xref: /linux/fs/buffer.c (revision 60b2737de1b1ddfdb90f3ba622634eb49d6f3603)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/mm.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 
44 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
45 static void invalidate_bh_lrus(void);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 
56 static int sync_buffer(void *word)
57 {
58 	struct block_device *bd;
59 	struct buffer_head *bh
60 		= container_of(word, struct buffer_head, b_state);
61 
62 	smp_mb();
63 	bd = bh->b_bdev;
64 	if (bd)
65 		blk_run_address_space(bd->bd_inode->i_mapping);
66 	io_schedule();
67 	return 0;
68 }
69 
70 void fastcall __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void fastcall unlock_buffer(struct buffer_head *bh)
78 {
79 	clear_buffer_locked(bh);
80 	smp_mb__after_clear_bit();
81 	wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 
84 /*
85  * Block until a buffer comes unlocked.  This doesn't stop it
86  * from becoming locked again - you have to lock it yourself
87  * if you want to preserve its state.
88  */
89 void __wait_on_buffer(struct buffer_head * bh)
90 {
91 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92 }
93 
94 static void
95 __clear_page_buffers(struct page *page)
96 {
97 	ClearPagePrivate(page);
98 	page->private = 0;
99 	page_cache_release(page);
100 }
101 
102 static void buffer_io_error(struct buffer_head *bh)
103 {
104 	char b[BDEVNAME_SIZE];
105 
106 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
107 			bdevname(bh->b_bdev, b),
108 			(unsigned long long)bh->b_blocknr);
109 }
110 
111 /*
112  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
113  * unlock the buffer. This is what ll_rw_block uses too.
114  */
115 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
116 {
117 	if (uptodate) {
118 		set_buffer_uptodate(bh);
119 	} else {
120 		/* This happens, due to failed READA attempts. */
121 		clear_buffer_uptodate(bh);
122 	}
123 	unlock_buffer(bh);
124 	put_bh(bh);
125 }
126 
127 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
128 {
129 	char b[BDEVNAME_SIZE];
130 
131 	if (uptodate) {
132 		set_buffer_uptodate(bh);
133 	} else {
134 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
135 			buffer_io_error(bh);
136 			printk(KERN_WARNING "lost page write due to "
137 					"I/O error on %s\n",
138 				       bdevname(bh->b_bdev, b));
139 		}
140 		set_buffer_write_io_error(bh);
141 		clear_buffer_uptodate(bh);
142 	}
143 	unlock_buffer(bh);
144 	put_bh(bh);
145 }
146 
147 /*
148  * Write out and wait upon all the dirty data associated with a block
149  * device via its mapping.  Does not take the superblock lock.
150  */
151 int sync_blockdev(struct block_device *bdev)
152 {
153 	int ret = 0;
154 
155 	if (bdev) {
156 		int err;
157 
158 		ret = filemap_fdatawrite(bdev->bd_inode->i_mapping);
159 		err = filemap_fdatawait(bdev->bd_inode->i_mapping);
160 		if (!ret)
161 			ret = err;
162 	}
163 	return ret;
164 }
165 EXPORT_SYMBOL(sync_blockdev);
166 
167 /*
168  * Write out and wait upon all dirty data associated with this
169  * superblock.  Filesystem data as well as the underlying block
170  * device.  Takes the superblock lock.
171  */
172 int fsync_super(struct super_block *sb)
173 {
174 	sync_inodes_sb(sb, 0);
175 	DQUOT_SYNC(sb);
176 	lock_super(sb);
177 	if (sb->s_dirt && sb->s_op->write_super)
178 		sb->s_op->write_super(sb);
179 	unlock_super(sb);
180 	if (sb->s_op->sync_fs)
181 		sb->s_op->sync_fs(sb, 1);
182 	sync_blockdev(sb->s_bdev);
183 	sync_inodes_sb(sb, 1);
184 
185 	return sync_blockdev(sb->s_bdev);
186 }
187 
188 /*
189  * Write out and wait upon all dirty data associated with this
190  * device.   Filesystem data as well as the underlying block
191  * device.  Takes the superblock lock.
192  */
193 int fsync_bdev(struct block_device *bdev)
194 {
195 	struct super_block *sb = get_super(bdev);
196 	if (sb) {
197 		int res = fsync_super(sb);
198 		drop_super(sb);
199 		return res;
200 	}
201 	return sync_blockdev(bdev);
202 }
203 
204 /**
205  * freeze_bdev  --  lock a filesystem and force it into a consistent state
206  * @bdev:	blockdevice to lock
207  *
208  * This takes the block device bd_mount_sem to make sure no new mounts
209  * happen on bdev until thaw_bdev() is called.
210  * If a superblock is found on this device, we take the s_umount semaphore
211  * on it to make sure nobody unmounts until the snapshot creation is done.
212  */
213 struct super_block *freeze_bdev(struct block_device *bdev)
214 {
215 	struct super_block *sb;
216 
217 	down(&bdev->bd_mount_sem);
218 	sb = get_super(bdev);
219 	if (sb && !(sb->s_flags & MS_RDONLY)) {
220 		sb->s_frozen = SB_FREEZE_WRITE;
221 		smp_wmb();
222 
223 		sync_inodes_sb(sb, 0);
224 		DQUOT_SYNC(sb);
225 
226 		lock_super(sb);
227 		if (sb->s_dirt && sb->s_op->write_super)
228 			sb->s_op->write_super(sb);
229 		unlock_super(sb);
230 
231 		if (sb->s_op->sync_fs)
232 			sb->s_op->sync_fs(sb, 1);
233 
234 		sync_blockdev(sb->s_bdev);
235 		sync_inodes_sb(sb, 1);
236 
237 		sb->s_frozen = SB_FREEZE_TRANS;
238 		smp_wmb();
239 
240 		sync_blockdev(sb->s_bdev);
241 
242 		if (sb->s_op->write_super_lockfs)
243 			sb->s_op->write_super_lockfs(sb);
244 	}
245 
246 	sync_blockdev(bdev);
247 	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
248 }
249 EXPORT_SYMBOL(freeze_bdev);
250 
251 /**
252  * thaw_bdev  -- unlock filesystem
253  * @bdev:	blockdevice to unlock
254  * @sb:		associated superblock
255  *
256  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
257  */
258 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
259 {
260 	if (sb) {
261 		BUG_ON(sb->s_bdev != bdev);
262 
263 		if (sb->s_op->unlockfs)
264 			sb->s_op->unlockfs(sb);
265 		sb->s_frozen = SB_UNFROZEN;
266 		smp_wmb();
267 		wake_up(&sb->s_wait_unfrozen);
268 		drop_super(sb);
269 	}
270 
271 	up(&bdev->bd_mount_sem);
272 }
273 EXPORT_SYMBOL(thaw_bdev);
274 
275 /*
276  * sync everything.  Start out by waking pdflush, because that writes back
277  * all queues in parallel.
278  */
279 static void do_sync(unsigned long wait)
280 {
281 	wakeup_bdflush(0);
282 	sync_inodes(0);		/* All mappings, inodes and their blockdevs */
283 	DQUOT_SYNC(NULL);
284 	sync_supers();		/* Write the superblocks */
285 	sync_filesystems(0);	/* Start syncing the filesystems */
286 	sync_filesystems(wait);	/* Waitingly sync the filesystems */
287 	sync_inodes(wait);	/* Mappings, inodes and blockdevs, again. */
288 	if (!wait)
289 		printk("Emergency Sync complete\n");
290 	if (unlikely(laptop_mode))
291 		laptop_sync_completion();
292 }
293 
294 asmlinkage long sys_sync(void)
295 {
296 	do_sync(1);
297 	return 0;
298 }
299 
300 void emergency_sync(void)
301 {
302 	pdflush_operation(do_sync, 0);
303 }
304 
305 /*
306  * Generic function to fsync a file.
307  *
308  * filp may be NULL if called via the msync of a vma.
309  */
310 
311 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
312 {
313 	struct inode * inode = dentry->d_inode;
314 	struct super_block * sb;
315 	int ret, err;
316 
317 	/* sync the inode to buffers */
318 	ret = write_inode_now(inode, 0);
319 
320 	/* sync the superblock to buffers */
321 	sb = inode->i_sb;
322 	lock_super(sb);
323 	if (sb->s_op->write_super)
324 		sb->s_op->write_super(sb);
325 	unlock_super(sb);
326 
327 	/* .. finally sync the buffers to disk */
328 	err = sync_blockdev(sb->s_bdev);
329 	if (!ret)
330 		ret = err;
331 	return ret;
332 }
333 
334 asmlinkage long sys_fsync(unsigned int fd)
335 {
336 	struct file * file;
337 	struct address_space *mapping;
338 	int ret, err;
339 
340 	ret = -EBADF;
341 	file = fget(fd);
342 	if (!file)
343 		goto out;
344 
345 	mapping = file->f_mapping;
346 
347 	ret = -EINVAL;
348 	if (!file->f_op || !file->f_op->fsync) {
349 		/* Why?  We can still call filemap_fdatawrite */
350 		goto out_putf;
351 	}
352 
353 	current->flags |= PF_SYNCWRITE;
354 	ret = filemap_fdatawrite(mapping);
355 
356 	/*
357 	 * We need to protect against concurrent writers,
358 	 * which could cause livelocks in fsync_buffers_list
359 	 */
360 	down(&mapping->host->i_sem);
361 	err = file->f_op->fsync(file, file->f_dentry, 0);
362 	if (!ret)
363 		ret = err;
364 	up(&mapping->host->i_sem);
365 	err = filemap_fdatawait(mapping);
366 	if (!ret)
367 		ret = err;
368 	current->flags &= ~PF_SYNCWRITE;
369 
370 out_putf:
371 	fput(file);
372 out:
373 	return ret;
374 }
375 
376 asmlinkage long sys_fdatasync(unsigned int fd)
377 {
378 	struct file * file;
379 	struct address_space *mapping;
380 	int ret, err;
381 
382 	ret = -EBADF;
383 	file = fget(fd);
384 	if (!file)
385 		goto out;
386 
387 	ret = -EINVAL;
388 	if (!file->f_op || !file->f_op->fsync)
389 		goto out_putf;
390 
391 	mapping = file->f_mapping;
392 
393 	current->flags |= PF_SYNCWRITE;
394 	ret = filemap_fdatawrite(mapping);
395 	down(&mapping->host->i_sem);
396 	err = file->f_op->fsync(file, file->f_dentry, 1);
397 	if (!ret)
398 		ret = err;
399 	up(&mapping->host->i_sem);
400 	err = filemap_fdatawait(mapping);
401 	if (!ret)
402 		ret = err;
403 	current->flags &= ~PF_SYNCWRITE;
404 
405 out_putf:
406 	fput(file);
407 out:
408 	return ret;
409 }
410 
411 /*
412  * Various filesystems appear to want __find_get_block to be non-blocking.
413  * But it's the page lock which protects the buffers.  To get around this,
414  * we get exclusion from try_to_free_buffers with the blockdev mapping's
415  * private_lock.
416  *
417  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
418  * may be quite high.  This code could TryLock the page, and if that
419  * succeeds, there is no need to take private_lock. (But if
420  * private_lock is contended then so is mapping->tree_lock).
421  */
422 static struct buffer_head *
423 __find_get_block_slow(struct block_device *bdev, sector_t block, int unused)
424 {
425 	struct inode *bd_inode = bdev->bd_inode;
426 	struct address_space *bd_mapping = bd_inode->i_mapping;
427 	struct buffer_head *ret = NULL;
428 	pgoff_t index;
429 	struct buffer_head *bh;
430 	struct buffer_head *head;
431 	struct page *page;
432 	int all_mapped = 1;
433 
434 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
435 	page = find_get_page(bd_mapping, index);
436 	if (!page)
437 		goto out;
438 
439 	spin_lock(&bd_mapping->private_lock);
440 	if (!page_has_buffers(page))
441 		goto out_unlock;
442 	head = page_buffers(page);
443 	bh = head;
444 	do {
445 		if (bh->b_blocknr == block) {
446 			ret = bh;
447 			get_bh(bh);
448 			goto out_unlock;
449 		}
450 		if (!buffer_mapped(bh))
451 			all_mapped = 0;
452 		bh = bh->b_this_page;
453 	} while (bh != head);
454 
455 	/* we might be here because some of the buffers on this page are
456 	 * not mapped.  This is due to various races between
457 	 * file io on the block device and getblk.  It gets dealt with
458 	 * elsewhere, don't buffer_error if we had some unmapped buffers
459 	 */
460 	if (all_mapped) {
461 		printk("__find_get_block_slow() failed. "
462 			"block=%llu, b_blocknr=%llu\n",
463 			(unsigned long long)block, (unsigned long long)bh->b_blocknr);
464 		printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
465 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
466 	}
467 out_unlock:
468 	spin_unlock(&bd_mapping->private_lock);
469 	page_cache_release(page);
470 out:
471 	return ret;
472 }
473 
474 /* If invalidate_buffers() will trash dirty buffers, it means some kind
475    of fs corruption is going on. Trashing dirty data always imply losing
476    information that was supposed to be just stored on the physical layer
477    by the user.
