1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 53 #include "internal.h" 54 55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 57 struct writeback_control *wbc); 58 59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 60 61 inline void touch_buffer(struct buffer_head *bh) 62 { 63 trace_block_touch_buffer(bh); 64 folio_mark_accessed(bh->b_folio); 65 } 66 EXPORT_SYMBOL(touch_buffer); 67 68 void __lock_buffer(struct buffer_head *bh) 69 { 70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 71 } 72 EXPORT_SYMBOL(__lock_buffer); 73 74 void unlock_buffer(struct buffer_head *bh) 75 { 76 clear_bit_unlock(BH_Lock, &bh->b_state); 77 smp_mb__after_atomic(); 78 wake_up_bit(&bh->b_state, BH_Lock); 79 } 80 EXPORT_SYMBOL(unlock_buffer); 81 82 /* 83 * Returns if the folio has dirty or writeback buffers. If all the buffers 84 * are unlocked and clean then the folio_test_dirty information is stale. If 85 * any of the buffers are locked, it is assumed they are locked for IO. 86 */ 87 void buffer_check_dirty_writeback(struct folio *folio, 88 bool *dirty, bool *writeback) 89 { 90 struct buffer_head *head, *bh; 91 *dirty = false; 92 *writeback = false; 93 94 BUG_ON(!folio_test_locked(folio)); 95 96 head = folio_buffers(folio); 97 if (!head) 98 return; 99 100 if (folio_test_writeback(folio)) 101 *writeback = true; 102 103 bh = head; 104 do { 105 if (buffer_locked(bh)) 106 *writeback = true; 107 108 if (buffer_dirty(bh)) 109 *dirty = true; 110 111 bh = bh->b_this_page; 112 } while (bh != head); 113 } 114 EXPORT_SYMBOL(buffer_check_dirty_writeback); 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 __end_buffer_read_notouch(bh, uptodate); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 /* 180 * Various filesystems appear to want __find_get_block to be non-blocking. 181 * But it's the page lock which protects the buffers. To get around this, 182 * we get exclusion from try_to_free_buffers with the blockdev mapping's 183 * private_lock. 184 * 185 * Hack idea: for the blockdev mapping, private_lock contention 186 * may be quite high. This code could TryLock the page, and if that 187 * succeeds, there is no need to take private_lock. 188 */ 189 static struct buffer_head * 190 __find_get_block_slow(struct block_device *bdev, sector_t block) 191 { 192 struct inode *bd_inode = bdev->bd_inode; 193 struct address_space *bd_mapping = bd_inode->i_mapping; 194 struct buffer_head *ret = NULL; 195 pgoff_t index; 196 struct buffer_head *bh; 197 struct buffer_head *head; 198 struct page *page; 199 int all_mapped = 1; 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 201 202 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 203 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 204 if (!page) 205 goto out; 206 207 spin_lock(&bd_mapping->private_lock); 208 if (!page_has_buffers(page)) 209 goto out_unlock; 210 head = page_buffers(page); 211 bh = head; 212 do { 213 if (!buffer_mapped(bh)) 214 all_mapped = 0; 215 else if (bh->b_blocknr == block) { 216 ret = bh; 217 get_bh(bh); 218 goto out_unlock; 219 } 220 bh = bh->b_this_page; 221 } while (bh != head); 222 223 /* we might be here because some of the buffers on this page are 224 * not mapped. This is due to various races between 225 * file io on the block device and getblk. It gets dealt with 226 * elsewhere, don't buffer_error if we had some unmapped buffers 227 */ 228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 229 if (all_mapped && __ratelimit(&last_warned)) { 230 printk("__find_get_block_slow() failed. block=%llu, " 231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 232 "device %pg blocksize: %d\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr, 235 bh->b_state, bh->b_size, bdev, 236 1 << bd_inode->i_blkbits); 237 } 238 out_unlock: 239 spin_unlock(&bd_mapping->private_lock); 240 put_page(page); 241 out: 242 return ret; 243 } 244 245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 246 { 247 unsigned long flags; 248 struct buffer_head *first; 249 struct buffer_head *tmp; 250 struct folio *folio; 251 int folio_uptodate = 1; 252 253 BUG_ON(!buffer_async_read(bh)); 254 255 folio = bh->b_folio; 256 if (uptodate) { 257 set_buffer_uptodate(bh); 258 } else { 259 clear_buffer_uptodate(bh); 260 buffer_io_error(bh, ", async page read"); 261 folio_set_error(folio); 262 } 263 264 /* 265 * Be _very_ careful from here on. Bad things can happen if 266 * two buffer heads end IO at almost the same time and both 267 * decide that the page is now completely done. 268 */ 269 first = folio_buffers(folio); 270 spin_lock_irqsave(&first->b_uptodate_lock, flags); 271 clear_buffer_async_read(bh); 272 unlock_buffer(bh); 273 tmp = bh; 274 do { 275 if (!buffer_uptodate(tmp)) 276 folio_uptodate = 0; 277 if (buffer_async_read(tmp)) { 278 BUG_ON(!buffer_locked(tmp)); 279 goto still_busy; 280 } 281 tmp = tmp->b_this_page; 282 } while (tmp != bh); 283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 284 285 /* 286 * If all of the buffers are uptodate then we can set the page 287 * uptodate. 288 */ 289 if (folio_uptodate) 290 folio_mark_uptodate(folio); 291 folio_unlock(folio); 292 return; 293 294 still_busy: 295 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 296 return; 297 } 298 299 struct postprocess_bh_ctx { 300 struct work_struct work; 301 struct buffer_head *bh; 302 }; 303 304 static void verify_bh(struct work_struct *work) 305 { 306 struct postprocess_bh_ctx *ctx = 307 container_of(work, struct postprocess_bh_ctx, work); 308 struct buffer_head *bh = ctx->bh; 309 bool valid; 310 311 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 312 end_buffer_async_read(bh, valid); 313 kfree(ctx); 314 } 315 316 static bool need_fsverity(struct buffer_head *bh) 317 { 318 struct folio *folio = bh->b_folio; 319 struct inode *inode = folio->mapping->host; 320 321 return fsverity_active(inode) && 322 /* needed by ext4 */ 323 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 324 } 325 326 static void decrypt_bh(struct work_struct *work) 327 { 328 struct postprocess_bh_ctx *ctx = 329 container_of(work, struct postprocess_bh_ctx, work); 330 struct buffer_head *bh = ctx->bh; 331 int err; 332 333 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 334 bh_offset(bh)); 335 if (err == 0 && need_fsverity(bh)) { 336 /* 337 * We use different work queues for decryption and for verity 338 * because verity may require reading metadata pages that need 339 * decryption, and we shouldn't recurse to the same workqueue. 340 */ 341 INIT_WORK(&ctx->work, verify_bh); 342 fsverity_enqueue_verify_work(&ctx->work); 343 return; 344 } 345 end_buffer_async_read(bh, err == 0); 346 kfree(ctx); 347 } 348 349 /* 350 * I/O completion handler for block_read_full_folio() - pages 351 * which come unlocked at the end of I/O. 352 */ 353 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 354 { 355 struct inode *inode = bh->b_folio->mapping->host; 356 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 357 bool verify = need_fsverity(bh); 358 359 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 360 if (uptodate && (decrypt || verify)) { 361 struct postprocess_bh_ctx *ctx = 362 kmalloc(sizeof(*ctx), GFP_ATOMIC); 363 364 if (ctx) { 365 ctx->bh = bh; 366 if (decrypt) { 367 INIT_WORK(&ctx->work, decrypt_bh); 368 fscrypt_enqueue_decrypt_work(&ctx->work); 369 } else { 370 INIT_WORK(&ctx->work, verify_bh); 371 fsverity_enqueue_verify_work(&ctx->work); 372 } 373 return; 374 } 375 uptodate = 0; 376 } 377 end_buffer_async_read(bh, uptodate); 378 } 379 380 /* 381 * Completion handler for block_write_full_page() - pages which are unlocked 382 * during I/O, and which have PageWriteback cleared upon I/O completion. 383 */ 384 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 385 { 386 unsigned long flags; 387 struct buffer_head *first; 388 struct buffer_head *tmp; 389 struct folio *folio; 390 391 BUG_ON(!buffer_async_write(bh)); 392 393 folio = bh->b_folio; 394 if (uptodate) { 395 set_buffer_uptodate(bh); 396 } else { 397 buffer_io_error(bh, ", lost async page write"); 398 mark_buffer_write_io_error(bh); 399 clear_buffer_uptodate(bh); 400 folio_set_error(folio); 401 } 402 403 first = folio_buffers(folio); 404 spin_lock_irqsave(&first->b_uptodate_lock, flags); 405 406 clear_buffer_async_write(bh); 407 unlock_buffer(bh); 408 tmp = bh->b_this_page; 409 while (tmp != bh) { 410 if (buffer_async_write(tmp)) { 411 BUG_ON(!buffer_locked(tmp)); 412 goto still_busy; 413 } 414 tmp = tmp->b_this_page; 415 } 416 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 417 folio_end_writeback(folio); 418 return; 419 420 still_busy: 421 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 422 return; 423 } 424 EXPORT_SYMBOL(end_buffer_async_write); 425 426 /* 427 * If a page's buffers are under async readin (end_buffer_async_read 428 * completion) then there is a possibility that another thread of 429 * control could lock one of the buffers after it has completed 430 * but while some of the other buffers have not completed. This 431 * locked buffer would confuse end_buffer_async_read() into not unlocking 432 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 433 * that this buffer is not under async I/O. 434 * 435 * The page comes unlocked when it has no locked buffer_async buffers 436 * left. 437 * 438 * PageLocked prevents anyone starting new async I/O reads any of 439 * the buffers. 440 * 441 * PageWriteback is used to prevent simultaneous writeout of the same 442 * page. 443 * 444 * PageLocked prevents anyone from starting writeback of a page which is 445 * under read I/O (PageWriteback is only ever set against a locked page). 446 */ 447 static void mark_buffer_async_read(struct buffer_head *bh) 448 { 449 bh->b_end_io = end_buffer_async_read_io; 450 set_buffer_async_read(bh); 451 } 452 453 static void mark_buffer_async_write_endio(struct buffer_head *bh, 454 bh_end_io_t *handler) 455 { 456 bh->b_end_io = handler; 457 set_buffer_async_write(bh); 458 } 459 460 void mark_buffer_async_write(struct buffer_head *bh) 461 { 462 mark_buffer_async_write_endio(bh, end_buffer_async_write); 463 } 464 EXPORT_SYMBOL(mark_buffer_async_write); 465 466 467 /* 468 * fs/buffer.c contains helper functions for buffer-backed address space's 469 * fsync functions. A common requirement for buffer-based filesystems is 470 * that certain data from the backing blockdev needs to be written out for 471 * a successful fsync(). For example, ext2 indirect blocks need to be 472 * written back and waited upon before fsync() returns. 473 * 474 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 475 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 476 * management of a list of dependent buffers at ->i_mapping->private_list. 477 * 478 * Locking is a little subtle: try_to_free_buffers() will remove buffers 479 * from their controlling inode's queue when they are being freed. But 480 * try_to_free_buffers() will be operating against the *blockdev* mapping 481 * at the time, not against the S_ISREG file which depends on those buffers. 