1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 #include <linux/sched/isolation.h> 53 54 #include "internal.h" 55 56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 58 enum rw_hint hint, struct writeback_control *wbc); 59 60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 61 62 inline void touch_buffer(struct buffer_head *bh) 63 { 64 trace_block_touch_buffer(bh); 65 folio_mark_accessed(bh->b_folio); 66 } 67 EXPORT_SYMBOL(touch_buffer); 68 69 void __lock_buffer(struct buffer_head *bh) 70 { 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 72 } 73 EXPORT_SYMBOL(__lock_buffer); 74 75 void unlock_buffer(struct buffer_head *bh) 76 { 77 clear_bit_unlock(BH_Lock, &bh->b_state); 78 smp_mb__after_atomic(); 79 wake_up_bit(&bh->b_state, BH_Lock); 80 } 81 EXPORT_SYMBOL(unlock_buffer); 82 83 /* 84 * Returns if the folio has dirty or writeback buffers. If all the buffers 85 * are unlocked and clean then the folio_test_dirty information is stale. If 86 * any of the buffers are locked, it is assumed they are locked for IO. 87 */ 88 void buffer_check_dirty_writeback(struct folio *folio, 89 bool *dirty, bool *writeback) 90 { 91 struct buffer_head *head, *bh; 92 *dirty = false; 93 *writeback = false; 94 95 BUG_ON(!folio_test_locked(folio)); 96 97 head = folio_buffers(folio); 98 if (!head) 99 return; 100 101 if (folio_test_writeback(folio)) 102 *writeback = true; 103 104 bh = head; 105 do { 106 if (buffer_locked(bh)) 107 *writeback = true; 108 109 if (buffer_dirty(bh)) 110 *dirty = true; 111 112 bh = bh->b_this_page; 113 } while (bh != head); 114 } 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 __end_buffer_read_notouch(bh, uptodate); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 /* 180 * Various filesystems appear to want __find_get_block to be non-blocking. 181 * But it's the page lock which protects the buffers. To get around this, 182 * we get exclusion from try_to_free_buffers with the blockdev mapping's 183 * i_private_lock. 184 * 185 * Hack idea: for the blockdev mapping, i_private_lock contention 186 * may be quite high. This code could TryLock the page, and if that 187 * succeeds, there is no need to take i_private_lock. 188 */ 189 static struct buffer_head * 190 __find_get_block_slow(struct block_device *bdev, sector_t block) 191 { 192 struct inode *bd_inode = bdev->bd_inode; 193 struct address_space *bd_mapping = bd_inode->i_mapping; 194 struct buffer_head *ret = NULL; 195 pgoff_t index; 196 struct buffer_head *bh; 197 struct buffer_head *head; 198 struct folio *folio; 199 int all_mapped = 1; 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 201 202 index = ((loff_t)block << bd_inode->i_blkbits) / PAGE_SIZE; 203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); 204 if (IS_ERR(folio)) 205 goto out; 206 207 spin_lock(&bd_mapping->i_private_lock); 208 head = folio_buffers(folio); 209 if (!head) 210 goto out_unlock; 211 bh = head; 212 do { 213 if (!buffer_mapped(bh)) 214 all_mapped = 0; 215 else if (bh->b_blocknr == block) { 216 ret = bh; 217 get_bh(bh); 218 goto out_unlock; 219 } 220 bh = bh->b_this_page; 221 } while (bh != head); 222 223 /* we might be here because some of the buffers on this page are 224 * not mapped. This is due to various races between 225 * file io on the block device and getblk. It gets dealt with 226 * elsewhere, don't buffer_error if we had some unmapped buffers 227 */ 228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 229 if (all_mapped && __ratelimit(&last_warned)) { 230 printk("__find_get_block_slow() failed. block=%llu, " 231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 232 "device %pg blocksize: %d\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr, 235 bh->b_state, bh->b_size, bdev, 236 1 << bd_inode->i_blkbits); 237 } 238 out_unlock: 239 spin_unlock(&bd_mapping->i_private_lock); 240 folio_put(folio); 241 out: 242 return ret; 243 } 244 245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 246 { 247 unsigned long flags; 248 struct buffer_head *first; 249 struct buffer_head *tmp; 250 struct folio *folio; 251 int folio_uptodate = 1; 252 253 BUG_ON(!buffer_async_read(bh)); 254 255 folio = bh->b_folio; 256 if (uptodate) { 257 set_buffer_uptodate(bh); 258 } else { 259 clear_buffer_uptodate(bh); 260 buffer_io_error(bh, ", async page read"); 261 folio_set_error(folio); 262 } 263 264 /* 265 * Be _very_ careful from here on. Bad things can happen if 266 * two buffer heads end IO at almost the same time and both 267 * decide that the page is now completely done. 268 */ 269 first = folio_buffers(folio); 270 spin_lock_irqsave(&first->b_uptodate_lock, flags); 271 clear_buffer_async_read(bh); 272 unlock_buffer(bh); 273 tmp = bh; 274 do { 275 if (!buffer_uptodate(tmp)) 276 folio_uptodate = 0; 277 if (buffer_async_read(tmp)) { 278 BUG_ON(!buffer_locked(tmp)); 279 goto still_busy; 280 } 281 tmp = tmp->b_this_page; 282 } while (tmp != bh); 283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 284 285 folio_end_read(folio, folio_uptodate); 286 return; 287 288 still_busy: 289 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 290 return; 291 } 292 293 struct postprocess_bh_ctx { 294 struct work_struct work; 295 struct buffer_head *bh; 296 }; 297 298 static void verify_bh(struct work_struct *work) 299 { 300 struct postprocess_bh_ctx *ctx = 301 container_of(work, struct postprocess_bh_ctx, work); 302 struct buffer_head *bh = ctx->bh; 303 bool valid; 304 305 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 306 end_buffer_async_read(bh, valid); 307 kfree(ctx); 308 } 309 310 static bool need_fsverity(struct buffer_head *bh) 311 { 312 struct folio *folio = bh->b_folio; 313 struct inode *inode = folio->mapping->host; 314 315 return fsverity_active(inode) && 316 /* needed by ext4 */ 317 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 318 } 319 320 static void decrypt_bh(struct work_struct *work) 321 { 322 struct postprocess_bh_ctx *ctx = 323 container_of(work, struct postprocess_bh_ctx, work); 324 struct buffer_head *bh = ctx->bh; 325 int err; 326 327 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 328 bh_offset(bh)); 329 if (err == 0 && need_fsverity(bh)) { 330 /* 331 * We use different work queues for decryption and for verity 332 * because verity may require reading metadata pages that need 333 * decryption, and we shouldn't recurse to the same workqueue. 334 */ 335 INIT_WORK(&ctx->work, verify_bh); 336 fsverity_enqueue_verify_work(&ctx->work); 337 return; 338 } 339 end_buffer_async_read(bh, err == 0); 340 kfree(ctx); 341 } 342 343 /* 344 * I/O completion handler for block_read_full_folio() - pages 345 * which come unlocked at the end of I/O. 346 */ 347 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 348 { 349 struct inode *inode = bh->b_folio->mapping->host; 350 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 351 bool verify = need_fsverity(bh); 352 353 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 354 if (uptodate && (decrypt || verify)) { 355 struct postprocess_bh_ctx *ctx = 356 kmalloc(sizeof(*ctx), GFP_ATOMIC); 357 358 if (ctx) { 359 ctx->bh = bh; 360 if (decrypt) { 361 INIT_WORK(&ctx->work, decrypt_bh); 362 fscrypt_enqueue_decrypt_work(&ctx->work); 363 } else { 364 INIT_WORK(&ctx->work, verify_bh); 365 fsverity_enqueue_verify_work(&ctx->work); 366 } 367 return; 368 } 369 uptodate = 0; 370 } 371 end_buffer_async_read(bh, uptodate); 372 } 373 374 /* 375 * Completion handler for block_write_full_folio() - folios which are unlocked 376 * during I/O, and which have the writeback flag cleared upon I/O completion. 377 */ 378 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 379 { 380 unsigned long flags; 381 struct buffer_head *first; 382 struct buffer_head *tmp; 383 struct folio *folio; 384 385 BUG_ON(!buffer_async_write(bh)); 386 387 folio = bh->b_folio; 388 if (uptodate) { 389 set_buffer_uptodate(bh); 390 } else { 391 buffer_io_error(bh, ", lost async page write"); 392 mark_buffer_write_io_error(bh); 393 clear_buffer_uptodate(bh); 394 folio_set_error(folio); 395 } 396 397 first = folio_buffers(folio); 398 spin_lock_irqsave(&first->b_uptodate_lock, flags); 399 400 clear_buffer_async_write(bh); 401 unlock_buffer(bh); 402 tmp = bh->b_this_page; 403 while (tmp != bh) { 404 if (buffer_async_write(tmp)) { 405 BUG_ON(!buffer_locked(tmp)); 406 goto still_busy; 407 } 408 tmp = tmp->b_this_page; 409 } 410 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 411 folio_end_writeback(folio); 412 return; 413 414 still_busy: 415 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 416 return; 417 } 418 419 /* 420 * If a page's buffers are under async readin (end_buffer_async_read 421 * completion) then there is a possibility that another thread of 422 * control could lock one of the buffers after it has completed 423 * but while some of the other buffers have not completed. This 424 * locked buffer would confuse end_buffer_async_read() into not unlocking 425 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 426 * that this buffer is not under async I/O. 427 * 428 * The page comes unlocked when it has no locked buffer_async buffers 429 * left. 430 * 431 * PageLocked prevents anyone starting new async I/O reads any of 432 * the buffers. 433 * 434 * PageWriteback is used to prevent simultaneous writeout of the same 435 * page. 436 * 437 * PageLocked prevents anyone from starting writeback of a page which is 438 * under read I/O (PageWriteback is only ever set against a locked page). 439 */ 440 static void mark_buffer_async_read(struct buffer_head *bh) 441 { 442 bh->b_end_io = end_buffer_async_read_io; 443 set_buffer_async_read(bh); 444 } 445 446 static void mark_buffer_async_write_endio(struct buffer_head *bh, 447 bh_end_io_t *handler) 448 { 449 bh->b_end_io = handler; 450 set_buffer_async_write(bh); 451 } 452 453 void mark_buffer_async_write(struct buffer_head *bh) 454 { 455 mark_buffer_async_write_endio(bh, end_buffer_async_write); 456 } 457 EXPORT_SYMBOL(mark_buffer_async_write); 458 459 460 /* 461 * fs/buffer.c contains helper functions for buffer-backed address space's 462 * fsync functions. A common requirement for buffer-based filesystems is 463 * that certain data from the backing blockdev needs to be written out for 464 * a successful fsync(). For example, ext2 indirect blocks need to be 465 * written back and waited upon before fsync() returns. 466 * 467 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(), 468 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 469 * management of a list of dependent buffers at ->i_mapping->i_private_list. 470 * 471 * Locking is a little subtle: try_to_free_buffers() will remove buffers 472 * from their controlling inode's queue when they are being freed. But 473 * try_to_free_buffers() will be operating against the *blockdev* mapping 474 * at the time, not against the S_ISREG file which depends on those buffers. 