478 
479    Thus invalidate_buffers in general usage is not allwowed to trash
480    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
481    be preserved.  These buffers are simply skipped.
482 
483    We also skip buffers which are still in use.  For example this can
484    happen if a userspace program is reading the block device.
485 
486    NOTE: In the case where the user removed a removable-media-disk even if
487    there's still dirty data not synced on disk (due a bug in the device driver
488    or due an error of the user), by not destroying the dirty buffers we could
489    generate corruption also on the next media inserted, thus a parameter is
490    necessary to handle this case in the most safe way possible (trying
491    to not corrupt also the new disk inserted with the data belonging to
492    the old now corrupted disk). Also for the ramdisk the natural thing
493    to do in order to release the ramdisk memory is to destroy dirty buffers.
494 
495    These are two special cases. Normal usage imply the device driver
496    to issue a sync on the device (without waiting I/O completion) and
497    then an invalidate_buffers call that doesn't trash dirty buffers.
498 
499    For handling cache coherency with the blkdev pagecache the 'update' case
500    is been introduced. It is needed to re-read from disk any pinned
501    buffer. NOTE: re-reading from disk is destructive so we can do it only
502    when we assume nobody is changing the buffercache under our I/O and when
503    we think the disk contains more recent information than the buffercache.
504    The update == 1 pass marks the buffers we need to update, the update == 2
505    pass does the actual I/O. */
506 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
507 {
508 	invalidate_bh_lrus();
509 	/*
510 	 * FIXME: what about destroy_dirty_buffers?
511 	 * We really want to use invalidate_inode_pages2() for
512 	 * that, but not until that's cleaned up.
513 	 */
514 	invalidate_inode_pages(bdev->bd_inode->i_mapping);
515 }
516 
517 /*
518  * Kick pdflush then try to free up some ZONE_NORMAL memory.
519  */
520 static void free_more_memory(void)
521 {
522 	struct zone **zones;
523 	pg_data_t *pgdat;
524 
525 	wakeup_bdflush(1024);
526 	yield();
527 
528 	for_each_pgdat(pgdat) {
529 		zones = pgdat->node_zonelists[GFP_NOFS&GFP_ZONEMASK].zones;
530 		if (*zones)
531 			try_to_free_pages(zones, GFP_NOFS);
532 	}
533 }
534 
535 /*
536  * I/O completion handler for block_read_full_page() - pages
537  * which come unlocked at the end of I/O.
538  */
539 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
540 {
541 	static DEFINE_SPINLOCK(page_uptodate_lock);
542 	unsigned long flags;
543 	struct buffer_head *tmp;
544 	struct page *page;
545 	int page_uptodate = 1;
546 
547 	BUG_ON(!buffer_async_read(bh));
548 
549 	page = bh->b_page;
550 	if (uptodate) {
551 		set_buffer_uptodate(bh);
552 	} else {
553 		clear_buffer_uptodate(bh);
554 		if (printk_ratelimit())
555 			buffer_io_error(bh);
556 		SetPageError(page);
557 	}
558 
559 	/*
560 	 * Be _very_ careful from here on. Bad things can happen if
561 	 * two buffer heads end IO at almost the same time and both
562 	 * decide that the page is now completely done.
563 	 */
564 	spin_lock_irqsave(&page_uptodate_lock, flags);
565 	clear_buffer_async_read(bh);
566 	unlock_buffer(bh);
567 	tmp = bh;
568 	do {
569 		if (!buffer_uptodate(tmp))
570 			page_uptodate = 0;
571 		if (buffer_async_read(tmp)) {
572 			BUG_ON(!buffer_locked(tmp));
573 			goto still_busy;
574 		}
575 		tmp = tmp->b_this_page;
576 	} while (tmp != bh);
577 	spin_unlock_irqrestore(&page_uptodate_lock, flags);
578 
579 	/*
580 	 * If none of the buffers had errors and they are all
581 	 * uptodate then we can set the page uptodate.
582 	 */
583 	if (page_uptodate && !PageError(page))
584 		SetPageUptodate(page);
585 	unlock_page(page);
586 	return;
587 
588 still_busy:
589 	spin_unlock_irqrestore(&page_uptodate_lock, flags);
590 	return;
591 }
592 
593 /*
594  * Completion handler for block_write_full_page() - pages which are unlocked
595  * during I/O, and which have PageWriteback cleared upon I/O completion.
596  */
597 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
598 {
599 	char b[BDEVNAME_SIZE];
600 	static DEFINE_SPINLOCK(page_uptodate_lock);
601 	unsigned long flags;
602 	struct buffer_head *tmp;
603 	struct page *page;
604 
605 	BUG_ON(!buffer_async_write(bh));
606 
607 	page = bh->b_page;
608 	if (uptodate) {
609 		set_buffer_uptodate(bh);
610 	} else {
611 		if (printk_ratelimit()) {
612 			buffer_io_error(bh);
613 			printk(KERN_WARNING "lost page write due to "
614 					"I/O error on %s\n",
615 			       bdevname(bh->b_bdev, b));
616 		}
617 		set_bit(AS_EIO, &page->mapping->flags);
618 		clear_buffer_uptodate(bh);
619 		SetPageError(page);
620 	}
621 
622 	spin_lock_irqsave(&page_uptodate_lock, flags);
623 	clear_buffer_async_write(bh);
624 	unlock_buffer(bh);
625 	tmp = bh->b_this_page;
626 	while (tmp != bh) {
627 		if (buffer_async_write(tmp)) {
628 			BUG_ON(!buffer_locked(tmp));
629 			goto still_busy;
630 		}
631 		tmp = tmp->b_this_page;
632 	}
633 	spin_unlock_irqrestore(&page_uptodate_lock, flags);
634 	end_page_writeback(page);
635 	return;
636 
637 still_busy:
638 	spin_unlock_irqrestore(&page_uptodate_lock, flags);
639 	return;
640 }
641 
642 /*
643  * If a page's buffers are under async readin (end_buffer_async_read
644  * completion) then there is a possibility that another thread of
645  * control could lock one of the buffers after it has completed
646  * but while some of the other buffers have not completed.  This
647  * locked buffer would confuse end_buffer_async_read() into not unlocking
648  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
649  * that this buffer is not under async I/O.
650  *
651  * The page comes unlocked when it has no locked buffer_async buffers
652  * left.
653  *
654  * PageLocked prevents anyone starting new async I/O reads any of
655  * the buffers.
656  *
657  * PageWriteback is used to prevent simultaneous writeout of the same
658  * page.
659  *
660  * PageLocked prevents anyone from starting writeback of a page which is
661  * under read I/O (PageWriteback is only ever set against a locked page).
662  */
663 static void mark_buffer_async_read(struct buffer_head *bh)
664 {
665 	bh->b_end_io = end_buffer_async_read;
666 	set_buffer_async_read(bh);
667 }
668 
669 void mark_buffer_async_write(struct buffer_head *bh)
670 {
671 	bh->b_end_io = end_buffer_async_write;
672 	set_buffer_async_write(bh);
673 }
674 EXPORT_SYMBOL(mark_buffer_async_write);
675 
676 
677 /*
678  * fs/buffer.c contains helper functions for buffer-backed address space's
679  * fsync functions.  A common requirement for buffer-based filesystems is
680  * that certain data from the backing blockdev needs to be written out for
681  * a successful fsync().  For example, ext2 indirect blocks need to be
682  * written back and waited upon before fsync() returns.
683  *
684  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
685  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
686  * management of a list of dependent buffers at ->i_mapping->private_list.
687  *
688  * Locking is a little subtle: try_to_free_buffers() will remove buffers
689  * from their controlling inode's queue when they are being freed.  But
690  * try_to_free_buffers() will be operating against the *blockdev* mapping
691  * at the time, not against the S_ISREG file which depends on those buffers.
692  * So the locking for private_list is via the private_lock in the address_space
693  * which backs the buffers.  Which is different from the address_space
694  * against which the buffers are listed.  So for a particular address_space,
695  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
696  * mapping->private_list will always be protected by the backing blockdev's
697  * ->private_lock.
698  *
699  * Which introduces a requirement: all buffers on an address_space's
700  * ->private_list must be from the same address_space: the blockdev's.
701  *
702  * address_spaces which do not place buffers at ->private_list via these
703  * utility functions are free to use private_lock and private_list for
704  * whatever they want.  The only requirement is that list_empty(private_list)
705  * be true at clear_inode() time.
706  *
707  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
708  * filesystems should do that.  invalidate_inode_buffers() should just go
709  * BUG_ON(!list_empty).
710  *
711  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
712  * take an address_space, not an inode.  And it should be called
713  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
714  * queued up.
715  *
716  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
717  * list if it is already on a list.  Because if the buffer is on a list,
718  * it *must* already be on the right one.  If not, the filesystem is being
719  * silly.  This will save a ton of locking.  But first we have to ensure
720  * that buffers are taken *off* the old inode's list when they are freed
721  * (presumably in truncate).  That requires careful auditing of all
722  * filesystems (do it inside bforget()).  It could also be done by bringing
723  * b_inode back.
724  */
725 
726 /*
727  * The buffer's backing address_space's private_lock must be held
728  */
729 static inline void __remove_assoc_queue(struct buffer_head *bh)
730 {
731 	list_del_init(&bh->b_assoc_buffers);
732 }
733 
734 int inode_has_buffers(struct inode *inode)
735 {
736 	return !list_empty(&inode->i_data.private_list);
737 }
738 
739 /*
740  * osync is designed to support O_SYNC io.  It waits synchronously for
741  * all already-submitted IO to complete, but does not queue any new
742  * writes to the disk.
743  *
744  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
745  * you dirty the buffers, and then use osync_inode_buffers to wait for
746  * completion.  Any other dirty buffers which are not yet queued for
747  * write will not be flushed to disk by the osync.
748  */
749 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
750 {
751 	struct buffer_head *bh;
752 	struct list_head *p;
753 	int err = 0;
754 
755 	spin_lock(lock);
756 repeat:
757 	list_for_each_prev(p, list) {
758 		bh = BH_ENTRY(p);
759 		if (buffer_locked(bh)) {
760 			get_bh(bh);
761 			spin_unlock(lock);
762 			wait_on_buffer(bh);
763 			if (!buffer_uptodate(bh))
764 				err = -EIO;
765 			brelse(bh);
766 			spin_lock(lock);
767 			goto repeat;
768 		}
769 	}
770 	spin_unlock(lock);
771 	return err;
772 }
773 
774 /**
775  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
776  *                        buffers
777  * @mapping: the mapping which wants those buffers written
778  *
779  * Starts I/O against the buffers at mapping->private_list, and waits upon
780  * that I/O.
781  *
782  * Basically, this is a convenience function for fsync().
783  * @mapping is a file or directory which needs those buffers to be written for
784  * a successful fsync().
785  */
786 int sync_mapping_buffers(struct address_space *mapping)
787 {
788 	struct address_space *buffer_mapping = mapping->assoc_mapping;
789 
790 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
791 		return 0;
792 
793 	return fsync_buffers_list(&buffer_mapping->private_lock,
794 					&mapping->private_list);
795 }
796 EXPORT_SYMBOL(sync_mapping_buffers);
797 
798 /*
799  * Called when we've recently written block `bblock', and it is known that
800  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
801  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
802  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
803  */
804 void write_boundary_block(struct block_device *bdev,
805 			sector_t bblock, unsigned blocksize)
806 {
807 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
808 	if (bh) {
809 		if (buffer_dirty(bh))
810 			ll_rw_block(WRITE, 1, &bh);
811 		put_bh(bh);
812 	}
813 }
814 
815 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
816 {
817 	struct address_space *mapping = inode->i_mapping;
818 	struct address_space *buffer_mapping = bh->b_page->mapping;
819 
820 	mark_buffer_dirty(bh);
821 	if (!mapping->assoc_mapping) {
822 		mapping->assoc_mapping = buffer_mapping;
823 	} else {
824 		if (mapping->assoc_mapping != buffer_mapping)
825 			BUG();
826 	}
827 	if (list_empty(&bh->b_assoc_buffers)) {
828 		spin_lock(&buffer_mapping->private_lock);
829 		list_move_tail(&bh->b_assoc_buffers,
830 				&mapping->private_list);
831 		spin_unlock(&buffer_mapping->private_lock);
832 	}
833 }
834 EXPORT_SYMBOL(mark_buffer_dirty_inode);
835 
836 /*
837  * Add a page to the dirty page list.
838  *
839  * It is a sad fact of life that this function is called from several places
840  * deeply under spinlocking.  It may not sleep.
841  *
842  * If the page has buffers, the uptodate buffers are set dirty, to preserve
843  * dirty-state coherency between the page and the buffers.  It the page does
844  * not have buffers then when they are later attached they will all be set
845  * dirty.
846  *
847  * The buffers are dirtied before the page is dirtied.  There's a small race
848  * window in which a writepage caller may see the page cleanness but not the
849  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
850  * before the buffers, a concurrent writepage caller could clear the page dirty
851  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
852  * page on the dirty page list.
