xref: /linux/fs/buffer.c (revision 4e94ddfe2aab72139acb8d5372fac9e6c3f3e383)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53 
54 #include "internal.h"
55 
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 			  struct writeback_control *wbc);
59 
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61 
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 	trace_block_touch_buffer(bh);
65 	folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68 
69 void __lock_buffer(struct buffer_head *bh)
70 {
71 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74 
75 void unlock_buffer(struct buffer_head *bh)
76 {
77 	clear_bit_unlock(BH_Lock, &bh->b_state);
78 	smp_mb__after_atomic();
79 	wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82 
83 /*
84  * Returns if the folio has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the folio_test_dirty information is stale. If
86  * any of the buffers are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct folio *folio,
89 				     bool *dirty, bool *writeback)
90 {
91 	struct buffer_head *head, *bh;
92 	*dirty = false;
93 	*writeback = false;
94 
95 	BUG_ON(!folio_test_locked(folio));
96 
97 	head = folio_buffers(folio);
98 	if (!head)
99 		return;
100 
101 	if (folio_test_writeback(folio))
102 		*writeback = true;
103 
104 	bh = head;
105 	do {
106 		if (buffer_locked(bh))
107 			*writeback = true;
108 
109 		if (buffer_dirty(bh))
110 			*dirty = true;
111 
112 		bh = bh->b_this_page;
113 	} while (bh != head);
114 }
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 	if (!test_bit(BH_Quiet, &bh->b_state))
130 		printk_ratelimited(KERN_ERR
131 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
132 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		/* This happens, due to failed read-ahead attempts. */
149 		clear_buffer_uptodate(bh);
150 	}
151 	unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 	__end_buffer_read_notouch(bh, uptodate);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 	if (uptodate) {
168 		set_buffer_uptodate(bh);
169 	} else {
170 		buffer_io_error(bh, ", lost sync page write");
171 		mark_buffer_write_io_error(bh);
172 		clear_buffer_uptodate(bh);
173 	}
174 	unlock_buffer(bh);
175 	put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * private_lock.
184  *
185  * Hack idea: for the blockdev mapping, private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 	struct inode *bd_inode = bdev->bd_inode;
193 	struct address_space *bd_mapping = bd_inode->i_mapping;
194 	struct buffer_head *ret = NULL;
195 	pgoff_t index;
196 	struct buffer_head *bh;
197 	struct buffer_head *head;
198 	struct folio *folio;
199 	int all_mapped = 1;
200 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201 
202 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203 	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 	if (IS_ERR(folio))
205 		goto out;
206 
207 	spin_lock(&bd_mapping->private_lock);
208 	head = folio_buffers(folio);
209 	if (!head)
210 		goto out_unlock;
211 	bh = head;
212 	do {
213 		if (!buffer_mapped(bh))
214 			all_mapped = 0;
215 		else if (bh->b_blocknr == block) {
216 			ret = bh;
217 			get_bh(bh);
218 			goto out_unlock;
219 		}
220 		bh = bh->b_this_page;
221 	} while (bh != head);
222 
223 	/* we might be here because some of the buffers on this page are
224 	 * not mapped.  This is due to various races between
225 	 * file io on the block device and getblk.  It gets dealt with
226 	 * elsewhere, don't buffer_error if we had some unmapped buffers
227 	 */
228 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 	if (all_mapped && __ratelimit(&last_warned)) {
230 		printk("__find_get_block_slow() failed. block=%llu, "
231 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 		       "device %pg blocksize: %d\n",
233 		       (unsigned long long)block,
234 		       (unsigned long long)bh->b_blocknr,
235 		       bh->b_state, bh->b_size, bdev,
236 		       1 << bd_inode->i_blkbits);
237 	}
238 out_unlock:
239 	spin_unlock(&bd_mapping->private_lock);
240 	folio_put(folio);
241 out:
242 	return ret;
243 }
244 
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 	unsigned long flags;
248 	struct buffer_head *first;
249 	struct buffer_head *tmp;
250 	struct folio *folio;
251 	int folio_uptodate = 1;
252 
253 	BUG_ON(!buffer_async_read(bh));
254 
255 	folio = bh->b_folio;
256 	if (uptodate) {
257 		set_buffer_uptodate(bh);
258 	} else {
259 		clear_buffer_uptodate(bh);
260 		buffer_io_error(bh, ", async page read");
261 		folio_set_error(folio);
262 	}
263 
264 	/*
265 	 * Be _very_ careful from here on. Bad things can happen if
266 	 * two buffer heads end IO at almost the same time and both
267 	 * decide that the page is now completely done.
268 	 */
269 	first = folio_buffers(folio);
270 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
271 	clear_buffer_async_read(bh);
272 	unlock_buffer(bh);
273 	tmp = bh;
274 	do {
275 		if (!buffer_uptodate(tmp))
276 			folio_uptodate = 0;
277 		if (buffer_async_read(tmp)) {
278 			BUG_ON(!buffer_locked(tmp));
279 			goto still_busy;
280 		}
281 		tmp = tmp->b_this_page;
282 	} while (tmp != bh);
283 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284 
285 	folio_end_read(folio, folio_uptodate);
286 	return;
287 
288 still_busy:
289 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
290 	return;
291 }
292 
293 struct postprocess_bh_ctx {
294 	struct work_struct work;
295 	struct buffer_head *bh;
296 };
297 
298 static void verify_bh(struct work_struct *work)
299 {
300 	struct postprocess_bh_ctx *ctx =
301 		container_of(work, struct postprocess_bh_ctx, work);
302 	struct buffer_head *bh = ctx->bh;
303 	bool valid;
304 
305 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
306 	end_buffer_async_read(bh, valid);
307 	kfree(ctx);
308 }
309 
310 static bool need_fsverity(struct buffer_head *bh)
311 {
312 	struct folio *folio = bh->b_folio;
313 	struct inode *inode = folio->mapping->host;
314 
315 	return fsverity_active(inode) &&
316 		/* needed by ext4 */
317 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
318 }
319 
320 static void decrypt_bh(struct work_struct *work)
321 {
322 	struct postprocess_bh_ctx *ctx =
323 		container_of(work, struct postprocess_bh_ctx, work);
324 	struct buffer_head *bh = ctx->bh;
325 	int err;
326 
327 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
328 					       bh_offset(bh));
329 	if (err == 0 && need_fsverity(bh)) {
330 		/*
331 		 * We use different work queues for decryption and for verity
332 		 * because verity may require reading metadata pages that need
333 		 * decryption, and we shouldn't recurse to the same workqueue.
334 		 */
335 		INIT_WORK(&ctx->work, verify_bh);
336 		fsverity_enqueue_verify_work(&ctx->work);
337 		return;
338 	}
339 	end_buffer_async_read(bh, err == 0);
340 	kfree(ctx);
341 }
342 
343 /*
344  * I/O completion handler for block_read_full_folio() - pages
345  * which come unlocked at the end of I/O.
346  */
347 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
348 {
349 	struct inode *inode = bh->b_folio->mapping->host;
350 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
351 	bool verify = need_fsverity(bh);
352 
353 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
354 	if (uptodate && (decrypt || verify)) {
355 		struct postprocess_bh_ctx *ctx =
356 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
357 
358 		if (ctx) {
359 			ctx->bh = bh;
360 			if (decrypt) {
361 				INIT_WORK(&ctx->work, decrypt_bh);
362 				fscrypt_enqueue_decrypt_work(&ctx->work);
363 			} else {
364 				INIT_WORK(&ctx->work, verify_bh);
365 				fsverity_enqueue_verify_work(&ctx->work);
366 			}
367 			return;
368 		}
369 		uptodate = 0;
370 	}
371 	end_buffer_async_read(bh, uptodate);
372 }
373 
374 /*
375  * Completion handler for block_write_full_page() - pages which are unlocked
376  * during I/O, and which have PageWriteback cleared upon I/O completion.
377  */
378 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
379 {
380 	unsigned long flags;
381 	struct buffer_head *first;
382 	struct buffer_head *tmp;
383 	struct folio *folio;
384 
385 	BUG_ON(!buffer_async_write(bh));
386 
387 	folio = bh->b_folio;
388 	if (uptodate) {
389 		set_buffer_uptodate(bh);
390 	} else {
391 		buffer_io_error(bh, ", lost async page write");
392 		mark_buffer_write_io_error(bh);
393 		clear_buffer_uptodate(bh);
394 		folio_set_error(folio);
395 	}
396 
397 	first = folio_buffers(folio);
398 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
399 
400 	clear_buffer_async_write(bh);
401 	unlock_buffer(bh);
402 	tmp = bh->b_this_page;
403 	while (tmp != bh) {
404 		if (buffer_async_write(tmp)) {
405 			BUG_ON(!buffer_locked(tmp));
406 			goto still_busy;
407 		}
408 		tmp = tmp->b_this_page;
409 	}
410 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
411 	folio_end_writeback(folio);
412 	return;
413 
414 still_busy:
415 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416 	return;
417 }
418 EXPORT_SYMBOL(end_buffer_async_write);
419 
420 /*
421  * If a page's buffers are under async readin (end_buffer_async_read
422  * completion) then there is a possibility that another thread of
423  * control could lock one of the buffers after it has completed
424  * but while some of the other buffers have not completed.  This
425  * locked buffer would confuse end_buffer_async_read() into not unlocking
426  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
427  * that this buffer is not under async I/O.
428  *
429  * The page comes unlocked when it has no locked buffer_async buffers
430  * left.
431  *
432  * PageLocked prevents anyone starting new async I/O reads any of
433  * the buffers.
434  *
435  * PageWriteback is used to prevent simultaneous writeout of the same
436  * page.
437  *
438  * PageLocked prevents anyone from starting writeback of a page which is
439  * under read I/O (PageWriteback is only ever set against a locked page).
440  */
441 static void mark_buffer_async_read(struct buffer_head *bh)
442 {
443 	bh->b_end_io = end_buffer_async_read_io;
444 	set_buffer_async_read(bh);
445 }
446 
447 static void mark_buffer_async_write_endio(struct buffer_head *bh,
448 					  bh_end_io_t *handler)
449 {
450 	bh->b_end_io = handler;
451 	set_buffer_async_write(bh);
452 }
453 
454 void mark_buffer_async_write(struct buffer_head *bh)
455 {
456 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
457 }
458 EXPORT_SYMBOL(mark_buffer_async_write);
459 
460 
461 /*
462  * fs/buffer.c contains helper functions for buffer-backed address space's
463  * fsync functions.  A common requirement for buffer-based filesystems is
464  * that certain data from the backing blockdev needs to be written out for
465  * a successful fsync().  For example, ext2 indirect blocks need to be
466  * written back and waited upon before fsync() returns.
467  *
468  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
469  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
470  * management of a list of dependent buffers at ->i_mapping->private_list.
471  *
472  * Locking is a little subtle: try_to_free_buffers() will remove buffers
473  * from their controlling inode's queue when they are being freed.  But
474  * try_to_free_buffers() will be operating against the *blockdev* mapping
475  * at the time, not against the S_ISREG file which depends on those buffers.
476  * So the locking for private_list is via the private_lock in the address_space
477  * which backs the buffers.  Which is different from the address_space
478  * against which the buffers are listed.  So for a particular address_space,
479  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
480  * mapping->private_list will always be protected by the backing blockdev's
481  * ->private_lock.
482  *
483  * Which introduces a requirement: all buffers on an address_space's
484  * ->private_list must be from the same address_space: the blockdev's.
485  *
486  * address_spaces which do not place buffers at ->private_list via these
487  * utility functions are free to use private_lock and private_list for
488  * whatever they want.  The only requirement is that list_empty(private_list)
489  * be true at clear_inode() time.
490  *
491  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
492  * filesystems should do that.  invalidate_inode_buffers() should just go
493  * BUG_ON(!list_empty).
494  *
495  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
496  * take an address_space, not an inode.  And it should be called
497  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
498  * queued up.
499  *
500  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
501  * list if it is already on a list.  Because if the buffer is on a list,
502  * it *must* already be on the right one.  If not, the filesystem is being
503  * silly.  This will save a ton of locking.  But first we have to ensure
504  * that buffers are taken *off* the old inode's list when they are freed
505  * (presumably in truncate).  That requires careful auditing of all
506  * filesystems (do it inside bforget()).  It could also be done by bringing
507  * b_inode back.
