xref: /linux/fs/buffer.c (revision 4be5e8648b0c287aefc6ac3f3a0b12c696054f43)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 
52 #include "internal.h"
53 
54 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
55 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
56 			 enum rw_hint hint, struct writeback_control *wbc);
57 
58 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
59 
60 inline void touch_buffer(struct buffer_head *bh)
61 {
62 	trace_block_touch_buffer(bh);
63 	mark_page_accessed(bh->b_page);
64 }
65 EXPORT_SYMBOL(touch_buffer);
66 
67 void __lock_buffer(struct buffer_head *bh)
68 {
69 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
70 }
71 EXPORT_SYMBOL(__lock_buffer);
72 
73 void unlock_buffer(struct buffer_head *bh)
74 {
75 	clear_bit_unlock(BH_Lock, &bh->b_state);
76 	smp_mb__after_atomic();
77 	wake_up_bit(&bh->b_state, BH_Lock);
78 }
79 EXPORT_SYMBOL(unlock_buffer);
80 
81 /*
82  * Returns if the page has dirty or writeback buffers. If all the buffers
83  * are unlocked and clean then the PageDirty information is stale. If
84  * any of the pages are locked, it is assumed they are locked for IO.
85  */
86 void buffer_check_dirty_writeback(struct page *page,
87 				     bool *dirty, bool *writeback)
88 {
89 	struct buffer_head *head, *bh;
90 	*dirty = false;
91 	*writeback = false;
92 
93 	BUG_ON(!PageLocked(page));
94 
95 	if (!page_has_buffers(page))
96 		return;
97 
98 	if (PageWriteback(page))
99 		*writeback = true;
100 
101 	head = page_buffers(page);
102 	bh = head;
103 	do {
104 		if (buffer_locked(bh))
105 			*writeback = true;
106 
107 		if (buffer_dirty(bh))
108 			*dirty = true;
109 
110 		bh = bh->b_this_page;
111 	} while (bh != head);
112 }
113 EXPORT_SYMBOL(buffer_check_dirty_writeback);
114 
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125 
126 static void
127 __clear_page_buffers(struct page *page)
128 {
129 	ClearPagePrivate(page);
130 	set_page_private(page, 0);
131 	put_page(page);
132 }
133 
134 static void buffer_io_error(struct buffer_head *bh, char *msg)
135 {
136 	if (!test_bit(BH_Quiet, &bh->b_state))
137 		printk_ratelimited(KERN_ERR
138 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
139 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
140 }
141 
142 /*
143  * End-of-IO handler helper function which does not touch the bh after
144  * unlocking it.
145  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
146  * a race there is benign: unlock_buffer() only use the bh's address for
147  * hashing after unlocking the buffer, so it doesn't actually touch the bh
148  * itself.
149  */
150 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
151 {
152 	if (uptodate) {
153 		set_buffer_uptodate(bh);
154 	} else {
155 		/* This happens, due to failed read-ahead attempts. */
156 		clear_buffer_uptodate(bh);
157 	}
158 	unlock_buffer(bh);
159 }
160 
161 /*
162  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
163  * unlock the buffer. This is what ll_rw_block uses too.
164  */
165 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
166 {
167 	__end_buffer_read_notouch(bh, uptodate);
168 	put_bh(bh);
169 }
170 EXPORT_SYMBOL(end_buffer_read_sync);
171 
172 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
173 {
174 	if (uptodate) {
175 		set_buffer_uptodate(bh);
176 	} else {
177 		buffer_io_error(bh, ", lost sync page write");
178 		mark_buffer_write_io_error(bh);
179 		clear_buffer_uptodate(bh);
180 	}
181 	unlock_buffer(bh);
182 	put_bh(bh);
183 }
184 EXPORT_SYMBOL(end_buffer_write_sync);
185 
186 /*
187  * Various filesystems appear to want __find_get_block to be non-blocking.
188  * But it's the page lock which protects the buffers.  To get around this,
189  * we get exclusion from try_to_free_buffers with the blockdev mapping's
190  * private_lock.
191  *
192  * Hack idea: for the blockdev mapping, private_lock contention
193  * may be quite high.  This code could TryLock the page, and if that
194  * succeeds, there is no need to take private_lock.
195  */
196 static struct buffer_head *
197 __find_get_block_slow(struct block_device *bdev, sector_t block)
198 {
199 	struct inode *bd_inode = bdev->bd_inode;
200 	struct address_space *bd_mapping = bd_inode->i_mapping;
201 	struct buffer_head *ret = NULL;
202 	pgoff_t index;
203 	struct buffer_head *bh;
204 	struct buffer_head *head;
205 	struct page *page;
206 	int all_mapped = 1;
207 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
208 
209 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
210 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
211 	if (!page)
212 		goto out;
213 
214 	spin_lock(&bd_mapping->private_lock);
215 	if (!page_has_buffers(page))
216 		goto out_unlock;
217 	head = page_buffers(page);
218 	bh = head;
219 	do {
220 		if (!buffer_mapped(bh))
221 			all_mapped = 0;
222 		else if (bh->b_blocknr == block) {
223 			ret = bh;
224 			get_bh(bh);
225 			goto out_unlock;
226 		}
227 		bh = bh->b_this_page;
228 	} while (bh != head);
229 
230 	/* we might be here because some of the buffers on this page are
231 	 * not mapped.  This is due to various races between
232 	 * file io on the block device and getblk.  It gets dealt with
233 	 * elsewhere, don't buffer_error if we had some unmapped buffers
234 	 */
235 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
236 	if (all_mapped && __ratelimit(&last_warned)) {
237 		printk("__find_get_block_slow() failed. block=%llu, "
238 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
239 		       "device %pg blocksize: %d\n",
240 		       (unsigned long long)block,
241 		       (unsigned long long)bh->b_blocknr,
242 		       bh->b_state, bh->b_size, bdev,
243 		       1 << bd_inode->i_blkbits);
244 	}
245 out_unlock:
246 	spin_unlock(&bd_mapping->private_lock);
247 	put_page(page);
248 out:
249 	return ret;
250 }
251 
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254 	unsigned long flags;
255 	struct buffer_head *first;
256 	struct buffer_head *tmp;
257 	struct page *page;
258 	int page_uptodate = 1;
259 
260 	BUG_ON(!buffer_async_read(bh));
261 
262 	page = bh->b_page;
263 	if (uptodate) {
264 		set_buffer_uptodate(bh);
265 	} else {
266 		clear_buffer_uptodate(bh);
267 		buffer_io_error(bh, ", async page read");
268 		SetPageError(page);
269 	}
270 
271 	/*
272 	 * Be _very_ careful from here on. Bad things can happen if
273 	 * two buffer heads end IO at almost the same time and both
274 	 * decide that the page is now completely done.
275 	 */
276 	first = page_buffers(page);
277 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
278 	clear_buffer_async_read(bh);
279 	unlock_buffer(bh);
280 	tmp = bh;
281 	do {
282 		if (!buffer_uptodate(tmp))
283 			page_uptodate = 0;
284 		if (buffer_async_read(tmp)) {
285 			BUG_ON(!buffer_locked(tmp));
286 			goto still_busy;
287 		}
288 		tmp = tmp->b_this_page;
289 	} while (tmp != bh);
290 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
291 
292 	/*
293 	 * If none of the buffers had errors and they are all
294 	 * uptodate then we can set the page uptodate.
295 	 */
296 	if (page_uptodate && !PageError(page))
297 		SetPageUptodate(page);
298 	unlock_page(page);
299 	return;
300 
301 still_busy:
302 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
303 	return;
304 }
305 
306 struct decrypt_bh_ctx {
307 	struct work_struct work;
308 	struct buffer_head *bh;
309 };
310 
311 static void decrypt_bh(struct work_struct *work)
312 {
313 	struct decrypt_bh_ctx *ctx =
314 		container_of(work, struct decrypt_bh_ctx, work);
315 	struct buffer_head *bh = ctx->bh;
316 	int err;
317 
318 	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
319 					       bh_offset(bh));
320 	end_buffer_async_read(bh, err == 0);
321 	kfree(ctx);
322 }
323 
324 /*
325  * I/O completion handler for block_read_full_page() - pages
326  * which come unlocked at the end of I/O.
327  */
328 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
329 {
330 	/* Decrypt if needed */
331 	if (uptodate && IS_ENABLED(CONFIG_FS_ENCRYPTION) &&
332 	    IS_ENCRYPTED(bh->b_page->mapping->host) &&
333 	    S_ISREG(bh->b_page->mapping->host->i_mode)) {
334 		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
335 
336 		if (ctx) {
337 			INIT_WORK(&ctx->work, decrypt_bh);
338 			ctx->bh = bh;
339 			fscrypt_enqueue_decrypt_work(&ctx->work);
340 			return;
341 		}
342 		uptodate = 0;
343 	}
344 	end_buffer_async_read(bh, uptodate);
345 }
346 
347 /*
348  * Completion handler for block_write_full_page() - pages which are unlocked
349  * during I/O, and which have PageWriteback cleared upon I/O completion.
350  */
351 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
352 {
353 	unsigned long flags;
354 	struct buffer_head *first;
355 	struct buffer_head *tmp;
356 	struct page *page;
357 
358 	BUG_ON(!buffer_async_write(bh));
359 
360 	page = bh->b_page;
361 	if (uptodate) {
362 		set_buffer_uptodate(bh);
363 	} else {
364 		buffer_io_error(bh, ", lost async page write");
365 		mark_buffer_write_io_error(bh);
366 		clear_buffer_uptodate(bh);
367 		SetPageError(page);
368 	}
369 
370 	first = page_buffers(page);
371 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
372 
373 	clear_buffer_async_write(bh);
374 	unlock_buffer(bh);
375 	tmp = bh->b_this_page;
376 	while (tmp != bh) {
377 		if (buffer_async_write(tmp)) {
378 			BUG_ON(!buffer_locked(tmp));
379 			goto still_busy;
380 		}
381 		tmp = tmp->b_this_page;
382 	}
383 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
384 	end_page_writeback(page);
385 	return;
386 
387 still_busy:
388 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
389 	return;
390 }
391 EXPORT_SYMBOL(end_buffer_async_write);
392 
393 /*
394  * If a page's buffers are under async readin (end_buffer_async_read
395  * completion) then there is a possibility that another thread of
396  * control could lock one of the buffers after it has completed
397  * but while some of the other buffers have not completed.  This
398  * locked buffer would confuse end_buffer_async_read() into not unlocking
399  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
400  * that this buffer is not under async I/O.
401  *
402  * The page comes unlocked when it has no locked buffer_async buffers
403  * left.
404  *
405  * PageLocked prevents anyone starting new async I/O reads any of
406  * the buffers.
407  *
408  * PageWriteback is used to prevent simultaneous writeout of the same
409  * page.
410  *
411  * PageLocked prevents anyone from starting writeback of a page which is
412  * under read I/O (PageWriteback is only ever set against a locked page).
413  */
414 static void mark_buffer_async_read(struct buffer_head *bh)
415 {
416 	bh->b_end_io = end_buffer_async_read_io;
417 	set_buffer_async_read(bh);
418 }
419 
420 static void mark_buffer_async_write_endio(struct buffer_head *bh,
421 					  bh_end_io_t *handler)
422 {
423 	bh->b_end_io = handler;
424 	set_buffer_async_write(bh);
425 }
426 
427 void mark_buffer_async_write(struct buffer_head *bh)
428 {
429 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
430 }
431 EXPORT_SYMBOL(mark_buffer_async_write);
432 
433 
434 /*
435  * fs/buffer.c contains helper functions for buffer-backed address space's
436  * fsync functions.  A common requirement for buffer-based filesystems is
437  * that certain data from the backing blockdev needs to be written out for
438  * a successful fsync().  For example, ext2 indirect blocks need to be
439  * written back and waited upon before fsync() returns.
440  *
441  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
442  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
443  * management of a list of dependent buffers at ->i_mapping->private_list.
444  *
445  * Locking is a little subtle: try_to_free_buffers() will remove buffers
446  * from their controlling inode's queue when they are being freed.  But
447  * try_to_free_buffers() will be operating against the *blockdev* mapping
448  * at the time, not against the S_ISREG file which depends on those buffers.
449  * So the locking for private_list is via the private_lock in the address_space
450  * which backs the buffers.  Which is different from the address_space
451  * against which the buffers are listed.  So for a particular address_space,
452  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
453  * mapping->private_list will always be protected by the backing blockdev's
454  * ->private_lock.
455  *
456  * Which introduces a requirement: all buffers on an address_space's
457  * ->private_list must be from the same address_space: the blockdev's.
458  *
459  * address_spaces which do not place buffers at ->private_list via these
460  * utility functions are free to use private_lock and private_list for
461  * whatever they want.  The only requirement is that list_empty(private_list)
462  * be true at clear_inode() time.
463  *
464  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
465  * filesystems should do that.  invalidate_inode_buffers() should just go
466  * BUG_ON(!list_empty).
467  *
468  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
469  * take an address_space, not an inode.  And it should be called
470  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
471  * queued up.
472  *
473  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
474  * list if it is already on a list.  Because if the buffer is on a list,
475  * it *must* already be on the right one.  If not, the filesystem is being
476  * silly.  This will save a ton of locking.  But first we have to ensure
477  * that buffers are taken *off* the old inode's list when they are freed
478  * (presumably in truncate).  That requires careful auditing of all
479  * filesystems (do it inside bforget()).  It could also be done by bringing
480  * b_inode back.
481  */
482 
483 /*
484  * The buffer's backing address_space's private_lock must be held
485  */
486 static void __remove_assoc_queue(struct buffer_head *bh)
487 {
488 	list_del_init(&bh->b_assoc_buffers);
489 	WARN_ON(!bh->b_assoc_map);
490 	bh->b_assoc_map = NULL;
491 }
492 
493 int inode_has_buffers(struct inode *inode)
494 {
495 	return !list_empty(&inode->i_data.private_list);
496 }
497 
498 /*
499  * osync is designed to support O_SYNC io.  It waits synchronously for
500  * all already-submitted IO to complete, but does not queue any new
501  * writes to the disk.