853  *
854  * We use private_lock to lock against try_to_free_buffers while using the
855  * page's buffer list.  Also use this to protect against clean buffers being
856  * added to the page after it was set dirty.
857  *
858  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
859  * address_space though.
860  */
861 int __set_page_dirty_buffers(struct page *page)
862 {
863 	struct address_space * const mapping = page->mapping;
864 
865 	spin_lock(&mapping->private_lock);
866 	if (page_has_buffers(page)) {
867 		struct buffer_head *head = page_buffers(page);
868 		struct buffer_head *bh = head;
869 
870 		do {
871 			set_buffer_dirty(bh);
872 			bh = bh->b_this_page;
873 		} while (bh != head);
874 	}
875 	spin_unlock(&mapping->private_lock);
876 
877 	if (!TestSetPageDirty(page)) {
878 		write_lock_irq(&mapping->tree_lock);
879 		if (page->mapping) {	/* Race with truncate? */
880 			if (mapping_cap_account_dirty(mapping))
881 				inc_page_state(nr_dirty);
882 			radix_tree_tag_set(&mapping->page_tree,
883 						page_index(page),
884 						PAGECACHE_TAG_DIRTY);
885 		}
886 		write_unlock_irq(&mapping->tree_lock);
887 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
888 	}
889 
890 	return 0;
891 }
892 EXPORT_SYMBOL(__set_page_dirty_buffers);
893 
894 /*
895  * Write out and wait upon a list of buffers.
896  *
897  * We have conflicting pressures: we want to make sure that all
898  * initially dirty buffers get waited on, but that any subsequently
899  * dirtied buffers don't.  After all, we don't want fsync to last
900  * forever if somebody is actively writing to the file.
901  *
902  * Do this in two main stages: first we copy dirty buffers to a
903  * temporary inode list, queueing the writes as we go.  Then we clean
904  * up, waiting for those writes to complete.
905  *
906  * During this second stage, any subsequent updates to the file may end
907  * up refiling the buffer on the original inode's dirty list again, so
908  * there is a chance we will end up with a buffer queued for write but
909  * not yet completed on that list.  So, as a final cleanup we go through
910  * the osync code to catch these locked, dirty buffers without requeuing
911  * any newly dirty buffers for write.
912  */
913 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
914 {
915 	struct buffer_head *bh;
916 	struct list_head tmp;
917 	int err = 0, err2;
918 
919 	INIT_LIST_HEAD(&tmp);
920 
921 	spin_lock(lock);
922 	while (!list_empty(list)) {
923 		bh = BH_ENTRY(list->next);
924 		list_del_init(&bh->b_assoc_buffers);
925 		if (buffer_dirty(bh) || buffer_locked(bh)) {
926 			list_add(&bh->b_assoc_buffers, &tmp);
927 			if (buffer_dirty(bh)) {
928 				get_bh(bh);
929 				spin_unlock(lock);
930 				/*
931 				 * Ensure any pending I/O completes so that
932 				 * ll_rw_block() actually writes the current
933 				 * contents - it is a noop if I/O is still in
934 				 * flight on potentially older contents.
935 				 */
936 				wait_on_buffer(bh);
937 				ll_rw_block(WRITE, 1, &bh);
938 				brelse(bh);
939 				spin_lock(lock);
940 			}
941 		}
942 	}
943 
944 	while (!list_empty(&tmp)) {
945 		bh = BH_ENTRY(tmp.prev);
946 		__remove_assoc_queue(bh);
947 		get_bh(bh);
948 		spin_unlock(lock);
949 		wait_on_buffer(bh);
950 		if (!buffer_uptodate(bh))
951 			err = -EIO;
952 		brelse(bh);
953 		spin_lock(lock);
954 	}
955 
956 	spin_unlock(lock);
957 	err2 = osync_buffers_list(lock, list);
958 	if (err)
959 		return err;
960 	else
961 		return err2;
962 }
963 
964 /*
965  * Invalidate any and all dirty buffers on a given inode.  We are
966  * probably unmounting the fs, but that doesn't mean we have already
967  * done a sync().  Just drop the buffers from the inode list.
968  *
969  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
970  * assumes that all the buffers are against the blockdev.  Not true
971  * for reiserfs.
972  */
973 void invalidate_inode_buffers(struct inode *inode)
974 {
975 	if (inode_has_buffers(inode)) {
976 		struct address_space *mapping = &inode->i_data;
977 		struct list_head *list = &mapping->private_list;
978 		struct address_space *buffer_mapping = mapping->assoc_mapping;
979 
980 		spin_lock(&buffer_mapping->private_lock);
981 		while (!list_empty(list))
982 			__remove_assoc_queue(BH_ENTRY(list->next));
983 		spin_unlock(&buffer_mapping->private_lock);
984 	}
985 }
986 
987 /*
988  * Remove any clean buffers from the inode's buffer list.  This is called
989  * when we're trying to free the inode itself.  Those buffers can pin it.
990  *
991  * Returns true if all buffers were removed.
992  */
993 int remove_inode_buffers(struct inode *inode)
994 {
995 	int ret = 1;
996 
997 	if (inode_has_buffers(inode)) {
998 		struct address_space *mapping = &inode->i_data;
999 		struct list_head *list = &mapping->private_list;
1000 		struct address_space *buffer_mapping = mapping->assoc_mapping;
1001 
1002 		spin_lock(&buffer_mapping->private_lock);
1003 		while (!list_empty(list)) {
1004 			struct buffer_head *bh = BH_ENTRY(list->next);
1005 			if (buffer_dirty(bh)) {
1006 				ret = 0;
1007 				break;
1008 			}
1009 			__remove_assoc_queue(bh);
1010 		}
1011 		spin_unlock(&buffer_mapping->private_lock);
1012 	}
1013 	return ret;
1014 }
1015 
1016 /*
1017  * Create the appropriate buffers when given a page for data area and
1018  * the size of each buffer.. Use the bh->b_this_page linked list to
1019  * follow the buffers created.  Return NULL if unable to create more
1020  * buffers.
1021  *
1022  * The retry flag is used to differentiate async IO (paging, swapping)
1023  * which may not fail from ordinary buffer allocations.
1024  */
1025 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1026 		int retry)
1027 {
1028 	struct buffer_head *bh, *head;
1029 	long offset;
1030 
1031 try_again:
1032 	head = NULL;
1033 	offset = PAGE_SIZE;
1034 	while ((offset -= size) >= 0) {
1035 		bh = alloc_buffer_head(GFP_NOFS);
1036 		if (!bh)
1037 			goto no_grow;
1038 
1039 		bh->b_bdev = NULL;
1040 		bh->b_this_page = head;
1041 		bh->b_blocknr = -1;
1042 		head = bh;
1043 
1044 		bh->b_state = 0;
1045 		atomic_set(&bh->b_count, 0);
1046 		bh->b_size = size;
1047 
1048 		/* Link the buffer to its page */
1049 		set_bh_page(bh, page, offset);
1050 
1051 		bh->b_end_io = NULL;
1052 	}
1053 	return head;
1054 /*
1055  * In case anything failed, we just free everything we got.
1056  */
1057 no_grow:
1058 	if (head) {
1059 		do {
1060 			bh = head;
1061 			head = head->b_this_page;
1062 			free_buffer_head(bh);
1063 		} while (head);
1064 	}
1065 
1066 	/*
1067 	 * Return failure for non-async IO requests.  Async IO requests
1068 	 * are not allowed to fail, so we have to wait until buffer heads
1069 	 * become available.  But we don't want tasks sleeping with
1070 	 * partially complete buffers, so all were released above.
1071 	 */
1072 	if (!retry)
1073 		return NULL;
1074 
1075 	/* We're _really_ low on memory. Now we just
1076 	 * wait for old buffer heads to become free due to
1077 	 * finishing IO.  Since this is an async request and
1078 	 * the reserve list is empty, we're sure there are
1079 	 * async buffer heads in use.
1080 	 */
1081 	free_more_memory();
1082 	goto try_again;
1083 }
1084 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1085 
1086 static inline void
1087 link_dev_buffers(struct page *page, struct buffer_head *head)
1088 {
1089 	struct buffer_head *bh, *tail;
1090 
1091 	bh = head;
1092 	do {
1093 		tail = bh;
1094 		bh = bh->b_this_page;
1095 	} while (bh);
1096 	tail->b_this_page = head;
1097 	attach_page_buffers(page, head);
1098 }
1099 
1100 /*
1101  * Initialise the state of a blockdev page's buffers.
1102  */
1103 static void
1104 init_page_buffers(struct page *page, struct block_device *bdev,
1105 			sector_t block, int size)
1106 {
1107 	struct buffer_head *head = page_buffers(page);
1108 	struct buffer_head *bh = head;
1109 	int uptodate = PageUptodate(page);
1110 
1111 	do {
1112 		if (!buffer_mapped(bh)) {
1113 			init_buffer(bh, NULL, NULL);
1114 			bh->b_bdev = bdev;
1115 			bh->b_blocknr = block;
1116 			if (uptodate)
1117 				set_buffer_uptodate(bh);
1118 			set_buffer_mapped(bh);
1119 		}
1120 		block++;
1121 		bh = bh->b_this_page;
1122 	} while (bh != head);
1123 }
1124 
1125 /*
1126  * Create the page-cache page that contains the requested block.
1127  *
1128  * This is user purely for blockdev mappings.
1129  */
1130 static struct page *
1131 grow_dev_page(struct block_device *bdev, sector_t block,
1132 		pgoff_t index, int size)
1133 {
1134 	struct inode *inode = bdev->bd_inode;
1135 	struct page *page;
1136 	struct buffer_head *bh;
1137 
1138 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1139 	if (!page)
1140 		return NULL;
1141 
1142 	if (!PageLocked(page))
1143 		BUG();
1144 
1145 	if (page_has_buffers(page)) {
1146 		bh = page_buffers(page);
1147 		if (bh->b_size == size) {
1148 			init_page_buffers(page, bdev, block, size);
1149 			return page;
1150 		}
1151 		if (!try_to_free_buffers(page))
1152 			goto failed;
1153 	}
1154 
1155 	/*
1156 	 * Allocate some buffers for this page
1157 	 */
1158 	bh = alloc_page_buffers(page, size, 0);
1159 	if (!bh)
1160 		goto failed;
1161 
1162 	/*
1163 	 * Link the page to the buffers and initialise them.  Take the
1164 	 * lock to be atomic wrt __find_get_block(), which does not
1165 	 * run under the page lock.
1166 	 */
1167 	spin_lock(&inode->i_mapping->private_lock);
1168 	link_dev_buffers(page, bh);
1169 	init_page_buffers(page, bdev, block, size);
1170 	spin_unlock(&inode->i_mapping->private_lock);
1171 	return page;
1172 
1173 failed:
1174 	BUG();
1175 	unlock_page(page);
1176 	page_cache_release(page);
1177 	return NULL;
1178 }
1179 
1180 /*
1181  * Create buffers for the specified block device block's page.  If
1182  * that page was dirty, the buffers are set dirty also.
1183  *
1184  * Except that's a bug.  Attaching dirty buffers to a dirty
1185  * blockdev's page can result in filesystem corruption, because
1186  * some of those buffers may be aliases of filesystem data.
1187  * grow_dev_page() will go BUG() if this happens.
1188  */
1189 static inline int
1190 grow_buffers(struct block_device *bdev, sector_t block, int size)
1191 {
1192 	struct page *page;
1193 	pgoff_t index;
1194 	int sizebits;
1195 
1196 	sizebits = -1;
1197 	do {
1198 		sizebits++;
1199 	} while ((size << sizebits) < PAGE_SIZE);
1200 
1201 	index = block >> sizebits;
1202 	block = index << sizebits;
1203 
1204 	/* Create a page with the proper size buffers.. */
1205 	page = grow_dev_page(bdev, block, index, size);
1206 	if (!page)
1207 		return 0;
1208 	unlock_page(page);
1209 	page_cache_release(page);
1210 	return 1;
1211 }
1212 
1213 static struct buffer_head *
1214 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1215 {
1216 	/* Size must be multiple of hard sectorsize */
1217 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1218 			(size < 512 || size > PAGE_SIZE))) {
1219 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1220 					size);
1221 		printk(KERN_ERR "hardsect size: %d\n",
1222 					bdev_hardsect_size(bdev));
1223 
1224 		dump_stack();
1225 		return NULL;
1226 	}
1227 
1228 	for (;;) {
1229 		struct buffer_head * bh;
1230 
1231 		bh = __find_get_block(bdev, block, size);
1232 		if (bh)
1233 			return bh;
1234 
1235 		if (!grow_buffers(bdev, block, size))
1236 			free_more_memory();
1237 	}
1238 }
1239 
1240 /*
1241  * The relationship between dirty buffers and dirty pages:
1242  *
1243  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1244  * the page is tagged dirty in its radix tree.
1245  *
1246  * At all times, the dirtiness of the buffers represents the dirtiness of
1247  * subsections of the page.  If the page has buffers, the page dirty bit is
1248  * merely a hint about the true dirty state.