482 * So the locking for private_list is via the private_lock in the address_space 483 * which backs the buffers. Which is different from the address_space 484 * against which the buffers are listed. So for a particular address_space, 485 * mapping->private_lock does *not* protect mapping->private_list! In fact, 486 * mapping->private_list will always be protected by the backing blockdev's 487 * ->private_lock. 488 * 489 * Which introduces a requirement: all buffers on an address_space's 490 * ->private_list must be from the same address_space: the blockdev's. 491 * 492 * address_spaces which do not place buffers at ->private_list via these 493 * utility functions are free to use private_lock and private_list for 494 * whatever they want. The only requirement is that list_empty(private_list) 495 * be true at clear_inode() time. 496 * 497 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 498 * filesystems should do that. invalidate_inode_buffers() should just go 499 * BUG_ON(!list_empty). 500 * 501 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 502 * take an address_space, not an inode. And it should be called 503 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 504 * queued up. 505 * 506 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 507 * list if it is already on a list. Because if the buffer is on a list, 508 * it *must* already be on the right one. If not, the filesystem is being 509 * silly. This will save a ton of locking. But first we have to ensure 510 * that buffers are taken *off* the old inode's list when they are freed 511 * (presumably in truncate). That requires careful auditing of all 512 * filesystems (do it inside bforget()). It could also be done by bringing 513 * b_inode back. 514 */ 515 516 /* 517 * The buffer's backing address_space's private_lock must be held 518 */ 519 static void __remove_assoc_queue(struct buffer_head *bh) 520 { 521 list_del_init(&bh->b_assoc_buffers); 522 WARN_ON(!bh->b_assoc_map); 523 bh->b_assoc_map = NULL; 524 } 525 526 int inode_has_buffers(struct inode *inode) 527 { 528 return !list_empty(&inode->i_data.private_list); 529 } 530 531 /* 532 * osync is designed to support O_SYNC io. It waits synchronously for 533 * all already-submitted IO to complete, but does not queue any new 534 * writes to the disk. 535 * 536 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 537 * as you dirty the buffers, and then use osync_inode_buffers to wait for 538 * completion. Any other dirty buffers which are not yet queued for 539 * write will not be flushed to disk by the osync. 540 */ 541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 542 { 543 struct buffer_head *bh; 544 struct list_head *p; 545 int err = 0; 546 547 spin_lock(lock); 548 repeat: 549 list_for_each_prev(p, list) { 550 bh = BH_ENTRY(p); 551 if (buffer_locked(bh)) { 552 get_bh(bh); 553 spin_unlock(lock); 554 wait_on_buffer(bh); 555 if (!buffer_uptodate(bh)) 556 err = -EIO; 557 brelse(bh); 558 spin_lock(lock); 559 goto repeat; 560 } 561 } 562 spin_unlock(lock); 563 return err; 564 } 565 566 void emergency_thaw_bdev(struct super_block *sb) 567 { 568 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 569 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 570 } 571 572 /** 573 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 574 * @mapping: the mapping which wants those buffers written 575 * 576 * Starts I/O against the buffers at mapping->private_list, and waits upon 577 * that I/O. 578 * 579 * Basically, this is a convenience function for fsync(). 580 * @mapping is a file or directory which needs those buffers to be written for 581 * a successful fsync(). 582 */ 583 int sync_mapping_buffers(struct address_space *mapping) 584 { 585 struct address_space *buffer_mapping = mapping->private_data; 586 587 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 588 return 0; 589 590 return fsync_buffers_list(&buffer_mapping->private_lock, 591 &mapping->private_list); 592 } 593 EXPORT_SYMBOL(sync_mapping_buffers); 594 595 /* 596 * Called when we've recently written block `bblock', and it is known that 597 * `bblock' was for a buffer_boundary() buffer. This means that the block at 598 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 599 * dirty, schedule it for IO. So that indirects merge nicely with their data. 600 */ 601 void write_boundary_block(struct block_device *bdev, 602 sector_t bblock, unsigned blocksize) 603 { 604 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 605 if (bh) { 606 if (buffer_dirty(bh)) 607 write_dirty_buffer(bh, 0); 608 put_bh(bh); 609 } 610 } 611 612 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 613 { 614 struct address_space *mapping = inode->i_mapping; 615 struct address_space *buffer_mapping = bh->b_folio->mapping; 616 617 mark_buffer_dirty(bh); 618 if (!mapping->private_data) { 619 mapping->private_data = buffer_mapping; 620 } else { 621 BUG_ON(mapping->private_data != buffer_mapping); 622 } 623 if (!bh->b_assoc_map) { 624 spin_lock(&buffer_mapping->private_lock); 625 list_move_tail(&bh->b_assoc_buffers, 626 &mapping->private_list); 627 bh->b_assoc_map = mapping; 628 spin_unlock(&buffer_mapping->private_lock); 629 } 630 } 631 EXPORT_SYMBOL(mark_buffer_dirty_inode); 632 633 /* 634 * Add a page to the dirty page list. 635 * 636 * It is a sad fact of life that this function is called from several places 637 * deeply under spinlocking. It may not sleep. 638 * 639 * If the page has buffers, the uptodate buffers are set dirty, to preserve 640 * dirty-state coherency between the page and the buffers. It the page does 641 * not have buffers then when they are later attached they will all be set 642 * dirty. 643 * 644 * The buffers are dirtied before the page is dirtied. There's a small race 645 * window in which a writepage caller may see the page cleanness but not the 646 * buffer dirtiness. That's fine. If this code were to set the page dirty 647 * before the buffers, a concurrent writepage caller could clear the page dirty 648 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 649 * page on the dirty page list. 650 * 651 * We use private_lock to lock against try_to_free_buffers while using the 652 * page's buffer list. Also use this to protect against clean buffers being 653 * added to the page after it was set dirty. 654 * 655 * FIXME: may need to call ->reservepage here as well. That's rather up to the 656 * address_space though. 657 */ 658 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 659 { 660 struct buffer_head *head; 661 bool newly_dirty; 662 663 spin_lock(&mapping->private_lock); 664 head = folio_buffers(folio); 665 if (head) { 666 struct buffer_head *bh = head; 667 668 do { 669 set_buffer_dirty(bh); 670 bh = bh->b_this_page; 671 } while (bh != head); 672 } 673 /* 674 * Lock out page's memcg migration to keep PageDirty 675 * synchronized with per-memcg dirty page counters. 676 */ 677 folio_memcg_lock(folio); 678 newly_dirty = !folio_test_set_dirty(folio); 679 spin_unlock(&mapping->private_lock); 680 681 if (newly_dirty) 682 __folio_mark_dirty(folio, mapping, 1); 683 684 folio_memcg_unlock(folio); 685 686 if (newly_dirty) 687 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 688 689 return newly_dirty; 690 } 691 EXPORT_SYMBOL(block_dirty_folio); 692 693 /* 694 * Write out and wait upon a list of buffers. 695 * 696 * We have conflicting pressures: we want to make sure that all 697 * initially dirty buffers get waited on, but that any subsequently 698 * dirtied buffers don't. After all, we don't want fsync to last 699 * forever if somebody is actively writing to the file. 700 * 701 * Do this in two main stages: first we copy dirty buffers to a 702 * temporary inode list, queueing the writes as we go. Then we clean 703 * up, waiting for those writes to complete. 704 * 705 * During this second stage, any subsequent updates to the file may end 706 * up refiling the buffer on the original inode's dirty list again, so 707 * there is a chance we will end up with a buffer queued for write but 708 * not yet completed on that list. So, as a final cleanup we go through 709 * the osync code to catch these locked, dirty buffers without requeuing 710 * any newly dirty buffers for write. 711 */ 712 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 713 { 714 struct buffer_head *bh; 715 struct list_head tmp; 716 struct address_space *mapping; 717 int err = 0, err2; 718 struct blk_plug plug; 719 720 INIT_LIST_HEAD(&tmp); 721 blk_start_plug(&plug); 722 723 spin_lock(lock); 724 while (!list_empty(list)) { 725 bh = BH_ENTRY(list->next); 726 mapping = bh->b_assoc_map; 727 __remove_assoc_queue(bh); 728 /* Avoid race with mark_buffer_dirty_inode() which does 729 * a lockless check and we rely on seeing the dirty bit */ 730 smp_mb(); 731 if (buffer_dirty(bh) || buffer_locked(bh)) { 732 list_add(&bh->b_assoc_buffers, &tmp); 733 bh->b_assoc_map = mapping; 734 if (buffer_dirty(bh)) { 735 get_bh(bh); 736 spin_unlock(lock); 737 /* 738 * Ensure any pending I/O completes so that 739 * write_dirty_buffer() actually writes the 740 * current contents - it is a noop if I/O is 741 * still in flight on potentially older 742 * contents. 743 */ 744 write_dirty_buffer(bh, REQ_SYNC); 745 746 /* 747 * Kick off IO for the previous mapping. Note 748 * that we will not run the very last mapping, 749 * wait_on_buffer() will do that for us 750 * through sync_buffer(). 751 */ 752 brelse(bh); 753 spin_lock(lock); 754 } 755 } 756 } 757 758 spin_unlock(lock); 759 blk_finish_plug(&plug); 760 spin_lock(lock); 761 762 while (!list_empty(&tmp)) { 763 bh = BH_ENTRY(tmp.prev); 764 get_bh(bh); 765 mapping = bh->b_assoc_map; 766 __remove_assoc_queue(bh); 767 /* Avoid race with mark_buffer_dirty_inode() which does 768 * a lockless check and we rely on seeing the dirty bit */ 769 smp_mb(); 770 if (buffer_dirty(bh)) { 771 list_add(&bh->b_assoc_buffers, 772 &mapping->private_list); 773 bh->b_assoc_map = mapping; 774 } 775 spin_unlock(lock); 776 wait_on_buffer(bh); 777 if (!buffer_uptodate(bh)) 778 err = -EIO; 779 brelse(bh); 780 spin_lock(lock); 781 } 782 783 spin_unlock(lock); 784 err2 = osync_buffers_list(lock, list); 785 if (err) 786 return err; 787 else 788 return err2; 789 } 790 791 /* 792 * Invalidate any and all dirty buffers on a given inode. We are 793 * probably unmounting the fs, but that doesn't mean we have already 794 * done a sync(). Just drop the buffers from the inode list. 795 * 796 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 797 * assumes that all the buffers are against the blockdev. Not true 798 * for reiserfs. 