1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 #include <linux/sched/isolation.h> 53 54 #include "internal.h" 55 56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 58 enum rw_hint hint, struct writeback_control *wbc); 59 60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 61 62 inline void touch_buffer(struct buffer_head *bh) 63 { 64 trace_block_touch_buffer(bh); 65 folio_mark_accessed(bh->b_folio); 66 } 67 EXPORT_SYMBOL(touch_buffer); 68 69 void __lock_buffer(struct buffer_head *bh) 70 { 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 72 } 73 EXPORT_SYMBOL(__lock_buffer); 74 75 void unlock_buffer(struct buffer_head *bh) 76 { 77 clear_bit_unlock(BH_Lock, &bh->b_state); 78 smp_mb__after_atomic(); 79 wake_up_bit(&bh->b_state, BH_Lock); 80 } 81 EXPORT_SYMBOL(unlock_buffer); 82 83 /* 84 * Returns if the folio has dirty or writeback buffers. If all the buffers 85 * are unlocked and clean then the folio_test_dirty information is stale. If 86 * any of the buffers are locked, it is assumed they are locked for IO. 87 */ 88 void buffer_check_dirty_writeback(struct folio *folio, 89 bool *dirty, bool *writeback) 90 { 91 struct buffer_head *head, *bh; 92 *dirty = false; 93 *writeback = false; 94 95 BUG_ON(!folio_test_locked(folio)); 96 97 head = folio_buffers(folio); 98 if (!head) 99 return; 100 101 if (folio_test_writeback(folio)) 102 *writeback = true; 103 104 bh = head; 105 do { 106 if (buffer_locked(bh)) 107 *writeback = true; 108 109 if (buffer_dirty(bh)) 110 *dirty = true; 111 112 bh = bh->b_this_page; 113 } while (bh != head); 114 } 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 __end_buffer_read_notouch(bh, uptodate); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 /* 180 * Various filesystems appear to want __find_get_block to be non-blocking. 181 * But it's the page lock which protects the buffers. To get around this, 182 * we get exclusion from try_to_free_buffers with the blockdev mapping's 183 * i_private_lock. 184 * 185 * Hack idea: for the blockdev mapping, i_private_lock contention 186 * may be quite high. This code could TryLock the page, and if that 187 * succeeds, there is no need to take i_private_lock. 188 */ 189 static struct buffer_head * 190 __find_get_block_slow(struct block_device *bdev, sector_t block) 191 { 192 struct address_space *bd_mapping = bdev->bd_mapping; 193 const int blkbits = bd_mapping->host->i_blkbits; 194 struct buffer_head *ret = NULL; 195 pgoff_t index; 196 struct buffer_head *bh; 197 struct buffer_head *head; 198 struct folio *folio; 199 int all_mapped = 1; 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 201 202 index = ((loff_t)block << blkbits) / PAGE_SIZE; 203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); 204 if (IS_ERR(folio)) 205 goto out; 206 207 spin_lock(&bd_mapping->i_private_lock); 208 head = folio_buffers(folio); 209 if (!head) 210 goto out_unlock; 211 bh = head; 212 do { 213 if (!buffer_mapped(bh)) 214 all_mapped = 0; 215 else if (bh->b_blocknr == block) { 216 ret = bh; 217 get_bh(bh); 218 goto out_unlock; 219 } 220 bh = bh->b_this_page; 221 } while (bh != head); 222 223 /* we might be here because some of the buffers on this page are 224 * not mapped. This is due to various races between 225 * file io on the block device and getblk. It gets dealt with 226 * elsewhere, don't buffer_error if we had some unmapped buffers 227 */ 228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 229 if (all_mapped && __ratelimit(&last_warned)) { 230 printk("__find_get_block_slow() failed. block=%llu, " 231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 232 "device %pg blocksize: %d\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr, 235 bh->b_state, bh->b_size, bdev, 236 1 << blkbits); 237 } 238 out_unlock: 239 spin_unlock(&bd_mapping->i_private_lock); 240 folio_put(folio); 241 out: 242 return ret; 243 } 244 245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 246 { 247 unsigned long flags; 248 struct buffer_head *first; 249 struct buffer_head *tmp; 250 struct folio *folio; 251 int folio_uptodate = 1; 252 253 BUG_ON(!buffer_async_read(bh)); 254 255 folio = bh->b_folio; 256 if (uptodate) { 257 set_buffer_uptodate(bh); 258 } else { 259 clear_buffer_uptodate(bh); 260 buffer_io_error(bh, ", async page read"); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = folio_buffers(folio); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 folio_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 folio_end_read(folio, folio_uptodate); 285 return; 286 287 still_busy: 288 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 289 return; 290 } 291 292 struct postprocess_bh_ctx { 293 struct work_struct work; 294 struct buffer_head *bh; 295 }; 296 297 static void verify_bh(struct work_struct *work) 298 { 299 struct postprocess_bh_ctx *ctx = 300 container_of(work, struct postprocess_bh_ctx, work); 301 struct buffer_head *bh = ctx->bh; 302 bool valid; 303 304 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 305 end_buffer_async_read(bh, valid); 306 kfree(ctx); 307 } 308 309 static bool need_fsverity(struct buffer_head *bh) 310 { 311 struct folio *folio = bh->b_folio; 312 struct inode *inode = folio->mapping->host; 313 314 return fsverity_active(inode) && 315 /* needed by ext4 */ 316 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 317 } 318 319 static void decrypt_bh(struct work_struct *work) 320 { 321 struct postprocess_bh_ctx *ctx = 322 container_of(work, struct postprocess_bh_ctx, work); 323 struct buffer_head *bh = ctx->bh; 324 int err; 325 326 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 327 bh_offset(bh)); 328 if (err == 0 && need_fsverity(bh)) { 329 /* 330 * We use different work queues for decryption and for verity 331 * because verity may require reading metadata pages that need 332 * decryption, and we shouldn't recurse to the same workqueue. 333 */ 334 INIT_WORK(&ctx->work, verify_bh); 335 fsverity_enqueue_verify_work(&ctx->work); 336 return; 337 } 338 end_buffer_async_read(bh, err == 0); 339 kfree(ctx); 340 } 341 342 /* 343 * I/O completion handler for block_read_full_folio() - pages 344 * which come unlocked at the end of I/O. 345 */ 346 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 347 { 348 struct inode *inode = bh->b_folio->mapping->host; 349 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 350 bool verify = need_fsverity(bh); 351 352 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 353 if (uptodate && (decrypt || verify)) { 354 struct postprocess_bh_ctx *ctx = 355 kmalloc(sizeof(*ctx), GFP_ATOMIC); 356 357 if (ctx) { 358 ctx->bh = bh; 359 if (decrypt) { 360 INIT_WORK(&ctx->work, decrypt_bh); 361 fscrypt_enqueue_decrypt_work(&ctx->work); 362 } else { 363 INIT_WORK(&ctx->work, verify_bh); 364 fsverity_enqueue_verify_work(&ctx->work); 365 } 366 return; 367 } 368 uptodate = 0; 369 } 370 end_buffer_async_read(bh, uptodate); 371 } 372 373 /* 374 * Completion handler for block_write_full_folio() - folios which are unlocked 375 * during I/O, and which have the writeback flag cleared upon I/O completion. 376 */ 377 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 378 { 379 unsigned long flags; 380 struct buffer_head *first; 381 struct buffer_head *tmp; 382 struct folio *folio; 383 384 BUG_ON(!buffer_async_write(bh)); 385 386 folio = bh->b_folio; 387 if (uptodate) { 388 set_buffer_uptodate(bh); 389 } else { 390 buffer_io_error(bh, ", lost async page write"); 391 mark_buffer_write_io_error(bh); 392 clear_buffer_uptodate(bh); 393 } 394 395 first = folio_buffers(folio); 396 spin_lock_irqsave(&first->b_uptodate_lock, flags); 397 398 clear_buffer_async_write(bh); 399 unlock_buffer(bh); 400 tmp = bh->b_this_page; 401 while (tmp != bh) { 402 if (buffer_async_write(tmp)) { 403 BUG_ON(!buffer_locked(tmp)); 404 goto still_busy; 405 } 406 tmp = tmp->b_this_page; 407 } 408 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 409 folio_end_writeback(folio); 410 return; 411 412 still_busy: 413 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 414 return; 415 } 416 417 /* 418 * If a page's buffers are under async readin (end_buffer_async_read 419 * completion) then there is a possibility that another thread of 420 * control could lock one of the buffers after it has completed 421 * but while some of the other buffers have not completed. This 422 * locked buffer would confuse end_buffer_async_read() into not unlocking 423 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 424 * that this buffer is not under async I/O. 425 * 426 * The page comes unlocked when it has no locked buffer_async buffers 427 * left. 428 * 429 * PageLocked prevents anyone starting new async I/O reads any of 430 * the buffers. 431 * 432 * PageWriteback is used to prevent simultaneous writeout of the same 433 * page. 434 * 435 * PageLocked prevents anyone from starting writeback of a page which is 436 * under read I/O (PageWriteback is only ever set against a locked page). 437 */ 438 static void mark_buffer_async_read(struct buffer_head *bh) 439 { 440 bh->b_end_io = end_buffer_async_read_io; 441 set_buffer_async_read(bh); 442 } 443 444 static void mark_buffer_async_write_endio(struct buffer_head *bh, 445 bh_end_io_t *handler) 446 { 447 bh->b_end_io = handler; 448 set_buffer_async_write(bh); 449 } 450 451 void mark_buffer_async_write(struct buffer_head *bh) 452 { 453 mark_buffer_async_write_endio(bh, end_buffer_async_write); 454 } 455 EXPORT_SYMBOL(mark_buffer_async_write); 456 457 458 /* 459 * fs/buffer.c contains helper functions for buffer-backed address space's 460 * fsync functions. A common requirement for buffer-based filesystems is 461 * that certain data from the backing blockdev needs to be written out for 462 * a successful fsync(). For example, ext2 indirect blocks need to be 463 * written back and waited upon before fsync() returns. 464 * 465 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(), 466 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 467 * management of a list of dependent buffers at ->i_mapping->i_private_list. 468 * 469 * Locking is a little subtle: try_to_free_buffers() will remove buffers 470 * from their controlling inode's queue when they are being freed. But 471 * try_to_free_buffers() will be operating against the *blockdev* mapping 472 * at the time, not against the S_ISREG file which depends on those buffers. 473 * So the locking for i_private_list is via the i_private_lock in the address_space 474 * which backs the buffers. Which is different from the address_space 475 * against which the buffers are listed. So for a particular address_space, 476 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact, 477 * mapping->i_private_list will always be protected by the backing blockdev's 478 * ->i_private_lock. 479 * 480 * Which introduces a requirement: all buffers on an address_space's 481 * ->i_private_list must be from the same address_space: the blockdev's. 482 * 483 * address_spaces which do not place buffers at ->i_private_list via these 484 * utility functions are free to use i_private_lock and i_private_list for 485 * whatever they want. The only requirement is that list_empty(i_private_list) 486 * be true at clear_inode() time. 487 * 488 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 489 * filesystems should do that. invalidate_inode_buffers() should just go 490 * BUG_ON(!list_empty). 