475 * So the locking for i_private_list is via the i_private_lock in the address_space 476 * which backs the buffers. Which is different from the address_space 477 * against which the buffers are listed. So for a particular address_space, 478 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact, 479 * mapping->i_private_list will always be protected by the backing blockdev's 480 * ->i_private_lock. 481 * 482 * Which introduces a requirement: all buffers on an address_space's 483 * ->i_private_list must be from the same address_space: the blockdev's. 484 * 485 * address_spaces which do not place buffers at ->i_private_list via these 486 * utility functions are free to use i_private_lock and i_private_list for 487 * whatever they want. The only requirement is that list_empty(i_private_list) 488 * be true at clear_inode() time. 489 * 490 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 491 * filesystems should do that. invalidate_inode_buffers() should just go 492 * BUG_ON(!list_empty). 493 * 494 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 495 * take an address_space, not an inode. And it should be called 496 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 497 * queued up. 498 * 499 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 500 * list if it is already on a list. Because if the buffer is on a list, 501 * it *must* already be on the right one. If not, the filesystem is being 502 * silly. This will save a ton of locking. But first we have to ensure 503 * that buffers are taken *off* the old inode's list when they are freed 504 * (presumably in truncate). That requires careful auditing of all 505 * filesystems (do it inside bforget()). It could also be done by bringing 506 * b_inode back. 507 */ 508 509 /* 510 * The buffer's backing address_space's i_private_lock must be held 511 */ 512 static void __remove_assoc_queue(struct buffer_head *bh) 513 { 514 list_del_init(&bh->b_assoc_buffers); 515 WARN_ON(!bh->b_assoc_map); 516 bh->b_assoc_map = NULL; 517 } 518 519 int inode_has_buffers(struct inode *inode) 520 { 521 return !list_empty(&inode->i_data.i_private_list); 522 } 523 524 /* 525 * osync is designed to support O_SYNC io. It waits synchronously for 526 * all already-submitted IO to complete, but does not queue any new 527 * writes to the disk. 528 * 529 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 530 * as you dirty the buffers, and then use osync_inode_buffers to wait for 531 * completion. Any other dirty buffers which are not yet queued for 532 * write will not be flushed to disk by the osync. 533 */ 534 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 535 { 536 struct buffer_head *bh; 537 struct list_head *p; 538 int err = 0; 539 540 spin_lock(lock); 541 repeat: 542 list_for_each_prev(p, list) { 543 bh = BH_ENTRY(p); 544 if (buffer_locked(bh)) { 545 get_bh(bh); 546 spin_unlock(lock); 547 wait_on_buffer(bh); 548 if (!buffer_uptodate(bh)) 549 err = -EIO; 550 brelse(bh); 551 spin_lock(lock); 552 goto repeat; 553 } 554 } 555 spin_unlock(lock); 556 return err; 557 } 558 559 /** 560 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 561 * @mapping: the mapping which wants those buffers written 562 * 563 * Starts I/O against the buffers at mapping->i_private_list, and waits upon 564 * that I/O. 565 * 566 * Basically, this is a convenience function for fsync(). 567 * @mapping is a file or directory which needs those buffers to be written for 568 * a successful fsync(). 569 */ 570 int sync_mapping_buffers(struct address_space *mapping) 571 { 572 struct address_space *buffer_mapping = mapping->i_private_data; 573 574 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list)) 575 return 0; 576 577 return fsync_buffers_list(&buffer_mapping->i_private_lock, 578 &mapping->i_private_list); 579 } 580 EXPORT_SYMBOL(sync_mapping_buffers); 581 582 /** 583 * generic_buffers_fsync_noflush - generic buffer fsync implementation 584 * for simple filesystems with no inode lock 585 * 586 * @file: file to synchronize 587 * @start: start offset in bytes 588 * @end: end offset in bytes (inclusive) 589 * @datasync: only synchronize essential metadata if true 590 * 591 * This is a generic implementation of the fsync method for simple 592 * filesystems which track all non-inode metadata in the buffers list 593 * hanging off the address_space structure. 594 */ 595 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, 596 bool datasync) 597 { 598 struct inode *inode = file->f_mapping->host; 599 int err; 600 int ret; 601 602 err = file_write_and_wait_range(file, start, end); 603 if (err) 604 return err; 605 606 ret = sync_mapping_buffers(inode->i_mapping); 607 if (!(inode->i_state & I_DIRTY_ALL)) 608 goto out; 609 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 610 goto out; 611 612 err = sync_inode_metadata(inode, 1); 613 if (ret == 0) 614 ret = err; 615 616 out: 617 /* check and advance again to catch errors after syncing out buffers */ 618 err = file_check_and_advance_wb_err(file); 619 if (ret == 0) 620 ret = err; 621 return ret; 622 } 623 EXPORT_SYMBOL(generic_buffers_fsync_noflush); 624 625 /** 626 * generic_buffers_fsync - generic buffer fsync implementation 627 * for simple filesystems with no inode lock 628 * 629 * @file: file to synchronize 630 * @start: start offset in bytes 631 * @end: end offset in bytes (inclusive) 632 * @datasync: only synchronize essential metadata if true 633 * 634 * This is a generic implementation of the fsync method for simple 635 * filesystems which track all non-inode metadata in the buffers list 636 * hanging off the address_space structure. This also makes sure that 637 * a device cache flush operation is called at the end. 638 */ 639 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, 640 bool datasync) 641 { 642 struct inode *inode = file->f_mapping->host; 643 int ret; 644 645 ret = generic_buffers_fsync_noflush(file, start, end, datasync); 646 if (!ret) 647 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 648 return ret; 649 } 650 EXPORT_SYMBOL(generic_buffers_fsync); 651 652 /* 653 * Called when we've recently written block `bblock', and it is known that 654 * `bblock' was for a buffer_boundary() buffer. This means that the block at 655 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 656 * dirty, schedule it for IO. So that indirects merge nicely with their data. 657 */ 658 void write_boundary_block(struct block_device *bdev, 659 sector_t bblock, unsigned blocksize) 660 { 661 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 662 if (bh) { 663 if (buffer_dirty(bh)) 664 write_dirty_buffer(bh, 0); 665 put_bh(bh); 666 } 667 } 668 669 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 670 { 671 struct address_space *mapping = inode->i_mapping; 672 struct address_space *buffer_mapping = bh->b_folio->mapping; 673 674 mark_buffer_dirty(bh); 675 if (!mapping->i_private_data) { 676 mapping->i_private_data = buffer_mapping; 677 } else { 678 BUG_ON(mapping->i_private_data != buffer_mapping); 679 } 680 if (!bh->b_assoc_map) { 681 spin_lock(&buffer_mapping->i_private_lock); 682 list_move_tail(&bh->b_assoc_buffers, 683 &mapping->i_private_list); 684 bh->b_assoc_map = mapping; 685 spin_unlock(&buffer_mapping->i_private_lock); 686 } 687 } 688 EXPORT_SYMBOL(mark_buffer_dirty_inode); 689 690 /* 691 * Add a page to the dirty page list. 692 * 693 * It is a sad fact of life that this function is called from several places 694 * deeply under spinlocking. It may not sleep. 695 * 696 * If the page has buffers, the uptodate buffers are set dirty, to preserve 697 * dirty-state coherency between the page and the buffers. It the page does 698 * not have buffers then when they are later attached they will all be set 699 * dirty. 700 * 701 * The buffers are dirtied before the page is dirtied. There's a small race 702 * window in which a writepage caller may see the page cleanness but not the 703 * buffer dirtiness. That's fine. If this code were to set the page dirty 704 * before the buffers, a concurrent writepage caller could clear the page dirty 705 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 706 * page on the dirty page list. 707 * 708 * We use i_private_lock to lock against try_to_free_buffers while using the 709 * page's buffer list. Also use this to protect against clean buffers being 710 * added to the page after it was set dirty. 711 * 712 * FIXME: may need to call ->reservepage here as well. That's rather up to the 713 * address_space though. 714 */ 715 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 716 { 717 struct buffer_head *head; 718 bool newly_dirty; 719 720 spin_lock(&mapping->i_private_lock); 721 head = folio_buffers(folio); 722 if (head) { 723 struct buffer_head *bh = head; 724 725 do { 726 set_buffer_dirty(bh); 727 bh = bh->b_this_page; 728 } while (bh != head); 729 } 730 /* 731 * Lock out page's memcg migration to keep PageDirty 732 * synchronized with per-memcg dirty page counters. 733 */ 734 folio_memcg_lock(folio); 735 newly_dirty = !folio_test_set_dirty(folio); 736 spin_unlock(&mapping->i_private_lock); 737 738 if (newly_dirty) 739 __folio_mark_dirty(folio, mapping, 1); 740 741 folio_memcg_unlock(folio); 742 743 if (newly_dirty) 744 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 745 746 return newly_dirty; 747 } 748 EXPORT_SYMBOL(block_dirty_folio); 749 750 /* 751 * Write out and wait upon a list of buffers. 752 * 753 * We have conflicting pressures: we want to make sure that all 754 * initially dirty buffers get waited on, but that any subsequently 755 * dirtied buffers don't. After all, we don't want fsync to last 756 * forever if somebody is actively writing to the file. 757 * 758 * Do this in two main stages: first we copy dirty buffers to a 759 * temporary inode list, queueing the writes as we go. Then we clean 760 * up, waiting for those writes to complete. 761 * 762 * During this second stage, any subsequent updates to the file may end 763 * up refiling the buffer on the original inode's dirty list again, so 764 * there is a chance we will end up with a buffer queued for write but 765 * not yet completed on that list. So, as a final cleanup we go through 766 * the osync code to catch these locked, dirty buffers without requeuing 767 * any newly dirty buffers for write. 768 */ 769 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 770 { 771 struct buffer_head *bh; 772 struct list_head tmp; 773 struct address_space *mapping; 774 int err = 0, err2; 775 struct blk_plug plug; 776 777 INIT_LIST_HEAD(&tmp); 778 blk_start_plug(&plug); 779 780 spin_lock(lock); 781 while (!list_empty(list)) { 782 bh = BH_ENTRY(list->next); 783 mapping = bh->b_assoc_map; 784 __remove_assoc_queue(bh); 785 /* Avoid race with mark_buffer_dirty_inode() which does 786 * a lockless check and we rely on seeing the dirty bit */ 787 smp_mb(); 788 if (buffer_dirty(bh) || buffer_locked(bh)) { 789 list_add(&bh->b_assoc_buffers, &tmp); 790 bh->b_assoc_map = mapping; 791 if (buffer_dirty(bh)) { 792 get_bh(bh); 793 spin_unlock(lock); 794 /* 795 * Ensure any pending I/O completes so that 796 * write_dirty_buffer() actually writes the 797 * current contents - it is a noop if I/O is 798 * still in flight on potentially older 799 * contents. 