799 */ 800 void invalidate_inode_buffers(struct inode *inode) 801 { 802 if (inode_has_buffers(inode)) { 803 struct address_space *mapping = &inode->i_data; 804 struct list_head *list = &mapping->private_list; 805 struct address_space *buffer_mapping = mapping->private_data; 806 807 spin_lock(&buffer_mapping->private_lock); 808 while (!list_empty(list)) 809 __remove_assoc_queue(BH_ENTRY(list->next)); 810 spin_unlock(&buffer_mapping->private_lock); 811 } 812 } 813 EXPORT_SYMBOL(invalidate_inode_buffers); 814 815 /* 816 * Remove any clean buffers from the inode's buffer list. This is called 817 * when we're trying to free the inode itself. Those buffers can pin it. 818 * 819 * Returns true if all buffers were removed. 820 */ 821 int remove_inode_buffers(struct inode *inode) 822 { 823 int ret = 1; 824 825 if (inode_has_buffers(inode)) { 826 struct address_space *mapping = &inode->i_data; 827 struct list_head *list = &mapping->private_list; 828 struct address_space *buffer_mapping = mapping->private_data; 829 830 spin_lock(&buffer_mapping->private_lock); 831 while (!list_empty(list)) { 832 struct buffer_head *bh = BH_ENTRY(list->next); 833 if (buffer_dirty(bh)) { 834 ret = 0; 835 break; 836 } 837 __remove_assoc_queue(bh); 838 } 839 spin_unlock(&buffer_mapping->private_lock); 840 } 841 return ret; 842 } 843 844 /* 845 * Create the appropriate buffers when given a folio for data area and 846 * the size of each buffer.. Use the bh->b_this_page linked list to 847 * follow the buffers created. Return NULL if unable to create more 848 * buffers. 849 * 850 * The retry flag is used to differentiate async IO (paging, swapping) 851 * which may not fail from ordinary buffer allocations. 852 */ 853 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 854 bool retry) 855 { 856 struct buffer_head *bh, *head; 857 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 858 long offset; 859 struct mem_cgroup *memcg, *old_memcg; 860 861 if (retry) 862 gfp |= __GFP_NOFAIL; 863 864 /* The folio lock pins the memcg */ 865 memcg = folio_memcg(folio); 866 old_memcg = set_active_memcg(memcg); 867 868 head = NULL; 869 offset = folio_size(folio); 870 while ((offset -= size) >= 0) { 871 bh = alloc_buffer_head(gfp); 872 if (!bh) 873 goto no_grow; 874 875 bh->b_this_page = head; 876 bh->b_blocknr = -1; 877 head = bh; 878 879 bh->b_size = size; 880 881 /* Link the buffer to its folio */ 882 folio_set_bh(bh, folio, offset); 883 } 884 out: 885 set_active_memcg(old_memcg); 886 return head; 887 /* 888 * In case anything failed, we just free everything we got. 889 */ 890 no_grow: 891 if (head) { 892 do { 893 bh = head; 894 head = head->b_this_page; 895 free_buffer_head(bh); 896 } while (head); 897 } 898 899 goto out; 900 } 901 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 902 903 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 904 bool retry) 905 { 906 return folio_alloc_buffers(page_folio(page), size, retry); 907 } 908 EXPORT_SYMBOL_GPL(alloc_page_buffers); 909 910 static inline void 911 link_dev_buffers(struct page *page, struct buffer_head *head) 912 { 913 struct buffer_head *bh, *tail; 914 915 bh = head; 916 do { 917 tail = bh; 918 bh = bh->b_this_page; 919 } while (bh); 920 tail->b_this_page = head; 921 attach_page_private(page, head); 922 } 923 924 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 925 { 926 sector_t retval = ~((sector_t)0); 927 loff_t sz = bdev_nr_bytes(bdev); 928 929 if (sz) { 930 unsigned int sizebits = blksize_bits(size); 931 retval = (sz >> sizebits); 932 } 933 return retval; 934 } 935 936 /* 937 * Initialise the state of a blockdev page's buffers. 938 */ 939 static sector_t 940 init_page_buffers(struct page *page, struct block_device *bdev, 941 sector_t block, int size) 942 { 943 struct buffer_head *head = page_buffers(page); 944 struct buffer_head *bh = head; 945 int uptodate = PageUptodate(page); 946 sector_t end_block = blkdev_max_block(bdev, size); 947 948 do { 949 if (!buffer_mapped(bh)) { 950 bh->b_end_io = NULL; 951 bh->b_private = NULL; 952 bh->b_bdev = bdev; 953 bh->b_blocknr = block; 954 if (uptodate) 955 set_buffer_uptodate(bh); 956 if (block < end_block) 957 set_buffer_mapped(bh); 958 } 959 block++; 960 bh = bh->b_this_page; 961 } while (bh != head); 962 963 /* 964 * Caller needs to validate requested block against end of device. 965 */ 966 return end_block; 967 } 968 969 /* 970 * Create the page-cache page that contains the requested block. 971 * 972 * This is used purely for blockdev mappings. 973 */ 974 static int 975 grow_dev_page(struct block_device *bdev, sector_t block, 976 pgoff_t index, int size, int sizebits, gfp_t gfp) 977 { 978 struct inode *inode = bdev->bd_inode; 979 struct page *page; 980 struct buffer_head *bh; 981 sector_t end_block; 982 int ret = 0; 983 gfp_t gfp_mask; 984 985 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 986 987 /* 988 * XXX: __getblk_slow() can not really deal with failure and 989 * will endlessly loop on improvised global reclaim. Prefer 990 * looping in the allocator rather than here, at least that 991 * code knows what it's doing. 992 */ 993 gfp_mask |= __GFP_NOFAIL; 994 995 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 996 997 BUG_ON(!PageLocked(page)); 998 999 if (page_has_buffers(page)) { 1000 bh = page_buffers(page); 1001 if (bh->b_size == size) { 1002 end_block = init_page_buffers(page, bdev, 1003 (sector_t)index << sizebits, 1004 size); 1005 goto done; 1006 } 1007 if (!try_to_free_buffers(page_folio(page))) 1008 goto failed; 1009 } 1010 1011 /* 1012 * Allocate some buffers for this page 1013 */ 1014 bh = alloc_page_buffers(page, size, true); 1015 1016 /* 1017 * Link the page to the buffers and initialise them. Take the 1018 * lock to be atomic wrt __find_get_block(), which does not 1019 * run under the page lock. 1020 */ 1021 spin_lock(&inode->i_mapping->private_lock); 1022 link_dev_buffers(page, bh); 1023 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1024 size); 1025 spin_unlock(&inode->i_mapping->private_lock); 1026 done: 1027 ret = (block < end_block) ? 1 : -ENXIO; 1028 failed: 1029 unlock_page(page); 1030 put_page(page); 1031 return ret; 1032 } 1033 1034 /* 1035 * Create buffers for the specified block device block's page. If 1036 * that page was dirty, the buffers are set dirty also. 1037 */ 1038 static int 1039 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1040 { 1041 pgoff_t index; 1042 int sizebits; 1043 1044 sizebits = PAGE_SHIFT - __ffs(size); 1045 index = block >> sizebits; 1046 1047 /* 1048 * Check for a block which wants to lie outside our maximum possible 1049 * pagecache index. (this comparison is done using sector_t types). 1050 */ 1051 if (unlikely(index != block >> sizebits)) { 1052 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1053 "device %pg\n", 1054 __func__, (unsigned long long)block, 1055 bdev); 1056 return -EIO; 1057 } 1058 1059 /* Create a page with the proper size buffers.. */ 1060 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1061 } 1062 1063 static struct buffer_head * 1064 __getblk_slow(struct block_device *bdev, sector_t block, 1065 unsigned size, gfp_t gfp) 1066 { 1067 /* Size must be multiple of hard sectorsize */ 1068 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1069 (size < 512 || size > PAGE_SIZE))) { 1070 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1071 size); 1072 printk(KERN_ERR "logical block size: %d\n", 1073 bdev_logical_block_size(bdev)); 1074 1075 dump_stack(); 1076 return NULL; 1077 } 1078 1079 for (;;) { 1080 struct buffer_head *bh; 1081 int ret; 1082 1083 bh = __find_get_block(bdev, block, size); 1084 if (bh) 1085 return bh; 1086 1087 ret = grow_buffers(bdev, block, size, gfp); 1088 if (ret < 0) 1089 return NULL; 1090 } 1091 } 1092 1093 /* 1094 * The relationship between dirty buffers and dirty pages: 1095 * 1096 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1097 * the page is tagged dirty in the page cache. 1098 * 1099 * At all times, the dirtiness of the buffers represents the dirtiness of 1100 * subsections of the page. If the page has buffers, the page dirty bit is 1101 * merely a hint about the true dirty state. 1102 * 1103 * When a page is set dirty in its entirety, all its buffers are marked dirty 1104 * (if the page has buffers). 1105 * 1106 * When a buffer is marked dirty, its page is dirtied, but the page's other 1107 * buffers are not. 1108 * 1109 * Also. When blockdev buffers are explicitly read with bread(), they 1110 * individually become uptodate. But their backing page remains not 1111 * uptodate - even if all of its buffers are uptodate. A subsequent 1112 * block_read_full_folio() against that folio will discover all the uptodate 1113 * buffers, will set the folio uptodate and will perform no I/O. 1114 */ 1115 1116 /** 1117 * mark_buffer_dirty - mark a buffer_head as needing writeout 1118 * @bh: the buffer_head to mark dirty 1119 * 1120 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1121 * its backing page dirty, then tag the page as dirty in the page cache 1122 * and then attach the address_space's inode to its superblock's dirty 1123 * inode list. 1124 * 1125 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock, 1126 * i_pages lock and mapping->host->i_lock. 1127 */ 1128 void mark_buffer_dirty(struct buffer_head *bh) 1129 { 1130 WARN_ON_ONCE(!buffer_uptodate(bh)); 1131 1132 trace_block_dirty_buffer(bh); 1133 1134 /* 1135 * Very *carefully* optimize the it-is-already-dirty case. 1136 * 1137 * Don't let the final "is it dirty" escape to before we 1138 * perhaps modified the buffer. 1139 */ 1140 if (buffer_dirty(bh)) { 1141 smp_mb(); 1142 if (buffer_dirty(bh)) 1143 return; 1144 } 1145 1146 if (!test_set_buffer_dirty(bh)) { 1147 struct folio *folio = bh->b_folio; 1148 struct address_space *mapping = NULL; 1149 1150 folio_memcg_lock(folio); 1151 if (!folio_test_set_dirty(folio)) { 1152 mapping = folio->mapping; 1153 if (mapping) 1154 __folio_mark_dirty(folio, mapping, 0); 1155 } 1156 folio_memcg_unlock(folio); 1157 if (mapping) 1158 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1159 } 1160 } 1161 EXPORT_SYMBOL(mark_buffer_dirty); 1162 1163 void mark_buffer_write_io_error(struct buffer_head *bh) 1164 { 1165 struct super_block *sb; 1166 1167 set_buffer_write_io_error(bh); 1168 /* FIXME: do we need to set this in both places? */ 1169 if (bh->b_folio && bh->b_folio->mapping) 1170 mapping_set_error(bh->b_folio->mapping, -EIO); 1171 if (bh->b_assoc_map) 1172 mapping_set_error(bh->b_assoc_map, -EIO); 1173 rcu_read_lock(); 1174 sb = READ_ONCE(bh->b_bdev->bd_super); 1175 if (sb) 1176 errseq_set(&sb->s_wb_err, -EIO); 1177 rcu_read_unlock(); 1178 } 1179 EXPORT_SYMBOL(mark_buffer_write_io_error); 1180 1181 /* 1182 * Decrement a buffer_head's reference count. If all buffers against a page 1183 * have zero reference count, are clean and unlocked, and if the page is clean 1184 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1185 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1186 * a page but it ends up not being freed, and buffers may later be reattached). 