502  *
503  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
504  * you dirty the buffers, and then use osync_inode_buffers to wait for
505  * completion.  Any other dirty buffers which are not yet queued for
506  * write will not be flushed to disk by the osync.
507  */
508 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
509 {
510 	struct buffer_head *bh;
511 	struct list_head *p;
512 	int err = 0;
513 
514 	spin_lock(lock);
515 repeat:
516 	list_for_each_prev(p, list) {
517 		bh = BH_ENTRY(p);
518 		if (buffer_locked(bh)) {
519 			get_bh(bh);
520 			spin_unlock(lock);
521 			wait_on_buffer(bh);
522 			if (!buffer_uptodate(bh))
523 				err = -EIO;
524 			brelse(bh);
525 			spin_lock(lock);
526 			goto repeat;
527 		}
528 	}
529 	spin_unlock(lock);
530 	return err;
531 }
532 
533 void emergency_thaw_bdev(struct super_block *sb)
534 {
535 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
536 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
537 }
538 
539 /**
540  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
541  * @mapping: the mapping which wants those buffers written
542  *
543  * Starts I/O against the buffers at mapping->private_list, and waits upon
544  * that I/O.
545  *
546  * Basically, this is a convenience function for fsync().
547  * @mapping is a file or directory which needs those buffers to be written for
548  * a successful fsync().
549  */
550 int sync_mapping_buffers(struct address_space *mapping)
551 {
552 	struct address_space *buffer_mapping = mapping->private_data;
553 
554 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
555 		return 0;
556 
557 	return fsync_buffers_list(&buffer_mapping->private_lock,
558 					&mapping->private_list);
559 }
560 EXPORT_SYMBOL(sync_mapping_buffers);
561 
562 /*
563  * Called when we've recently written block `bblock', and it is known that
564  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
565  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
566  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
567  */
568 void write_boundary_block(struct block_device *bdev,
569 			sector_t bblock, unsigned blocksize)
570 {
571 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
572 	if (bh) {
573 		if (buffer_dirty(bh))
574 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
575 		put_bh(bh);
576 	}
577 }
578 
579 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
580 {
581 	struct address_space *mapping = inode->i_mapping;
582 	struct address_space *buffer_mapping = bh->b_page->mapping;
583 
584 	mark_buffer_dirty(bh);
585 	if (!mapping->private_data) {
586 		mapping->private_data = buffer_mapping;
587 	} else {
588 		BUG_ON(mapping->private_data != buffer_mapping);
589 	}
590 	if (!bh->b_assoc_map) {
591 		spin_lock(&buffer_mapping->private_lock);
592 		list_move_tail(&bh->b_assoc_buffers,
593 				&mapping->private_list);
594 		bh->b_assoc_map = mapping;
595 		spin_unlock(&buffer_mapping->private_lock);
596 	}
597 }
598 EXPORT_SYMBOL(mark_buffer_dirty_inode);
599 
600 /*
601  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
602  * dirty.
603  *
604  * If warn is true, then emit a warning if the page is not uptodate and has
605  * not been truncated.
606  *
607  * The caller must hold lock_page_memcg().
608  */
609 void __set_page_dirty(struct page *page, struct address_space *mapping,
610 			     int warn)
611 {
612 	unsigned long flags;
613 
614 	xa_lock_irqsave(&mapping->i_pages, flags);
615 	if (page->mapping) {	/* Race with truncate? */
616 		WARN_ON_ONCE(warn && !PageUptodate(page));
617 		account_page_dirtied(page, mapping);
618 		__xa_set_mark(&mapping->i_pages, page_index(page),
619 				PAGECACHE_TAG_DIRTY);
620 	}
621 	xa_unlock_irqrestore(&mapping->i_pages, flags);
622 }
623 EXPORT_SYMBOL_GPL(__set_page_dirty);
624 
625 /*
626  * Add a page to the dirty page list.
627  *
628  * It is a sad fact of life that this function is called from several places
629  * deeply under spinlocking.  It may not sleep.
630  *
631  * If the page has buffers, the uptodate buffers are set dirty, to preserve
632  * dirty-state coherency between the page and the buffers.  It the page does
633  * not have buffers then when they are later attached they will all be set
634  * dirty.
635  *
636  * The buffers are dirtied before the page is dirtied.  There's a small race
637  * window in which a writepage caller may see the page cleanness but not the
638  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
639  * before the buffers, a concurrent writepage caller could clear the page dirty
640  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
641  * page on the dirty page list.
642  *
643  * We use private_lock to lock against try_to_free_buffers while using the
644  * page's buffer list.  Also use this to protect against clean buffers being
645  * added to the page after it was set dirty.
646  *
647  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
648  * address_space though.
649  */
650 int __set_page_dirty_buffers(struct page *page)
651 {
652 	int newly_dirty;
653 	struct address_space *mapping = page_mapping(page);
654 
655 	if (unlikely(!mapping))
656 		return !TestSetPageDirty(page);
657 
658 	spin_lock(&mapping->private_lock);
659 	if (page_has_buffers(page)) {
660 		struct buffer_head *head = page_buffers(page);
661 		struct buffer_head *bh = head;
662 
663 		do {
664 			set_buffer_dirty(bh);
665 			bh = bh->b_this_page;
666 		} while (bh != head);
667 	}
668 	/*
669 	 * Lock out page->mem_cgroup migration to keep PageDirty
670 	 * synchronized with per-memcg dirty page counters.
671 	 */
672 	lock_page_memcg(page);
673 	newly_dirty = !TestSetPageDirty(page);
674 	spin_unlock(&mapping->private_lock);
675 
676 	if (newly_dirty)
677 		__set_page_dirty(page, mapping, 1);
678 
679 	unlock_page_memcg(page);
680 
681 	if (newly_dirty)
682 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
683 
684 	return newly_dirty;
685 }
686 EXPORT_SYMBOL(__set_page_dirty_buffers);
687 
688 /*
689  * Write out and wait upon a list of buffers.
690  *
691  * We have conflicting pressures: we want to make sure that all
692  * initially dirty buffers get waited on, but that any subsequently
693  * dirtied buffers don't.  After all, we don't want fsync to last
694  * forever if somebody is actively writing to the file.
695  *
696  * Do this in two main stages: first we copy dirty buffers to a
697  * temporary inode list, queueing the writes as we go.  Then we clean
698  * up, waiting for those writes to complete.
699  *
700  * During this second stage, any subsequent updates to the file may end
701  * up refiling the buffer on the original inode's dirty list again, so
702  * there is a chance we will end up with a buffer queued for write but
703  * not yet completed on that list.  So, as a final cleanup we go through
704  * the osync code to catch these locked, dirty buffers without requeuing
705  * any newly dirty buffers for write.
706  */
707 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
708 {
709 	struct buffer_head *bh;
710 	struct list_head tmp;
711 	struct address_space *mapping;
712 	int err = 0, err2;
713 	struct blk_plug plug;
714 
715 	INIT_LIST_HEAD(&tmp);
716 	blk_start_plug(&plug);
717 
718 	spin_lock(lock);
719 	while (!list_empty(list)) {
720 		bh = BH_ENTRY(list->next);
721 		mapping = bh->b_assoc_map;
722 		__remove_assoc_queue(bh);
723 		/* Avoid race with mark_buffer_dirty_inode() which does
724 		 * a lockless check and we rely on seeing the dirty bit */
725 		smp_mb();
726 		if (buffer_dirty(bh) || buffer_locked(bh)) {
727 			list_add(&bh->b_assoc_buffers, &tmp);
728 			bh->b_assoc_map = mapping;
729 			if (buffer_dirty(bh)) {
730 				get_bh(bh);
731 				spin_unlock(lock);
732 				/*
733 				 * Ensure any pending I/O completes so that
734 				 * write_dirty_buffer() actually writes the
735 				 * current contents - it is a noop if I/O is
736 				 * still in flight on potentially older
737 				 * contents.
738 				 */
739 				write_dirty_buffer(bh, REQ_SYNC);
740 
741 				/*
742 				 * Kick off IO for the previous mapping. Note
743 				 * that we will not run the very last mapping,
744 				 * wait_on_buffer() will do that for us
745 				 * through sync_buffer().
746 				 */
747 				brelse(bh);
748 				spin_lock(lock);
749 			}
750 		}
751 	}
752 
753 	spin_unlock(lock);
754 	blk_finish_plug(&plug);
755 	spin_lock(lock);
756 
757 	while (!list_empty(&tmp)) {
758 		bh = BH_ENTRY(tmp.prev);
759 		get_bh(bh);
760 		mapping = bh->b_assoc_map;
761 		__remove_assoc_queue(bh);
762 		/* Avoid race with mark_buffer_dirty_inode() which does
763 		 * a lockless check and we rely on seeing the dirty bit */
764 		smp_mb();
765 		if (buffer_dirty(bh)) {
766 			list_add(&bh->b_assoc_buffers,
767 				 &mapping->private_list);
768 			bh->b_assoc_map = mapping;
769 		}
770 		spin_unlock(lock);
771 		wait_on_buffer(bh);
772 		if (!buffer_uptodate(bh))
773 			err = -EIO;
774 		brelse(bh);
775 		spin_lock(lock);
776 	}
777 
778 	spin_unlock(lock);
779 	err2 = osync_buffers_list(lock, list);
780 	if (err)
781 		return err;
782 	else
783 		return err2;
784 }
785 
786 /*
787  * Invalidate any and all dirty buffers on a given inode.  We are
788  * probably unmounting the fs, but that doesn't mean we have already
789  * done a sync().  Just drop the buffers from the inode list.
790  *
791  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
792  * assumes that all the buffers are against the blockdev.  Not true
793  * for reiserfs.
794  */
795 void invalidate_inode_buffers(struct inode *inode)
796 {
797 	if (inode_has_buffers(inode)) {
798 		struct address_space *mapping = &inode->i_data;
799 		struct list_head *list = &mapping->private_list;
800 		struct address_space *buffer_mapping = mapping->private_data;
801 
802 		spin_lock(&buffer_mapping->private_lock);
803 		while (!list_empty(list))
804 			__remove_assoc_queue(BH_ENTRY(list->next));
805 		spin_unlock(&buffer_mapping->private_lock);
806 	}
807 }
808 EXPORT_SYMBOL(invalidate_inode_buffers);
809 
810 /*
811  * Remove any clean buffers from the inode's buffer list.  This is called
812  * when we're trying to free the inode itself.  Those buffers can pin it.
813  *
814  * Returns true if all buffers were removed.
815  */
816 int remove_inode_buffers(struct inode *inode)
817 {
818 	int ret = 1;
819 
820 	if (inode_has_buffers(inode)) {
821 		struct address_space *mapping = &inode->i_data;
822 		struct list_head *list = &mapping->private_list;
823 		struct address_space *buffer_mapping = mapping->private_data;
824 
825 		spin_lock(&buffer_mapping->private_lock);
826 		while (!list_empty(list)) {
827 			struct buffer_head *bh = BH_ENTRY(list->next);
828 			if (buffer_dirty(bh)) {
829 				ret = 0;
830 				break;
831 			}
832 			__remove_assoc_queue(bh);
833 		}
834 		spin_unlock(&buffer_mapping->private_lock);
835 	}
836 	return ret;
837 }
838 
839 /*
840  * Create the appropriate buffers when given a page for data area and
841  * the size of each buffer.. Use the bh->b_this_page linked list to
842  * follow the buffers created.  Return NULL if unable to create more
843  * buffers.
844  *
845  * The retry flag is used to differentiate async IO (paging, swapping)
846  * which may not fail from ordinary buffer allocations.
847  */
848 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
849 		bool retry)
850 {
851 	struct buffer_head *bh, *head;
852 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
853 	long offset;
854 	struct mem_cgroup *memcg;
855 
856 	if (retry)
857 		gfp |= __GFP_NOFAIL;
858 
859 	memcg = get_mem_cgroup_from_page(page);
860 	memalloc_use_memcg(memcg);
861 
862 	head = NULL;
863 	offset = PAGE_SIZE;
864 	while ((offset -= size) >= 0) {
865 		bh = alloc_buffer_head(gfp);
866 		if (!bh)
867 			goto no_grow;
868 
869 		bh->b_this_page = head;
870 		bh->b_blocknr = -1;
871 		head = bh;
872 
873 		bh->b_size = size;
874 
875 		/* Link the buffer to its page */
876 		set_bh_page(bh, page, offset);
877 	}
878 out:
879 	memalloc_unuse_memcg();
880 	mem_cgroup_put(memcg);
881 	return head;
882 /*
883  * In case anything failed, we just free everything we got.
884  */
885 no_grow:
886 	if (head) {
887 		do {
888 			bh = head;
889 			head = head->b_this_page;
890 			free_buffer_head(bh);
891 		} while (head);
892 	}
893 
894 	goto out;
895 }
896 EXPORT_SYMBOL_GPL(alloc_page_buffers);
897 
898 static inline void
899 link_dev_buffers(struct page *page, struct buffer_head *head)
900 {
901 	struct buffer_head *bh, *tail;
902 
903 	bh = head;
904 	do {
905 		tail = bh;
906 		bh = bh->b_this_page;
907 	} while (bh);
908 	tail->b_this_page = head;
909 	attach_page_buffers(page, head);
910 }
911 
912 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
913 {
914 	sector_t retval = ~((sector_t)0);
915 	loff_t sz = i_size_read(bdev->bd_inode);
916 
917 	if (sz) {
918 		unsigned int sizebits = blksize_bits(size);
919 		retval = (sz >> sizebits);
920 	}
921 	return retval;
922 }
923 
924 /*
925  * Initialise the state of a blockdev page's buffers.