508  */
509 
510 /*
511  * The buffer's backing address_space's private_lock must be held
512  */
513 static void __remove_assoc_queue(struct buffer_head *bh)
514 {
515 	list_del_init(&bh->b_assoc_buffers);
516 	WARN_ON(!bh->b_assoc_map);
517 	bh->b_assoc_map = NULL;
518 }
519 
520 int inode_has_buffers(struct inode *inode)
521 {
522 	return !list_empty(&inode->i_data.private_list);
523 }
524 
525 /*
526  * osync is designed to support O_SYNC io.  It waits synchronously for
527  * all already-submitted IO to complete, but does not queue any new
528  * writes to the disk.
529  *
530  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
531  * as you dirty the buffers, and then use osync_inode_buffers to wait for
532  * completion.  Any other dirty buffers which are not yet queued for
533  * write will not be flushed to disk by the osync.
534  */
535 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
536 {
537 	struct buffer_head *bh;
538 	struct list_head *p;
539 	int err = 0;
540 
541 	spin_lock(lock);
542 repeat:
543 	list_for_each_prev(p, list) {
544 		bh = BH_ENTRY(p);
545 		if (buffer_locked(bh)) {
546 			get_bh(bh);
547 			spin_unlock(lock);
548 			wait_on_buffer(bh);
549 			if (!buffer_uptodate(bh))
550 				err = -EIO;
551 			brelse(bh);
552 			spin_lock(lock);
553 			goto repeat;
554 		}
555 	}
556 	spin_unlock(lock);
557 	return err;
558 }
559 
560 /**
561  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
562  * @mapping: the mapping which wants those buffers written
563  *
564  * Starts I/O against the buffers at mapping->private_list, and waits upon
565  * that I/O.
566  *
567  * Basically, this is a convenience function for fsync().
568  * @mapping is a file or directory which needs those buffers to be written for
569  * a successful fsync().
570  */
571 int sync_mapping_buffers(struct address_space *mapping)
572 {
573 	struct address_space *buffer_mapping = mapping->private_data;
574 
575 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
576 		return 0;
577 
578 	return fsync_buffers_list(&buffer_mapping->private_lock,
579 					&mapping->private_list);
580 }
581 EXPORT_SYMBOL(sync_mapping_buffers);
582 
583 /**
584  * generic_buffers_fsync_noflush - generic buffer fsync implementation
585  * for simple filesystems with no inode lock
586  *
587  * @file:	file to synchronize
588  * @start:	start offset in bytes
589  * @end:	end offset in bytes (inclusive)
590  * @datasync:	only synchronize essential metadata if true
591  *
592  * This is a generic implementation of the fsync method for simple
593  * filesystems which track all non-inode metadata in the buffers list
594  * hanging off the address_space structure.
595  */
596 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
597 				  bool datasync)
598 {
599 	struct inode *inode = file->f_mapping->host;
600 	int err;
601 	int ret;
602 
603 	err = file_write_and_wait_range(file, start, end);
604 	if (err)
605 		return err;
606 
607 	ret = sync_mapping_buffers(inode->i_mapping);
608 	if (!(inode->i_state & I_DIRTY_ALL))
609 		goto out;
610 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
611 		goto out;
612 
613 	err = sync_inode_metadata(inode, 1);
614 	if (ret == 0)
615 		ret = err;
616 
617 out:
618 	/* check and advance again to catch errors after syncing out buffers */
619 	err = file_check_and_advance_wb_err(file);
620 	if (ret == 0)
621 		ret = err;
622 	return ret;
623 }
624 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
625 
626 /**
627  * generic_buffers_fsync - generic buffer fsync implementation
628  * for simple filesystems with no inode lock
629  *
630  * @file:	file to synchronize
631  * @start:	start offset in bytes
632  * @end:	end offset in bytes (inclusive)
633  * @datasync:	only synchronize essential metadata if true
634  *
635  * This is a generic implementation of the fsync method for simple
636  * filesystems which track all non-inode metadata in the buffers list
637  * hanging off the address_space structure. This also makes sure that
638  * a device cache flush operation is called at the end.
639  */
640 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
641 			  bool datasync)
642 {
643 	struct inode *inode = file->f_mapping->host;
644 	int ret;
645 
646 	ret = generic_buffers_fsync_noflush(file, start, end, datasync);
647 	if (!ret)
648 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
649 	return ret;
650 }
651 EXPORT_SYMBOL(generic_buffers_fsync);
652 
653 /*
654  * Called when we've recently written block `bblock', and it is known that
655  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
656  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
657  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
658  */
659 void write_boundary_block(struct block_device *bdev,
660 			sector_t bblock, unsigned blocksize)
661 {
662 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
663 	if (bh) {
664 		if (buffer_dirty(bh))
665 			write_dirty_buffer(bh, 0);
666 		put_bh(bh);
667 	}
668 }
669 
670 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
671 {
672 	struct address_space *mapping = inode->i_mapping;
673 	struct address_space *buffer_mapping = bh->b_folio->mapping;
674 
675 	mark_buffer_dirty(bh);
676 	if (!mapping->private_data) {
677 		mapping->private_data = buffer_mapping;
678 	} else {
679 		BUG_ON(mapping->private_data != buffer_mapping);
680 	}
681 	if (!bh->b_assoc_map) {
682 		spin_lock(&buffer_mapping->private_lock);
683 		list_move_tail(&bh->b_assoc_buffers,
684 				&mapping->private_list);
685 		bh->b_assoc_map = mapping;
686 		spin_unlock(&buffer_mapping->private_lock);
687 	}
688 }
689 EXPORT_SYMBOL(mark_buffer_dirty_inode);
690 
691 /*
692  * Add a page to the dirty page list.
693  *
694  * It is a sad fact of life that this function is called from several places
695  * deeply under spinlocking.  It may not sleep.
696  *
697  * If the page has buffers, the uptodate buffers are set dirty, to preserve
698  * dirty-state coherency between the page and the buffers.  It the page does
699  * not have buffers then when they are later attached they will all be set
700  * dirty.
701  *
702  * The buffers are dirtied before the page is dirtied.  There's a small race
703  * window in which a writepage caller may see the page cleanness but not the
704  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
705  * before the buffers, a concurrent writepage caller could clear the page dirty
706  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
707  * page on the dirty page list.
708  *
709  * We use private_lock to lock against try_to_free_buffers while using the
710  * page's buffer list.  Also use this to protect against clean buffers being
711  * added to the page after it was set dirty.
712  *
713  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
714  * address_space though.
715  */
716 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
717 {
718 	struct buffer_head *head;
719 	bool newly_dirty;
720 
721 	spin_lock(&mapping->private_lock);
722 	head = folio_buffers(folio);
723 	if (head) {
724 		struct buffer_head *bh = head;
725 
726 		do {
727 			set_buffer_dirty(bh);
728 			bh = bh->b_this_page;
729 		} while (bh != head);
730 	}
731 	/*
732 	 * Lock out page's memcg migration to keep PageDirty
733 	 * synchronized with per-memcg dirty page counters.
734 	 */
735 	folio_memcg_lock(folio);
736 	newly_dirty = !folio_test_set_dirty(folio);
737 	spin_unlock(&mapping->private_lock);
738 
739 	if (newly_dirty)
740 		__folio_mark_dirty(folio, mapping, 1);
741 
742 	folio_memcg_unlock(folio);
743 
744 	if (newly_dirty)
745 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
746 
747 	return newly_dirty;
748 }
749 EXPORT_SYMBOL(block_dirty_folio);
750 
751 /*
752  * Write out and wait upon a list of buffers.
753  *
754  * We have conflicting pressures: we want to make sure that all
755  * initially dirty buffers get waited on, but that any subsequently
756  * dirtied buffers don't.  After all, we don't want fsync to last
757  * forever if somebody is actively writing to the file.
758  *
759  * Do this in two main stages: first we copy dirty buffers to a
760  * temporary inode list, queueing the writes as we go.  Then we clean
761  * up, waiting for those writes to complete.
762  *
763  * During this second stage, any subsequent updates to the file may end
764  * up refiling the buffer on the original inode's dirty list again, so
765  * there is a chance we will end up with a buffer queued for write but
766  * not yet completed on that list.  So, as a final cleanup we go through
767  * the osync code to catch these locked, dirty buffers without requeuing
768  * any newly dirty buffers for write.
769  */
770 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
771 {
772 	struct buffer_head *bh;
773 	struct list_head tmp;
774 	struct address_space *mapping;
775 	int err = 0, err2;
776 	struct blk_plug plug;
777 
778 	INIT_LIST_HEAD(&tmp);
779 	blk_start_plug(&plug);
780 
781 	spin_lock(lock);
782 	while (!list_empty(list)) {
783 		bh = BH_ENTRY(list->next);
784 		mapping = bh->b_assoc_map;
785 		__remove_assoc_queue(bh);
786 		/* Avoid race with mark_buffer_dirty_inode() which does
787 		 * a lockless check and we rely on seeing the dirty bit */
788 		smp_mb();
789 		if (buffer_dirty(bh) || buffer_locked(bh)) {
790 			list_add(&bh->b_assoc_buffers, &tmp);
791 			bh->b_assoc_map = mapping;
792 			if (buffer_dirty(bh)) {
793 				get_bh(bh);
794 				spin_unlock(lock);
795 				/*
796 				 * Ensure any pending I/O completes so that
797 				 * write_dirty_buffer() actually writes the
798 				 * current contents - it is a noop if I/O is
799 				 * still in flight on potentially older
800 				 * contents.
801 				 */
802 				write_dirty_buffer(bh, REQ_SYNC);
803 
804 				/*
805 				 * Kick off IO for the previous mapping. Note
806 				 * that we will not run the very last mapping,
807 				 * wait_on_buffer() will do that for us
808 				 * through sync_buffer().
809 				 */
810 				brelse(bh);
811 				spin_lock(lock);
812 			}
813 		}
814 	}
815 
816 	spin_unlock(lock);
817 	blk_finish_plug(&plug);
818 	spin_lock(lock);
819 
820 	while (!list_empty(&tmp)) {
821 		bh = BH_ENTRY(tmp.prev);
822 		get_bh(bh);
823 		mapping = bh->b_assoc_map;
824 		__remove_assoc_queue(bh);
825 		/* Avoid race with mark_buffer_dirty_inode() which does
826 		 * a lockless check and we rely on seeing the dirty bit */
827 		smp_mb();
828 		if (buffer_dirty(bh)) {
829 			list_add(&bh->b_assoc_buffers,
830 				 &mapping->private_list);
831 			bh->b_assoc_map = mapping;
832 		}
833 		spin_unlock(lock);
834 		wait_on_buffer(bh);
835 		if (!buffer_uptodate(bh))
836 			err = -EIO;
837 		brelse(bh);
838 		spin_lock(lock);
839 	}
840 
841 	spin_unlock(lock);
842 	err2 = osync_buffers_list(lock, list);
843 	if (err)
844 		return err;
845 	else
846 		return err2;
847 }
848 
849 /*
850  * Invalidate any and all dirty buffers on a given inode.  We are
851  * probably unmounting the fs, but that doesn't mean we have already
852  * done a sync().  Just drop the buffers from the inode list.
853  *
854  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
855  * assumes that all the buffers are against the blockdev.  Not true
856  * for reiserfs.
857  */
858 void invalidate_inode_buffers(struct inode *inode)
859 {
860 	if (inode_has_buffers(inode)) {
861 		struct address_space *mapping = &inode->i_data;
862 		struct list_head *list = &mapping->private_list;
863 		struct address_space *buffer_mapping = mapping->private_data;
864 
865 		spin_lock(&buffer_mapping->private_lock);
866 		while (!list_empty(list))
867 			__remove_assoc_queue(BH_ENTRY(list->next));
868 		spin_unlock(&buffer_mapping->private_lock);
869 	}
870 }
871 EXPORT_SYMBOL(invalidate_inode_buffers);
872 
873 /*
874  * Remove any clean buffers from the inode's buffer list.  This is called
875  * when we're trying to free the inode itself.  Those buffers can pin it.
876  *
877  * Returns true if all buffers were removed.
