xref: /linux/fs/buffer.c (revision 527a0f2bdcfe77fce22f006b97e42e4da3137c86)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53 
54 #include "internal.h"
55 
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 			  enum rw_hint hint, struct writeback_control *wbc);
59 
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61 
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 	trace_block_touch_buffer(bh);
65 	folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68 
69 void __lock_buffer(struct buffer_head *bh)
70 {
71 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74 
75 void unlock_buffer(struct buffer_head *bh)
76 {
77 	clear_bit_unlock(BH_Lock, &bh->b_state);
78 	smp_mb__after_atomic();
79 	wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82 
83 /*
84  * Returns if the folio has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the folio_test_dirty information is stale. If
86  * any of the buffers are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct folio *folio,
89 				     bool *dirty, bool *writeback)
90 {
91 	struct buffer_head *head, *bh;
92 	*dirty = false;
93 	*writeback = false;
94 
95 	BUG_ON(!folio_test_locked(folio));
96 
97 	head = folio_buffers(folio);
98 	if (!head)
99 		return;
100 
101 	if (folio_test_writeback(folio))
102 		*writeback = true;
103 
104 	bh = head;
105 	do {
106 		if (buffer_locked(bh))
107 			*writeback = true;
108 
109 		if (buffer_dirty(bh))
110 			*dirty = true;
111 
112 		bh = bh->b_this_page;
113 	} while (bh != head);
114 }
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 	if (!test_bit(BH_Quiet, &bh->b_state))
130 		printk_ratelimited(KERN_ERR
131 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
132 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		/* This happens, due to failed read-ahead attempts. */
149 		clear_buffer_uptodate(bh);
150 	}
151 	unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 	__end_buffer_read_notouch(bh, uptodate);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 	if (uptodate) {
168 		set_buffer_uptodate(bh);
169 	} else {
170 		buffer_io_error(bh, ", lost sync page write");
171 		mark_buffer_write_io_error(bh);
172 		clear_buffer_uptodate(bh);
173 	}
174 	unlock_buffer(bh);
175 	put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * i_private_lock.
184  *
185  * Hack idea: for the blockdev mapping, i_private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take i_private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 	struct address_space *bd_mapping = bdev->bd_mapping;
193 	const int blkbits = bd_mapping->host->i_blkbits;
194 	struct buffer_head *ret = NULL;
195 	pgoff_t index;
196 	struct buffer_head *bh;
197 	struct buffer_head *head;
198 	struct folio *folio;
199 	int all_mapped = 1;
200 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201 
202 	index = ((loff_t)block << blkbits) / PAGE_SIZE;
203 	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 	if (IS_ERR(folio))
205 		goto out;
206 
207 	spin_lock(&bd_mapping->i_private_lock);
208 	head = folio_buffers(folio);
209 	if (!head)
210 		goto out_unlock;
211 	bh = head;
212 	do {
213 		if (!buffer_mapped(bh))
214 			all_mapped = 0;
215 		else if (bh->b_blocknr == block) {
216 			ret = bh;
217 			get_bh(bh);
218 			goto out_unlock;
219 		}
220 		bh = bh->b_this_page;
221 	} while (bh != head);
222 
223 	/* we might be here because some of the buffers on this page are
224 	 * not mapped.  This is due to various races between
225 	 * file io on the block device and getblk.  It gets dealt with
226 	 * elsewhere, don't buffer_error if we had some unmapped buffers
227 	 */
228 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 	if (all_mapped && __ratelimit(&last_warned)) {
230 		printk("__find_get_block_slow() failed. block=%llu, "
231 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 		       "device %pg blocksize: %d\n",
233 		       (unsigned long long)block,
234 		       (unsigned long long)bh->b_blocknr,
235 		       bh->b_state, bh->b_size, bdev,
236 		       1 << blkbits);
237 	}
238 out_unlock:
239 	spin_unlock(&bd_mapping->i_private_lock);
240 	folio_put(folio);
241 out:
242 	return ret;
243 }
244 
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 	unsigned long flags;
248 	struct buffer_head *first;
249 	struct buffer_head *tmp;
250 	struct folio *folio;
251 	int folio_uptodate = 1;
252 
253 	BUG_ON(!buffer_async_read(bh));
254 
255 	folio = bh->b_folio;
256 	if (uptodate) {
257 		set_buffer_uptodate(bh);
258 	} else {
259 		clear_buffer_uptodate(bh);
260 		buffer_io_error(bh, ", async page read");
261 	}
262 
263 	/*
264 	 * Be _very_ careful from here on. Bad things can happen if
265 	 * two buffer heads end IO at almost the same time and both
266 	 * decide that the page is now completely done.
267 	 */
268 	first = folio_buffers(folio);
269 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 	clear_buffer_async_read(bh);
271 	unlock_buffer(bh);
272 	tmp = bh;
273 	do {
274 		if (!buffer_uptodate(tmp))
275 			folio_uptodate = 0;
276 		if (buffer_async_read(tmp)) {
277 			BUG_ON(!buffer_locked(tmp));
278 			goto still_busy;
279 		}
280 		tmp = tmp->b_this_page;
281 	} while (tmp != bh);
282 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284 	folio_end_read(folio, folio_uptodate);
285 	return;
286 
287 still_busy:
288 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
289 	return;
290 }
291 
292 struct postprocess_bh_ctx {
293 	struct work_struct work;
294 	struct buffer_head *bh;
295 };
296 
297 static void verify_bh(struct work_struct *work)
298 {
299 	struct postprocess_bh_ctx *ctx =
300 		container_of(work, struct postprocess_bh_ctx, work);
301 	struct buffer_head *bh = ctx->bh;
302 	bool valid;
303 
304 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
305 	end_buffer_async_read(bh, valid);
306 	kfree(ctx);
307 }
308 
309 static bool need_fsverity(struct buffer_head *bh)
310 {
311 	struct folio *folio = bh->b_folio;
312 	struct inode *inode = folio->mapping->host;
313 
314 	return fsverity_active(inode) &&
315 		/* needed by ext4 */
316 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
317 }
318 
319 static void decrypt_bh(struct work_struct *work)
320 {
321 	struct postprocess_bh_ctx *ctx =
322 		container_of(work, struct postprocess_bh_ctx, work);
323 	struct buffer_head *bh = ctx->bh;
324 	int err;
325 
326 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
327 					       bh_offset(bh));
328 	if (err == 0 && need_fsverity(bh)) {
329 		/*
330 		 * We use different work queues for decryption and for verity
331 		 * because verity may require reading metadata pages that need
332 		 * decryption, and we shouldn't recurse to the same workqueue.
333 		 */
334 		INIT_WORK(&ctx->work, verify_bh);
335 		fsverity_enqueue_verify_work(&ctx->work);
336 		return;
337 	}
338 	end_buffer_async_read(bh, err == 0);
339 	kfree(ctx);
340 }
341 
342 /*
343  * I/O completion handler for block_read_full_folio() - pages
344  * which come unlocked at the end of I/O.
345  */
346 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
347 {
348 	struct inode *inode = bh->b_folio->mapping->host;
349 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
350 	bool verify = need_fsverity(bh);
351 
352 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
353 	if (uptodate && (decrypt || verify)) {
354 		struct postprocess_bh_ctx *ctx =
355 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
356 
357 		if (ctx) {
358 			ctx->bh = bh;
359 			if (decrypt) {
360 				INIT_WORK(&ctx->work, decrypt_bh);
361 				fscrypt_enqueue_decrypt_work(&ctx->work);
362 			} else {
363 				INIT_WORK(&ctx->work, verify_bh);
364 				fsverity_enqueue_verify_work(&ctx->work);
365 			}
366 			return;
367 		}
368 		uptodate = 0;
369 	}
370 	end_buffer_async_read(bh, uptodate);
371 }
372 
373 /*
374  * Completion handler for block_write_full_folio() - folios which are unlocked
375  * during I/O, and which have the writeback flag cleared upon I/O completion.
376  */
377 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
378 {
379 	unsigned long flags;
380 	struct buffer_head *first;
381 	struct buffer_head *tmp;
382 	struct folio *folio;
383 
384 	BUG_ON(!buffer_async_write(bh));
385 
386 	folio = bh->b_folio;
387 	if (uptodate) {
388 		set_buffer_uptodate(bh);
389 	} else {
390 		buffer_io_error(bh, ", lost async page write");
391 		mark_buffer_write_io_error(bh);
392 		clear_buffer_uptodate(bh);
393 	}
394 
395 	first = folio_buffers(folio);
396 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
397 
398 	clear_buffer_async_write(bh);
399 	unlock_buffer(bh);
400 	tmp = bh->b_this_page;
401 	while (tmp != bh) {
402 		if (buffer_async_write(tmp)) {
403 			BUG_ON(!buffer_locked(tmp));
404 			goto still_busy;
405 		}
406 		tmp = tmp->b_this_page;
407 	}
408 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
409 	folio_end_writeback(folio);
410 	return;
411 
412 still_busy:
413 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
414 	return;
415 }
416 
417 /*
418  * If a page's buffers are under async readin (end_buffer_async_read
419  * completion) then there is a possibility that another thread of
420  * control could lock one of the buffers after it has completed
421  * but while some of the other buffers have not completed.  This
422  * locked buffer would confuse end_buffer_async_read() into not unlocking
423  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
424  * that this buffer is not under async I/O.
425  *
426  * The page comes unlocked when it has no locked buffer_async buffers
427  * left.
428  *
429  * PageLocked prevents anyone starting new async I/O reads any of
430  * the buffers.
431  *
432  * PageWriteback is used to prevent simultaneous writeout of the same
433  * page.
434  *
435  * PageLocked prevents anyone from starting writeback of a page which is
436  * under read I/O (PageWriteback is only ever set against a locked page).
437  */
438 static void mark_buffer_async_read(struct buffer_head *bh)
439 {
440 	bh->b_end_io = end_buffer_async_read_io;
441 	set_buffer_async_read(bh);
442 }
443 
444 static void mark_buffer_async_write_endio(struct buffer_head *bh,
445 					  bh_end_io_t *handler)
446 {
447 	bh->b_end_io = handler;
448 	set_buffer_async_write(bh);
449 }
450 
451 void mark_buffer_async_write(struct buffer_head *bh)
452 {
453 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
454 }
455 EXPORT_SYMBOL(mark_buffer_async_write);
456 
457 
458 /*
459  * fs/buffer.c contains helper functions for buffer-backed address space's
460  * fsync functions.  A common requirement for buffer-based filesystems is
461  * that certain data from the backing blockdev needs to be written out for
462  * a successful fsync().  For example, ext2 indirect blocks need to be
463  * written back and waited upon before fsync() returns.
464  *
465  * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
466  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
467  * management of a list of dependent buffers at ->i_mapping->i_private_list.
468  *
469  * Locking is a little subtle: try_to_free_buffers() will remove buffers
470  * from their controlling inode's queue when they are being freed.  But
471  * try_to_free_buffers() will be operating against the *blockdev* mapping
472  * at the time, not against the S_ISREG file which depends on those buffers.
473  * So the locking for i_private_list is via the i_private_lock in the address_space
474  * which backs the buffers.  Which is different from the address_space
475  * against which the buffers are listed.  So for a particular address_space,
476  * mapping->i_private_lock does *not* protect mapping->i_private_list!  In fact,
477  * mapping->i_private_list will always be protected by the backing blockdev's
478  * ->i_private_lock.
479  *
480  * Which introduces a requirement: all buffers on an address_space's
481  * ->i_private_list must be from the same address_space: the blockdev's.
482  *
483  * address_spaces which do not place buffers at ->i_private_list via these
484  * utility functions are free to use i_private_lock and i_private_list for
485  * whatever they want.  The only requirement is that list_empty(i_private_list)
486  * be true at clear_inode() time.
487  *
488  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
489  * filesystems should do that.  invalidate_inode_buffers() should just go
490  * BUG_ON(!list_empty).
491  *
492  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
493  * take an address_space, not an inode.  And it should be called
494  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
495  * queued up.
496  *
497  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
498  * list if it is already on a list.  Because if the buffer is on a list,
499  * it *must* already be on the right one.  If not, the filesystem is being
500  * silly.  This will save a ton of locking.  But first we have to ensure
501  * that buffers are taken *off* the old inode's list when they are freed
502  * (presumably in truncate).  That requires careful auditing of all
503  * filesystems (do it inside bforget()).  It could also be done by bringing
504  * b_inode back.