1249  *
1250  * When a page is set dirty in its entirety, all its buffers are marked dirty
1251  * (if the page has buffers).
1252  *
1253  * When a buffer is marked dirty, its page is dirtied, but the page's other
1254  * buffers are not.
1255  *
1256  * Also.  When blockdev buffers are explicitly read with bread(), they
1257  * individually become uptodate.  But their backing page remains not
1258  * uptodate - even if all of its buffers are uptodate.  A subsequent
1259  * block_read_full_page() against that page will discover all the uptodate
1260  * buffers, will set the page uptodate and will perform no I/O.
1261  */
1262 
1263 /**
1264  * mark_buffer_dirty - mark a buffer_head as needing writeout
1265  * @bh: the buffer_head to mark dirty
1266  *
1267  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1268  * backing page dirty, then tag the page as dirty in its address_space's radix
1269  * tree and then attach the address_space's inode to its superblock's dirty
1270  * inode list.
1271  *
1272  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1273  * mapping->tree_lock and the global inode_lock.
1274  */
1275 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1276 {
1277 	if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1278 		__set_page_dirty_nobuffers(bh->b_page);
1279 }
1280 
1281 /*
1282  * Decrement a buffer_head's reference count.  If all buffers against a page
1283  * have zero reference count, are clean and unlocked, and if the page is clean
1284  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1285  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1286  * a page but it ends up not being freed, and buffers may later be reattached).
1287  */
1288 void __brelse(struct buffer_head * buf)
1289 {
1290 	if (atomic_read(&buf->b_count)) {
1291 		put_bh(buf);
1292 		return;
1293 	}
1294 	printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1295 	WARN_ON(1);
1296 }
1297 
1298 /*
1299  * bforget() is like brelse(), except it discards any
1300  * potentially dirty data.
1301  */
1302 void __bforget(struct buffer_head *bh)
1303 {
1304 	clear_buffer_dirty(bh);
1305 	if (!list_empty(&bh->b_assoc_buffers)) {
1306 		struct address_space *buffer_mapping = bh->b_page->mapping;
1307 
1308 		spin_lock(&buffer_mapping->private_lock);
1309 		list_del_init(&bh->b_assoc_buffers);
1310 		spin_unlock(&buffer_mapping->private_lock);
1311 	}
1312 	__brelse(bh);
1313 }
1314 
1315 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1316 {
1317 	lock_buffer(bh);
1318 	if (buffer_uptodate(bh)) {
1319 		unlock_buffer(bh);
1320 		return bh;
1321 	} else {
1322 		get_bh(bh);
1323 		bh->b_end_io = end_buffer_read_sync;
1324 		submit_bh(READ, bh);
1325 		wait_on_buffer(bh);
1326 		if (buffer_uptodate(bh))
1327 			return bh;
1328 	}
1329 	brelse(bh);
1330 	return NULL;
1331 }
1332 
1333 /*
1334  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1335  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1336  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1337  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1338  * CPU's LRUs at the same time.
1339  *
1340  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1341  * sb_find_get_block().
1342  *
1343  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1344  * a local interrupt disable for that.
1345  */
1346 
1347 #define BH_LRU_SIZE	8
1348 
1349 struct bh_lru {
1350 	struct buffer_head *bhs[BH_LRU_SIZE];
1351 };
1352 
1353 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1354 
1355 #ifdef CONFIG_SMP
1356 #define bh_lru_lock()	local_irq_disable()
1357 #define bh_lru_unlock()	local_irq_enable()
1358 #else
1359 #define bh_lru_lock()	preempt_disable()
1360 #define bh_lru_unlock()	preempt_enable()
1361 #endif
1362 
1363 static inline void check_irqs_on(void)
1364 {
1365 #ifdef irqs_disabled
1366 	BUG_ON(irqs_disabled());
1367 #endif
1368 }
1369 
1370 /*
1371  * The LRU management algorithm is dopey-but-simple.  Sorry.
1372  */
1373 static void bh_lru_install(struct buffer_head *bh)
1374 {
1375 	struct buffer_head *evictee = NULL;
1376 	struct bh_lru *lru;
1377 
1378 	check_irqs_on();
1379 	bh_lru_lock();
1380 	lru = &__get_cpu_var(bh_lrus);
1381 	if (lru->bhs[0] != bh) {
1382 		struct buffer_head *bhs[BH_LRU_SIZE];
1383 		int in;
1384 		int out = 0;
1385 
1386 		get_bh(bh);
1387 		bhs[out++] = bh;
1388 		for (in = 0; in < BH_LRU_SIZE; in++) {
1389 			struct buffer_head *bh2 = lru->bhs[in];
1390 
1391 			if (bh2 == bh) {
1392 				__brelse(bh2);
1393 			} else {
1394 				if (out >= BH_LRU_SIZE) {
1395 					BUG_ON(evictee != NULL);
1396 					evictee = bh2;
1397 				} else {
1398 					bhs[out++] = bh2;
1399 				}
1400 			}
1401 		}
1402 		while (out < BH_LRU_SIZE)
1403 			bhs[out++] = NULL;
1404 		memcpy(lru->bhs, bhs, sizeof(bhs));
1405 	}
1406 	bh_lru_unlock();
1407 
1408 	if (evictee)
1409 		__brelse(evictee);
1410 }
1411 
1412 /*
1413  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1414  */
1415 static inline struct buffer_head *
1416 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1417 {
1418 	struct buffer_head *ret = NULL;
1419 	struct bh_lru *lru;
1420 	int i;
1421 
1422 	check_irqs_on();
1423 	bh_lru_lock();
1424 	lru = &__get_cpu_var(bh_lrus);
1425 	for (i = 0; i < BH_LRU_SIZE; i++) {
1426 		struct buffer_head *bh = lru->bhs[i];
1427 
1428 		if (bh && bh->b_bdev == bdev &&
1429 				bh->b_blocknr == block && bh->b_size == size) {
1430 			if (i) {
1431 				while (i) {
1432 					lru->bhs[i] = lru->bhs[i - 1];
1433 					i--;
1434 				}
1435 				lru->bhs[0] = bh;
1436 			}
1437 			get_bh(bh);
1438 			ret = bh;
1439 			break;
1440 		}
1441 	}
1442 	bh_lru_unlock();
1443 	return ret;
1444 }
1445 
1446 /*
1447  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1448  * it in the LRU and mark it as accessed.  If it is not present then return
1449  * NULL
1450  */
1451 struct buffer_head *
1452 __find_get_block(struct block_device *bdev, sector_t block, int size)
1453 {
1454 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1455 
1456 	if (bh == NULL) {
1457 		bh = __find_get_block_slow(bdev, block, size);
1458 		if (bh)
1459 			bh_lru_install(bh);
1460 	}
1461 	if (bh)
1462 		touch_buffer(bh);
1463 	return bh;
1464 }
1465 EXPORT_SYMBOL(__find_get_block);
1466 
1467 /*
1468  * __getblk will locate (and, if necessary, create) the buffer_head
1469  * which corresponds to the passed block_device, block and size. The
1470  * returned buffer has its reference count incremented.
1471  *
1472  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1473  * illegal block number, __getblk() will happily return a buffer_head
1474  * which represents the non-existent block.  Very weird.
1475  *
1476  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1477  * attempt is failing.  FIXME, perhaps?
1478  */
1479 struct buffer_head *
1480 __getblk(struct block_device *bdev, sector_t block, int size)
1481 {
1482 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1483 
1484 	might_sleep();
1485 	if (bh == NULL)
1486 		bh = __getblk_slow(bdev, block, size);
1487 	return bh;
1488 }
1489 EXPORT_SYMBOL(__getblk);
1490 
1491 /*
1492  * Do async read-ahead on a buffer..
1493  */
1494 void __breadahead(struct block_device *bdev, sector_t block, int size)
1495 {
1496 	struct buffer_head *bh = __getblk(bdev, block, size);
1497 	ll_rw_block(READA, 1, &bh);
1498 	brelse(bh);
1499 }
1500 EXPORT_SYMBOL(__breadahead);
1501 
1502 /**
1503  *  __bread() - reads a specified block and returns the bh
1504  *  @bdev: the block_device to read from
1505  *  @block: number of block
1506  *  @size: size (in bytes) to read
1507  *
1508  *  Reads a specified block, and returns buffer head that contains it.
1509  *  It returns NULL if the block was unreadable.
1510  */
1511 struct buffer_head *
1512 __bread(struct block_device *bdev, sector_t block, int size)
1513 {
1514 	struct buffer_head *bh = __getblk(bdev, block, size);
1515 
1516 	if (!buffer_uptodate(bh))
1517 		bh = __bread_slow(bh);
1518 	return bh;
1519 }
1520 EXPORT_SYMBOL(__bread);
1521 
1522 /*
1523  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1524  * This doesn't race because it runs in each cpu either in irq
1525  * or with preempt disabled.
1526  */
1527 static void invalidate_bh_lru(void *arg)
1528 {
1529 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1530 	int i;
1531 
1532 	for (i = 0; i < BH_LRU_SIZE; i++) {
1533 		brelse(b->bhs[i]);
1534 		b->bhs[i] = NULL;
1535 	}
1536 	put_cpu_var(bh_lrus);
1537 }
1538 
1539 static void invalidate_bh_lrus(void)
1540 {
1541 	on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1542 }
1543 
1544 void set_bh_page(struct buffer_head *bh,
1545 		struct page *page, unsigned long offset)
1546 {
1547 	bh->b_page = page;
1548 	if (offset >= PAGE_SIZE)
1549 		BUG();
1550 	if (PageHighMem(page))
1551 		/*
1552 		 * This catches illegal uses and preserves the offset:
1553 		 */
1554 		bh->b_data = (char *)(0 + offset);
1555 	else
1556 		bh->b_data = page_address(page) + offset;
1557 }
1558 EXPORT_SYMBOL(set_bh_page);
1559 
1560 /*
1561  * Called when truncating a buffer on a page completely.
1562  */
1563 static inline void discard_buffer(struct buffer_head * bh)
1564 {
1565 	lock_buffer(bh);
1566 	clear_buffer_dirty(bh);
1567 	bh->b_bdev = NULL;
1568 	clear_buffer_mapped(bh);
1569 	clear_buffer_req(bh);
1570 	clear_buffer_new(bh);
1571 	clear_buffer_delay(bh);
1572 	unlock_buffer(bh);
1573 }
1574 
1575 /**
1576  * try_to_release_page() - release old fs-specific metadata on a page
1577  *
1578  * @page: the page which the kernel is trying to free
1579  * @gfp_mask: memory allocation flags (and I/O mode)
1580  *
1581  * The address_space is to try to release any data against the page
1582  * (presumably at page->private).  If the release was successful, return `1'.
1583  * Otherwise return zero.
1584  *
1585  * The @gfp_mask argument specifies whether I/O may be performed to release
1586  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1587  *
1588  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1589  */
1590 int try_to_release_page(struct page *page, int gfp_mask)
1591 {
1592 	struct address_space * const mapping = page->mapping;
1593 
1594 	BUG_ON(!PageLocked(page));
1595 	if (PageWriteback(page))
1596 		return 0;
1597 
1598 	if (mapping && mapping->a_ops->releasepage)
1599 		return mapping->a_ops->releasepage(page, gfp_mask);
1600 	return try_to_free_buffers(page);
1601 }
1602 EXPORT_SYMBOL(try_to_release_page);
1603 
1604 /**
1605  * block_invalidatepage - invalidate part of all of a buffer-backed page
1606  *
1607  * @page: the page which is affected
1608  * @offset: the index of the truncation point
1609  *
1610  * block_invalidatepage() is called when all or part of the page has become
1611  * invalidatedby a truncate operation.
1612  *
1613  * block_invalidatepage() does not have to release all buffers, but it must
1614  * ensure that no dirty buffer is left outside @offset and that no I/O
1615  * is underway against any of the blocks which are outside the truncation
1616  * point.  Because the caller is about to free (and possibly reuse) those
1617  * blocks on-disk.
1618  */
1619 int block_invalidatepage(struct page *page, unsigned long offset)
1620 {
1621 	struct buffer_head *head, *bh, *next;
1622 	unsigned int curr_off = 0;
1623 	int ret = 1;
1624 
1625 	BUG_ON(!PageLocked(page));
1626 	if (!page_has_buffers(page))
1627 		goto out;
1628 
1629 	head = page_buffers(page);
1630 	bh = head;
1631 	do {
1632 		unsigned int next_off = curr_off + bh->b_size;
1633 		next = bh->b_this_page;
1634 
1635 		/*
1636 		 * is this block fully invalidated?
1637 		 */
1638 		if (offset <= curr_off)
1639 			discard_buffer(bh);
1640 		curr_off = next_off;
1641 		bh = next;
1642 	} while (bh != head);
1643 
1644 	/*
1645 	 * We release buffers only if the entire page is being invalidated.
1646 	 * The get_block cached value has been unconditionally invalidated,
1647 	 * so real IO is not possible anymore.