491 * 492 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 493 * take an address_space, not an inode. And it should be called 494 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 495 * queued up. 496 * 497 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 498 * list if it is already on a list. Because if the buffer is on a list, 499 * it *must* already be on the right one. If not, the filesystem is being 500 * silly. This will save a ton of locking. But first we have to ensure 501 * that buffers are taken *off* the old inode's list when they are freed 502 * (presumably in truncate). That requires careful auditing of all 503 * filesystems (do it inside bforget()). It could also be done by bringing 504 * b_inode back. 505 */ 506 507 /* 508 * The buffer's backing address_space's i_private_lock must be held 509 */ 510 static void __remove_assoc_queue(struct buffer_head *bh) 511 { 512 list_del_init(&bh->b_assoc_buffers); 513 WARN_ON(!bh->b_assoc_map); 514 bh->b_assoc_map = NULL; 515 } 516 517 int inode_has_buffers(struct inode *inode) 518 { 519 return !list_empty(&inode->i_data.i_private_list); 520 } 521 522 /* 523 * osync is designed to support O_SYNC io. It waits synchronously for 524 * all already-submitted IO to complete, but does not queue any new 525 * writes to the disk. 526 * 527 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 528 * as you dirty the buffers, and then use osync_inode_buffers to wait for 529 * completion. Any other dirty buffers which are not yet queued for 530 * write will not be flushed to disk by the osync. 531 */ 532 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 533 { 534 struct buffer_head *bh; 535 struct list_head *p; 536 int err = 0; 537 538 spin_lock(lock); 539 repeat: 540 list_for_each_prev(p, list) { 541 bh = BH_ENTRY(p); 542 if (buffer_locked(bh)) { 543 get_bh(bh); 544 spin_unlock(lock); 545 wait_on_buffer(bh); 546 if (!buffer_uptodate(bh)) 547 err = -EIO; 548 brelse(bh); 549 spin_lock(lock); 550 goto repeat; 551 } 552 } 553 spin_unlock(lock); 554 return err; 555 } 556 557 /** 558 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 559 * @mapping: the mapping which wants those buffers written 560 * 561 * Starts I/O against the buffers at mapping->i_private_list, and waits upon 562 * that I/O. 563 * 564 * Basically, this is a convenience function for fsync(). 565 * @mapping is a file or directory which needs those buffers to be written for 566 * a successful fsync(). 567 */ 568 int sync_mapping_buffers(struct address_space *mapping) 569 { 570 struct address_space *buffer_mapping = mapping->i_private_data; 571 572 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list)) 573 return 0; 574 575 return fsync_buffers_list(&buffer_mapping->i_private_lock, 576 &mapping->i_private_list); 577 } 578 EXPORT_SYMBOL(sync_mapping_buffers); 579 580 /** 581 * generic_buffers_fsync_noflush - generic buffer fsync implementation 582 * for simple filesystems with no inode lock 583 * 584 * @file: file to synchronize 585 * @start: start offset in bytes 586 * @end: end offset in bytes (inclusive) 587 * @datasync: only synchronize essential metadata if true 588 * 589 * This is a generic implementation of the fsync method for simple 590 * filesystems which track all non-inode metadata in the buffers list 591 * hanging off the address_space structure. 592 */ 593 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, 594 bool datasync) 595 { 596 struct inode *inode = file->f_mapping->host; 597 int err; 598 int ret; 599 600 err = file_write_and_wait_range(file, start, end); 601 if (err) 602 return err; 603 604 ret = sync_mapping_buffers(inode->i_mapping); 605 if (!(inode->i_state & I_DIRTY_ALL)) 606 goto out; 607 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 608 goto out; 609 610 err = sync_inode_metadata(inode, 1); 611 if (ret == 0) 612 ret = err; 613 614 out: 615 /* check and advance again to catch errors after syncing out buffers */ 616 err = file_check_and_advance_wb_err(file); 617 if (ret == 0) 618 ret = err; 619 return ret; 620 } 621 EXPORT_SYMBOL(generic_buffers_fsync_noflush); 622 623 /** 624 * generic_buffers_fsync - generic buffer fsync implementation 625 * for simple filesystems with no inode lock 626 * 627 * @file: file to synchronize 628 * @start: start offset in bytes 629 * @end: end offset in bytes (inclusive) 630 * @datasync: only synchronize essential metadata if true 631 * 632 * This is a generic implementation of the fsync method for simple 633 * filesystems which track all non-inode metadata in the buffers list 634 * hanging off the address_space structure. This also makes sure that 635 * a device cache flush operation is called at the end. 636 */ 637 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, 638 bool datasync) 639 { 640 struct inode *inode = file->f_mapping->host; 641 int ret; 642 643 ret = generic_buffers_fsync_noflush(file, start, end, datasync); 644 if (!ret) 645 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 646 return ret; 647 } 648 EXPORT_SYMBOL(generic_buffers_fsync); 649 650 /* 651 * Called when we've recently written block `bblock', and it is known that 652 * `bblock' was for a buffer_boundary() buffer. This means that the block at 653 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 654 * dirty, schedule it for IO. So that indirects merge nicely with their data. 655 */ 656 void write_boundary_block(struct block_device *bdev, 657 sector_t bblock, unsigned blocksize) 658 { 659 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 660 if (bh) { 661 if (buffer_dirty(bh)) 662 write_dirty_buffer(bh, 0); 663 put_bh(bh); 664 } 665 } 666 667 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 668 { 669 struct address_space *mapping = inode->i_mapping; 670 struct address_space *buffer_mapping = bh->b_folio->mapping; 671 672 mark_buffer_dirty(bh); 673 if (!mapping->i_private_data) { 674 mapping->i_private_data = buffer_mapping; 675 } else { 676 BUG_ON(mapping->i_private_data != buffer_mapping); 677 } 678 if (!bh->b_assoc_map) { 679 spin_lock(&buffer_mapping->i_private_lock); 680 list_move_tail(&bh->b_assoc_buffers, 681 &mapping->i_private_list); 682 bh->b_assoc_map = mapping; 683 spin_unlock(&buffer_mapping->i_private_lock); 684 } 685 } 686 EXPORT_SYMBOL(mark_buffer_dirty_inode); 687 688 /** 689 * block_dirty_folio - Mark a folio as dirty. 690 * @mapping: The address space containing this folio. 691 * @folio: The folio to mark dirty. 692 * 693 * Filesystems which use buffer_heads can use this function as their 694 * ->dirty_folio implementation. Some filesystems need to do a little 695 * work before calling this function. Filesystems which do not use 696 * buffer_heads should call filemap_dirty_folio() instead. 697 * 698 * If the folio has buffers, the uptodate buffers are set dirty, to 699 * preserve dirty-state coherency between the folio and the buffers. 700 * Buffers added to a dirty folio are created dirty. 701 * 702 * The buffers are dirtied before the folio is dirtied. There's a small 703 * race window in which writeback may see the folio cleanness but not the 704 * buffer dirtiness. That's fine. If this code were to set the folio 705 * dirty before the buffers, writeback could clear the folio dirty flag, 706 * see a bunch of clean buffers and we'd end up with dirty buffers/clean 707 * folio on the dirty folio list. 708 * 709 * We use i_private_lock to lock against try_to_free_buffers() while 710 * using the folio's buffer list. This also prevents clean buffers 711 * being added to the folio after it was set dirty. 712 * 713 * Context: May only be called from process context. Does not sleep. 714 * Caller must ensure that @folio cannot be truncated during this call, 715 * typically by holding the folio lock or having a page in the folio 716 * mapped and holding the page table lock. 717 * 718 * Return: True if the folio was dirtied; false if it was already dirtied. 719 */ 720 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 721 { 722 struct buffer_head *head; 723 bool newly_dirty; 724 725 spin_lock(&mapping->i_private_lock); 726 head = folio_buffers(folio); 727 if (head) { 728 struct buffer_head *bh = head; 729 730 do { 731 set_buffer_dirty(bh); 732 bh = bh->b_this_page; 733 } while (bh != head); 734 } 735 /* 736 * Lock out page's memcg migration to keep PageDirty 737 * synchronized with per-memcg dirty page counters. 738 */ 739 folio_memcg_lock(folio); 740 newly_dirty = !folio_test_set_dirty(folio); 741 spin_unlock(&mapping->i_private_lock); 742 743 if (newly_dirty) 744 __folio_mark_dirty(folio, mapping, 1); 745 746 folio_memcg_unlock(folio); 747 748 if (newly_dirty) 749 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 750 751 return newly_dirty; 752 } 753 EXPORT_SYMBOL(block_dirty_folio); 754 755 /* 756 * Write out and wait upon a list of buffers. 757 * 758 * We have conflicting pressures: we want to make sure that all 759 * initially dirty buffers get waited on, but that any subsequently 760 * dirtied buffers don't. After all, we don't want fsync to last 761 * forever if somebody is actively writing to the file. 762 * 763 * Do this in two main stages: first we copy dirty buffers to a 764 * temporary inode list, queueing the writes as we go. Then we clean 765 * up, waiting for those writes to complete. 766 * 767 * During this second stage, any subsequent updates to the file may end 768 * up refiling the buffer on the original inode's dirty list again, so 769 * there is a chance we will end up with a buffer queued for write but 770 * not yet completed on that list. So, as a final cleanup we go through 771 * the osync code to catch these locked, dirty buffers without requeuing 772 * any newly dirty buffers for write. 773 */ 774 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 775 { 776 struct buffer_head *bh; 777 struct address_space *mapping; 778 int err = 0, err2; 779 struct blk_plug plug; 780 LIST_HEAD(tmp); 781 782 blk_start_plug(&plug); 783 784 spin_lock(lock); 785 while (!list_empty(list)) { 786 bh = BH_ENTRY(list->next); 787 mapping = bh->b_assoc_map; 788 __remove_assoc_queue(bh); 789 /* Avoid race with mark_buffer_dirty_inode() which does 790 * a lockless check and we rely on seeing the dirty bit */ 791 smp_mb(); 792 if (buffer_dirty(bh) || buffer_locked(bh)) { 793 list_add(&bh->b_assoc_buffers, &tmp); 794 bh->b_assoc_map = mapping; 795 if (buffer_dirty(bh)) { 796 get_bh(bh); 797 spin_unlock(lock); 798 /* 799 * Ensure any pending I/O completes so that 800 * write_dirty_buffer() actually writes the 801 * current contents - it is a noop if I/O is 802 * still in flight on potentially older 803 * contents. 804 */ 805 write_dirty_buffer(bh, REQ_SYNC); 806 807 /* 808 * Kick off IO for the previous mapping. Note 809 * that we will not run the very last mapping, 810 * wait_on_buffer() will do that for us 811 * through sync_buffer(). 