926  */
927 static sector_t
928 init_page_buffers(struct page *page, struct block_device *bdev,
929 			sector_t block, int size)
930 {
931 	struct buffer_head *head = page_buffers(page);
932 	struct buffer_head *bh = head;
933 	int uptodate = PageUptodate(page);
934 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
935 
936 	do {
937 		if (!buffer_mapped(bh)) {
938 			bh->b_end_io = NULL;
939 			bh->b_private = NULL;
940 			bh->b_bdev = bdev;
941 			bh->b_blocknr = block;
942 			if (uptodate)
943 				set_buffer_uptodate(bh);
944 			if (block < end_block)
945 				set_buffer_mapped(bh);
946 		}
947 		block++;
948 		bh = bh->b_this_page;
949 	} while (bh != head);
950 
951 	/*
952 	 * Caller needs to validate requested block against end of device.
953 	 */
954 	return end_block;
955 }
956 
957 /*
958  * Create the page-cache page that contains the requested block.
959  *
960  * This is used purely for blockdev mappings.
961  */
962 static int
963 grow_dev_page(struct block_device *bdev, sector_t block,
964 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
965 {
966 	struct inode *inode = bdev->bd_inode;
967 	struct page *page;
968 	struct buffer_head *bh;
969 	sector_t end_block;
970 	int ret = 0;		/* Will call free_more_memory() */
971 	gfp_t gfp_mask;
972 
973 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
974 
975 	/*
976 	 * XXX: __getblk_slow() can not really deal with failure and
977 	 * will endlessly loop on improvised global reclaim.  Prefer
978 	 * looping in the allocator rather than here, at least that
979 	 * code knows what it's doing.
980 	 */
981 	gfp_mask |= __GFP_NOFAIL;
982 
983 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
984 
985 	BUG_ON(!PageLocked(page));
986 
987 	if (page_has_buffers(page)) {
988 		bh = page_buffers(page);
989 		if (bh->b_size == size) {
990 			end_block = init_page_buffers(page, bdev,
991 						(sector_t)index << sizebits,
992 						size);
993 			goto done;
994 		}
995 		if (!try_to_free_buffers(page))
996 			goto failed;
997 	}
998 
999 	/*
1000 	 * Allocate some buffers for this page
1001 	 */
1002 	bh = alloc_page_buffers(page, size, true);
1003 
1004 	/*
1005 	 * Link the page to the buffers and initialise them.  Take the
1006 	 * lock to be atomic wrt __find_get_block(), which does not
1007 	 * run under the page lock.
1008 	 */
1009 	spin_lock(&inode->i_mapping->private_lock);
1010 	link_dev_buffers(page, bh);
1011 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1012 			size);
1013 	spin_unlock(&inode->i_mapping->private_lock);
1014 done:
1015 	ret = (block < end_block) ? 1 : -ENXIO;
1016 failed:
1017 	unlock_page(page);
1018 	put_page(page);
1019 	return ret;
1020 }
1021 
1022 /*
1023  * Create buffers for the specified block device block's page.  If
1024  * that page was dirty, the buffers are set dirty also.
1025  */
1026 static int
1027 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1028 {
1029 	pgoff_t index;
1030 	int sizebits;
1031 
1032 	sizebits = -1;
1033 	do {
1034 		sizebits++;
1035 	} while ((size << sizebits) < PAGE_SIZE);
1036 
1037 	index = block >> sizebits;
1038 
1039 	/*
1040 	 * Check for a block which wants to lie outside our maximum possible
1041 	 * pagecache index.  (this comparison is done using sector_t types).
1042 	 */
1043 	if (unlikely(index != block >> sizebits)) {
1044 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1045 			"device %pg\n",
1046 			__func__, (unsigned long long)block,
1047 			bdev);
1048 		return -EIO;
1049 	}
1050 
1051 	/* Create a page with the proper size buffers.. */
1052 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1053 }
1054 
1055 static struct buffer_head *
1056 __getblk_slow(struct block_device *bdev, sector_t block,
1057 	     unsigned size, gfp_t gfp)
1058 {
1059 	/* Size must be multiple of hard sectorsize */
1060 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1061 			(size < 512 || size > PAGE_SIZE))) {
1062 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1063 					size);
1064 		printk(KERN_ERR "logical block size: %d\n",
1065 					bdev_logical_block_size(bdev));
1066 
1067 		dump_stack();
1068 		return NULL;
1069 	}
1070 
1071 	for (;;) {
1072 		struct buffer_head *bh;
1073 		int ret;
1074 
1075 		bh = __find_get_block(bdev, block, size);
1076 		if (bh)
1077 			return bh;
1078 
1079 		ret = grow_buffers(bdev, block, size, gfp);
1080 		if (ret < 0)
1081 			return NULL;
1082 	}
1083 }
1084 
1085 /*
1086  * The relationship between dirty buffers and dirty pages:
1087  *
1088  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1089  * the page is tagged dirty in the page cache.
1090  *
1091  * At all times, the dirtiness of the buffers represents the dirtiness of
1092  * subsections of the page.  If the page has buffers, the page dirty bit is
1093  * merely a hint about the true dirty state.
1094  *
1095  * When a page is set dirty in its entirety, all its buffers are marked dirty
1096  * (if the page has buffers).
1097  *
1098  * When a buffer is marked dirty, its page is dirtied, but the page's other
1099  * buffers are not.
1100  *
1101  * Also.  When blockdev buffers are explicitly read with bread(), they
1102  * individually become uptodate.  But their backing page remains not
1103  * uptodate - even if all of its buffers are uptodate.  A subsequent
1104  * block_read_full_page() against that page will discover all the uptodate
1105  * buffers, will set the page uptodate and will perform no I/O.
1106  */
1107 
1108 /**
1109  * mark_buffer_dirty - mark a buffer_head as needing writeout
1110  * @bh: the buffer_head to mark dirty
1111  *
1112  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1113  * its backing page dirty, then tag the page as dirty in the page cache
1114  * and then attach the address_space's inode to its superblock's dirty
1115  * inode list.
1116  *
1117  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1118  * i_pages lock and mapping->host->i_lock.
1119  */
1120 void mark_buffer_dirty(struct buffer_head *bh)
1121 {
1122 	WARN_ON_ONCE(!buffer_uptodate(bh));
1123 
1124 	trace_block_dirty_buffer(bh);
1125 
1126 	/*
1127 	 * Very *carefully* optimize the it-is-already-dirty case.
1128 	 *
1129 	 * Don't let the final "is it dirty" escape to before we
1130 	 * perhaps modified the buffer.
1131 	 */
1132 	if (buffer_dirty(bh)) {
1133 		smp_mb();
1134 		if (buffer_dirty(bh))
1135 			return;
1136 	}
1137 
1138 	if (!test_set_buffer_dirty(bh)) {
1139 		struct page *page = bh->b_page;
1140 		struct address_space *mapping = NULL;
1141 
1142 		lock_page_memcg(page);
1143 		if (!TestSetPageDirty(page)) {
1144 			mapping = page_mapping(page);
1145 			if (mapping)
1146 				__set_page_dirty(page, mapping, 0);
1147 		}
1148 		unlock_page_memcg(page);
1149 		if (mapping)
1150 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1151 	}
1152 }
1153 EXPORT_SYMBOL(mark_buffer_dirty);
1154 
1155 void mark_buffer_write_io_error(struct buffer_head *bh)
1156 {
1157 	set_buffer_write_io_error(bh);
1158 	/* FIXME: do we need to set this in both places? */
1159 	if (bh->b_page && bh->b_page->mapping)
1160 		mapping_set_error(bh->b_page->mapping, -EIO);
1161 	if (bh->b_assoc_map)
1162 		mapping_set_error(bh->b_assoc_map, -EIO);
1163 }
1164 EXPORT_SYMBOL(mark_buffer_write_io_error);
1165 
1166 /*
1167  * Decrement a buffer_head's reference count.  If all buffers against a page
1168  * have zero reference count, are clean and unlocked, and if the page is clean
1169  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1170  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1171  * a page but it ends up not being freed, and buffers may later be reattached).
1172  */
1173 void __brelse(struct buffer_head * buf)
1174 {
1175 	if (atomic_read(&buf->b_count)) {
1176 		put_bh(buf);
1177 		return;
1178 	}
1179 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1180 }
1181 EXPORT_SYMBOL(__brelse);
1182 
1183 /*
1184  * bforget() is like brelse(), except it discards any
1185  * potentially dirty data.
1186  */
1187 void __bforget(struct buffer_head *bh)
1188 {
1189 	clear_buffer_dirty(bh);
1190 	if (bh->b_assoc_map) {
1191 		struct address_space *buffer_mapping = bh->b_page->mapping;
1192 
1193 		spin_lock(&buffer_mapping->private_lock);
1194 		list_del_init(&bh->b_assoc_buffers);
1195 		bh->b_assoc_map = NULL;
1196 		spin_unlock(&buffer_mapping->private_lock);
1197 	}
1198 	__brelse(bh);
1199 }
1200 EXPORT_SYMBOL(__bforget);
1201 
1202 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1203 {
1204 	lock_buffer(bh);
1205 	if (buffer_uptodate(bh)) {
1206 		unlock_buffer(bh);
1207 		return bh;
1208 	} else {
1209 		get_bh(bh);
1210 		bh->b_end_io = end_buffer_read_sync;
1211 		submit_bh(REQ_OP_READ, 0, bh);
1212 		wait_on_buffer(bh);
1213 		if (buffer_uptodate(bh))
1214 			return bh;
1215 	}
1216 	brelse(bh);
1217 	return NULL;
1218 }
1219 
1220 /*
1221  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1222  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1223  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1224  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1225  * CPU's LRUs at the same time.
1226  *
1227  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1228  * sb_find_get_block().
1229  *
1230  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1231  * a local interrupt disable for that.
1232  */
1233 
1234 #define BH_LRU_SIZE	16
1235 
1236 struct bh_lru {
1237 	struct buffer_head *bhs[BH_LRU_SIZE];
1238 };
1239 
1240 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1241 
1242 #ifdef CONFIG_SMP
1243 #define bh_lru_lock()	local_irq_disable()
1244 #define bh_lru_unlock()	local_irq_enable()
1245 #else
1246 #define bh_lru_lock()	preempt_disable()
1247 #define bh_lru_unlock()	preempt_enable()
1248 #endif
1249 
1250 static inline void check_irqs_on(void)
1251 {
1252 #ifdef irqs_disabled
1253 	BUG_ON(irqs_disabled());
1254 #endif
1255 }
1256 
1257 /*
1258  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1259  * inserted at the front, and the buffer_head at the back if any is evicted.
1260  * Or, if already in the LRU it is moved to the front.
1261  */
1262 static void bh_lru_install(struct buffer_head *bh)
1263 {
1264 	struct buffer_head *evictee = bh;
1265 	struct bh_lru *b;
1266 	int i;
1267 
1268 	check_irqs_on();
1269 	bh_lru_lock();
1270 
1271 	b = this_cpu_ptr(&bh_lrus);
1272 	for (i = 0; i < BH_LRU_SIZE; i++) {
1273 		swap(evictee, b->bhs[i]);
1274 		if (evictee == bh) {
1275 			bh_lru_unlock();
1276 			return;
1277 		}
1278 	}
1279 
1280 	get_bh(bh);
1281 	bh_lru_unlock();
1282 	brelse(evictee);
1283 }
1284 
1285 /*
1286  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1287  */
1288 static struct buffer_head *
1289 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1290 {
1291 	struct buffer_head *ret = NULL;
1292 	unsigned int i;
1293 
1294 	check_irqs_on();
1295 	bh_lru_lock();
1296 	for (i = 0; i < BH_LRU_SIZE; i++) {
1297 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1298 
1299 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1300 		    bh->b_size == size) {
1301 			if (i) {
1302 				while (i) {
1303 					__this_cpu_write(bh_lrus.bhs[i],
1304 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1305 					i--;
1306 				}
1307 				__this_cpu_write(bh_lrus.bhs[0], bh);
1308 			}
1309 			get_bh(bh);
1310 			ret = bh;
1311 			break;
1312 		}
1313 	}
1314 	bh_lru_unlock();
1315 	return ret;
1316 }
1317 
1318 /*
1319  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1320  * it in the LRU and mark it as accessed.  If it is not present then return
1321  * NULL
1322  */
1323 struct buffer_head *
1324 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1325 {
1326 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1327 
1328 	if (bh == NULL) {
1329 		/* __find_get_block_slow will mark the page accessed */
1330 		bh = __find_get_block_slow(bdev, block);
1331 		if (bh)
1332 			bh_lru_install(bh);
1333 	} else
1334 		touch_buffer(bh);
1335 
1336 	return bh;
1337 }
1338 EXPORT_SYMBOL(__find_get_block);
1339 
1340 /*
1341  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1342  * which corresponds to the passed block_device, block and size. The
1343  * returned buffer has its reference count incremented.
1344  *
1345  * __getblk_gfp() will lock up the machine if grow_dev_page's
1346  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1347  */
1348 struct buffer_head *
1349 __getblk_gfp(struct block_device *bdev, sector_t block,
1350 	     unsigned size, gfp_t gfp)
1351 {
1352 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1353 
1354 	might_sleep();
1355 	if (bh == NULL)
1356 		bh = __getblk_slow(bdev, block, size, gfp);
1357 	return bh;
1358 }
1359 EXPORT_SYMBOL(__getblk_gfp);
1360 
1361 /*
1362  * Do async read-ahead on a buffer..