1648 	 */
1649 	if (offset == 0)
1650 		ret = try_to_release_page(page, 0);
1651 out:
1652 	return ret;
1653 }
1654 EXPORT_SYMBOL(block_invalidatepage);
1655 
1656 /*
1657  * We attach and possibly dirty the buffers atomically wrt
1658  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1659  * is already excluded via the page lock.
1660  */
1661 void create_empty_buffers(struct page *page,
1662 			unsigned long blocksize, unsigned long b_state)
1663 {
1664 	struct buffer_head *bh, *head, *tail;
1665 
1666 	head = alloc_page_buffers(page, blocksize, 1);
1667 	bh = head;
1668 	do {
1669 		bh->b_state |= b_state;
1670 		tail = bh;
1671 		bh = bh->b_this_page;
1672 	} while (bh);
1673 	tail->b_this_page = head;
1674 
1675 	spin_lock(&page->mapping->private_lock);
1676 	if (PageUptodate(page) || PageDirty(page)) {
1677 		bh = head;
1678 		do {
1679 			if (PageDirty(page))
1680 				set_buffer_dirty(bh);
1681 			if (PageUptodate(page))
1682 				set_buffer_uptodate(bh);
1683 			bh = bh->b_this_page;
1684 		} while (bh != head);
1685 	}
1686 	attach_page_buffers(page, head);
1687 	spin_unlock(&page->mapping->private_lock);
1688 }
1689 EXPORT_SYMBOL(create_empty_buffers);
1690 
1691 /*
1692  * We are taking a block for data and we don't want any output from any
1693  * buffer-cache aliases starting from return from that function and
1694  * until the moment when something will explicitly mark the buffer
1695  * dirty (hopefully that will not happen until we will free that block ;-)
1696  * We don't even need to mark it not-uptodate - nobody can expect
1697  * anything from a newly allocated buffer anyway. We used to used
1698  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1699  * don't want to mark the alias unmapped, for example - it would confuse
1700  * anyone who might pick it with bread() afterwards...
1701  *
1702  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1703  * be writeout I/O going on against recently-freed buffers.  We don't
1704  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1705  * only if we really need to.  That happens here.
1706  */
1707 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1708 {
1709 	struct buffer_head *old_bh;
1710 
1711 	might_sleep();
1712 
1713 	old_bh = __find_get_block_slow(bdev, block, 0);
1714 	if (old_bh) {
1715 		clear_buffer_dirty(old_bh);
1716 		wait_on_buffer(old_bh);
1717 		clear_buffer_req(old_bh);
1718 		__brelse(old_bh);
1719 	}
1720 }
1721 EXPORT_SYMBOL(unmap_underlying_metadata);
1722 
1723 /*
1724  * NOTE! All mapped/uptodate combinations are valid:
1725  *
1726  *	Mapped	Uptodate	Meaning
1727  *
1728  *	No	No		"unknown" - must do get_block()
1729  *	No	Yes		"hole" - zero-filled
1730  *	Yes	No		"allocated" - allocated on disk, not read in
1731  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1732  *
1733  * "Dirty" is valid only with the last case (mapped+uptodate).
1734  */
1735 
1736 /*
1737  * While block_write_full_page is writing back the dirty buffers under
1738  * the page lock, whoever dirtied the buffers may decide to clean them
1739  * again at any time.  We handle that by only looking at the buffer
1740  * state inside lock_buffer().
1741  *
1742  * If block_write_full_page() is called for regular writeback
1743  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1744  * locked buffer.   This only can happen if someone has written the buffer
1745  * directly, with submit_bh().  At the address_space level PageWriteback
1746  * prevents this contention from occurring.
1747  */
1748 static int __block_write_full_page(struct inode *inode, struct page *page,
1749 			get_block_t *get_block, struct writeback_control *wbc)
1750 {
1751 	int err;
1752 	sector_t block;
1753 	sector_t last_block;
1754 	struct buffer_head *bh, *head;
1755 	int nr_underway = 0;
1756 
1757 	BUG_ON(!PageLocked(page));
1758 
1759 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1760 
1761 	if (!page_has_buffers(page)) {
1762 		create_empty_buffers(page, 1 << inode->i_blkbits,
1763 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1764 	}
1765 
1766 	/*
1767 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1768 	 * here, and the (potentially unmapped) buffers may become dirty at
1769 	 * any time.  If a buffer becomes dirty here after we've inspected it
1770 	 * then we just miss that fact, and the page stays dirty.
1771 	 *
1772 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1773 	 * handle that here by just cleaning them.
1774 	 */
1775 
1776 	block = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1777 	head = page_buffers(page);
1778 	bh = head;
1779 
1780 	/*
1781 	 * Get all the dirty buffers mapped to disk addresses and
1782 	 * handle any aliases from the underlying blockdev's mapping.
1783 	 */
1784 	do {
1785 		if (block > last_block) {
1786 			/*
1787 			 * mapped buffers outside i_size will occur, because
1788 			 * this page can be outside i_size when there is a
1789 			 * truncate in progress.
1790 			 */
1791 			/*
1792 			 * The buffer was zeroed by block_write_full_page()
1793 			 */
1794 			clear_buffer_dirty(bh);
1795 			set_buffer_uptodate(bh);
1796 		} else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1797 			err = get_block(inode, block, bh, 1);
1798 			if (err)
1799 				goto recover;
1800 			if (buffer_new(bh)) {
1801 				/* blockdev mappings never come here */
1802 				clear_buffer_new(bh);
1803 				unmap_underlying_metadata(bh->b_bdev,
1804 							bh->b_blocknr);
1805 			}
1806 		}
1807 		bh = bh->b_this_page;
1808 		block++;
1809 	} while (bh != head);
1810 
1811 	do {
1812 		if (!buffer_mapped(bh))
1813 			continue;
1814 		/*
1815 		 * If it's a fully non-blocking write attempt and we cannot
1816 		 * lock the buffer then redirty the page.  Note that this can
1817 		 * potentially cause a busy-wait loop from pdflush and kswapd
1818 		 * activity, but those code paths have their own higher-level
1819 		 * throttling.
1820 		 */
1821 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1822 			lock_buffer(bh);
1823 		} else if (test_set_buffer_locked(bh)) {
1824 			redirty_page_for_writepage(wbc, page);
1825 			continue;
1826 		}
1827 		if (test_clear_buffer_dirty(bh)) {
1828 			mark_buffer_async_write(bh);
1829 		} else {
1830 			unlock_buffer(bh);
1831 		}
1832 	} while ((bh = bh->b_this_page) != head);
1833 
1834 	/*
1835 	 * The page and its buffers are protected by PageWriteback(), so we can
1836 	 * drop the bh refcounts early.
1837 	 */
1838 	BUG_ON(PageWriteback(page));
1839 	set_page_writeback(page);
1840 
1841 	do {
1842 		struct buffer_head *next = bh->b_this_page;
1843 		if (buffer_async_write(bh)) {
1844 			submit_bh(WRITE, bh);
1845 			nr_underway++;
1846 		}
1847 		bh = next;
1848 	} while (bh != head);
1849 	unlock_page(page);
1850 
1851 	err = 0;
1852 done:
1853 	if (nr_underway == 0) {
1854 		/*
1855 		 * The page was marked dirty, but the buffers were
1856 		 * clean.  Someone wrote them back by hand with
1857 		 * ll_rw_block/submit_bh.  A rare case.
1858 		 */
1859 		int uptodate = 1;
1860 		do {
1861 			if (!buffer_uptodate(bh)) {
1862 				uptodate = 0;
1863 				break;
1864 			}
1865 			bh = bh->b_this_page;
1866 		} while (bh != head);
1867 		if (uptodate)
1868 			SetPageUptodate(page);
1869 		end_page_writeback(page);
1870 		/*
1871 		 * The page and buffer_heads can be released at any time from
1872 		 * here on.
1873 		 */
1874 		wbc->pages_skipped++;	/* We didn't write this page */
1875 	}
1876 	return err;
1877 
1878 recover:
1879 	/*
1880 	 * ENOSPC, or some other error.  We may already have added some
1881 	 * blocks to the file, so we need to write these out to avoid
1882 	 * exposing stale data.
1883 	 * The page is currently locked and not marked for writeback
1884 	 */
1885 	bh = head;
1886 	/* Recovery: lock and submit the mapped buffers */
1887 	do {
1888 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
1889 			lock_buffer(bh);
1890 			mark_buffer_async_write(bh);
1891 		} else {
1892 			/*
1893 			 * The buffer may have been set dirty during
1894 			 * attachment to a dirty page.
1895 			 */
1896 			clear_buffer_dirty(bh);
1897 		}
1898 	} while ((bh = bh->b_this_page) != head);
1899 	SetPageError(page);
1900 	BUG_ON(PageWriteback(page));
1901 	set_page_writeback(page);
1902 	unlock_page(page);
1903 	do {
1904 		struct buffer_head *next = bh->b_this_page;
1905 		if (buffer_async_write(bh)) {
1906 			clear_buffer_dirty(bh);
1907 			submit_bh(WRITE, bh);
1908 			nr_underway++;
1909 		}
1910 		bh = next;
1911 	} while (bh != head);
1912 	goto done;
1913 }
1914 
1915 static int __block_prepare_write(struct inode *inode, struct page *page,
1916 		unsigned from, unsigned to, get_block_t *get_block)
1917 {
1918 	unsigned block_start, block_end;
1919 	sector_t block;
1920 	int err = 0;
1921 	unsigned blocksize, bbits;
1922 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1923 
1924 	BUG_ON(!PageLocked(page));
1925 	BUG_ON(from > PAGE_CACHE_SIZE);
1926 	BUG_ON(to > PAGE_CACHE_SIZE);
1927 	BUG_ON(from > to);
1928 
1929 	blocksize = 1 << inode->i_blkbits;
1930 	if (!page_has_buffers(page))
1931 		create_empty_buffers(page, blocksize, 0);
1932 	head = page_buffers(page);
1933 
1934 	bbits = inode->i_blkbits;
1935 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1936 
1937 	for(bh = head, block_start = 0; bh != head || !block_start;
1938 	    block++, block_start=block_end, bh = bh->b_this_page) {
1939 		block_end = block_start + blocksize;
1940 		if (block_end <= from || block_start >= to) {
1941 			if (PageUptodate(page)) {
1942 				if (!buffer_uptodate(bh))
1943 					set_buffer_uptodate(bh);
1944 			}
1945 			continue;
1946 		}
1947 		if (buffer_new(bh))
1948 			clear_buffer_new(bh);
1949 		if (!buffer_mapped(bh)) {
1950 			err = get_block(inode, block, bh, 1);
1951 			if (err)
1952 				break;
1953 			if (buffer_new(bh)) {
1954 				clear_buffer_new(bh);
1955 				unmap_underlying_metadata(bh->b_bdev,
1956 							bh->b_blocknr);
1957 				if (PageUptodate(page)) {
1958 					set_buffer_uptodate(bh);
1959 					continue;
1960 				}
1961 				if (block_end > to || block_start < from) {
1962 					void *kaddr;
1963 
1964 					kaddr = kmap_atomic(page, KM_USER0);
1965 					if (block_end > to)
1966 						memset(kaddr+to, 0,
1967 							block_end-to);
1968 					if (block_start < from)
1969 						memset(kaddr+block_start,
1970 							0, from-block_start);
1971 					flush_dcache_page(page);
1972 					kunmap_atomic(kaddr, KM_USER0);
1973 				}
1974 				continue;
1975 			}
1976 		}
1977 		if (PageUptodate(page)) {
1978 			if (!buffer_uptodate(bh))
1979 				set_buffer_uptodate(bh);
1980 			continue;
1981 		}
1982 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1983 		     (block_start < from || block_end > to)) {
1984 			ll_rw_block(READ, 1, &bh);
1985 			*wait_bh++=bh;
1986 		}
1987 	}
1988 	/*
1989 	 * If we issued read requests - let them complete.
1990 	 */
1991 	while(wait_bh > wait) {
1992 		wait_on_buffer(*--wait_bh);
1993 		if (!buffer_uptodate(*wait_bh))
1994 			err = -EIO;
1995 	}
1996 	if (!err)
1997 		return err;
1998 
1999 	/* Error case: */
2000 	/*
2001 	 * Zero out any newly allocated blocks to avoid exposing stale
2002 	 * data.  If BH_New is set, we know that the block was newly
2003 	 * allocated in the above loop.