505  */
506 
507 /*
508  * The buffer's backing address_space's i_private_lock must be held
509  */
510 static void __remove_assoc_queue(struct buffer_head *bh)
511 {
512 	list_del_init(&bh->b_assoc_buffers);
513 	WARN_ON(!bh->b_assoc_map);
514 	bh->b_assoc_map = NULL;
515 }
516 
517 int inode_has_buffers(struct inode *inode)
518 {
519 	return !list_empty(&inode->i_data.i_private_list);
520 }
521 
522 /*
523  * osync is designed to support O_SYNC io.  It waits synchronously for
524  * all already-submitted IO to complete, but does not queue any new
525  * writes to the disk.
526  *
527  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
528  * as you dirty the buffers, and then use osync_inode_buffers to wait for
529  * completion.  Any other dirty buffers which are not yet queued for
530  * write will not be flushed to disk by the osync.
531  */
532 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
533 {
534 	struct buffer_head *bh;
535 	struct list_head *p;
536 	int err = 0;
537 
538 	spin_lock(lock);
539 repeat:
540 	list_for_each_prev(p, list) {
541 		bh = BH_ENTRY(p);
542 		if (buffer_locked(bh)) {
543 			get_bh(bh);
544 			spin_unlock(lock);
545 			wait_on_buffer(bh);
546 			if (!buffer_uptodate(bh))
547 				err = -EIO;
548 			brelse(bh);
549 			spin_lock(lock);
550 			goto repeat;
551 		}
552 	}
553 	spin_unlock(lock);
554 	return err;
555 }
556 
557 /**
558  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
559  * @mapping: the mapping which wants those buffers written
560  *
561  * Starts I/O against the buffers at mapping->i_private_list, and waits upon
562  * that I/O.
563  *
564  * Basically, this is a convenience function for fsync().
565  * @mapping is a file or directory which needs those buffers to be written for
566  * a successful fsync().
567  */
568 int sync_mapping_buffers(struct address_space *mapping)
569 {
570 	struct address_space *buffer_mapping = mapping->i_private_data;
571 
572 	if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
573 		return 0;
574 
575 	return fsync_buffers_list(&buffer_mapping->i_private_lock,
576 					&mapping->i_private_list);
577 }
578 EXPORT_SYMBOL(sync_mapping_buffers);
579 
580 /**
581  * generic_buffers_fsync_noflush - generic buffer fsync implementation
582  * for simple filesystems with no inode lock
583  *
584  * @file:	file to synchronize
585  * @start:	start offset in bytes
586  * @end:	end offset in bytes (inclusive)
587  * @datasync:	only synchronize essential metadata if true
588  *
589  * This is a generic implementation of the fsync method for simple
590  * filesystems which track all non-inode metadata in the buffers list
591  * hanging off the address_space structure.
592  */
593 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
594 				  bool datasync)
595 {
596 	struct inode *inode = file->f_mapping->host;
597 	int err;
598 	int ret;
599 
600 	err = file_write_and_wait_range(file, start, end);
601 	if (err)
602 		return err;
603 
604 	ret = sync_mapping_buffers(inode->i_mapping);
605 	if (!(inode->i_state & I_DIRTY_ALL))
606 		goto out;
607 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
608 		goto out;
609 
610 	err = sync_inode_metadata(inode, 1);
611 	if (ret == 0)
612 		ret = err;
613 
614 out:
615 	/* check and advance again to catch errors after syncing out buffers */
616 	err = file_check_and_advance_wb_err(file);
617 	if (ret == 0)
618 		ret = err;
619 	return ret;
620 }
621 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
622 
623 /**
624  * generic_buffers_fsync - generic buffer fsync implementation
625  * for simple filesystems with no inode lock
626  *
627  * @file:	file to synchronize
628  * @start:	start offset in bytes
629  * @end:	end offset in bytes (inclusive)
630  * @datasync:	only synchronize essential metadata if true
631  *
632  * This is a generic implementation of the fsync method for simple
633  * filesystems which track all non-inode metadata in the buffers list
634  * hanging off the address_space structure. This also makes sure that
635  * a device cache flush operation is called at the end.
636  */
637 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
638 			  bool datasync)
639 {
640 	struct inode *inode = file->f_mapping->host;
641 	int ret;
642 
643 	ret = generic_buffers_fsync_noflush(file, start, end, datasync);
644 	if (!ret)
645 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
646 	return ret;
647 }
648 EXPORT_SYMBOL(generic_buffers_fsync);
649 
650 /*
651  * Called when we've recently written block `bblock', and it is known that
652  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
653  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
654  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
655  */
656 void write_boundary_block(struct block_device *bdev,
657 			sector_t bblock, unsigned blocksize)
658 {
659 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
660 	if (bh) {
661 		if (buffer_dirty(bh))
662 			write_dirty_buffer(bh, 0);
663 		put_bh(bh);
664 	}
665 }
666 
667 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
668 {
669 	struct address_space *mapping = inode->i_mapping;
670 	struct address_space *buffer_mapping = bh->b_folio->mapping;
671 
672 	mark_buffer_dirty(bh);
673 	if (!mapping->i_private_data) {
674 		mapping->i_private_data = buffer_mapping;
675 	} else {
676 		BUG_ON(mapping->i_private_data != buffer_mapping);
677 	}
678 	if (!bh->b_assoc_map) {
679 		spin_lock(&buffer_mapping->i_private_lock);
680 		list_move_tail(&bh->b_assoc_buffers,
681 				&mapping->i_private_list);
682 		bh->b_assoc_map = mapping;
683 		spin_unlock(&buffer_mapping->i_private_lock);
684 	}
685 }
686 EXPORT_SYMBOL(mark_buffer_dirty_inode);
687 
688 /**
689  * block_dirty_folio - Mark a folio as dirty.
690  * @mapping: The address space containing this folio.
691  * @folio: The folio to mark dirty.
692  *
693  * Filesystems which use buffer_heads can use this function as their
694  * ->dirty_folio implementation.  Some filesystems need to do a little
695  * work before calling this function.  Filesystems which do not use
696  * buffer_heads should call filemap_dirty_folio() instead.
697  *
698  * If the folio has buffers, the uptodate buffers are set dirty, to
699  * preserve dirty-state coherency between the folio and the buffers.
700  * Buffers added to a dirty folio are created dirty.
701  *
702  * The buffers are dirtied before the folio is dirtied.  There's a small
703  * race window in which writeback may see the folio cleanness but not the
704  * buffer dirtiness.  That's fine.  If this code were to set the folio
705  * dirty before the buffers, writeback could clear the folio dirty flag,
706  * see a bunch of clean buffers and we'd end up with dirty buffers/clean
707  * folio on the dirty folio list.
708  *
709  * We use i_private_lock to lock against try_to_free_buffers() while
710  * using the folio's buffer list.  This also prevents clean buffers
711  * being added to the folio after it was set dirty.
712  *
713  * Context: May only be called from process context.  Does not sleep.
714  * Caller must ensure that @folio cannot be truncated during this call,
715  * typically by holding the folio lock or having a page in the folio
716  * mapped and holding the page table lock.
717  *
718  * Return: True if the folio was dirtied; false if it was already dirtied.
719  */
720 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
721 {
722 	struct buffer_head *head;
723 	bool newly_dirty;
724 
725 	spin_lock(&mapping->i_private_lock);
726 	head = folio_buffers(folio);
727 	if (head) {
728 		struct buffer_head *bh = head;
729 
730 		do {
731 			set_buffer_dirty(bh);
732 			bh = bh->b_this_page;
733 		} while (bh != head);
734 	}
735 	/*
736 	 * Lock out page's memcg migration to keep PageDirty
737 	 * synchronized with per-memcg dirty page counters.
738 	 */
739 	folio_memcg_lock(folio);
740 	newly_dirty = !folio_test_set_dirty(folio);
741 	spin_unlock(&mapping->i_private_lock);
742 
743 	if (newly_dirty)
744 		__folio_mark_dirty(folio, mapping, 1);
745 
746 	folio_memcg_unlock(folio);
747 
748 	if (newly_dirty)
749 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
750 
751 	return newly_dirty;
752 }
753 EXPORT_SYMBOL(block_dirty_folio);
754 
755 /*
756  * Write out and wait upon a list of buffers.
757  *
758  * We have conflicting pressures: we want to make sure that all
759  * initially dirty buffers get waited on, but that any subsequently
760  * dirtied buffers don't.  After all, we don't want fsync to last
761  * forever if somebody is actively writing to the file.
762  *
763  * Do this in two main stages: first we copy dirty buffers to a
764  * temporary inode list, queueing the writes as we go.  Then we clean
765  * up, waiting for those writes to complete.
766  *
767  * During this second stage, any subsequent updates to the file may end
768  * up refiling the buffer on the original inode's dirty list again, so
769  * there is a chance we will end up with a buffer queued for write but
770  * not yet completed on that list.  So, as a final cleanup we go through
771  * the osync code to catch these locked, dirty buffers without requeuing
772  * any newly dirty buffers for write.
773  */
774 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
775 {
776 	struct buffer_head *bh;
777 	struct list_head tmp;
778 	struct address_space *mapping;
779 	int err = 0, err2;
780 	struct blk_plug plug;
781 
782 	INIT_LIST_HEAD(&tmp);
783 	blk_start_plug(&plug);
784 
785 	spin_lock(lock);
786 	while (!list_empty(list)) {
787 		bh = BH_ENTRY(list->next);
788 		mapping = bh->b_assoc_map;
789 		__remove_assoc_queue(bh);
790 		/* Avoid race with mark_buffer_dirty_inode() which does
791 		 * a lockless check and we rely on seeing the dirty bit */
792 		smp_mb();
793 		if (buffer_dirty(bh) || buffer_locked(bh)) {
794 			list_add(&bh->b_assoc_buffers, &tmp);
795 			bh->b_assoc_map = mapping;
796 			if (buffer_dirty(bh)) {
797 				get_bh(bh);
798 				spin_unlock(lock);
799 				/*
800 				 * Ensure any pending I/O completes so that
801 				 * write_dirty_buffer() actually writes the
802 				 * current contents - it is a noop if I/O is
803 				 * still in flight on potentially older
804 				 * contents.
805 				 */
806 				write_dirty_buffer(bh, REQ_SYNC);
807 
808 				/*
809 				 * Kick off IO for the previous mapping. Note
810 				 * that we will not run the very last mapping,
811 				 * wait_on_buffer() will do that for us
812 				 * through sync_buffer().
813 				 */
814 				brelse(bh);
815 				spin_lock(lock);
816 			}
817 		}
818 	}
819 
820 	spin_unlock(lock);
821 	blk_finish_plug(&plug);
822 	spin_lock(lock);
823 
824 	while (!list_empty(&tmp)) {
825 		bh = BH_ENTRY(tmp.prev);
826 		get_bh(bh);
827 		mapping = bh->b_assoc_map;
828 		__remove_assoc_queue(bh);
829 		/* Avoid race with mark_buffer_dirty_inode() which does
830 		 * a lockless check and we rely on seeing the dirty bit */
831 		smp_mb();
832 		if (buffer_dirty(bh)) {
833 			list_add(&bh->b_assoc_buffers,
834 				 &mapping->i_private_list);
835 			bh->b_assoc_map = mapping;
836 		}
837 		spin_unlock(lock);
838 		wait_on_buffer(bh);
839 		if (!buffer_uptodate(bh))
840 			err = -EIO;
841 		brelse(bh);
842 		spin_lock(lock);
843 	}
844 
845 	spin_unlock(lock);
846 	err2 = osync_buffers_list(lock, list);
847 	if (err)
848 		return err;
849 	else
850 		return err2;
851 }
852 
853 /*
854  * Invalidate any and all dirty buffers on a given inode.  We are
855  * probably unmounting the fs, but that doesn't mean we have already
856  * done a sync().  Just drop the buffers from the inode list.
857  *
858  * NOTE: we take the inode's blockdev's mapping's i_private_lock.  Which
859  * assumes that all the buffers are against the blockdev.  Not true
860  * for reiserfs.
861  */
862 void invalidate_inode_buffers(struct inode *inode)
863 {
864 	if (inode_has_buffers(inode)) {
865 		struct address_space *mapping = &inode->i_data;
866 		struct list_head *list = &mapping->i_private_list;
867 		struct address_space *buffer_mapping = mapping->i_private_data;
868 
869 		spin_lock(&buffer_mapping->i_private_lock);
870 		while (!list_empty(list))
871 			__remove_assoc_queue(BH_ENTRY(list->next));
872 		spin_unlock(&buffer_mapping->i_private_lock);
873 	}
874 }
875 EXPORT_SYMBOL(invalidate_inode_buffers);
876 
877 /*
878  * Remove any clean buffers from the inode's buffer list.  This is called
879  * when we're trying to free the inode itself.  Those buffers can pin it.