878  */
879 int remove_inode_buffers(struct inode *inode)
880 {
881 	int ret = 1;
882 
883 	if (inode_has_buffers(inode)) {
884 		struct address_space *mapping = &inode->i_data;
885 		struct list_head *list = &mapping->private_list;
886 		struct address_space *buffer_mapping = mapping->private_data;
887 
888 		spin_lock(&buffer_mapping->private_lock);
889 		while (!list_empty(list)) {
890 			struct buffer_head *bh = BH_ENTRY(list->next);
891 			if (buffer_dirty(bh)) {
892 				ret = 0;
893 				break;
894 			}
895 			__remove_assoc_queue(bh);
896 		}
897 		spin_unlock(&buffer_mapping->private_lock);
898 	}
899 	return ret;
900 }
901 
902 /*
903  * Create the appropriate buffers when given a folio for data area and
904  * the size of each buffer.. Use the bh->b_this_page linked list to
905  * follow the buffers created.  Return NULL if unable to create more
906  * buffers.
907  *
908  * The retry flag is used to differentiate async IO (paging, swapping)
909  * which may not fail from ordinary buffer allocations.
910  */
911 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
912 					gfp_t gfp)
913 {
914 	struct buffer_head *bh, *head;
915 	long offset;
916 	struct mem_cgroup *memcg, *old_memcg;
917 
918 	/* The folio lock pins the memcg */
919 	memcg = folio_memcg(folio);
920 	old_memcg = set_active_memcg(memcg);
921 
922 	head = NULL;
923 	offset = folio_size(folio);
924 	while ((offset -= size) >= 0) {
925 		bh = alloc_buffer_head(gfp);
926 		if (!bh)
927 			goto no_grow;
928 
929 		bh->b_this_page = head;
930 		bh->b_blocknr = -1;
931 		head = bh;
932 
933 		bh->b_size = size;
934 
935 		/* Link the buffer to its folio */
936 		folio_set_bh(bh, folio, offset);
937 	}
938 out:
939 	set_active_memcg(old_memcg);
940 	return head;
941 /*
942  * In case anything failed, we just free everything we got.
943  */
944 no_grow:
945 	if (head) {
946 		do {
947 			bh = head;
948 			head = head->b_this_page;
949 			free_buffer_head(bh);
950 		} while (head);
951 	}
952 
953 	goto out;
954 }
955 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
956 
957 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
958 				       bool retry)
959 {
960 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
961 	if (retry)
962 		gfp |= __GFP_NOFAIL;
963 
964 	return folio_alloc_buffers(page_folio(page), size, gfp);
965 }
966 EXPORT_SYMBOL_GPL(alloc_page_buffers);
967 
968 static inline void link_dev_buffers(struct folio *folio,
969 		struct buffer_head *head)
970 {
971 	struct buffer_head *bh, *tail;
972 
973 	bh = head;
974 	do {
975 		tail = bh;
976 		bh = bh->b_this_page;
977 	} while (bh);
978 	tail->b_this_page = head;
979 	folio_attach_private(folio, head);
980 }
981 
982 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
983 {
984 	sector_t retval = ~((sector_t)0);
985 	loff_t sz = bdev_nr_bytes(bdev);
986 
987 	if (sz) {
988 		unsigned int sizebits = blksize_bits(size);
989 		retval = (sz >> sizebits);
990 	}
991 	return retval;
992 }
993 
994 /*
995  * Initialise the state of a blockdev folio's buffers.
996  */
997 static sector_t folio_init_buffers(struct folio *folio,
998 		struct block_device *bdev, sector_t block, int size)
999 {
1000 	struct buffer_head *head = folio_buffers(folio);
1001 	struct buffer_head *bh = head;
1002 	bool uptodate = folio_test_uptodate(folio);
1003 	sector_t end_block = blkdev_max_block(bdev, size);
1004 
1005 	do {
1006 		if (!buffer_mapped(bh)) {
1007 			bh->b_end_io = NULL;
1008 			bh->b_private = NULL;
1009 			bh->b_bdev = bdev;
1010 			bh->b_blocknr = block;
1011 			if (uptodate)
1012 				set_buffer_uptodate(bh);
1013 			if (block < end_block)
1014 				set_buffer_mapped(bh);
1015 		}
1016 		block++;
1017 		bh = bh->b_this_page;
1018 	} while (bh != head);
1019 
1020 	/*
1021 	 * Caller needs to validate requested block against end of device.
1022 	 */
1023 	return end_block;
1024 }
1025 
1026 /*
1027  * Create the page-cache page that contains the requested block.
1028  *
1029  * This is used purely for blockdev mappings.
1030  */
1031 static int
1032 grow_dev_page(struct block_device *bdev, sector_t block,
1033 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
1034 {
1035 	struct inode *inode = bdev->bd_inode;
1036 	struct folio *folio;
1037 	struct buffer_head *bh;
1038 	sector_t end_block;
1039 	int ret = 0;
1040 
1041 	folio = __filemap_get_folio(inode->i_mapping, index,
1042 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1043 	if (IS_ERR(folio))
1044 		return PTR_ERR(folio);
1045 
1046 	bh = folio_buffers(folio);
1047 	if (bh) {
1048 		if (bh->b_size == size) {
1049 			end_block = folio_init_buffers(folio, bdev,
1050 					(sector_t)index << sizebits, size);
1051 			goto done;
1052 		}
1053 		if (!try_to_free_buffers(folio))
1054 			goto failed;
1055 	}
1056 
1057 	ret = -ENOMEM;
1058 	bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1059 	if (!bh)
1060 		goto failed;
1061 
1062 	/*
1063 	 * Link the folio to the buffers and initialise them.  Take the
1064 	 * lock to be atomic wrt __find_get_block(), which does not
1065 	 * run under the folio lock.
1066 	 */
1067 	spin_lock(&inode->i_mapping->private_lock);
1068 	link_dev_buffers(folio, bh);
1069 	end_block = folio_init_buffers(folio, bdev,
1070 			(sector_t)index << sizebits, size);
1071 	spin_unlock(&inode->i_mapping->private_lock);
1072 done:
1073 	ret = (block < end_block) ? 1 : -ENXIO;
1074 failed:
1075 	folio_unlock(folio);
1076 	folio_put(folio);
1077 	return ret;
1078 }
1079 
1080 /*
1081  * Create buffers for the specified block device block's page.  If
1082  * that page was dirty, the buffers are set dirty also.
1083  */
1084 static int
1085 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1086 {
1087 	pgoff_t index;
1088 	int sizebits;
1089 
1090 	sizebits = PAGE_SHIFT - __ffs(size);
1091 	index = block >> sizebits;
1092 
1093 	/*
1094 	 * Check for a block which wants to lie outside our maximum possible
1095 	 * pagecache index.  (this comparison is done using sector_t types).
1096 	 */
1097 	if (unlikely(index != block >> sizebits)) {
1098 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1099 			"device %pg\n",
1100 			__func__, (unsigned long long)block,
1101 			bdev);
1102 		return -EIO;
1103 	}
1104 
1105 	/* Create a page with the proper size buffers.. */
1106 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1107 }
1108 
1109 static struct buffer_head *
1110 __getblk_slow(struct block_device *bdev, sector_t block,
1111 	     unsigned size, gfp_t gfp)
1112 {
1113 	/* Size must be multiple of hard sectorsize */
1114 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1115 			(size < 512 || size > PAGE_SIZE))) {
1116 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1117 					size);
1118 		printk(KERN_ERR "logical block size: %d\n",
1119 					bdev_logical_block_size(bdev));
1120 
1121 		dump_stack();
1122 		return NULL;
1123 	}
1124 
1125 	for (;;) {
1126 		struct buffer_head *bh;
1127 		int ret;
1128 
1129 		bh = __find_get_block(bdev, block, size);
1130 		if (bh)
1131 			return bh;
1132 
1133 		ret = grow_buffers(bdev, block, size, gfp);
1134 		if (ret < 0)
1135 			return NULL;
1136 	}
1137 }
1138 
1139 /*
1140  * The relationship between dirty buffers and dirty pages:
1141  *
1142  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1143  * the page is tagged dirty in the page cache.
1144  *
1145  * At all times, the dirtiness of the buffers represents the dirtiness of
1146  * subsections of the page.  If the page has buffers, the page dirty bit is
1147  * merely a hint about the true dirty state.
1148  *
1149  * When a page is set dirty in its entirety, all its buffers are marked dirty
1150  * (if the page has buffers).
1151  *
1152  * When a buffer is marked dirty, its page is dirtied, but the page's other
1153  * buffers are not.
1154  *
1155  * Also.  When blockdev buffers are explicitly read with bread(), they
1156  * individually become uptodate.  But their backing page remains not
1157  * uptodate - even if all of its buffers are uptodate.  A subsequent
1158  * block_read_full_folio() against that folio will discover all the uptodate
1159  * buffers, will set the folio uptodate and will perform no I/O.
1160  */
1161 
1162 /**
1163  * mark_buffer_dirty - mark a buffer_head as needing writeout
1164  * @bh: the buffer_head to mark dirty
1165  *
1166  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1167  * its backing page dirty, then tag the page as dirty in the page cache
1168  * and then attach the address_space's inode to its superblock's dirty
1169  * inode list.
1170  *
1171  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1172  * i_pages lock and mapping->host->i_lock.
1173  */
1174 void mark_buffer_dirty(struct buffer_head *bh)
1175 {
1176 	WARN_ON_ONCE(!buffer_uptodate(bh));
1177 
1178 	trace_block_dirty_buffer(bh);
1179 
1180 	/*
1181 	 * Very *carefully* optimize the it-is-already-dirty case.
1182 	 *
1183 	 * Don't let the final "is it dirty" escape to before we
1184 	 * perhaps modified the buffer.
1185 	 */
1186 	if (buffer_dirty(bh)) {
1187 		smp_mb();
1188 		if (buffer_dirty(bh))
1189 			return;
1190 	}
1191 
1192 	if (!test_set_buffer_dirty(bh)) {
1193 		struct folio *folio = bh->b_folio;
1194 		struct address_space *mapping = NULL;
1195 
1196 		folio_memcg_lock(folio);
1197 		if (!folio_test_set_dirty(folio)) {
1198 			mapping = folio->mapping;
1199 			if (mapping)
1200 				__folio_mark_dirty(folio, mapping, 0);
1201 		}
1202 		folio_memcg_unlock(folio);
1203 		if (mapping)
1204 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1205 	}
1206 }
1207 EXPORT_SYMBOL(mark_buffer_dirty);
1208 
1209 void mark_buffer_write_io_error(struct buffer_head *bh)
1210 {
1211 	set_buffer_write_io_error(bh);
1212 	/* FIXME: do we need to set this in both places? */
1213 	if (bh->b_folio && bh->b_folio->mapping)
1214 		mapping_set_error(bh->b_folio->mapping, -EIO);
1215 	if (bh->b_assoc_map) {
1216 		mapping_set_error(bh->b_assoc_map, -EIO);
1217 		errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1218 	}
1219 }
1220 EXPORT_SYMBOL(mark_buffer_write_io_error);
1221 
1222 /*
1223  * Decrement a buffer_head's reference count.  If all buffers against a page
1224  * have zero reference count, are clean and unlocked, and if the page is clean
1225  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1226  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1227  * a page but it ends up not being freed, and buffers may later be reattached).
1228  */
1229 void __brelse(struct buffer_head * buf)
1230 {
1231 	if (atomic_read(&buf->b_count)) {
1232 		put_bh(buf);
1233 		return;
1234 	}
1235 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1236 }
1237 EXPORT_SYMBOL(__brelse);
1238 
1239 /*
1240  * bforget() is like brelse(), except it discards any
1241  * potentially dirty data.
1242  */
1243 void __bforget(struct buffer_head *bh)
1244 {
1245 	clear_buffer_dirty(bh);
1246 	if (bh->b_assoc_map) {
1247 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1248 
1249 		spin_lock(&buffer_mapping->private_lock);
1250 		list_del_init(&bh->b_assoc_buffers);
1251 		bh->b_assoc_map = NULL;
1252 		spin_unlock(&buffer_mapping->private_lock);
1253 	}
1254 	__brelse(bh);
1255 }
1256 EXPORT_SYMBOL(__bforget);
1257 
1258 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1259 {
1260 	lock_buffer(bh);
1261 	if (buffer_uptodate(bh)) {
1262 		unlock_buffer(bh);
1263 		return bh;
1264 	} else {
1265 		get_bh(bh);
1266 		bh->b_end_io = end_buffer_read_sync;
1267 		submit_bh(REQ_OP_READ, bh);
1268 		wait_on_buffer(bh);
1269 		if (buffer_uptodate(bh))
1270 			return bh;
1271 	}
1272 	brelse(bh);
1273 	return NULL;
1274 }
1275 
1276 /*
1277  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1278  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1279  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1280  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1281  * CPU's LRUs at the same time.