1363  */
1364 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1365 {
1366 	struct buffer_head *bh = __getblk(bdev, block, size);
1367 	if (likely(bh)) {
1368 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1369 		brelse(bh);
1370 	}
1371 }
1372 EXPORT_SYMBOL(__breadahead);
1373 
1374 /**
1375  *  __bread_gfp() - reads a specified block and returns the bh
1376  *  @bdev: the block_device to read from
1377  *  @block: number of block
1378  *  @size: size (in bytes) to read
1379  *  @gfp: page allocation flag
1380  *
1381  *  Reads a specified block, and returns buffer head that contains it.
1382  *  The page cache can be allocated from non-movable area
1383  *  not to prevent page migration if you set gfp to zero.
1384  *  It returns NULL if the block was unreadable.
1385  */
1386 struct buffer_head *
1387 __bread_gfp(struct block_device *bdev, sector_t block,
1388 		   unsigned size, gfp_t gfp)
1389 {
1390 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1391 
1392 	if (likely(bh) && !buffer_uptodate(bh))
1393 		bh = __bread_slow(bh);
1394 	return bh;
1395 }
1396 EXPORT_SYMBOL(__bread_gfp);
1397 
1398 /*
1399  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1400  * This doesn't race because it runs in each cpu either in irq
1401  * or with preempt disabled.
1402  */
1403 static void invalidate_bh_lru(void *arg)
1404 {
1405 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1406 	int i;
1407 
1408 	for (i = 0; i < BH_LRU_SIZE; i++) {
1409 		brelse(b->bhs[i]);
1410 		b->bhs[i] = NULL;
1411 	}
1412 	put_cpu_var(bh_lrus);
1413 }
1414 
1415 static bool has_bh_in_lru(int cpu, void *dummy)
1416 {
1417 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1418 	int i;
1419 
1420 	for (i = 0; i < BH_LRU_SIZE; i++) {
1421 		if (b->bhs[i])
1422 			return true;
1423 	}
1424 
1425 	return false;
1426 }
1427 
1428 void invalidate_bh_lrus(void)
1429 {
1430 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1431 }
1432 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1433 
1434 void set_bh_page(struct buffer_head *bh,
1435 		struct page *page, unsigned long offset)
1436 {
1437 	bh->b_page = page;
1438 	BUG_ON(offset >= PAGE_SIZE);
1439 	if (PageHighMem(page))
1440 		/*
1441 		 * This catches illegal uses and preserves the offset:
1442 		 */
1443 		bh->b_data = (char *)(0 + offset);
1444 	else
1445 		bh->b_data = page_address(page) + offset;
1446 }
1447 EXPORT_SYMBOL(set_bh_page);
1448 
1449 /*
1450  * Called when truncating a buffer on a page completely.
1451  */
1452 
1453 /* Bits that are cleared during an invalidate */
1454 #define BUFFER_FLAGS_DISCARD \
1455 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1456 	 1 << BH_Delay | 1 << BH_Unwritten)
1457 
1458 static void discard_buffer(struct buffer_head * bh)
1459 {
1460 	unsigned long b_state, b_state_old;
1461 
1462 	lock_buffer(bh);
1463 	clear_buffer_dirty(bh);
1464 	bh->b_bdev = NULL;
1465 	b_state = bh->b_state;
1466 	for (;;) {
1467 		b_state_old = cmpxchg(&bh->b_state, b_state,
1468 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1469 		if (b_state_old == b_state)
1470 			break;
1471 		b_state = b_state_old;
1472 	}
1473 	unlock_buffer(bh);
1474 }
1475 
1476 /**
1477  * block_invalidatepage - invalidate part or all of a buffer-backed page
1478  *
1479  * @page: the page which is affected
1480  * @offset: start of the range to invalidate
1481  * @length: length of the range to invalidate
1482  *
1483  * block_invalidatepage() is called when all or part of the page has become
1484  * invalidated by a truncate operation.
1485  *
1486  * block_invalidatepage() does not have to release all buffers, but it must
1487  * ensure that no dirty buffer is left outside @offset and that no I/O
1488  * is underway against any of the blocks which are outside the truncation
1489  * point.  Because the caller is about to free (and possibly reuse) those
1490  * blocks on-disk.
1491  */
1492 void block_invalidatepage(struct page *page, unsigned int offset,
1493 			  unsigned int length)
1494 {
1495 	struct buffer_head *head, *bh, *next;
1496 	unsigned int curr_off = 0;
1497 	unsigned int stop = length + offset;
1498 
1499 	BUG_ON(!PageLocked(page));
1500 	if (!page_has_buffers(page))
1501 		goto out;
1502 
1503 	/*
1504 	 * Check for overflow
1505 	 */
1506 	BUG_ON(stop > PAGE_SIZE || stop < length);
1507 
1508 	head = page_buffers(page);
1509 	bh = head;
1510 	do {
1511 		unsigned int next_off = curr_off + bh->b_size;
1512 		next = bh->b_this_page;
1513 
1514 		/*
1515 		 * Are we still fully in range ?
1516 		 */
1517 		if (next_off > stop)
1518 			goto out;
1519 
1520 		/*
1521 		 * is this block fully invalidated?
1522 		 */
1523 		if (offset <= curr_off)
1524 			discard_buffer(bh);
1525 		curr_off = next_off;
1526 		bh = next;
1527 	} while (bh != head);
1528 
1529 	/*
1530 	 * We release buffers only if the entire page is being invalidated.
1531 	 * The get_block cached value has been unconditionally invalidated,
1532 	 * so real IO is not possible anymore.
1533 	 */
1534 	if (length == PAGE_SIZE)
1535 		try_to_release_page(page, 0);
1536 out:
1537 	return;
1538 }
1539 EXPORT_SYMBOL(block_invalidatepage);
1540 
1541 
1542 /*
1543  * We attach and possibly dirty the buffers atomically wrt
1544  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1545  * is already excluded via the page lock.
1546  */
1547 void create_empty_buffers(struct page *page,
1548 			unsigned long blocksize, unsigned long b_state)
1549 {
1550 	struct buffer_head *bh, *head, *tail;
1551 
1552 	head = alloc_page_buffers(page, blocksize, true);
1553 	bh = head;
1554 	do {
1555 		bh->b_state |= b_state;
1556 		tail = bh;
1557 		bh = bh->b_this_page;
1558 	} while (bh);
1559 	tail->b_this_page = head;
1560 
1561 	spin_lock(&page->mapping->private_lock);
1562 	if (PageUptodate(page) || PageDirty(page)) {
1563 		bh = head;
1564 		do {
1565 			if (PageDirty(page))
1566 				set_buffer_dirty(bh);
1567 			if (PageUptodate(page))
1568 				set_buffer_uptodate(bh);
1569 			bh = bh->b_this_page;
1570 		} while (bh != head);
1571 	}
1572 	attach_page_buffers(page, head);
1573 	spin_unlock(&page->mapping->private_lock);
1574 }
1575 EXPORT_SYMBOL(create_empty_buffers);
1576 
1577 /**
1578  * clean_bdev_aliases: clean a range of buffers in block device
1579  * @bdev: Block device to clean buffers in
1580  * @block: Start of a range of blocks to clean
1581  * @len: Number of blocks to clean
1582  *
1583  * We are taking a range of blocks for data and we don't want writeback of any
1584  * buffer-cache aliases starting from return from this function and until the
1585  * moment when something will explicitly mark the buffer dirty (hopefully that
1586  * will not happen until we will free that block ;-) We don't even need to mark
1587  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1588  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1589  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1590  * would confuse anyone who might pick it with bread() afterwards...
1591  *
1592  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1593  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1594  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1595  * need to.  That happens here.
1596  */
1597 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1598 {
1599 	struct inode *bd_inode = bdev->bd_inode;
1600 	struct address_space *bd_mapping = bd_inode->i_mapping;
1601 	struct pagevec pvec;
1602 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1603 	pgoff_t end;
1604 	int i, count;
1605 	struct buffer_head *bh;
1606 	struct buffer_head *head;
1607 
1608 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1609 	pagevec_init(&pvec);
1610 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1611 		count = pagevec_count(&pvec);
1612 		for (i = 0; i < count; i++) {
1613 			struct page *page = pvec.pages[i];
1614 
1615 			if (!page_has_buffers(page))
1616 				continue;
1617 			/*
1618 			 * We use page lock instead of bd_mapping->private_lock
1619 			 * to pin buffers here since we can afford to sleep and
1620 			 * it scales better than a global spinlock lock.
1621 			 */
1622 			lock_page(page);
1623 			/* Recheck when the page is locked which pins bhs */
1624 			if (!page_has_buffers(page))
1625 				goto unlock_page;
1626 			head = page_buffers(page);
1627 			bh = head;
1628 			do {
1629 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1630 					goto next;
1631 				if (bh->b_blocknr >= block + len)
1632 					break;
1633 				clear_buffer_dirty(bh);
1634 				wait_on_buffer(bh);
1635 				clear_buffer_req(bh);
1636 next:
1637 				bh = bh->b_this_page;
1638 			} while (bh != head);
1639 unlock_page:
1640 			unlock_page(page);
1641 		}
1642 		pagevec_release(&pvec);
1643 		cond_resched();
1644 		/* End of range already reached? */
1645 		if (index > end || !index)
1646 			break;
1647 	}
1648 }
1649 EXPORT_SYMBOL(clean_bdev_aliases);
1650 
1651 /*
1652  * Size is a power-of-two in the range 512..PAGE_SIZE,
1653  * and the case we care about most is PAGE_SIZE.
1654  *
1655  * So this *could* possibly be written with those
1656  * constraints in mind (relevant mostly if some
1657  * architecture has a slow bit-scan instruction)
1658  */
1659 static inline int block_size_bits(unsigned int blocksize)
1660 {
1661 	return ilog2(blocksize);
1662 }
1663 
1664 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1665 {
1666 	BUG_ON(!PageLocked(page));
1667 
1668 	if (!page_has_buffers(page))
1669 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1670 				     b_state);
1671 	return page_buffers(page);
1672 }
1673 
1674 /*
1675  * NOTE! All mapped/uptodate combinations are valid:
1676  *
1677  *	Mapped	Uptodate	Meaning
1678  *
1679  *	No	No		"unknown" - must do get_block()
1680  *	No	Yes		"hole" - zero-filled
1681  *	Yes	No		"allocated" - allocated on disk, not read in
1682  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1683  *
1684  * "Dirty" is valid only with the last case (mapped+uptodate).
1685  */
1686 
1687 /*
1688  * While block_write_full_page is writing back the dirty buffers under
1689  * the page lock, whoever dirtied the buffers may decide to clean them
1690  * again at any time.  We handle that by only looking at the buffer
1691  * state inside lock_buffer().
1692  *
1693  * If block_write_full_page() is called for regular writeback
1694  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1695  * locked buffer.   This only can happen if someone has written the buffer
1696  * directly, with submit_bh().  At the address_space level PageWriteback
1697  * prevents this contention from occurring.
1698  *
1699  * If block_write_full_page() is called with wbc->sync_mode ==
1700  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1701  * causes the writes to be flagged as synchronous writes.
1702  */
1703 int __block_write_full_page(struct inode *inode, struct page *page,
1704 			get_block_t *get_block, struct writeback_control *wbc,
1705 			bh_end_io_t *handler)
1706 {
1707 	int err;
1708 	sector_t block;
1709 	sector_t last_block;
1710 	struct buffer_head *bh, *head;
1711 	unsigned int blocksize, bbits;
1712 	int nr_underway = 0;
1713 	int write_flags = wbc_to_write_flags(wbc);
1714 
1715 	head = create_page_buffers(page, inode,
1716 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1717 
1718 	/*
1719 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1720 	 * here, and the (potentially unmapped) buffers may become dirty at
1721 	 * any time.  If a buffer becomes dirty here after we've inspected it
1722 	 * then we just miss that fact, and the page stays dirty.
1723 	 *
1724 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1725 	 * handle that here by just cleaning them.
1726 	 */
1727 
1728 	bh = head;
1729 	blocksize = bh->b_size;
1730 	bbits = block_size_bits(blocksize);
1731 
1732 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1733 	last_block = (i_size_read(inode) - 1) >> bbits;
1734 
1735 	/*
1736 	 * Get all the dirty buffers mapped to disk addresses and
1737 	 * handle any aliases from the underlying blockdev's mapping.
1738 	 */
1739 	do {
1740 		if (block > last_block) {
1741 			/*
1742 			 * mapped buffers outside i_size will occur, because
1743 			 * this page can be outside i_size when there is a
1744 			 * truncate in progress.
1745 			 */
1746 			/*
1747 			 * The buffer was zeroed by block_write_full_page()
1748 			 */
1749 			clear_buffer_dirty(bh);
1750 			set_buffer_uptodate(bh);
1751 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1752 			   buffer_dirty(bh)) {
1753 			WARN_ON(bh->b_size != blocksize);
1754 			err = get_block(inode, block, bh, 1);
1755 			if (err)
1756 				goto recover;
1757 			clear_buffer_delay(bh);
1758 			if (buffer_new(bh)) {
1759 				/* blockdev mappings never come here */
1760 				clear_buffer_new(bh);
1761 				clean_bdev_bh_alias(bh);
1762 			}
1763 		}
1764 		bh = bh->b_this_page;
1765 		block++;
1766 	} while (bh != head);
1767 
1768 	do {
1769 		if (!buffer_mapped(bh))
1770 			continue;
1771 		/*
1772 		 * If it's a fully non-blocking write attempt and we cannot
1773 		 * lock the buffer then redirty the page.  Note that this can
1774 		 * potentially cause a busy-wait loop from writeback threads
1775 		 * and kswapd activity, but those code paths have their own
1776 		 * higher-level throttling.
1777 		 */
1778 		if (wbc->sync_mode != WB_SYNC_NONE) {
1779 			lock_buffer(bh);
1780 		} else if (!trylock_buffer(bh)) {
1781 			redirty_page_for_writepage(wbc, page);
1782 			continue;
1783 		}
1784 		if (test_clear_buffer_dirty(bh)) {
1785 			mark_buffer_async_write_endio(bh, handler);
1786 		} else {
1787 			unlock_buffer(bh);
1788 		}
1789 	} while ((bh = bh->b_this_page) != head);
1790 
1791 	/*
1792 	 * The page and its buffers are protected by PageWriteback(), so we can
1793 	 * drop the bh refcounts early.