812 */ 813 brelse(bh); 814 spin_lock(lock); 815 } 816 } 817 } 818 819 spin_unlock(lock); 820 blk_finish_plug(&plug); 821 spin_lock(lock); 822 823 while (!list_empty(&tmp)) { 824 bh = BH_ENTRY(tmp.prev); 825 get_bh(bh); 826 mapping = bh->b_assoc_map; 827 __remove_assoc_queue(bh); 828 /* Avoid race with mark_buffer_dirty_inode() which does 829 * a lockless check and we rely on seeing the dirty bit */ 830 smp_mb(); 831 if (buffer_dirty(bh)) { 832 list_add(&bh->b_assoc_buffers, 833 &mapping->i_private_list); 834 bh->b_assoc_map = mapping; 835 } 836 spin_unlock(lock); 837 wait_on_buffer(bh); 838 if (!buffer_uptodate(bh)) 839 err = -EIO; 840 brelse(bh); 841 spin_lock(lock); 842 } 843 844 spin_unlock(lock); 845 err2 = osync_buffers_list(lock, list); 846 if (err) 847 return err; 848 else 849 return err2; 850 } 851 852 /* 853 * Invalidate any and all dirty buffers on a given inode. We are 854 * probably unmounting the fs, but that doesn't mean we have already 855 * done a sync(). Just drop the buffers from the inode list. 856 * 857 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which 858 * assumes that all the buffers are against the blockdev. Not true 859 * for reiserfs. 860 */ 861 void invalidate_inode_buffers(struct inode *inode) 862 { 863 if (inode_has_buffers(inode)) { 864 struct address_space *mapping = &inode->i_data; 865 struct list_head *list = &mapping->i_private_list; 866 struct address_space *buffer_mapping = mapping->i_private_data; 867 868 spin_lock(&buffer_mapping->i_private_lock); 869 while (!list_empty(list)) 870 __remove_assoc_queue(BH_ENTRY(list->next)); 871 spin_unlock(&buffer_mapping->i_private_lock); 872 } 873 } 874 EXPORT_SYMBOL(invalidate_inode_buffers); 875 876 /* 877 * Remove any clean buffers from the inode's buffer list. This is called 878 * when we're trying to free the inode itself. Those buffers can pin it. 879 * 880 * Returns true if all buffers were removed. 881 */ 882 int remove_inode_buffers(struct inode *inode) 883 { 884 int ret = 1; 885 886 if (inode_has_buffers(inode)) { 887 struct address_space *mapping = &inode->i_data; 888 struct list_head *list = &mapping->i_private_list; 889 struct address_space *buffer_mapping = mapping->i_private_data; 890 891 spin_lock(&buffer_mapping->i_private_lock); 892 while (!list_empty(list)) { 893 struct buffer_head *bh = BH_ENTRY(list->next); 894 if (buffer_dirty(bh)) { 895 ret = 0; 896 break; 897 } 898 __remove_assoc_queue(bh); 899 } 900 spin_unlock(&buffer_mapping->i_private_lock); 901 } 902 return ret; 903 } 904 905 /* 906 * Create the appropriate buffers when given a folio for data area and 907 * the size of each buffer.. Use the bh->b_this_page linked list to 908 * follow the buffers created. Return NULL if unable to create more 909 * buffers. 910 * 911 * The retry flag is used to differentiate async IO (paging, swapping) 912 * which may not fail from ordinary buffer allocations. 913 */ 914 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 915 gfp_t gfp) 916 { 917 struct buffer_head *bh, *head; 918 long offset; 919 struct mem_cgroup *memcg, *old_memcg; 920 921 /* The folio lock pins the memcg */ 922 memcg = folio_memcg(folio); 923 old_memcg = set_active_memcg(memcg); 924 925 head = NULL; 926 offset = folio_size(folio); 927 while ((offset -= size) >= 0) { 928 bh = alloc_buffer_head(gfp); 929 if (!bh) 930 goto no_grow; 931 932 bh->b_this_page = head; 933 bh->b_blocknr = -1; 934 head = bh; 935 936 bh->b_size = size; 937 938 /* Link the buffer to its folio */ 939 folio_set_bh(bh, folio, offset); 940 } 941 out: 942 set_active_memcg(old_memcg); 943 return head; 944 /* 945 * In case anything failed, we just free everything we got. 946 */ 947 no_grow: 948 if (head) { 949 do { 950 bh = head; 951 head = head->b_this_page; 952 free_buffer_head(bh); 953 } while (head); 954 } 955 956 goto out; 957 } 958 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 959 960 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size) 961 { 962 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 963 964 return folio_alloc_buffers(page_folio(page), size, gfp); 965 } 966 EXPORT_SYMBOL_GPL(alloc_page_buffers); 967 968 static inline void link_dev_buffers(struct folio *folio, 969 struct buffer_head *head) 970 { 971 struct buffer_head *bh, *tail; 972 973 bh = head; 974 do { 975 tail = bh; 976 bh = bh->b_this_page; 977 } while (bh); 978 tail->b_this_page = head; 979 folio_attach_private(folio, head); 980 } 981 982 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 983 { 984 sector_t retval = ~((sector_t)0); 985 loff_t sz = bdev_nr_bytes(bdev); 986 987 if (sz) { 988 unsigned int sizebits = blksize_bits(size); 989 retval = (sz >> sizebits); 990 } 991 return retval; 992 } 993 994 /* 995 * Initialise the state of a blockdev folio's buffers. 996 */ 997 static sector_t folio_init_buffers(struct folio *folio, 998 struct block_device *bdev, unsigned size) 999 { 1000 struct buffer_head *head = folio_buffers(folio); 1001 struct buffer_head *bh = head; 1002 bool uptodate = folio_test_uptodate(folio); 1003 sector_t block = div_u64(folio_pos(folio), size); 1004 sector_t end_block = blkdev_max_block(bdev, size); 1005 1006 do { 1007 if (!buffer_mapped(bh)) { 1008 bh->b_end_io = NULL; 1009 bh->b_private = NULL; 1010 bh->b_bdev = bdev; 1011 bh->b_blocknr = block; 1012 if (uptodate) 1013 set_buffer_uptodate(bh); 1014 if (block < end_block) 1015 set_buffer_mapped(bh); 1016 } 1017 block++; 1018 bh = bh->b_this_page; 1019 } while (bh != head); 1020 1021 /* 1022 * Caller needs to validate requested block against end of device. 1023 */ 1024 return end_block; 1025 } 1026 1027 /* 1028 * Create the page-cache folio that contains the requested block. 1029 * 1030 * This is used purely for blockdev mappings. 1031 * 1032 * Returns false if we have a failure which cannot be cured by retrying 1033 * without sleeping. Returns true if we succeeded, or the caller should retry. 1034 */ 1035 static bool grow_dev_folio(struct block_device *bdev, sector_t block, 1036 pgoff_t index, unsigned size, gfp_t gfp) 1037 { 1038 struct address_space *mapping = bdev->bd_mapping; 1039 struct folio *folio; 1040 struct buffer_head *bh; 1041 sector_t end_block = 0; 1042 1043 folio = __filemap_get_folio(mapping, index, 1044 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1045 if (IS_ERR(folio)) 1046 return false; 1047 1048 bh = folio_buffers(folio); 1049 if (bh) { 1050 if (bh->b_size == size) { 1051 end_block = folio_init_buffers(folio, bdev, size); 1052 goto unlock; 1053 } 1054 1055 /* 1056 * Retrying may succeed; for example the folio may finish 1057 * writeback, or buffers may be cleaned. This should not 1058 * happen very often; maybe we have old buffers attached to 1059 * this blockdev's page cache and we're trying to change 1060 * the block size? 1061 */ 1062 if (!try_to_free_buffers(folio)) { 1063 end_block = ~0ULL; 1064 goto unlock; 1065 } 1066 } 1067 1068 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT); 1069 if (!bh) 1070 goto unlock; 1071 1072 /* 1073 * Link the folio to the buffers and initialise them. Take the 1074 * lock to be atomic wrt __find_get_block(), which does not 1075 * run under the folio lock. 1076 */ 1077 spin_lock(&mapping->i_private_lock); 1078 link_dev_buffers(folio, bh); 1079 end_block = folio_init_buffers(folio, bdev, size); 1080 spin_unlock(&mapping->i_private_lock); 1081 unlock: 1082 folio_unlock(folio); 1083 folio_put(folio); 1084 return block < end_block; 1085 } 1086 1087 /* 1088 * Create buffers for the specified block device block's folio. If 1089 * that folio was dirty, the buffers are set dirty also. Returns false 1090 * if we've hit a permanent error. 1091 */ 1092 static bool grow_buffers(struct block_device *bdev, sector_t block, 1093 unsigned size, gfp_t gfp) 1094 { 1095 loff_t pos; 1096 1097 /* 1098 * Check for a block which lies outside our maximum possible 1099 * pagecache index. 1100 */ 1101 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) { 1102 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n", 1103 __func__, (unsigned long long)block, 1104 bdev); 1105 return false; 1106 } 1107 1108 /* Create a folio with the proper size buffers */ 1109 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp); 1110 } 1111 1112 static struct buffer_head * 1113 __getblk_slow(struct block_device *bdev, sector_t block, 1114 unsigned size, gfp_t gfp) 1115 { 1116 /* Size must be multiple of hard sectorsize */ 1117 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1118 (size < 512 || size > PAGE_SIZE))) { 1119 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1120 size); 1121 printk(KERN_ERR "logical block size: %d\n", 1122 bdev_logical_block_size(bdev)); 1123 1124 dump_stack(); 1125 return NULL; 1126 } 1127 1128 for (;;) { 1129 struct buffer_head *bh; 1130 1131 bh = __find_get_block(bdev, block, size); 1132 if (bh) 1133 return bh; 1134 1135 if (!grow_buffers(bdev, block, size, gfp)) 1136 return NULL; 1137 } 1138 } 1139 1140 /* 1141 * The relationship between dirty buffers and dirty pages: 1142 * 1143 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1144 * the page is tagged dirty in the page cache. 1145 * 1146 * At all times, the dirtiness of the buffers represents the dirtiness of 1147 * subsections of the page. If the page has buffers, the page dirty bit is 1148 * merely a hint about the true dirty state. 1149 * 1150 * When a page is set dirty in its entirety, all its buffers are marked dirty 1151 * (if the page has buffers). 1152 * 1153 * When a buffer is marked dirty, its page is dirtied, but the page's other 1154 * buffers are not. 1155 * 1156 * Also. When blockdev buffers are explicitly read with bread(), they 1157 * individually become uptodate. But their backing page remains not 1158 * uptodate - even if all of its buffers are uptodate. A subsequent 1159 * block_read_full_folio() against that folio will discover all the uptodate 1160 * buffers, will set the folio uptodate and will perform no I/O. 1161 */ 1162 1163 /** 1164 * mark_buffer_dirty - mark a buffer_head as needing writeout 1165 * @bh: the buffer_head to mark dirty 1166 * 1167 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1168 * its backing page dirty, then tag the page as dirty in the page cache 1169 * and then attach the address_space's inode to its superblock's dirty 1170 * inode list. 1171 * 1172 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock, 1173 * i_pages lock and mapping->host->i_lock. 1174 */ 1175 void mark_buffer_dirty(struct buffer_head *bh) 1176 { 1177 WARN_ON_ONCE(!buffer_uptodate(bh)); 1178 1179 trace_block_dirty_buffer(bh); 1180 1181 /* 1182 * Very *carefully* optimize the it-is-already-dirty case. 1183 * 1184 * Don't let the final "is it dirty" escape to before we 1185 * perhaps modified the buffer. 1186 */ 1187 if (buffer_dirty(bh)) { 1188 smp_mb(); 1189 if (buffer_dirty(bh)) 1190 return; 1191 } 1192 1193 if (!test_set_buffer_dirty(bh)) { 1194 struct folio *folio = bh->b_folio; 1195 struct address_space *mapping = NULL; 1196 1197 folio_memcg_lock(folio); 1198 if (!folio_test_set_dirty(folio)) { 1199 mapping = folio->mapping; 1200 if (mapping) 1201 __folio_mark_dirty(folio, mapping, 0); 1202 } 1203 folio_memcg_unlock(folio); 1204 if (mapping) 1205 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1206 } 1207 } 1208 EXPORT_SYMBOL(mark_buffer_dirty); 1209 1210 void mark_buffer_write_io_error(struct buffer_head *bh) 1211 { 1212 set_buffer_write_io_error(bh); 1213 /* FIXME: do we need to set this in both places? */ 1214 if (bh->b_folio && bh->b_folio->mapping) 1215 mapping_set_error(bh->b_folio->mapping, -EIO); 1216 if (bh->b_assoc_map) { 1217 mapping_set_error(bh->b_assoc_map, -EIO); 1218 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO); 1219 } 1220 } 1221 EXPORT_SYMBOL(mark_buffer_write_io_error); 1222 1223 /** 1224 * __brelse - Release a buffer. 