800 */ 801 write_dirty_buffer(bh, REQ_SYNC); 802 803 /* 804 * Kick off IO for the previous mapping. Note 805 * that we will not run the very last mapping, 806 * wait_on_buffer() will do that for us 807 * through sync_buffer(). 808 */ 809 brelse(bh); 810 spin_lock(lock); 811 } 812 } 813 } 814 815 spin_unlock(lock); 816 blk_finish_plug(&plug); 817 spin_lock(lock); 818 819 while (!list_empty(&tmp)) { 820 bh = BH_ENTRY(tmp.prev); 821 get_bh(bh); 822 mapping = bh->b_assoc_map; 823 __remove_assoc_queue(bh); 824 /* Avoid race with mark_buffer_dirty_inode() which does 825 * a lockless check and we rely on seeing the dirty bit */ 826 smp_mb(); 827 if (buffer_dirty(bh)) { 828 list_add(&bh->b_assoc_buffers, 829 &mapping->i_private_list); 830 bh->b_assoc_map = mapping; 831 } 832 spin_unlock(lock); 833 wait_on_buffer(bh); 834 if (!buffer_uptodate(bh)) 835 err = -EIO; 836 brelse(bh); 837 spin_lock(lock); 838 } 839 840 spin_unlock(lock); 841 err2 = osync_buffers_list(lock, list); 842 if (err) 843 return err; 844 else 845 return err2; 846 } 847 848 /* 849 * Invalidate any and all dirty buffers on a given inode. We are 850 * probably unmounting the fs, but that doesn't mean we have already 851 * done a sync(). Just drop the buffers from the inode list. 852 * 853 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which 854 * assumes that all the buffers are against the blockdev. Not true 855 * for reiserfs. 856 */ 857 void invalidate_inode_buffers(struct inode *inode) 858 { 859 if (inode_has_buffers(inode)) { 860 struct address_space *mapping = &inode->i_data; 861 struct list_head *list = &mapping->i_private_list; 862 struct address_space *buffer_mapping = mapping->i_private_data; 863 864 spin_lock(&buffer_mapping->i_private_lock); 865 while (!list_empty(list)) 866 __remove_assoc_queue(BH_ENTRY(list->next)); 867 spin_unlock(&buffer_mapping->i_private_lock); 868 } 869 } 870 EXPORT_SYMBOL(invalidate_inode_buffers); 871 872 /* 873 * Remove any clean buffers from the inode's buffer list. This is called 874 * when we're trying to free the inode itself. Those buffers can pin it. 875 * 876 * Returns true if all buffers were removed. 877 */ 878 int remove_inode_buffers(struct inode *inode) 879 { 880 int ret = 1; 881 882 if (inode_has_buffers(inode)) { 883 struct address_space *mapping = &inode->i_data; 884 struct list_head *list = &mapping->i_private_list; 885 struct address_space *buffer_mapping = mapping->i_private_data; 886 887 spin_lock(&buffer_mapping->i_private_lock); 888 while (!list_empty(list)) { 889 struct buffer_head *bh = BH_ENTRY(list->next); 890 if (buffer_dirty(bh)) { 891 ret = 0; 892 break; 893 } 894 __remove_assoc_queue(bh); 895 } 896 spin_unlock(&buffer_mapping->i_private_lock); 897 } 898 return ret; 899 } 900 901 /* 902 * Create the appropriate buffers when given a folio for data area and 903 * the size of each buffer.. Use the bh->b_this_page linked list to 904 * follow the buffers created. Return NULL if unable to create more 905 * buffers. 906 * 907 * The retry flag is used to differentiate async IO (paging, swapping) 908 * which may not fail from ordinary buffer allocations. 909 */ 910 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 911 gfp_t gfp) 912 { 913 struct buffer_head *bh, *head; 914 long offset; 915 struct mem_cgroup *memcg, *old_memcg; 916 917 /* The folio lock pins the memcg */ 918 memcg = folio_memcg(folio); 919 old_memcg = set_active_memcg(memcg); 920 921 head = NULL; 922 offset = folio_size(folio); 923 while ((offset -= size) >= 0) { 924 bh = alloc_buffer_head(gfp); 925 if (!bh) 926 goto no_grow; 927 928 bh->b_this_page = head; 929 bh->b_blocknr = -1; 930 head = bh; 931 932 bh->b_size = size; 933 934 /* Link the buffer to its folio */ 935 folio_set_bh(bh, folio, offset); 936 } 937 out: 938 set_active_memcg(old_memcg); 939 return head; 940 /* 941 * In case anything failed, we just free everything we got. 942 */ 943 no_grow: 944 if (head) { 945 do { 946 bh = head; 947 head = head->b_this_page; 948 free_buffer_head(bh); 949 } while (head); 950 } 951 952 goto out; 953 } 954 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 955 956 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 957 bool retry) 958 { 959 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 960 if (retry) 961 gfp |= __GFP_NOFAIL; 962 963 return folio_alloc_buffers(page_folio(page), size, gfp); 964 } 965 EXPORT_SYMBOL_GPL(alloc_page_buffers); 966 967 static inline void link_dev_buffers(struct folio *folio, 968 struct buffer_head *head) 969 { 970 struct buffer_head *bh, *tail; 971 972 bh = head; 973 do { 974 tail = bh; 975 bh = bh->b_this_page; 976 } while (bh); 977 tail->b_this_page = head; 978 folio_attach_private(folio, head); 979 } 980 981 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 982 { 983 sector_t retval = ~((sector_t)0); 984 loff_t sz = bdev_nr_bytes(bdev); 985 986 if (sz) { 987 unsigned int sizebits = blksize_bits(size); 988 retval = (sz >> sizebits); 989 } 990 return retval; 991 } 992 993 /* 994 * Initialise the state of a blockdev folio's buffers. 995 */ 996 static sector_t folio_init_buffers(struct folio *folio, 997 struct block_device *bdev, unsigned size) 998 { 999 struct buffer_head *head = folio_buffers(folio); 1000 struct buffer_head *bh = head; 1001 bool uptodate = folio_test_uptodate(folio); 1002 sector_t block = div_u64(folio_pos(folio), size); 1003 sector_t end_block = blkdev_max_block(bdev, size); 1004 1005 do { 1006 if (!buffer_mapped(bh)) { 1007 bh->b_end_io = NULL; 1008 bh->b_private = NULL; 1009 bh->b_bdev = bdev; 1010 bh->b_blocknr = block; 1011 if (uptodate) 1012 set_buffer_uptodate(bh); 1013 if (block < end_block) 1014 set_buffer_mapped(bh); 1015 } 1016 block++; 1017 bh = bh->b_this_page; 1018 } while (bh != head); 1019 1020 /* 1021 * Caller needs to validate requested block against end of device. 1022 */ 1023 return end_block; 1024 } 1025 1026 /* 1027 * Create the page-cache folio that contains the requested block. 1028 * 1029 * This is used purely for blockdev mappings. 1030 * 1031 * Returns false if we have a failure which cannot be cured by retrying 1032 * without sleeping. Returns true if we succeeded, or the caller should retry. 1033 */ 1034 static bool grow_dev_folio(struct block_device *bdev, sector_t block, 1035 pgoff_t index, unsigned size, gfp_t gfp) 1036 { 1037 struct inode *inode = bdev->bd_inode; 1038 struct folio *folio; 1039 struct buffer_head *bh; 1040 sector_t end_block = 0; 1041 1042 folio = __filemap_get_folio(inode->i_mapping, index, 1043 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1044 if (IS_ERR(folio)) 1045 return false; 1046 1047 bh = folio_buffers(folio); 1048 if (bh) { 1049 if (bh->b_size == size) { 1050 end_block = folio_init_buffers(folio, bdev, size); 1051 goto unlock; 1052 } 1053 1054 /* 1055 * Retrying may succeed; for example the folio may finish 1056 * writeback, or buffers may be cleaned. This should not 1057 * happen very often; maybe we have old buffers attached to 1058 * this blockdev's page cache and we're trying to change 1059 * the block size? 1060 */ 1061 if (!try_to_free_buffers(folio)) { 1062 end_block = ~0ULL; 1063 goto unlock; 1064 } 1065 } 1066 1067 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT); 1068 if (!bh) 1069 goto unlock; 1070 1071 /* 1072 * Link the folio to the buffers and initialise them. Take the 1073 * lock to be atomic wrt __find_get_block(), which does not 1074 * run under the folio lock. 1075 */ 1076 spin_lock(&inode->i_mapping->i_private_lock); 1077 link_dev_buffers(folio, bh); 1078 end_block = folio_init_buffers(folio, bdev, size); 1079 spin_unlock(&inode->i_mapping->i_private_lock); 1080 unlock: 1081 folio_unlock(folio); 1082 folio_put(folio); 1083 return block < end_block; 1084 } 1085 1086 /* 1087 * Create buffers for the specified block device block's folio. If 1088 * that folio was dirty, the buffers are set dirty also. Returns false 1089 * if we've hit a permanent error. 1090 */ 1091 static bool grow_buffers(struct block_device *bdev, sector_t block, 1092 unsigned size, gfp_t gfp) 1093 { 1094 loff_t pos; 1095 1096 /* 1097 * Check for a block which lies outside our maximum possible 1098 * pagecache index. 1099 */ 1100 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) { 1101 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n", 1102 __func__, (unsigned long long)block, 1103 bdev); 1104 return false; 1105 } 1106 1107 /* Create a folio with the proper size buffers */ 1108 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp); 1109 } 1110 1111 static struct buffer_head * 1112 __getblk_slow(struct block_device *bdev, sector_t block, 1113 unsigned size, gfp_t gfp) 1114 { 1115 /* Size must be multiple of hard sectorsize */ 1116 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1117 (size < 512 || size > PAGE_SIZE))) { 1118 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1119 size); 1120 printk(KERN_ERR "logical block size: %d\n", 1121 bdev_logical_block_size(bdev)); 1122 1123 dump_stack(); 1124 return NULL; 1125 } 1126 1127 for (;;) { 1128 struct buffer_head *bh; 1129 1130 bh = __find_get_block(bdev, block, size); 1131 if (bh) 1132 return bh; 1133 1134 if (!grow_buffers(bdev, block, size, gfp)) 1135 return NULL; 1136 } 1137 } 1138 1139 /* 1140 * The relationship between dirty buffers and dirty pages: 1141 * 1142 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1143 * the page is tagged dirty in the page cache. 1144 * 1145 * At all times, the dirtiness of the buffers represents the dirtiness of 1146 * subsections of the page. If the page has buffers, the page dirty bit is 1147 * merely a hint about the true dirty state. 1148 * 1149 * When a page is set dirty in its entirety, all its buffers are marked dirty 1150 * (if the page has buffers). 1151 * 1152 * When a buffer is marked dirty, its page is dirtied, but the page's other 1153 * buffers are not. 1154 * 1155 * Also. When blockdev buffers are explicitly read with bread(), they 1156 * individually become uptodate. But their backing page remains not 1157 * uptodate - even if all of its buffers are uptodate. A subsequent 1158 * block_read_full_folio() against that folio will discover all the uptodate 1159 * buffers, will set the folio uptodate and will perform no I/O. 1160 */ 1161 1162 /** 1163 * mark_buffer_dirty - mark a buffer_head as needing writeout 1164 * @bh: the buffer_head to mark dirty 1165 * 1166 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1167 * its backing page dirty, then tag the page as dirty in the page cache 1168 * and then attach the address_space's inode to its superblock's dirty 1169 * inode list. 1170 * 1171 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock, 1172 * i_pages lock and mapping->host->i_lock. 1173 */ 1174 void mark_buffer_dirty(struct buffer_head *bh) 1175 { 1176 WARN_ON_ONCE(!buffer_uptodate(bh)); 1177 1178 trace_block_dirty_buffer(bh); 1179 1180 /* 1181 * Very *carefully* optimize the it-is-already-dirty case. 1182 * 1183 * Don't let the final "is it dirty" escape to before we 1184 * perhaps modified the buffer. 