1187 */ 1188 void __brelse(struct buffer_head * buf) 1189 { 1190 if (atomic_read(&buf->b_count)) { 1191 put_bh(buf); 1192 return; 1193 } 1194 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1195 } 1196 EXPORT_SYMBOL(__brelse); 1197 1198 /* 1199 * bforget() is like brelse(), except it discards any 1200 * potentially dirty data. 1201 */ 1202 void __bforget(struct buffer_head *bh) 1203 { 1204 clear_buffer_dirty(bh); 1205 if (bh->b_assoc_map) { 1206 struct address_space *buffer_mapping = bh->b_folio->mapping; 1207 1208 spin_lock(&buffer_mapping->private_lock); 1209 list_del_init(&bh->b_assoc_buffers); 1210 bh->b_assoc_map = NULL; 1211 spin_unlock(&buffer_mapping->private_lock); 1212 } 1213 __brelse(bh); 1214 } 1215 EXPORT_SYMBOL(__bforget); 1216 1217 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1218 { 1219 lock_buffer(bh); 1220 if (buffer_uptodate(bh)) { 1221 unlock_buffer(bh); 1222 return bh; 1223 } else { 1224 get_bh(bh); 1225 bh->b_end_io = end_buffer_read_sync; 1226 submit_bh(REQ_OP_READ, bh); 1227 wait_on_buffer(bh); 1228 if (buffer_uptodate(bh)) 1229 return bh; 1230 } 1231 brelse(bh); 1232 return NULL; 1233 } 1234 1235 /* 1236 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1237 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1238 * refcount elevated by one when they're in an LRU. A buffer can only appear 1239 * once in a particular CPU's LRU. A single buffer can be present in multiple 1240 * CPU's LRUs at the same time. 1241 * 1242 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1243 * sb_find_get_block(). 1244 * 1245 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1246 * a local interrupt disable for that. 1247 */ 1248 1249 #define BH_LRU_SIZE 16 1250 1251 struct bh_lru { 1252 struct buffer_head *bhs[BH_LRU_SIZE]; 1253 }; 1254 1255 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1256 1257 #ifdef CONFIG_SMP 1258 #define bh_lru_lock() local_irq_disable() 1259 #define bh_lru_unlock() local_irq_enable() 1260 #else 1261 #define bh_lru_lock() preempt_disable() 1262 #define bh_lru_unlock() preempt_enable() 1263 #endif 1264 1265 static inline void check_irqs_on(void) 1266 { 1267 #ifdef irqs_disabled 1268 BUG_ON(irqs_disabled()); 1269 #endif 1270 } 1271 1272 /* 1273 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1274 * inserted at the front, and the buffer_head at the back if any is evicted. 1275 * Or, if already in the LRU it is moved to the front. 1276 */ 1277 static void bh_lru_install(struct buffer_head *bh) 1278 { 1279 struct buffer_head *evictee = bh; 1280 struct bh_lru *b; 1281 int i; 1282 1283 check_irqs_on(); 1284 bh_lru_lock(); 1285 1286 /* 1287 * the refcount of buffer_head in bh_lru prevents dropping the 1288 * attached page(i.e., try_to_free_buffers) so it could cause 1289 * failing page migration. 1290 * Skip putting upcoming bh into bh_lru until migration is done. 1291 */ 1292 if (lru_cache_disabled()) { 1293 bh_lru_unlock(); 1294 return; 1295 } 1296 1297 b = this_cpu_ptr(&bh_lrus); 1298 for (i = 0; i < BH_LRU_SIZE; i++) { 1299 swap(evictee, b->bhs[i]); 1300 if (evictee == bh) { 1301 bh_lru_unlock(); 1302 return; 1303 } 1304 } 1305 1306 get_bh(bh); 1307 bh_lru_unlock(); 1308 brelse(evictee); 1309 } 1310 1311 /* 1312 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1313 */ 1314 static struct buffer_head * 1315 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1316 { 1317 struct buffer_head *ret = NULL; 1318 unsigned int i; 1319 1320 check_irqs_on(); 1321 bh_lru_lock(); 1322 for (i = 0; i < BH_LRU_SIZE; i++) { 1323 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1324 1325 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1326 bh->b_size == size) { 1327 if (i) { 1328 while (i) { 1329 __this_cpu_write(bh_lrus.bhs[i], 1330 __this_cpu_read(bh_lrus.bhs[i - 1])); 1331 i--; 1332 } 1333 __this_cpu_write(bh_lrus.bhs[0], bh); 1334 } 1335 get_bh(bh); 1336 ret = bh; 1337 break; 1338 } 1339 } 1340 bh_lru_unlock(); 1341 return ret; 1342 } 1343 1344 /* 1345 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1346 * it in the LRU and mark it as accessed. If it is not present then return 1347 * NULL 1348 */ 1349 struct buffer_head * 1350 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1351 { 1352 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1353 1354 if (bh == NULL) { 1355 /* __find_get_block_slow will mark the page accessed */ 1356 bh = __find_get_block_slow(bdev, block); 1357 if (bh) 1358 bh_lru_install(bh); 1359 } else 1360 touch_buffer(bh); 1361 1362 return bh; 1363 } 1364 EXPORT_SYMBOL(__find_get_block); 1365 1366 /* 1367 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1368 * which corresponds to the passed block_device, block and size. The 1369 * returned buffer has its reference count incremented. 1370 * 1371 * __getblk_gfp() will lock up the machine if grow_dev_page's 1372 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1373 */ 1374 struct buffer_head * 1375 __getblk_gfp(struct block_device *bdev, sector_t block, 1376 unsigned size, gfp_t gfp) 1377 { 1378 struct buffer_head *bh = __find_get_block(bdev, block, size); 1379 1380 might_sleep(); 1381 if (bh == NULL) 1382 bh = __getblk_slow(bdev, block, size, gfp); 1383 return bh; 1384 } 1385 EXPORT_SYMBOL(__getblk_gfp); 1386 1387 /* 1388 * Do async read-ahead on a buffer.. 1389 */ 1390 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1391 { 1392 struct buffer_head *bh = __getblk(bdev, block, size); 1393 if (likely(bh)) { 1394 bh_readahead(bh, REQ_RAHEAD); 1395 brelse(bh); 1396 } 1397 } 1398 EXPORT_SYMBOL(__breadahead); 1399 1400 /** 1401 * __bread_gfp() - reads a specified block and returns the bh 1402 * @bdev: the block_device to read from 1403 * @block: number of block 1404 * @size: size (in bytes) to read 1405 * @gfp: page allocation flag 1406 * 1407 * Reads a specified block, and returns buffer head that contains it. 1408 * The page cache can be allocated from non-movable area 1409 * not to prevent page migration if you set gfp to zero. 1410 * It returns NULL if the block was unreadable. 1411 */ 1412 struct buffer_head * 1413 __bread_gfp(struct block_device *bdev, sector_t block, 1414 unsigned size, gfp_t gfp) 1415 { 1416 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1417 1418 if (likely(bh) && !buffer_uptodate(bh)) 1419 bh = __bread_slow(bh); 1420 return bh; 1421 } 1422 EXPORT_SYMBOL(__bread_gfp); 1423 1424 static void __invalidate_bh_lrus(struct bh_lru *b) 1425 { 1426 int i; 1427 1428 for (i = 0; i < BH_LRU_SIZE; i++) { 1429 brelse(b->bhs[i]); 1430 b->bhs[i] = NULL; 1431 } 1432 } 1433 /* 1434 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1435 * This doesn't race because it runs in each cpu either in irq 1436 * or with preempt disabled. 1437 */ 1438 static void invalidate_bh_lru(void *arg) 1439 { 1440 struct bh_lru *b = &get_cpu_var(bh_lrus); 1441 1442 __invalidate_bh_lrus(b); 1443 put_cpu_var(bh_lrus); 1444 } 1445 1446 bool has_bh_in_lru(int cpu, void *dummy) 1447 { 1448 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1449 int i; 1450 1451 for (i = 0; i < BH_LRU_SIZE; i++) { 1452 if (b->bhs[i]) 1453 return true; 1454 } 1455 1456 return false; 1457 } 1458 1459 void invalidate_bh_lrus(void) 1460 { 1461 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1462 } 1463 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1464 1465 /* 1466 * It's called from workqueue context so we need a bh_lru_lock to close 1467 * the race with preemption/irq. 1468 */ 1469 void invalidate_bh_lrus_cpu(void) 1470 { 1471 struct bh_lru *b; 1472 1473 bh_lru_lock(); 1474 b = this_cpu_ptr(&bh_lrus); 1475 __invalidate_bh_lrus(b); 1476 bh_lru_unlock(); 1477 } 1478 1479 void set_bh_page(struct buffer_head *bh, 1480 struct page *page, unsigned long offset) 1481 { 1482 bh->b_page = page; 1483 BUG_ON(offset >= PAGE_SIZE); 1484 if (PageHighMem(page)) 1485 /* 1486 * This catches illegal uses and preserves the offset: 1487 */ 1488 bh->b_data = (char *)(0 + offset); 1489 else 1490 bh->b_data = page_address(page) + offset; 1491 } 1492 EXPORT_SYMBOL(set_bh_page); 1493 1494 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1495 unsigned long offset) 1496 { 1497 bh->b_folio = folio; 1498 BUG_ON(offset >= folio_size(folio)); 1499 if (folio_test_highmem(folio)) 1500 /* 1501 * This catches illegal uses and preserves the offset: 1502 */ 1503 bh->b_data = (char *)(0 + offset); 1504 else 1505 bh->b_data = folio_address(folio) + offset; 1506 } 1507 EXPORT_SYMBOL(folio_set_bh); 1508 1509 /* 1510 * Called when truncating a buffer on a page completely. 1511 */ 1512 1513 /* Bits that are cleared during an invalidate */ 1514 #define BUFFER_FLAGS_DISCARD \ 1515 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1516 1 << BH_Delay | 1 << BH_Unwritten) 1517 1518 static void discard_buffer(struct buffer_head * bh) 1519 { 1520 unsigned long b_state; 1521 1522 lock_buffer(bh); 1523 clear_buffer_dirty(bh); 1524 bh->b_bdev = NULL; 1525 b_state = READ_ONCE(bh->b_state); 1526 do { 1527 } while (!try_cmpxchg(&bh->b_state, &b_state, 1528 b_state & ~BUFFER_FLAGS_DISCARD)); 1529 unlock_buffer(bh); 1530 } 1531 1532 /** 1533 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1534 * @folio: The folio which is affected. 1535 * @offset: start of the range to invalidate 1536 * @length: length of the range to invalidate 1537 * 1538 * block_invalidate_folio() is called when all or part of the folio has been 1539 * invalidated by a truncate operation. 1540 * 1541 * block_invalidate_folio() does not have to release all buffers, but it must 1542 * ensure that no dirty buffer is left outside @offset and that no I/O 1543 * is underway against any of the blocks which are outside the truncation 1544 * point. Because the caller is about to free (and possibly reuse) those 1545 * blocks on-disk. 1546 */ 1547 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1548 { 1549 struct buffer_head *head, *bh, *next; 1550 size_t curr_off = 0; 1551 size_t stop = length + offset; 1552 1553 BUG_ON(!folio_test_locked(folio)); 1554 1555 /* 1556 * Check for overflow 1557 */ 1558 BUG_ON(stop > folio_size(folio) || stop < length); 1559 1560 head = folio_buffers(folio); 1561 if (!head) 1562 return; 1563 1564 bh = head; 1565 do { 1566 size_t next_off = curr_off + bh->b_size; 1567 next = bh->b_this_page; 1568 1569 /* 1570 * Are we still fully in range ? 1571 */ 1572 if (next_off > stop) 1573 goto out; 1574 1575 /* 1576 * is this block fully invalidated? 1577 */ 1578 if (offset <= curr_off) 1579 discard_buffer(bh); 1580 curr_off = next_off; 1581 bh = next; 1582 } while (bh != head); 1583 1584 /* 1585 * We release buffers only if the entire folio is being invalidated. 1586 * The get_block cached value has been unconditionally invalidated, 1587 * so real IO is not possible anymore. 