1794 	 */
1795 	BUG_ON(PageWriteback(page));
1796 	set_page_writeback(page);
1797 
1798 	do {
1799 		struct buffer_head *next = bh->b_this_page;
1800 		if (buffer_async_write(bh)) {
1801 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1802 					inode->i_write_hint, wbc);
1803 			nr_underway++;
1804 		}
1805 		bh = next;
1806 	} while (bh != head);
1807 	unlock_page(page);
1808 
1809 	err = 0;
1810 done:
1811 	if (nr_underway == 0) {
1812 		/*
1813 		 * The page was marked dirty, but the buffers were
1814 		 * clean.  Someone wrote them back by hand with
1815 		 * ll_rw_block/submit_bh.  A rare case.
1816 		 */
1817 		end_page_writeback(page);
1818 
1819 		/*
1820 		 * The page and buffer_heads can be released at any time from
1821 		 * here on.
1822 		 */
1823 	}
1824 	return err;
1825 
1826 recover:
1827 	/*
1828 	 * ENOSPC, or some other error.  We may already have added some
1829 	 * blocks to the file, so we need to write these out to avoid
1830 	 * exposing stale data.
1831 	 * The page is currently locked and not marked for writeback
1832 	 */
1833 	bh = head;
1834 	/* Recovery: lock and submit the mapped buffers */
1835 	do {
1836 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1837 		    !buffer_delay(bh)) {
1838 			lock_buffer(bh);
1839 			mark_buffer_async_write_endio(bh, handler);
1840 		} else {
1841 			/*
1842 			 * The buffer may have been set dirty during
1843 			 * attachment to a dirty page.
1844 			 */
1845 			clear_buffer_dirty(bh);
1846 		}
1847 	} while ((bh = bh->b_this_page) != head);
1848 	SetPageError(page);
1849 	BUG_ON(PageWriteback(page));
1850 	mapping_set_error(page->mapping, err);
1851 	set_page_writeback(page);
1852 	do {
1853 		struct buffer_head *next = bh->b_this_page;
1854 		if (buffer_async_write(bh)) {
1855 			clear_buffer_dirty(bh);
1856 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1857 					inode->i_write_hint, wbc);
1858 			nr_underway++;
1859 		}
1860 		bh = next;
1861 	} while (bh != head);
1862 	unlock_page(page);
1863 	goto done;
1864 }
1865 EXPORT_SYMBOL(__block_write_full_page);
1866 
1867 /*
1868  * If a page has any new buffers, zero them out here, and mark them uptodate
1869  * and dirty so they'll be written out (in order to prevent uninitialised
1870  * block data from leaking). And clear the new bit.
1871  */
1872 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1873 {
1874 	unsigned int block_start, block_end;
1875 	struct buffer_head *head, *bh;
1876 
1877 	BUG_ON(!PageLocked(page));
1878 	if (!page_has_buffers(page))
1879 		return;
1880 
1881 	bh = head = page_buffers(page);
1882 	block_start = 0;
1883 	do {
1884 		block_end = block_start + bh->b_size;
1885 
1886 		if (buffer_new(bh)) {
1887 			if (block_end > from && block_start < to) {
1888 				if (!PageUptodate(page)) {
1889 					unsigned start, size;
1890 
1891 					start = max(from, block_start);
1892 					size = min(to, block_end) - start;
1893 
1894 					zero_user(page, start, size);
1895 					set_buffer_uptodate(bh);
1896 				}
1897 
1898 				clear_buffer_new(bh);
1899 				mark_buffer_dirty(bh);
1900 			}
1901 		}
1902 
1903 		block_start = block_end;
1904 		bh = bh->b_this_page;
1905 	} while (bh != head);
1906 }
1907 EXPORT_SYMBOL(page_zero_new_buffers);
1908 
1909 static void
1910 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1911 		struct iomap *iomap)
1912 {
1913 	loff_t offset = block << inode->i_blkbits;
1914 
1915 	bh->b_bdev = iomap->bdev;
1916 
1917 	/*
1918 	 * Block points to offset in file we need to map, iomap contains
1919 	 * the offset at which the map starts. If the map ends before the
1920 	 * current block, then do not map the buffer and let the caller
1921 	 * handle it.
1922 	 */
1923 	BUG_ON(offset >= iomap->offset + iomap->length);
1924 
1925 	switch (iomap->type) {
1926 	case IOMAP_HOLE:
1927 		/*
1928 		 * If the buffer is not up to date or beyond the current EOF,
1929 		 * we need to mark it as new to ensure sub-block zeroing is
1930 		 * executed if necessary.
1931 		 */
1932 		if (!buffer_uptodate(bh) ||
1933 		    (offset >= i_size_read(inode)))
1934 			set_buffer_new(bh);
1935 		break;
1936 	case IOMAP_DELALLOC:
1937 		if (!buffer_uptodate(bh) ||
1938 		    (offset >= i_size_read(inode)))
1939 			set_buffer_new(bh);
1940 		set_buffer_uptodate(bh);
1941 		set_buffer_mapped(bh);
1942 		set_buffer_delay(bh);
1943 		break;
1944 	case IOMAP_UNWRITTEN:
1945 		/*
1946 		 * For unwritten regions, we always need to ensure that regions
1947 		 * in the block we are not writing to are zeroed. Mark the
1948 		 * buffer as new to ensure this.
1949 		 */
1950 		set_buffer_new(bh);
1951 		set_buffer_unwritten(bh);
1952 		/* FALLTHRU */
1953 	case IOMAP_MAPPED:
1954 		if ((iomap->flags & IOMAP_F_NEW) ||
1955 		    offset >= i_size_read(inode))
1956 			set_buffer_new(bh);
1957 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1958 				inode->i_blkbits;
1959 		set_buffer_mapped(bh);
1960 		break;
1961 	}
1962 }
1963 
1964 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1965 		get_block_t *get_block, struct iomap *iomap)
1966 {
1967 	unsigned from = pos & (PAGE_SIZE - 1);
1968 	unsigned to = from + len;
1969 	struct inode *inode = page->mapping->host;
1970 	unsigned block_start, block_end;
1971 	sector_t block;
1972 	int err = 0;
1973 	unsigned blocksize, bbits;
1974 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1975 
1976 	BUG_ON(!PageLocked(page));
1977 	BUG_ON(from > PAGE_SIZE);
1978 	BUG_ON(to > PAGE_SIZE);
1979 	BUG_ON(from > to);
1980 
1981 	head = create_page_buffers(page, inode, 0);
1982 	blocksize = head->b_size;
1983 	bbits = block_size_bits(blocksize);
1984 
1985 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1986 
1987 	for(bh = head, block_start = 0; bh != head || !block_start;
1988 	    block++, block_start=block_end, bh = bh->b_this_page) {
1989 		block_end = block_start + blocksize;
1990 		if (block_end <= from || block_start >= to) {
1991 			if (PageUptodate(page)) {
1992 				if (!buffer_uptodate(bh))
1993 					set_buffer_uptodate(bh);
1994 			}
1995 			continue;
1996 		}
1997 		if (buffer_new(bh))
1998 			clear_buffer_new(bh);
1999 		if (!buffer_mapped(bh)) {
2000 			WARN_ON(bh->b_size != blocksize);
2001 			if (get_block) {
2002 				err = get_block(inode, block, bh, 1);
2003 				if (err)
2004 					break;
2005 			} else {
2006 				iomap_to_bh(inode, block, bh, iomap);
2007 			}
2008 
2009 			if (buffer_new(bh)) {
2010 				clean_bdev_bh_alias(bh);
2011 				if (PageUptodate(page)) {
2012 					clear_buffer_new(bh);
2013 					set_buffer_uptodate(bh);
2014 					mark_buffer_dirty(bh);
2015 					continue;
2016 				}
2017 				if (block_end > to || block_start < from)
2018 					zero_user_segments(page,
2019 						to, block_end,
2020 						block_start, from);
2021 				continue;
2022 			}
2023 		}
2024 		if (PageUptodate(page)) {
2025 			if (!buffer_uptodate(bh))
2026 				set_buffer_uptodate(bh);
2027 			continue;
2028 		}
2029 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2030 		    !buffer_unwritten(bh) &&
2031 		     (block_start < from || block_end > to)) {
2032 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2033 			*wait_bh++=bh;
2034 		}
2035 	}
2036 	/*
2037 	 * If we issued read requests - let them complete.
2038 	 */
2039 	while(wait_bh > wait) {
2040 		wait_on_buffer(*--wait_bh);
2041 		if (!buffer_uptodate(*wait_bh))
2042 			err = -EIO;
2043 	}
2044 	if (unlikely(err))
2045 		page_zero_new_buffers(page, from, to);
2046 	return err;
2047 }
2048 
2049 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2050 		get_block_t *get_block)
2051 {
2052 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2053 }
2054 EXPORT_SYMBOL(__block_write_begin);
2055 
2056 static int __block_commit_write(struct inode *inode, struct page *page,
2057 		unsigned from, unsigned to)
2058 {
2059 	unsigned block_start, block_end;
2060 	int partial = 0;
2061 	unsigned blocksize;
2062 	struct buffer_head *bh, *head;
2063 
2064 	bh = head = page_buffers(page);
2065 	blocksize = bh->b_size;
2066 
2067 	block_start = 0;
2068 	do {
2069 		block_end = block_start + blocksize;
2070 		if (block_end <= from || block_start >= to) {
2071 			if (!buffer_uptodate(bh))
2072 				partial = 1;
2073 		} else {
2074 			set_buffer_uptodate(bh);
2075 			mark_buffer_dirty(bh);
2076 		}
2077 		clear_buffer_new(bh);
2078 
2079 		block_start = block_end;
2080 		bh = bh->b_this_page;
2081 	} while (bh != head);
2082 
2083 	/*
2084 	 * If this is a partial write which happened to make all buffers
2085 	 * uptodate then we can optimize away a bogus readpage() for
2086 	 * the next read(). Here we 'discover' whether the page went
2087 	 * uptodate as a result of this (potentially partial) write.
2088 	 */
2089 	if (!partial)
2090 		SetPageUptodate(page);
2091 	return 0;
2092 }
2093 
2094 /*
2095  * block_write_begin takes care of the basic task of block allocation and
2096  * bringing partial write blocks uptodate first.
2097  *
2098  * The filesystem needs to handle block truncation upon failure.
2099  */
2100 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2101 		unsigned flags, struct page **pagep, get_block_t *get_block)
2102 {
2103 	pgoff_t index = pos >> PAGE_SHIFT;
2104 	struct page *page;
2105 	int status;
2106 
2107 	page = grab_cache_page_write_begin(mapping, index, flags);
2108 	if (!page)
2109 		return -ENOMEM;
2110 
2111 	status = __block_write_begin(page, pos, len, get_block);
2112 	if (unlikely(status)) {
2113 		unlock_page(page);
2114 		put_page(page);
2115 		page = NULL;
2116 	}
2117 
2118 	*pagep = page;
2119 	return status;
2120 }
2121 EXPORT_SYMBOL(block_write_begin);
2122 
2123 int block_write_end(struct file *file, struct address_space *mapping,
2124 			loff_t pos, unsigned len, unsigned copied,
2125 			struct page *page, void *fsdata)
2126 {
2127 	struct inode *inode = mapping->host;
2128 	unsigned start;
2129 
2130 	start = pos & (PAGE_SIZE - 1);
2131 
2132 	if (unlikely(copied < len)) {
2133 		/*
2134 		 * The buffers that were written will now be uptodate, so we
2135 		 * don't have to worry about a readpage reading them and
2136 		 * overwriting a partial write. However if we have encountered
2137 		 * a short write and only partially written into a buffer, it
2138 		 * will not be marked uptodate, so a readpage might come in and
2139 		 * destroy our partial write.
2140 		 *
2141 		 * Do the simplest thing, and just treat any short write to a
2142 		 * non uptodate page as a zero-length write, and force the
2143 		 * caller to redo the whole thing.
2144 		 */
2145 		if (!PageUptodate(page))
2146 			copied = 0;
2147 
2148 		page_zero_new_buffers(page, start+copied, start+len);
2149 	}
2150 	flush_dcache_page(page);
2151 
2152 	/* This could be a short (even 0-length) commit */
2153 	__block_commit_write(inode, page, start, start+copied);
2154 
2155 	return copied;
2156 }
2157 EXPORT_SYMBOL(block_write_end);
2158 
2159 int generic_write_end(struct file *file, struct address_space *mapping,
2160 			loff_t pos, unsigned len, unsigned copied,
2161 			struct page *page, void *fsdata)
2162 {
2163 	struct inode *inode = mapping->host;
2164 	loff_t old_size = inode->i_size;
2165 	bool i_size_changed = false;
2166 
2167 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2168 
2169 	/*
2170 	 * No need to use i_size_read() here, the i_size cannot change under us
2171 	 * because we hold i_rwsem.
2172 	 *
2173 	 * But it's important to update i_size while still holding page lock:
2174 	 * page writeout could otherwise come in and zero beyond i_size.
2175 	 */
2176 	if (pos + copied > inode->i_size) {
2177 		i_size_write(inode, pos + copied);
2178 		i_size_changed = true;
2179 	}
2180 
2181 	unlock_page(page);
2182 	put_page(page);
2183 
2184 	if (old_size < pos)
2185 		pagecache_isize_extended(inode, old_size, pos);
2186 	/*
2187 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2188 	 * makes the holding time of page lock longer. Second, it forces lock
2189 	 * ordering of page lock and transaction start for journaling
2190 	 * filesystems.