880  *
881  * Returns true if all buffers were removed.
882  */
883 int remove_inode_buffers(struct inode *inode)
884 {
885 	int ret = 1;
886 
887 	if (inode_has_buffers(inode)) {
888 		struct address_space *mapping = &inode->i_data;
889 		struct list_head *list = &mapping->i_private_list;
890 		struct address_space *buffer_mapping = mapping->i_private_data;
891 
892 		spin_lock(&buffer_mapping->i_private_lock);
893 		while (!list_empty(list)) {
894 			struct buffer_head *bh = BH_ENTRY(list->next);
895 			if (buffer_dirty(bh)) {
896 				ret = 0;
897 				break;
898 			}
899 			__remove_assoc_queue(bh);
900 		}
901 		spin_unlock(&buffer_mapping->i_private_lock);
902 	}
903 	return ret;
904 }
905 
906 /*
907  * Create the appropriate buffers when given a folio for data area and
908  * the size of each buffer.. Use the bh->b_this_page linked list to
909  * follow the buffers created.  Return NULL if unable to create more
910  * buffers.
911  *
912  * The retry flag is used to differentiate async IO (paging, swapping)
913  * which may not fail from ordinary buffer allocations.
914  */
915 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
916 					gfp_t gfp)
917 {
918 	struct buffer_head *bh, *head;
919 	long offset;
920 	struct mem_cgroup *memcg, *old_memcg;
921 
922 	/* The folio lock pins the memcg */
923 	memcg = folio_memcg(folio);
924 	old_memcg = set_active_memcg(memcg);
925 
926 	head = NULL;
927 	offset = folio_size(folio);
928 	while ((offset -= size) >= 0) {
929 		bh = alloc_buffer_head(gfp);
930 		if (!bh)
931 			goto no_grow;
932 
933 		bh->b_this_page = head;
934 		bh->b_blocknr = -1;
935 		head = bh;
936 
937 		bh->b_size = size;
938 
939 		/* Link the buffer to its folio */
940 		folio_set_bh(bh, folio, offset);
941 	}
942 out:
943 	set_active_memcg(old_memcg);
944 	return head;
945 /*
946  * In case anything failed, we just free everything we got.
947  */
948 no_grow:
949 	if (head) {
950 		do {
951 			bh = head;
952 			head = head->b_this_page;
953 			free_buffer_head(bh);
954 		} while (head);
955 	}
956 
957 	goto out;
958 }
959 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
960 
961 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
962 				       bool retry)
963 {
964 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
965 	if (retry)
966 		gfp |= __GFP_NOFAIL;
967 
968 	return folio_alloc_buffers(page_folio(page), size, gfp);
969 }
970 EXPORT_SYMBOL_GPL(alloc_page_buffers);
971 
972 static inline void link_dev_buffers(struct folio *folio,
973 		struct buffer_head *head)
974 {
975 	struct buffer_head *bh, *tail;
976 
977 	bh = head;
978 	do {
979 		tail = bh;
980 		bh = bh->b_this_page;
981 	} while (bh);
982 	tail->b_this_page = head;
983 	folio_attach_private(folio, head);
984 }
985 
986 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
987 {
988 	sector_t retval = ~((sector_t)0);
989 	loff_t sz = bdev_nr_bytes(bdev);
990 
991 	if (sz) {
992 		unsigned int sizebits = blksize_bits(size);
993 		retval = (sz >> sizebits);
994 	}
995 	return retval;
996 }
997 
998 /*
999  * Initialise the state of a blockdev folio's buffers.
1000  */
1001 static sector_t folio_init_buffers(struct folio *folio,
1002 		struct block_device *bdev, unsigned size)
1003 {
1004 	struct buffer_head *head = folio_buffers(folio);
1005 	struct buffer_head *bh = head;
1006 	bool uptodate = folio_test_uptodate(folio);
1007 	sector_t block = div_u64(folio_pos(folio), size);
1008 	sector_t end_block = blkdev_max_block(bdev, size);
1009 
1010 	do {
1011 		if (!buffer_mapped(bh)) {
1012 			bh->b_end_io = NULL;
1013 			bh->b_private = NULL;
1014 			bh->b_bdev = bdev;
1015 			bh->b_blocknr = block;
1016 			if (uptodate)
1017 				set_buffer_uptodate(bh);
1018 			if (block < end_block)
1019 				set_buffer_mapped(bh);
1020 		}
1021 		block++;
1022 		bh = bh->b_this_page;
1023 	} while (bh != head);
1024 
1025 	/*
1026 	 * Caller needs to validate requested block against end of device.
1027 	 */
1028 	return end_block;
1029 }
1030 
1031 /*
1032  * Create the page-cache folio that contains the requested block.
1033  *
1034  * This is used purely for blockdev mappings.
1035  *
1036  * Returns false if we have a failure which cannot be cured by retrying
1037  * without sleeping.  Returns true if we succeeded, or the caller should retry.
1038  */
1039 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1040 		pgoff_t index, unsigned size, gfp_t gfp)
1041 {
1042 	struct address_space *mapping = bdev->bd_mapping;
1043 	struct folio *folio;
1044 	struct buffer_head *bh;
1045 	sector_t end_block = 0;
1046 
1047 	folio = __filemap_get_folio(mapping, index,
1048 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1049 	if (IS_ERR(folio))
1050 		return false;
1051 
1052 	bh = folio_buffers(folio);
1053 	if (bh) {
1054 		if (bh->b_size == size) {
1055 			end_block = folio_init_buffers(folio, bdev, size);
1056 			goto unlock;
1057 		}
1058 
1059 		/*
1060 		 * Retrying may succeed; for example the folio may finish
1061 		 * writeback, or buffers may be cleaned.  This should not
1062 		 * happen very often; maybe we have old buffers attached to
1063 		 * this blockdev's page cache and we're trying to change
1064 		 * the block size?
1065 		 */
1066 		if (!try_to_free_buffers(folio)) {
1067 			end_block = ~0ULL;
1068 			goto unlock;
1069 		}
1070 	}
1071 
1072 	bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1073 	if (!bh)
1074 		goto unlock;
1075 
1076 	/*
1077 	 * Link the folio to the buffers and initialise them.  Take the
1078 	 * lock to be atomic wrt __find_get_block(), which does not
1079 	 * run under the folio lock.
1080 	 */
1081 	spin_lock(&mapping->i_private_lock);
1082 	link_dev_buffers(folio, bh);
1083 	end_block = folio_init_buffers(folio, bdev, size);
1084 	spin_unlock(&mapping->i_private_lock);
1085 unlock:
1086 	folio_unlock(folio);
1087 	folio_put(folio);
1088 	return block < end_block;
1089 }
1090 
1091 /*
1092  * Create buffers for the specified block device block's folio.  If
1093  * that folio was dirty, the buffers are set dirty also.  Returns false
1094  * if we've hit a permanent error.
1095  */
1096 static bool grow_buffers(struct block_device *bdev, sector_t block,
1097 		unsigned size, gfp_t gfp)
1098 {
1099 	loff_t pos;
1100 
1101 	/*
1102 	 * Check for a block which lies outside our maximum possible
1103 	 * pagecache index.
1104 	 */
1105 	if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1106 		printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1107 			__func__, (unsigned long long)block,
1108 			bdev);
1109 		return false;
1110 	}
1111 
1112 	/* Create a folio with the proper size buffers */
1113 	return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1114 }
1115 
1116 static struct buffer_head *
1117 __getblk_slow(struct block_device *bdev, sector_t block,
1118 	     unsigned size, gfp_t gfp)
1119 {
1120 	/* Size must be multiple of hard sectorsize */
1121 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1122 			(size < 512 || size > PAGE_SIZE))) {
1123 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1124 					size);
1125 		printk(KERN_ERR "logical block size: %d\n",
1126 					bdev_logical_block_size(bdev));
1127 
1128 		dump_stack();
1129 		return NULL;
1130 	}
1131 
1132 	for (;;) {
1133 		struct buffer_head *bh;
1134 
1135 		bh = __find_get_block(bdev, block, size);
1136 		if (bh)
1137 			return bh;
1138 
1139 		if (!grow_buffers(bdev, block, size, gfp))
1140 			return NULL;
1141 	}
1142 }
1143 
1144 /*
1145  * The relationship between dirty buffers and dirty pages:
1146  *
1147  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1148  * the page is tagged dirty in the page cache.
1149  *
1150  * At all times, the dirtiness of the buffers represents the dirtiness of
1151  * subsections of the page.  If the page has buffers, the page dirty bit is
1152  * merely a hint about the true dirty state.
1153  *
1154  * When a page is set dirty in its entirety, all its buffers are marked dirty
1155  * (if the page has buffers).
1156  *
1157  * When a buffer is marked dirty, its page is dirtied, but the page's other
1158  * buffers are not.
1159  *
1160  * Also.  When blockdev buffers are explicitly read with bread(), they
1161  * individually become uptodate.  But their backing page remains not
1162  * uptodate - even if all of its buffers are uptodate.  A subsequent
1163  * block_read_full_folio() against that folio will discover all the uptodate
1164  * buffers, will set the folio uptodate and will perform no I/O.
1165  */
1166 
1167 /**
1168  * mark_buffer_dirty - mark a buffer_head as needing writeout
1169  * @bh: the buffer_head to mark dirty
1170  *
1171  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1172  * its backing page dirty, then tag the page as dirty in the page cache
1173  * and then attach the address_space's inode to its superblock's dirty
1174  * inode list.
1175  *
1176  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->i_private_lock,
1177  * i_pages lock and mapping->host->i_lock.
1178  */
1179 void mark_buffer_dirty(struct buffer_head *bh)
1180 {
1181 	WARN_ON_ONCE(!buffer_uptodate(bh));
1182 
1183 	trace_block_dirty_buffer(bh);
1184 
1185 	/*
1186 	 * Very *carefully* optimize the it-is-already-dirty case.
1187 	 *
1188 	 * Don't let the final "is it dirty" escape to before we
1189 	 * perhaps modified the buffer.
1190 	 */
1191 	if (buffer_dirty(bh)) {
1192 		smp_mb();
1193 		if (buffer_dirty(bh))
1194 			return;
1195 	}
1196 
1197 	if (!test_set_buffer_dirty(bh)) {
1198 		struct folio *folio = bh->b_folio;
1199 		struct address_space *mapping = NULL;
1200 
1201 		folio_memcg_lock(folio);
1202 		if (!folio_test_set_dirty(folio)) {
1203 			mapping = folio->mapping;
1204 			if (mapping)
1205 				__folio_mark_dirty(folio, mapping, 0);
1206 		}
1207 		folio_memcg_unlock(folio);
1208 		if (mapping)
1209 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1210 	}
1211 }
1212 EXPORT_SYMBOL(mark_buffer_dirty);
1213 
1214 void mark_buffer_write_io_error(struct buffer_head *bh)
1215 {
1216 	set_buffer_write_io_error(bh);
1217 	/* FIXME: do we need to set this in both places? */
1218 	if (bh->b_folio && bh->b_folio->mapping)
1219 		mapping_set_error(bh->b_folio->mapping, -EIO);
1220 	if (bh->b_assoc_map) {
1221 		mapping_set_error(bh->b_assoc_map, -EIO);
1222 		errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1223 	}
1224 }
1225 EXPORT_SYMBOL(mark_buffer_write_io_error);
1226 
1227 /**
1228  * __brelse - Release a buffer.
1229  * @bh: The buffer to release.
1230  *
1231  * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1232  */
1233 void __brelse(struct buffer_head *bh)
1234 {
1235 	if (atomic_read(&bh->b_count)) {
1236 		put_bh(bh);
1237 		return;
1238 	}
1239 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1240 }
1241 EXPORT_SYMBOL(__brelse);
1242 
1243 /**
1244  * __bforget - Discard any dirty data in a buffer.
1245  * @bh: The buffer to forget.
1246  *
1247  * This variant of bforget() can be called if @bh is guaranteed to not
1248  * be NULL.