1225 * @bh: The buffer to release. 1226 * 1227 * This variant of brelse() can be called if @bh is guaranteed to not be NULL. 1228 */ 1229 void __brelse(struct buffer_head *bh) 1230 { 1231 if (atomic_read(&bh->b_count)) { 1232 put_bh(bh); 1233 return; 1234 } 1235 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1236 } 1237 EXPORT_SYMBOL(__brelse); 1238 1239 /** 1240 * __bforget - Discard any dirty data in a buffer. 1241 * @bh: The buffer to forget. 1242 * 1243 * This variant of bforget() can be called if @bh is guaranteed to not 1244 * be NULL. 1245 */ 1246 void __bforget(struct buffer_head *bh) 1247 { 1248 clear_buffer_dirty(bh); 1249 if (bh->b_assoc_map) { 1250 struct address_space *buffer_mapping = bh->b_folio->mapping; 1251 1252 spin_lock(&buffer_mapping->i_private_lock); 1253 list_del_init(&bh->b_assoc_buffers); 1254 bh->b_assoc_map = NULL; 1255 spin_unlock(&buffer_mapping->i_private_lock); 1256 } 1257 __brelse(bh); 1258 } 1259 EXPORT_SYMBOL(__bforget); 1260 1261 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1262 { 1263 lock_buffer(bh); 1264 if (buffer_uptodate(bh)) { 1265 unlock_buffer(bh); 1266 return bh; 1267 } else { 1268 get_bh(bh); 1269 bh->b_end_io = end_buffer_read_sync; 1270 submit_bh(REQ_OP_READ, bh); 1271 wait_on_buffer(bh); 1272 if (buffer_uptodate(bh)) 1273 return bh; 1274 } 1275 brelse(bh); 1276 return NULL; 1277 } 1278 1279 /* 1280 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1281 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1282 * refcount elevated by one when they're in an LRU. A buffer can only appear 1283 * once in a particular CPU's LRU. A single buffer can be present in multiple 1284 * CPU's LRUs at the same time. 1285 * 1286 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1287 * sb_find_get_block(). 1288 * 1289 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1290 * a local interrupt disable for that. 1291 */ 1292 1293 #define BH_LRU_SIZE 16 1294 1295 struct bh_lru { 1296 struct buffer_head *bhs[BH_LRU_SIZE]; 1297 }; 1298 1299 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1300 1301 #ifdef CONFIG_SMP 1302 #define bh_lru_lock() local_irq_disable() 1303 #define bh_lru_unlock() local_irq_enable() 1304 #else 1305 #define bh_lru_lock() preempt_disable() 1306 #define bh_lru_unlock() preempt_enable() 1307 #endif 1308 1309 static inline void check_irqs_on(void) 1310 { 1311 #ifdef irqs_disabled 1312 BUG_ON(irqs_disabled()); 1313 #endif 1314 } 1315 1316 /* 1317 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1318 * inserted at the front, and the buffer_head at the back if any is evicted. 1319 * Or, if already in the LRU it is moved to the front. 1320 */ 1321 static void bh_lru_install(struct buffer_head *bh) 1322 { 1323 struct buffer_head *evictee = bh; 1324 struct bh_lru *b; 1325 int i; 1326 1327 check_irqs_on(); 1328 bh_lru_lock(); 1329 1330 /* 1331 * the refcount of buffer_head in bh_lru prevents dropping the 1332 * attached page(i.e., try_to_free_buffers) so it could cause 1333 * failing page migration. 1334 * Skip putting upcoming bh into bh_lru until migration is done. 1335 */ 1336 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) { 1337 bh_lru_unlock(); 1338 return; 1339 } 1340 1341 b = this_cpu_ptr(&bh_lrus); 1342 for (i = 0; i < BH_LRU_SIZE; i++) { 1343 swap(evictee, b->bhs[i]); 1344 if (evictee == bh) { 1345 bh_lru_unlock(); 1346 return; 1347 } 1348 } 1349 1350 get_bh(bh); 1351 bh_lru_unlock(); 1352 brelse(evictee); 1353 } 1354 1355 /* 1356 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1357 */ 1358 static struct buffer_head * 1359 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1360 { 1361 struct buffer_head *ret = NULL; 1362 unsigned int i; 1363 1364 check_irqs_on(); 1365 bh_lru_lock(); 1366 if (cpu_is_isolated(smp_processor_id())) { 1367 bh_lru_unlock(); 1368 return NULL; 1369 } 1370 for (i = 0; i < BH_LRU_SIZE; i++) { 1371 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1372 1373 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1374 bh->b_size == size) { 1375 if (i) { 1376 while (i) { 1377 __this_cpu_write(bh_lrus.bhs[i], 1378 __this_cpu_read(bh_lrus.bhs[i - 1])); 1379 i--; 1380 } 1381 __this_cpu_write(bh_lrus.bhs[0], bh); 1382 } 1383 get_bh(bh); 1384 ret = bh; 1385 break; 1386 } 1387 } 1388 bh_lru_unlock(); 1389 return ret; 1390 } 1391 1392 /* 1393 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1394 * it in the LRU and mark it as accessed. If it is not present then return 1395 * NULL 1396 */ 1397 struct buffer_head * 1398 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1399 { 1400 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1401 1402 if (bh == NULL) { 1403 /* __find_get_block_slow will mark the page accessed */ 1404 bh = __find_get_block_slow(bdev, block); 1405 if (bh) 1406 bh_lru_install(bh); 1407 } else 1408 touch_buffer(bh); 1409 1410 return bh; 1411 } 1412 EXPORT_SYMBOL(__find_get_block); 1413 1414 /** 1415 * bdev_getblk - Get a buffer_head in a block device's buffer cache. 1416 * @bdev: The block device. 1417 * @block: The block number. 1418 * @size: The size of buffer_heads for this @bdev. 1419 * @gfp: The memory allocation flags to use. 1420 * 1421 * The returned buffer head has its reference count incremented, but is 1422 * not locked. The caller should call brelse() when it has finished 1423 * with the buffer. The buffer may not be uptodate. If needed, the 1424 * caller can bring it uptodate either by reading it or overwriting it. 1425 * 1426 * Return: The buffer head, or NULL if memory could not be allocated. 1427 */ 1428 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block, 1429 unsigned size, gfp_t gfp) 1430 { 1431 struct buffer_head *bh = __find_get_block(bdev, block, size); 1432 1433 might_alloc(gfp); 1434 if (bh) 1435 return bh; 1436 1437 return __getblk_slow(bdev, block, size, gfp); 1438 } 1439 EXPORT_SYMBOL(bdev_getblk); 1440 1441 /* 1442 * Do async read-ahead on a buffer.. 1443 */ 1444 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1445 { 1446 struct buffer_head *bh = bdev_getblk(bdev, block, size, 1447 GFP_NOWAIT | __GFP_MOVABLE); 1448 1449 if (likely(bh)) { 1450 bh_readahead(bh, REQ_RAHEAD); 1451 brelse(bh); 1452 } 1453 } 1454 EXPORT_SYMBOL(__breadahead); 1455 1456 /** 1457 * __bread_gfp() - Read a block. 1458 * @bdev: The block device to read from. 1459 * @block: Block number in units of block size. 1460 * @size: The block size of this device in bytes. 1461 * @gfp: Not page allocation flags; see below. 1462 * 1463 * You are not expected to call this function. You should use one of 1464 * sb_bread(), sb_bread_unmovable() or __bread(). 1465 * 1466 * Read a specified block, and return the buffer head that refers to it. 1467 * If @gfp is 0, the memory will be allocated using the block device's 1468 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be 1469 * allocated from a movable area. Do not pass in a complete set of 1470 * GFP flags. 1471 * 1472 * The returned buffer head has its refcount increased. The caller should 1473 * call brelse() when it has finished with the buffer. 1474 * 1475 * Context: May sleep waiting for I/O. 1476 * Return: NULL if the block was unreadable. 1477 */ 1478 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block, 1479 unsigned size, gfp_t gfp) 1480 { 1481 struct buffer_head *bh; 1482 1483 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS); 1484 1485 /* 1486 * Prefer looping in the allocator rather than here, at least that 1487 * code knows what it's doing. 1488 */ 1489 gfp |= __GFP_NOFAIL; 1490 1491 bh = bdev_getblk(bdev, block, size, gfp); 1492 1493 if (likely(bh) && !buffer_uptodate(bh)) 1494 bh = __bread_slow(bh); 1495 return bh; 1496 } 1497 EXPORT_SYMBOL(__bread_gfp); 1498 1499 static void __invalidate_bh_lrus(struct bh_lru *b) 1500 { 1501 int i; 1502 1503 for (i = 0; i < BH_LRU_SIZE; i++) { 1504 brelse(b->bhs[i]); 1505 b->bhs[i] = NULL; 1506 } 1507 } 1508 /* 1509 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1510 * This doesn't race because it runs in each cpu either in irq 1511 * or with preempt disabled. 1512 */ 1513 static void invalidate_bh_lru(void *arg) 1514 { 1515 struct bh_lru *b = &get_cpu_var(bh_lrus); 1516 1517 __invalidate_bh_lrus(b); 1518 put_cpu_var(bh_lrus); 1519 } 1520 1521 bool has_bh_in_lru(int cpu, void *dummy) 1522 { 1523 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1524 int i; 1525 1526 for (i = 0; i < BH_LRU_SIZE; i++) { 1527 if (b->bhs[i]) 1528 return true; 1529 } 1530 1531 return false; 1532 } 1533 1534 void invalidate_bh_lrus(void) 1535 { 1536 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1537 } 1538 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1539 1540 /* 1541 * It's called from workqueue context so we need a bh_lru_lock to close 1542 * the race with preemption/irq. 1543 */ 1544 void invalidate_bh_lrus_cpu(void) 1545 { 1546 struct bh_lru *b; 1547 1548 bh_lru_lock(); 1549 b = this_cpu_ptr(&bh_lrus); 1550 __invalidate_bh_lrus(b); 1551 bh_lru_unlock(); 1552 } 1553 1554 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1555 unsigned long offset) 1556 { 1557 bh->b_folio = folio; 1558 BUG_ON(offset >= folio_size(folio)); 1559 if (folio_test_highmem(folio)) 1560 /* 1561 * This catches illegal uses and preserves the offset: 1562 */ 1563 bh->b_data = (char *)(0 + offset); 1564 else 1565 bh->b_data = folio_address(folio) + offset; 1566 } 1567 EXPORT_SYMBOL(folio_set_bh); 1568 1569 /* 1570 * Called when truncating a buffer on a page completely. 1571 */ 1572 1573 /* Bits that are cleared during an invalidate */ 1574 #define BUFFER_FLAGS_DISCARD \ 1575 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1576 1 << BH_Delay | 1 << BH_Unwritten) 1577 1578 static void discard_buffer(struct buffer_head * bh) 1579 { 1580 unsigned long b_state; 1581 1582 lock_buffer(bh); 1583 clear_buffer_dirty(bh); 1584 bh->b_bdev = NULL; 1585 b_state = READ_ONCE(bh->b_state); 1586 do { 1587 } while (!try_cmpxchg(&bh->b_state, &b_state, 1588 b_state & ~BUFFER_FLAGS_DISCARD)); 1589 unlock_buffer(bh); 1590 } 1591 1592 /** 1593 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1594 * @folio: The folio which is affected. 1595 * @offset: start of the range to invalidate 1596 * @length: length of the range to invalidate 1597 * 1598 * block_invalidate_folio() is called when all or part of the folio has been 1599 * invalidated by a truncate operation. 1600 * 1601 * block_invalidate_folio() does not have to release all buffers, but it must 1602 * ensure that no dirty buffer is left outside @offset and that no I/O 1603 * is underway against any of the blocks which are outside the truncation 1604 * point. Because the caller is about to free (and possibly reuse) those 1605 * blocks on-disk. 1606 */ 1607 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1608 { 1609 struct buffer_head *head, *bh, *next; 1610 size_t curr_off = 0; 1611 size_t stop = length + offset; 1612 1613 BUG_ON(!folio_test_locked(folio)); 1614 1615 /* 1616 * Check for overflow 1617 */ 1618 BUG_ON(stop > folio_size(folio) || stop < length); 1619 1620 head = folio_buffers(folio); 1621 if (!head) 1622 return; 1623 1624 bh = head; 1625 do { 1626 size_t next_off = curr_off + bh->b_size; 1627 next = bh->b_this_page; 1628 1629 /* 1630 * Are we still fully in range ? 