(write_dirty_buffer); 3176 3177 /* 3178 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3179 * and then start new I/O and then wait upon it. The caller must have a ref on 3180 * the buffer_head. 3181 */ 3182 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3183 { 3184 int ret = 0; 3185 3186 WARN_ON(atomic_read(&bh->b_count) < 1); 3187 lock_buffer(bh); 3188 if (test_clear_buffer_dirty(bh)) { 3189 get_bh(bh); 3190 bh->b_end_io = end_buffer_write_sync; 3191 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3192 wait_on_buffer(bh); 3193 if (!ret && !buffer_uptodate(bh)) 3194 ret = -EIO; 3195 } else { 3196 unlock_buffer(bh); 3197 } 3198 return ret; 3199 } 3200 EXPORT_SYMBOL(__sync_dirty_buffer); 3201 3202 int sync_dirty_buffer(struct buffer_head *bh) 3203 { 3204 return __sync_dirty_buffer(bh, REQ_SYNC); 3205 } 3206 EXPORT_SYMBOL(sync_dirty_buffer); 3207 3208 /* 3209 * try_to_free_buffers() checks if all the buffers on this particular page 3210 * are unused, and releases them if so. 3211 * 3212 * Exclusion against try_to_free_buffers may be obtained by either 3213 * locking the page or by holding its mapping's private_lock. 3214 * 3215 * If the page is dirty but all the buffers are clean then we need to 3216 * be sure to mark the page clean as well. This is because the page 3217 * may be against a block device, and a later reattachment of buffers 3218 * to a dirty page will set *all* buffers dirty. Which would corrupt 3219 * filesystem data on the same device. 3220 * 3221 * The same applies to regular filesystem pages: if all the buffers are 3222 * clean then we set the page clean and proceed. To do that, we require 3223 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3224 * private_lock. 3225 * 3226 * try_to_free_buffers() is non-blocking. 3227 */ 3228 static inline int buffer_busy(struct buffer_head *bh) 3229 { 3230 return atomic_read(&bh->b_count) | 3231 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3232 } 3233 3234 static int 3235 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3236 { 3237 struct buffer_head *head = page_buffers(page); 3238 struct buffer_head *bh; 3239 3240 bh = head; 3241 do { 3242 if (buffer_busy(bh)) 3243 goto failed; 3244 bh = bh->b_this_page; 3245 } while (bh != head); 3246 3247 do { 3248 struct buffer_head *next = bh->b_this_page; 3249 3250 if (bh->b_assoc_map) 3251 __remove_assoc_queue(bh); 3252 bh = next; 3253 } while (bh != head); 3254 *buffers_to_free = head; 3255 __clear_page_buffers(page); 3256 return 1; 3257 failed: 3258 return 0; 3259 } 3260 3261 int try_to_free_buffers(struct page *page) 3262 { 3263 struct address_space * const mapping = page->mapping; 3264 struct buffer_head *buffers_to_free = NULL; 3265 int ret = 0; 3266 3267 BUG_ON(!PageLocked(page)); 3268 if (PageWriteback(page)) 3269 return 0; 3270 3271 if (mapping == NULL) { /* can this still happen? */ 3272 ret = drop_buffers(page, &buffers_to_free); 3273 goto out; 3274 } 3275 3276 spin_lock(&mapping->private_lock); 3277 ret = drop_buffers(page, &buffers_to_free); 3278 3279 /* 3280 * If the filesystem writes its buffers by hand (eg ext3) 3281 * then we can have clean buffers against a dirty page. We 3282 * clean the page here; otherwise the VM will never notice 3283 * that the filesystem did any IO at all. 3284 * 3285 * Also, during truncate, discard_buffer will have marked all 3286 * the page's buffers clean. We discover that here and clean 3287 * the page also. 3288 * 3289 * private_lock must be held over this entire operation in order 3290 * to synchronise against __set_page_dirty_buffers and prevent the 3291 * dirty bit from being lost. 3292 */ 3293 if (ret) 3294 cancel_dirty_page(page); 3295 spin_unlock(&mapping->private_lock); 3296 out: 3297 if (buffers_to_free) { 3298 struct buffer_head *bh = buffers_to_free; 3299 3300 do { 3301 struct buffer_head *next = bh->b_this_page; 3302 free_buffer_head(bh); 3303 bh = next; 3304 } while (bh != buffers_to_free); 3305 } 3306 return ret; 3307 } 3308 EXPORT_SYMBOL(try_to_free_buffers); 3309 3310 /* 3311 * There are no bdflush tunables left. But distributions are 3312 * still running obsolete flush daemons, so we terminate them here. 3313 * 3314 * Use of bdflush() is deprecated and will be removed in a future kernel. 