1588 */ 1589 if (length == folio_size(folio)) 1590 filemap_release_folio(folio, 0); 1591 out: 1592 return; 1593 } 1594 EXPORT_SYMBOL(block_invalidate_folio); 1595 1596 /* 1597 * We attach and possibly dirty the buffers atomically wrt 1598 * block_dirty_folio() via private_lock. try_to_free_buffers 1599 * is already excluded via the folio lock. 1600 */ 1601 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize, 1602 unsigned long b_state) 1603 { 1604 struct buffer_head *bh, *head, *tail; 1605 1606 head = folio_alloc_buffers(folio, blocksize, true); 1607 bh = head; 1608 do { 1609 bh->b_state |= b_state; 1610 tail = bh; 1611 bh = bh->b_this_page; 1612 } while (bh); 1613 tail->b_this_page = head; 1614 1615 spin_lock(&folio->mapping->private_lock); 1616 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1617 bh = head; 1618 do { 1619 if (folio_test_dirty(folio)) 1620 set_buffer_dirty(bh); 1621 if (folio_test_uptodate(folio)) 1622 set_buffer_uptodate(bh); 1623 bh = bh->b_this_page; 1624 } while (bh != head); 1625 } 1626 folio_attach_private(folio, head); 1627 spin_unlock(&folio->mapping->private_lock); 1628 } 1629 EXPORT_SYMBOL(folio_create_empty_buffers); 1630 1631 void create_empty_buffers(struct page *page, 1632 unsigned long blocksize, unsigned long b_state) 1633 { 1634 folio_create_empty_buffers(page_folio(page), blocksize, b_state); 1635 } 1636 EXPORT_SYMBOL(create_empty_buffers); 1637 1638 /** 1639 * clean_bdev_aliases: clean a range of buffers in block device 1640 * @bdev: Block device to clean buffers in 1641 * @block: Start of a range of blocks to clean 1642 * @len: Number of blocks to clean 1643 * 1644 * We are taking a range of blocks for data and we don't want writeback of any 1645 * buffer-cache aliases starting from return from this function and until the 1646 * moment when something will explicitly mark the buffer dirty (hopefully that 1647 * will not happen until we will free that block ;-) We don't even need to mark 1648 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1649 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1650 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1651 * would confuse anyone who might pick it with bread() afterwards... 1652 * 1653 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1654 * writeout I/O going on against recently-freed buffers. We don't wait on that 1655 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1656 * need to. That happens here. 1657 */ 1658 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1659 { 1660 struct inode *bd_inode = bdev->bd_inode; 1661 struct address_space *bd_mapping = bd_inode->i_mapping; 1662 struct folio_batch fbatch; 1663 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1664 pgoff_t end; 1665 int i, count; 1666 struct buffer_head *bh; 1667 struct buffer_head *head; 1668 1669 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1670 folio_batch_init(&fbatch); 1671 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1672 count = folio_batch_count(&fbatch); 1673 for (i = 0; i < count; i++) { 1674 struct folio *folio = fbatch.folios[i]; 1675 1676 if (!folio_buffers(folio)) 1677 continue; 1678 /* 1679 * We use folio lock instead of bd_mapping->private_lock 1680 * to pin buffers here since we can afford to sleep and 1681 * it scales better than a global spinlock lock. 1682 */ 1683 folio_lock(folio); 1684 /* Recheck when the folio is locked which pins bhs */ 1685 head = folio_buffers(folio); 1686 if (!head) 1687 goto unlock_page; 1688 bh = head; 1689 do { 1690 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1691 goto next; 1692 if (bh->b_blocknr >= block + len) 1693 break; 1694 clear_buffer_dirty(bh); 1695 wait_on_buffer(bh); 1696 clear_buffer_req(bh); 1697 next: 1698 bh = bh->b_this_page; 1699 } while (bh != head); 1700 unlock_page: 1701 folio_unlock(folio); 1702 } 1703 folio_batch_release(&fbatch); 1704 cond_resched(); 1705 /* End of range already reached? */ 1706 if (index > end || !index) 1707 break; 1708 } 1709 } 1710 EXPORT_SYMBOL(clean_bdev_aliases); 1711 1712 /* 1713 * Size is a power-of-two in the range 512..PAGE_SIZE, 1714 * and the case we care about most is PAGE_SIZE. 1715 * 1716 * So this *could* possibly be written with those 1717 * constraints in mind (relevant mostly if some 1718 * architecture has a slow bit-scan instruction) 1719 */ 1720 static inline int block_size_bits(unsigned int blocksize) 1721 { 1722 return ilog2(blocksize); 1723 } 1724 1725 static struct buffer_head *folio_create_buffers(struct folio *folio, 1726 struct inode *inode, 1727 unsigned int b_state) 1728 { 1729 BUG_ON(!folio_test_locked(folio)); 1730 1731 if (!folio_buffers(folio)) 1732 folio_create_empty_buffers(folio, 1733 1 << READ_ONCE(inode->i_blkbits), 1734 b_state); 1735 return folio_buffers(folio); 1736 } 1737 1738 /* 1739 * NOTE! All mapped/uptodate combinations are valid: 1740 * 1741 * Mapped Uptodate Meaning 1742 * 1743 * No No "unknown" - must do get_block() 1744 * No Yes "hole" - zero-filled 1745 * Yes No "allocated" - allocated on disk, not read in 1746 * Yes Yes "valid" - allocated and up-to-date in memory. 1747 * 1748 * "Dirty" is valid only with the last case (mapped+uptodate). 1749 */ 1750 1751 /* 1752 * While block_write_full_page is writing back the dirty buffers under 1753 * the page lock, whoever dirtied the buffers may decide to clean them 1754 * again at any time. We handle that by only looking at the buffer 1755 * state inside lock_buffer(). 1756 * 1757 * If block_write_full_page() is called for regular writeback 1758 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1759 * locked buffer. This only can happen if someone has written the buffer 1760 * directly, with submit_bh(). At the address_space level PageWriteback 1761 * prevents this contention from occurring. 1762 * 1763 * If block_write_full_page() is called with wbc->sync_mode == 1764 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1765 * causes the writes to be flagged as synchronous writes. 1766 */ 1767 int __block_write_full_page(struct inode *inode, struct page *page, 1768 get_block_t *get_block, struct writeback_control *wbc, 1769 bh_end_io_t *handler) 1770 { 1771 int err; 1772 sector_t block; 1773 sector_t last_block; 1774 struct buffer_head *bh, *head; 1775 unsigned int blocksize, bbits; 1776 int nr_underway = 0; 1777 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1778 1779 head = folio_create_buffers(page_folio(page), inode, 1780 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1781 1782 /* 1783 * Be very careful. We have no exclusion from block_dirty_folio 1784 * here, and the (potentially unmapped) buffers may become dirty at 1785 * any time. If a buffer becomes dirty here after we've inspected it 1786 * then we just miss that fact, and the page stays dirty. 1787 * 1788 * Buffers outside i_size may be dirtied by block_dirty_folio; 1789 * handle that here by just cleaning them. 1790 */ 1791 1792 bh = head; 1793 blocksize = bh->b_size; 1794 bbits = block_size_bits(blocksize); 1795 1796 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1797 last_block = (i_size_read(inode) - 1) >> bbits; 1798 1799 /* 1800 * Get all the dirty buffers mapped to disk addresses and 1801 * handle any aliases from the underlying blockdev's mapping. 1802 */ 1803 do { 1804 if (block > last_block) { 1805 /* 1806 * mapped buffers outside i_size will occur, because 1807 * this page can be outside i_size when there is a 1808 * truncate in progress. 1809 */ 1810 /* 1811 * The buffer was zeroed by block_write_full_page() 1812 */ 1813 clear_buffer_dirty(bh); 1814 set_buffer_uptodate(bh); 1815 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1816 buffer_dirty(bh)) { 1817 WARN_ON(bh->b_size != blocksize); 1818 err = get_block(inode, block, bh, 1); 1819 if (err) 1820 goto recover; 1821 clear_buffer_delay(bh); 1822 if (buffer_new(bh)) { 1823 /* blockdev mappings never come here */ 1824 clear_buffer_new(bh); 1825 clean_bdev_bh_alias(bh); 1826 } 1827 } 1828 bh = bh->b_this_page; 1829 block++; 1830 } while (bh != head); 1831 1832 do { 1833 if (!buffer_mapped(bh)) 1834 continue; 1835 /* 1836 * If it's a fully non-blocking write attempt and we cannot 1837 * lock the buffer then redirty the page. Note that this can 1838 * potentially cause a busy-wait loop from writeback threads 1839 * and kswapd activity, but those code paths have their own 1840 * higher-level throttling. 1841 */ 1842 if (wbc->sync_mode != WB_SYNC_NONE) { 1843 lock_buffer(bh); 1844 } else if (!trylock_buffer(bh)) { 1845 redirty_page_for_writepage(wbc, page); 1846 continue; 1847 } 1848 if (test_clear_buffer_dirty(bh)) { 1849 mark_buffer_async_write_endio(bh, handler); 1850 } else { 1851 unlock_buffer(bh); 1852 } 1853 } while ((bh = bh->b_this_page) != head); 1854 1855 /* 1856 * The page and its buffers are protected by PageWriteback(), so we can 1857 * drop the bh refcounts early. 1858 */ 1859 BUG_ON(PageWriteback(page)); 1860 set_page_writeback(page); 1861 1862 do { 1863 struct buffer_head *next = bh->b_this_page; 1864 if (buffer_async_write(bh)) { 1865 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1866 nr_underway++; 1867 } 1868 bh = next; 1869 } while (bh != head); 1870 unlock_page(page); 1871 1872 err = 0; 1873 done: 1874 if (nr_underway == 0) { 1875 /* 1876 * The page was marked dirty, but the buffers were 1877 * clean. Someone wrote them back by hand with 1878 * write_dirty_buffer/submit_bh. A rare case. 1879 */ 1880 end_page_writeback(page); 1881 1882 /* 1883 * The page and buffer_heads can be released at any time from 1884 * here on. 1885 */ 1886 } 1887 return err; 1888 1889 recover: 1890 /* 1891 * ENOSPC, or some other error. We may already have added some 1892 * blocks to the file, so we need to write these out to avoid 1893 * exposing stale data. 1894 * The page is currently locked and not marked for writeback 1895 */ 1896 bh = head; 1897 /* Recovery: lock and submit the mapped buffers */ 1898 do { 1899 if (buffer_mapped(bh) && buffer_dirty(bh) && 1900 !buffer_delay(bh)) { 1901 lock_buffer(bh); 1902 mark_buffer_async_write_endio(bh, handler); 1903 } else { 1904 /* 1905 * The buffer may have been set dirty during 1906 * attachment to a dirty page. 1907 */ 1908 clear_buffer_dirty(bh); 1909 } 1910 } while ((bh = bh->b_this_page) != head); 1911 SetPageError(page); 1912 BUG_ON(PageWriteback(page)); 1913 mapping_set_error(page->mapping, err); 1914 set_page_writeback(page); 1915 do { 1916 struct buffer_head *next = bh->b_this_page; 1917 if (buffer_async_write(bh)) { 1918 clear_buffer_dirty(bh); 1919 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1920 nr_underway++; 1921 } 1922 bh = next; 1923 } while (bh != head); 1924 unlock_page(page); 1925 goto done; 1926 } 1927 EXPORT_SYMBOL(__block_write_full_page); 1928 1929 /* 1930 * If a page has any new buffers, zero them out here, and mark them uptodate 1931 * and dirty so they'll be written out (in order to prevent uninitialised 1932 * block data from leaking). And clear the new bit. 1933 */ 1934 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1935 { 1936 unsigned int block_start, block_end; 1937 struct buffer_head *head, *bh; 1938 1939 BUG_ON(!PageLocked(page)); 1940 if (!page_has_buffers(page)) 1941 return; 1942 1943 bh = head = page_buffers(page); 1944 block_start = 0; 1945 do { 1946 block_end = block_start + bh->b_size; 1947 1948 if (buffer_new(bh)) { 1949 if (block_end > from && block_start < to) { 1950 if (!PageUptodate(page)) { 1951 unsigned start, size; 1952 1953 start = max(from, block_start); 1954 size = min(to, block_end) - start; 1955 1956 zero_user(page, start, size); 1957 set_buffer_uptodate(bh); 1958 } 1959 1960 clear_buffer_new(bh); 1961 mark_buffer_dirty(bh); 1962 } 1963 } 1964 1965 block_start = block_end; 1966 bh = bh->b_this_page; 1967 } while (bh != head); 1968 } 1969 EXPORT_SYMBOL(page_zero_new_buffers); 1970 1971 static void 1972 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1973 const struct iomap *iomap) 1974 { 1975 loff_t offset = block << inode->i_blkbits; 1976 1977 bh->b_bdev = iomap->bdev; 1978 1979 /* 1980 * Block points to offset in file we need to map, iomap contains 1981 * the offset at which the map starts. If the map ends before the 1982 * current block, then do not map the buffer and let the caller 1983 * handle it. 1984 */ 1985 BUG_ON(offset >= iomap->offset + iomap->length); 1986 1987 switch (iomap->type) { 1988 case IOMAP_HOLE: 1989 /* 1990 * If the buffer is not up to date or beyond the current EOF, 1991 * we need to mark it as new to ensure sub-block zeroing is 1992 * executed if necessary. 