1631 */ 1632 if (next_off > stop) 1633 goto out; 1634 1635 /* 1636 * is this block fully invalidated? 1637 */ 1638 if (offset <= curr_off) 1639 discard_buffer(bh); 1640 curr_off = next_off; 1641 bh = next; 1642 } while (bh != head); 1643 1644 /* 1645 * We release buffers only if the entire folio is being invalidated. 1646 * The get_block cached value has been unconditionally invalidated, 1647 * so real IO is not possible anymore. 1648 */ 1649 if (length == folio_size(folio)) 1650 filemap_release_folio(folio, 0); 1651 out: 1652 return; 1653 } 1654 EXPORT_SYMBOL(block_invalidate_folio); 1655 1656 /* 1657 * We attach and possibly dirty the buffers atomically wrt 1658 * block_dirty_folio() via i_private_lock. try_to_free_buffers 1659 * is already excluded via the folio lock. 1660 */ 1661 struct buffer_head *create_empty_buffers(struct folio *folio, 1662 unsigned long blocksize, unsigned long b_state) 1663 { 1664 struct buffer_head *bh, *head, *tail; 1665 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL; 1666 1667 head = folio_alloc_buffers(folio, blocksize, gfp); 1668 bh = head; 1669 do { 1670 bh->b_state |= b_state; 1671 tail = bh; 1672 bh = bh->b_this_page; 1673 } while (bh); 1674 tail->b_this_page = head; 1675 1676 spin_lock(&folio->mapping->i_private_lock); 1677 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1678 bh = head; 1679 do { 1680 if (folio_test_dirty(folio)) 1681 set_buffer_dirty(bh); 1682 if (folio_test_uptodate(folio)) 1683 set_buffer_uptodate(bh); 1684 bh = bh->b_this_page; 1685 } while (bh != head); 1686 } 1687 folio_attach_private(folio, head); 1688 spin_unlock(&folio->mapping->i_private_lock); 1689 1690 return head; 1691 } 1692 EXPORT_SYMBOL(create_empty_buffers); 1693 1694 /** 1695 * clean_bdev_aliases: clean a range of buffers in block device 1696 * @bdev: Block device to clean buffers in 1697 * @block: Start of a range of blocks to clean 1698 * @len: Number of blocks to clean 1699 * 1700 * We are taking a range of blocks for data and we don't want writeback of any 1701 * buffer-cache aliases starting from return from this function and until the 1702 * moment when something will explicitly mark the buffer dirty (hopefully that 1703 * will not happen until we will free that block ;-) We don't even need to mark 1704 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1705 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1706 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1707 * would confuse anyone who might pick it with bread() afterwards... 1708 * 1709 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1710 * writeout I/O going on against recently-freed buffers. We don't wait on that 1711 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1712 * need to. That happens here. 1713 */ 1714 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1715 { 1716 struct address_space *bd_mapping = bdev->bd_mapping; 1717 const int blkbits = bd_mapping->host->i_blkbits; 1718 struct folio_batch fbatch; 1719 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE; 1720 pgoff_t end; 1721 int i, count; 1722 struct buffer_head *bh; 1723 struct buffer_head *head; 1724 1725 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE; 1726 folio_batch_init(&fbatch); 1727 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1728 count = folio_batch_count(&fbatch); 1729 for (i = 0; i < count; i++) { 1730 struct folio *folio = fbatch.folios[i]; 1731 1732 if (!folio_buffers(folio)) 1733 continue; 1734 /* 1735 * We use folio lock instead of bd_mapping->i_private_lock 1736 * to pin buffers here since we can afford to sleep and 1737 * it scales better than a global spinlock lock. 1738 */ 1739 folio_lock(folio); 1740 /* Recheck when the folio is locked which pins bhs */ 1741 head = folio_buffers(folio); 1742 if (!head) 1743 goto unlock_page; 1744 bh = head; 1745 do { 1746 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1747 goto next; 1748 if (bh->b_blocknr >= block + len) 1749 break; 1750 clear_buffer_dirty(bh); 1751 wait_on_buffer(bh); 1752 clear_buffer_req(bh); 1753 next: 1754 bh = bh->b_this_page; 1755 } while (bh != head); 1756 unlock_page: 1757 folio_unlock(folio); 1758 } 1759 folio_batch_release(&fbatch); 1760 cond_resched(); 1761 /* End of range already reached? */ 1762 if (index > end || !index) 1763 break; 1764 } 1765 } 1766 EXPORT_SYMBOL(clean_bdev_aliases); 1767 1768 static struct buffer_head *folio_create_buffers(struct folio *folio, 1769 struct inode *inode, 1770 unsigned int b_state) 1771 { 1772 struct buffer_head *bh; 1773 1774 BUG_ON(!folio_test_locked(folio)); 1775 1776 bh = folio_buffers(folio); 1777 if (!bh) 1778 bh = create_empty_buffers(folio, 1779 1 << READ_ONCE(inode->i_blkbits), b_state); 1780 return bh; 1781 } 1782 1783 /* 1784 * NOTE! All mapped/uptodate combinations are valid: 1785 * 1786 * Mapped Uptodate Meaning 1787 * 1788 * No No "unknown" - must do get_block() 1789 * No Yes "hole" - zero-filled 1790 * Yes No "allocated" - allocated on disk, not read in 1791 * Yes Yes "valid" - allocated and up-to-date in memory. 1792 * 1793 * "Dirty" is valid only with the last case (mapped+uptodate). 1794 */ 1795 1796 /* 1797 * While block_write_full_folio is writing back the dirty buffers under 1798 * the page lock, whoever dirtied the buffers may decide to clean them 1799 * again at any time. We handle that by only looking at the buffer 1800 * state inside lock_buffer(). 1801 * 1802 * If block_write_full_folio() is called for regular writeback 1803 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1804 * locked buffer. This only can happen if someone has written the buffer 1805 * directly, with submit_bh(). At the address_space level PageWriteback 1806 * prevents this contention from occurring. 1807 * 1808 * If block_write_full_folio() is called with wbc->sync_mode == 1809 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1810 * causes the writes to be flagged as synchronous writes. 1811 */ 1812 int __block_write_full_folio(struct inode *inode, struct folio *folio, 1813 get_block_t *get_block, struct writeback_control *wbc) 1814 { 1815 int err; 1816 sector_t block; 1817 sector_t last_block; 1818 struct buffer_head *bh, *head; 1819 size_t blocksize; 1820 int nr_underway = 0; 1821 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1822 1823 head = folio_create_buffers(folio, inode, 1824 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1825 1826 /* 1827 * Be very careful. We have no exclusion from block_dirty_folio 1828 * here, and the (potentially unmapped) buffers may become dirty at 1829 * any time. If a buffer becomes dirty here after we've inspected it 1830 * then we just miss that fact, and the folio stays dirty. 1831 * 1832 * Buffers outside i_size may be dirtied by block_dirty_folio; 1833 * handle that here by just cleaning them. 1834 */ 1835 1836 bh = head; 1837 blocksize = bh->b_size; 1838 1839 block = div_u64(folio_pos(folio), blocksize); 1840 last_block = div_u64(i_size_read(inode) - 1, blocksize); 1841 1842 /* 1843 * Get all the dirty buffers mapped to disk addresses and 1844 * handle any aliases from the underlying blockdev's mapping. 1845 */ 1846 do { 1847 if (block > last_block) { 1848 /* 1849 * mapped buffers outside i_size will occur, because 1850 * this folio can be outside i_size when there is a 1851 * truncate in progress. 1852 */ 1853 /* 1854 * The buffer was zeroed by block_write_full_folio() 1855 */ 1856 clear_buffer_dirty(bh); 1857 set_buffer_uptodate(bh); 1858 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1859 buffer_dirty(bh)) { 1860 WARN_ON(bh->b_size != blocksize); 1861 err = get_block(inode, block, bh, 1); 1862 if (err) 1863 goto recover; 1864 clear_buffer_delay(bh); 1865 if (buffer_new(bh)) { 1866 /* blockdev mappings never come here */ 1867 clear_buffer_new(bh); 1868 clean_bdev_bh_alias(bh); 1869 } 1870 } 1871 bh = bh->b_this_page; 1872 block++; 1873 } while (bh != head); 1874 1875 do { 1876 if (!buffer_mapped(bh)) 1877 continue; 1878 /* 1879 * If it's a fully non-blocking write attempt and we cannot 1880 * lock the buffer then redirty the folio. Note that this can 1881 * potentially cause a busy-wait loop from writeback threads 1882 * and kswapd activity, but those code paths have their own 1883 * higher-level throttling. 1884 */ 1885 if (wbc->sync_mode != WB_SYNC_NONE) { 1886 lock_buffer(bh); 1887 } else if (!trylock_buffer(bh)) { 1888 folio_redirty_for_writepage(wbc, folio); 1889 continue; 1890 } 1891 if (test_clear_buffer_dirty(bh)) { 1892 mark_buffer_async_write_endio(bh, 1893 end_buffer_async_write); 1894 } else { 1895 unlock_buffer(bh); 1896 } 1897 } while ((bh = bh->b_this_page) != head); 1898 1899 /* 1900 * The folio and its buffers are protected by the writeback flag, 1901 * so we can drop the bh refcounts early. 1902 */ 1903 BUG_ON(folio_test_writeback(folio)); 1904 folio_start_writeback(folio); 1905 1906 do { 1907 struct buffer_head *next = bh->b_this_page; 1908 if (buffer_async_write(bh)) { 1909 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1910 inode->i_write_hint, wbc); 1911 nr_underway++; 1912 } 1913 bh = next; 1914 } while (bh != head); 1915 folio_unlock(folio); 1916 1917 err = 0; 1918 done: 1919 if (nr_underway == 0) { 1920 /* 1921 * The folio was marked dirty, but the buffers were 1922 * clean. Someone wrote them back by hand with 1923 * write_dirty_buffer/submit_bh. A rare case. 1924 */ 1925 folio_end_writeback(folio); 1926 1927 /* 1928 * The folio and buffer_heads can be released at any time from 1929 * here on. 1930 */ 1931 } 1932 return err; 1933 1934 recover: 1935 /* 1936 * ENOSPC, or some other error. We may already have added some 1937 * blocks to the file, so we need to write these out to avoid 1938 * exposing stale data. 1939 * The folio is currently locked and not marked for writeback 1940 */ 1941 bh = head; 1942 /* Recovery: lock and submit the mapped buffers */ 1943 do { 1944 if (buffer_mapped(bh) && buffer_dirty(bh) && 1945 !buffer_delay(bh)) { 1946 lock_buffer(bh); 1947 mark_buffer_async_write_endio(bh, 1948 end_buffer_async_write); 1949 } else { 1950 /* 1951 * The buffer may have been set dirty during 1952 * attachment to a dirty folio. 