1282  *
1283  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1284  * sb_find_get_block().
1285  *
1286  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1287  * a local interrupt disable for that.
1288  */
1289 
1290 #define BH_LRU_SIZE	16
1291 
1292 struct bh_lru {
1293 	struct buffer_head *bhs[BH_LRU_SIZE];
1294 };
1295 
1296 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1297 
1298 #ifdef CONFIG_SMP
1299 #define bh_lru_lock()	local_irq_disable()
1300 #define bh_lru_unlock()	local_irq_enable()
1301 #else
1302 #define bh_lru_lock()	preempt_disable()
1303 #define bh_lru_unlock()	preempt_enable()
1304 #endif
1305 
1306 static inline void check_irqs_on(void)
1307 {
1308 #ifdef irqs_disabled
1309 	BUG_ON(irqs_disabled());
1310 #endif
1311 }
1312 
1313 /*
1314  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1315  * inserted at the front, and the buffer_head at the back if any is evicted.
1316  * Or, if already in the LRU it is moved to the front.
1317  */
1318 static void bh_lru_install(struct buffer_head *bh)
1319 {
1320 	struct buffer_head *evictee = bh;
1321 	struct bh_lru *b;
1322 	int i;
1323 
1324 	check_irqs_on();
1325 	bh_lru_lock();
1326 
1327 	/*
1328 	 * the refcount of buffer_head in bh_lru prevents dropping the
1329 	 * attached page(i.e., try_to_free_buffers) so it could cause
1330 	 * failing page migration.
1331 	 * Skip putting upcoming bh into bh_lru until migration is done.
1332 	 */
1333 	if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1334 		bh_lru_unlock();
1335 		return;
1336 	}
1337 
1338 	b = this_cpu_ptr(&bh_lrus);
1339 	for (i = 0; i < BH_LRU_SIZE; i++) {
1340 		swap(evictee, b->bhs[i]);
1341 		if (evictee == bh) {
1342 			bh_lru_unlock();
1343 			return;
1344 		}
1345 	}
1346 
1347 	get_bh(bh);
1348 	bh_lru_unlock();
1349 	brelse(evictee);
1350 }
1351 
1352 /*
1353  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1354  */
1355 static struct buffer_head *
1356 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358 	struct buffer_head *ret = NULL;
1359 	unsigned int i;
1360 
1361 	check_irqs_on();
1362 	bh_lru_lock();
1363 	if (cpu_is_isolated(smp_processor_id())) {
1364 		bh_lru_unlock();
1365 		return NULL;
1366 	}
1367 	for (i = 0; i < BH_LRU_SIZE; i++) {
1368 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1369 
1370 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1371 		    bh->b_size == size) {
1372 			if (i) {
1373 				while (i) {
1374 					__this_cpu_write(bh_lrus.bhs[i],
1375 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1376 					i--;
1377 				}
1378 				__this_cpu_write(bh_lrus.bhs[0], bh);
1379 			}
1380 			get_bh(bh);
1381 			ret = bh;
1382 			break;
1383 		}
1384 	}
1385 	bh_lru_unlock();
1386 	return ret;
1387 }
1388 
1389 /*
1390  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1391  * it in the LRU and mark it as accessed.  If it is not present then return
1392  * NULL
1393  */
1394 struct buffer_head *
1395 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1396 {
1397 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1398 
1399 	if (bh == NULL) {
1400 		/* __find_get_block_slow will mark the page accessed */
1401 		bh = __find_get_block_slow(bdev, block);
1402 		if (bh)
1403 			bh_lru_install(bh);
1404 	} else
1405 		touch_buffer(bh);
1406 
1407 	return bh;
1408 }
1409 EXPORT_SYMBOL(__find_get_block);
1410 
1411 /**
1412  * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1413  * @bdev: The block device.
1414  * @block: The block number.
1415  * @size: The size of buffer_heads for this @bdev.
1416  * @gfp: The memory allocation flags to use.
1417  *
1418  * Return: The buffer head, or NULL if memory could not be allocated.
1419  */
1420 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1421 		unsigned size, gfp_t gfp)
1422 {
1423 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1424 
1425 	might_alloc(gfp);
1426 	if (bh)
1427 		return bh;
1428 
1429 	return __getblk_slow(bdev, block, size, gfp);
1430 }
1431 EXPORT_SYMBOL(bdev_getblk);
1432 
1433 /*
1434  * Do async read-ahead on a buffer..
1435  */
1436 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1437 {
1438 	struct buffer_head *bh = bdev_getblk(bdev, block, size,
1439 			GFP_NOWAIT | __GFP_MOVABLE);
1440 
1441 	if (likely(bh)) {
1442 		bh_readahead(bh, REQ_RAHEAD);
1443 		brelse(bh);
1444 	}
1445 }
1446 EXPORT_SYMBOL(__breadahead);
1447 
1448 /**
1449  *  __bread_gfp() - reads a specified block and returns the bh
1450  *  @bdev: the block_device to read from
1451  *  @block: number of block
1452  *  @size: size (in bytes) to read
1453  *  @gfp: page allocation flag
1454  *
1455  *  Reads a specified block, and returns buffer head that contains it.
1456  *  The page cache can be allocated from non-movable area
1457  *  not to prevent page migration if you set gfp to zero.
1458  *  It returns NULL if the block was unreadable.
1459  */
1460 struct buffer_head *
1461 __bread_gfp(struct block_device *bdev, sector_t block,
1462 		   unsigned size, gfp_t gfp)
1463 {
1464 	struct buffer_head *bh;
1465 
1466 	gfp |= mapping_gfp_constraint(bdev->bd_inode->i_mapping, ~__GFP_FS);
1467 
1468 	/*
1469 	 * Prefer looping in the allocator rather than here, at least that
1470 	 * code knows what it's doing.
1471 	 */
1472 	gfp |= __GFP_NOFAIL;
1473 
1474 	bh = bdev_getblk(bdev, block, size, gfp);
1475 
1476 	if (likely(bh) && !buffer_uptodate(bh))
1477 		bh = __bread_slow(bh);
1478 	return bh;
1479 }
1480 EXPORT_SYMBOL(__bread_gfp);
1481 
1482 static void __invalidate_bh_lrus(struct bh_lru *b)
1483 {
1484 	int i;
1485 
1486 	for (i = 0; i < BH_LRU_SIZE; i++) {
1487 		brelse(b->bhs[i]);
1488 		b->bhs[i] = NULL;
1489 	}
1490 }
1491 /*
1492  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1493  * This doesn't race because it runs in each cpu either in irq
1494  * or with preempt disabled.
1495  */
1496 static void invalidate_bh_lru(void *arg)
1497 {
1498 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1499 
1500 	__invalidate_bh_lrus(b);
1501 	put_cpu_var(bh_lrus);
1502 }
1503 
1504 bool has_bh_in_lru(int cpu, void *dummy)
1505 {
1506 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1507 	int i;
1508 
1509 	for (i = 0; i < BH_LRU_SIZE; i++) {
1510 		if (b->bhs[i])
1511 			return true;
1512 	}
1513 
1514 	return false;
1515 }
1516 
1517 void invalidate_bh_lrus(void)
1518 {
1519 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1520 }
1521 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1522 
1523 /*
1524  * It's called from workqueue context so we need a bh_lru_lock to close
1525  * the race with preemption/irq.
1526  */
1527 void invalidate_bh_lrus_cpu(void)
1528 {
1529 	struct bh_lru *b;
1530 
1531 	bh_lru_lock();
1532 	b = this_cpu_ptr(&bh_lrus);
1533 	__invalidate_bh_lrus(b);
1534 	bh_lru_unlock();
1535 }
1536 
1537 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1538 		  unsigned long offset)
1539 {
1540 	bh->b_folio = folio;
1541 	BUG_ON(offset >= folio_size(folio));
1542 	if (folio_test_highmem(folio))
1543 		/*
1544 		 * This catches illegal uses and preserves the offset:
1545 		 */
1546 		bh->b_data = (char *)(0 + offset);
1547 	else
1548 		bh->b_data = folio_address(folio) + offset;
1549 }
1550 EXPORT_SYMBOL(folio_set_bh);
1551 
1552 /*
1553  * Called when truncating a buffer on a page completely.
1554  */
1555 
1556 /* Bits that are cleared during an invalidate */
1557 #define BUFFER_FLAGS_DISCARD \
1558 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1559 	 1 << BH_Delay | 1 << BH_Unwritten)
1560 
1561 static void discard_buffer(struct buffer_head * bh)
1562 {
1563 	unsigned long b_state;
1564 
1565 	lock_buffer(bh);
1566 	clear_buffer_dirty(bh);
1567 	bh->b_bdev = NULL;
1568 	b_state = READ_ONCE(bh->b_state);
1569 	do {
1570 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1571 			      b_state & ~BUFFER_FLAGS_DISCARD));
1572 	unlock_buffer(bh);
1573 }
1574 
1575 /**
1576  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1577  * @folio: The folio which is affected.
1578  * @offset: start of the range to invalidate
1579  * @length: length of the range to invalidate
1580  *
1581  * block_invalidate_folio() is called when all or part of the folio has been
1582  * invalidated by a truncate operation.
1583  *
1584  * block_invalidate_folio() does not have to release all buffers, but it must
1585  * ensure that no dirty buffer is left outside @offset and that no I/O
1586  * is underway against any of the blocks which are outside the truncation
1587  * point.  Because the caller is about to free (and possibly reuse) those
1588  * blocks on-disk.
1589  */
1590 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1591 {
1592 	struct buffer_head *head, *bh, *next;
1593 	size_t curr_off = 0;
1594 	size_t stop = length + offset;
1595 
1596 	BUG_ON(!folio_test_locked(folio));
1597 
1598 	/*
1599 	 * Check for overflow
1600 	 */
1601 	BUG_ON(stop > folio_size(folio) || stop < length);
1602 
1603 	head = folio_buffers(folio);
1604 	if (!head)
1605 		return;
1606 
1607 	bh = head;
1608 	do {
1609 		size_t next_off = curr_off + bh->b_size;
1610 		next = bh->b_this_page;
1611 
1612 		/*
1613 		 * Are we still fully in range ?
1614 		 */
1615 		if (next_off > stop)
1616 			goto out;
1617 
1618 		/*
1619 		 * is this block fully invalidated?
1620 		 */
1621 		if (offset <= curr_off)
1622 			discard_buffer(bh);
1623 		curr_off = next_off;
1624 		bh = next;
1625 	} while (bh != head);
1626 
1627 	/*
1628 	 * We release buffers only if the entire folio is being invalidated.
1629 	 * The get_block cached value has been unconditionally invalidated,
1630 	 * so real IO is not possible anymore.
1631 	 */
1632 	if (length == folio_size(folio))
1633 		filemap_release_folio(folio, 0);
1634 out:
1635 	return;
1636 }
1637 EXPORT_SYMBOL(block_invalidate_folio);
1638 
1639 /*
1640  * We attach and possibly dirty the buffers atomically wrt
1641  * block_dirty_folio() via private_lock.  try_to_free_buffers
1642  * is already excluded via the folio lock.
1643  */
1644 struct buffer_head *create_empty_buffers(struct folio *folio,
1645 		unsigned long blocksize, unsigned long b_state)
1646 {
1647 	struct buffer_head *bh, *head, *tail;
1648 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1649 
1650 	head = folio_alloc_buffers(folio, blocksize, gfp);
1651 	bh = head;
1652 	do {
1653 		bh->b_state |= b_state;
1654 		tail = bh;
1655 		bh = bh->b_this_page;
1656 	} while (bh);
1657 	tail->b_this_page = head;
1658 
1659 	spin_lock(&folio->mapping->private_lock);
1660 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1661 		bh = head;
1662 		do {
1663 			if (folio_test_dirty(folio))
1664 				set_buffer_dirty(bh);
1665 			if (folio_test_uptodate(folio))
1666 				set_buffer_uptodate(bh);
1667 			bh = bh->b_this_page;
1668 		} while (bh != head);
1669 	}
1670 	folio_attach_private(folio, head);
1671 	spin_unlock(&folio->mapping->private_lock);
1672 
1673 	return head;
1674 }
1675 EXPORT_SYMBOL(create_empty_buffers);
1676 
1677 /**
1678  * clean_bdev_aliases: clean a range of buffers in block device
1679  * @bdev: Block device to clean buffers in
1680  * @block: Start of a range of blocks to clean
1681  * @len: Number of blocks to clean
1682  *
1683  * We are taking a range of blocks for data and we don't want writeback of any
1684  * buffer-cache aliases starting from return from this function and until the
1685  * moment when something will explicitly mark the buffer dirty (hopefully that
1686  * will not happen until we will free that block ;-) We don't even need to mark
1687  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1688  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1689  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1690  * would confuse anyone who might pick it with bread() afterwards...