1185 */ 1186 if (buffer_dirty(bh)) { 1187 smp_mb(); 1188 if (buffer_dirty(bh)) 1189 return; 1190 } 1191 1192 if (!test_set_buffer_dirty(bh)) { 1193 struct folio *folio = bh->b_folio; 1194 struct address_space *mapping = NULL; 1195 1196 folio_memcg_lock(folio); 1197 if (!folio_test_set_dirty(folio)) { 1198 mapping = folio->mapping; 1199 if (mapping) 1200 __folio_mark_dirty(folio, mapping, 0); 1201 } 1202 folio_memcg_unlock(folio); 1203 if (mapping) 1204 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1205 } 1206 } 1207 EXPORT_SYMBOL(mark_buffer_dirty); 1208 1209 void mark_buffer_write_io_error(struct buffer_head *bh) 1210 { 1211 set_buffer_write_io_error(bh); 1212 /* FIXME: do we need to set this in both places? */ 1213 if (bh->b_folio && bh->b_folio->mapping) 1214 mapping_set_error(bh->b_folio->mapping, -EIO); 1215 if (bh->b_assoc_map) { 1216 mapping_set_error(bh->b_assoc_map, -EIO); 1217 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO); 1218 } 1219 } 1220 EXPORT_SYMBOL(mark_buffer_write_io_error); 1221 1222 /* 1223 * Decrement a buffer_head's reference count. If all buffers against a page 1224 * have zero reference count, are clean and unlocked, and if the page is clean 1225 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1226 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1227 * a page but it ends up not being freed, and buffers may later be reattached). 1228 */ 1229 void __brelse(struct buffer_head * buf) 1230 { 1231 if (atomic_read(&buf->b_count)) { 1232 put_bh(buf); 1233 return; 1234 } 1235 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1236 } 1237 EXPORT_SYMBOL(__brelse); 1238 1239 /* 1240 * bforget() is like brelse(), except it discards any 1241 * potentially dirty data. 1242 */ 1243 void __bforget(struct buffer_head *bh) 1244 { 1245 clear_buffer_dirty(bh); 1246 if (bh->b_assoc_map) { 1247 struct address_space *buffer_mapping = bh->b_folio->mapping; 1248 1249 spin_lock(&buffer_mapping->i_private_lock); 1250 list_del_init(&bh->b_assoc_buffers); 1251 bh->b_assoc_map = NULL; 1252 spin_unlock(&buffer_mapping->i_private_lock); 1253 } 1254 __brelse(bh); 1255 } 1256 EXPORT_SYMBOL(__bforget); 1257 1258 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1259 { 1260 lock_buffer(bh); 1261 if (buffer_uptodate(bh)) { 1262 unlock_buffer(bh); 1263 return bh; 1264 } else { 1265 get_bh(bh); 1266 bh->b_end_io = end_buffer_read_sync; 1267 submit_bh(REQ_OP_READ, bh); 1268 wait_on_buffer(bh); 1269 if (buffer_uptodate(bh)) 1270 return bh; 1271 } 1272 brelse(bh); 1273 return NULL; 1274 } 1275 1276 /* 1277 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1278 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1279 * refcount elevated by one when they're in an LRU. A buffer can only appear 1280 * once in a particular CPU's LRU. A single buffer can be present in multiple 1281 * CPU's LRUs at the same time. 1282 * 1283 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1284 * sb_find_get_block(). 1285 * 1286 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1287 * a local interrupt disable for that. 1288 */ 1289 1290 #define BH_LRU_SIZE 16 1291 1292 struct bh_lru { 1293 struct buffer_head *bhs[BH_LRU_SIZE]; 1294 }; 1295 1296 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1297 1298 #ifdef CONFIG_SMP 1299 #define bh_lru_lock() local_irq_disable() 1300 #define bh_lru_unlock() local_irq_enable() 1301 #else 1302 #define bh_lru_lock() preempt_disable() 1303 #define bh_lru_unlock() preempt_enable() 1304 #endif 1305 1306 static inline void check_irqs_on(void) 1307 { 1308 #ifdef irqs_disabled 1309 BUG_ON(irqs_disabled()); 1310 #endif 1311 } 1312 1313 /* 1314 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1315 * inserted at the front, and the buffer_head at the back if any is evicted. 1316 * Or, if already in the LRU it is moved to the front. 1317 */ 1318 static void bh_lru_install(struct buffer_head *bh) 1319 { 1320 struct buffer_head *evictee = bh; 1321 struct bh_lru *b; 1322 int i; 1323 1324 check_irqs_on(); 1325 bh_lru_lock(); 1326 1327 /* 1328 * the refcount of buffer_head in bh_lru prevents dropping the 1329 * attached page(i.e., try_to_free_buffers) so it could cause 1330 * failing page migration. 1331 * Skip putting upcoming bh into bh_lru until migration is done. 1332 */ 1333 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) { 1334 bh_lru_unlock(); 1335 return; 1336 } 1337 1338 b = this_cpu_ptr(&bh_lrus); 1339 for (i = 0; i < BH_LRU_SIZE; i++) { 1340 swap(evictee, b->bhs[i]); 1341 if (evictee == bh) { 1342 bh_lru_unlock(); 1343 return; 1344 } 1345 } 1346 1347 get_bh(bh); 1348 bh_lru_unlock(); 1349 brelse(evictee); 1350 } 1351 1352 /* 1353 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1354 */ 1355 static struct buffer_head * 1356 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1357 { 1358 struct buffer_head *ret = NULL; 1359 unsigned int i; 1360 1361 check_irqs_on(); 1362 bh_lru_lock(); 1363 if (cpu_is_isolated(smp_processor_id())) { 1364 bh_lru_unlock(); 1365 return NULL; 1366 } 1367 for (i = 0; i < BH_LRU_SIZE; i++) { 1368 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1369 1370 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1371 bh->b_size == size) { 1372 if (i) { 1373 while (i) { 1374 __this_cpu_write(bh_lrus.bhs[i], 1375 __this_cpu_read(bh_lrus.bhs[i - 1])); 1376 i--; 1377 } 1378 __this_cpu_write(bh_lrus.bhs[0], bh); 1379 } 1380 get_bh(bh); 1381 ret = bh; 1382 break; 1383 } 1384 } 1385 bh_lru_unlock(); 1386 return ret; 1387 } 1388 1389 /* 1390 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1391 * it in the LRU and mark it as accessed. If it is not present then return 1392 * NULL 1393 */ 1394 struct buffer_head * 1395 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1396 { 1397 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1398 1399 if (bh == NULL) { 1400 /* __find_get_block_slow will mark the page accessed */ 1401 bh = __find_get_block_slow(bdev, block); 1402 if (bh) 1403 bh_lru_install(bh); 1404 } else 1405 touch_buffer(bh); 1406 1407 return bh; 1408 } 1409 EXPORT_SYMBOL(__find_get_block); 1410 1411 /** 1412 * bdev_getblk - Get a buffer_head in a block device's buffer cache. 1413 * @bdev: The block device. 1414 * @block: The block number. 1415 * @size: The size of buffer_heads for this @bdev. 1416 * @gfp: The memory allocation flags to use. 1417 * 1418 * Return: The buffer head, or NULL if memory could not be allocated. 1419 */ 1420 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block, 1421 unsigned size, gfp_t gfp) 1422 { 1423 struct buffer_head *bh = __find_get_block(bdev, block, size); 1424 1425 might_alloc(gfp); 1426 if (bh) 1427 return bh; 1428 1429 return __getblk_slow(bdev, block, size, gfp); 1430 } 1431 EXPORT_SYMBOL(bdev_getblk); 1432 1433 /* 1434 * Do async read-ahead on a buffer.. 1435 */ 1436 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1437 { 1438 struct buffer_head *bh = bdev_getblk(bdev, block, size, 1439 GFP_NOWAIT | __GFP_MOVABLE); 1440 1441 if (likely(bh)) { 1442 bh_readahead(bh, REQ_RAHEAD); 1443 brelse(bh); 1444 } 1445 } 1446 EXPORT_SYMBOL(__breadahead); 1447 1448 /** 1449 * __bread_gfp() - reads a specified block and returns the bh 1450 * @bdev: the block_device to read from 1451 * @block: number of block 1452 * @size: size (in bytes) to read 1453 * @gfp: page allocation flag 1454 * 1455 * Reads a specified block, and returns buffer head that contains it. 1456 * The page cache can be allocated from non-movable area 1457 * not to prevent page migration if you set gfp to zero. 1458 * It returns NULL if the block was unreadable. 1459 */ 1460 struct buffer_head * 1461 __bread_gfp(struct block_device *bdev, sector_t block, 1462 unsigned size, gfp_t gfp) 1463 { 1464 struct buffer_head *bh; 1465 1466 gfp |= mapping_gfp_constraint(bdev->bd_inode->i_mapping, ~__GFP_FS); 1467 1468 /* 1469 * Prefer looping in the allocator rather than here, at least that 1470 * code knows what it's doing. 1471 */ 1472 gfp |= __GFP_NOFAIL; 1473 1474 bh = bdev_getblk(bdev, block, size, gfp); 1475 1476 if (likely(bh) && !buffer_uptodate(bh)) 1477 bh = __bread_slow(bh); 1478 return bh; 1479 } 1480 EXPORT_SYMBOL(__bread_gfp); 1481 1482 static void __invalidate_bh_lrus(struct bh_lru *b) 1483 { 1484 int i; 1485 1486 for (i = 0; i < BH_LRU_SIZE; i++) { 1487 brelse(b->bhs[i]); 1488 b->bhs[i] = NULL; 1489 } 1490 } 1491 /* 1492 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1493 * This doesn't race because it runs in each cpu either in irq 1494 * or with preempt disabled. 1495 */ 1496 static void invalidate_bh_lru(void *arg) 1497 { 1498 struct bh_lru *b = &get_cpu_var(bh_lrus); 1499 1500 __invalidate_bh_lrus(b); 1501 put_cpu_var(bh_lrus); 1502 } 1503 1504 bool has_bh_in_lru(int cpu, void *dummy) 1505 { 1506 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1507 int i; 1508 1509 for (i = 0; i < BH_LRU_SIZE; i++) { 1510 if (b->bhs[i]) 1511 return true; 1512 } 1513 1514 return false; 1515 } 1516 1517 void invalidate_bh_lrus(void) 1518 { 1519 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1520 } 1521 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1522 1523 /* 1524 * It's called from workqueue context so we need a bh_lru_lock to close 1525 * the race with preemption/irq. 1526 */ 1527 void invalidate_bh_lrus_cpu(void) 1528 { 1529 struct bh_lru *b; 1530 1531 bh_lru_lock(); 1532 b = this_cpu_ptr(&bh_lrus); 1533 __invalidate_bh_lrus(b); 1534 bh_lru_unlock(); 1535 } 1536 1537 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1538 unsigned long offset) 1539 { 1540 bh->b_folio = folio; 1541 BUG_ON(offset >= folio_size(folio)); 1542 if (folio_test_highmem(folio)) 1543 /* 1544 * This catches illegal uses and preserves the offset: 1545 */ 1546 bh->b_data = (char *)(0 + offset); 1547 else 1548 bh->b_data = folio_address(folio) + offset; 1549 } 1550 EXPORT_SYMBOL(folio_set_bh); 1551 1552 /* 1553 * Called when truncating a buffer on a page completely. 1554 */ 1555 1556 /* Bits that are cleared during an invalidate */ 1557 #define BUFFER_FLAGS_DISCARD \ 1558 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1559 1 << BH_Delay | 1 << BH_Unwritten) 1560 1561 static void discard_buffer(struct buffer_head * bh) 1562 { 1563 unsigned long b_state; 1564 1565 lock_buffer(bh); 1566 clear_buffer_dirty(bh); 1567 bh->b_bdev = NULL; 1568 b_state = READ_ONCE(bh->b_state); 1569 do { 1570 } while (!try_cmpxchg(&bh->b_state, &b_state, 1571 b_state & ~BUFFER_FLAGS_DISCARD)); 1572 unlock_buffer(bh); 1573 } 1574 1575 /** 1576 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1577 * @folio: The folio which is affected. 1578 * @offset: start of the range to invalidate 1579 * @length: length of the range to invalidate 1580 * 1581 * block_invalidate_folio() is called when all or part of the folio has been 1582 * invalidated by a truncate operation. 