1249  */
1250 void __bforget(struct buffer_head *bh)
1251 {
1252 	clear_buffer_dirty(bh);
1253 	if (bh->b_assoc_map) {
1254 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1255 
1256 		spin_lock(&buffer_mapping->i_private_lock);
1257 		list_del_init(&bh->b_assoc_buffers);
1258 		bh->b_assoc_map = NULL;
1259 		spin_unlock(&buffer_mapping->i_private_lock);
1260 	}
1261 	__brelse(bh);
1262 }
1263 EXPORT_SYMBOL(__bforget);
1264 
1265 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1266 {
1267 	lock_buffer(bh);
1268 	if (buffer_uptodate(bh)) {
1269 		unlock_buffer(bh);
1270 		return bh;
1271 	} else {
1272 		get_bh(bh);
1273 		bh->b_end_io = end_buffer_read_sync;
1274 		submit_bh(REQ_OP_READ, bh);
1275 		wait_on_buffer(bh);
1276 		if (buffer_uptodate(bh))
1277 			return bh;
1278 	}
1279 	brelse(bh);
1280 	return NULL;
1281 }
1282 
1283 /*
1284  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1285  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1286  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1287  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1288  * CPU's LRUs at the same time.
1289  *
1290  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1291  * sb_find_get_block().
1292  *
1293  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1294  * a local interrupt disable for that.
1295  */
1296 
1297 #define BH_LRU_SIZE	16
1298 
1299 struct bh_lru {
1300 	struct buffer_head *bhs[BH_LRU_SIZE];
1301 };
1302 
1303 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1304 
1305 #ifdef CONFIG_SMP
1306 #define bh_lru_lock()	local_irq_disable()
1307 #define bh_lru_unlock()	local_irq_enable()
1308 #else
1309 #define bh_lru_lock()	preempt_disable()
1310 #define bh_lru_unlock()	preempt_enable()
1311 #endif
1312 
1313 static inline void check_irqs_on(void)
1314 {
1315 #ifdef irqs_disabled
1316 	BUG_ON(irqs_disabled());
1317 #endif
1318 }
1319 
1320 /*
1321  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1322  * inserted at the front, and the buffer_head at the back if any is evicted.
1323  * Or, if already in the LRU it is moved to the front.
1324  */
1325 static void bh_lru_install(struct buffer_head *bh)
1326 {
1327 	struct buffer_head *evictee = bh;
1328 	struct bh_lru *b;
1329 	int i;
1330 
1331 	check_irqs_on();
1332 	bh_lru_lock();
1333 
1334 	/*
1335 	 * the refcount of buffer_head in bh_lru prevents dropping the
1336 	 * attached page(i.e., try_to_free_buffers) so it could cause
1337 	 * failing page migration.
1338 	 * Skip putting upcoming bh into bh_lru until migration is done.
1339 	 */
1340 	if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1341 		bh_lru_unlock();
1342 		return;
1343 	}
1344 
1345 	b = this_cpu_ptr(&bh_lrus);
1346 	for (i = 0; i < BH_LRU_SIZE; i++) {
1347 		swap(evictee, b->bhs[i]);
1348 		if (evictee == bh) {
1349 			bh_lru_unlock();
1350 			return;
1351 		}
1352 	}
1353 
1354 	get_bh(bh);
1355 	bh_lru_unlock();
1356 	brelse(evictee);
1357 }
1358 
1359 /*
1360  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1361  */
1362 static struct buffer_head *
1363 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1364 {
1365 	struct buffer_head *ret = NULL;
1366 	unsigned int i;
1367 
1368 	check_irqs_on();
1369 	bh_lru_lock();
1370 	if (cpu_is_isolated(smp_processor_id())) {
1371 		bh_lru_unlock();
1372 		return NULL;
1373 	}
1374 	for (i = 0; i < BH_LRU_SIZE; i++) {
1375 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1376 
1377 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1378 		    bh->b_size == size) {
1379 			if (i) {
1380 				while (i) {
1381 					__this_cpu_write(bh_lrus.bhs[i],
1382 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1383 					i--;
1384 				}
1385 				__this_cpu_write(bh_lrus.bhs[0], bh);
1386 			}
1387 			get_bh(bh);
1388 			ret = bh;
1389 			break;
1390 		}
1391 	}
1392 	bh_lru_unlock();
1393 	return ret;
1394 }
1395 
1396 /*
1397  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1398  * it in the LRU and mark it as accessed.  If it is not present then return
1399  * NULL
1400  */
1401 struct buffer_head *
1402 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1403 {
1404 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1405 
1406 	if (bh == NULL) {
1407 		/* __find_get_block_slow will mark the page accessed */
1408 		bh = __find_get_block_slow(bdev, block);
1409 		if (bh)
1410 			bh_lru_install(bh);
1411 	} else
1412 		touch_buffer(bh);
1413 
1414 	return bh;
1415 }
1416 EXPORT_SYMBOL(__find_get_block);
1417 
1418 /**
1419  * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1420  * @bdev: The block device.
1421  * @block: The block number.
1422  * @size: The size of buffer_heads for this @bdev.
1423  * @gfp: The memory allocation flags to use.
1424  *
1425  * The returned buffer head has its reference count incremented, but is
1426  * not locked.  The caller should call brelse() when it has finished
1427  * with the buffer.  The buffer may not be uptodate.  If needed, the
1428  * caller can bring it uptodate either by reading it or overwriting it.
1429  *
1430  * Return: The buffer head, or NULL if memory could not be allocated.
1431  */
1432 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1433 		unsigned size, gfp_t gfp)
1434 {
1435 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1436 
1437 	might_alloc(gfp);
1438 	if (bh)
1439 		return bh;
1440 
1441 	return __getblk_slow(bdev, block, size, gfp);
1442 }
1443 EXPORT_SYMBOL(bdev_getblk);
1444 
1445 /*
1446  * Do async read-ahead on a buffer..
1447  */
1448 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1449 {
1450 	struct buffer_head *bh = bdev_getblk(bdev, block, size,
1451 			GFP_NOWAIT | __GFP_MOVABLE);
1452 
1453 	if (likely(bh)) {
1454 		bh_readahead(bh, REQ_RAHEAD);
1455 		brelse(bh);
1456 	}
1457 }
1458 EXPORT_SYMBOL(__breadahead);
1459 
1460 /**
1461  * __bread_gfp() - Read a block.
1462  * @bdev: The block device to read from.
1463  * @block: Block number in units of block size.
1464  * @size: The block size of this device in bytes.
1465  * @gfp: Not page allocation flags; see below.
1466  *
1467  * You are not expected to call this function.  You should use one of
1468  * sb_bread(), sb_bread_unmovable() or __bread().
1469  *
1470  * Read a specified block, and return the buffer head that refers to it.
1471  * If @gfp is 0, the memory will be allocated using the block device's
1472  * default GFP flags.  If @gfp is __GFP_MOVABLE, the memory may be
1473  * allocated from a movable area.  Do not pass in a complete set of
1474  * GFP flags.
1475  *
1476  * The returned buffer head has its refcount increased.  The caller should
1477  * call brelse() when it has finished with the buffer.
1478  *
1479  * Context: May sleep waiting for I/O.
1480  * Return: NULL if the block was unreadable.
1481  */
1482 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1483 		unsigned size, gfp_t gfp)
1484 {
1485 	struct buffer_head *bh;
1486 
1487 	gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1488 
1489 	/*
1490 	 * Prefer looping in the allocator rather than here, at least that
1491 	 * code knows what it's doing.
1492 	 */
1493 	gfp |= __GFP_NOFAIL;
1494 
1495 	bh = bdev_getblk(bdev, block, size, gfp);
1496 
1497 	if (likely(bh) && !buffer_uptodate(bh))
1498 		bh = __bread_slow(bh);
1499 	return bh;
1500 }
1501 EXPORT_SYMBOL(__bread_gfp);
1502 
1503 static void __invalidate_bh_lrus(struct bh_lru *b)
1504 {
1505 	int i;
1506 
1507 	for (i = 0; i < BH_LRU_SIZE; i++) {
1508 		brelse(b->bhs[i]);
1509 		b->bhs[i] = NULL;
1510 	}
1511 }
1512 /*
1513  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1514  * This doesn't race because it runs in each cpu either in irq
1515  * or with preempt disabled.
1516  */
1517 static void invalidate_bh_lru(void *arg)
1518 {
1519 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1520 
1521 	__invalidate_bh_lrus(b);
1522 	put_cpu_var(bh_lrus);
1523 }
1524 
1525 bool has_bh_in_lru(int cpu, void *dummy)
1526 {
1527 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1528 	int i;
1529 
1530 	for (i = 0; i < BH_LRU_SIZE; i++) {
1531 		if (b->bhs[i])
1532 			return true;
1533 	}
1534 
1535 	return false;
1536 }
1537 
1538 void invalidate_bh_lrus(void)
1539 {
1540 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1541 }
1542 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1543 
1544 /*
1545  * It's called from workqueue context so we need a bh_lru_lock to close
1546  * the race with preemption/irq.
1547  */
1548 void invalidate_bh_lrus_cpu(void)
1549 {
1550 	struct bh_lru *b;
1551 
1552 	bh_lru_lock();
1553 	b = this_cpu_ptr(&bh_lrus);
1554 	__invalidate_bh_lrus(b);
1555 	bh_lru_unlock();
1556 }
1557 
1558 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1559 		  unsigned long offset)
1560 {
1561 	bh->b_folio = folio;
1562 	BUG_ON(offset >= folio_size(folio));
1563 	if (folio_test_highmem(folio))
1564 		/*
1565 		 * This catches illegal uses and preserves the offset:
1566 		 */
1567 		bh->b_data = (char *)(0 + offset);
1568 	else
1569 		bh->b_data = folio_address(folio) + offset;
1570 }
1571 EXPORT_SYMBOL(folio_set_bh);
1572 
1573 /*
1574  * Called when truncating a buffer on a page completely.
1575  */
1576 
1577 /* Bits that are cleared during an invalidate */
1578 #define BUFFER_FLAGS_DISCARD \
1579 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1580 	 1 << BH_Delay | 1 << BH_Unwritten)
1581 
1582 static void discard_buffer(struct buffer_head * bh)
1583 {
1584 	unsigned long b_state;
1585 
1586 	lock_buffer(bh);
1587 	clear_buffer_dirty(bh);
1588 	bh->b_bdev = NULL;
1589 	b_state = READ_ONCE(bh->b_state);
1590 	do {
1591 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1592 			      b_state & ~BUFFER_FLAGS_DISCARD));
1593 	unlock_buffer(bh);
1594 }
1595 
1596 /**
1597  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1598  * @folio: The folio which is affected.
1599  * @offset: start of the range to invalidate
1600  * @length: length of the range to invalidate
1601  *
1602  * block_invalidate_folio() is called when all or part of the folio has been
1603  * invalidated by a truncate operation.
1604  *
1605  * block_invalidate_folio() does not have to release all buffers, but it must
1606  * ensure that no dirty buffer is left outside @offset and that no I/O
1607  * is underway against any of the blocks which are outside the truncation
1608  * point.  Because the caller is about to free (and possibly reuse) those
1609  * blocks on-disk.
1610  */
1611 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1612 {
1613 	struct buffer_head *head, *bh, *next;
1614 	size_t curr_off = 0;
1615 	size_t stop = length + offset;
1616 
1617 	BUG_ON(!folio_test_locked(folio));
1618 
1619 	/*
1620 	 * Check for overflow
1621 	 */
1622 	BUG_ON(stop > folio_size(folio) || stop < length);
1623 
1624 	head = folio_buffers(folio);
1625 	if (!head)
1626 		return;
1627 
1628 	bh = head;
1629 	do {
1630 		size_t next_off = curr_off + bh->b_size;
1631 		next = bh->b_this_page;
1632 
1633 		/*
1634 		 * Are we still fully in range ?
1635 		 */
1636 		if (next_off > stop)
1637 			goto out;
1638 
1639 		/*
1640 		 * is this block fully invalidated?
1641 		 */
1642 		if (offset <= curr_off)
1643 			discard_buffer(bh);
1644 		curr_off = next_off;
1645 		bh = next;
1646 	} while (bh != head);
1647 
1648 	/*
1649 	 * We release buffers only if the entire folio is being invalidated.
1650 	 * The get_block cached value has been unconditionally invalidated,
1651 	 * so real IO is not possible anymore.
1652 	 */
1653 	if (length == folio_size(folio))
1654 		filemap_release_folio(folio, 0);
1655 out:
1656 	return;
1657 }
1658 EXPORT_SYMBOL(block_invalidate_folio);
1659 
1660 /*
1661  * We attach and possibly dirty the buffers atomically wrt
1662  * block_dirty_folio() via i_private_lock.  try_to_free_buffers
1663  * is already excluded via the folio lock.