1953 */ 1954 clear_buffer_dirty(bh); 1955 } 1956 } while ((bh = bh->b_this_page) != head); 1957 BUG_ON(folio_test_writeback(folio)); 1958 mapping_set_error(folio->mapping, err); 1959 folio_start_writeback(folio); 1960 do { 1961 struct buffer_head *next = bh->b_this_page; 1962 if (buffer_async_write(bh)) { 1963 clear_buffer_dirty(bh); 1964 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1965 inode->i_write_hint, wbc); 1966 nr_underway++; 1967 } 1968 bh = next; 1969 } while (bh != head); 1970 folio_unlock(folio); 1971 goto done; 1972 } 1973 EXPORT_SYMBOL(__block_write_full_folio); 1974 1975 /* 1976 * If a folio has any new buffers, zero them out here, and mark them uptodate 1977 * and dirty so they'll be written out (in order to prevent uninitialised 1978 * block data from leaking). And clear the new bit. 1979 */ 1980 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) 1981 { 1982 size_t block_start, block_end; 1983 struct buffer_head *head, *bh; 1984 1985 BUG_ON(!folio_test_locked(folio)); 1986 head = folio_buffers(folio); 1987 if (!head) 1988 return; 1989 1990 bh = head; 1991 block_start = 0; 1992 do { 1993 block_end = block_start + bh->b_size; 1994 1995 if (buffer_new(bh)) { 1996 if (block_end > from && block_start < to) { 1997 if (!folio_test_uptodate(folio)) { 1998 size_t start, xend; 1999 2000 start = max(from, block_start); 2001 xend = min(to, block_end); 2002 2003 folio_zero_segment(folio, start, xend); 2004 set_buffer_uptodate(bh); 2005 } 2006 2007 clear_buffer_new(bh); 2008 mark_buffer_dirty(bh); 2009 } 2010 } 2011 2012 block_start = block_end; 2013 bh = bh->b_this_page; 2014 } while (bh != head); 2015 } 2016 EXPORT_SYMBOL(folio_zero_new_buffers); 2017 2018 static int 2019 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 2020 const struct iomap *iomap) 2021 { 2022 loff_t offset = (loff_t)block << inode->i_blkbits; 2023 2024 bh->b_bdev = iomap->bdev; 2025 2026 /* 2027 * Block points to offset in file we need to map, iomap contains 2028 * the offset at which the map starts. If the map ends before the 2029 * current block, then do not map the buffer and let the caller 2030 * handle it. 2031 */ 2032 if (offset >= iomap->offset + iomap->length) 2033 return -EIO; 2034 2035 switch (iomap->type) { 2036 case IOMAP_HOLE: 2037 /* 2038 * If the buffer is not up to date or beyond the current EOF, 2039 * we need to mark it as new to ensure sub-block zeroing is 2040 * executed if necessary. 2041 */ 2042 if (!buffer_uptodate(bh) || 2043 (offset >= i_size_read(inode))) 2044 set_buffer_new(bh); 2045 return 0; 2046 case IOMAP_DELALLOC: 2047 if (!buffer_uptodate(bh) || 2048 (offset >= i_size_read(inode))) 2049 set_buffer_new(bh); 2050 set_buffer_uptodate(bh); 2051 set_buffer_mapped(bh); 2052 set_buffer_delay(bh); 2053 return 0; 2054 case IOMAP_UNWRITTEN: 2055 /* 2056 * For unwritten regions, we always need to ensure that regions 2057 * in the block we are not writing to are zeroed. Mark the 2058 * buffer as new to ensure this. 2059 */ 2060 set_buffer_new(bh); 2061 set_buffer_unwritten(bh); 2062 fallthrough; 2063 case IOMAP_MAPPED: 2064 if ((iomap->flags & IOMAP_F_NEW) || 2065 offset >= i_size_read(inode)) { 2066 /* 2067 * This can happen if truncating the block device races 2068 * with the check in the caller as i_size updates on 2069 * block devices aren't synchronized by i_rwsem for 2070 * block devices. 2071 */ 2072 if (S_ISBLK(inode->i_mode)) 2073 return -EIO; 2074 set_buffer_new(bh); 2075 } 2076 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2077 inode->i_blkbits; 2078 set_buffer_mapped(bh); 2079 return 0; 2080 default: 2081 WARN_ON_ONCE(1); 2082 return -EIO; 2083 } 2084 } 2085 2086 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2087 get_block_t *get_block, const struct iomap *iomap) 2088 { 2089 size_t from = offset_in_folio(folio, pos); 2090 size_t to = from + len; 2091 struct inode *inode = folio->mapping->host; 2092 size_t block_start, block_end; 2093 sector_t block; 2094 int err = 0; 2095 size_t blocksize; 2096 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2097 2098 BUG_ON(!folio_test_locked(folio)); 2099 BUG_ON(to > folio_size(folio)); 2100 BUG_ON(from > to); 2101 2102 head = folio_create_buffers(folio, inode, 0); 2103 blocksize = head->b_size; 2104 block = div_u64(folio_pos(folio), blocksize); 2105 2106 for (bh = head, block_start = 0; bh != head || !block_start; 2107 block++, block_start=block_end, bh = bh->b_this_page) { 2108 block_end = block_start + blocksize; 2109 if (block_end <= from || block_start >= to) { 2110 if (folio_test_uptodate(folio)) { 2111 if (!buffer_uptodate(bh)) 2112 set_buffer_uptodate(bh); 2113 } 2114 continue; 2115 } 2116 if (buffer_new(bh)) 2117 clear_buffer_new(bh); 2118 if (!buffer_mapped(bh)) { 2119 WARN_ON(bh->b_size != blocksize); 2120 if (get_block) 2121 err = get_block(inode, block, bh, 1); 2122 else 2123 err = iomap_to_bh(inode, block, bh, iomap); 2124 if (err) 2125 break; 2126 2127 if (buffer_new(bh)) { 2128 clean_bdev_bh_alias(bh); 2129 if (folio_test_uptodate(folio)) { 2130 clear_buffer_new(bh); 2131 set_buffer_uptodate(bh); 2132 mark_buffer_dirty(bh); 2133 continue; 2134 } 2135 if (block_end > to || block_start < from) 2136 folio_zero_segments(folio, 2137 to, block_end, 2138 block_start, from); 2139 continue; 2140 } 2141 } 2142 if (folio_test_uptodate(folio)) { 2143 if (!buffer_uptodate(bh)) 2144 set_buffer_uptodate(bh); 2145 continue; 2146 } 2147 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2148 !buffer_unwritten(bh) && 2149 (block_start < from || block_end > to)) { 2150 bh_read_nowait(bh, 0); 2151 *wait_bh++=bh; 2152 } 2153 } 2154 /* 2155 * If we issued read requests - let them complete. 2156 */ 2157 while(wait_bh > wait) { 2158 wait_on_buffer(*--wait_bh); 2159 if (!buffer_uptodate(*wait_bh)) 2160 err = -EIO; 2161 } 2162 if (unlikely(err)) 2163 folio_zero_new_buffers(folio, from, to); 2164 return err; 2165 } 2166 2167 int __block_write_begin(struct folio *folio, loff_t pos, unsigned len, 2168 get_block_t *get_block) 2169 { 2170 return __block_write_begin_int(folio, pos, len, get_block, NULL); 2171 } 2172 EXPORT_SYMBOL(__block_write_begin); 2173 2174 static void __block_commit_write(struct folio *folio, size_t from, size_t to) 2175 { 2176 size_t block_start, block_end; 2177 bool partial = false; 2178 unsigned blocksize; 2179 struct buffer_head *bh, *head; 2180 2181 bh = head = folio_buffers(folio); 2182 if (!bh) 2183 return; 2184 blocksize = bh->b_size; 2185 2186 block_start = 0; 2187 do { 2188 block_end = block_start + blocksize; 2189 if (block_end <= from || block_start >= to) { 2190 if (!buffer_uptodate(bh)) 2191 partial = true; 2192 } else { 2193 set_buffer_uptodate(bh); 2194 mark_buffer_dirty(bh); 2195 } 2196 if (buffer_new(bh)) 2197 clear_buffer_new(bh); 2198 2199 block_start = block_end; 2200 bh = bh->b_this_page; 2201 } while (bh != head); 2202 2203 /* 2204 * If this is a partial write which happened to make all buffers 2205 * uptodate then we can optimize away a bogus read_folio() for 2206 * the next read(). Here we 'discover' whether the folio went 2207 * uptodate as a result of this (potentially partial) write. 2208 */ 2209 if (!partial) 2210 folio_mark_uptodate(folio); 2211 } 2212 2213 /* 2214 * block_write_begin takes care of the basic task of block allocation and 2215 * bringing partial write blocks uptodate first. 2216 * 2217 * The filesystem needs to handle block truncation upon failure. 2218 */ 2219 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2220 struct folio **foliop, get_block_t *get_block) 2221 { 2222 pgoff_t index = pos >> PAGE_SHIFT; 2223 struct folio *folio; 2224 int status; 2225 2226 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2227 mapping_gfp_mask(mapping)); 2228 if (IS_ERR(folio)) 2229 return PTR_ERR(folio); 2230 2231 status = __block_write_begin_int(folio, pos, len, get_block, NULL); 2232 if (unlikely(status)) { 2233 folio_unlock(folio); 2234 folio_put(folio); 2235 folio = NULL; 2236 } 2237 2238 *foliop = folio; 2239 return status; 2240 } 2241 EXPORT_SYMBOL(block_write_begin); 2242 2243 int block_write_end(struct file *file, struct address_space *mapping, 2244 loff_t pos, unsigned len, unsigned copied, 2245 struct folio *folio, void *fsdata) 2246 { 2247 size_t start = pos - folio_pos(folio); 2248 2249 if (unlikely(copied < len)) { 2250 /* 2251 * The buffers that were written will now be uptodate, so 2252 * we don't have to worry about a read_folio reading them 2253 * and overwriting a partial write. However if we have 2254 * encountered a short write and only partially written 2255 * into a buffer, it will not be marked uptodate, so a 2256 * read_folio might come in and destroy our partial write. 2257 * 2258 * Do the simplest thing, and just treat any short write to a 2259 * non uptodate folio as a zero-length write, and force the 2260 * caller to redo the whole thing. 2261 */ 2262 if (!folio_test_uptodate(folio)) 2263 copied = 0; 2264 2265 folio_zero_new_buffers(folio, start+copied, start+len); 2266 } 2267 flush_dcache_folio(folio); 2268 2269 /* This could be a short (even 0-length) commit */ 2270 __block_commit_write(folio, start, start + copied); 2271 2272 return copied; 2273 } 2274 EXPORT_SYMBOL(block_write_end); 2275 2276 int generic_write_end(struct file *file, struct address_space *mapping, 2277 loff_t pos, unsigned len, unsigned copied, 2278 struct folio *folio, void *fsdata) 2279 { 2280 struct inode *inode = mapping->host; 2281 loff_t old_size = inode->i_size; 2282 bool i_size_changed = false; 2283 2284 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata); 2285 2286 /* 2287 * No need to use i_size_read() here, the i_size cannot change under us 2288 * because we hold i_rwsem. 2289 * 2290 * But it's important to update i_size while still holding folio lock: 2291 * page writeout could otherwise come in and zero beyond i_size. 2292 */ 2293 if (pos + copied > inode->i_size) { 2294 i_size_write(inode, pos + copied); 2295 i_size_changed = true; 2296 } 2297 2298 folio_unlock(folio); 2299 folio_put(folio); 2300 2301 if (old_size < pos) 2302 pagecache_isize_extended(inode, old_size, pos); 2303 /* 2304 * Don't mark the inode dirty under page lock. First, it unnecessarily 2305 * makes the holding time of page lock longer. Second, it forces lock 2306 * ordering of page lock and transaction start for journaling 2307 * filesystems. 2308 */ 2309 if (i_size_changed) 2310 mark_inode_dirty(inode); 2311 return copied; 2312 } 2313 EXPORT_SYMBOL(generic_write_end); 2314 2315 /* 2316 * block_is_partially_uptodate checks whether buffers within a folio are 2317 * uptodate or not. 2318 * 2319 * Returns true if all buffers which correspond to the specified part 2320 * of the folio are uptodate. 2321 */ 2322 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2323 { 2324 unsigned block_start, block_end, blocksize; 2325 unsigned to; 2326 struct buffer_head *bh, *head; 2327 bool ret = true; 2328 2329 head = folio_buffers(folio); 2330 if (!head) 2331 return false; 2332 blocksize = head->b_size; 2333 to = min_t(unsigned, folio_size(folio) - from, count); 2334 to = from + to; 2335 if (from < blocksize && to > folio_size(folio) - blocksize) 2336 return false; 2337 2338 bh = head; 2339 block_start = 0; 2340 do { 2341 block_end = block_start + blocksize; 2342 if (block_end > from && block_start < to) { 2343 if (!buffer_uptodate(bh)) { 2344 ret = false; 2345 break; 2346 } 2347 if (block_end >= to) 2348 break; 2349 } 2350 block_start = block_end; 2351 bh = bh->b_this_page; 2352 } while (bh != head); 2353 2354 return ret; 2355 } 2356 EXPORT_SYMBOL(block_is_partially_uptodate); 2357 2358 /* 2359 * Generic "read_folio" function for block devices that have the normal 2360 * get_block functionality. This is most of the block device filesystems. 2361 * Reads the folio asynchronously --- the unlock_buffer() and 2362 * set/clear_buffer_uptodate() functions propagate buffer state into the 2363 * folio once IO has completed. 