2004 	 */
2005 	bh = head;
2006 	block_start = 0;
2007 	do {
2008 		block_end = block_start+blocksize;
2009 		if (block_end <= from)
2010 			goto next_bh;
2011 		if (block_start >= to)
2012 			break;
2013 		if (buffer_new(bh)) {
2014 			void *kaddr;
2015 
2016 			clear_buffer_new(bh);
2017 			kaddr = kmap_atomic(page, KM_USER0);
2018 			memset(kaddr+block_start, 0, bh->b_size);
2019 			kunmap_atomic(kaddr, KM_USER0);
2020 			set_buffer_uptodate(bh);
2021 			mark_buffer_dirty(bh);
2022 		}
2023 next_bh:
2024 		block_start = block_end;
2025 		bh = bh->b_this_page;
2026 	} while (bh != head);
2027 	return err;
2028 }
2029 
2030 static int __block_commit_write(struct inode *inode, struct page *page,
2031 		unsigned from, unsigned to)
2032 {
2033 	unsigned block_start, block_end;
2034 	int partial = 0;
2035 	unsigned blocksize;
2036 	struct buffer_head *bh, *head;
2037 
2038 	blocksize = 1 << inode->i_blkbits;
2039 
2040 	for(bh = head = page_buffers(page), block_start = 0;
2041 	    bh != head || !block_start;
2042 	    block_start=block_end, bh = bh->b_this_page) {
2043 		block_end = block_start + blocksize;
2044 		if (block_end <= from || block_start >= to) {
2045 			if (!buffer_uptodate(bh))
2046 				partial = 1;
2047 		} else {
2048 			set_buffer_uptodate(bh);
2049 			mark_buffer_dirty(bh);
2050 		}
2051 	}
2052 
2053 	/*
2054 	 * If this is a partial write which happened to make all buffers
2055 	 * uptodate then we can optimize away a bogus readpage() for
2056 	 * the next read(). Here we 'discover' whether the page went
2057 	 * uptodate as a result of this (potentially partial) write.
2058 	 */
2059 	if (!partial)
2060 		SetPageUptodate(page);
2061 	return 0;
2062 }
2063 
2064 /*
2065  * Generic "read page" function for block devices that have the normal
2066  * get_block functionality. This is most of the block device filesystems.
2067  * Reads the page asynchronously --- the unlock_buffer() and
2068  * set/clear_buffer_uptodate() functions propagate buffer state into the
2069  * page struct once IO has completed.
2070  */
2071 int block_read_full_page(struct page *page, get_block_t *get_block)
2072 {
2073 	struct inode *inode = page->mapping->host;
2074 	sector_t iblock, lblock;
2075 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2076 	unsigned int blocksize;
2077 	int nr, i;
2078 	int fully_mapped = 1;
2079 
2080 	BUG_ON(!PageLocked(page));
2081 	blocksize = 1 << inode->i_blkbits;
2082 	if (!page_has_buffers(page))
2083 		create_empty_buffers(page, blocksize, 0);
2084 	head = page_buffers(page);
2085 
2086 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2087 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2088 	bh = head;
2089 	nr = 0;
2090 	i = 0;
2091 
2092 	do {
2093 		if (buffer_uptodate(bh))
2094 			continue;
2095 
2096 		if (!buffer_mapped(bh)) {
2097 			int err = 0;
2098 
2099 			fully_mapped = 0;
2100 			if (iblock < lblock) {
2101 				err = get_block(inode, iblock, bh, 0);
2102 				if (err)
2103 					SetPageError(page);
2104 			}
2105 			if (!buffer_mapped(bh)) {
2106 				void *kaddr = kmap_atomic(page, KM_USER0);
2107 				memset(kaddr + i * blocksize, 0, blocksize);
2108 				flush_dcache_page(page);
2109 				kunmap_atomic(kaddr, KM_USER0);
2110 				if (!err)
2111 					set_buffer_uptodate(bh);
2112 				continue;
2113 			}
2114 			/*
2115 			 * get_block() might have updated the buffer
2116 			 * synchronously
2117 			 */
2118 			if (buffer_uptodate(bh))
2119 				continue;
2120 		}
2121 		arr[nr++] = bh;
2122 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2123 
2124 	if (fully_mapped)
2125 		SetPageMappedToDisk(page);
2126 
2127 	if (!nr) {
2128 		/*
2129 		 * All buffers are uptodate - we can set the page uptodate
2130 		 * as well. But not if get_block() returned an error.
2131 		 */
2132 		if (!PageError(page))
2133 			SetPageUptodate(page);
2134 		unlock_page(page);
2135 		return 0;
2136 	}
2137 
2138 	/* Stage two: lock the buffers */
2139 	for (i = 0; i < nr; i++) {
2140 		bh = arr[i];
2141 		lock_buffer(bh);
2142 		mark_buffer_async_read(bh);
2143 	}
2144 
2145 	/*
2146 	 * Stage 3: start the IO.  Check for uptodateness
2147 	 * inside the buffer lock in case another process reading
2148 	 * the underlying blockdev brought it uptodate (the sct fix).
2149 	 */
2150 	for (i = 0; i < nr; i++) {
2151 		bh = arr[i];
2152 		if (buffer_uptodate(bh))
2153 			end_buffer_async_read(bh, 1);
2154 		else
2155 			submit_bh(READ, bh);
2156 	}
2157 	return 0;
2158 }
2159 
2160 /* utility function for filesystems that need to do work on expanding
2161  * truncates.  Uses prepare/commit_write to allow the filesystem to
2162  * deal with the hole.
2163  */
2164 int generic_cont_expand(struct inode *inode, loff_t size)
2165 {
2166 	struct address_space *mapping = inode->i_mapping;
2167 	struct page *page;
2168 	unsigned long index, offset, limit;
2169 	int err;
2170 
2171 	err = -EFBIG;
2172         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2173 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2174 		send_sig(SIGXFSZ, current, 0);
2175 		goto out;
2176 	}
2177 	if (size > inode->i_sb->s_maxbytes)
2178 		goto out;
2179 
2180 	offset = (size & (PAGE_CACHE_SIZE-1)); /* Within page */
2181 
2182 	/* ugh.  in prepare/commit_write, if from==to==start of block, we
2183 	** skip the prepare.  make sure we never send an offset for the start
2184 	** of a block
2185 	*/
2186 	if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2187 		offset++;
2188 	}
2189 	index = size >> PAGE_CACHE_SHIFT;
2190 	err = -ENOMEM;
2191 	page = grab_cache_page(mapping, index);
2192 	if (!page)
2193 		goto out;
2194 	err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2195 	if (!err) {
2196 		err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2197 	}
2198 	unlock_page(page);
2199 	page_cache_release(page);
2200 	if (err > 0)
2201 		err = 0;
2202 out:
2203 	return err;
2204 }
2205 
2206 /*
2207  * For moronic filesystems that do not allow holes in file.
2208  * We may have to extend the file.
2209  */
2210 
2211 int cont_prepare_write(struct page *page, unsigned offset,
2212 		unsigned to, get_block_t *get_block, loff_t *bytes)
2213 {
2214 	struct address_space *mapping = page->mapping;
2215 	struct inode *inode = mapping->host;
2216 	struct page *new_page;
2217 	pgoff_t pgpos;
2218 	long status;
2219 	unsigned zerofrom;
2220 	unsigned blocksize = 1 << inode->i_blkbits;
2221 	void *kaddr;
2222 
2223 	while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2224 		status = -ENOMEM;
2225 		new_page = grab_cache_page(mapping, pgpos);
2226 		if (!new_page)
2227 			goto out;
2228 		/* we might sleep */
2229 		if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2230 			unlock_page(new_page);
2231 			page_cache_release(new_page);
2232 			continue;
2233 		}
2234 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2235 		if (zerofrom & (blocksize-1)) {
2236 			*bytes |= (blocksize-1);
2237 			(*bytes)++;
2238 		}
2239 		status = __block_prepare_write(inode, new_page, zerofrom,
2240 						PAGE_CACHE_SIZE, get_block);
2241 		if (status)
2242 			goto out_unmap;
2243 		kaddr = kmap_atomic(new_page, KM_USER0);
2244 		memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2245 		flush_dcache_page(new_page);
2246 		kunmap_atomic(kaddr, KM_USER0);
2247 		generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2248 		unlock_page(new_page);
2249 		page_cache_release(new_page);
2250 	}
2251 
2252 	if (page->index < pgpos) {
2253 		/* completely inside the area */
2254 		zerofrom = offset;
2255 	} else {
2256 		/* page covers the boundary, find the boundary offset */
2257 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2258 
2259 		/* if we will expand the thing last block will be filled */
2260 		if (to > zerofrom && (zerofrom & (blocksize-1))) {
2261 			*bytes |= (blocksize-1);
2262 			(*bytes)++;
2263 		}
2264 
2265 		/* starting below the boundary? Nothing to zero out */
2266 		if (offset <= zerofrom)
2267 			zerofrom = offset;
2268 	}
2269 	status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2270 	if (status)
2271 		goto out1;
2272 	if (zerofrom < offset) {
2273 		kaddr = kmap_atomic(page, KM_USER0);
2274 		memset(kaddr+zerofrom, 0, offset-zerofrom);
2275 		flush_dcache_page(page);
2276 		kunmap_atomic(kaddr, KM_USER0);
2277 		__block_commit_write(inode, page, zerofrom, offset);
2278 	}
2279 	return 0;
2280 out1:
2281 	ClearPageUptodate(page);
2282 	return status;
2283 
2284 out_unmap:
2285 	ClearPageUptodate(new_page);
2286 	unlock_page(new_page);
2287 	page_cache_release(new_page);
2288 out:
2289 	return status;
2290 }
2291 
2292 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2293 			get_block_t *get_block)
2294 {
2295 	struct inode *inode = page->mapping->host;
2296 	int err = __block_prepare_write(inode, page, from, to, get_block);
2297 	if (err)
2298 		ClearPageUptodate(page);
2299 	return err;
2300 }
2301 
2302 int block_commit_write(struct page *page, unsigned from, unsigned to)
2303 {
2304 	struct inode *inode = page->mapping->host;
2305 	__block_commit_write(inode,page,from,to);
2306 	return 0;
2307 }
2308 
2309 int generic_commit_write(struct file *file, struct page *page,
2310 		unsigned from, unsigned to)
2311 {
2312 	struct inode *inode = page->mapping->host;
2313 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2314 	__block_commit_write(inode,page,from,to);
2315 	/*
2316 	 * No need to use i_size_read() here, the i_size
2317 	 * cannot change under us because we hold i_sem.
2318 	 */
2319 	if (pos > inode->i_size) {
2320 		i_size_write(inode, pos);
2321 		mark_inode_dirty(inode);
2322 	}
2323 	return 0;
2324 }
2325 
2326 
2327 /*
2328  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2329  * immediately, while under the page lock.  So it needs a special end_io
2330  * handler which does not touch the bh after unlocking it.
2331  *
2332  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2333  * a race there is benign: unlock_buffer() only use the bh's address for
2334  * hashing after unlocking the buffer, so it doesn't actually touch the bh
2335  * itself.
2336  */
2337 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2338 {
2339 	if (uptodate) {
2340 		set_buffer_uptodate(bh);
2341 	} else {
2342 		/* This happens, due to failed READA attempts. */
2343 		clear_buffer_uptodate(bh);
2344 	}
2345 	unlock_buffer(bh);
2346 }
2347 
2348 /*
2349  * On entry, the page is fully not uptodate.
2350  * On exit the page is fully uptodate in the areas outside (from,to)
2351  */
2352 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2353 			get_block_t *get_block)
2354 {
2355 	struct inode *inode = page->mapping->host;
2356 	const unsigned blkbits = inode->i_blkbits;
2357 	const unsigned blocksize = 1 << blkbits;
2358 	struct buffer_head map_bh;
2359 	struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2360 	unsigned block_in_page;
2361 	unsigned block_start;
2362 	sector_t block_in_file;
2363 	char *kaddr;
2364 	int nr_reads = 0;
2365 	int i;
2366 	int ret = 0;
2367 	int is_mapped_to_disk = 1;
2368 	int dirtied_it = 0;
2369 
2370 	if (PageMappedToDisk(page))
2371 		return 0;
2372 
2373 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2374 	map_bh.b_page = page;
2375 
2376 	/*
2377 	 * We loop across all blocks in the page, whether or not they are
2378 	 * part of the affected region.  This is so we can discover if the
2379 	 * page is fully mapped-to-disk.
2380 	 */
2381 	for (block_start = 0, block_in_page = 0;
2382 		  block_start < PAGE_CACHE_SIZE;
2383 		  block_in_page++, block_start += blocksize) {
2384 		unsigned block_end = block_start + blocksize;
2385 		int create;
2386 
2387 		map_bh.b_state = 0;
2388 		create = 1;
2389 		if (block_start >= to)
2390 			create = 0;
2391 		ret = get_block(inode, block_in_file + block_in_page,
2392 					&map_bh, create);
2393 		if (ret)
2394 			goto failed;
2395 		if (!buffer_mapped(&map_bh))
2396 			is_mapped_to_disk = 0;
2397 		if (buffer_new(&map_bh))
2398 			unmap_underlying_metadata(map_bh.b_bdev,
2399 							map_bh.b_blocknr);
2400 		if (PageUptodate(page))
2401 			continue;
2402 		if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2403 			kaddr = kmap_atomic(page, KM_USER0);
2404 			if (block_start < from) {
2405 				memset(kaddr+block_start, 0, from-block_start);
2406 				dirtied_it = 1;
2407 			}
2408 			if (block_end > to) {
2409 				memset(kaddr + to, 0, block_end - to);
2410 				dirtied_it = 1;
2411 			}
2412 			flush_dcache_page(page);
2413 			kunmap_atomic(kaddr, KM_USER0);
2414 			continue;
2415 		}
2416 		if (buffer_uptodate(&map_bh))
2417 			continue;	/* reiserfs does this */
2418 		if (block_start < from || block_end > to) {
2419 			struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2420 
2421 			if (!bh) {
2422 				ret = -ENOMEM;
2423 				goto failed;
2424 			}
2425 			bh->b_state = map_bh.b_state;
2426 			atomic_set(&bh->b_count, 0);
2427 			bh->b_this_page = NULL;
2428 			bh->b_page = page;
2429 			bh->b_blocknr = map_bh.b_blocknr;
2430 			bh->b_size = blocksize;
2431 			bh->b_data = (char *)(long)block_start;
2432 			bh->b_bdev = map_bh.b_bdev;
2433 			bh->b_private = NULL;
2434 			read_bh[nr_reads++] = bh;
2435 		}
2436 	}
2437 
2438 	if (nr_reads) {
2439 		struct buffer_head *bh;
2440 
2441 		/*
2442 		 * The page is locked, so these buffers are protected from
2443 		 * any VM or truncate activity.  Hence we don't need to care
2444 		 * for the buffer_head refcounts.