1664  */
1665 struct buffer_head *create_empty_buffers(struct folio *folio,
1666 		unsigned long blocksize, unsigned long b_state)
1667 {
1668 	struct buffer_head *bh, *head, *tail;
1669 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1670 
1671 	head = folio_alloc_buffers(folio, blocksize, gfp);
1672 	bh = head;
1673 	do {
1674 		bh->b_state |= b_state;
1675 		tail = bh;
1676 		bh = bh->b_this_page;
1677 	} while (bh);
1678 	tail->b_this_page = head;
1679 
1680 	spin_lock(&folio->mapping->i_private_lock);
1681 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1682 		bh = head;
1683 		do {
1684 			if (folio_test_dirty(folio))
1685 				set_buffer_dirty(bh);
1686 			if (folio_test_uptodate(folio))
1687 				set_buffer_uptodate(bh);
1688 			bh = bh->b_this_page;
1689 		} while (bh != head);
1690 	}
1691 	folio_attach_private(folio, head);
1692 	spin_unlock(&folio->mapping->i_private_lock);
1693 
1694 	return head;
1695 }
1696 EXPORT_SYMBOL(create_empty_buffers);
1697 
1698 /**
1699  * clean_bdev_aliases: clean a range of buffers in block device
1700  * @bdev: Block device to clean buffers in
1701  * @block: Start of a range of blocks to clean
1702  * @len: Number of blocks to clean
1703  *
1704  * We are taking a range of blocks for data and we don't want writeback of any
1705  * buffer-cache aliases starting from return from this function and until the
1706  * moment when something will explicitly mark the buffer dirty (hopefully that
1707  * will not happen until we will free that block ;-) We don't even need to mark
1708  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1709  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1710  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1711  * would confuse anyone who might pick it with bread() afterwards...
1712  *
1713  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1714  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1715  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1716  * need to.  That happens here.
1717  */
1718 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1719 {
1720 	struct address_space *bd_mapping = bdev->bd_mapping;
1721 	const int blkbits = bd_mapping->host->i_blkbits;
1722 	struct folio_batch fbatch;
1723 	pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1724 	pgoff_t end;
1725 	int i, count;
1726 	struct buffer_head *bh;
1727 	struct buffer_head *head;
1728 
1729 	end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1730 	folio_batch_init(&fbatch);
1731 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1732 		count = folio_batch_count(&fbatch);
1733 		for (i = 0; i < count; i++) {
1734 			struct folio *folio = fbatch.folios[i];
1735 
1736 			if (!folio_buffers(folio))
1737 				continue;
1738 			/*
1739 			 * We use folio lock instead of bd_mapping->i_private_lock
1740 			 * to pin buffers here since we can afford to sleep and
1741 			 * it scales better than a global spinlock lock.
1742 			 */
1743 			folio_lock(folio);
1744 			/* Recheck when the folio is locked which pins bhs */
1745 			head = folio_buffers(folio);
1746 			if (!head)
1747 				goto unlock_page;
1748 			bh = head;
1749 			do {
1750 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1751 					goto next;
1752 				if (bh->b_blocknr >= block + len)
1753 					break;
1754 				clear_buffer_dirty(bh);
1755 				wait_on_buffer(bh);
1756 				clear_buffer_req(bh);
1757 next:
1758 				bh = bh->b_this_page;
1759 			} while (bh != head);
1760 unlock_page:
1761 			folio_unlock(folio);
1762 		}
1763 		folio_batch_release(&fbatch);
1764 		cond_resched();
1765 		/* End of range already reached? */
1766 		if (index > end || !index)
1767 			break;
1768 	}
1769 }
1770 EXPORT_SYMBOL(clean_bdev_aliases);
1771 
1772 static struct buffer_head *folio_create_buffers(struct folio *folio,
1773 						struct inode *inode,
1774 						unsigned int b_state)
1775 {
1776 	struct buffer_head *bh;
1777 
1778 	BUG_ON(!folio_test_locked(folio));
1779 
1780 	bh = folio_buffers(folio);
1781 	if (!bh)
1782 		bh = create_empty_buffers(folio,
1783 				1 << READ_ONCE(inode->i_blkbits), b_state);
1784 	return bh;
1785 }
1786 
1787 /*
1788  * NOTE! All mapped/uptodate combinations are valid:
1789  *
1790  *	Mapped	Uptodate	Meaning
1791  *
1792  *	No	No		"unknown" - must do get_block()
1793  *	No	Yes		"hole" - zero-filled
1794  *	Yes	No		"allocated" - allocated on disk, not read in
1795  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1796  *
1797  * "Dirty" is valid only with the last case (mapped+uptodate).
1798  */
1799 
1800 /*
1801  * While block_write_full_folio is writing back the dirty buffers under
1802  * the page lock, whoever dirtied the buffers may decide to clean them
1803  * again at any time.  We handle that by only looking at the buffer
1804  * state inside lock_buffer().
1805  *
1806  * If block_write_full_folio() is called for regular writeback
1807  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1808  * locked buffer.   This only can happen if someone has written the buffer
1809  * directly, with submit_bh().  At the address_space level PageWriteback
1810  * prevents this contention from occurring.
1811  *
1812  * If block_write_full_folio() is called with wbc->sync_mode ==
1813  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1814  * causes the writes to be flagged as synchronous writes.
1815  */
1816 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1817 			get_block_t *get_block, struct writeback_control *wbc)
1818 {
1819 	int err;
1820 	sector_t block;
1821 	sector_t last_block;
1822 	struct buffer_head *bh, *head;
1823 	size_t blocksize;
1824 	int nr_underway = 0;
1825 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1826 
1827 	head = folio_create_buffers(folio, inode,
1828 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1829 
1830 	/*
1831 	 * Be very careful.  We have no exclusion from block_dirty_folio
1832 	 * here, and the (potentially unmapped) buffers may become dirty at
1833 	 * any time.  If a buffer becomes dirty here after we've inspected it
1834 	 * then we just miss that fact, and the folio stays dirty.
1835 	 *
1836 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1837 	 * handle that here by just cleaning them.
1838 	 */
1839 
1840 	bh = head;
1841 	blocksize = bh->b_size;
1842 
1843 	block = div_u64(folio_pos(folio), blocksize);
1844 	last_block = div_u64(i_size_read(inode) - 1, blocksize);
1845 
1846 	/*
1847 	 * Get all the dirty buffers mapped to disk addresses and
1848 	 * handle any aliases from the underlying blockdev's mapping.
1849 	 */
1850 	do {
1851 		if (block > last_block) {
1852 			/*
1853 			 * mapped buffers outside i_size will occur, because
1854 			 * this folio can be outside i_size when there is a
1855 			 * truncate in progress.
1856 			 */
1857 			/*
1858 			 * The buffer was zeroed by block_write_full_folio()
1859 			 */
1860 			clear_buffer_dirty(bh);
1861 			set_buffer_uptodate(bh);
1862 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1863 			   buffer_dirty(bh)) {
1864 			WARN_ON(bh->b_size != blocksize);
1865 			err = get_block(inode, block, bh, 1);
1866 			if (err)
1867 				goto recover;
1868 			clear_buffer_delay(bh);
1869 			if (buffer_new(bh)) {
1870 				/* blockdev mappings never come here */
1871 				clear_buffer_new(bh);
1872 				clean_bdev_bh_alias(bh);
1873 			}
1874 		}
1875 		bh = bh->b_this_page;
1876 		block++;
1877 	} while (bh != head);
1878 
1879 	do {
1880 		if (!buffer_mapped(bh))
1881 			continue;
1882 		/*
1883 		 * If it's a fully non-blocking write attempt and we cannot
1884 		 * lock the buffer then redirty the folio.  Note that this can
1885 		 * potentially cause a busy-wait loop from writeback threads
1886 		 * and kswapd activity, but those code paths have their own
1887 		 * higher-level throttling.
1888 		 */
1889 		if (wbc->sync_mode != WB_SYNC_NONE) {
1890 			lock_buffer(bh);
1891 		} else if (!trylock_buffer(bh)) {
1892 			folio_redirty_for_writepage(wbc, folio);
1893 			continue;
1894 		}
1895 		if (test_clear_buffer_dirty(bh)) {
1896 			mark_buffer_async_write_endio(bh,
1897 				end_buffer_async_write);
1898 		} else {
1899 			unlock_buffer(bh);
1900 		}
1901 	} while ((bh = bh->b_this_page) != head);
1902 
1903 	/*
1904 	 * The folio and its buffers are protected by the writeback flag,
1905 	 * so we can drop the bh refcounts early.
1906 	 */
1907 	BUG_ON(folio_test_writeback(folio));
1908 	folio_start_writeback(folio);
1909 
1910 	do {
1911 		struct buffer_head *next = bh->b_this_page;
1912 		if (buffer_async_write(bh)) {
1913 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1914 				      inode->i_write_hint, wbc);
1915 			nr_underway++;
1916 		}
1917 		bh = next;
1918 	} while (bh != head);
1919 	folio_unlock(folio);
1920 
1921 	err = 0;
1922 done:
1923 	if (nr_underway == 0) {
1924 		/*
1925 		 * The folio was marked dirty, but the buffers were
1926 		 * clean.  Someone wrote them back by hand with
1927 		 * write_dirty_buffer/submit_bh.  A rare case.
1928 		 */
1929 		folio_end_writeback(folio);
1930 
1931 		/*
1932 		 * The folio and buffer_heads can be released at any time from
1933 		 * here on.
1934 		 */
1935 	}
1936 	return err;
1937 
1938 recover:
1939 	/*
1940 	 * ENOSPC, or some other error.  We may already have added some
1941 	 * blocks to the file, so we need to write these out to avoid
1942 	 * exposing stale data.
1943 	 * The folio is currently locked and not marked for writeback
1944 	 */
1945 	bh = head;
1946 	/* Recovery: lock and submit the mapped buffers */
1947 	do {
1948 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1949 		    !buffer_delay(bh)) {
1950 			lock_buffer(bh);
1951 			mark_buffer_async_write_endio(bh,
1952 				end_buffer_async_write);
1953 		} else {
1954 			/*
1955 			 * The buffer may have been set dirty during
1956 			 * attachment to a dirty folio.
1957 			 */
1958 			clear_buffer_dirty(bh);
1959 		}
1960 	} while ((bh = bh->b_this_page) != head);
1961 	BUG_ON(folio_test_writeback(folio));
1962 	mapping_set_error(folio->mapping, err);
1963 	folio_start_writeback(folio);
1964 	do {
1965 		struct buffer_head *next = bh->b_this_page;
1966 		if (buffer_async_write(bh)) {
1967 			clear_buffer_dirty(bh);
1968 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1969 				      inode->i_write_hint, wbc);
1970 			nr_underway++;
1971 		}
1972 		bh = next;
1973 	} while (bh != head);
1974 	folio_unlock(folio);
1975 	goto done;
1976 }
1977 EXPORT_SYMBOL(__block_write_full_folio);
1978 
1979 /*
1980  * If a folio has any new buffers, zero them out here, and mark them uptodate
1981  * and dirty so they'll be written out (in order to prevent uninitialised
1982  * block data from leaking). And clear the new bit.
1983  */
1984 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1985 {
1986 	size_t block_start, block_end;
1987 	struct buffer_head *head, *bh;
1988 
1989 	BUG_ON(!folio_test_locked(folio));
1990 	head = folio_buffers(folio);
1991 	if (!head)
1992 		return;
1993 
1994 	bh = head;
1995 	block_start = 0;
1996 	do {
1997 		block_end = block_start + bh->b_size;
1998 
1999 		if (buffer_new(bh)) {
2000 			if (block_end > from && block_start < to) {
2001 				if (!folio_test_uptodate(folio)) {
2002 					size_t start, xend;
2003 
2004 					start = max(from, block_start);
2005 					xend = min(to, block_end);
2006 
2007 					folio_zero_segment(folio, start, xend);
2008 					set_buffer_uptodate(bh);
2009 				}
2010 
2011 				clear_buffer_new(bh);
2012 				mark_buffer_dirty(bh);
2013 			}
2014 		}
2015 
2016 		block_start = block_end;
2017 		bh = bh->b_this_page;
2018 	} while (bh != head);
2019 }
2020 EXPORT_SYMBOL(folio_zero_new_buffers);
2021 
2022 static int
2023 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2024 		const struct iomap *iomap)
2025 {
2026 	loff_t offset = (loff_t)block << inode->i_blkbits;
2027 
2028 	bh->b_bdev = iomap->bdev;
2029 
2030 	/*
2031 	 * Block points to offset in file we need to map, iomap contains
2032 	 * the offset at which the map starts. If the map ends before the
2033 	 * current block, then do not map the buffer and let the caller
2034 	 * handle it.