1583 * 1584 * block_invalidate_folio() does not have to release all buffers, but it must 1585 * ensure that no dirty buffer is left outside @offset and that no I/O 1586 * is underway against any of the blocks which are outside the truncation 1587 * point. Because the caller is about to free (and possibly reuse) those 1588 * blocks on-disk. 1589 */ 1590 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1591 { 1592 struct buffer_head *head, *bh, *next; 1593 size_t curr_off = 0; 1594 size_t stop = length + offset; 1595 1596 BUG_ON(!folio_test_locked(folio)); 1597 1598 /* 1599 * Check for overflow 1600 */ 1601 BUG_ON(stop > folio_size(folio) || stop < length); 1602 1603 head = folio_buffers(folio); 1604 if (!head) 1605 return; 1606 1607 bh = head; 1608 do { 1609 size_t next_off = curr_off + bh->b_size; 1610 next = bh->b_this_page; 1611 1612 /* 1613 * Are we still fully in range ? 1614 */ 1615 if (next_off > stop) 1616 goto out; 1617 1618 /* 1619 * is this block fully invalidated? 1620 */ 1621 if (offset <= curr_off) 1622 discard_buffer(bh); 1623 curr_off = next_off; 1624 bh = next; 1625 } while (bh != head); 1626 1627 /* 1628 * We release buffers only if the entire folio is being invalidated. 1629 * The get_block cached value has been unconditionally invalidated, 1630 * so real IO is not possible anymore. 1631 */ 1632 if (length == folio_size(folio)) 1633 filemap_release_folio(folio, 0); 1634 out: 1635 return; 1636 } 1637 EXPORT_SYMBOL(block_invalidate_folio); 1638 1639 /* 1640 * We attach and possibly dirty the buffers atomically wrt 1641 * block_dirty_folio() via i_private_lock. try_to_free_buffers 1642 * is already excluded via the folio lock. 1643 */ 1644 struct buffer_head *create_empty_buffers(struct folio *folio, 1645 unsigned long blocksize, unsigned long b_state) 1646 { 1647 struct buffer_head *bh, *head, *tail; 1648 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL; 1649 1650 head = folio_alloc_buffers(folio, blocksize, gfp); 1651 bh = head; 1652 do { 1653 bh->b_state |= b_state; 1654 tail = bh; 1655 bh = bh->b_this_page; 1656 } while (bh); 1657 tail->b_this_page = head; 1658 1659 spin_lock(&folio->mapping->i_private_lock); 1660 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1661 bh = head; 1662 do { 1663 if (folio_test_dirty(folio)) 1664 set_buffer_dirty(bh); 1665 if (folio_test_uptodate(folio)) 1666 set_buffer_uptodate(bh); 1667 bh = bh->b_this_page; 1668 } while (bh != head); 1669 } 1670 folio_attach_private(folio, head); 1671 spin_unlock(&folio->mapping->i_private_lock); 1672 1673 return head; 1674 } 1675 EXPORT_SYMBOL(create_empty_buffers); 1676 1677 /** 1678 * clean_bdev_aliases: clean a range of buffers in block device 1679 * @bdev: Block device to clean buffers in 1680 * @block: Start of a range of blocks to clean 1681 * @len: Number of blocks to clean 1682 * 1683 * We are taking a range of blocks for data and we don't want writeback of any 1684 * buffer-cache aliases starting from return from this function and until the 1685 * moment when something will explicitly mark the buffer dirty (hopefully that 1686 * will not happen until we will free that block ;-) We don't even need to mark 1687 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1688 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1689 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1690 * would confuse anyone who might pick it with bread() afterwards... 1691 * 1692 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1693 * writeout I/O going on against recently-freed buffers. We don't wait on that 1694 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1695 * need to. That happens here. 1696 */ 1697 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1698 { 1699 struct inode *bd_inode = bdev->bd_inode; 1700 struct address_space *bd_mapping = bd_inode->i_mapping; 1701 struct folio_batch fbatch; 1702 pgoff_t index = ((loff_t)block << bd_inode->i_blkbits) / PAGE_SIZE; 1703 pgoff_t end; 1704 int i, count; 1705 struct buffer_head *bh; 1706 struct buffer_head *head; 1707 1708 end = ((loff_t)(block + len - 1) << bd_inode->i_blkbits) / PAGE_SIZE; 1709 folio_batch_init(&fbatch); 1710 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1711 count = folio_batch_count(&fbatch); 1712 for (i = 0; i < count; i++) { 1713 struct folio *folio = fbatch.folios[i]; 1714 1715 if (!folio_buffers(folio)) 1716 continue; 1717 /* 1718 * We use folio lock instead of bd_mapping->i_private_lock 1719 * to pin buffers here since we can afford to sleep and 1720 * it scales better than a global spinlock lock. 1721 */ 1722 folio_lock(folio); 1723 /* Recheck when the folio is locked which pins bhs */ 1724 head = folio_buffers(folio); 1725 if (!head) 1726 goto unlock_page; 1727 bh = head; 1728 do { 1729 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1730 goto next; 1731 if (bh->b_blocknr >= block + len) 1732 break; 1733 clear_buffer_dirty(bh); 1734 wait_on_buffer(bh); 1735 clear_buffer_req(bh); 1736 next: 1737 bh = bh->b_this_page; 1738 } while (bh != head); 1739 unlock_page: 1740 folio_unlock(folio); 1741 } 1742 folio_batch_release(&fbatch); 1743 cond_resched(); 1744 /* End of range already reached? */ 1745 if (index > end || !index) 1746 break; 1747 } 1748 } 1749 EXPORT_SYMBOL(clean_bdev_aliases); 1750 1751 static struct buffer_head *folio_create_buffers(struct folio *folio, 1752 struct inode *inode, 1753 unsigned int b_state) 1754 { 1755 struct buffer_head *bh; 1756 1757 BUG_ON(!folio_test_locked(folio)); 1758 1759 bh = folio_buffers(folio); 1760 if (!bh) 1761 bh = create_empty_buffers(folio, 1762 1 << READ_ONCE(inode->i_blkbits), b_state); 1763 return bh; 1764 } 1765 1766 /* 1767 * NOTE! All mapped/uptodate combinations are valid: 1768 * 1769 * Mapped Uptodate Meaning 1770 * 1771 * No No "unknown" - must do get_block() 1772 * No Yes "hole" - zero-filled 1773 * Yes No "allocated" - allocated on disk, not read in 1774 * Yes Yes "valid" - allocated and up-to-date in memory. 1775 * 1776 * "Dirty" is valid only with the last case (mapped+uptodate). 1777 */ 1778 1779 /* 1780 * While block_write_full_folio is writing back the dirty buffers under 1781 * the page lock, whoever dirtied the buffers may decide to clean them 1782 * again at any time. We handle that by only looking at the buffer 1783 * state inside lock_buffer(). 1784 * 1785 * If block_write_full_folio() is called for regular writeback 1786 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1787 * locked buffer. This only can happen if someone has written the buffer 1788 * directly, with submit_bh(). At the address_space level PageWriteback 1789 * prevents this contention from occurring. 1790 * 1791 * If block_write_full_folio() is called with wbc->sync_mode == 1792 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1793 * causes the writes to be flagged as synchronous writes. 1794 */ 1795 int __block_write_full_folio(struct inode *inode, struct folio *folio, 1796 get_block_t *get_block, struct writeback_control *wbc) 1797 { 1798 int err; 1799 sector_t block; 1800 sector_t last_block; 1801 struct buffer_head *bh, *head; 1802 size_t blocksize; 1803 int nr_underway = 0; 1804 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1805 1806 head = folio_create_buffers(folio, inode, 1807 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1808 1809 /* 1810 * Be very careful. We have no exclusion from block_dirty_folio 1811 * here, and the (potentially unmapped) buffers may become dirty at 1812 * any time. If a buffer becomes dirty here after we've inspected it 1813 * then we just miss that fact, and the folio stays dirty. 1814 * 1815 * Buffers outside i_size may be dirtied by block_dirty_folio; 1816 * handle that here by just cleaning them. 1817 */ 1818 1819 bh = head; 1820 blocksize = bh->b_size; 1821 1822 block = div_u64(folio_pos(folio), blocksize); 1823 last_block = div_u64(i_size_read(inode) - 1, blocksize); 1824 1825 /* 1826 * Get all the dirty buffers mapped to disk addresses and 1827 * handle any aliases from the underlying blockdev's mapping. 1828 */ 1829 do { 1830 if (block > last_block) { 1831 /* 1832 * mapped buffers outside i_size will occur, because 1833 * this folio can be outside i_size when there is a 1834 * truncate in progress. 1835 */ 1836 /* 1837 * The buffer was zeroed by block_write_full_folio() 1838 */ 1839 clear_buffer_dirty(bh); 1840 set_buffer_uptodate(bh); 1841 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1842 buffer_dirty(bh)) { 1843 WARN_ON(bh->b_size != blocksize); 1844 err = get_block(inode, block, bh, 1); 1845 if (err) 1846 goto recover; 1847 clear_buffer_delay(bh); 1848 if (buffer_new(bh)) { 1849 /* blockdev mappings never come here */ 1850 clear_buffer_new(bh); 1851 clean_bdev_bh_alias(bh); 1852 } 1853 } 1854 bh = bh->b_this_page; 1855 block++; 1856 } while (bh != head); 1857 1858 do { 1859 if (!buffer_mapped(bh)) 1860 continue; 1861 /* 1862 * If it's a fully non-blocking write attempt and we cannot 1863 * lock the buffer then redirty the folio. Note that this can 1864 * potentially cause a busy-wait loop from writeback threads 1865 * and kswapd activity, but those code paths have their own 1866 * higher-level throttling. 1867 */ 1868 if (wbc->sync_mode != WB_SYNC_NONE) { 1869 lock_buffer(bh); 1870 } else if (!trylock_buffer(bh)) { 1871 folio_redirty_for_writepage(wbc, folio); 1872 continue; 1873 } 1874 if (test_clear_buffer_dirty(bh)) { 1875 mark_buffer_async_write_endio(bh, 1876 end_buffer_async_write); 1877 } else { 1878 unlock_buffer(bh); 1879 } 1880 } while ((bh = bh->b_this_page) != head); 1881 1882 /* 1883 * The folio and its buffers are protected by the writeback flag, 1884 * so we can drop the bh refcounts early. 1885 */ 1886 BUG_ON(folio_test_writeback(folio)); 1887 folio_start_writeback(folio); 1888 1889 do { 1890 struct buffer_head *next = bh->b_this_page; 1891 if (buffer_async_write(bh)) { 1892 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1893 inode->i_write_hint, wbc); 1894 nr_underway++; 1895 } 1896 bh = next; 1897 } while (bh != head); 1898 folio_unlock(folio); 1899 1900 err = 0; 1901 done: 1902 if (nr_underway == 0) { 1903 /* 1904 * The folio was marked dirty, but the buffers were 1905 * clean. Someone wrote them back by hand with 1906 * write_dirty_buffer/submit_bh. A rare case. 1907 */ 1908 folio_end_writeback(folio); 1909 1910 /* 1911 * The folio and buffer_heads can be released at any time from 1912 * here on. 1913 */ 1914 } 1915 return err; 1916 1917 recover: 1918 /* 1919 * ENOSPC, or some other error. We may already have added some 1920 * blocks to the file, so we need to write these out to avoid 1921 * exposing stale data. 1922 * The folio is currently locked and not marked for writeback 1923 */ 1924 bh = head; 1925 /* Recovery: lock and submit the mapped buffers */ 1926 do { 1927 if (buffer_mapped(bh) && buffer_dirty(bh) && 1928 !buffer_delay(bh)) { 1929 lock_buffer(bh); 1930 mark_buffer_async_write_endio(bh, 1931 end_buffer_async_write); 1932 } else { 1933 /* 1934 * The buffer may have been set dirty during 1935 * attachment to a dirty folio. 