2191 	 */
2192 	if (i_size_changed)
2193 		mark_inode_dirty(inode);
2194 	return copied;
2195 }
2196 EXPORT_SYMBOL(generic_write_end);
2197 
2198 /*
2199  * block_is_partially_uptodate checks whether buffers within a page are
2200  * uptodate or not.
2201  *
2202  * Returns true if all buffers which correspond to a file portion
2203  * we want to read are uptodate.
2204  */
2205 int block_is_partially_uptodate(struct page *page, unsigned long from,
2206 					unsigned long count)
2207 {
2208 	unsigned block_start, block_end, blocksize;
2209 	unsigned to;
2210 	struct buffer_head *bh, *head;
2211 	int ret = 1;
2212 
2213 	if (!page_has_buffers(page))
2214 		return 0;
2215 
2216 	head = page_buffers(page);
2217 	blocksize = head->b_size;
2218 	to = min_t(unsigned, PAGE_SIZE - from, count);
2219 	to = from + to;
2220 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2221 		return 0;
2222 
2223 	bh = head;
2224 	block_start = 0;
2225 	do {
2226 		block_end = block_start + blocksize;
2227 		if (block_end > from && block_start < to) {
2228 			if (!buffer_uptodate(bh)) {
2229 				ret = 0;
2230 				break;
2231 			}
2232 			if (block_end >= to)
2233 				break;
2234 		}
2235 		block_start = block_end;
2236 		bh = bh->b_this_page;
2237 	} while (bh != head);
2238 
2239 	return ret;
2240 }
2241 EXPORT_SYMBOL(block_is_partially_uptodate);
2242 
2243 /*
2244  * Generic "read page" function for block devices that have the normal
2245  * get_block functionality. This is most of the block device filesystems.
2246  * Reads the page asynchronously --- the unlock_buffer() and
2247  * set/clear_buffer_uptodate() functions propagate buffer state into the
2248  * page struct once IO has completed.
2249  */
2250 int block_read_full_page(struct page *page, get_block_t *get_block)
2251 {
2252 	struct inode *inode = page->mapping->host;
2253 	sector_t iblock, lblock;
2254 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2255 	unsigned int blocksize, bbits;
2256 	int nr, i;
2257 	int fully_mapped = 1;
2258 
2259 	head = create_page_buffers(page, inode, 0);
2260 	blocksize = head->b_size;
2261 	bbits = block_size_bits(blocksize);
2262 
2263 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2264 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2265 	bh = head;
2266 	nr = 0;
2267 	i = 0;
2268 
2269 	do {
2270 		if (buffer_uptodate(bh))
2271 			continue;
2272 
2273 		if (!buffer_mapped(bh)) {
2274 			int err = 0;
2275 
2276 			fully_mapped = 0;
2277 			if (iblock < lblock) {
2278 				WARN_ON(bh->b_size != blocksize);
2279 				err = get_block(inode, iblock, bh, 0);
2280 				if (err)
2281 					SetPageError(page);
2282 			}
2283 			if (!buffer_mapped(bh)) {
2284 				zero_user(page, i * blocksize, blocksize);
2285 				if (!err)
2286 					set_buffer_uptodate(bh);
2287 				continue;
2288 			}
2289 			/*
2290 			 * get_block() might have updated the buffer
2291 			 * synchronously
2292 			 */
2293 			if (buffer_uptodate(bh))
2294 				continue;
2295 		}
2296 		arr[nr++] = bh;
2297 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2298 
2299 	if (fully_mapped)
2300 		SetPageMappedToDisk(page);
2301 
2302 	if (!nr) {
2303 		/*
2304 		 * All buffers are uptodate - we can set the page uptodate
2305 		 * as well. But not if get_block() returned an error.
2306 		 */
2307 		if (!PageError(page))
2308 			SetPageUptodate(page);
2309 		unlock_page(page);
2310 		return 0;
2311 	}
2312 
2313 	/* Stage two: lock the buffers */
2314 	for (i = 0; i < nr; i++) {
2315 		bh = arr[i];
2316 		lock_buffer(bh);
2317 		mark_buffer_async_read(bh);
2318 	}
2319 
2320 	/*
2321 	 * Stage 3: start the IO.  Check for uptodateness
2322 	 * inside the buffer lock in case another process reading
2323 	 * the underlying blockdev brought it uptodate (the sct fix).
2324 	 */
2325 	for (i = 0; i < nr; i++) {
2326 		bh = arr[i];
2327 		if (buffer_uptodate(bh))
2328 			end_buffer_async_read(bh, 1);
2329 		else
2330 			submit_bh(REQ_OP_READ, 0, bh);
2331 	}
2332 	return 0;
2333 }
2334 EXPORT_SYMBOL(block_read_full_page);
2335 
2336 /* utility function for filesystems that need to do work on expanding
2337  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2338  * deal with the hole.
2339  */
2340 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2341 {
2342 	struct address_space *mapping = inode->i_mapping;
2343 	struct page *page;
2344 	void *fsdata;
2345 	int err;
2346 
2347 	err = inode_newsize_ok(inode, size);
2348 	if (err)
2349 		goto out;
2350 
2351 	err = pagecache_write_begin(NULL, mapping, size, 0,
2352 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2353 	if (err)
2354 		goto out;
2355 
2356 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2357 	BUG_ON(err > 0);
2358 
2359 out:
2360 	return err;
2361 }
2362 EXPORT_SYMBOL(generic_cont_expand_simple);
2363 
2364 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2365 			    loff_t pos, loff_t *bytes)
2366 {
2367 	struct inode *inode = mapping->host;
2368 	unsigned int blocksize = i_blocksize(inode);
2369 	struct page *page;
2370 	void *fsdata;
2371 	pgoff_t index, curidx;
2372 	loff_t curpos;
2373 	unsigned zerofrom, offset, len;
2374 	int err = 0;
2375 
2376 	index = pos >> PAGE_SHIFT;
2377 	offset = pos & ~PAGE_MASK;
2378 
2379 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2380 		zerofrom = curpos & ~PAGE_MASK;
2381 		if (zerofrom & (blocksize-1)) {
2382 			*bytes |= (blocksize-1);
2383 			(*bytes)++;
2384 		}
2385 		len = PAGE_SIZE - zerofrom;
2386 
2387 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2388 					    &page, &fsdata);
2389 		if (err)
2390 			goto out;
2391 		zero_user(page, zerofrom, len);
2392 		err = pagecache_write_end(file, mapping, curpos, len, len,
2393 						page, fsdata);
2394 		if (err < 0)
2395 			goto out;
2396 		BUG_ON(err != len);
2397 		err = 0;
2398 
2399 		balance_dirty_pages_ratelimited(mapping);
2400 
2401 		if (fatal_signal_pending(current)) {
2402 			err = -EINTR;
2403 			goto out;
2404 		}
2405 	}
2406 
2407 	/* page covers the boundary, find the boundary offset */
2408 	if (index == curidx) {
2409 		zerofrom = curpos & ~PAGE_MASK;
2410 		/* if we will expand the thing last block will be filled */
2411 		if (offset <= zerofrom) {
2412 			goto out;
2413 		}
2414 		if (zerofrom & (blocksize-1)) {
2415 			*bytes |= (blocksize-1);
2416 			(*bytes)++;
2417 		}
2418 		len = offset - zerofrom;
2419 
2420 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2421 					    &page, &fsdata);
2422 		if (err)
2423 			goto out;
2424 		zero_user(page, zerofrom, len);
2425 		err = pagecache_write_end(file, mapping, curpos, len, len,
2426 						page, fsdata);
2427 		if (err < 0)
2428 			goto out;
2429 		BUG_ON(err != len);
2430 		err = 0;
2431 	}
2432 out:
2433 	return err;
2434 }
2435 
2436 /*
2437  * For moronic filesystems that do not allow holes in file.
2438  * We may have to extend the file.
2439  */
2440 int cont_write_begin(struct file *file, struct address_space *mapping,
2441 			loff_t pos, unsigned len, unsigned flags,
2442 			struct page **pagep, void **fsdata,
2443 			get_block_t *get_block, loff_t *bytes)
2444 {
2445 	struct inode *inode = mapping->host;
2446 	unsigned int blocksize = i_blocksize(inode);
2447 	unsigned int zerofrom;
2448 	int err;
2449 
2450 	err = cont_expand_zero(file, mapping, pos, bytes);
2451 	if (err)
2452 		return err;
2453 
2454 	zerofrom = *bytes & ~PAGE_MASK;
2455 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2456 		*bytes |= (blocksize-1);
2457 		(*bytes)++;
2458 	}
2459 
2460 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2461 }
2462 EXPORT_SYMBOL(cont_write_begin);
2463 
2464 int block_commit_write(struct page *page, unsigned from, unsigned to)
2465 {
2466 	struct inode *inode = page->mapping->host;
2467 	__block_commit_write(inode,page,from,to);
2468 	return 0;
2469 }
2470 EXPORT_SYMBOL(block_commit_write);
2471 
2472 /*
2473  * block_page_mkwrite() is not allowed to change the file size as it gets
2474  * called from a page fault handler when a page is first dirtied. Hence we must
2475  * be careful to check for EOF conditions here. We set the page up correctly
2476  * for a written page which means we get ENOSPC checking when writing into
2477  * holes and correct delalloc and unwritten extent mapping on filesystems that
2478  * support these features.
2479  *
2480  * We are not allowed to take the i_mutex here so we have to play games to
2481  * protect against truncate races as the page could now be beyond EOF.  Because
2482  * truncate writes the inode size before removing pages, once we have the
2483  * page lock we can determine safely if the page is beyond EOF. If it is not
2484  * beyond EOF, then the page is guaranteed safe against truncation until we
2485  * unlock the page.
2486  *
2487  * Direct callers of this function should protect against filesystem freezing
2488  * using sb_start_pagefault() - sb_end_pagefault() functions.
2489  */
2490 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2491 			 get_block_t get_block)
2492 {
2493 	struct page *page = vmf->page;
2494 	struct inode *inode = file_inode(vma->vm_file);
2495 	unsigned long end;
2496 	loff_t size;
2497 	int ret;
2498 
2499 	lock_page(page);
2500 	size = i_size_read(inode);
2501 	if ((page->mapping != inode->i_mapping) ||
2502 	    (page_offset(page) > size)) {
2503 		/* We overload EFAULT to mean page got truncated */
2504 		ret = -EFAULT;
2505 		goto out_unlock;
2506 	}
2507 
2508 	/* page is wholly or partially inside EOF */
2509 	if (((page->index + 1) << PAGE_SHIFT) > size)
2510 		end = size & ~PAGE_MASK;
2511 	else
2512 		end = PAGE_SIZE;
2513 
2514 	ret = __block_write_begin(page, 0, end, get_block);
2515 	if (!ret)
2516 		ret = block_commit_write(page, 0, end);
2517 
2518 	if (unlikely(ret < 0))
2519 		goto out_unlock;
2520 	set_page_dirty(page);
2521 	wait_for_stable_page(page);
2522 	return 0;
2523 out_unlock:
2524 	unlock_page(page);
2525 	return ret;
2526 }
2527 EXPORT_SYMBOL(block_page_mkwrite);
2528 
2529 /*
2530  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2531  * immediately, while under the page lock.  So it needs a special end_io
2532  * handler which does not touch the bh after unlocking it.
2533  */
2534 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2535 {
2536 	__end_buffer_read_notouch(bh, uptodate);
2537 }
2538 
2539 /*
2540  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2541  * the page (converting it to circular linked list and taking care of page
2542  * dirty races).
2543  */
2544 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2545 {
2546 	struct buffer_head *bh;
2547 
2548 	BUG_ON(!PageLocked(page));
2549 
2550 	spin_lock(&page->mapping->private_lock);
2551 	bh = head;
2552 	do {
2553 		if (PageDirty(page))
2554 			set_buffer_dirty(bh);
2555 		if (!bh->b_this_page)
2556 			bh->b_this_page = head;
2557 		bh = bh->b_this_page;
2558 	} while (bh != head);
2559 	attach_page_buffers(page, head);
2560 	spin_unlock(&page->mapping->private_lock);
2561 }
2562 
2563 /*
2564  * On entry, the page is fully not uptodate.
2565  * On exit the page is fully uptodate in the areas outside (from,to)
2566  * The filesystem needs to handle block truncation upon failure.
2567  */
2568 int nobh_write_begin(struct address_space *mapping,
2569 			loff_t pos, unsigned len, unsigned flags,
2570 			struct page **pagep, void **fsdata,
2571 			get_block_t *get_block)
2572 {
2573 	struct inode *inode = mapping->host;
2574 	const unsigned blkbits = inode->i_blkbits;
2575 	const unsigned blocksize = 1 << blkbits;
2576 	struct buffer_head *head, *bh;
2577 	struct page *page;
2578 	pgoff_t index;
2579 	unsigned from, to;
2580 	unsigned block_in_page;
2581 	unsigned block_start, block_end;
2582 	sector_t block_in_file;
2583 	int nr_reads = 0;
2584 	int ret = 0;
2585 	int is_mapped_to_disk = 1;
2586 
2587 	index = pos >> PAGE_SHIFT;
2588 	from = pos & (PAGE_SIZE - 1);
2589 	to = from + len;
2590 
2591 	page = grab_cache_page_write_begin(mapping, index, flags);
2592 	if (!page)
2593 		return -ENOMEM;
2594 	*pagep = page;
2595 	*fsdata = NULL;
2596 
2597 	if (page_has_buffers(page)) {
2598 		ret = __block_write_begin(page, pos, len, get_block);
2599 		if (unlikely(ret))
2600 			goto out_release;
2601 		return ret;
2602 	}
2603 
2604 	if (PageMappedToDisk(page))
2605 		return 0;
2606 
2607 	/*
2608 	 * Allocate buffers so that we can keep track of state, and potentially
2609 	 * attach them to the page if an error occurs. In the common case of
2610 	 * no error, they will just be freed again without ever being attached
2611 	 * to the page (which is all OK, because we're under the page lock).