2035 	 */
2036 	if (offset >= iomap->offset + iomap->length)
2037 		return -EIO;
2038 
2039 	switch (iomap->type) {
2040 	case IOMAP_HOLE:
2041 		/*
2042 		 * If the buffer is not up to date or beyond the current EOF,
2043 		 * we need to mark it as new to ensure sub-block zeroing is
2044 		 * executed if necessary.
2045 		 */
2046 		if (!buffer_uptodate(bh) ||
2047 		    (offset >= i_size_read(inode)))
2048 			set_buffer_new(bh);
2049 		return 0;
2050 	case IOMAP_DELALLOC:
2051 		if (!buffer_uptodate(bh) ||
2052 		    (offset >= i_size_read(inode)))
2053 			set_buffer_new(bh);
2054 		set_buffer_uptodate(bh);
2055 		set_buffer_mapped(bh);
2056 		set_buffer_delay(bh);
2057 		return 0;
2058 	case IOMAP_UNWRITTEN:
2059 		/*
2060 		 * For unwritten regions, we always need to ensure that regions
2061 		 * in the block we are not writing to are zeroed. Mark the
2062 		 * buffer as new to ensure this.
2063 		 */
2064 		set_buffer_new(bh);
2065 		set_buffer_unwritten(bh);
2066 		fallthrough;
2067 	case IOMAP_MAPPED:
2068 		if ((iomap->flags & IOMAP_F_NEW) ||
2069 		    offset >= i_size_read(inode)) {
2070 			/*
2071 			 * This can happen if truncating the block device races
2072 			 * with the check in the caller as i_size updates on
2073 			 * block devices aren't synchronized by i_rwsem for
2074 			 * block devices.
2075 			 */
2076 			if (S_ISBLK(inode->i_mode))
2077 				return -EIO;
2078 			set_buffer_new(bh);
2079 		}
2080 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2081 				inode->i_blkbits;
2082 		set_buffer_mapped(bh);
2083 		return 0;
2084 	default:
2085 		WARN_ON_ONCE(1);
2086 		return -EIO;
2087 	}
2088 }
2089 
2090 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2091 		get_block_t *get_block, const struct iomap *iomap)
2092 {
2093 	size_t from = offset_in_folio(folio, pos);
2094 	size_t to = from + len;
2095 	struct inode *inode = folio->mapping->host;
2096 	size_t block_start, block_end;
2097 	sector_t block;
2098 	int err = 0;
2099 	size_t blocksize;
2100 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2101 
2102 	BUG_ON(!folio_test_locked(folio));
2103 	BUG_ON(to > folio_size(folio));
2104 	BUG_ON(from > to);
2105 
2106 	head = folio_create_buffers(folio, inode, 0);
2107 	blocksize = head->b_size;
2108 	block = div_u64(folio_pos(folio), blocksize);
2109 
2110 	for (bh = head, block_start = 0; bh != head || !block_start;
2111 	    block++, block_start=block_end, bh = bh->b_this_page) {
2112 		block_end = block_start + blocksize;
2113 		if (block_end <= from || block_start >= to) {
2114 			if (folio_test_uptodate(folio)) {
2115 				if (!buffer_uptodate(bh))
2116 					set_buffer_uptodate(bh);
2117 			}
2118 			continue;
2119 		}
2120 		if (buffer_new(bh))
2121 			clear_buffer_new(bh);
2122 		if (!buffer_mapped(bh)) {
2123 			WARN_ON(bh->b_size != blocksize);
2124 			if (get_block)
2125 				err = get_block(inode, block, bh, 1);
2126 			else
2127 				err = iomap_to_bh(inode, block, bh, iomap);
2128 			if (err)
2129 				break;
2130 
2131 			if (buffer_new(bh)) {
2132 				clean_bdev_bh_alias(bh);
2133 				if (folio_test_uptodate(folio)) {
2134 					clear_buffer_new(bh);
2135 					set_buffer_uptodate(bh);
2136 					mark_buffer_dirty(bh);
2137 					continue;
2138 				}
2139 				if (block_end > to || block_start < from)
2140 					folio_zero_segments(folio,
2141 						to, block_end,
2142 						block_start, from);
2143 				continue;
2144 			}
2145 		}
2146 		if (folio_test_uptodate(folio)) {
2147 			if (!buffer_uptodate(bh))
2148 				set_buffer_uptodate(bh);
2149 			continue;
2150 		}
2151 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2152 		    !buffer_unwritten(bh) &&
2153 		     (block_start < from || block_end > to)) {
2154 			bh_read_nowait(bh, 0);
2155 			*wait_bh++=bh;
2156 		}
2157 	}
2158 	/*
2159 	 * If we issued read requests - let them complete.
2160 	 */
2161 	while(wait_bh > wait) {
2162 		wait_on_buffer(*--wait_bh);
2163 		if (!buffer_uptodate(*wait_bh))
2164 			err = -EIO;
2165 	}
2166 	if (unlikely(err))
2167 		folio_zero_new_buffers(folio, from, to);
2168 	return err;
2169 }
2170 
2171 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2172 		get_block_t *get_block)
2173 {
2174 	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2175 				       NULL);
2176 }
2177 EXPORT_SYMBOL(__block_write_begin);
2178 
2179 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2180 {
2181 	size_t block_start, block_end;
2182 	bool partial = false;
2183 	unsigned blocksize;
2184 	struct buffer_head *bh, *head;
2185 
2186 	bh = head = folio_buffers(folio);
2187 	if (!bh)
2188 		return;
2189 	blocksize = bh->b_size;
2190 
2191 	block_start = 0;
2192 	do {
2193 		block_end = block_start + blocksize;
2194 		if (block_end <= from || block_start >= to) {
2195 			if (!buffer_uptodate(bh))
2196 				partial = true;
2197 		} else {
2198 			set_buffer_uptodate(bh);
2199 			mark_buffer_dirty(bh);
2200 		}
2201 		if (buffer_new(bh))
2202 			clear_buffer_new(bh);
2203 
2204 		block_start = block_end;
2205 		bh = bh->b_this_page;
2206 	} while (bh != head);
2207 
2208 	/*
2209 	 * If this is a partial write which happened to make all buffers
2210 	 * uptodate then we can optimize away a bogus read_folio() for
2211 	 * the next read(). Here we 'discover' whether the folio went
2212 	 * uptodate as a result of this (potentially partial) write.
2213 	 */
2214 	if (!partial)
2215 		folio_mark_uptodate(folio);
2216 }
2217 
2218 /*
2219  * block_write_begin takes care of the basic task of block allocation and
2220  * bringing partial write blocks uptodate first.
2221  *
2222  * The filesystem needs to handle block truncation upon failure.
2223  */
2224 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2225 		struct page **pagep, get_block_t *get_block)
2226 {
2227 	pgoff_t index = pos >> PAGE_SHIFT;
2228 	struct page *page;
2229 	int status;
2230 
2231 	page = grab_cache_page_write_begin(mapping, index);
2232 	if (!page)
2233 		return -ENOMEM;
2234 
2235 	status = __block_write_begin(page, pos, len, get_block);
2236 	if (unlikely(status)) {
2237 		unlock_page(page);
2238 		put_page(page);
2239 		page = NULL;
2240 	}
2241 
2242 	*pagep = page;
2243 	return status;
2244 }
2245 EXPORT_SYMBOL(block_write_begin);
2246 
2247 int block_write_end(struct file *file, struct address_space *mapping,
2248 			loff_t pos, unsigned len, unsigned copied,
2249 			struct page *page, void *fsdata)
2250 {
2251 	struct folio *folio = page_folio(page);
2252 	size_t start = pos - folio_pos(folio);
2253 
2254 	if (unlikely(copied < len)) {
2255 		/*
2256 		 * The buffers that were written will now be uptodate, so
2257 		 * we don't have to worry about a read_folio reading them
2258 		 * and overwriting a partial write. However if we have
2259 		 * encountered a short write and only partially written
2260 		 * into a buffer, it will not be marked uptodate, so a
2261 		 * read_folio might come in and destroy our partial write.
2262 		 *
2263 		 * Do the simplest thing, and just treat any short write to a
2264 		 * non uptodate folio as a zero-length write, and force the
2265 		 * caller to redo the whole thing.
2266 		 */
2267 		if (!folio_test_uptodate(folio))
2268 			copied = 0;
2269 
2270 		folio_zero_new_buffers(folio, start+copied, start+len);
2271 	}
2272 	flush_dcache_folio(folio);
2273 
2274 	/* This could be a short (even 0-length) commit */
2275 	__block_commit_write(folio, start, start + copied);
2276 
2277 	return copied;
2278 }
2279 EXPORT_SYMBOL(block_write_end);
2280 
2281 int generic_write_end(struct file *file, struct address_space *mapping,
2282 			loff_t pos, unsigned len, unsigned copied,
2283 			struct page *page, void *fsdata)
2284 {
2285 	struct inode *inode = mapping->host;
2286 	loff_t old_size = inode->i_size;
2287 	bool i_size_changed = false;
2288 
2289 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2290 
2291 	/*
2292 	 * No need to use i_size_read() here, the i_size cannot change under us
2293 	 * because we hold i_rwsem.
2294 	 *
2295 	 * But it's important to update i_size while still holding page lock:
2296 	 * page writeout could otherwise come in and zero beyond i_size.
2297 	 */
2298 	if (pos + copied > inode->i_size) {
2299 		i_size_write(inode, pos + copied);
2300 		i_size_changed = true;
2301 	}
2302 
2303 	unlock_page(page);
2304 	put_page(page);
2305 
2306 	if (old_size < pos)
2307 		pagecache_isize_extended(inode, old_size, pos);
2308 	/*
2309 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2310 	 * makes the holding time of page lock longer. Second, it forces lock
2311 	 * ordering of page lock and transaction start for journaling
2312 	 * filesystems.
2313 	 */
2314 	if (i_size_changed)
2315 		mark_inode_dirty(inode);
2316 	return copied;
2317 }
2318 EXPORT_SYMBOL(generic_write_end);
2319 
2320 /*
2321  * block_is_partially_uptodate checks whether buffers within a folio are
2322  * uptodate or not.
2323  *
2324  * Returns true if all buffers which correspond to the specified part
2325  * of the folio are uptodate.
2326  */
2327 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2328 {
2329 	unsigned block_start, block_end, blocksize;
2330 	unsigned to;
2331 	struct buffer_head *bh, *head;
2332 	bool ret = true;
2333 
2334 	head = folio_buffers(folio);
2335 	if (!head)
2336 		return false;
2337 	blocksize = head->b_size;
2338 	to = min_t(unsigned, folio_size(folio) - from, count);
2339 	to = from + to;
2340 	if (from < blocksize && to > folio_size(folio) - blocksize)
2341 		return false;
2342 
2343 	bh = head;
2344 	block_start = 0;
2345 	do {
2346 		block_end = block_start + blocksize;
2347 		if (block_end > from && block_start < to) {
2348 			if (!buffer_uptodate(bh)) {
2349 				ret = false;
2350 				break;
2351 			}
2352 			if (block_end >= to)
2353 				break;
2354 		}
2355 		block_start = block_end;
2356 		bh = bh->b_this_page;
2357 	} while (bh != head);
2358 
2359 	return ret;
2360 }
2361 EXPORT_SYMBOL(block_is_partially_uptodate);
2362 
2363 /*
2364  * Generic "read_folio" function for block devices that have the normal
2365  * get_block functionality. This is most of the block device filesystems.
2366  * Reads the folio asynchronously --- the unlock_buffer() and
2367  * set/clear_buffer_uptodate() functions propagate buffer state into the
2368  * folio once IO has completed.