1993 */ 1994 if (!buffer_uptodate(bh) || 1995 (offset >= i_size_read(inode))) 1996 set_buffer_new(bh); 1997 break; 1998 case IOMAP_DELALLOC: 1999 if (!buffer_uptodate(bh) || 2000 (offset >= i_size_read(inode))) 2001 set_buffer_new(bh); 2002 set_buffer_uptodate(bh); 2003 set_buffer_mapped(bh); 2004 set_buffer_delay(bh); 2005 break; 2006 case IOMAP_UNWRITTEN: 2007 /* 2008 * For unwritten regions, we always need to ensure that regions 2009 * in the block we are not writing to are zeroed. Mark the 2010 * buffer as new to ensure this. 2011 */ 2012 set_buffer_new(bh); 2013 set_buffer_unwritten(bh); 2014 fallthrough; 2015 case IOMAP_MAPPED: 2016 if ((iomap->flags & IOMAP_F_NEW) || 2017 offset >= i_size_read(inode)) 2018 set_buffer_new(bh); 2019 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2020 inode->i_blkbits; 2021 set_buffer_mapped(bh); 2022 break; 2023 } 2024 } 2025 2026 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2027 get_block_t *get_block, const struct iomap *iomap) 2028 { 2029 unsigned from = pos & (PAGE_SIZE - 1); 2030 unsigned to = from + len; 2031 struct inode *inode = folio->mapping->host; 2032 unsigned block_start, block_end; 2033 sector_t block; 2034 int err = 0; 2035 unsigned blocksize, bbits; 2036 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2037 2038 BUG_ON(!folio_test_locked(folio)); 2039 BUG_ON(from > PAGE_SIZE); 2040 BUG_ON(to > PAGE_SIZE); 2041 BUG_ON(from > to); 2042 2043 head = folio_create_buffers(folio, inode, 0); 2044 blocksize = head->b_size; 2045 bbits = block_size_bits(blocksize); 2046 2047 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2048 2049 for(bh = head, block_start = 0; bh != head || !block_start; 2050 block++, block_start=block_end, bh = bh->b_this_page) { 2051 block_end = block_start + blocksize; 2052 if (block_end <= from || block_start >= to) { 2053 if (folio_test_uptodate(folio)) { 2054 if (!buffer_uptodate(bh)) 2055 set_buffer_uptodate(bh); 2056 } 2057 continue; 2058 } 2059 if (buffer_new(bh)) 2060 clear_buffer_new(bh); 2061 if (!buffer_mapped(bh)) { 2062 WARN_ON(bh->b_size != blocksize); 2063 if (get_block) { 2064 err = get_block(inode, block, bh, 1); 2065 if (err) 2066 break; 2067 } else { 2068 iomap_to_bh(inode, block, bh, iomap); 2069 } 2070 2071 if (buffer_new(bh)) { 2072 clean_bdev_bh_alias(bh); 2073 if (folio_test_uptodate(folio)) { 2074 clear_buffer_new(bh); 2075 set_buffer_uptodate(bh); 2076 mark_buffer_dirty(bh); 2077 continue; 2078 } 2079 if (block_end > to || block_start < from) 2080 folio_zero_segments(folio, 2081 to, block_end, 2082 block_start, from); 2083 continue; 2084 } 2085 } 2086 if (folio_test_uptodate(folio)) { 2087 if (!buffer_uptodate(bh)) 2088 set_buffer_uptodate(bh); 2089 continue; 2090 } 2091 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2092 !buffer_unwritten(bh) && 2093 (block_start < from || block_end > to)) { 2094 bh_read_nowait(bh, 0); 2095 *wait_bh++=bh; 2096 } 2097 } 2098 /* 2099 * If we issued read requests - let them complete. 2100 */ 2101 while(wait_bh > wait) { 2102 wait_on_buffer(*--wait_bh); 2103 if (!buffer_uptodate(*wait_bh)) 2104 err = -EIO; 2105 } 2106 if (unlikely(err)) 2107 page_zero_new_buffers(&folio->page, from, to); 2108 return err; 2109 } 2110 2111 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2112 get_block_t *get_block) 2113 { 2114 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2115 NULL); 2116 } 2117 EXPORT_SYMBOL(__block_write_begin); 2118 2119 static int __block_commit_write(struct inode *inode, struct page *page, 2120 unsigned from, unsigned to) 2121 { 2122 unsigned block_start, block_end; 2123 int partial = 0; 2124 unsigned blocksize; 2125 struct buffer_head *bh, *head; 2126 2127 bh = head = page_buffers(page); 2128 blocksize = bh->b_size; 2129 2130 block_start = 0; 2131 do { 2132 block_end = block_start + blocksize; 2133 if (block_end <= from || block_start >= to) { 2134 if (!buffer_uptodate(bh)) 2135 partial = 1; 2136 } else { 2137 set_buffer_uptodate(bh); 2138 mark_buffer_dirty(bh); 2139 } 2140 if (buffer_new(bh)) 2141 clear_buffer_new(bh); 2142 2143 block_start = block_end; 2144 bh = bh->b_this_page; 2145 } while (bh != head); 2146 2147 /* 2148 * If this is a partial write which happened to make all buffers 2149 * uptodate then we can optimize away a bogus read_folio() for 2150 * the next read(). Here we 'discover' whether the page went 2151 * uptodate as a result of this (potentially partial) write. 2152 */ 2153 if (!partial) 2154 SetPageUptodate(page); 2155 return 0; 2156 } 2157 2158 /* 2159 * block_write_begin takes care of the basic task of block allocation and 2160 * bringing partial write blocks uptodate first. 2161 * 2162 * The filesystem needs to handle block truncation upon failure. 2163 */ 2164 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2165 struct page **pagep, get_block_t *get_block) 2166 { 2167 pgoff_t index = pos >> PAGE_SHIFT; 2168 struct page *page; 2169 int status; 2170 2171 page = grab_cache_page_write_begin(mapping, index); 2172 if (!page) 2173 return -ENOMEM; 2174 2175 status = __block_write_begin(page, pos, len, get_block); 2176 if (unlikely(status)) { 2177 unlock_page(page); 2178 put_page(page); 2179 page = NULL; 2180 } 2181 2182 *pagep = page; 2183 return status; 2184 } 2185 EXPORT_SYMBOL(block_write_begin); 2186 2187 int block_write_end(struct file *file, struct address_space *mapping, 2188 loff_t pos, unsigned len, unsigned copied, 2189 struct page *page, void *fsdata) 2190 { 2191 struct inode *inode = mapping->host; 2192 unsigned start; 2193 2194 start = pos & (PAGE_SIZE - 1); 2195 2196 if (unlikely(copied < len)) { 2197 /* 2198 * The buffers that were written will now be uptodate, so 2199 * we don't have to worry about a read_folio reading them 2200 * and overwriting a partial write. However if we have 2201 * encountered a short write and only partially written 2202 * into a buffer, it will not be marked uptodate, so a 2203 * read_folio might come in and destroy our partial write. 2204 * 2205 * Do the simplest thing, and just treat any short write to a 2206 * non uptodate page as a zero-length write, and force the 2207 * caller to redo the whole thing. 2208 */ 2209 if (!PageUptodate(page)) 2210 copied = 0; 2211 2212 page_zero_new_buffers(page, start+copied, start+len); 2213 } 2214 flush_dcache_page(page); 2215 2216 /* This could be a short (even 0-length) commit */ 2217 __block_commit_write(inode, page, start, start+copied); 2218 2219 return copied; 2220 } 2221 EXPORT_SYMBOL(block_write_end); 2222 2223 int generic_write_end(struct file *file, struct address_space *mapping, 2224 loff_t pos, unsigned len, unsigned copied, 2225 struct page *page, void *fsdata) 2226 { 2227 struct inode *inode = mapping->host; 2228 loff_t old_size = inode->i_size; 2229 bool i_size_changed = false; 2230 2231 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2232 2233 /* 2234 * No need to use i_size_read() here, the i_size cannot change under us 2235 * because we hold i_rwsem. 2236 * 2237 * But it's important to update i_size while still holding page lock: 2238 * page writeout could otherwise come in and zero beyond i_size. 2239 */ 2240 if (pos + copied > inode->i_size) { 2241 i_size_write(inode, pos + copied); 2242 i_size_changed = true; 2243 } 2244 2245 unlock_page(page); 2246 put_page(page); 2247 2248 if (old_size < pos) 2249 pagecache_isize_extended(inode, old_size, pos); 2250 /* 2251 * Don't mark the inode dirty under page lock. First, it unnecessarily 2252 * makes the holding time of page lock longer. Second, it forces lock 2253 * ordering of page lock and transaction start for journaling 2254 * filesystems. 2255 */ 2256 if (i_size_changed) 2257 mark_inode_dirty(inode); 2258 return copied; 2259 } 2260 EXPORT_SYMBOL(generic_write_end); 2261 2262 /* 2263 * block_is_partially_uptodate checks whether buffers within a folio are 2264 * uptodate or not. 2265 * 2266 * Returns true if all buffers which correspond to the specified part 2267 * of the folio are uptodate. 2268 */ 2269 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2270 { 2271 unsigned block_start, block_end, blocksize; 2272 unsigned to; 2273 struct buffer_head *bh, *head; 2274 bool ret = true; 2275 2276 head = folio_buffers(folio); 2277 if (!head) 2278 return false; 2279 blocksize = head->b_size; 2280 to = min_t(unsigned, folio_size(folio) - from, count); 2281 to = from + to; 2282 if (from < blocksize && to > folio_size(folio) - blocksize) 2283 return false; 2284 2285 bh = head; 2286 block_start = 0; 2287 do { 2288 block_end = block_start + blocksize; 2289 if (block_end > from && block_start < to) { 2290 if (!buffer_uptodate(bh)) { 2291 ret = false; 2292 break; 2293 } 2294 if (block_end >= to) 2295 break; 2296 } 2297 block_start = block_end; 2298 bh = bh->b_this_page; 2299 } while (bh != head); 2300 2301 return ret; 2302 } 2303 EXPORT_SYMBOL(block_is_partially_uptodate); 2304 2305 /* 2306 * Generic "read_folio" function for block devices that have the normal 2307 * get_block functionality. This is most of the block device filesystems. 2308 * Reads the folio asynchronously --- the unlock_buffer() and 2309 * set/clear_buffer_uptodate() functions propagate buffer state into the 2310 * folio once IO has completed. 