2612 	 *
2613 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2614 	 * than the circular one we're used to.
2615 	 */
2616 	head = alloc_page_buffers(page, blocksize, false);
2617 	if (!head) {
2618 		ret = -ENOMEM;
2619 		goto out_release;
2620 	}
2621 
2622 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2623 
2624 	/*
2625 	 * We loop across all blocks in the page, whether or not they are
2626 	 * part of the affected region.  This is so we can discover if the
2627 	 * page is fully mapped-to-disk.
2628 	 */
2629 	for (block_start = 0, block_in_page = 0, bh = head;
2630 		  block_start < PAGE_SIZE;
2631 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2632 		int create;
2633 
2634 		block_end = block_start + blocksize;
2635 		bh->b_state = 0;
2636 		create = 1;
2637 		if (block_start >= to)
2638 			create = 0;
2639 		ret = get_block(inode, block_in_file + block_in_page,
2640 					bh, create);
2641 		if (ret)
2642 			goto failed;
2643 		if (!buffer_mapped(bh))
2644 			is_mapped_to_disk = 0;
2645 		if (buffer_new(bh))
2646 			clean_bdev_bh_alias(bh);
2647 		if (PageUptodate(page)) {
2648 			set_buffer_uptodate(bh);
2649 			continue;
2650 		}
2651 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2652 			zero_user_segments(page, block_start, from,
2653 							to, block_end);
2654 			continue;
2655 		}
2656 		if (buffer_uptodate(bh))
2657 			continue;	/* reiserfs does this */
2658 		if (block_start < from || block_end > to) {
2659 			lock_buffer(bh);
2660 			bh->b_end_io = end_buffer_read_nobh;
2661 			submit_bh(REQ_OP_READ, 0, bh);
2662 			nr_reads++;
2663 		}
2664 	}
2665 
2666 	if (nr_reads) {
2667 		/*
2668 		 * The page is locked, so these buffers are protected from
2669 		 * any VM or truncate activity.  Hence we don't need to care
2670 		 * for the buffer_head refcounts.
2671 		 */
2672 		for (bh = head; bh; bh = bh->b_this_page) {
2673 			wait_on_buffer(bh);
2674 			if (!buffer_uptodate(bh))
2675 				ret = -EIO;
2676 		}
2677 		if (ret)
2678 			goto failed;
2679 	}
2680 
2681 	if (is_mapped_to_disk)
2682 		SetPageMappedToDisk(page);
2683 
2684 	*fsdata = head; /* to be released by nobh_write_end */
2685 
2686 	return 0;
2687 
2688 failed:
2689 	BUG_ON(!ret);
2690 	/*
2691 	 * Error recovery is a bit difficult. We need to zero out blocks that
2692 	 * were newly allocated, and dirty them to ensure they get written out.
2693 	 * Buffers need to be attached to the page at this point, otherwise
2694 	 * the handling of potential IO errors during writeout would be hard
2695 	 * (could try doing synchronous writeout, but what if that fails too?)
2696 	 */
2697 	attach_nobh_buffers(page, head);
2698 	page_zero_new_buffers(page, from, to);
2699 
2700 out_release:
2701 	unlock_page(page);
2702 	put_page(page);
2703 	*pagep = NULL;
2704 
2705 	return ret;
2706 }
2707 EXPORT_SYMBOL(nobh_write_begin);
2708 
2709 int nobh_write_end(struct file *file, struct address_space *mapping,
2710 			loff_t pos, unsigned len, unsigned copied,
2711 			struct page *page, void *fsdata)
2712 {
2713 	struct inode *inode = page->mapping->host;
2714 	struct buffer_head *head = fsdata;
2715 	struct buffer_head *bh;
2716 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2717 
2718 	if (unlikely(copied < len) && head)
2719 		attach_nobh_buffers(page, head);
2720 	if (page_has_buffers(page))
2721 		return generic_write_end(file, mapping, pos, len,
2722 					copied, page, fsdata);
2723 
2724 	SetPageUptodate(page);
2725 	set_page_dirty(page);
2726 	if (pos+copied > inode->i_size) {
2727 		i_size_write(inode, pos+copied);
2728 		mark_inode_dirty(inode);
2729 	}
2730 
2731 	unlock_page(page);
2732 	put_page(page);
2733 
2734 	while (head) {
2735 		bh = head;
2736 		head = head->b_this_page;
2737 		free_buffer_head(bh);
2738 	}
2739 
2740 	return copied;
2741 }
2742 EXPORT_SYMBOL(nobh_write_end);
2743 
2744 /*
2745  * nobh_writepage() - based on block_full_write_page() except
2746  * that it tries to operate without attaching bufferheads to
2747  * the page.
2748  */
2749 int nobh_writepage(struct page *page, get_block_t *get_block,
2750 			struct writeback_control *wbc)
2751 {
2752 	struct inode * const inode = page->mapping->host;
2753 	loff_t i_size = i_size_read(inode);
2754 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2755 	unsigned offset;
2756 	int ret;
2757 
2758 	/* Is the page fully inside i_size? */
2759 	if (page->index < end_index)
2760 		goto out;
2761 
2762 	/* Is the page fully outside i_size? (truncate in progress) */
2763 	offset = i_size & (PAGE_SIZE-1);
2764 	if (page->index >= end_index+1 || !offset) {
2765 		/*
2766 		 * The page may have dirty, unmapped buffers.  For example,
2767 		 * they may have been added in ext3_writepage().  Make them
2768 		 * freeable here, so the page does not leak.
2769 		 */
2770 #if 0
2771 		/* Not really sure about this  - do we need this ? */
2772 		if (page->mapping->a_ops->invalidatepage)
2773 			page->mapping->a_ops->invalidatepage(page, offset);
2774 #endif
2775 		unlock_page(page);
2776 		return 0; /* don't care */
2777 	}
2778 
2779 	/*
2780 	 * The page straddles i_size.  It must be zeroed out on each and every
2781 	 * writepage invocation because it may be mmapped.  "A file is mapped
2782 	 * in multiples of the page size.  For a file that is not a multiple of
2783 	 * the  page size, the remaining memory is zeroed when mapped, and
2784 	 * writes to that region are not written out to the file."
2785 	 */
2786 	zero_user_segment(page, offset, PAGE_SIZE);
2787 out:
2788 	ret = mpage_writepage(page, get_block, wbc);
2789 	if (ret == -EAGAIN)
2790 		ret = __block_write_full_page(inode, page, get_block, wbc,
2791 					      end_buffer_async_write);
2792 	return ret;
2793 }
2794 EXPORT_SYMBOL(nobh_writepage);
2795 
2796 int nobh_truncate_page(struct address_space *mapping,
2797 			loff_t from, get_block_t *get_block)
2798 {
2799 	pgoff_t index = from >> PAGE_SHIFT;
2800 	unsigned offset = from & (PAGE_SIZE-1);
2801 	unsigned blocksize;
2802 	sector_t iblock;
2803 	unsigned length, pos;
2804 	struct inode *inode = mapping->host;
2805 	struct page *page;
2806 	struct buffer_head map_bh;
2807 	int err;
2808 
2809 	blocksize = i_blocksize(inode);
2810 	length = offset & (blocksize - 1);
2811 
2812 	/* Block boundary? Nothing to do */
2813 	if (!length)
2814 		return 0;
2815 
2816 	length = blocksize - length;
2817 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2818 
2819 	page = grab_cache_page(mapping, index);
2820 	err = -ENOMEM;
2821 	if (!page)
2822 		goto out;
2823 
2824 	if (page_has_buffers(page)) {
2825 has_buffers:
2826 		unlock_page(page);
2827 		put_page(page);
2828 		return block_truncate_page(mapping, from, get_block);
2829 	}
2830 
2831 	/* Find the buffer that contains "offset" */
2832 	pos = blocksize;
2833 	while (offset >= pos) {
2834 		iblock++;
2835 		pos += blocksize;
2836 	}
2837 
2838 	map_bh.b_size = blocksize;
2839 	map_bh.b_state = 0;
2840 	err = get_block(inode, iblock, &map_bh, 0);
2841 	if (err)
2842 		goto unlock;
2843 	/* unmapped? It's a hole - nothing to do */
2844 	if (!buffer_mapped(&map_bh))
2845 		goto unlock;
2846 
2847 	/* Ok, it's mapped. Make sure it's up-to-date */
2848 	if (!PageUptodate(page)) {
2849 		err = mapping->a_ops->readpage(NULL, page);
2850 		if (err) {
2851 			put_page(page);
2852 			goto out;
2853 		}
2854 		lock_page(page);
2855 		if (!PageUptodate(page)) {
2856 			err = -EIO;
2857 			goto unlock;
2858 		}
2859 		if (page_has_buffers(page))
2860 			goto has_buffers;
2861 	}
2862 	zero_user(page, offset, length);
2863 	set_page_dirty(page);
2864 	err = 0;
2865 
2866 unlock:
2867 	unlock_page(page);
2868 	put_page(page);
2869 out:
2870 	return err;
2871 }
2872 EXPORT_SYMBOL(nobh_truncate_page);
2873 
2874 int block_truncate_page(struct address_space *mapping,
2875 			loff_t from, get_block_t *get_block)
2876 {
2877 	pgoff_t index = from >> PAGE_SHIFT;
2878 	unsigned offset = from & (PAGE_SIZE-1);
2879 	unsigned blocksize;
2880 	sector_t iblock;
2881 	unsigned length, pos;
2882 	struct inode *inode = mapping->host;
2883 	struct page *page;
2884 	struct buffer_head *bh;
2885 	int err;
2886 
2887 	blocksize = i_blocksize(inode);
2888 	length = offset & (blocksize - 1);
2889 
2890 	/* Block boundary? Nothing to do */
2891 	if (!length)
2892 		return 0;
2893 
2894 	length = blocksize - length;
2895 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2896 
2897 	page = grab_cache_page(mapping, index);
2898 	err = -ENOMEM;
2899 	if (!page)
2900 		goto out;
2901 
2902 	if (!page_has_buffers(page))
2903 		create_empty_buffers(page, blocksize, 0);
2904 
2905 	/* Find the buffer that contains "offset" */
2906 	bh = page_buffers(page);
2907 	pos = blocksize;
2908 	while (offset >= pos) {
2909 		bh = bh->b_this_page;
2910 		iblock++;
2911 		pos += blocksize;
2912 	}
2913 
2914 	err = 0;
2915 	if (!buffer_mapped(bh)) {
2916 		WARN_ON(bh->b_size != blocksize);
2917 		err = get_block(inode, iblock, bh, 0);
2918 		if (err)
2919 			goto unlock;
2920 		/* unmapped? It's a hole - nothing to do */
2921 		if (!buffer_mapped(bh))
2922 			goto unlock;
2923 	}
2924 
2925 	/* Ok, it's mapped. Make sure it's up-to-date */
2926 	if (PageUptodate(page))
2927 		set_buffer_uptodate(bh);
2928 
2929 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2930 		err = -EIO;
2931 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2932 		wait_on_buffer(bh);
2933 		/* Uhhuh. Read error. Complain and punt. */
2934 		if (!buffer_uptodate(bh))
2935 			goto unlock;
2936 	}
2937 
2938 	zero_user(page, offset, length);
2939 	mark_buffer_dirty(bh);
2940 	err = 0;
2941 
2942 unlock:
2943 	unlock_page(page);
2944 	put_page(page);
2945 out:
2946 	return err;
2947 }
2948 EXPORT_SYMBOL(block_truncate_page);
2949 
2950 /*
2951  * The generic ->writepage function for buffer-backed address_spaces
2952  */
2953 int block_write_full_page(struct page *page, get_block_t *get_block,
2954 			struct writeback_control *wbc)
2955 {
2956 	struct inode * const inode = page->mapping->host;
2957 	loff_t i_size = i_size_read(inode);
2958 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2959 	unsigned offset;
2960 
2961 	/* Is the page fully inside i_size? */
2962 	if (page->index < end_index)
2963 		return __block_write_full_page(inode, page, get_block, wbc,
2964 					       end_buffer_async_write);
2965 
2966 	/* Is the page fully outside i_size? (truncate in progress) */
2967 	offset = i_size & (PAGE_SIZE-1);
2968 	if (page->index >= end_index+1 || !offset) {
2969 		/*
2970 		 * The page may have dirty, unmapped buffers.  For example,
2971 		 * they may have been added in ext3_writepage().  Make them
2972 		 * freeable here, so the page does not leak.
2973 		 */
2974 		do_invalidatepage(page, 0, PAGE_SIZE);
2975 		unlock_page(page);
2976 		return 0; /* don't care */
2977 	}
2978 
2979 	/*
2980 	 * The page straddles i_size.  It must be zeroed out on each and every
2981 	 * writepage invocation because it may be mmapped.  "A file is mapped
2982 	 * in multiples of the page size.  For a file that is not a multiple of
2983 	 * the  page size, the remaining memory is zeroed when mapped, and
2984 	 * writes to that region are not written out to the file."