1936 */ 1937 clear_buffer_dirty(bh); 1938 } 1939 } while ((bh = bh->b_this_page) != head); 1940 folio_set_error(folio); 1941 BUG_ON(folio_test_writeback(folio)); 1942 mapping_set_error(folio->mapping, err); 1943 folio_start_writeback(folio); 1944 do { 1945 struct buffer_head *next = bh->b_this_page; 1946 if (buffer_async_write(bh)) { 1947 clear_buffer_dirty(bh); 1948 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1949 inode->i_write_hint, wbc); 1950 nr_underway++; 1951 } 1952 bh = next; 1953 } while (bh != head); 1954 folio_unlock(folio); 1955 goto done; 1956 } 1957 EXPORT_SYMBOL(__block_write_full_folio); 1958 1959 /* 1960 * If a folio has any new buffers, zero them out here, and mark them uptodate 1961 * and dirty so they'll be written out (in order to prevent uninitialised 1962 * block data from leaking). And clear the new bit. 1963 */ 1964 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) 1965 { 1966 size_t block_start, block_end; 1967 struct buffer_head *head, *bh; 1968 1969 BUG_ON(!folio_test_locked(folio)); 1970 head = folio_buffers(folio); 1971 if (!head) 1972 return; 1973 1974 bh = head; 1975 block_start = 0; 1976 do { 1977 block_end = block_start + bh->b_size; 1978 1979 if (buffer_new(bh)) { 1980 if (block_end > from && block_start < to) { 1981 if (!folio_test_uptodate(folio)) { 1982 size_t start, xend; 1983 1984 start = max(from, block_start); 1985 xend = min(to, block_end); 1986 1987 folio_zero_segment(folio, start, xend); 1988 set_buffer_uptodate(bh); 1989 } 1990 1991 clear_buffer_new(bh); 1992 mark_buffer_dirty(bh); 1993 } 1994 } 1995 1996 block_start = block_end; 1997 bh = bh->b_this_page; 1998 } while (bh != head); 1999 } 2000 EXPORT_SYMBOL(folio_zero_new_buffers); 2001 2002 static int 2003 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 2004 const struct iomap *iomap) 2005 { 2006 loff_t offset = (loff_t)block << inode->i_blkbits; 2007 2008 bh->b_bdev = iomap->bdev; 2009 2010 /* 2011 * Block points to offset in file we need to map, iomap contains 2012 * the offset at which the map starts. If the map ends before the 2013 * current block, then do not map the buffer and let the caller 2014 * handle it. 2015 */ 2016 if (offset >= iomap->offset + iomap->length) 2017 return -EIO; 2018 2019 switch (iomap->type) { 2020 case IOMAP_HOLE: 2021 /* 2022 * If the buffer is not up to date or beyond the current EOF, 2023 * we need to mark it as new to ensure sub-block zeroing is 2024 * executed if necessary. 2025 */ 2026 if (!buffer_uptodate(bh) || 2027 (offset >= i_size_read(inode))) 2028 set_buffer_new(bh); 2029 return 0; 2030 case IOMAP_DELALLOC: 2031 if (!buffer_uptodate(bh) || 2032 (offset >= i_size_read(inode))) 2033 set_buffer_new(bh); 2034 set_buffer_uptodate(bh); 2035 set_buffer_mapped(bh); 2036 set_buffer_delay(bh); 2037 return 0; 2038 case IOMAP_UNWRITTEN: 2039 /* 2040 * For unwritten regions, we always need to ensure that regions 2041 * in the block we are not writing to are zeroed. Mark the 2042 * buffer as new to ensure this. 2043 */ 2044 set_buffer_new(bh); 2045 set_buffer_unwritten(bh); 2046 fallthrough; 2047 case IOMAP_MAPPED: 2048 if ((iomap->flags & IOMAP_F_NEW) || 2049 offset >= i_size_read(inode)) { 2050 /* 2051 * This can happen if truncating the block device races 2052 * with the check in the caller as i_size updates on 2053 * block devices aren't synchronized by i_rwsem for 2054 * block devices. 2055 */ 2056 if (S_ISBLK(inode->i_mode)) 2057 return -EIO; 2058 set_buffer_new(bh); 2059 } 2060 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2061 inode->i_blkbits; 2062 set_buffer_mapped(bh); 2063 return 0; 2064 default: 2065 WARN_ON_ONCE(1); 2066 return -EIO; 2067 } 2068 } 2069 2070 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2071 get_block_t *get_block, const struct iomap *iomap) 2072 { 2073 size_t from = offset_in_folio(folio, pos); 2074 size_t to = from + len; 2075 struct inode *inode = folio->mapping->host; 2076 size_t block_start, block_end; 2077 sector_t block; 2078 int err = 0; 2079 size_t blocksize; 2080 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2081 2082 BUG_ON(!folio_test_locked(folio)); 2083 BUG_ON(to > folio_size(folio)); 2084 BUG_ON(from > to); 2085 2086 head = folio_create_buffers(folio, inode, 0); 2087 blocksize = head->b_size; 2088 block = div_u64(folio_pos(folio), blocksize); 2089 2090 for (bh = head, block_start = 0; bh != head || !block_start; 2091 block++, block_start=block_end, bh = bh->b_this_page) { 2092 block_end = block_start + blocksize; 2093 if (block_end <= from || block_start >= to) { 2094 if (folio_test_uptodate(folio)) { 2095 if (!buffer_uptodate(bh)) 2096 set_buffer_uptodate(bh); 2097 } 2098 continue; 2099 } 2100 if (buffer_new(bh)) 2101 clear_buffer_new(bh); 2102 if (!buffer_mapped(bh)) { 2103 WARN_ON(bh->b_size != blocksize); 2104 if (get_block) 2105 err = get_block(inode, block, bh, 1); 2106 else 2107 err = iomap_to_bh(inode, block, bh, iomap); 2108 if (err) 2109 break; 2110 2111 if (buffer_new(bh)) { 2112 clean_bdev_bh_alias(bh); 2113 if (folio_test_uptodate(folio)) { 2114 clear_buffer_new(bh); 2115 set_buffer_uptodate(bh); 2116 mark_buffer_dirty(bh); 2117 continue; 2118 } 2119 if (block_end > to || block_start < from) 2120 folio_zero_segments(folio, 2121 to, block_end, 2122 block_start, from); 2123 continue; 2124 } 2125 } 2126 if (folio_test_uptodate(folio)) { 2127 if (!buffer_uptodate(bh)) 2128 set_buffer_uptodate(bh); 2129 continue; 2130 } 2131 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2132 !buffer_unwritten(bh) && 2133 (block_start < from || block_end > to)) { 2134 bh_read_nowait(bh, 0); 2135 *wait_bh++=bh; 2136 } 2137 } 2138 /* 2139 * If we issued read requests - let them complete. 2140 */ 2141 while(wait_bh > wait) { 2142 wait_on_buffer(*--wait_bh); 2143 if (!buffer_uptodate(*wait_bh)) 2144 err = -EIO; 2145 } 2146 if (unlikely(err)) 2147 folio_zero_new_buffers(folio, from, to); 2148 return err; 2149 } 2150 2151 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2152 get_block_t *get_block) 2153 { 2154 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2155 NULL); 2156 } 2157 EXPORT_SYMBOL(__block_write_begin); 2158 2159 static void __block_commit_write(struct folio *folio, size_t from, size_t to) 2160 { 2161 size_t block_start, block_end; 2162 bool partial = false; 2163 unsigned blocksize; 2164 struct buffer_head *bh, *head; 2165 2166 bh = head = folio_buffers(folio); 2167 blocksize = bh->b_size; 2168 2169 block_start = 0; 2170 do { 2171 block_end = block_start + blocksize; 2172 if (block_end <= from || block_start >= to) { 2173 if (!buffer_uptodate(bh)) 2174 partial = true; 2175 } else { 2176 set_buffer_uptodate(bh); 2177 mark_buffer_dirty(bh); 2178 } 2179 if (buffer_new(bh)) 2180 clear_buffer_new(bh); 2181 2182 block_start = block_end; 2183 bh = bh->b_this_page; 2184 } while (bh != head); 2185 2186 /* 2187 * If this is a partial write which happened to make all buffers 2188 * uptodate then we can optimize away a bogus read_folio() for 2189 * the next read(). Here we 'discover' whether the folio went 2190 * uptodate as a result of this (potentially partial) write. 2191 */ 2192 if (!partial) 2193 folio_mark_uptodate(folio); 2194 } 2195 2196 /* 2197 * block_write_begin takes care of the basic task of block allocation and 2198 * bringing partial write blocks uptodate first. 2199 * 2200 * The filesystem needs to handle block truncation upon failure. 2201 */ 2202 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2203 struct page **pagep, get_block_t *get_block) 2204 { 2205 pgoff_t index = pos >> PAGE_SHIFT; 2206 struct page *page; 2207 int status; 2208 2209 page = grab_cache_page_write_begin(mapping, index); 2210 if (!page) 2211 return -ENOMEM; 2212 2213 status = __block_write_begin(page, pos, len, get_block); 2214 if (unlikely(status)) { 2215 unlock_page(page); 2216 put_page(page); 2217 page = NULL; 2218 } 2219 2220 *pagep = page; 2221 return status; 2222 } 2223 EXPORT_SYMBOL(block_write_begin); 2224 2225 int block_write_end(struct file *file, struct address_space *mapping, 2226 loff_t pos, unsigned len, unsigned copied, 2227 struct page *page, void *fsdata) 2228 { 2229 struct folio *folio = page_folio(page); 2230 size_t start = pos - folio_pos(folio); 2231 2232 if (unlikely(copied < len)) { 2233 /* 2234 * The buffers that were written will now be uptodate, so 2235 * we don't have to worry about a read_folio reading them 2236 * and overwriting a partial write. However if we have 2237 * encountered a short write and only partially written 2238 * into a buffer, it will not be marked uptodate, so a 2239 * read_folio might come in and destroy our partial write. 2240 * 2241 * Do the simplest thing, and just treat any short write to a 2242 * non uptodate folio as a zero-length write, and force the 2243 * caller to redo the whole thing. 2244 */ 2245 if (!folio_test_uptodate(folio)) 2246 copied = 0; 2247 2248 folio_zero_new_buffers(folio, start+copied, start+len); 2249 } 2250 flush_dcache_folio(folio); 2251 2252 /* This could be a short (even 0-length) commit */ 2253 __block_commit_write(folio, start, start + copied); 2254 2255 return copied; 2256 } 2257 EXPORT_SYMBOL(block_write_end); 2258 2259 int generic_write_end(struct file *file, struct address_space *mapping, 2260 loff_t pos, unsigned len, unsigned copied, 2261 struct page *page, void *fsdata) 2262 { 2263 struct inode *inode = mapping->host; 2264 loff_t old_size = inode->i_size; 2265 bool i_size_changed = false; 2266 2267 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2268 2269 /* 2270 * No need to use i_size_read() here, the i_size cannot change under us 2271 * because we hold i_rwsem. 2272 * 2273 * But it's important to update i_size while still holding page lock: 2274 * page writeout could otherwise come in and zero beyond i_size. 2275 */ 2276 if (pos + copied > inode->i_size) { 2277 i_size_write(inode, pos + copied); 2278 i_size_changed = true; 2279 } 2280 2281 unlock_page(page); 2282 put_page(page); 2283 2284 if (old_size < pos) 2285 pagecache_isize_extended(inode, old_size, pos); 2286 /* 2287 * Don't mark the inode dirty under page lock. First, it unnecessarily 2288 * makes the holding time of page lock longer. Second, it forces lock 2289 * ordering of page lock and transaction start for journaling 2290 * filesystems. 2291 */ 2292 if (i_size_changed) 2293 mark_inode_dirty(inode); 2294 return copied; 2295 } 2296 EXPORT_SYMBOL(generic_write_end); 2297 2298 /* 2299 * block_is_partially_uptodate checks whether buffers within a folio are 2300 * uptodate or not. 2301 * 2302 * Returns true if all buffers which correspond to the specified part 2303 * of the folio are uptodate. 2304 */ 2305 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2306 { 2307 unsigned block_start, block_end, blocksize; 2308 unsigned to; 2309 struct buffer_head *bh, *head; 2310 bool ret = true; 2311 2312 head = folio_buffers(folio); 2313 if (!head) 2314 return false; 2315 blocksize = head->b_size; 2316 to = min_t(unsigned, folio_size(folio) - from, count); 2317 to = from + to; 2318 if (from < blocksize && to > folio_size(folio) - blocksize) 2319 return false; 2320 2321 bh = head; 2322 block_start = 0; 2323 do { 2324 block_end = block_start + blocksize; 2325 if (block_end > from && block_start < to) { 2326 if (!buffer_uptodate(bh)) { 2327 ret = false; 2328 break; 2329 } 2330 if (block_end >= to) 2331 break; 2332 } 2333 block_start = block_end; 2334 bh = bh->b_this_page; 2335 } while (bh != head); 2336 2337 return ret; 2338 } 2339 EXPORT_SYMBOL(block_is_partially_uptodate); 2340 2341 /* 2342 * Generic "read_folio" function for block devices that have the normal 2343 * get_block functionality. This is most of the block device filesystems. 