1691  *
1692  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1693  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1694  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1695  * need to.  That happens here.
1696  */
1697 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1698 {
1699 	struct inode *bd_inode = bdev->bd_inode;
1700 	struct address_space *bd_mapping = bd_inode->i_mapping;
1701 	struct folio_batch fbatch;
1702 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1703 	pgoff_t end;
1704 	int i, count;
1705 	struct buffer_head *bh;
1706 	struct buffer_head *head;
1707 
1708 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1709 	folio_batch_init(&fbatch);
1710 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1711 		count = folio_batch_count(&fbatch);
1712 		for (i = 0; i < count; i++) {
1713 			struct folio *folio = fbatch.folios[i];
1714 
1715 			if (!folio_buffers(folio))
1716 				continue;
1717 			/*
1718 			 * We use folio lock instead of bd_mapping->private_lock
1719 			 * to pin buffers here since we can afford to sleep and
1720 			 * it scales better than a global spinlock lock.
1721 			 */
1722 			folio_lock(folio);
1723 			/* Recheck when the folio is locked which pins bhs */
1724 			head = folio_buffers(folio);
1725 			if (!head)
1726 				goto unlock_page;
1727 			bh = head;
1728 			do {
1729 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1730 					goto next;
1731 				if (bh->b_blocknr >= block + len)
1732 					break;
1733 				clear_buffer_dirty(bh);
1734 				wait_on_buffer(bh);
1735 				clear_buffer_req(bh);
1736 next:
1737 				bh = bh->b_this_page;
1738 			} while (bh != head);
1739 unlock_page:
1740 			folio_unlock(folio);
1741 		}
1742 		folio_batch_release(&fbatch);
1743 		cond_resched();
1744 		/* End of range already reached? */
1745 		if (index > end || !index)
1746 			break;
1747 	}
1748 }
1749 EXPORT_SYMBOL(clean_bdev_aliases);
1750 
1751 /*
1752  * Size is a power-of-two in the range 512..PAGE_SIZE,
1753  * and the case we care about most is PAGE_SIZE.
1754  *
1755  * So this *could* possibly be written with those
1756  * constraints in mind (relevant mostly if some
1757  * architecture has a slow bit-scan instruction)
1758  */
1759 static inline int block_size_bits(unsigned int blocksize)
1760 {
1761 	return ilog2(blocksize);
1762 }
1763 
1764 static struct buffer_head *folio_create_buffers(struct folio *folio,
1765 						struct inode *inode,
1766 						unsigned int b_state)
1767 {
1768 	struct buffer_head *bh;
1769 
1770 	BUG_ON(!folio_test_locked(folio));
1771 
1772 	bh = folio_buffers(folio);
1773 	if (!bh)
1774 		bh = create_empty_buffers(folio,
1775 				1 << READ_ONCE(inode->i_blkbits), b_state);
1776 	return bh;
1777 }
1778 
1779 /*
1780  * NOTE! All mapped/uptodate combinations are valid:
1781  *
1782  *	Mapped	Uptodate	Meaning
1783  *
1784  *	No	No		"unknown" - must do get_block()
1785  *	No	Yes		"hole" - zero-filled
1786  *	Yes	No		"allocated" - allocated on disk, not read in
1787  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1788  *
1789  * "Dirty" is valid only with the last case (mapped+uptodate).
1790  */
1791 
1792 /*
1793  * While block_write_full_page is writing back the dirty buffers under
1794  * the page lock, whoever dirtied the buffers may decide to clean them
1795  * again at any time.  We handle that by only looking at the buffer
1796  * state inside lock_buffer().
1797  *
1798  * If block_write_full_page() is called for regular writeback
1799  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1800  * locked buffer.   This only can happen if someone has written the buffer
1801  * directly, with submit_bh().  At the address_space level PageWriteback
1802  * prevents this contention from occurring.
1803  *
1804  * If block_write_full_page() is called with wbc->sync_mode ==
1805  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1806  * causes the writes to be flagged as synchronous writes.
1807  */
1808 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1809 			get_block_t *get_block, struct writeback_control *wbc,
1810 			bh_end_io_t *handler)
1811 {
1812 	int err;
1813 	sector_t block;
1814 	sector_t last_block;
1815 	struct buffer_head *bh, *head;
1816 	unsigned int blocksize, bbits;
1817 	int nr_underway = 0;
1818 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1819 
1820 	head = folio_create_buffers(folio, inode,
1821 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1822 
1823 	/*
1824 	 * Be very careful.  We have no exclusion from block_dirty_folio
1825 	 * here, and the (potentially unmapped) buffers may become dirty at
1826 	 * any time.  If a buffer becomes dirty here after we've inspected it
1827 	 * then we just miss that fact, and the folio stays dirty.
1828 	 *
1829 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1830 	 * handle that here by just cleaning them.
1831 	 */
1832 
1833 	bh = head;
1834 	blocksize = bh->b_size;
1835 	bbits = block_size_bits(blocksize);
1836 
1837 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1838 	last_block = (i_size_read(inode) - 1) >> bbits;
1839 
1840 	/*
1841 	 * Get all the dirty buffers mapped to disk addresses and
1842 	 * handle any aliases from the underlying blockdev's mapping.
1843 	 */
1844 	do {
1845 		if (block > last_block) {
1846 			/*
1847 			 * mapped buffers outside i_size will occur, because
1848 			 * this folio can be outside i_size when there is a
1849 			 * truncate in progress.
1850 			 */
1851 			/*
1852 			 * The buffer was zeroed by block_write_full_page()
1853 			 */
1854 			clear_buffer_dirty(bh);
1855 			set_buffer_uptodate(bh);
1856 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1857 			   buffer_dirty(bh)) {
1858 			WARN_ON(bh->b_size != blocksize);
1859 			err = get_block(inode, block, bh, 1);
1860 			if (err)
1861 				goto recover;
1862 			clear_buffer_delay(bh);
1863 			if (buffer_new(bh)) {
1864 				/* blockdev mappings never come here */
1865 				clear_buffer_new(bh);
1866 				clean_bdev_bh_alias(bh);
1867 			}
1868 		}
1869 		bh = bh->b_this_page;
1870 		block++;
1871 	} while (bh != head);
1872 
1873 	do {
1874 		if (!buffer_mapped(bh))
1875 			continue;
1876 		/*
1877 		 * If it's a fully non-blocking write attempt and we cannot
1878 		 * lock the buffer then redirty the folio.  Note that this can
1879 		 * potentially cause a busy-wait loop from writeback threads
1880 		 * and kswapd activity, but those code paths have their own
1881 		 * higher-level throttling.
1882 		 */
1883 		if (wbc->sync_mode != WB_SYNC_NONE) {
1884 			lock_buffer(bh);
1885 		} else if (!trylock_buffer(bh)) {
1886 			folio_redirty_for_writepage(wbc, folio);
1887 			continue;
1888 		}
1889 		if (test_clear_buffer_dirty(bh)) {
1890 			mark_buffer_async_write_endio(bh, handler);
1891 		} else {
1892 			unlock_buffer(bh);
1893 		}
1894 	} while ((bh = bh->b_this_page) != head);
1895 
1896 	/*
1897 	 * The folio and its buffers are protected by the writeback flag,
1898 	 * so we can drop the bh refcounts early.
1899 	 */
1900 	BUG_ON(folio_test_writeback(folio));
1901 	folio_start_writeback(folio);
1902 
1903 	do {
1904 		struct buffer_head *next = bh->b_this_page;
1905 		if (buffer_async_write(bh)) {
1906 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1907 			nr_underway++;
1908 		}
1909 		bh = next;
1910 	} while (bh != head);
1911 	folio_unlock(folio);
1912 
1913 	err = 0;
1914 done:
1915 	if (nr_underway == 0) {
1916 		/*
1917 		 * The folio was marked dirty, but the buffers were
1918 		 * clean.  Someone wrote them back by hand with
1919 		 * write_dirty_buffer/submit_bh.  A rare case.
1920 		 */
1921 		folio_end_writeback(folio);
1922 
1923 		/*
1924 		 * The folio and buffer_heads can be released at any time from
1925 		 * here on.
1926 		 */
1927 	}
1928 	return err;
1929 
1930 recover:
1931 	/*
1932 	 * ENOSPC, or some other error.  We may already have added some
1933 	 * blocks to the file, so we need to write these out to avoid
1934 	 * exposing stale data.
1935 	 * The folio is currently locked and not marked for writeback
1936 	 */
1937 	bh = head;
1938 	/* Recovery: lock and submit the mapped buffers */
1939 	do {
1940 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1941 		    !buffer_delay(bh)) {
1942 			lock_buffer(bh);
1943 			mark_buffer_async_write_endio(bh, handler);
1944 		} else {
1945 			/*
1946 			 * The buffer may have been set dirty during
1947 			 * attachment to a dirty folio.
1948 			 */
1949 			clear_buffer_dirty(bh);
1950 		}
1951 	} while ((bh = bh->b_this_page) != head);
1952 	folio_set_error(folio);
1953 	BUG_ON(folio_test_writeback(folio));
1954 	mapping_set_error(folio->mapping, err);
1955 	folio_start_writeback(folio);
1956 	do {
1957 		struct buffer_head *next = bh->b_this_page;
1958 		if (buffer_async_write(bh)) {
1959 			clear_buffer_dirty(bh);
1960 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1961 			nr_underway++;
1962 		}
1963 		bh = next;
1964 	} while (bh != head);
1965 	folio_unlock(folio);
1966 	goto done;
1967 }
1968 EXPORT_SYMBOL(__block_write_full_folio);
1969 
1970 /*
1971  * If a folio has any new buffers, zero them out here, and mark them uptodate
1972  * and dirty so they'll be written out (in order to prevent uninitialised
1973  * block data from leaking). And clear the new bit.
1974  */
1975 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1976 {
1977 	size_t block_start, block_end;
1978 	struct buffer_head *head, *bh;
1979 
1980 	BUG_ON(!folio_test_locked(folio));
1981 	head = folio_buffers(folio);
1982 	if (!head)
1983 		return;
1984 
1985 	bh = head;
1986 	block_start = 0;
1987 	do {
1988 		block_end = block_start + bh->b_size;
1989 
1990 		if (buffer_new(bh)) {
1991 			if (block_end > from && block_start < to) {
1992 				if (!folio_test_uptodate(folio)) {
1993 					size_t start, xend;
1994 
1995 					start = max(from, block_start);
1996 					xend = min(to, block_end);
1997 
1998 					folio_zero_segment(folio, start, xend);
1999 					set_buffer_uptodate(bh);
2000 				}
2001 
2002 				clear_buffer_new(bh);
2003 				mark_buffer_dirty(bh);
2004 			}
2005 		}
2006 
2007 		block_start = block_end;
2008 		bh = bh->b_this_page;
2009 	} while (bh != head);
2010 }
2011 EXPORT_SYMBOL(folio_zero_new_buffers);
2012 
2013 static int
2014 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2015 		const struct iomap *iomap)
2016 {
2017 	loff_t offset = block << inode->i_blkbits;
2018 
2019 	bh->b_bdev = iomap->bdev;
2020 
2021 	/*
2022 	 * Block points to offset in file we need to map, iomap contains
2023 	 * the offset at which the map starts. If the map ends before the
2024 	 * current block, then do not map the buffer and let the caller
2025 	 * handle it.
2026 	 */
2027 	if (offset >= iomap->offset + iomap->length)
2028 		return -EIO;
2029 
2030 	switch (iomap->type) {
2031 	case IOMAP_HOLE:
2032 		/*
2033 		 * If the buffer is not up to date or beyond the current EOF,
2034 		 * we need to mark it as new to ensure sub-block zeroing is
2035 		 * executed if necessary.