2985 	 */
2986 	zero_user_segment(page, offset, PAGE_SIZE);
2987 	return __block_write_full_page(inode, page, get_block, wbc,
2988 							end_buffer_async_write);
2989 }
2990 EXPORT_SYMBOL(block_write_full_page);
2991 
2992 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2993 			    get_block_t *get_block)
2994 {
2995 	struct inode *inode = mapping->host;
2996 	struct buffer_head tmp = {
2997 		.b_size = i_blocksize(inode),
2998 	};
2999 
3000 	get_block(inode, block, &tmp, 0);
3001 	return tmp.b_blocknr;
3002 }
3003 EXPORT_SYMBOL(generic_block_bmap);
3004 
3005 static void end_bio_bh_io_sync(struct bio *bio)
3006 {
3007 	struct buffer_head *bh = bio->bi_private;
3008 
3009 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
3010 		set_bit(BH_Quiet, &bh->b_state);
3011 
3012 	bh->b_end_io(bh, !bio->bi_status);
3013 	bio_put(bio);
3014 }
3015 
3016 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3017 			 enum rw_hint write_hint, struct writeback_control *wbc)
3018 {
3019 	struct bio *bio;
3020 
3021 	BUG_ON(!buffer_locked(bh));
3022 	BUG_ON(!buffer_mapped(bh));
3023 	BUG_ON(!bh->b_end_io);
3024 	BUG_ON(buffer_delay(bh));
3025 	BUG_ON(buffer_unwritten(bh));
3026 
3027 	/*
3028 	 * Only clear out a write error when rewriting
3029 	 */
3030 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3031 		clear_buffer_write_io_error(bh);
3032 
3033 	/*
3034 	 * from here on down, it's all bio -- do the initial mapping,
3035 	 * submit_bio -> generic_make_request may further map this bio around
3036 	 */
3037 	bio = bio_alloc(GFP_NOIO, 1);
3038 
3039 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3040 	bio_set_dev(bio, bh->b_bdev);
3041 	bio->bi_write_hint = write_hint;
3042 
3043 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3044 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3045 
3046 	bio->bi_end_io = end_bio_bh_io_sync;
3047 	bio->bi_private = bh;
3048 
3049 	if (buffer_meta(bh))
3050 		op_flags |= REQ_META;
3051 	if (buffer_prio(bh))
3052 		op_flags |= REQ_PRIO;
3053 	bio_set_op_attrs(bio, op, op_flags);
3054 
3055 	/* Take care of bh's that straddle the end of the device */
3056 	guard_bio_eod(bio);
3057 
3058 	if (wbc) {
3059 		wbc_init_bio(wbc, bio);
3060 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3061 	}
3062 
3063 	submit_bio(bio);
3064 	return 0;
3065 }
3066 
3067 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3068 {
3069 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3070 }
3071 EXPORT_SYMBOL(submit_bh);
3072 
3073 /**
3074  * ll_rw_block: low-level access to block devices (DEPRECATED)
3075  * @op: whether to %READ or %WRITE
3076  * @op_flags: req_flag_bits
3077  * @nr: number of &struct buffer_heads in the array
3078  * @bhs: array of pointers to &struct buffer_head
3079  *
3080  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3081  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3082  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3083  * %REQ_RAHEAD.
3084  *
3085  * This function drops any buffer that it cannot get a lock on (with the
3086  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3087  * request, and any buffer that appears to be up-to-date when doing read
3088  * request.  Further it marks as clean buffers that are processed for
3089  * writing (the buffer cache won't assume that they are actually clean
3090  * until the buffer gets unlocked).
3091  *
3092  * ll_rw_block sets b_end_io to simple completion handler that marks
3093  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3094  * any waiters.
3095  *
3096  * All of the buffers must be for the same device, and must also be a
3097  * multiple of the current approved size for the device.
3098  */
3099 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3100 {
3101 	int i;
3102 
3103 	for (i = 0; i < nr; i++) {
3104 		struct buffer_head *bh = bhs[i];
3105 
3106 		if (!trylock_buffer(bh))
3107 			continue;
3108 		if (op == WRITE) {
3109 			if (test_clear_buffer_dirty(bh)) {
3110 				bh->b_end_io = end_buffer_write_sync;
3111 				get_bh(bh);
3112 				submit_bh(op, op_flags, bh);
3113 				continue;
3114 			}
3115 		} else {
3116 			if (!buffer_uptodate(bh)) {
3117 				bh->b_end_io = end_buffer_read_sync;
3118 				get_bh(bh);
3119 				submit_bh(op, op_flags, bh);
3120 				continue;
3121 			}
3122 		}
3123 		unlock_buffer(bh);
3124 	}
3125 }
3126 EXPORT_SYMBOL(ll_rw_block);
3127 
3128 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3129 {
3130 	lock_buffer(bh);
3131 	if (!test_clear_buffer_dirty(bh)) {
3132 		unlock_buffer(bh);
3133 		return;
3134 	}
3135 	bh->b_end_io = end_buffer_write_sync;
3136 	get_bh(bh);
3137 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3138 }
3139 EXPORT_SYMBOL(write_dirty_buffer);
3140 
3141 /*
3142  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3143  * and then start new I/O and then wait upon it.  The caller must have a ref on
3144  * the buffer_head.
3145  */
3146 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3147 {
3148 	int ret = 0;
3149 
3150 	WARN_ON(atomic_read(&bh->b_count) < 1);
3151 	lock_buffer(bh);
3152 	if (test_clear_buffer_dirty(bh)) {
3153 		get_bh(bh);
3154 		bh->b_end_io = end_buffer_write_sync;
3155 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3156 		wait_on_buffer(bh);
3157 		if (!ret && !buffer_uptodate(bh))
3158 			ret = -EIO;
3159 	} else {
3160 		unlock_buffer(bh);
3161 	}
3162 	return ret;
3163 }
3164 EXPORT_SYMBOL(__sync_dirty_buffer);
3165 
3166 int sync_dirty_buffer(struct buffer_head *bh)
3167 {
3168 	return __sync_dirty_buffer(bh, REQ_SYNC);
3169 }
3170 EXPORT_SYMBOL(sync_dirty_buffer);
3171 
3172 /*
3173  * try_to_free_buffers() checks if all the buffers on this particular page
3174  * are unused, and releases them if so.
3175  *
3176  * Exclusion against try_to_free_buffers may be obtained by either
3177  * locking the page or by holding its mapping's private_lock.
3178  *
3179  * If the page is dirty but all the buffers are clean then we need to
3180  * be sure to mark the page clean as well.  This is because the page
3181  * may be against a block device, and a later reattachment of buffers
3182  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3183  * filesystem data on the same device.
3184  *
3185  * The same applies to regular filesystem pages: if all the buffers are
3186  * clean then we set the page clean and proceed.  To do that, we require
3187  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3188  * private_lock.
3189  *
3190  * try_to_free_buffers() is non-blocking.
3191  */
3192 static inline int buffer_busy(struct buffer_head *bh)
3193 {
3194 	return atomic_read(&bh->b_count) |
3195 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3196 }
3197 
3198 static int
3199 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3200 {
3201 	struct buffer_head *head = page_buffers(page);
3202 	struct buffer_head *bh;
3203 
3204 	bh = head;
3205 	do {
3206 		if (buffer_busy(bh))
3207 			goto failed;
3208 		bh = bh->b_this_page;
3209 	} while (bh != head);
3210 
3211 	do {
3212 		struct buffer_head *next = bh->b_this_page;
3213 
3214 		if (bh->b_assoc_map)
3215 			__remove_assoc_queue(bh);
3216 		bh = next;
3217 	} while (bh != head);
3218 	*buffers_to_free = head;
3219 	__clear_page_buffers(page);
3220 	return 1;
3221 failed:
3222 	return 0;
3223 }
3224 
3225 int try_to_free_buffers(struct page *page)
3226 {
3227 	struct address_space * const mapping = page->mapping;
3228 	struct buffer_head *buffers_to_free = NULL;
3229 	int ret = 0;
3230 
3231 	BUG_ON(!PageLocked(page));
3232 	if (PageWriteback(page))
3233 		return 0;
3234 
3235 	if (mapping == NULL) {		/* can this still happen? */
3236 		ret = drop_buffers(page, &buffers_to_free);
3237 		goto out;
3238 	}
3239 
3240 	spin_lock(&mapping->private_lock);
3241 	ret = drop_buffers(page, &buffers_to_free);
3242 
3243 	/*
3244 	 * If the filesystem writes its buffers by hand (eg ext3)
3245 	 * then we can have clean buffers against a dirty page.  We
3246 	 * clean the page here; otherwise the VM will never notice
3247 	 * that the filesystem did any IO at all.
3248 	 *
3249 	 * Also, during truncate, discard_buffer will have marked all
3250 	 * the page's buffers clean.  We discover that here and clean
3251 	 * the page also.
3252 	 *
3253 	 * private_lock must be held over this entire operation in order
3254 	 * to synchronise against __set_page_dirty_buffers and prevent the
3255 	 * dirty bit from being lost.
3256 	 */
3257 	if (ret)
3258 		cancel_dirty_page(page);
3259 	spin_unlock(&mapping->private_lock);
3260 out:
3261 	if (buffers_to_free) {
3262 		struct buffer_head *bh = buffers_to_free;
3263 
3264 		do {
3265 			struct buffer_head *next = bh->b_this_page;
3266 			free_buffer_head(bh);
3267 			bh = next;
3268 		} while (bh != buffers_to_free);
3269 	}
3270 	return ret;
3271 }
3272 EXPORT_SYMBOL(try_to_free_buffers);
3273 
3274 /*
3275  * There are no bdflush tunables left.  But distributions are
3276  * still running obsolete flush daemons, so we terminate them here.
3277  *
3278  * Use of bdflush() is deprecated and will be removed in a future kernel.
3279  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3280  */
3281 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3282 {
3283 	static int msg_count;
3284 
3285 	if (!capable(CAP_SYS_ADMIN))
3286 		return -EPERM;
3287 
3288 	if (msg_count < 5) {
3289 		msg_count++;
3290 		printk(KERN_INFO
3291 			"warning: process `%s' used the obsolete bdflush"
3292 			" system call\n", current->comm);
3293 		printk(KERN_INFO "Fix your initscripts?\n");
3294 	}
3295 
3296 	if (func == 1)
3297 		do_exit(0);
3298 	return 0;
3299 }
3300 
3301 /*
3302  * Buffer-head allocation
3303  */
3304 static struct kmem_cache *bh_cachep __read_mostly;
3305 
3306 /*
3307  * Once the number of bh's in the machine exceeds this level, we start
3308  * stripping them in writeback.
3309  */
3310 static unsigned long max_buffer_heads;
3311 
3312 int buffer_heads_over_limit;
3313 
3314 struct bh_accounting {
3315 	int nr;			/* Number of live bh's */
3316 	int ratelimit;		/* Limit cacheline bouncing */
3317 };
3318 
3319 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3320 
3321 static void recalc_bh_state(void)
3322 {
3323 	int i;
3324 	int tot = 0;
3325 
3326 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3327 		return;
3328 	__this_cpu_write(bh_accounting.ratelimit, 0);
3329 	for_each_online_cpu(i)
3330 		tot += per_cpu(bh_accounting, i).nr;
3331 	buffer_heads_over_limit = (tot > max_buffer_heads);
3332 }
3333 
3334 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3335 {
3336 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3337 	if (ret) {
3338 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3339 		spin_lock_init(&ret->b_uptodate_lock);
3340 		preempt_disable();
3341 		__this_cpu_inc(bh_accounting.nr);
3342 		recalc_bh_state();
3343 		preempt_enable();
3344 	}
3345 	return ret;
3346 }
3347 EXPORT_SYMBOL(alloc_buffer_head);
3348 
3349 void free_buffer_head(struct buffer_head *bh)
3350 {
3351 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3352 	kmem_cache_free(bh_cachep, bh);
3353 	preempt_disable();
3354 	__this_cpu_dec(bh_accounting.nr);
3355 	recalc_bh_state();
3356 	preempt_enable();
3357 }
3358 EXPORT_SYMBOL(free_buffer_head);
3359 
3360 static int buffer_exit_cpu_dead(unsigned int cpu)
3361 {
3362 	int i;
3363 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3364 
3365 	for (i = 0; i < BH_LRU_SIZE; i++) {
3366 		brelse(b->bhs[i]);
3367 		b->bhs[i] = NULL;
3368 	}
3369 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3370 	per_cpu(bh_accounting, cpu).nr = 0;
3371 	return 0;
3372 }
3373 
3374 /**
3375  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3376  * @bh: struct buffer_head
3377  *
3378  * Return true if the buffer is up-to-date and false,
3379  * with the buffer locked, if not.
3380  */
3381 int bh_uptodate_or_lock(struct buffer_head *bh)
3382 {
3383 	if (!buffer_uptodate(bh)) {
3384 		lock_buffer(bh);
3385 		if (!buffer_uptodate(bh))
3386 			return 0;
3387 		unlock_buffer(bh);
3388 	}
3389 	return 1;
3390 }
3391 EXPORT_SYMBOL(bh_uptodate_or_lock);
3392 
3393 /**
3394  * bh_submit_read - Submit a locked buffer for reading
3395  * @bh: struct buffer_head
3396  *
3397  * Returns zero on success and -EIO on error.
3398  */
3399 int bh_submit_read(struct buffer_head *bh)
3400 {
3401 	BUG_ON(!buffer_locked(bh));
3402 
3403 	if (buffer_uptodate(bh)) {
3404 		unlock_buffer(bh);
3405 		return 0;
3406 	}
3407 
3408 	get_bh(bh);
3409 	bh->b_end_io = end_buffer_read_sync;
3410 	submit_bh(REQ_OP_READ, 0, bh);
3411 	wait_on_buffer(bh);
3412 	if (buffer_uptodate(bh))
3413 		return 0;
3414 	return -EIO;
3415 }
3416 EXPORT_SYMBOL(bh_submit_read);
3417 
3418 void __init buffer_init(void)
3419 {
3420 	unsigned long nrpages;
3421 	int ret;
3422 
3423 	bh_cachep = kmem_cache_create("buffer_head",
3424 			sizeof(struct buffer_head), 0,
3425 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3426 				SLAB_MEM_SPREAD),
3427 				NULL);
3428 
3429 	/*
3430 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3431 	 */
3432 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3433 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3434 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3435 					NULL, buffer_exit_cpu_dead);
3436 	WARN_ON(ret < 0);
3437 }
3438