2445 		 */
2446 		for (i = 0; i < nr_reads; i++) {
2447 			bh = read_bh[i];
2448 			lock_buffer(bh);
2449 			bh->b_end_io = end_buffer_read_nobh;
2450 			submit_bh(READ, bh);
2451 		}
2452 		for (i = 0; i < nr_reads; i++) {
2453 			bh = read_bh[i];
2454 			wait_on_buffer(bh);
2455 			if (!buffer_uptodate(bh))
2456 				ret = -EIO;
2457 			free_buffer_head(bh);
2458 			read_bh[i] = NULL;
2459 		}
2460 		if (ret)
2461 			goto failed;
2462 	}
2463 
2464 	if (is_mapped_to_disk)
2465 		SetPageMappedToDisk(page);
2466 	SetPageUptodate(page);
2467 
2468 	/*
2469 	 * Setting the page dirty here isn't necessary for the prepare_write
2470 	 * function - commit_write will do that.  But if/when this function is
2471 	 * used within the pagefault handler to ensure that all mmapped pages
2472 	 * have backing space in the filesystem, we will need to dirty the page
2473 	 * if its contents were altered.
2474 	 */
2475 	if (dirtied_it)
2476 		set_page_dirty(page);
2477 
2478 	return 0;
2479 
2480 failed:
2481 	for (i = 0; i < nr_reads; i++) {
2482 		if (read_bh[i])
2483 			free_buffer_head(read_bh[i]);
2484 	}
2485 
2486 	/*
2487 	 * Error recovery is pretty slack.  Clear the page and mark it dirty
2488 	 * so we'll later zero out any blocks which _were_ allocated.
2489 	 */
2490 	kaddr = kmap_atomic(page, KM_USER0);
2491 	memset(kaddr, 0, PAGE_CACHE_SIZE);
2492 	kunmap_atomic(kaddr, KM_USER0);
2493 	SetPageUptodate(page);
2494 	set_page_dirty(page);
2495 	return ret;
2496 }
2497 EXPORT_SYMBOL(nobh_prepare_write);
2498 
2499 int nobh_commit_write(struct file *file, struct page *page,
2500 		unsigned from, unsigned to)
2501 {
2502 	struct inode *inode = page->mapping->host;
2503 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2504 
2505 	set_page_dirty(page);
2506 	if (pos > inode->i_size) {
2507 		i_size_write(inode, pos);
2508 		mark_inode_dirty(inode);
2509 	}
2510 	return 0;
2511 }
2512 EXPORT_SYMBOL(nobh_commit_write);
2513 
2514 /*
2515  * nobh_writepage() - based on block_full_write_page() except
2516  * that it tries to operate without attaching bufferheads to
2517  * the page.
2518  */
2519 int nobh_writepage(struct page *page, get_block_t *get_block,
2520 			struct writeback_control *wbc)
2521 {
2522 	struct inode * const inode = page->mapping->host;
2523 	loff_t i_size = i_size_read(inode);
2524 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2525 	unsigned offset;
2526 	void *kaddr;
2527 	int ret;
2528 
2529 	/* Is the page fully inside i_size? */
2530 	if (page->index < end_index)
2531 		goto out;
2532 
2533 	/* Is the page fully outside i_size? (truncate in progress) */
2534 	offset = i_size & (PAGE_CACHE_SIZE-1);
2535 	if (page->index >= end_index+1 || !offset) {
2536 		/*
2537 		 * The page may have dirty, unmapped buffers.  For example,
2538 		 * they may have been added in ext3_writepage().  Make them
2539 		 * freeable here, so the page does not leak.
2540 		 */
2541 #if 0
2542 		/* Not really sure about this  - do we need this ? */
2543 		if (page->mapping->a_ops->invalidatepage)
2544 			page->mapping->a_ops->invalidatepage(page, offset);
2545 #endif
2546 		unlock_page(page);
2547 		return 0; /* don't care */
2548 	}
2549 
2550 	/*
2551 	 * The page straddles i_size.  It must be zeroed out on each and every
2552 	 * writepage invocation because it may be mmapped.  "A file is mapped
2553 	 * in multiples of the page size.  For a file that is not a multiple of
2554 	 * the  page size, the remaining memory is zeroed when mapped, and
2555 	 * writes to that region are not written out to the file."
2556 	 */
2557 	kaddr = kmap_atomic(page, KM_USER0);
2558 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2559 	flush_dcache_page(page);
2560 	kunmap_atomic(kaddr, KM_USER0);
2561 out:
2562 	ret = mpage_writepage(page, get_block, wbc);
2563 	if (ret == -EAGAIN)
2564 		ret = __block_write_full_page(inode, page, get_block, wbc);
2565 	return ret;
2566 }
2567 EXPORT_SYMBOL(nobh_writepage);
2568 
2569 /*
2570  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2571  */
2572 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2573 {
2574 	struct inode *inode = mapping->host;
2575 	unsigned blocksize = 1 << inode->i_blkbits;
2576 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2577 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2578 	unsigned to;
2579 	struct page *page;
2580 	struct address_space_operations *a_ops = mapping->a_ops;
2581 	char *kaddr;
2582 	int ret = 0;
2583 
2584 	if ((offset & (blocksize - 1)) == 0)
2585 		goto out;
2586 
2587 	ret = -ENOMEM;
2588 	page = grab_cache_page(mapping, index);
2589 	if (!page)
2590 		goto out;
2591 
2592 	to = (offset + blocksize) & ~(blocksize - 1);
2593 	ret = a_ops->prepare_write(NULL, page, offset, to);
2594 	if (ret == 0) {
2595 		kaddr = kmap_atomic(page, KM_USER0);
2596 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2597 		flush_dcache_page(page);
2598 		kunmap_atomic(kaddr, KM_USER0);
2599 		set_page_dirty(page);
2600 	}
2601 	unlock_page(page);
2602 	page_cache_release(page);
2603 out:
2604 	return ret;
2605 }
2606 EXPORT_SYMBOL(nobh_truncate_page);
2607 
2608 int block_truncate_page(struct address_space *mapping,
2609 			loff_t from, get_block_t *get_block)
2610 {
2611 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2612 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2613 	unsigned blocksize;
2614 	pgoff_t iblock;
2615 	unsigned length, pos;
2616 	struct inode *inode = mapping->host;
2617 	struct page *page;
2618 	struct buffer_head *bh;
2619 	void *kaddr;
2620 	int err;
2621 
2622 	blocksize = 1 << inode->i_blkbits;
2623 	length = offset & (blocksize - 1);
2624 
2625 	/* Block boundary? Nothing to do */
2626 	if (!length)
2627 		return 0;
2628 
2629 	length = blocksize - length;
2630 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2631 
2632 	page = grab_cache_page(mapping, index);
2633 	err = -ENOMEM;
2634 	if (!page)
2635 		goto out;
2636 
2637 	if (!page_has_buffers(page))
2638 		create_empty_buffers(page, blocksize, 0);
2639 
2640 	/* Find the buffer that contains "offset" */
2641 	bh = page_buffers(page);
2642 	pos = blocksize;
2643 	while (offset >= pos) {
2644 		bh = bh->b_this_page;
2645 		iblock++;
2646 		pos += blocksize;
2647 	}
2648 
2649 	err = 0;
2650 	if (!buffer_mapped(bh)) {
2651 		err = get_block(inode, iblock, bh, 0);
2652 		if (err)
2653 			goto unlock;
2654 		/* unmapped? It's a hole - nothing to do */
2655 		if (!buffer_mapped(bh))
2656 			goto unlock;
2657 	}
2658 
2659 	/* Ok, it's mapped. Make sure it's up-to-date */
2660 	if (PageUptodate(page))
2661 		set_buffer_uptodate(bh);
2662 
2663 	if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2664 		err = -EIO;
2665 		ll_rw_block(READ, 1, &bh);
2666 		wait_on_buffer(bh);
2667 		/* Uhhuh. Read error. Complain and punt. */
2668 		if (!buffer_uptodate(bh))
2669 			goto unlock;
2670 	}
2671 
2672 	kaddr = kmap_atomic(page, KM_USER0);
2673 	memset(kaddr + offset, 0, length);
2674 	flush_dcache_page(page);
2675 	kunmap_atomic(kaddr, KM_USER0);
2676 
2677 	mark_buffer_dirty(bh);
2678 	err = 0;
2679 
2680 unlock:
2681 	unlock_page(page);
2682 	page_cache_release(page);
2683 out:
2684 	return err;
2685 }
2686 
2687 /*
2688  * The generic ->writepage function for buffer-backed address_spaces
2689  */
2690 int block_write_full_page(struct page *page, get_block_t *get_block,
2691 			struct writeback_control *wbc)
2692 {
2693 	struct inode * const inode = page->mapping->host;
2694 	loff_t i_size = i_size_read(inode);
2695 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2696 	unsigned offset;
2697 	void *kaddr;
2698 
2699 	/* Is the page fully inside i_size? */
2700 	if (page->index < end_index)
2701 		return __block_write_full_page(inode, page, get_block, wbc);
2702 
2703 	/* Is the page fully outside i_size? (truncate in progress) */
2704 	offset = i_size & (PAGE_CACHE_SIZE-1);
2705 	if (page->index >= end_index+1 || !offset) {
2706 		/*
2707 		 * The page may have dirty, unmapped buffers.  For example,
2708 		 * they may have been added in ext3_writepage().  Make them
2709 		 * freeable here, so the page does not leak.
2710 		 */
2711 		block_invalidatepage(page, 0);
2712 		unlock_page(page);
2713 		return 0; /* don't care */
2714 	}
2715 
2716 	/*
2717 	 * The page straddles i_size.  It must be zeroed out on each and every
2718 	 * writepage invokation because it may be mmapped.  "A file is mapped
2719 	 * in multiples of the page size.  For a file that is not a multiple of
2720 	 * the  page size, the remaining memory is zeroed when mapped, and
2721 	 * writes to that region are not written out to the file."
2722 	 */
2723 	kaddr = kmap_atomic(page, KM_USER0);
2724 	memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2725 	flush_dcache_page(page);
2726 	kunmap_atomic(kaddr, KM_USER0);
2727 	return __block_write_full_page(inode, page, get_block, wbc);
2728 }
2729 
2730 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2731 			    get_block_t *get_block)
2732 {
2733 	struct buffer_head tmp;
2734 	struct inode *inode = mapping->host;
2735 	tmp.b_state = 0;
2736 	tmp.b_blocknr = 0;
2737 	get_block(inode, block, &tmp, 0);
2738 	return tmp.b_blocknr;
2739 }
2740 
2741 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2742 {
2743 	struct buffer_head *bh = bio->bi_private;
2744 
2745 	if (bio->bi_size)
2746 		return 1;
2747 
2748 	if (err == -EOPNOTSUPP) {
2749 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2750 		set_bit(BH_Eopnotsupp, &bh->b_state);
2751 	}
2752 
2753 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2754 	bio_put(bio);
2755 	return 0;
2756 }
2757 
2758 int submit_bh(int rw, struct buffer_head * bh)
2759 {
2760 	struct bio *bio;
2761 	int ret = 0;
2762 
2763 	BUG_ON(!buffer_locked(bh));
2764 	BUG_ON(!buffer_mapped(bh));
2765 	BUG_ON(!bh->b_end_io);
2766 
2767 	if (buffer_ordered(bh) && (rw == WRITE))
2768 		rw = WRITE_BARRIER;
2769 
2770 	/*
2771 	 * Only clear out a write error when rewriting, should this
2772 	 * include WRITE_SYNC as well?