2036 		 */
2037 		if (!buffer_uptodate(bh) ||
2038 		    (offset >= i_size_read(inode)))
2039 			set_buffer_new(bh);
2040 		return 0;
2041 	case IOMAP_DELALLOC:
2042 		if (!buffer_uptodate(bh) ||
2043 		    (offset >= i_size_read(inode)))
2044 			set_buffer_new(bh);
2045 		set_buffer_uptodate(bh);
2046 		set_buffer_mapped(bh);
2047 		set_buffer_delay(bh);
2048 		return 0;
2049 	case IOMAP_UNWRITTEN:
2050 		/*
2051 		 * For unwritten regions, we always need to ensure that regions
2052 		 * in the block we are not writing to are zeroed. Mark the
2053 		 * buffer as new to ensure this.
2054 		 */
2055 		set_buffer_new(bh);
2056 		set_buffer_unwritten(bh);
2057 		fallthrough;
2058 	case IOMAP_MAPPED:
2059 		if ((iomap->flags & IOMAP_F_NEW) ||
2060 		    offset >= i_size_read(inode)) {
2061 			/*
2062 			 * This can happen if truncating the block device races
2063 			 * with the check in the caller as i_size updates on
2064 			 * block devices aren't synchronized by i_rwsem for
2065 			 * block devices.
2066 			 */
2067 			if (S_ISBLK(inode->i_mode))
2068 				return -EIO;
2069 			set_buffer_new(bh);
2070 		}
2071 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2072 				inode->i_blkbits;
2073 		set_buffer_mapped(bh);
2074 		return 0;
2075 	default:
2076 		WARN_ON_ONCE(1);
2077 		return -EIO;
2078 	}
2079 }
2080 
2081 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2082 		get_block_t *get_block, const struct iomap *iomap)
2083 {
2084 	unsigned from = pos & (PAGE_SIZE - 1);
2085 	unsigned to = from + len;
2086 	struct inode *inode = folio->mapping->host;
2087 	unsigned block_start, block_end;
2088 	sector_t block;
2089 	int err = 0;
2090 	unsigned blocksize, bbits;
2091 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2092 
2093 	BUG_ON(!folio_test_locked(folio));
2094 	BUG_ON(from > PAGE_SIZE);
2095 	BUG_ON(to > PAGE_SIZE);
2096 	BUG_ON(from > to);
2097 
2098 	head = folio_create_buffers(folio, inode, 0);
2099 	blocksize = head->b_size;
2100 	bbits = block_size_bits(blocksize);
2101 
2102 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2103 
2104 	for(bh = head, block_start = 0; bh != head || !block_start;
2105 	    block++, block_start=block_end, bh = bh->b_this_page) {
2106 		block_end = block_start + blocksize;
2107 		if (block_end <= from || block_start >= to) {
2108 			if (folio_test_uptodate(folio)) {
2109 				if (!buffer_uptodate(bh))
2110 					set_buffer_uptodate(bh);
2111 			}
2112 			continue;
2113 		}
2114 		if (buffer_new(bh))
2115 			clear_buffer_new(bh);
2116 		if (!buffer_mapped(bh)) {
2117 			WARN_ON(bh->b_size != blocksize);
2118 			if (get_block)
2119 				err = get_block(inode, block, bh, 1);
2120 			else
2121 				err = iomap_to_bh(inode, block, bh, iomap);
2122 			if (err)
2123 				break;
2124 
2125 			if (buffer_new(bh)) {
2126 				clean_bdev_bh_alias(bh);
2127 				if (folio_test_uptodate(folio)) {
2128 					clear_buffer_new(bh);
2129 					set_buffer_uptodate(bh);
2130 					mark_buffer_dirty(bh);
2131 					continue;
2132 				}
2133 				if (block_end > to || block_start < from)
2134 					folio_zero_segments(folio,
2135 						to, block_end,
2136 						block_start, from);
2137 				continue;
2138 			}
2139 		}
2140 		if (folio_test_uptodate(folio)) {
2141 			if (!buffer_uptodate(bh))
2142 				set_buffer_uptodate(bh);
2143 			continue;
2144 		}
2145 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2146 		    !buffer_unwritten(bh) &&
2147 		     (block_start < from || block_end > to)) {
2148 			bh_read_nowait(bh, 0);
2149 			*wait_bh++=bh;
2150 		}
2151 	}
2152 	/*
2153 	 * If we issued read requests - let them complete.
2154 	 */
2155 	while(wait_bh > wait) {
2156 		wait_on_buffer(*--wait_bh);
2157 		if (!buffer_uptodate(*wait_bh))
2158 			err = -EIO;
2159 	}
2160 	if (unlikely(err))
2161 		folio_zero_new_buffers(folio, from, to);
2162 	return err;
2163 }
2164 
2165 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2166 		get_block_t *get_block)
2167 {
2168 	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2169 				       NULL);
2170 }
2171 EXPORT_SYMBOL(__block_write_begin);
2172 
2173 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2174 {
2175 	size_t block_start, block_end;
2176 	bool partial = false;
2177 	unsigned blocksize;
2178 	struct buffer_head *bh, *head;
2179 
2180 	bh = head = folio_buffers(folio);
2181 	blocksize = bh->b_size;
2182 
2183 	block_start = 0;
2184 	do {
2185 		block_end = block_start + blocksize;
2186 		if (block_end <= from || block_start >= to) {
2187 			if (!buffer_uptodate(bh))
2188 				partial = true;
2189 		} else {
2190 			set_buffer_uptodate(bh);
2191 			mark_buffer_dirty(bh);
2192 		}
2193 		if (buffer_new(bh))
2194 			clear_buffer_new(bh);
2195 
2196 		block_start = block_end;
2197 		bh = bh->b_this_page;
2198 	} while (bh != head);
2199 
2200 	/*
2201 	 * If this is a partial write which happened to make all buffers
2202 	 * uptodate then we can optimize away a bogus read_folio() for
2203 	 * the next read(). Here we 'discover' whether the folio went
2204 	 * uptodate as a result of this (potentially partial) write.
2205 	 */
2206 	if (!partial)
2207 		folio_mark_uptodate(folio);
2208 }
2209 
2210 /*
2211  * block_write_begin takes care of the basic task of block allocation and
2212  * bringing partial write blocks uptodate first.
2213  *
2214  * The filesystem needs to handle block truncation upon failure.
2215  */
2216 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2217 		struct page **pagep, get_block_t *get_block)
2218 {
2219 	pgoff_t index = pos >> PAGE_SHIFT;
2220 	struct page *page;
2221 	int status;
2222 
2223 	page = grab_cache_page_write_begin(mapping, index);
2224 	if (!page)
2225 		return -ENOMEM;
2226 
2227 	status = __block_write_begin(page, pos, len, get_block);
2228 	if (unlikely(status)) {
2229 		unlock_page(page);
2230 		put_page(page);
2231 		page = NULL;
2232 	}
2233 
2234 	*pagep = page;
2235 	return status;
2236 }
2237 EXPORT_SYMBOL(block_write_begin);
2238 
2239 int block_write_end(struct file *file, struct address_space *mapping,
2240 			loff_t pos, unsigned len, unsigned copied,
2241 			struct page *page, void *fsdata)
2242 {
2243 	struct folio *folio = page_folio(page);
2244 	size_t start = pos - folio_pos(folio);
2245 
2246 	if (unlikely(copied < len)) {
2247 		/*
2248 		 * The buffers that were written will now be uptodate, so
2249 		 * we don't have to worry about a read_folio reading them
2250 		 * and overwriting a partial write. However if we have
2251 		 * encountered a short write and only partially written
2252 		 * into a buffer, it will not be marked uptodate, so a
2253 		 * read_folio might come in and destroy our partial write.
2254 		 *
2255 		 * Do the simplest thing, and just treat any short write to a
2256 		 * non uptodate folio as a zero-length write, and force the
2257 		 * caller to redo the whole thing.
2258 		 */
2259 		if (!folio_test_uptodate(folio))
2260 			copied = 0;
2261 
2262 		folio_zero_new_buffers(folio, start+copied, start+len);
2263 	}
2264 	flush_dcache_folio(folio);
2265 
2266 	/* This could be a short (even 0-length) commit */
2267 	__block_commit_write(folio, start, start + copied);
2268 
2269 	return copied;
2270 }
2271 EXPORT_SYMBOL(block_write_end);
2272 
2273 int generic_write_end(struct file *file, struct address_space *mapping,
2274 			loff_t pos, unsigned len, unsigned copied,
2275 			struct page *page, void *fsdata)
2276 {
2277 	struct inode *inode = mapping->host;
2278 	loff_t old_size = inode->i_size;
2279 	bool i_size_changed = false;
2280 
2281 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2282 
2283 	/*
2284 	 * No need to use i_size_read() here, the i_size cannot change under us
2285 	 * because we hold i_rwsem.
2286 	 *
2287 	 * But it's important to update i_size while still holding page lock:
2288 	 * page writeout could otherwise come in and zero beyond i_size.
2289 	 */
2290 	if (pos + copied > inode->i_size) {
2291 		i_size_write(inode, pos + copied);
2292 		i_size_changed = true;
2293 	}
2294 
2295 	unlock_page(page);
2296 	put_page(page);
2297 
2298 	if (old_size < pos)
2299 		pagecache_isize_extended(inode, old_size, pos);
2300 	/*
2301 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2302 	 * makes the holding time of page lock longer. Second, it forces lock
2303 	 * ordering of page lock and transaction start for journaling
2304 	 * filesystems.
2305 	 */
2306 	if (i_size_changed)
2307 		mark_inode_dirty(inode);
2308 	return copied;
2309 }
2310 EXPORT_SYMBOL(generic_write_end);
2311 
2312 /*
2313  * block_is_partially_uptodate checks whether buffers within a folio are
2314  * uptodate or not.
2315  *
2316  * Returns true if all buffers which correspond to the specified part
2317  * of the folio are uptodate.
2318  */
2319 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2320 {
2321 	unsigned block_start, block_end, blocksize;
2322 	unsigned to;
2323 	struct buffer_head *bh, *head;
2324 	bool ret = true;
2325 
2326 	head = folio_buffers(folio);
2327 	if (!head)
2328 		return false;
2329 	blocksize = head->b_size;
2330 	to = min_t(unsigned, folio_size(folio) - from, count);
2331 	to = from + to;
2332 	if (from < blocksize && to > folio_size(folio) - blocksize)
2333 		return false;
2334 
2335 	bh = head;
2336 	block_start = 0;
2337 	do {
2338 		block_end = block_start + blocksize;
2339 		if (block_end > from && block_start < to) {
2340 			if (!buffer_uptodate(bh)) {
2341 				ret = false;
2342 				break;
2343 			}
2344 			if (block_end >= to)
2345 				break;
2346 		}
2347 		block_start = block_end;
2348 		bh = bh->b_this_page;
2349 	} while (bh != head);
2350 
2351 	return ret;
2352 }
2353 EXPORT_SYMBOL(block_is_partially_uptodate);
2354 
2355 /*
2356  * Generic "read_folio" function for block devices that have the normal
2357  * get_block functionality. This is most of the block device filesystems.
2358  * Reads the folio asynchronously --- the unlock_buffer() and
2359  * set/clear_buffer_uptodate() functions propagate buffer state into the
2360  * folio once IO has completed.
2361  */
2362 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2363 {
2364 	struct inode *inode = folio->mapping->host;
2365 	sector_t iblock, lblock;
2366 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2367 	unsigned int blocksize, bbits;
2368 	int nr, i;
2369 	int fully_mapped = 1;
2370 	bool page_error = false;
2371 	loff_t limit = i_size_read(inode);
2372 
2373 	/* This is needed for ext4. */
2374 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2375 		limit = inode->i_sb->s_maxbytes;
2376 
2377 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2378 
2379 	head = folio_create_buffers(folio, inode, 0);
2380 	blocksize = head->b_size;
2381 	bbits = block_size_bits(blocksize);
2382 
2383 	iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2384 	lblock = (limit+blocksize-1) >> bbits;
2385 	bh = head;
2386 	nr = 0;
2387 	i = 0;
2388 
2389 	do {
2390 		if (buffer_uptodate(bh))
2391 			continue;
2392 
2393 		if (!buffer_mapped(bh)) {
2394 			int err = 0;
2395 
2396 			fully_mapped = 0;
2397 			if (iblock < lblock) {
2398 				WARN_ON(bh->b_size != blocksize);
2399 				err = get_block(inode, iblock, bh, 0);
2400 				if (err) {
2401 					folio_set_error(folio);
2402 					page_error = true;
2403 				}
2404 			}
2405 			if (!buffer_mapped(bh)) {
2406 				folio_zero_range(folio, i * blocksize,
2407 						blocksize);
2408 				if (!err)
2409 					set_buffer_uptodate(bh);
2410 				continue;
2411 			}
2412 			/*
2413 			 * get_block() might have updated the buffer
2414 			 * synchronously
2415 			 */
2416 			if (buffer_uptodate(bh))
2417 				continue;
2418 		}
2419 		arr[nr++] = bh;
2420 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2421 
2422 	if (fully_mapped)
2423 		folio_set_mappedtodisk(folio);
2424 
2425 	if (!nr) {
2426 		/*
2427 		 * All buffers are uptodate or get_block() returned an
2428 		 * error when trying to map them - we can finish the read.