2364 */ 2365 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2366 { 2367 struct inode *inode = folio->mapping->host; 2368 sector_t iblock, lblock; 2369 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2370 size_t blocksize; 2371 int nr, i; 2372 int fully_mapped = 1; 2373 bool page_error = false; 2374 loff_t limit = i_size_read(inode); 2375 2376 /* This is needed for ext4. */ 2377 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2378 limit = inode->i_sb->s_maxbytes; 2379 2380 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2381 2382 head = folio_create_buffers(folio, inode, 0); 2383 blocksize = head->b_size; 2384 2385 iblock = div_u64(folio_pos(folio), blocksize); 2386 lblock = div_u64(limit + blocksize - 1, blocksize); 2387 bh = head; 2388 nr = 0; 2389 i = 0; 2390 2391 do { 2392 if (buffer_uptodate(bh)) 2393 continue; 2394 2395 if (!buffer_mapped(bh)) { 2396 int err = 0; 2397 2398 fully_mapped = 0; 2399 if (iblock < lblock) { 2400 WARN_ON(bh->b_size != blocksize); 2401 err = get_block(inode, iblock, bh, 0); 2402 if (err) 2403 page_error = true; 2404 } 2405 if (!buffer_mapped(bh)) { 2406 folio_zero_range(folio, i * blocksize, 2407 blocksize); 2408 if (!err) 2409 set_buffer_uptodate(bh); 2410 continue; 2411 } 2412 /* 2413 * get_block() might have updated the buffer 2414 * synchronously 2415 */ 2416 if (buffer_uptodate(bh)) 2417 continue; 2418 } 2419 arr[nr++] = bh; 2420 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2421 2422 if (fully_mapped) 2423 folio_set_mappedtodisk(folio); 2424 2425 if (!nr) { 2426 /* 2427 * All buffers are uptodate or get_block() returned an 2428 * error when trying to map them - we can finish the read. 2429 */ 2430 folio_end_read(folio, !page_error); 2431 return 0; 2432 } 2433 2434 /* Stage two: lock the buffers */ 2435 for (i = 0; i < nr; i++) { 2436 bh = arr[i]; 2437 lock_buffer(bh); 2438 mark_buffer_async_read(bh); 2439 } 2440 2441 /* 2442 * Stage 3: start the IO. Check for uptodateness 2443 * inside the buffer lock in case another process reading 2444 * the underlying blockdev brought it uptodate (the sct fix). 2445 */ 2446 for (i = 0; i < nr; i++) { 2447 bh = arr[i]; 2448 if (buffer_uptodate(bh)) 2449 end_buffer_async_read(bh, 1); 2450 else 2451 submit_bh(REQ_OP_READ, bh); 2452 } 2453 return 0; 2454 } 2455 EXPORT_SYMBOL(block_read_full_folio); 2456 2457 /* utility function for filesystems that need to do work on expanding 2458 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2459 * deal with the hole. 2460 */ 2461 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2462 { 2463 struct address_space *mapping = inode->i_mapping; 2464 const struct address_space_operations *aops = mapping->a_ops; 2465 struct folio *folio; 2466 void *fsdata = NULL; 2467 int err; 2468 2469 err = inode_newsize_ok(inode, size); 2470 if (err) 2471 goto out; 2472 2473 err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata); 2474 if (err) 2475 goto out; 2476 2477 err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata); 2478 BUG_ON(err > 0); 2479 2480 out: 2481 return err; 2482 } 2483 EXPORT_SYMBOL(generic_cont_expand_simple); 2484 2485 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2486 loff_t pos, loff_t *bytes) 2487 { 2488 struct inode *inode = mapping->host; 2489 const struct address_space_operations *aops = mapping->a_ops; 2490 unsigned int blocksize = i_blocksize(inode); 2491 struct folio *folio; 2492 void *fsdata = NULL; 2493 pgoff_t index, curidx; 2494 loff_t curpos; 2495 unsigned zerofrom, offset, len; 2496 int err = 0; 2497 2498 index = pos >> PAGE_SHIFT; 2499 offset = pos & ~PAGE_MASK; 2500 2501 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2502 zerofrom = curpos & ~PAGE_MASK; 2503 if (zerofrom & (blocksize-1)) { 2504 *bytes |= (blocksize-1); 2505 (*bytes)++; 2506 } 2507 len = PAGE_SIZE - zerofrom; 2508 2509 err = aops->write_begin(file, mapping, curpos, len, 2510 &folio, &fsdata); 2511 if (err) 2512 goto out; 2513 folio_zero_range(folio, offset_in_folio(folio, curpos), len); 2514 err = aops->write_end(file, mapping, curpos, len, len, 2515 folio, fsdata); 2516 if (err < 0) 2517 goto out; 2518 BUG_ON(err != len); 2519 err = 0; 2520 2521 balance_dirty_pages_ratelimited(mapping); 2522 2523 if (fatal_signal_pending(current)) { 2524 err = -EINTR; 2525 goto out; 2526 } 2527 } 2528 2529 /* page covers the boundary, find the boundary offset */ 2530 if (index == curidx) { 2531 zerofrom = curpos & ~PAGE_MASK; 2532 /* if we will expand the thing last block will be filled */ 2533 if (offset <= zerofrom) { 2534 goto out; 2535 } 2536 if (zerofrom & (blocksize-1)) { 2537 *bytes |= (blocksize-1); 2538 (*bytes)++; 2539 } 2540 len = offset - zerofrom; 2541 2542 err = aops->write_begin(file, mapping, curpos, len, 2543 &folio, &fsdata); 2544 if (err) 2545 goto out; 2546 folio_zero_range(folio, offset_in_folio(folio, curpos), len); 2547 err = aops->write_end(file, mapping, curpos, len, len, 2548 folio, fsdata); 2549 if (err < 0) 2550 goto out; 2551 BUG_ON(err != len); 2552 err = 0; 2553 } 2554 out: 2555 return err; 2556 } 2557 2558 /* 2559 * For moronic filesystems that do not allow holes in file. 2560 * We may have to extend the file. 2561 */ 2562 int cont_write_begin(struct file *file, struct address_space *mapping, 2563 loff_t pos, unsigned len, 2564 struct folio **foliop, void **fsdata, 2565 get_block_t *get_block, loff_t *bytes) 2566 { 2567 struct inode *inode = mapping->host; 2568 unsigned int blocksize = i_blocksize(inode); 2569 unsigned int zerofrom; 2570 int err; 2571 2572 err = cont_expand_zero(file, mapping, pos, bytes); 2573 if (err) 2574 return err; 2575 2576 zerofrom = *bytes & ~PAGE_MASK; 2577 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2578 *bytes |= (blocksize-1); 2579 (*bytes)++; 2580 } 2581 2582 return block_write_begin(mapping, pos, len, foliop, get_block); 2583 } 2584 EXPORT_SYMBOL(cont_write_begin); 2585 2586 void block_commit_write(struct page *page, unsigned from, unsigned to) 2587 { 2588 struct folio *folio = page_folio(page); 2589 __block_commit_write(folio, from, to); 2590 } 2591 EXPORT_SYMBOL(block_commit_write); 2592 2593 /* 2594 * block_page_mkwrite() is not allowed to change the file size as it gets 2595 * called from a page fault handler when a page is first dirtied. Hence we must 2596 * be careful to check for EOF conditions here. We set the page up correctly 2597 * for a written page which means we get ENOSPC checking when writing into 2598 * holes and correct delalloc and unwritten extent mapping on filesystems that 2599 * support these features. 2600 * 2601 * We are not allowed to take the i_mutex here so we have to play games to 2602 * protect against truncate races as the page could now be beyond EOF. Because 2603 * truncate writes the inode size before removing pages, once we have the 2604 * page lock we can determine safely if the page is beyond EOF. If it is not 2605 * beyond EOF, then the page is guaranteed safe against truncation until we 2606 * unlock the page. 2607 * 2608 * Direct callers of this function should protect against filesystem freezing 2609 * using sb_start_pagefault() - sb_end_pagefault() functions. 2610 */ 2611 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2612 get_block_t get_block) 2613 { 2614 struct folio *folio = page_folio(vmf->page); 2615 struct inode *inode = file_inode(vma->vm_file); 2616 unsigned long end; 2617 loff_t size; 2618 int ret; 2619 2620 folio_lock(folio); 2621 size = i_size_read(inode); 2622 if ((folio->mapping != inode->i_mapping) || 2623 (folio_pos(folio) >= size)) { 2624 /* We overload EFAULT to mean page got truncated */ 2625 ret = -EFAULT; 2626 goto out_unlock; 2627 } 2628 2629 end = folio_size(folio); 2630 /* folio is wholly or partially inside EOF */ 2631 if (folio_pos(folio) + end > size) 2632 end = size - folio_pos(folio); 2633 2634 ret = __block_write_begin_int(folio, 0, end, get_block, NULL); 2635 if (unlikely(ret)) 2636 goto out_unlock; 2637 2638 __block_commit_write(folio, 0, end); 2639 2640 folio_mark_dirty(folio); 2641 folio_wait_stable(folio); 2642 return 0; 2643 out_unlock: 2644 folio_unlock(folio); 2645 return ret; 2646 } 2647 EXPORT_SYMBOL(block_page_mkwrite); 2648 2649 int block_truncate_page(struct address_space *mapping, 2650 loff_t from, get_block_t *get_block) 2651 { 2652 pgoff_t index = from >> PAGE_SHIFT; 2653 unsigned blocksize; 2654 sector_t iblock; 2655 size_t offset, length, pos; 2656 struct inode *inode = mapping->host; 2657 struct folio *folio; 2658 struct buffer_head *bh; 2659 int err = 0; 2660 2661 blocksize = i_blocksize(inode); 2662 length = from & (blocksize - 1); 2663 2664 /* Block boundary? Nothing to do */ 2665 if (!length) 2666 return 0; 2667 2668 length = blocksize - length; 2669 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits; 2670 2671 folio = filemap_grab_folio(mapping, index); 2672 if (IS_ERR(folio)) 2673 return PTR_ERR(folio); 2674 2675 bh = folio_buffers(folio); 2676 if (!bh) 2677 bh = create_empty_buffers(folio, blocksize, 0); 2678 2679 /* Find the buffer that contains "offset" */ 2680 offset = offset_in_folio(folio, from); 2681 pos = blocksize; 2682 while (offset >= pos) { 2683 bh = bh->b_this_page; 2684 iblock++; 2685 pos += blocksize; 2686 } 2687 2688 if (!buffer_mapped(bh)) { 2689 WARN_ON(bh->b_size != blocksize); 2690 err = get_block(inode, iblock, bh, 0); 2691 if (err) 2692 goto unlock; 2693 /* unmapped? It's a hole - nothing to do */ 2694 if (!buffer_mapped(bh)) 2695 goto unlock; 2696 } 2697 2698 /* Ok, it's mapped. Make sure it's up-to-date */ 2699 if (folio_test_uptodate(folio)) 2700 set_buffer_uptodate(bh); 2701 2702 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2703 err = bh_read(bh, 0); 2704 /* Uhhuh. Read error. Complain and punt. */ 2705 if (err < 0) 2706 goto unlock; 2707 } 2708 2709 folio_zero_range(folio, offset, length); 2710 mark_buffer_dirty(bh); 2711 2712 unlock: 2713 folio_unlock(folio); 2714 folio_put(folio); 2715 2716 return err; 2717 } 2718 EXPORT_SYMBOL(block_truncate_page); 2719 2720 /* 2721 * The generic ->writepage function for buffer-backed address_spaces 2722 */ 2723 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc, 2724 void *get_block) 2725 { 2726 struct inode * const inode = folio->mapping->host; 2727 loff_t i_size = i_size_read(inode); 2728 2729 /* Is the folio fully inside i_size? */ 2730 if (folio_pos(folio) + folio_size(folio) <= i_size) 2731 return __block_write_full_folio(inode, folio, get_block, wbc); 2732 2733 /* Is the folio fully outside i_size? (truncate in progress) */ 2734 if (folio_pos(folio) >= i_size) { 2735 folio_unlock(folio); 2736 return 0; /* don't care */ 2737 } 2738 2739 /* 2740 * The folio straddles i_size. It must be zeroed out on each and every 2741 * writepage invocation because it may be mmapped. "A file is mapped 2742 * in multiples of the page size. For a file that is not a multiple of 2743 * the page size, the remaining memory is zeroed when mapped, and 2744 * writes to that region are not written out to the file." 2745 */ 2746 folio_zero_segment(folio, offset_in_folio(folio, i_size), 2747 folio_size(folio)); 2748 return __block_write_full_folio(inode, folio, get_block, wbc); 2749 } 2750 2751 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2752 get_block_t *get_block) 2753 { 2754 struct inode *inode = mapping->host; 2755 struct buffer_head tmp = { 2756 .b_size = i_blocksize(inode), 2757 }; 2758 2759 get_block(inode, block, &tmp, 0); 2760 return tmp.b_blocknr; 2761 } 2762 EXPORT_SYMBOL(generic_block_bmap); 2763 2764 static void end_bio_bh_io_sync(struct bio *bio) 2765 { 2766 struct buffer_head *bh = bio->bi_private; 2767 2768 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2769 set_bit(BH_Quiet, &bh->b_state); 2770 2771 bh->b_end_io(bh, !bio->bi_status); 2772 bio_put(bio); 2773 } 2774 2775 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2776 enum rw_hint write_hint, 2777 struct writeback_control *wbc) 2778 { 2779 const enum req_op op = opf & REQ_OP_MASK; 2780 struct bio *bio; 2781 2782 BUG_ON(!buffer_locked(bh)); 2783 BUG_ON(!buffer_mapped(bh)); 2784 BUG_ON(!bh->b_end_io); 2785 BUG_ON(buffer_delay(bh)); 2786 BUG_ON(buffer_unwritten(bh)); 2787 2788 /* 2789 * Only clear out a write error when rewriting 2790 */ 2791 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2792 clear_buffer_write_io_error(bh); 2793 2794 if (buffer_meta(bh)) 2795 opf |= REQ_META; 2796 if (buffer_prio(bh)) 2797 opf |= REQ_PRIO; 2798 2799 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2800 2801 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2802 2803 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2804 bio->bi_write_hint = write_hint; 2805 2806 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2807 2808 bio->bi_end_io = end_bio_bh_io_sync; 2809 bio->bi_private = bh; 2810 2811 /* Take care of bh's that straddle the end of the device */ 2812 guard_bio_eod(bio); 2813 2814 if (wbc) { 2815 wbc_init_bio(wbc, bio); 2816 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2817 } 2818 2819 submit_bio(bio); 2820 } 2821 2822 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2823 { 2824 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL); 2825 } 2826 EXPORT_SYMBOL(submit_bh); 2827 2828 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2829 { 2830 lock_buffer(bh); 2831 if (!test_clear_buffer_dirty(bh)) { 2832 unlock_buffer(bh); 2833 return; 2834 } 2835 bh->b_end_io = end_buffer_write_sync; 2836 get_bh(bh); 2837 submit_bh(REQ_OP_WRITE | op_flags, bh); 2838 } 2839 EXPORT_SYMBOL(write_dirty_buffer); 2840 2841 /* 2842 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2843 * and then start new I/O and then wait upon it. The caller must have a ref on 2844 * the buffer_head. 2845 */ 2846 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2847 { 2848 WARN_ON(atomic_read(&bh->b_count) < 1); 2849 lock_buffer(bh); 2850 if (test_clear_buffer_dirty(bh)) { 2851 /* 2852 * The bh should be mapped, but it might not be if the 2853 * device was hot-removed. Not much we can do but fail the I/O. 2854 */ 2855 if (!buffer_mapped(bh)) { 2856 unlock_buffer(bh); 2857 return -EIO; 2858 } 2859 2860 get_bh(bh); 2861 bh->b_end_io = end_buffer_write_sync; 2862 submit_bh(REQ_OP_WRITE | op_flags, bh); 2863 wait_on_buffer(bh); 2864 if (!buffer_uptodate(bh)) 2865 return -EIO; 2866 } else { 2867 unlock_buffer(bh); 2868 } 2869 return 0; 2870 } 2871 EXPORT_SYMBOL(__sync_dirty_buffer); 2872 2873 int sync_dirty_buffer(struct buffer_head *bh) 2874 { 2875 return __sync_dirty_buffer(bh, REQ_SYNC); 2876 } 2877 EXPORT_SYMBOL(sync_dirty_buffer); 2878 2879 static inline int buffer_busy(struct buffer_head *bh) 2880 { 2881 return atomic_read(&bh->b_count) | 2882 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2883 } 2884 2885 static bool 2886 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2887 { 2888 struct buffer_head *head = folio_buffers(folio); 2889 struct buffer_head *bh; 2890 2891 bh = head; 2892 do { 2893 if (buffer_busy(bh)) 2894 goto failed; 2895 bh = bh->b_this_page; 2896 } while (bh != head); 2897 2898 do { 2899 struct buffer_head *next = bh->b_this_page; 2900 2901 if (bh->b_assoc_map) 2902 __remove_assoc_queue(bh); 2903 bh = next; 2904 } while (bh != head); 2905 *buffers_to_free = head; 2906 folio_detach_private(folio); 2907 return true; 2908 failed: 2909 return false; 2910 } 2911 2912 /** 2913 * try_to_free_buffers - Release buffers attached to this folio. 2914 * @folio: The folio. 2915 * 2916 * If any buffers are in use (dirty, under writeback, elevated refcount), 2917 * no buffers will be freed. 2918 * 2919 * If the folio is dirty but all the buffers are clean then we need to 2920 * be sure to mark the folio clean as well. This is because the folio 2921 * may be against a block device, and a later reattachment of buffers 2922 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2923 * filesystem data on the same device. 2924 * 2925 * The same applies to regular filesystem folios: if all the buffers are 2926 * clean then we set the folio clean and proceed. To do that, we require 2927 * total exclusion from block_dirty_folio(). That is obtained with 2928 * i_private_lock. 2929 * 2930 * Exclusion against try_to_free_buffers may be obtained by either 2931 * locking the folio or by holding its mapping's i_private_lock. 2932 * 2933 * Context: Process context. @folio must be locked. Will not sleep. 2934 * Return: true if all buffers attached to this folio were freed. 2935 */ 2936 bool try_to_free_buffers(struct folio *folio) 2937 { 2938 struct address_space * const mapping = folio->mapping; 2939 struct buffer_head *buffers_to_free = NULL; 2940 bool ret = 0; 2941 2942 BUG_ON(!folio_test_locked(folio)); 2943 if (folio_test_writeback(folio)) 2944 return false; 2945 2946 if (mapping == NULL) { /* can this still happen? */ 2947 ret = drop_buffers(folio, &buffers_to_free); 2948 goto out; 2949 } 2950 2951 spin_lock(&mapping->i_private_lock); 2952 ret = drop_buffers(folio, &buffers_to_free); 2953 2954 /* 2955 * If the filesystem writes its buffers by hand (eg ext3) 2956 * then we can have clean buffers against a dirty folio. We 2957 * clean the folio here; otherwise the VM will never notice 2958 * that the filesystem did any IO at all. 2959 * 2960 * Also, during truncate, discard_buffer will have marked all 2961 * the folio's buffers clean. We discover that here and clean 2962 * the folio also. 2963 * 2964 * i_private_lock must be held over this entire operation in order 2965 * to synchronise against block_dirty_folio and prevent the 2966 * dirty bit from being lost. 2967 */ 2968 if (ret) 2969 folio_cancel_dirty(folio); 2970 spin_unlock(&mapping->i_private_lock); 2971 out: 2972 if (buffers_to_free) { 2973 struct buffer_head *bh = buffers_to_free; 2974 2975 do { 2976 struct buffer_head *next = bh->b_this_page; 2977 free_buffer_head(bh); 2978 bh = next; 2979 } while (bh != buffers_to_free); 2980 } 2981 return ret; 2982 } 2983 EXPORT_SYMBOL(try_to_free_buffers); 2984 2985 /* 2986 * Buffer-head allocation 2987 */ 2988 static struct kmem_cache *bh_cachep __ro_after_init; 2989 2990 /* 2991 * Once the number of bh's in the machine exceeds this level, we start 2992 * stripping them in writeback. 2993 */ 2994 static unsigned long max_buffer_heads __ro_after_init; 2995 2996 int buffer_heads_over_limit; 2997 2998 struct bh_accounting { 2999 int nr; /* Number of live bh's */ 3000 int ratelimit; /* Limit cacheline bouncing */ 3001 }; 3002 3003 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3004 3005 static void recalc_bh_state(void) 3006 { 3007 int i; 3008 int tot = 0; 3009 3010 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3011 return; 3012 __this_cpu_write(bh_accounting.ratelimit, 0); 3013 for_each_online_cpu(i) 3014 tot += per_cpu(bh_accounting, i).nr; 3015 buffer_heads_over_limit = (tot > max_buffer_heads); 3016 } 3017 3018 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3019 { 3020 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3021 if (ret) { 3022 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3023 spin_lock_init(&ret->b_uptodate_lock); 3024 preempt_disable(); 3025 __this_cpu_inc(bh_accounting.nr); 3026 recalc_bh_state(); 3027 preempt_enable(); 3028 } 3029 return ret; 3030 } 3031 EXPORT_SYMBOL(alloc_buffer_head); 3032 3033 void free_buffer_head(struct buffer_head *bh) 3034 { 3035 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3036 kmem_cache_free(bh_cachep, bh); 3037 preempt_disable(); 3038 __this_cpu_dec(bh_accounting.nr); 3039 recalc_bh_state(); 3040 preempt_enable(); 3041 } 3042 EXPORT_SYMBOL(free_buffer_head); 3043 3044 static int buffer_exit_cpu_dead(unsigned int cpu) 3045 { 3046 int i; 3047 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3048 3049 for (i = 0; i < BH_LRU_SIZE; i++) { 3050 brelse(b->bhs[i]); 3051 b->bhs[i] = NULL; 3052 } 3053 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3054 per_cpu(bh_accounting, cpu).nr = 0; 3055 return 0; 3056 } 3057 3058 /** 3059 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3060 * @bh: struct buffer_head 3061 * 3062 * Return true if the buffer is up-to-date and false, 3063 * with the buffer locked, if not. 3064 */ 3065 int bh_uptodate_or_lock(struct buffer_head *bh) 3066 { 3067 if (!buffer_uptodate(bh)) { 3068 lock_buffer(bh); 3069 if (!buffer_uptodate(bh)) 3070 return 0; 3071 unlock_buffer(bh); 3072 } 3073 return 1; 3074 } 3075 EXPORT_SYMBOL(bh_uptodate_or_lock); 3076 3077 /** 3078 * __bh_read - Submit read for a locked buffer 3079 * @bh: struct buffer_head 3080 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3081 * @wait: wait until reading finish 3082 * 3083 * Returns zero on success or don't wait, and -EIO on error. 3084 */ 3085 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3086 { 3087 int ret = 0; 3088 3089 BUG_ON(!buffer_locked(bh)); 3090 3091 get_bh(bh); 3092 bh->b_end_io = end_buffer_read_sync; 3093 submit_bh(REQ_OP_READ | op_flags, bh); 3094 if (wait) { 3095 wait_on_buffer(bh); 3096 if (!buffer_uptodate(bh)) 3097 ret = -EIO; 3098 } 3099 return ret; 3100 } 3101 EXPORT_SYMBOL(__bh_read); 3102 3103 /** 3104 * __bh_read_batch - Submit read for a batch of unlocked buffers 3105 * @nr: entry number of the buffer batch 3106 * @bhs: a batch of struct buffer_head 3107 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3108 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3109 * buffer that cannot lock. 3110 * 3111 * Returns zero on success or don't wait, and -EIO on error. 3112 */ 3113 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3114 blk_opf_t op_flags, bool force_lock) 3115 { 3116 int i; 3117 3118 for (i = 0; i < nr; i++) { 3119 struct buffer_head *bh = bhs[i]; 3120 3121 if (buffer_uptodate(bh)) 3122 continue; 3123 3124 if (force_lock) 3125 lock_buffer(bh); 3126 else 3127 if (!trylock_buffer(bh)) 3128 continue; 3129 3130 if (buffer_uptodate(bh)) { 3131 unlock_buffer(bh); 3132 continue; 3133 } 3134 3135 bh->b_end_io = end_buffer_read_sync; 3136 get_bh(bh); 3137 submit_bh(REQ_OP_READ | op_flags, bh); 3138 } 3139 } 3140 EXPORT_SYMBOL(__bh_read_batch); 3141 3142 void __init buffer_init(void) 3143 { 3144 unsigned long nrpages; 3145 int ret; 3146 3147 bh_cachep = KMEM_CACHE(buffer_head, 3148 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC); 3149 /* 3150 * Limit the bh occupancy to 10% of ZONE_NORMAL 3151 */ 3152 nrpages = (nr_free_buffer_pages() * 10) / 100; 3153 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3154 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3155 NULL, buffer_exit_cpu_dead); 3156 WARN_ON(ret < 0); 3157 } 3158