2773 	 */
2774 	if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2775 		clear_buffer_write_io_error(bh);
2776 
2777 	/*
2778 	 * from here on down, it's all bio -- do the initial mapping,
2779 	 * submit_bio -> generic_make_request may further map this bio around
2780 	 */
2781 	bio = bio_alloc(GFP_NOIO, 1);
2782 
2783 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2784 	bio->bi_bdev = bh->b_bdev;
2785 	bio->bi_io_vec[0].bv_page = bh->b_page;
2786 	bio->bi_io_vec[0].bv_len = bh->b_size;
2787 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2788 
2789 	bio->bi_vcnt = 1;
2790 	bio->bi_idx = 0;
2791 	bio->bi_size = bh->b_size;
2792 
2793 	bio->bi_end_io = end_bio_bh_io_sync;
2794 	bio->bi_private = bh;
2795 
2796 	bio_get(bio);
2797 	submit_bio(rw, bio);
2798 
2799 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2800 		ret = -EOPNOTSUPP;
2801 
2802 	bio_put(bio);
2803 	return ret;
2804 }
2805 
2806 /**
2807  * ll_rw_block: low-level access to block devices (DEPRECATED)
2808  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2809  * @nr: number of &struct buffer_heads in the array
2810  * @bhs: array of pointers to &struct buffer_head
2811  *
2812  * ll_rw_block() takes an array of pointers to &struct buffer_heads,
2813  * and requests an I/O operation on them, either a %READ or a %WRITE.
2814  * The third %READA option is described in the documentation for
2815  * generic_make_request() which ll_rw_block() calls.
2816  *
2817  * This function drops any buffer that it cannot get a lock on (with the
2818  * BH_Lock state bit), any buffer that appears to be clean when doing a
2819  * write request, and any buffer that appears to be up-to-date when doing
2820  * read request.  Further it marks as clean buffers that are processed for
2821  * writing (the buffer cache won't assume that they are actually clean until
2822  * the buffer gets unlocked).
2823  *
2824  * ll_rw_block sets b_end_io to simple completion handler that marks
2825  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2826  * any waiters.
2827  *
2828  * All of the buffers must be for the same device, and must also be a
2829  * multiple of the current approved size for the device.
2830  */
2831 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2832 {
2833 	int i;
2834 
2835 	for (i = 0; i < nr; i++) {
2836 		struct buffer_head *bh = bhs[i];
2837 
2838 		if (test_set_buffer_locked(bh))
2839 			continue;
2840 
2841 		get_bh(bh);
2842 		if (rw == WRITE) {
2843 			if (test_clear_buffer_dirty(bh)) {
2844 				bh->b_end_io = end_buffer_write_sync;
2845 				submit_bh(WRITE, bh);
2846 				continue;
2847 			}
2848 		} else {
2849 			if (!buffer_uptodate(bh)) {
2850 				bh->b_end_io = end_buffer_read_sync;
2851 				submit_bh(rw, bh);
2852 				continue;
2853 			}
2854 		}
2855 		unlock_buffer(bh);
2856 		put_bh(bh);
2857 	}
2858 }
2859 
2860 /*
2861  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2862  * and then start new I/O and then wait upon it.  The caller must have a ref on
2863  * the buffer_head.
2864  */
2865 int sync_dirty_buffer(struct buffer_head *bh)
2866 {
2867 	int ret = 0;
2868 
2869 	WARN_ON(atomic_read(&bh->b_count) < 1);
2870 	lock_buffer(bh);
2871 	if (test_clear_buffer_dirty(bh)) {
2872 		get_bh(bh);
2873 		bh->b_end_io = end_buffer_write_sync;
2874 		ret = submit_bh(WRITE, bh);
2875 		wait_on_buffer(bh);
2876 		if (buffer_eopnotsupp(bh)) {
2877 			clear_buffer_eopnotsupp(bh);
2878 			ret = -EOPNOTSUPP;
2879 		}
2880 		if (!ret && !buffer_uptodate(bh))
2881 			ret = -EIO;
2882 	} else {
2883 		unlock_buffer(bh);
2884 	}
2885 	return ret;
2886 }
2887 
2888 /*
2889  * try_to_free_buffers() checks if all the buffers on this particular page
2890  * are unused, and releases them if so.
2891  *
2892  * Exclusion against try_to_free_buffers may be obtained by either
2893  * locking the page or by holding its mapping's private_lock.
2894  *
2895  * If the page is dirty but all the buffers are clean then we need to
2896  * be sure to mark the page clean as well.  This is because the page
2897  * may be against a block device, and a later reattachment of buffers
2898  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2899  * filesystem data on the same device.
2900  *
2901  * The same applies to regular filesystem pages: if all the buffers are
2902  * clean then we set the page clean and proceed.  To do that, we require
2903  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2904  * private_lock.
2905  *
2906  * try_to_free_buffers() is non-blocking.
2907  */
2908 static inline int buffer_busy(struct buffer_head *bh)
2909 {
2910 	return atomic_read(&bh->b_count) |
2911 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2912 }
2913 
2914 static int
2915 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2916 {
2917 	struct buffer_head *head = page_buffers(page);
2918 	struct buffer_head *bh;
2919 
2920 	bh = head;
2921 	do {
2922 		if (buffer_write_io_error(bh) && page->mapping)
2923 			set_bit(AS_EIO, &page->mapping->flags);
2924 		if (buffer_busy(bh))
2925 			goto failed;
2926 		bh = bh->b_this_page;
2927 	} while (bh != head);
2928 
2929 	do {
2930 		struct buffer_head *next = bh->b_this_page;
2931 
2932 		if (!list_empty(&bh->b_assoc_buffers))
2933 			__remove_assoc_queue(bh);
2934 		bh = next;
2935 	} while (bh != head);
2936 	*buffers_to_free = head;
2937 	__clear_page_buffers(page);
2938 	return 1;
2939 failed:
2940 	return 0;
2941 }
2942 
2943 int try_to_free_buffers(struct page *page)
2944 {
2945 	struct address_space * const mapping = page->mapping;
2946 	struct buffer_head *buffers_to_free = NULL;
2947 	int ret = 0;
2948 
2949 	BUG_ON(!PageLocked(page));
2950 	if (PageWriteback(page))
2951 		return 0;
2952 
2953 	if (mapping == NULL) {		/* can this still happen? */
2954 		ret = drop_buffers(page, &buffers_to_free);
2955 		goto out;
2956 	}
2957 
2958 	spin_lock(&mapping->private_lock);
2959 	ret = drop_buffers(page, &buffers_to_free);
2960 	if (ret) {
2961 		/*
2962 		 * If the filesystem writes its buffers by hand (eg ext3)
2963 		 * then we can have clean buffers against a dirty page.  We
2964 		 * clean the page here; otherwise later reattachment of buffers
2965 		 * could encounter a non-uptodate page, which is unresolvable.
2966 		 * This only applies in the rare case where try_to_free_buffers
2967 		 * succeeds but the page is not freed.
2968 		 */
2969 		clear_page_dirty(page);
2970 	}
2971 	spin_unlock(&mapping->private_lock);
2972 out:
2973 	if (buffers_to_free) {
2974 		struct buffer_head *bh = buffers_to_free;
2975 
2976 		do {
2977 			struct buffer_head *next = bh->b_this_page;
2978 			free_buffer_head(bh);
2979 			bh = next;
2980 		} while (bh != buffers_to_free);
2981 	}
2982 	return ret;
2983 }
2984 EXPORT_SYMBOL(try_to_free_buffers);
2985 
2986 int block_sync_page(struct page *page)
2987 {
2988 	struct address_space *mapping;
2989 
2990 	smp_mb();
2991 	mapping = page_mapping(page);
2992 	if (mapping)
2993 		blk_run_backing_dev(mapping->backing_dev_info, page);
2994 	return 0;
2995 }
2996 
2997 /*
2998  * There are no bdflush tunables left.  But distributions are
2999  * still running obsolete flush daemons, so we terminate them here.
3000  *
3001  * Use of bdflush() is deprecated and will be removed in a future kernel.
3002  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3003  */
3004 asmlinkage long sys_bdflush(int func, long data)
3005 {
3006 	static int msg_count;
3007 
3008 	if (!capable(CAP_SYS_ADMIN))
3009 		return -EPERM;
3010 
3011 	if (msg_count < 5) {
3012 		msg_count++;
3013 		printk(KERN_INFO
3014 			"warning: process `%s' used the obsolete bdflush"
3015 			" system call\n", current->comm);
3016 		printk(KERN_INFO "Fix your initscripts?\n");
3017 	}
3018 
3019 	if (func == 1)
3020 		do_exit(0);
3021 	return 0;
3022 }
3023 
3024 /*
3025  * Buffer-head allocation
3026  */
3027 static kmem_cache_t *bh_cachep;
3028 
3029 /*
3030  * Once the number of bh's in the machine exceeds this level, we start
3031  * stripping them in writeback.
3032  */
3033 static int max_buffer_heads;
3034 
3035 int buffer_heads_over_limit;
3036 
3037 struct bh_accounting {
3038 	int nr;			/* Number of live bh's */
3039 	int ratelimit;		/* Limit cacheline bouncing */
3040 };
3041 
3042 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3043 
3044 static void recalc_bh_state(void)
3045 {
3046 	int i;
3047 	int tot = 0;
3048 
3049 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3050 		return;
3051 	__get_cpu_var(bh_accounting).ratelimit = 0;
3052 	for_each_cpu(i)
3053 		tot += per_cpu(bh_accounting, i).nr;
3054 	buffer_heads_over_limit = (tot > max_buffer_heads);
3055 }
3056 
3057 struct buffer_head *alloc_buffer_head(unsigned int __nocast gfp_flags)
3058 {
3059 	struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3060 	if (ret) {
3061 		preempt_disable();
3062 		__get_cpu_var(bh_accounting).nr++;
3063 		recalc_bh_state();
3064 		preempt_enable();
3065 	}
3066 	return ret;
3067 }
3068 EXPORT_SYMBOL(alloc_buffer_head);
3069 
3070 void free_buffer_head(struct buffer_head *bh)
3071 {
3072 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3073 	kmem_cache_free(bh_cachep, bh);
3074 	preempt_disable();
3075 	__get_cpu_var(bh_accounting).nr--;
3076 	recalc_bh_state();
3077 	preempt_enable();
3078 }
3079 EXPORT_SYMBOL(free_buffer_head);
3080 
3081 static void
3082 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3083 {
3084 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3085 			    SLAB_CTOR_CONSTRUCTOR) {
3086 		struct buffer_head * bh = (struct buffer_head *)data;
3087 
3088 		memset(bh, 0, sizeof(*bh));
3089 		INIT_LIST_HEAD(&bh->b_assoc_buffers);
3090 	}
3091 }
3092 
3093 #ifdef CONFIG_HOTPLUG_CPU
3094 static void buffer_exit_cpu(int cpu)
3095 {
3096 	int i;
3097 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3098 
3099 	for (i = 0; i < BH_LRU_SIZE; i++) {
3100 		brelse(b->bhs[i]);
3101 		b->bhs[i] = NULL;
3102 	}
3103 }
3104 
3105 static int buffer_cpu_notify(struct notifier_block *self,
3106 			      unsigned long action, void *hcpu)
3107 {
3108 	if (action == CPU_DEAD)
3109 		buffer_exit_cpu((unsigned long)hcpu);
3110 	return NOTIFY_OK;
3111 }
3112 #endif /* CONFIG_HOTPLUG_CPU */
3113 
3114 void __init buffer_init(void)
3115 {
3116 	int nrpages;
3117 
3118 	bh_cachep = kmem_cache_create("buffer_head",
3119 			sizeof(struct buffer_head), 0,
3120 			SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_buffer_head, NULL);
3121 
3122 	/*
3123 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3124 	 */
3125 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3126 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3127 	hotcpu_notifier(buffer_cpu_notify, 0);
3128 }
3129 
3130 EXPORT_SYMBOL(__bforget);
3131 EXPORT_SYMBOL(__brelse);
3132 EXPORT_SYMBOL(__wait_on_buffer);
3133 EXPORT_SYMBOL(block_commit_write);
3134 EXPORT_SYMBOL(block_prepare_write);
3135 EXPORT_SYMBOL(block_read_full_page);
3136 EXPORT_SYMBOL(block_sync_page);
3137 EXPORT_SYMBOL(block_truncate_page);
3138 EXPORT_SYMBOL(block_write_full_page);
3139 EXPORT_SYMBOL(cont_prepare_write);
3140 EXPORT_SYMBOL(end_buffer_async_write);
3141 EXPORT_SYMBOL(end_buffer_read_sync);
3142 EXPORT_SYMBOL(end_buffer_write_sync);
3143 EXPORT_SYMBOL(file_fsync);
3144 EXPORT_SYMBOL(fsync_bdev);
3145 EXPORT_SYMBOL(generic_block_bmap);
3146 EXPORT_SYMBOL(generic_commit_write);
3147 EXPORT_SYMBOL(generic_cont_expand);
3148 EXPORT_SYMBOL(init_buffer);
3149 EXPORT_SYMBOL(invalidate_bdev);
3150 EXPORT_SYMBOL(ll_rw_block);
3151 EXPORT_SYMBOL(mark_buffer_dirty);
3152 EXPORT_SYMBOL(submit_bh);
3153 EXPORT_SYMBOL(sync_dirty_buffer);
3154 EXPORT_SYMBOL(unlock_buffer);
3155