2369  */
2370 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2371 {
2372 	struct inode *inode = folio->mapping->host;
2373 	sector_t iblock, lblock;
2374 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2375 	size_t blocksize;
2376 	int nr, i;
2377 	int fully_mapped = 1;
2378 	bool page_error = false;
2379 	loff_t limit = i_size_read(inode);
2380 
2381 	/* This is needed for ext4. */
2382 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2383 		limit = inode->i_sb->s_maxbytes;
2384 
2385 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2386 
2387 	head = folio_create_buffers(folio, inode, 0);
2388 	blocksize = head->b_size;
2389 
2390 	iblock = div_u64(folio_pos(folio), blocksize);
2391 	lblock = div_u64(limit + blocksize - 1, blocksize);
2392 	bh = head;
2393 	nr = 0;
2394 	i = 0;
2395 
2396 	do {
2397 		if (buffer_uptodate(bh))
2398 			continue;
2399 
2400 		if (!buffer_mapped(bh)) {
2401 			int err = 0;
2402 
2403 			fully_mapped = 0;
2404 			if (iblock < lblock) {
2405 				WARN_ON(bh->b_size != blocksize);
2406 				err = get_block(inode, iblock, bh, 0);
2407 				if (err)
2408 					page_error = true;
2409 			}
2410 			if (!buffer_mapped(bh)) {
2411 				folio_zero_range(folio, i * blocksize,
2412 						blocksize);
2413 				if (!err)
2414 					set_buffer_uptodate(bh);
2415 				continue;
2416 			}
2417 			/*
2418 			 * get_block() might have updated the buffer
2419 			 * synchronously
2420 			 */
2421 			if (buffer_uptodate(bh))
2422 				continue;
2423 		}
2424 		arr[nr++] = bh;
2425 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2426 
2427 	if (fully_mapped)
2428 		folio_set_mappedtodisk(folio);
2429 
2430 	if (!nr) {
2431 		/*
2432 		 * All buffers are uptodate or get_block() returned an
2433 		 * error when trying to map them - we can finish the read.
2434 		 */
2435 		folio_end_read(folio, !page_error);
2436 		return 0;
2437 	}
2438 
2439 	/* Stage two: lock the buffers */
2440 	for (i = 0; i < nr; i++) {
2441 		bh = arr[i];
2442 		lock_buffer(bh);
2443 		mark_buffer_async_read(bh);
2444 	}
2445 
2446 	/*
2447 	 * Stage 3: start the IO.  Check for uptodateness
2448 	 * inside the buffer lock in case another process reading
2449 	 * the underlying blockdev brought it uptodate (the sct fix).
2450 	 */
2451 	for (i = 0; i < nr; i++) {
2452 		bh = arr[i];
2453 		if (buffer_uptodate(bh))
2454 			end_buffer_async_read(bh, 1);
2455 		else
2456 			submit_bh(REQ_OP_READ, bh);
2457 	}
2458 	return 0;
2459 }
2460 EXPORT_SYMBOL(block_read_full_folio);
2461 
2462 /* utility function for filesystems that need to do work on expanding
2463  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2464  * deal with the hole.
2465  */
2466 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2467 {
2468 	struct address_space *mapping = inode->i_mapping;
2469 	const struct address_space_operations *aops = mapping->a_ops;
2470 	struct page *page;
2471 	void *fsdata = NULL;
2472 	int err;
2473 
2474 	err = inode_newsize_ok(inode, size);
2475 	if (err)
2476 		goto out;
2477 
2478 	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2479 	if (err)
2480 		goto out;
2481 
2482 	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2483 	BUG_ON(err > 0);
2484 
2485 out:
2486 	return err;
2487 }
2488 EXPORT_SYMBOL(generic_cont_expand_simple);
2489 
2490 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2491 			    loff_t pos, loff_t *bytes)
2492 {
2493 	struct inode *inode = mapping->host;
2494 	const struct address_space_operations *aops = mapping->a_ops;
2495 	unsigned int blocksize = i_blocksize(inode);
2496 	struct page *page;
2497 	void *fsdata = NULL;
2498 	pgoff_t index, curidx;
2499 	loff_t curpos;
2500 	unsigned zerofrom, offset, len;
2501 	int err = 0;
2502 
2503 	index = pos >> PAGE_SHIFT;
2504 	offset = pos & ~PAGE_MASK;
2505 
2506 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2507 		zerofrom = curpos & ~PAGE_MASK;
2508 		if (zerofrom & (blocksize-1)) {
2509 			*bytes |= (blocksize-1);
2510 			(*bytes)++;
2511 		}
2512 		len = PAGE_SIZE - zerofrom;
2513 
2514 		err = aops->write_begin(file, mapping, curpos, len,
2515 					    &page, &fsdata);
2516 		if (err)
2517 			goto out;
2518 		zero_user(page, zerofrom, len);
2519 		err = aops->write_end(file, mapping, curpos, len, len,
2520 						page, fsdata);
2521 		if (err < 0)
2522 			goto out;
2523 		BUG_ON(err != len);
2524 		err = 0;
2525 
2526 		balance_dirty_pages_ratelimited(mapping);
2527 
2528 		if (fatal_signal_pending(current)) {
2529 			err = -EINTR;
2530 			goto out;
2531 		}
2532 	}
2533 
2534 	/* page covers the boundary, find the boundary offset */
2535 	if (index == curidx) {
2536 		zerofrom = curpos & ~PAGE_MASK;
2537 		/* if we will expand the thing last block will be filled */
2538 		if (offset <= zerofrom) {
2539 			goto out;
2540 		}
2541 		if (zerofrom & (blocksize-1)) {
2542 			*bytes |= (blocksize-1);
2543 			(*bytes)++;
2544 		}
2545 		len = offset - zerofrom;
2546 
2547 		err = aops->write_begin(file, mapping, curpos, len,
2548 					    &page, &fsdata);
2549 		if (err)
2550 			goto out;
2551 		zero_user(page, zerofrom, len);
2552 		err = aops->write_end(file, mapping, curpos, len, len,
2553 						page, fsdata);
2554 		if (err < 0)
2555 			goto out;
2556 		BUG_ON(err != len);
2557 		err = 0;
2558 	}
2559 out:
2560 	return err;
2561 }
2562 
2563 /*
2564  * For moronic filesystems that do not allow holes in file.
2565  * We may have to extend the file.
2566  */
2567 int cont_write_begin(struct file *file, struct address_space *mapping,
2568 			loff_t pos, unsigned len,
2569 			struct page **pagep, void **fsdata,
2570 			get_block_t *get_block, loff_t *bytes)
2571 {
2572 	struct inode *inode = mapping->host;
2573 	unsigned int blocksize = i_blocksize(inode);
2574 	unsigned int zerofrom;
2575 	int err;
2576 
2577 	err = cont_expand_zero(file, mapping, pos, bytes);
2578 	if (err)
2579 		return err;
2580 
2581 	zerofrom = *bytes & ~PAGE_MASK;
2582 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2583 		*bytes |= (blocksize-1);
2584 		(*bytes)++;
2585 	}
2586 
2587 	return block_write_begin(mapping, pos, len, pagep, get_block);
2588 }
2589 EXPORT_SYMBOL(cont_write_begin);
2590 
2591 void block_commit_write(struct page *page, unsigned from, unsigned to)
2592 {
2593 	struct folio *folio = page_folio(page);
2594 	__block_commit_write(folio, from, to);
2595 }
2596 EXPORT_SYMBOL(block_commit_write);
2597 
2598 /*
2599  * block_page_mkwrite() is not allowed to change the file size as it gets
2600  * called from a page fault handler when a page is first dirtied. Hence we must
2601  * be careful to check for EOF conditions here. We set the page up correctly
2602  * for a written page which means we get ENOSPC checking when writing into
2603  * holes and correct delalloc and unwritten extent mapping on filesystems that
2604  * support these features.
2605  *
2606  * We are not allowed to take the i_mutex here so we have to play games to
2607  * protect against truncate races as the page could now be beyond EOF.  Because
2608  * truncate writes the inode size before removing pages, once we have the
2609  * page lock we can determine safely if the page is beyond EOF. If it is not
2610  * beyond EOF, then the page is guaranteed safe against truncation until we
2611  * unlock the page.
2612  *
2613  * Direct callers of this function should protect against filesystem freezing
2614  * using sb_start_pagefault() - sb_end_pagefault() functions.
2615  */
2616 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2617 			 get_block_t get_block)
2618 {
2619 	struct folio *folio = page_folio(vmf->page);
2620 	struct inode *inode = file_inode(vma->vm_file);
2621 	unsigned long end;
2622 	loff_t size;
2623 	int ret;
2624 
2625 	folio_lock(folio);
2626 	size = i_size_read(inode);
2627 	if ((folio->mapping != inode->i_mapping) ||
2628 	    (folio_pos(folio) >= size)) {
2629 		/* We overload EFAULT to mean page got truncated */
2630 		ret = -EFAULT;
2631 		goto out_unlock;
2632 	}
2633 
2634 	end = folio_size(folio);
2635 	/* folio is wholly or partially inside EOF */
2636 	if (folio_pos(folio) + end > size)
2637 		end = size - folio_pos(folio);
2638 
2639 	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2640 	if (unlikely(ret))
2641 		goto out_unlock;
2642 
2643 	__block_commit_write(folio, 0, end);
2644 
2645 	folio_mark_dirty(folio);
2646 	folio_wait_stable(folio);
2647 	return 0;
2648 out_unlock:
2649 	folio_unlock(folio);
2650 	return ret;
2651 }
2652 EXPORT_SYMBOL(block_page_mkwrite);
2653 
2654 int block_truncate_page(struct address_space *mapping,
2655 			loff_t from, get_block_t *get_block)
2656 {
2657 	pgoff_t index = from >> PAGE_SHIFT;
2658 	unsigned blocksize;
2659 	sector_t iblock;
2660 	size_t offset, length, pos;
2661 	struct inode *inode = mapping->host;
2662 	struct folio *folio;
2663 	struct buffer_head *bh;
2664 	int err = 0;
2665 
2666 	blocksize = i_blocksize(inode);
2667 	length = from & (blocksize - 1);
2668 
2669 	/* Block boundary? Nothing to do */
2670 	if (!length)
2671 		return 0;
2672 
2673 	length = blocksize - length;
2674 	iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2675 
2676 	folio = filemap_grab_folio(mapping, index);
2677 	if (IS_ERR(folio))
2678 		return PTR_ERR(folio);
2679 
2680 	bh = folio_buffers(folio);
2681 	if (!bh)
2682 		bh = create_empty_buffers(folio, blocksize, 0);
2683 
2684 	/* Find the buffer that contains "offset" */
2685 	offset = offset_in_folio(folio, from);
2686 	pos = blocksize;
2687 	while (offset >= pos) {
2688 		bh = bh->b_this_page;
2689 		iblock++;
2690 		pos += blocksize;
2691 	}
2692 
2693 	if (!buffer_mapped(bh)) {
2694 		WARN_ON(bh->b_size != blocksize);
2695 		err = get_block(inode, iblock, bh, 0);
2696 		if (err)
2697 			goto unlock;
2698 		/* unmapped? It's a hole - nothing to do */
2699 		if (!buffer_mapped(bh))
2700 			goto unlock;
2701 	}
2702 
2703 	/* Ok, it's mapped. Make sure it's up-to-date */
2704 	if (folio_test_uptodate(folio))
2705 		set_buffer_uptodate(bh);
2706 
2707 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2708 		err = bh_read(bh, 0);
2709 		/* Uhhuh. Read error. Complain and punt. */
2710 		if (err < 0)
2711 			goto unlock;
2712 	}
2713 
2714 	folio_zero_range(folio, offset, length);
2715 	mark_buffer_dirty(bh);
2716 
2717 unlock:
2718 	folio_unlock(folio);
2719 	folio_put(folio);
2720 
2721 	return err;
2722 }
2723 EXPORT_SYMBOL(block_truncate_page);
2724 
2725 /*
2726  * The generic ->writepage function for buffer-backed address_spaces
2727  */
2728 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2729 		void *get_block)
2730 {
2731 	struct inode * const inode = folio->mapping->host;
2732 	loff_t i_size = i_size_read(inode);
2733 
2734 	/* Is the folio fully inside i_size? */
2735 	if (folio_pos(folio) + folio_size(folio) <= i_size)
2736 		return __block_write_full_folio(inode, folio, get_block, wbc);
2737 
2738 	/* Is the folio fully outside i_size? (truncate in progress) */
2739 	if (folio_pos(folio) >= i_size) {
2740 		folio_unlock(folio);
2741 		return 0; /* don't care */
2742 	}
2743 
2744 	/*
2745 	 * The folio straddles i_size.  It must be zeroed out on each and every
2746 	 * writepage invocation because it may be mmapped.  "A file is mapped
2747 	 * in multiples of the page size.  For a file that is not a multiple of
2748 	 * the page size, the remaining memory is zeroed when mapped, and
2749 	 * writes to that region are not written out to the file."