2344 * Reads the folio asynchronously --- the unlock_buffer() and 2345 * set/clear_buffer_uptodate() functions propagate buffer state into the 2346 * folio once IO has completed. 2347 */ 2348 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2349 { 2350 struct inode *inode = folio->mapping->host; 2351 sector_t iblock, lblock; 2352 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2353 size_t blocksize; 2354 int nr, i; 2355 int fully_mapped = 1; 2356 bool page_error = false; 2357 loff_t limit = i_size_read(inode); 2358 2359 /* This is needed for ext4. */ 2360 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2361 limit = inode->i_sb->s_maxbytes; 2362 2363 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2364 2365 head = folio_create_buffers(folio, inode, 0); 2366 blocksize = head->b_size; 2367 2368 iblock = div_u64(folio_pos(folio), blocksize); 2369 lblock = div_u64(limit + blocksize - 1, blocksize); 2370 bh = head; 2371 nr = 0; 2372 i = 0; 2373 2374 do { 2375 if (buffer_uptodate(bh)) 2376 continue; 2377 2378 if (!buffer_mapped(bh)) { 2379 int err = 0; 2380 2381 fully_mapped = 0; 2382 if (iblock < lblock) { 2383 WARN_ON(bh->b_size != blocksize); 2384 err = get_block(inode, iblock, bh, 0); 2385 if (err) { 2386 folio_set_error(folio); 2387 page_error = true; 2388 } 2389 } 2390 if (!buffer_mapped(bh)) { 2391 folio_zero_range(folio, i * blocksize, 2392 blocksize); 2393 if (!err) 2394 set_buffer_uptodate(bh); 2395 continue; 2396 } 2397 /* 2398 * get_block() might have updated the buffer 2399 * synchronously 2400 */ 2401 if (buffer_uptodate(bh)) 2402 continue; 2403 } 2404 arr[nr++] = bh; 2405 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2406 2407 if (fully_mapped) 2408 folio_set_mappedtodisk(folio); 2409 2410 if (!nr) { 2411 /* 2412 * All buffers are uptodate or get_block() returned an 2413 * error when trying to map them - we can finish the read. 2414 */ 2415 folio_end_read(folio, !page_error); 2416 return 0; 2417 } 2418 2419 /* Stage two: lock the buffers */ 2420 for (i = 0; i < nr; i++) { 2421 bh = arr[i]; 2422 lock_buffer(bh); 2423 mark_buffer_async_read(bh); 2424 } 2425 2426 /* 2427 * Stage 3: start the IO. Check for uptodateness 2428 * inside the buffer lock in case another process reading 2429 * the underlying blockdev brought it uptodate (the sct fix). 2430 */ 2431 for (i = 0; i < nr; i++) { 2432 bh = arr[i]; 2433 if (buffer_uptodate(bh)) 2434 end_buffer_async_read(bh, 1); 2435 else 2436 submit_bh(REQ_OP_READ, bh); 2437 } 2438 return 0; 2439 } 2440 EXPORT_SYMBOL(block_read_full_folio); 2441 2442 /* utility function for filesystems that need to do work on expanding 2443 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2444 * deal with the hole. 2445 */ 2446 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2447 { 2448 struct address_space *mapping = inode->i_mapping; 2449 const struct address_space_operations *aops = mapping->a_ops; 2450 struct page *page; 2451 void *fsdata = NULL; 2452 int err; 2453 2454 err = inode_newsize_ok(inode, size); 2455 if (err) 2456 goto out; 2457 2458 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata); 2459 if (err) 2460 goto out; 2461 2462 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata); 2463 BUG_ON(err > 0); 2464 2465 out: 2466 return err; 2467 } 2468 EXPORT_SYMBOL(generic_cont_expand_simple); 2469 2470 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2471 loff_t pos, loff_t *bytes) 2472 { 2473 struct inode *inode = mapping->host; 2474 const struct address_space_operations *aops = mapping->a_ops; 2475 unsigned int blocksize = i_blocksize(inode); 2476 struct page *page; 2477 void *fsdata = NULL; 2478 pgoff_t index, curidx; 2479 loff_t curpos; 2480 unsigned zerofrom, offset, len; 2481 int err = 0; 2482 2483 index = pos >> PAGE_SHIFT; 2484 offset = pos & ~PAGE_MASK; 2485 2486 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2487 zerofrom = curpos & ~PAGE_MASK; 2488 if (zerofrom & (blocksize-1)) { 2489 *bytes |= (blocksize-1); 2490 (*bytes)++; 2491 } 2492 len = PAGE_SIZE - zerofrom; 2493 2494 err = aops->write_begin(file, mapping, curpos, len, 2495 &page, &fsdata); 2496 if (err) 2497 goto out; 2498 zero_user(page, zerofrom, len); 2499 err = aops->write_end(file, mapping, curpos, len, len, 2500 page, fsdata); 2501 if (err < 0) 2502 goto out; 2503 BUG_ON(err != len); 2504 err = 0; 2505 2506 balance_dirty_pages_ratelimited(mapping); 2507 2508 if (fatal_signal_pending(current)) { 2509 err = -EINTR; 2510 goto out; 2511 } 2512 } 2513 2514 /* page covers the boundary, find the boundary offset */ 2515 if (index == curidx) { 2516 zerofrom = curpos & ~PAGE_MASK; 2517 /* if we will expand the thing last block will be filled */ 2518 if (offset <= zerofrom) { 2519 goto out; 2520 } 2521 if (zerofrom & (blocksize-1)) { 2522 *bytes |= (blocksize-1); 2523 (*bytes)++; 2524 } 2525 len = offset - zerofrom; 2526 2527 err = aops->write_begin(file, mapping, curpos, len, 2528 &page, &fsdata); 2529 if (err) 2530 goto out; 2531 zero_user(page, zerofrom, len); 2532 err = aops->write_end(file, mapping, curpos, len, len, 2533 page, fsdata); 2534 if (err < 0) 2535 goto out; 2536 BUG_ON(err != len); 2537 err = 0; 2538 } 2539 out: 2540 return err; 2541 } 2542 2543 /* 2544 * For moronic filesystems that do not allow holes in file. 2545 * We may have to extend the file. 2546 */ 2547 int cont_write_begin(struct file *file, struct address_space *mapping, 2548 loff_t pos, unsigned len, 2549 struct page **pagep, void **fsdata, 2550 get_block_t *get_block, loff_t *bytes) 2551 { 2552 struct inode *inode = mapping->host; 2553 unsigned int blocksize = i_blocksize(inode); 2554 unsigned int zerofrom; 2555 int err; 2556 2557 err = cont_expand_zero(file, mapping, pos, bytes); 2558 if (err) 2559 return err; 2560 2561 zerofrom = *bytes & ~PAGE_MASK; 2562 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2563 *bytes |= (blocksize-1); 2564 (*bytes)++; 2565 } 2566 2567 return block_write_begin(mapping, pos, len, pagep, get_block); 2568 } 2569 EXPORT_SYMBOL(cont_write_begin); 2570 2571 void block_commit_write(struct page *page, unsigned from, unsigned to) 2572 { 2573 struct folio *folio = page_folio(page); 2574 __block_commit_write(folio, from, to); 2575 } 2576 EXPORT_SYMBOL(block_commit_write); 2577 2578 /* 2579 * block_page_mkwrite() is not allowed to change the file size as it gets 2580 * called from a page fault handler when a page is first dirtied. Hence we must 2581 * be careful to check for EOF conditions here. We set the page up correctly 2582 * for a written page which means we get ENOSPC checking when writing into 2583 * holes and correct delalloc and unwritten extent mapping on filesystems that 2584 * support these features. 2585 * 2586 * We are not allowed to take the i_mutex here so we have to play games to 2587 * protect against truncate races as the page could now be beyond EOF. Because 2588 * truncate writes the inode size before removing pages, once we have the 2589 * page lock we can determine safely if the page is beyond EOF. If it is not 2590 * beyond EOF, then the page is guaranteed safe against truncation until we 2591 * unlock the page. 2592 * 2593 * Direct callers of this function should protect against filesystem freezing 2594 * using sb_start_pagefault() - sb_end_pagefault() functions. 2595 */ 2596 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2597 get_block_t get_block) 2598 { 2599 struct folio *folio = page_folio(vmf->page); 2600 struct inode *inode = file_inode(vma->vm_file); 2601 unsigned long end; 2602 loff_t size; 2603 int ret; 2604 2605 folio_lock(folio); 2606 size = i_size_read(inode); 2607 if ((folio->mapping != inode->i_mapping) || 2608 (folio_pos(folio) >= size)) { 2609 /* We overload EFAULT to mean page got truncated */ 2610 ret = -EFAULT; 2611 goto out_unlock; 2612 } 2613 2614 end = folio_size(folio); 2615 /* folio is wholly or partially inside EOF */ 2616 if (folio_pos(folio) + end > size) 2617 end = size - folio_pos(folio); 2618 2619 ret = __block_write_begin_int(folio, 0, end, get_block, NULL); 2620 if (unlikely(ret)) 2621 goto out_unlock; 2622 2623 __block_commit_write(folio, 0, end); 2624 2625 folio_mark_dirty(folio); 2626 folio_wait_stable(folio); 2627 return 0; 2628 out_unlock: 2629 folio_unlock(folio); 2630 return ret; 2631 } 2632 EXPORT_SYMBOL(block_page_mkwrite); 2633 2634 int block_truncate_page(struct address_space *mapping, 2635 loff_t from, get_block_t *get_block) 2636 { 2637 pgoff_t index = from >> PAGE_SHIFT; 2638 unsigned blocksize; 2639 sector_t iblock; 2640 size_t offset, length, pos; 2641 struct inode *inode = mapping->host; 2642 struct folio *folio; 2643 struct buffer_head *bh; 2644 int err = 0; 2645 2646 blocksize = i_blocksize(inode); 2647 length = from & (blocksize - 1); 2648 2649 /* Block boundary? Nothing to do */ 2650 if (!length) 2651 return 0; 2652 2653 length = blocksize - length; 2654 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits; 2655 2656 folio = filemap_grab_folio(mapping, index); 2657 if (IS_ERR(folio)) 2658 return PTR_ERR(folio); 2659 2660 bh = folio_buffers(folio); 2661 if (!bh) 2662 bh = create_empty_buffers(folio, blocksize, 0); 2663 2664 /* Find the buffer that contains "offset" */ 2665 offset = offset_in_folio(folio, from); 2666 pos = blocksize; 2667 while (offset >= pos) { 2668 bh = bh->b_this_page; 2669 iblock++; 2670 pos += blocksize; 2671 } 2672 2673 if (!buffer_mapped(bh)) { 2674 WARN_ON(bh->b_size != blocksize); 2675 err = get_block(inode, iblock, bh, 0); 2676 if (err) 2677 goto unlock; 2678 /* unmapped? It's a hole - nothing to do */ 2679 if (!buffer_mapped(bh)) 2680 goto unlock; 2681 } 2682 2683 /* Ok, it's mapped. Make sure it's up-to-date */ 2684 if (folio_test_uptodate(folio)) 2685 set_buffer_uptodate(bh); 2686 2687 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2688 err = bh_read(bh, 0); 2689 /* Uhhuh. Read error. Complain and punt. */ 2690 if (err < 0) 2691 goto unlock; 2692 } 2693 2694 folio_zero_range(folio, offset, length); 2695 mark_buffer_dirty(bh); 2696 2697 unlock: 2698 folio_unlock(folio); 2699 folio_put(folio); 2700 2701 return err; 2702 } 2703 EXPORT_SYMBOL(block_truncate_page); 2704 2705 /* 2706 * The generic ->writepage function for buffer-backed address_spaces 2707 */ 2708 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc, 2709 void *get_block) 2710 { 2711 struct inode * const inode = folio->mapping->host; 2712 loff_t i_size = i_size_read(inode); 2713 2714 /* Is the folio fully inside i_size? */ 2715 if (folio_pos(folio) + folio_size(folio) <= i_size) 2716 return __block_write_full_folio(inode, folio, get_block, wbc); 2717 2718 /* Is the folio fully outside i_size? (truncate in progress) */ 2719 if (folio_pos(folio) >= i_size) { 2720 folio_unlock(folio); 2721 return 0; /* don't care */ 2722 } 2723 2724 /* 2725 * The folio straddles i_size. It must be zeroed out on each and every 