2429 		 */
2430 		folio_end_read(folio, !page_error);
2431 		return 0;
2432 	}
2433 
2434 	/* Stage two: lock the buffers */
2435 	for (i = 0; i < nr; i++) {
2436 		bh = arr[i];
2437 		lock_buffer(bh);
2438 		mark_buffer_async_read(bh);
2439 	}
2440 
2441 	/*
2442 	 * Stage 3: start the IO.  Check for uptodateness
2443 	 * inside the buffer lock in case another process reading
2444 	 * the underlying blockdev brought it uptodate (the sct fix).
2445 	 */
2446 	for (i = 0; i < nr; i++) {
2447 		bh = arr[i];
2448 		if (buffer_uptodate(bh))
2449 			end_buffer_async_read(bh, 1);
2450 		else
2451 			submit_bh(REQ_OP_READ, bh);
2452 	}
2453 	return 0;
2454 }
2455 EXPORT_SYMBOL(block_read_full_folio);
2456 
2457 /* utility function for filesystems that need to do work on expanding
2458  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2459  * deal with the hole.
2460  */
2461 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2462 {
2463 	struct address_space *mapping = inode->i_mapping;
2464 	const struct address_space_operations *aops = mapping->a_ops;
2465 	struct page *page;
2466 	void *fsdata = NULL;
2467 	int err;
2468 
2469 	err = inode_newsize_ok(inode, size);
2470 	if (err)
2471 		goto out;
2472 
2473 	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2474 	if (err)
2475 		goto out;
2476 
2477 	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2478 	BUG_ON(err > 0);
2479 
2480 out:
2481 	return err;
2482 }
2483 EXPORT_SYMBOL(generic_cont_expand_simple);
2484 
2485 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2486 			    loff_t pos, loff_t *bytes)
2487 {
2488 	struct inode *inode = mapping->host;
2489 	const struct address_space_operations *aops = mapping->a_ops;
2490 	unsigned int blocksize = i_blocksize(inode);
2491 	struct page *page;
2492 	void *fsdata = NULL;
2493 	pgoff_t index, curidx;
2494 	loff_t curpos;
2495 	unsigned zerofrom, offset, len;
2496 	int err = 0;
2497 
2498 	index = pos >> PAGE_SHIFT;
2499 	offset = pos & ~PAGE_MASK;
2500 
2501 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2502 		zerofrom = curpos & ~PAGE_MASK;
2503 		if (zerofrom & (blocksize-1)) {
2504 			*bytes |= (blocksize-1);
2505 			(*bytes)++;
2506 		}
2507 		len = PAGE_SIZE - zerofrom;
2508 
2509 		err = aops->write_begin(file, mapping, curpos, len,
2510 					    &page, &fsdata);
2511 		if (err)
2512 			goto out;
2513 		zero_user(page, zerofrom, len);
2514 		err = aops->write_end(file, mapping, curpos, len, len,
2515 						page, fsdata);
2516 		if (err < 0)
2517 			goto out;
2518 		BUG_ON(err != len);
2519 		err = 0;
2520 
2521 		balance_dirty_pages_ratelimited(mapping);
2522 
2523 		if (fatal_signal_pending(current)) {
2524 			err = -EINTR;
2525 			goto out;
2526 		}
2527 	}
2528 
2529 	/* page covers the boundary, find the boundary offset */
2530 	if (index == curidx) {
2531 		zerofrom = curpos & ~PAGE_MASK;
2532 		/* if we will expand the thing last block will be filled */
2533 		if (offset <= zerofrom) {
2534 			goto out;
2535 		}
2536 		if (zerofrom & (blocksize-1)) {
2537 			*bytes |= (blocksize-1);
2538 			(*bytes)++;
2539 		}
2540 		len = offset - zerofrom;
2541 
2542 		err = aops->write_begin(file, mapping, curpos, len,
2543 					    &page, &fsdata);
2544 		if (err)
2545 			goto out;
2546 		zero_user(page, zerofrom, len);
2547 		err = aops->write_end(file, mapping, curpos, len, len,
2548 						page, fsdata);
2549 		if (err < 0)
2550 			goto out;
2551 		BUG_ON(err != len);
2552 		err = 0;
2553 	}
2554 out:
2555 	return err;
2556 }
2557 
2558 /*
2559  * For moronic filesystems that do not allow holes in file.
2560  * We may have to extend the file.
2561  */
2562 int cont_write_begin(struct file *file, struct address_space *mapping,
2563 			loff_t pos, unsigned len,
2564 			struct page **pagep, void **fsdata,
2565 			get_block_t *get_block, loff_t *bytes)
2566 {
2567 	struct inode *inode = mapping->host;
2568 	unsigned int blocksize = i_blocksize(inode);
2569 	unsigned int zerofrom;
2570 	int err;
2571 
2572 	err = cont_expand_zero(file, mapping, pos, bytes);
2573 	if (err)
2574 		return err;
2575 
2576 	zerofrom = *bytes & ~PAGE_MASK;
2577 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2578 		*bytes |= (blocksize-1);
2579 		(*bytes)++;
2580 	}
2581 
2582 	return block_write_begin(mapping, pos, len, pagep, get_block);
2583 }
2584 EXPORT_SYMBOL(cont_write_begin);
2585 
2586 void block_commit_write(struct page *page, unsigned from, unsigned to)
2587 {
2588 	struct folio *folio = page_folio(page);
2589 	__block_commit_write(folio, from, to);
2590 }
2591 EXPORT_SYMBOL(block_commit_write);
2592 
2593 /*
2594  * block_page_mkwrite() is not allowed to change the file size as it gets
2595  * called from a page fault handler when a page is first dirtied. Hence we must
2596  * be careful to check for EOF conditions here. We set the page up correctly
2597  * for a written page which means we get ENOSPC checking when writing into
2598  * holes and correct delalloc and unwritten extent mapping on filesystems that
2599  * support these features.
2600  *
2601  * We are not allowed to take the i_mutex here so we have to play games to
2602  * protect against truncate races as the page could now be beyond EOF.  Because
2603  * truncate writes the inode size before removing pages, once we have the
2604  * page lock we can determine safely if the page is beyond EOF. If it is not
2605  * beyond EOF, then the page is guaranteed safe against truncation until we
2606  * unlock the page.
2607  *
2608  * Direct callers of this function should protect against filesystem freezing
2609  * using sb_start_pagefault() - sb_end_pagefault() functions.
2610  */
2611 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2612 			 get_block_t get_block)
2613 {
2614 	struct folio *folio = page_folio(vmf->page);
2615 	struct inode *inode = file_inode(vma->vm_file);
2616 	unsigned long end;
2617 	loff_t size;
2618 	int ret;
2619 
2620 	folio_lock(folio);
2621 	size = i_size_read(inode);
2622 	if ((folio->mapping != inode->i_mapping) ||
2623 	    (folio_pos(folio) >= size)) {
2624 		/* We overload EFAULT to mean page got truncated */
2625 		ret = -EFAULT;
2626 		goto out_unlock;
2627 	}
2628 
2629 	end = folio_size(folio);
2630 	/* folio is wholly or partially inside EOF */
2631 	if (folio_pos(folio) + end > size)
2632 		end = size - folio_pos(folio);
2633 
2634 	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2635 	if (unlikely(ret))
2636 		goto out_unlock;
2637 
2638 	__block_commit_write(folio, 0, end);
2639 
2640 	folio_mark_dirty(folio);
2641 	folio_wait_stable(folio);
2642 	return 0;
2643 out_unlock:
2644 	folio_unlock(folio);
2645 	return ret;
2646 }
2647 EXPORT_SYMBOL(block_page_mkwrite);
2648 
2649 int block_truncate_page(struct address_space *mapping,
2650 			loff_t from, get_block_t *get_block)
2651 {
2652 	pgoff_t index = from >> PAGE_SHIFT;
2653 	unsigned blocksize;
2654 	sector_t iblock;
2655 	size_t offset, length, pos;
2656 	struct inode *inode = mapping->host;
2657 	struct folio *folio;
2658 	struct buffer_head *bh;
2659 	int err = 0;
2660 
2661 	blocksize = i_blocksize(inode);
2662 	length = from & (blocksize - 1);
2663 
2664 	/* Block boundary? Nothing to do */
2665 	if (!length)
2666 		return 0;
2667 
2668 	length = blocksize - length;
2669 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2670 
2671 	folio = filemap_grab_folio(mapping, index);
2672 	if (IS_ERR(folio))
2673 		return PTR_ERR(folio);
2674 
2675 	bh = folio_buffers(folio);
2676 	if (!bh)
2677 		bh = create_empty_buffers(folio, blocksize, 0);
2678 
2679 	/* Find the buffer that contains "offset" */
2680 	offset = offset_in_folio(folio, from);
2681 	pos = blocksize;
2682 	while (offset >= pos) {
2683 		bh = bh->b_this_page;
2684 		iblock++;
2685 		pos += blocksize;
2686 	}
2687 
2688 	if (!buffer_mapped(bh)) {
2689 		WARN_ON(bh->b_size != blocksize);
2690 		err = get_block(inode, iblock, bh, 0);
2691 		if (err)
2692 			goto unlock;
2693 		/* unmapped? It's a hole - nothing to do */
2694 		if (!buffer_mapped(bh))
2695 			goto unlock;
2696 	}
2697 
2698 	/* Ok, it's mapped. Make sure it's up-to-date */
2699 	if (folio_test_uptodate(folio))
2700 		set_buffer_uptodate(bh);
2701 
2702 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2703 		err = bh_read(bh, 0);
2704 		/* Uhhuh. Read error. Complain and punt. */
2705 		if (err < 0)
2706 			goto unlock;
2707 	}
2708 
2709 	folio_zero_range(folio, offset, length);
2710 	mark_buffer_dirty(bh);
2711 
2712 unlock:
2713 	folio_unlock(folio);
2714 	folio_put(folio);
2715 
2716 	return err;
2717 }
2718 EXPORT_SYMBOL(block_truncate_page);
2719 
2720 /*
2721  * The generic ->writepage function for buffer-backed address_spaces
2722  */
2723 int block_write_full_page(struct page *page, get_block_t *get_block,
2724 			struct writeback_control *wbc)
2725 {
2726 	struct folio *folio = page_folio(page);
2727 	struct inode * const inode = folio->mapping->host;
2728 	loff_t i_size = i_size_read(inode);
2729 
2730 	/* Is the folio fully inside i_size? */
2731 	if (folio_pos(folio) + folio_size(folio) <= i_size)
2732 		return __block_write_full_folio(inode, folio, get_block, wbc,
2733 					       end_buffer_async_write);
2734 
2735 	/* Is the folio fully outside i_size? (truncate in progress) */
2736 	if (folio_pos(folio) >= i_size) {
2737 		folio_unlock(folio);
2738 		return 0; /* don't care */
2739 	}
2740 
2741 	/*
2742 	 * The folio straddles i_size.  It must be zeroed out on each and every
2743 	 * writepage invocation because it may be mmapped.  "A file is mapped
2744 	 * in multiples of the page size.  For a file that is not a multiple of
2745 	 * the page size, the remaining memory is zeroed when mapped, and
2746 	 * writes to that region are not written out to the file."