3315 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3316 */ 3317 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3318 { 3319 static int msg_count; 3320 3321 if (!capable(CAP_SYS_ADMIN)) 3322 return -EPERM; 3323 3324 if (msg_count < 5) { 3325 msg_count++; 3326 printk(KERN_INFO 3327 "warning: process `%s' used the obsolete bdflush" 3328 " system call\n", current->comm); 3329 printk(KERN_INFO "Fix your initscripts?\n"); 3330 } 3331 3332 if (func == 1) 3333 do_exit(0); 3334 return 0; 3335 } 3336 3337 /* 3338 * Buffer-head allocation 3339 */ 3340 static struct kmem_cache *bh_cachep __read_mostly; 3341 3342 /* 3343 * Once the number of bh's in the machine exceeds this level, we start 3344 * stripping them in writeback. 3345 */ 3346 static unsigned long max_buffer_heads; 3347 3348 int buffer_heads_over_limit; 3349 3350 struct bh_accounting { 3351 int nr; /* Number of live bh's */ 3352 int ratelimit; /* Limit cacheline bouncing */ 3353 }; 3354 3355 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3356 3357 static void recalc_bh_state(void) 3358 { 3359 int i; 3360 int tot = 0; 3361 3362 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3363 return; 3364 __this_cpu_write(bh_accounting.ratelimit, 0); 3365 for_each_online_cpu(i) 3366 tot += per_cpu(bh_accounting, i).nr; 3367 buffer_heads_over_limit = (tot > max_buffer_heads); 3368 } 3369 3370 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3371 { 3372 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3373 if (ret) { 3374 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3375 preempt_disable(); 3376 __this_cpu_inc(bh_accounting.nr); 3377 recalc_bh_state(); 3378 preempt_enable(); 3379 } 3380 return ret; 3381 } 3382 EXPORT_SYMBOL(alloc_buffer_head); 3383 3384 void free_buffer_head(struct buffer_head *bh) 3385 { 3386 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3387 kmem_cache_free(bh_cachep, bh); 3388 preempt_disable(); 3389 __this_cpu_dec(bh_accounting.nr); 3390 recalc_bh_state(); 3391 preempt_enable(); 3392 } 3393 EXPORT_SYMBOL(free_buffer_head); 3394 3395 static int buffer_exit_cpu_dead(unsigned int cpu) 3396 { 3397 int i; 3398 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3399 3400 for (i = 0; i < BH_LRU_SIZE; i++) { 3401 brelse(b->bhs[i]); 3402 b->bhs[i] = NULL; 3403 } 3404 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3405 per_cpu(bh_accounting, cpu).nr = 0; 3406 return 0; 3407 } 3408 3409 /** 3410 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3411 * @bh: struct buffer_head 3412 * 3413 * Return true if the buffer is up-to-date and false, 3414 * with the buffer locked, if not. 3415 */ 3416 int bh_uptodate_or_lock(struct buffer_head *bh) 3417 { 3418 if (!buffer_uptodate(bh)) { 3419 lock_buffer(bh); 3420 if (!buffer_uptodate(bh)) 3421 return 0; 3422 unlock_buffer(bh); 3423 } 3424 return 1; 3425 } 3426 EXPORT_SYMBOL(bh_uptodate_or_lock); 3427 3428 /** 3429 * bh_submit_read - Submit a locked buffer for reading 3430 * @bh: struct buffer_head 3431 * 3432 * Returns zero on success and -EIO on error. 3433 */ 3434 int bh_submit_read(struct buffer_head *bh) 3435 { 3436 BUG_ON(!buffer_locked(bh)); 3437 3438 if (buffer_uptodate(bh)) { 3439 unlock_buffer(bh); 3440 return 0; 3441 } 3442 3443 get_bh(bh); 3444 bh->b_end_io = end_buffer_read_sync; 3445 submit_bh(REQ_OP_READ, 0, bh); 3446 wait_on_buffer(bh); 3447 if (buffer_uptodate(bh)) 3448 return 0; 3449 return -EIO; 3450 } 3451 EXPORT_SYMBOL(bh_submit_read); 3452 3453 void __init buffer_init(void) 3454 { 3455 unsigned long nrpages; 3456 int ret; 3457 3458 bh_cachep = kmem_cache_create("buffer_head", 3459 sizeof(struct buffer_head), 0, 3460 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3461 SLAB_MEM_SPREAD), 3462 NULL); 3463 3464 /* 3465 * Limit the bh occupancy to 10% of ZONE_NORMAL 3466 */ 3467 nrpages = (nr_free_buffer_pages() * 10) / 100; 3468 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3469 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3470 NULL, buffer_exit_cpu_dead); 3471 WARN_ON(ret < 0); 3472 } 3473