2750 	 */
2751 	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2752 			folio_size(folio));
2753 	return __block_write_full_folio(inode, folio, get_block, wbc);
2754 }
2755 
2756 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2757 			    get_block_t *get_block)
2758 {
2759 	struct inode *inode = mapping->host;
2760 	struct buffer_head tmp = {
2761 		.b_size = i_blocksize(inode),
2762 	};
2763 
2764 	get_block(inode, block, &tmp, 0);
2765 	return tmp.b_blocknr;
2766 }
2767 EXPORT_SYMBOL(generic_block_bmap);
2768 
2769 static void end_bio_bh_io_sync(struct bio *bio)
2770 {
2771 	struct buffer_head *bh = bio->bi_private;
2772 
2773 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2774 		set_bit(BH_Quiet, &bh->b_state);
2775 
2776 	bh->b_end_io(bh, !bio->bi_status);
2777 	bio_put(bio);
2778 }
2779 
2780 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2781 			  enum rw_hint write_hint,
2782 			  struct writeback_control *wbc)
2783 {
2784 	const enum req_op op = opf & REQ_OP_MASK;
2785 	struct bio *bio;
2786 
2787 	BUG_ON(!buffer_locked(bh));
2788 	BUG_ON(!buffer_mapped(bh));
2789 	BUG_ON(!bh->b_end_io);
2790 	BUG_ON(buffer_delay(bh));
2791 	BUG_ON(buffer_unwritten(bh));
2792 
2793 	/*
2794 	 * Only clear out a write error when rewriting
2795 	 */
2796 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2797 		clear_buffer_write_io_error(bh);
2798 
2799 	if (buffer_meta(bh))
2800 		opf |= REQ_META;
2801 	if (buffer_prio(bh))
2802 		opf |= REQ_PRIO;
2803 
2804 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2805 
2806 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2807 
2808 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2809 	bio->bi_write_hint = write_hint;
2810 
2811 	__bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2812 
2813 	bio->bi_end_io = end_bio_bh_io_sync;
2814 	bio->bi_private = bh;
2815 
2816 	/* Take care of bh's that straddle the end of the device */
2817 	guard_bio_eod(bio);
2818 
2819 	if (wbc) {
2820 		wbc_init_bio(wbc, bio);
2821 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2822 	}
2823 
2824 	submit_bio(bio);
2825 }
2826 
2827 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2828 {
2829 	submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2830 }
2831 EXPORT_SYMBOL(submit_bh);
2832 
2833 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2834 {
2835 	lock_buffer(bh);
2836 	if (!test_clear_buffer_dirty(bh)) {
2837 		unlock_buffer(bh);
2838 		return;
2839 	}
2840 	bh->b_end_io = end_buffer_write_sync;
2841 	get_bh(bh);
2842 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2843 }
2844 EXPORT_SYMBOL(write_dirty_buffer);
2845 
2846 /*
2847  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2848  * and then start new I/O and then wait upon it.  The caller must have a ref on
2849  * the buffer_head.
2850  */
2851 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2852 {
2853 	WARN_ON(atomic_read(&bh->b_count) < 1);
2854 	lock_buffer(bh);
2855 	if (test_clear_buffer_dirty(bh)) {
2856 		/*
2857 		 * The bh should be mapped, but it might not be if the
2858 		 * device was hot-removed. Not much we can do but fail the I/O.
2859 		 */
2860 		if (!buffer_mapped(bh)) {
2861 			unlock_buffer(bh);
2862 			return -EIO;
2863 		}
2864 
2865 		get_bh(bh);
2866 		bh->b_end_io = end_buffer_write_sync;
2867 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2868 		wait_on_buffer(bh);
2869 		if (!buffer_uptodate(bh))
2870 			return -EIO;
2871 	} else {
2872 		unlock_buffer(bh);
2873 	}
2874 	return 0;
2875 }
2876 EXPORT_SYMBOL(__sync_dirty_buffer);
2877 
2878 int sync_dirty_buffer(struct buffer_head *bh)
2879 {
2880 	return __sync_dirty_buffer(bh, REQ_SYNC);
2881 }
2882 EXPORT_SYMBOL(sync_dirty_buffer);
2883 
2884 static inline int buffer_busy(struct buffer_head *bh)
2885 {
2886 	return atomic_read(&bh->b_count) |
2887 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2888 }
2889 
2890 static bool
2891 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2892 {
2893 	struct buffer_head *head = folio_buffers(folio);
2894 	struct buffer_head *bh;
2895 
2896 	bh = head;
2897 	do {
2898 		if (buffer_busy(bh))
2899 			goto failed;
2900 		bh = bh->b_this_page;
2901 	} while (bh != head);
2902 
2903 	do {
2904 		struct buffer_head *next = bh->b_this_page;
2905 
2906 		if (bh->b_assoc_map)
2907 			__remove_assoc_queue(bh);
2908 		bh = next;
2909 	} while (bh != head);
2910 	*buffers_to_free = head;
2911 	folio_detach_private(folio);
2912 	return true;
2913 failed:
2914 	return false;
2915 }
2916 
2917 /**
2918  * try_to_free_buffers - Release buffers attached to this folio.
2919  * @folio: The folio.
2920  *
2921  * If any buffers are in use (dirty, under writeback, elevated refcount),
2922  * no buffers will be freed.
2923  *
2924  * If the folio is dirty but all the buffers are clean then we need to
2925  * be sure to mark the folio clean as well.  This is because the folio
2926  * may be against a block device, and a later reattachment of buffers
2927  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2928  * filesystem data on the same device.
2929  *
2930  * The same applies to regular filesystem folios: if all the buffers are
2931  * clean then we set the folio clean and proceed.  To do that, we require
2932  * total exclusion from block_dirty_folio().  That is obtained with
2933  * i_private_lock.
2934  *
2935  * Exclusion against try_to_free_buffers may be obtained by either
2936  * locking the folio or by holding its mapping's i_private_lock.
2937  *
2938  * Context: Process context.  @folio must be locked.  Will not sleep.
2939  * Return: true if all buffers attached to this folio were freed.
2940  */
2941 bool try_to_free_buffers(struct folio *folio)
2942 {
2943 	struct address_space * const mapping = folio->mapping;
2944 	struct buffer_head *buffers_to_free = NULL;
2945 	bool ret = 0;
2946 
2947 	BUG_ON(!folio_test_locked(folio));
2948 	if (folio_test_writeback(folio))
2949 		return false;
2950 
2951 	if (mapping == NULL) {		/* can this still happen? */
2952 		ret = drop_buffers(folio, &buffers_to_free);
2953 		goto out;
2954 	}
2955 
2956 	spin_lock(&mapping->i_private_lock);
2957 	ret = drop_buffers(folio, &buffers_to_free);
2958 
2959 	/*
2960 	 * If the filesystem writes its buffers by hand (eg ext3)
2961 	 * then we can have clean buffers against a dirty folio.  We
2962 	 * clean the folio here; otherwise the VM will never notice
2963 	 * that the filesystem did any IO at all.
2964 	 *
2965 	 * Also, during truncate, discard_buffer will have marked all
2966 	 * the folio's buffers clean.  We discover that here and clean
2967 	 * the folio also.
2968 	 *
2969 	 * i_private_lock must be held over this entire operation in order
2970 	 * to synchronise against block_dirty_folio and prevent the
2971 	 * dirty bit from being lost.
2972 	 */
2973 	if (ret)
2974 		folio_cancel_dirty(folio);
2975 	spin_unlock(&mapping->i_private_lock);
2976 out:
2977 	if (buffers_to_free) {
2978 		struct buffer_head *bh = buffers_to_free;
2979 
2980 		do {
2981 			struct buffer_head *next = bh->b_this_page;
2982 			free_buffer_head(bh);
2983 			bh = next;
2984 		} while (bh != buffers_to_free);
2985 	}
2986 	return ret;
2987 }
2988 EXPORT_SYMBOL(try_to_free_buffers);
2989 
2990 /*
2991  * Buffer-head allocation
2992  */
2993 static struct kmem_cache *bh_cachep __ro_after_init;
2994 
2995 /*
2996  * Once the number of bh's in the machine exceeds this level, we start
2997  * stripping them in writeback.
2998  */
2999 static unsigned long max_buffer_heads __ro_after_init;
3000 
3001 int buffer_heads_over_limit;
3002 
3003 struct bh_accounting {
3004 	int nr;			/* Number of live bh's */
3005 	int ratelimit;		/* Limit cacheline bouncing */
3006 };
3007 
3008 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3009 
3010 static void recalc_bh_state(void)
3011 {
3012 	int i;
3013 	int tot = 0;
3014 
3015 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3016 		return;
3017 	__this_cpu_write(bh_accounting.ratelimit, 0);
3018 	for_each_online_cpu(i)
3019 		tot += per_cpu(bh_accounting, i).nr;
3020 	buffer_heads_over_limit = (tot > max_buffer_heads);
3021 }
3022 
3023 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3024 {
3025 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3026 	if (ret) {
3027 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3028 		spin_lock_init(&ret->b_uptodate_lock);
3029 		preempt_disable();
3030 		__this_cpu_inc(bh_accounting.nr);
3031 		recalc_bh_state();
3032 		preempt_enable();
3033 	}
3034 	return ret;
3035 }
3036 EXPORT_SYMBOL(alloc_buffer_head);
3037 
3038 void free_buffer_head(struct buffer_head *bh)
3039 {
3040 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3041 	kmem_cache_free(bh_cachep, bh);
3042 	preempt_disable();
3043 	__this_cpu_dec(bh_accounting.nr);
3044 	recalc_bh_state();
3045 	preempt_enable();
3046 }
3047 EXPORT_SYMBOL(free_buffer_head);
3048 
3049 static int buffer_exit_cpu_dead(unsigned int cpu)
3050 {
3051 	int i;
3052 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3053 
3054 	for (i = 0; i < BH_LRU_SIZE; i++) {
3055 		brelse(b->bhs[i]);
3056 		b->bhs[i] = NULL;
3057 	}
3058 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3059 	per_cpu(bh_accounting, cpu).nr = 0;
3060 	return 0;
3061 }
3062 
3063 /**
3064  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3065  * @bh: struct buffer_head
3066  *
3067  * Return true if the buffer is up-to-date and false,
3068  * with the buffer locked, if not.
3069  */
3070 int bh_uptodate_or_lock(struct buffer_head *bh)
3071 {
3072 	if (!buffer_uptodate(bh)) {
3073 		lock_buffer(bh);
3074 		if (!buffer_uptodate(bh))
3075 			return 0;
3076 		unlock_buffer(bh);
3077 	}
3078 	return 1;
3079 }
3080 EXPORT_SYMBOL(bh_uptodate_or_lock);
3081 
3082 /**
3083  * __bh_read - Submit read for a locked buffer
3084  * @bh: struct buffer_head
3085  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3086  * @wait: wait until reading finish
3087  *
3088  * Returns zero on success or don't wait, and -EIO on error.
3089  */
3090 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3091 {
3092 	int ret = 0;
3093 
3094 	BUG_ON(!buffer_locked(bh));
3095 
3096 	get_bh(bh);
3097 	bh->b_end_io = end_buffer_read_sync;
3098 	submit_bh(REQ_OP_READ | op_flags, bh);
3099 	if (wait) {
3100 		wait_on_buffer(bh);
3101 		if (!buffer_uptodate(bh))
3102 			ret = -EIO;
3103 	}
3104 	return ret;
3105 }
3106 EXPORT_SYMBOL(__bh_read);
3107 
3108 /**
3109  * __bh_read_batch - Submit read for a batch of unlocked buffers
3110  * @nr: entry number of the buffer batch
3111  * @bhs: a batch of struct buffer_head
3112  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3113  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3114  *              buffer that cannot lock.
3115  *
3116  * Returns zero on success or don't wait, and -EIO on error.
3117  */
3118 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3119 		     blk_opf_t op_flags, bool force_lock)
3120 {
3121 	int i;
3122 
3123 	for (i = 0; i < nr; i++) {
3124 		struct buffer_head *bh = bhs[i];
3125 
3126 		if (buffer_uptodate(bh))
3127 			continue;
3128 
3129 		if (force_lock)
3130 			lock_buffer(bh);
3131 		else
3132 			if (!trylock_buffer(bh))
3133 				continue;
3134 
3135 		if (buffer_uptodate(bh)) {
3136 			unlock_buffer(bh);
3137 			continue;
3138 		}
3139 
3140 		bh->b_end_io = end_buffer_read_sync;
3141 		get_bh(bh);
3142 		submit_bh(REQ_OP_READ | op_flags, bh);
3143 	}
3144 }
3145 EXPORT_SYMBOL(__bh_read_batch);
3146 
3147 void __init buffer_init(void)
3148 {
3149 	unsigned long nrpages;
3150 	int ret;
3151 
3152 	bh_cachep = KMEM_CACHE(buffer_head,
3153 				SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3154 	/*
3155 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3156 	 */
3157 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3158 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3159 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3160 					NULL, buffer_exit_cpu_dead);
3161 	WARN_ON(ret < 0);
3162 }
3163