2311 */ 2312 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2313 { 2314 struct inode *inode = folio->mapping->host; 2315 sector_t iblock, lblock; 2316 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2317 unsigned int blocksize, bbits; 2318 int nr, i; 2319 int fully_mapped = 1; 2320 bool page_error = false; 2321 loff_t limit = i_size_read(inode); 2322 2323 /* This is needed for ext4. */ 2324 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2325 limit = inode->i_sb->s_maxbytes; 2326 2327 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2328 2329 head = folio_create_buffers(folio, inode, 0); 2330 blocksize = head->b_size; 2331 bbits = block_size_bits(blocksize); 2332 2333 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2334 lblock = (limit+blocksize-1) >> bbits; 2335 bh = head; 2336 nr = 0; 2337 i = 0; 2338 2339 do { 2340 if (buffer_uptodate(bh)) 2341 continue; 2342 2343 if (!buffer_mapped(bh)) { 2344 int err = 0; 2345 2346 fully_mapped = 0; 2347 if (iblock < lblock) { 2348 WARN_ON(bh->b_size != blocksize); 2349 err = get_block(inode, iblock, bh, 0); 2350 if (err) { 2351 folio_set_error(folio); 2352 page_error = true; 2353 } 2354 } 2355 if (!buffer_mapped(bh)) { 2356 folio_zero_range(folio, i * blocksize, 2357 blocksize); 2358 if (!err) 2359 set_buffer_uptodate(bh); 2360 continue; 2361 } 2362 /* 2363 * get_block() might have updated the buffer 2364 * synchronously 2365 */ 2366 if (buffer_uptodate(bh)) 2367 continue; 2368 } 2369 arr[nr++] = bh; 2370 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2371 2372 if (fully_mapped) 2373 folio_set_mappedtodisk(folio); 2374 2375 if (!nr) { 2376 /* 2377 * All buffers are uptodate - we can set the folio uptodate 2378 * as well. But not if get_block() returned an error. 2379 */ 2380 if (!page_error) 2381 folio_mark_uptodate(folio); 2382 folio_unlock(folio); 2383 return 0; 2384 } 2385 2386 /* Stage two: lock the buffers */ 2387 for (i = 0; i < nr; i++) { 2388 bh = arr[i]; 2389 lock_buffer(bh); 2390 mark_buffer_async_read(bh); 2391 } 2392 2393 /* 2394 * Stage 3: start the IO. Check for uptodateness 2395 * inside the buffer lock in case another process reading 2396 * the underlying blockdev brought it uptodate (the sct fix). 2397 */ 2398 for (i = 0; i < nr; i++) { 2399 bh = arr[i]; 2400 if (buffer_uptodate(bh)) 2401 end_buffer_async_read(bh, 1); 2402 else 2403 submit_bh(REQ_OP_READ, bh); 2404 } 2405 return 0; 2406 } 2407 EXPORT_SYMBOL(block_read_full_folio); 2408 2409 /* utility function for filesystems that need to do work on expanding 2410 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2411 * deal with the hole. 2412 */ 2413 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2414 { 2415 struct address_space *mapping = inode->i_mapping; 2416 const struct address_space_operations *aops = mapping->a_ops; 2417 struct page *page; 2418 void *fsdata = NULL; 2419 int err; 2420 2421 err = inode_newsize_ok(inode, size); 2422 if (err) 2423 goto out; 2424 2425 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata); 2426 if (err) 2427 goto out; 2428 2429 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata); 2430 BUG_ON(err > 0); 2431 2432 out: 2433 return err; 2434 } 2435 EXPORT_SYMBOL(generic_cont_expand_simple); 2436 2437 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2438 loff_t pos, loff_t *bytes) 2439 { 2440 struct inode *inode = mapping->host; 2441 const struct address_space_operations *aops = mapping->a_ops; 2442 unsigned int blocksize = i_blocksize(inode); 2443 struct page *page; 2444 void *fsdata = NULL; 2445 pgoff_t index, curidx; 2446 loff_t curpos; 2447 unsigned zerofrom, offset, len; 2448 int err = 0; 2449 2450 index = pos >> PAGE_SHIFT; 2451 offset = pos & ~PAGE_MASK; 2452 2453 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2454 zerofrom = curpos & ~PAGE_MASK; 2455 if (zerofrom & (blocksize-1)) { 2456 *bytes |= (blocksize-1); 2457 (*bytes)++; 2458 } 2459 len = PAGE_SIZE - zerofrom; 2460 2461 err = aops->write_begin(file, mapping, curpos, len, 2462 &page, &fsdata); 2463 if (err) 2464 goto out; 2465 zero_user(page, zerofrom, len); 2466 err = aops->write_end(file, mapping, curpos, len, len, 2467 page, fsdata); 2468 if (err < 0) 2469 goto out; 2470 BUG_ON(err != len); 2471 err = 0; 2472 2473 balance_dirty_pages_ratelimited(mapping); 2474 2475 if (fatal_signal_pending(current)) { 2476 err = -EINTR; 2477 goto out; 2478 } 2479 } 2480 2481 /* page covers the boundary, find the boundary offset */ 2482 if (index == curidx) { 2483 zerofrom = curpos & ~PAGE_MASK; 2484 /* if we will expand the thing last block will be filled */ 2485 if (offset <= zerofrom) { 2486 goto out; 2487 } 2488 if (zerofrom & (blocksize-1)) { 2489 *bytes |= (blocksize-1); 2490 (*bytes)++; 2491 } 2492 len = offset - zerofrom; 2493 2494 err = aops->write_begin(file, mapping, curpos, len, 2495 &page, &fsdata); 2496 if (err) 2497 goto out; 2498 zero_user(page, zerofrom, len); 2499 err = aops->write_end(file, mapping, curpos, len, len, 2500 page, fsdata); 2501 if (err < 0) 2502 goto out; 2503 BUG_ON(err != len); 2504 err = 0; 2505 } 2506 out: 2507 return err; 2508 } 2509 2510 /* 2511 * For moronic filesystems that do not allow holes in file. 2512 * We may have to extend the file. 2513 */ 2514 int cont_write_begin(struct file *file, struct address_space *mapping, 2515 loff_t pos, unsigned len, 2516 struct page **pagep, void **fsdata, 2517 get_block_t *get_block, loff_t *bytes) 2518 { 2519 struct inode *inode = mapping->host; 2520 unsigned int blocksize = i_blocksize(inode); 2521 unsigned int zerofrom; 2522 int err; 2523 2524 err = cont_expand_zero(file, mapping, pos, bytes); 2525 if (err) 2526 return err; 2527 2528 zerofrom = *bytes & ~PAGE_MASK; 2529 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2530 *bytes |= (blocksize-1); 2531 (*bytes)++; 2532 } 2533 2534 return block_write_begin(mapping, pos, len, pagep, get_block); 2535 } 2536 EXPORT_SYMBOL(cont_write_begin); 2537 2538 int block_commit_write(struct page *page, unsigned from, unsigned to) 2539 { 2540 struct inode *inode = page->mapping->host; 2541 __block_commit_write(inode,page,from,to); 2542 return 0; 2543 } 2544 EXPORT_SYMBOL(block_commit_write); 2545 2546 /* 2547 * block_page_mkwrite() is not allowed to change the file size as it gets 2548 * called from a page fault handler when a page is first dirtied. Hence we must 2549 * be careful to check for EOF conditions here. We set the page up correctly 2550 * for a written page which means we get ENOSPC checking when writing into 2551 * holes and correct delalloc and unwritten extent mapping on filesystems that 2552 * support these features. 2553 * 2554 * We are not allowed to take the i_mutex here so we have to play games to 2555 * protect against truncate races as the page could now be beyond EOF. Because 2556 * truncate writes the inode size before removing pages, once we have the 2557 * page lock we can determine safely if the page is beyond EOF. If it is not 2558 * beyond EOF, then the page is guaranteed safe against truncation until we 2559 * unlock the page. 2560 * 2561 * Direct callers of this function should protect against filesystem freezing 2562 * using sb_start_pagefault() - sb_end_pagefault() functions. 2563 */ 2564 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2565 get_block_t get_block) 2566 { 2567 struct page *page = vmf->page; 2568 struct inode *inode = file_inode(vma->vm_file); 2569 unsigned long end; 2570 loff_t size; 2571 int ret; 2572 2573 lock_page(page); 2574 size = i_size_read(inode); 2575 if ((page->mapping != inode->i_mapping) || 2576 (page_offset(page) > size)) { 2577 /* We overload EFAULT to mean page got truncated */ 2578 ret = -EFAULT; 2579 goto out_unlock; 2580 } 2581 2582 /* page is wholly or partially inside EOF */ 2583 if (((page->index + 1) << PAGE_SHIFT) > size) 2584 end = size & ~PAGE_MASK; 2585 else 2586 end = PAGE_SIZE; 2587 2588 ret = __block_write_begin(page, 0, end, get_block); 2589 if (!ret) 2590 ret = block_commit_write(page, 0, end); 2591 2592 if (unlikely(ret < 0)) 2593 goto out_unlock; 2594 set_page_dirty(page); 2595 wait_for_stable_page(page); 2596 return 0; 2597 out_unlock: 2598 unlock_page(page); 2599 return ret; 2600 } 2601 EXPORT_SYMBOL(block_page_mkwrite); 2602 2603 int block_truncate_page(struct address_space *mapping, 2604 loff_t from, get_block_t *get_block) 2605 { 2606 pgoff_t index = from >> PAGE_SHIFT; 2607 unsigned offset = from & (PAGE_SIZE-1); 2608 unsigned blocksize; 2609 sector_t iblock; 2610 unsigned length, pos; 2611 struct inode *inode = mapping->host; 2612 struct page *page; 2613 struct buffer_head *bh; 2614 int err = 0; 2615 2616 blocksize = i_blocksize(inode); 2617 length = offset & (blocksize - 1); 2618 2619 /* Block boundary? Nothing to do */ 2620 if (!length) 2621 return 0; 2622 2623 length = blocksize - length; 2624 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2625 2626 page = grab_cache_page(mapping, index); 2627 if (!page) 2628 return -ENOMEM; 2629 2630 if (!page_has_buffers(page)) 2631 create_empty_buffers(page, blocksize, 0); 2632 2633 /* Find the buffer that contains "offset" */ 2634 bh = page_buffers(page); 2635 pos = blocksize; 2636 while (offset >= pos) { 2637 bh = bh->b_this_page; 2638 iblock++; 2639 pos += blocksize; 2640 } 2641 2642 if (!buffer_mapped(bh)) { 2643 WARN_ON(bh->b_size != blocksize); 2644 err = get_block(inode, iblock, bh, 0); 2645 if (err) 2646 goto unlock; 2647 /* unmapped? It's a hole - nothing to do */ 2648 if (!buffer_mapped(bh)) 2649 goto unlock; 2650 } 2651 2652 /* Ok, it's mapped. Make sure it's up-to-date */ 2653 if (PageUptodate(page)) 2654 set_buffer_uptodate(bh); 2655 2656 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2657 err = bh_read(bh, 0); 2658 /* Uhhuh. Read error. Complain and punt. */ 2659 if (err < 0) 2660 goto unlock; 2661 } 2662 2663 zero_user(page, offset, length); 2664 mark_buffer_dirty(bh); 2665 2666 unlock: 2667 unlock_page(page); 2668 put_page(page); 2669 2670 return err; 2671 } 2672 EXPORT_SYMBOL(block_truncate_page); 2673 2674 /* 2675 * The generic ->writepage function for buffer-backed address_spaces 2676 */ 2677 int block_write_full_page(struct page *page, get_block_t *get_block, 2678 struct writeback_control *wbc) 2679 { 2680 struct inode * const inode = page->mapping->host; 2681 loff_t i_size = i_size_read(inode); 2682 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2683 unsigned offset; 2684 2685 /* Is the page fully inside i_size? */ 2686 if (page->index < end_index) 2687 return __block_write_full_page(inode, page, get_block, wbc, 2688 end_buffer_async_write); 2689 2690 /* Is the page fully outside i_size? (truncate in progress) */ 2691 offset = i_size & (PAGE_SIZE-1); 2692 if (page->index >= end_index+1 || !offset) { 2693 unlock_page(page); 2694 return 0; /* don't care */ 2695 } 2696 2697 /* 2698 * The page straddles i_size. It must be zeroed out on each and every 2699 * writepage invocation because it may be mmapped. "A file is mapped 2700 * in multiples of the page size. For a file that is not a multiple of 2701 * the page size, the remaining memory is zeroed when mapped, and 2702 * writes to that region are not written out to the file." 2703 */ 2704 zero_user_segment(page, offset, PAGE_SIZE); 2705 return __block_write_full_page(inode, page, get_block, wbc, 2706 end_buffer_async_write); 2707 } 2708 EXPORT_SYMBOL(block_write_full_page); 2709 2710 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2711 get_block_t *get_block) 2712 { 2713 struct inode *inode = mapping->host; 2714 struct buffer_head tmp = { 2715 .b_size = i_blocksize(inode), 2716 }; 2717 