2747 	 */
2748 	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2749 			folio_size(folio));
2750 	return __block_write_full_folio(inode, folio, get_block, wbc,
2751 			end_buffer_async_write);
2752 }
2753 EXPORT_SYMBOL(block_write_full_page);
2754 
2755 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2756 			    get_block_t *get_block)
2757 {
2758 	struct inode *inode = mapping->host;
2759 	struct buffer_head tmp = {
2760 		.b_size = i_blocksize(inode),
2761 	};
2762 
2763 	get_block(inode, block, &tmp, 0);
2764 	return tmp.b_blocknr;
2765 }
2766 EXPORT_SYMBOL(generic_block_bmap);
2767 
2768 static void end_bio_bh_io_sync(struct bio *bio)
2769 {
2770 	struct buffer_head *bh = bio->bi_private;
2771 
2772 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2773 		set_bit(BH_Quiet, &bh->b_state);
2774 
2775 	bh->b_end_io(bh, !bio->bi_status);
2776 	bio_put(bio);
2777 }
2778 
2779 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2780 			  struct writeback_control *wbc)
2781 {
2782 	const enum req_op op = opf & REQ_OP_MASK;
2783 	struct bio *bio;
2784 
2785 	BUG_ON(!buffer_locked(bh));
2786 	BUG_ON(!buffer_mapped(bh));
2787 	BUG_ON(!bh->b_end_io);
2788 	BUG_ON(buffer_delay(bh));
2789 	BUG_ON(buffer_unwritten(bh));
2790 
2791 	/*
2792 	 * Only clear out a write error when rewriting
2793 	 */
2794 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2795 		clear_buffer_write_io_error(bh);
2796 
2797 	if (buffer_meta(bh))
2798 		opf |= REQ_META;
2799 	if (buffer_prio(bh))
2800 		opf |= REQ_PRIO;
2801 
2802 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2803 
2804 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2805 
2806 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2807 
2808 	__bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2809 
2810 	bio->bi_end_io = end_bio_bh_io_sync;
2811 	bio->bi_private = bh;
2812 
2813 	/* Take care of bh's that straddle the end of the device */
2814 	guard_bio_eod(bio);
2815 
2816 	if (wbc) {
2817 		wbc_init_bio(wbc, bio);
2818 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2819 	}
2820 
2821 	submit_bio(bio);
2822 }
2823 
2824 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2825 {
2826 	submit_bh_wbc(opf, bh, NULL);
2827 }
2828 EXPORT_SYMBOL(submit_bh);
2829 
2830 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2831 {
2832 	lock_buffer(bh);
2833 	if (!test_clear_buffer_dirty(bh)) {
2834 		unlock_buffer(bh);
2835 		return;
2836 	}
2837 	bh->b_end_io = end_buffer_write_sync;
2838 	get_bh(bh);
2839 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2840 }
2841 EXPORT_SYMBOL(write_dirty_buffer);
2842 
2843 /*
2844  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2845  * and then start new I/O and then wait upon it.  The caller must have a ref on
2846  * the buffer_head.
2847  */
2848 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2849 {
2850 	WARN_ON(atomic_read(&bh->b_count) < 1);
2851 	lock_buffer(bh);
2852 	if (test_clear_buffer_dirty(bh)) {
2853 		/*
2854 		 * The bh should be mapped, but it might not be if the
2855 		 * device was hot-removed. Not much we can do but fail the I/O.
2856 		 */
2857 		if (!buffer_mapped(bh)) {
2858 			unlock_buffer(bh);
2859 			return -EIO;
2860 		}
2861 
2862 		get_bh(bh);
2863 		bh->b_end_io = end_buffer_write_sync;
2864 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2865 		wait_on_buffer(bh);
2866 		if (!buffer_uptodate(bh))
2867 			return -EIO;
2868 	} else {
2869 		unlock_buffer(bh);
2870 	}
2871 	return 0;
2872 }
2873 EXPORT_SYMBOL(__sync_dirty_buffer);
2874 
2875 int sync_dirty_buffer(struct buffer_head *bh)
2876 {
2877 	return __sync_dirty_buffer(bh, REQ_SYNC);
2878 }
2879 EXPORT_SYMBOL(sync_dirty_buffer);
2880 
2881 /*
2882  * try_to_free_buffers() checks if all the buffers on this particular folio
2883  * are unused, and releases them if so.
2884  *
2885  * Exclusion against try_to_free_buffers may be obtained by either
2886  * locking the folio or by holding its mapping's private_lock.
2887  *
2888  * If the folio is dirty but all the buffers are clean then we need to
2889  * be sure to mark the folio clean as well.  This is because the folio
2890  * may be against a block device, and a later reattachment of buffers
2891  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2892  * filesystem data on the same device.
2893  *
2894  * The same applies to regular filesystem folios: if all the buffers are
2895  * clean then we set the folio clean and proceed.  To do that, we require
2896  * total exclusion from block_dirty_folio().  That is obtained with
2897  * private_lock.
2898  *
2899  * try_to_free_buffers() is non-blocking.
2900  */
2901 static inline int buffer_busy(struct buffer_head *bh)
2902 {
2903 	return atomic_read(&bh->b_count) |
2904 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2905 }
2906 
2907 static bool
2908 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2909 {
2910 	struct buffer_head *head = folio_buffers(folio);
2911 	struct buffer_head *bh;
2912 
2913 	bh = head;
2914 	do {
2915 		if (buffer_busy(bh))
2916 			goto failed;
2917 		bh = bh->b_this_page;
2918 	} while (bh != head);
2919 
2920 	do {
2921 		struct buffer_head *next = bh->b_this_page;
2922 
2923 		if (bh->b_assoc_map)
2924 			__remove_assoc_queue(bh);
2925 		bh = next;
2926 	} while (bh != head);
2927 	*buffers_to_free = head;
2928 	folio_detach_private(folio);
2929 	return true;
2930 failed:
2931 	return false;
2932 }
2933 
2934 bool try_to_free_buffers(struct folio *folio)
2935 {
2936 	struct address_space * const mapping = folio->mapping;
2937 	struct buffer_head *buffers_to_free = NULL;
2938 	bool ret = 0;
2939 
2940 	BUG_ON(!folio_test_locked(folio));
2941 	if (folio_test_writeback(folio))
2942 		return false;
2943 
2944 	if (mapping == NULL) {		/* can this still happen? */
2945 		ret = drop_buffers(folio, &buffers_to_free);
2946 		goto out;
2947 	}
2948 
2949 	spin_lock(&mapping->private_lock);
2950 	ret = drop_buffers(folio, &buffers_to_free);
2951 
2952 	/*
2953 	 * If the filesystem writes its buffers by hand (eg ext3)
2954 	 * then we can have clean buffers against a dirty folio.  We
2955 	 * clean the folio here; otherwise the VM will never notice
2956 	 * that the filesystem did any IO at all.
2957 	 *
2958 	 * Also, during truncate, discard_buffer will have marked all
2959 	 * the folio's buffers clean.  We discover that here and clean
2960 	 * the folio also.
2961 	 *
2962 	 * private_lock must be held over this entire operation in order
2963 	 * to synchronise against block_dirty_folio and prevent the
2964 	 * dirty bit from being lost.
2965 	 */
2966 	if (ret)
2967 		folio_cancel_dirty(folio);
2968 	spin_unlock(&mapping->private_lock);
2969 out:
2970 	if (buffers_to_free) {
2971 		struct buffer_head *bh = buffers_to_free;
2972 
2973 		do {
2974 			struct buffer_head *next = bh->b_this_page;
2975 			free_buffer_head(bh);
2976 			bh = next;
2977 		} while (bh != buffers_to_free);
2978 	}
2979 	return ret;
2980 }
2981 EXPORT_SYMBOL(try_to_free_buffers);
2982 
2983 /*
2984  * Buffer-head allocation
2985  */
2986 static struct kmem_cache *bh_cachep __ro_after_init;
2987 
2988 /*
2989  * Once the number of bh's in the machine exceeds this level, we start
2990  * stripping them in writeback.
2991  */
2992 static unsigned long max_buffer_heads __ro_after_init;
2993 
2994 int buffer_heads_over_limit;
2995 
2996 struct bh_accounting {
2997 	int nr;			/* Number of live bh's */
2998 	int ratelimit;		/* Limit cacheline bouncing */
2999 };
3000 
3001 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3002 
3003 static void recalc_bh_state(void)
3004 {
3005 	int i;
3006 	int tot = 0;
3007 
3008 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3009 		return;
3010 	__this_cpu_write(bh_accounting.ratelimit, 0);
3011 	for_each_online_cpu(i)
3012 		tot += per_cpu(bh_accounting, i).nr;
3013 	buffer_heads_over_limit = (tot > max_buffer_heads);
3014 }
3015 
3016 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3017 {
3018 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3019 	if (ret) {
3020 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3021 		spin_lock_init(&ret->b_uptodate_lock);
3022 		preempt_disable();
3023 		__this_cpu_inc(bh_accounting.nr);
3024 		recalc_bh_state();
3025 		preempt_enable();
3026 	}
3027 	return ret;
3028 }
3029 EXPORT_SYMBOL(alloc_buffer_head);
3030 
3031 void free_buffer_head(struct buffer_head *bh)
3032 {
3033 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3034 	kmem_cache_free(bh_cachep, bh);
3035 	preempt_disable();
3036 	__this_cpu_dec(bh_accounting.nr);
3037 	recalc_bh_state();
3038 	preempt_enable();
3039 }
3040 EXPORT_SYMBOL(free_buffer_head);
3041 
3042 static int buffer_exit_cpu_dead(unsigned int cpu)
3043 {
3044 	int i;
3045 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3046 
3047 	for (i = 0; i < BH_LRU_SIZE; i++) {
3048 		brelse(b->bhs[i]);
3049 		b->bhs[i] = NULL;
3050 	}
3051 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3052 	per_cpu(bh_accounting, cpu).nr = 0;
3053 	return 0;
3054 }
3055 
3056 /**
3057  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3058  * @bh: struct buffer_head
3059  *
3060  * Return true if the buffer is up-to-date and false,
3061  * with the buffer locked, if not.
3062  */
3063 int bh_uptodate_or_lock(struct buffer_head *bh)
3064 {
3065 	if (!buffer_uptodate(bh)) {
3066 		lock_buffer(bh);
3067 		if (!buffer_uptodate(bh))
3068 			return 0;
3069 		unlock_buffer(bh);
3070 	}
3071 	return 1;
3072 }
3073 EXPORT_SYMBOL(bh_uptodate_or_lock);
3074 
3075 /**
3076  * __bh_read - Submit read for a locked buffer
3077  * @bh: struct buffer_head
3078  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3079  * @wait: wait until reading finish
3080  *
3081  * Returns zero on success or don't wait, and -EIO on error.
3082  */
3083 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3084 {
3085 	int ret = 0;
3086 
3087 	BUG_ON(!buffer_locked(bh));
3088 
3089 	get_bh(bh);
3090 	bh->b_end_io = end_buffer_read_sync;
3091 	submit_bh(REQ_OP_READ | op_flags, bh);
3092 	if (wait) {
3093 		wait_on_buffer(bh);
3094 		if (!buffer_uptodate(bh))
3095 			ret = -EIO;
3096 	}
3097 	return ret;
3098 }
3099 EXPORT_SYMBOL(__bh_read);
3100 
3101 /**
3102  * __bh_read_batch - Submit read for a batch of unlocked buffers
3103  * @nr: entry number of the buffer batch
3104  * @bhs: a batch of struct buffer_head
3105  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3106  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3107  *              buffer that cannot lock.
3108  *
3109  * Returns zero on success or don't wait, and -EIO on error.
3110  */
3111 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3112 		     blk_opf_t op_flags, bool force_lock)
3113 {
3114 	int i;
3115 
3116 	for (i = 0; i < nr; i++) {
3117 		struct buffer_head *bh = bhs[i];
3118 
3119 		if (buffer_uptodate(bh))
3120 			continue;
3121 
3122 		if (force_lock)
3123 			lock_buffer(bh);
3124 		else
3125 			if (!trylock_buffer(bh))
3126 				continue;
3127 
3128 		if (buffer_uptodate(bh)) {
3129 			unlock_buffer(bh);
3130 			continue;
3131 		}
3132 
3133 		bh->b_end_io = end_buffer_read_sync;
3134 		get_bh(bh);
3135 		submit_bh(REQ_OP_READ | op_flags, bh);
3136 	}
3137 }
3138 EXPORT_SYMBOL(__bh_read_batch);
3139 
3140 void __init buffer_init(void)
3141 {
3142 	unsigned long nrpages;
3143 	int ret;
3144 
3145 	bh_cachep = kmem_cache_create("buffer_head",
3146 			sizeof(struct buffer_head), 0,
3147 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3148 				SLAB_MEM_SPREAD),
3149 				NULL);
3150 
3151 	/*
3152 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3153 	 */
3154 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3155 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3156 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3157 					NULL, buffer_exit_cpu_dead);
3158 	WARN_ON(ret < 0);
3159 }
3160