2718 get_block(inode, block, &tmp, 0); 2719 return tmp.b_blocknr; 2720 } 2721 EXPORT_SYMBOL(generic_block_bmap); 2722 2723 static void end_bio_bh_io_sync(struct bio *bio) 2724 { 2725 struct buffer_head *bh = bio->bi_private; 2726 2727 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2728 set_bit(BH_Quiet, &bh->b_state); 2729 2730 bh->b_end_io(bh, !bio->bi_status); 2731 bio_put(bio); 2732 } 2733 2734 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2735 struct writeback_control *wbc) 2736 { 2737 const enum req_op op = opf & REQ_OP_MASK; 2738 struct bio *bio; 2739 2740 BUG_ON(!buffer_locked(bh)); 2741 BUG_ON(!buffer_mapped(bh)); 2742 BUG_ON(!bh->b_end_io); 2743 BUG_ON(buffer_delay(bh)); 2744 BUG_ON(buffer_unwritten(bh)); 2745 2746 /* 2747 * Only clear out a write error when rewriting 2748 */ 2749 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2750 clear_buffer_write_io_error(bh); 2751 2752 if (buffer_meta(bh)) 2753 opf |= REQ_META; 2754 if (buffer_prio(bh)) 2755 opf |= REQ_PRIO; 2756 2757 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2758 2759 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2760 2761 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2762 2763 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2764 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 2765 2766 bio->bi_end_io = end_bio_bh_io_sync; 2767 bio->bi_private = bh; 2768 2769 /* Take care of bh's that straddle the end of the device */ 2770 guard_bio_eod(bio); 2771 2772 if (wbc) { 2773 wbc_init_bio(wbc, bio); 2774 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2775 } 2776 2777 submit_bio(bio); 2778 } 2779 2780 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2781 { 2782 submit_bh_wbc(opf, bh, NULL); 2783 } 2784 EXPORT_SYMBOL(submit_bh); 2785 2786 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2787 { 2788 lock_buffer(bh); 2789 if (!test_clear_buffer_dirty(bh)) { 2790 unlock_buffer(bh); 2791 return; 2792 } 2793 bh->b_end_io = end_buffer_write_sync; 2794 get_bh(bh); 2795 submit_bh(REQ_OP_WRITE | op_flags, bh); 2796 } 2797 EXPORT_SYMBOL(write_dirty_buffer); 2798 2799 /* 2800 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2801 * and then start new I/O and then wait upon it. The caller must have a ref on 2802 * the buffer_head. 2803 */ 2804 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2805 { 2806 WARN_ON(atomic_read(&bh->b_count) < 1); 2807 lock_buffer(bh); 2808 if (test_clear_buffer_dirty(bh)) { 2809 /* 2810 * The bh should be mapped, but it might not be if the 2811 * device was hot-removed. Not much we can do but fail the I/O. 2812 */ 2813 if (!buffer_mapped(bh)) { 2814 unlock_buffer(bh); 2815 return -EIO; 2816 } 2817 2818 get_bh(bh); 2819 bh->b_end_io = end_buffer_write_sync; 2820 submit_bh(REQ_OP_WRITE | op_flags, bh); 2821 wait_on_buffer(bh); 2822 if (!buffer_uptodate(bh)) 2823 return -EIO; 2824 } else { 2825 unlock_buffer(bh); 2826 } 2827 return 0; 2828 } 2829 EXPORT_SYMBOL(__sync_dirty_buffer); 2830 2831 int sync_dirty_buffer(struct buffer_head *bh) 2832 { 2833 return __sync_dirty_buffer(bh, REQ_SYNC); 2834 } 2835 EXPORT_SYMBOL(sync_dirty_buffer); 2836 2837 /* 2838 * try_to_free_buffers() checks if all the buffers on this particular folio 2839 * are unused, and releases them if so. 2840 * 2841 * Exclusion against try_to_free_buffers may be obtained by either 2842 * locking the folio or by holding its mapping's private_lock. 2843 * 2844 * If the folio is dirty but all the buffers are clean then we need to 2845 * be sure to mark the folio clean as well. This is because the folio 2846 * may be against a block device, and a later reattachment of buffers 2847 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2848 * filesystem data on the same device. 2849 * 2850 * The same applies to regular filesystem folios: if all the buffers are 2851 * clean then we set the folio clean and proceed. To do that, we require 2852 * total exclusion from block_dirty_folio(). That is obtained with 2853 * private_lock. 2854 * 2855 * try_to_free_buffers() is non-blocking. 2856 */ 2857 static inline int buffer_busy(struct buffer_head *bh) 2858 { 2859 return atomic_read(&bh->b_count) | 2860 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2861 } 2862 2863 static bool 2864 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2865 { 2866 struct buffer_head *head = folio_buffers(folio); 2867 struct buffer_head *bh; 2868 2869 bh = head; 2870 do { 2871 if (buffer_busy(bh)) 2872 goto failed; 2873 bh = bh->b_this_page; 2874 } while (bh != head); 2875 2876 do { 2877 struct buffer_head *next = bh->b_this_page; 2878 2879 if (bh->b_assoc_map) 2880 __remove_assoc_queue(bh); 2881 bh = next; 2882 } while (bh != head); 2883 *buffers_to_free = head; 2884 folio_detach_private(folio); 2885 return true; 2886 failed: 2887 return false; 2888 } 2889 2890 bool try_to_free_buffers(struct folio *folio) 2891 { 2892 struct address_space * const mapping = folio->mapping; 2893 struct buffer_head *buffers_to_free = NULL; 2894 bool ret = 0; 2895 2896 BUG_ON(!folio_test_locked(folio)); 2897 if (folio_test_writeback(folio)) 2898 return false; 2899 2900 if (mapping == NULL) { /* can this still happen? */ 2901 ret = drop_buffers(folio, &buffers_to_free); 2902 goto out; 2903 } 2904 2905 spin_lock(&mapping->private_lock); 2906 ret = drop_buffers(folio, &buffers_to_free); 2907 2908 /* 2909 * If the filesystem writes its buffers by hand (eg ext3) 2910 * then we can have clean buffers against a dirty folio. We 2911 * clean the folio here; otherwise the VM will never notice 2912 * that the filesystem did any IO at all. 2913 * 2914 * Also, during truncate, discard_buffer will have marked all 2915 * the folio's buffers clean. We discover that here and clean 2916 * the folio also. 2917 * 2918 * private_lock must be held over this entire operation in order 2919 * to synchronise against block_dirty_folio and prevent the 2920 * dirty bit from being lost. 2921 */ 2922 if (ret) 2923 folio_cancel_dirty(folio); 2924 spin_unlock(&mapping->private_lock); 2925 out: 2926 if (buffers_to_free) { 2927 struct buffer_head *bh = buffers_to_free; 2928 2929 do { 2930 struct buffer_head *next = bh->b_this_page; 2931 free_buffer_head(bh); 2932 bh = next; 2933 } while (bh != buffers_to_free); 2934 } 2935 return ret; 2936 } 2937 EXPORT_SYMBOL(try_to_free_buffers); 2938 2939 /* 2940 * Buffer-head allocation 2941 */ 2942 static struct kmem_cache *bh_cachep __read_mostly; 2943 2944 /* 2945 * Once the number of bh's in the machine exceeds this level, we start 2946 * stripping them in writeback. 2947 */ 2948 static unsigned long max_buffer_heads; 2949 2950 int buffer_heads_over_limit; 2951 2952 struct bh_accounting { 2953 int nr; /* Number of live bh's */ 2954 int ratelimit; /* Limit cacheline bouncing */ 2955 }; 2956 2957 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 2958 2959 static void recalc_bh_state(void) 2960 { 2961 int i; 2962 int tot = 0; 2963 2964 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 2965 return; 2966 __this_cpu_write(bh_accounting.ratelimit, 0); 2967 for_each_online_cpu(i) 2968 tot += per_cpu(bh_accounting, i).nr; 2969 buffer_heads_over_limit = (tot > max_buffer_heads); 2970 } 2971 2972 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 2973 { 2974 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 2975 if (ret) { 2976 INIT_LIST_HEAD(&ret->b_assoc_buffers); 2977 spin_lock_init(&ret->b_uptodate_lock); 2978 preempt_disable(); 2979 __this_cpu_inc(bh_accounting.nr); 2980 recalc_bh_state(); 2981 preempt_enable(); 2982 } 2983 return ret; 2984 } 2985 EXPORT_SYMBOL(alloc_buffer_head); 2986 2987 void free_buffer_head(struct buffer_head *bh) 2988 { 2989 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 2990 kmem_cache_free(bh_cachep, bh); 2991 preempt_disable(); 2992 __this_cpu_dec(bh_accounting.nr); 2993 recalc_bh_state(); 2994 preempt_enable(); 2995 } 2996 EXPORT_SYMBOL(free_buffer_head); 2997 2998 static int buffer_exit_cpu_dead(unsigned int cpu) 2999 { 3000 int i; 3001 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3002 3003 for (i = 0; i < BH_LRU_SIZE; i++) { 3004 brelse(b->bhs[i]); 3005 b->bhs[i] = NULL; 3006 } 3007 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3008 per_cpu(bh_accounting, cpu).nr = 0; 3009 return 0; 3010 } 3011 3012 /** 3013 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3014 * @bh: struct buffer_head 3015 * 3016 * Return true if the buffer is up-to-date and false, 3017 * with the buffer locked, if not. 3018 */ 3019 int bh_uptodate_or_lock(struct buffer_head *bh) 3020 { 3021 if (!buffer_uptodate(bh)) { 3022 lock_buffer(bh); 3023 if (!buffer_uptodate(bh)) 3024 return 0; 3025 unlock_buffer(bh); 3026 } 3027 return 1; 3028 } 3029 EXPORT_SYMBOL(bh_uptodate_or_lock); 3030 3031 /** 3032 * __bh_read - Submit read for a locked buffer 3033 * @bh: struct buffer_head 3034 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3035 * @wait: wait until reading finish 3036 * 3037 * Returns zero on success or don't wait, and -EIO on error. 3038 */ 3039 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3040 { 3041 int ret = 0; 3042 3043 BUG_ON(!buffer_locked(bh)); 3044 3045 get_bh(bh); 3046 bh->b_end_io = end_buffer_read_sync; 3047 submit_bh(REQ_OP_READ | op_flags, bh); 3048 if (wait) { 3049 wait_on_buffer(bh); 3050 if (!buffer_uptodate(bh)) 3051 ret = -EIO; 3052 } 3053 return ret; 3054 } 3055 EXPORT_SYMBOL(__bh_read); 3056 3057 /** 3058 * __bh_read_batch - Submit read for a batch of unlocked buffers 3059 * @nr: entry number of the buffer batch 3060 * @bhs: a batch of struct buffer_head 3061 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3062 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3063 * buffer that cannot lock. 3064 * 3065 * Returns zero on success or don't wait, and -EIO on error. 3066 */ 3067 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3068 blk_opf_t op_flags, bool force_lock) 3069 { 3070 int i; 3071 3072 for (i = 0; i < nr; i++) { 3073 struct buffer_head *bh = bhs[i]; 3074 3075 if (buffer_uptodate(bh)) 3076 continue; 3077 3078 if (force_lock) 3079 lock_buffer(bh); 3080 else 3081 if (!trylock_buffer(bh)) 3082 continue; 3083 3084 if (buffer_uptodate(bh)) { 3085 unlock_buffer(bh); 3086 continue; 3087 } 3088 3089 bh->b_end_io = end_buffer_read_sync; 3090 get_bh(bh); 3091 submit_bh(REQ_OP_READ | op_flags, bh); 3092 } 3093 } 3094 EXPORT_SYMBOL(__bh_read_batch); 3095 3096 void __init buffer_init(void) 3097 { 3098 unsigned long nrpages; 3099 int ret; 3100 3101 bh_cachep = kmem_cache_create("buffer_head", 3102 sizeof(struct buffer_head), 0, 3103 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3104 SLAB_MEM_SPREAD), 3105 NULL); 3106 3107 /* 3108 * Limit the bh occupancy to 10% of ZONE_NORMAL 3109 */ 3110 nrpages = (nr_free_buffer_pages() * 10) / 100; 3111 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3112 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3113 NULL, buffer_exit_cpu_dead); 3114 WARN_ON(ret < 0); 3115 } 3116