2726 * writepage invocation because it may be mmapped. "A file is mapped 2727 * in multiples of the page size. For a file that is not a multiple of 2728 * the page size, the remaining memory is zeroed when mapped, and 2729 * writes to that region are not written out to the file." 2730 */ 2731 folio_zero_segment(folio, offset_in_folio(folio, i_size), 2732 folio_size(folio)); 2733 return __block_write_full_folio(inode, folio, get_block, wbc); 2734 } 2735 2736 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2737 get_block_t *get_block) 2738 { 2739 struct inode *inode = mapping->host; 2740 struct buffer_head tmp = { 2741 .b_size = i_blocksize(inode), 2742 }; 2743 2744 get_block(inode, block, &tmp, 0); 2745 return tmp.b_blocknr; 2746 } 2747 EXPORT_SYMBOL(generic_block_bmap); 2748 2749 static void end_bio_bh_io_sync(struct bio *bio) 2750 { 2751 struct buffer_head *bh = bio->bi_private; 2752 2753 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2754 set_bit(BH_Quiet, &bh->b_state); 2755 2756 bh->b_end_io(bh, !bio->bi_status); 2757 bio_put(bio); 2758 } 2759 2760 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2761 enum rw_hint write_hint, 2762 struct writeback_control *wbc) 2763 { 2764 const enum req_op op = opf & REQ_OP_MASK; 2765 struct bio *bio; 2766 2767 BUG_ON(!buffer_locked(bh)); 2768 BUG_ON(!buffer_mapped(bh)); 2769 BUG_ON(!bh->b_end_io); 2770 BUG_ON(buffer_delay(bh)); 2771 BUG_ON(buffer_unwritten(bh)); 2772 2773 /* 2774 * Only clear out a write error when rewriting 2775 */ 2776 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2777 clear_buffer_write_io_error(bh); 2778 2779 if (buffer_meta(bh)) 2780 opf |= REQ_META; 2781 if (buffer_prio(bh)) 2782 opf |= REQ_PRIO; 2783 2784 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2785 2786 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2787 2788 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2789 bio->bi_write_hint = write_hint; 2790 2791 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2792 2793 bio->bi_end_io = end_bio_bh_io_sync; 2794 bio->bi_private = bh; 2795 2796 /* Take care of bh's that straddle the end of the device */ 2797 guard_bio_eod(bio); 2798 2799 if (wbc) { 2800 wbc_init_bio(wbc, bio); 2801 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2802 } 2803 2804 submit_bio(bio); 2805 } 2806 2807 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2808 { 2809 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL); 2810 } 2811 EXPORT_SYMBOL(submit_bh); 2812 2813 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2814 { 2815 lock_buffer(bh); 2816 if (!test_clear_buffer_dirty(bh)) { 2817 unlock_buffer(bh); 2818 return; 2819 } 2820 bh->b_end_io = end_buffer_write_sync; 2821 get_bh(bh); 2822 submit_bh(REQ_OP_WRITE | op_flags, bh); 2823 } 2824 EXPORT_SYMBOL(write_dirty_buffer); 2825 2826 /* 2827 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2828 * and then start new I/O and then wait upon it. The caller must have a ref on 2829 * the buffer_head. 2830 */ 2831 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2832 { 2833 WARN_ON(atomic_read(&bh->b_count) < 1); 2834 lock_buffer(bh); 2835 if (test_clear_buffer_dirty(bh)) { 2836 /* 2837 * The bh should be mapped, but it might not be if the 2838 * device was hot-removed. Not much we can do but fail the I/O. 2839 */ 2840 if (!buffer_mapped(bh)) { 2841 unlock_buffer(bh); 2842 return -EIO; 2843 } 2844 2845 get_bh(bh); 2846 bh->b_end_io = end_buffer_write_sync; 2847 submit_bh(REQ_OP_WRITE | op_flags, bh); 2848 wait_on_buffer(bh); 2849 if (!buffer_uptodate(bh)) 2850 return -EIO; 2851 } else { 2852 unlock_buffer(bh); 2853 } 2854 return 0; 2855 } 2856 EXPORT_SYMBOL(__sync_dirty_buffer); 2857 2858 int sync_dirty_buffer(struct buffer_head *bh) 2859 { 2860 return __sync_dirty_buffer(bh, REQ_SYNC); 2861 } 2862 EXPORT_SYMBOL(sync_dirty_buffer); 2863 2864 /* 2865 * try_to_free_buffers() checks if all the buffers on this particular folio 2866 * are unused, and releases them if so. 2867 * 2868 * Exclusion against try_to_free_buffers may be obtained by either 2869 * locking the folio or by holding its mapping's i_private_lock. 2870 * 2871 * If the folio is dirty but all the buffers are clean then we need to 2872 * be sure to mark the folio clean as well. This is because the folio 2873 * may be against a block device, and a later reattachment of buffers 2874 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2875 * filesystem data on the same device. 2876 * 2877 * The same applies to regular filesystem folios: if all the buffers are 2878 * clean then we set the folio clean and proceed. To do that, we require 2879 * total exclusion from block_dirty_folio(). That is obtained with 2880 * i_private_lock. 2881 * 2882 * try_to_free_buffers() is non-blocking. 2883 */ 2884 static inline int buffer_busy(struct buffer_head *bh) 2885 { 2886 return atomic_read(&bh->b_count) | 2887 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2888 } 2889 2890 static bool 2891 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2892 { 2893 struct buffer_head *head = folio_buffers(folio); 2894 struct buffer_head *bh; 2895 2896 bh = head; 2897 do { 2898 if (buffer_busy(bh)) 2899 goto failed; 2900 bh = bh->b_this_page; 2901 } while (bh != head); 2902 2903 do { 2904 struct buffer_head *next = bh->b_this_page; 2905 2906 if (bh->b_assoc_map) 2907 __remove_assoc_queue(bh); 2908 bh = next; 2909 } while (bh != head); 2910 *buffers_to_free = head; 2911 folio_detach_private(folio); 2912 return true; 2913 failed: 2914 return false; 2915 } 2916 2917 bool try_to_free_buffers(struct folio *folio) 2918 { 2919 struct address_space * const mapping = folio->mapping; 2920 struct buffer_head *buffers_to_free = NULL; 2921 bool ret = 0; 2922 2923 BUG_ON(!folio_test_locked(folio)); 2924 if (folio_test_writeback(folio)) 2925 return false; 2926 2927 if (mapping == NULL) { /* can this still happen? */ 2928 ret = drop_buffers(folio, &buffers_to_free); 2929 goto out; 2930 } 2931 2932 spin_lock(&mapping->i_private_lock); 2933 ret = drop_buffers(folio, &buffers_to_free); 2934 2935 /* 2936 * If the filesystem writes its buffers by hand (eg ext3) 2937 * then we can have clean buffers against a dirty folio. We 2938 * clean the folio here; otherwise the VM will never notice 2939 * that the filesystem did any IO at all. 2940 * 2941 * Also, during truncate, discard_buffer will have marked all 2942 * the folio's buffers clean. We discover that here and clean 2943 * the folio also. 2944 * 2945 * i_private_lock must be held over this entire operation in order 2946 * to synchronise against block_dirty_folio and prevent the 2947 * dirty bit from being lost. 2948 */ 2949 if (ret) 2950 folio_cancel_dirty(folio); 2951 spin_unlock(&mapping->i_private_lock); 2952 out: 2953 if (buffers_to_free) { 2954 struct buffer_head *bh = buffers_to_free; 2955 2956 do { 2957 struct buffer_head *next = bh->b_this_page; 2958 free_buffer_head(bh); 2959 bh = next; 2960 } while (bh != buffers_to_free); 2961 } 2962 return ret; 2963 } 2964 EXPORT_SYMBOL(try_to_free_buffers); 2965 2966 /* 2967 * Buffer-head allocation 2968 */ 2969 static struct kmem_cache *bh_cachep __ro_after_init; 2970 2971 /* 2972 * Once the number of bh's in the machine exceeds this level, we start 2973 * stripping them in writeback. 2974 */ 2975 static unsigned long max_buffer_heads __ro_after_init; 2976 2977 int buffer_heads_over_limit; 2978 2979 struct bh_accounting { 2980 int nr; /* Number of live bh's */ 2981 int ratelimit; /* Limit cacheline bouncing */ 2982 }; 2983 2984 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 2985 2986 static void recalc_bh_state(void) 2987 { 2988 int i; 2989 int tot = 0; 2990 2991 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 2992 return; 2993 __this_cpu_write(bh_accounting.ratelimit, 0); 2994 for_each_online_cpu(i) 2995 tot += per_cpu(bh_accounting, i).nr; 2996 buffer_heads_over_limit = (tot > max_buffer_heads); 2997 } 2998 2999 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3000 { 3001 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3002 if (ret) { 3003 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3004 spin_lock_init(&ret->b_uptodate_lock); 3005 preempt_disable(); 3006 __this_cpu_inc(bh_accounting.nr); 3007 recalc_bh_state(); 3008 preempt_enable(); 3009 } 3010 return ret; 3011 } 3012 EXPORT_SYMBOL(alloc_buffer_head); 3013 3014 void free_buffer_head(struct buffer_head *bh) 3015 { 3016 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3017 kmem_cache_free(bh_cachep, bh); 3018 preempt_disable(); 3019 __this_cpu_dec(bh_accounting.nr); 3020 recalc_bh_state(); 3021 preempt_enable(); 3022 } 3023 EXPORT_SYMBOL(free_buffer_head); 3024 3025 static int buffer_exit_cpu_dead(unsigned int cpu) 3026 { 3027 int i; 3028 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3029 3030 for (i = 0; i < BH_LRU_SIZE; i++) { 3031 brelse(b->bhs[i]); 3032 b->bhs[i] = NULL; 3033 } 3034 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3035 per_cpu(bh_accounting, cpu).nr = 0; 3036 return 0; 3037 } 3038 3039 /** 3040 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3041 * @bh: struct buffer_head 3042 * 3043 * Return true if the buffer is up-to-date and false, 3044 * with the buffer locked, if not. 3045 */ 3046 int bh_uptodate_or_lock(struct buffer_head *bh) 3047 { 3048 if (!buffer_uptodate(bh)) { 3049 lock_buffer(bh); 3050 if (!buffer_uptodate(bh)) 3051 return 0; 3052 unlock_buffer(bh); 3053 } 3054 return 1; 3055 } 3056 EXPORT_SYMBOL(bh_uptodate_or_lock); 3057 3058 /** 3059 * __bh_read - Submit read for a locked buffer 3060 * @bh: struct buffer_head 3061 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3062 * @wait: wait until reading finish 3063 * 3064 * Returns zero on success or don't wait, and -EIO on error. 3065 */ 3066 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3067 { 3068 int ret = 0; 3069 3070 BUG_ON(!buffer_locked(bh)); 3071 3072 get_bh(bh); 3073 bh->b_end_io = end_buffer_read_sync; 3074 submit_bh(REQ_OP_READ | op_flags, bh); 3075 if (wait) { 3076 wait_on_buffer(bh); 3077 if (!buffer_uptodate(bh)) 3078 ret = -EIO; 3079 } 3080 return ret; 3081 } 3082 EXPORT_SYMBOL(__bh_read); 3083 3084 /** 3085 * __bh_read_batch - Submit read for a batch of unlocked buffers 3086 * @nr: entry number of the buffer batch 3087 * @bhs: a batch of struct buffer_head 3088 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3089 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3090 * buffer that cannot lock. 3091 * 3092 * Returns zero on success or don't wait, and -EIO on error. 3093 */ 3094 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3095 blk_opf_t op_flags, bool force_lock) 3096 { 3097 int i; 3098 3099 for (i = 0; i < nr; i++) { 3100 struct buffer_head *bh = bhs[i]; 3101 3102 if (buffer_uptodate(bh)) 3103 continue; 3104 3105 if (force_lock) 3106 lock_buffer(bh); 3107 else 3108 if (!trylock_buffer(bh)) 3109 continue; 3110 3111 if (buffer_uptodate(bh)) { 3112 unlock_buffer(bh); 3113 continue; 3114 } 3115 3116 bh->b_end_io = end_buffer_read_sync; 3117 get_bh(bh); 3118 submit_bh(REQ_OP_READ | op_flags, bh); 3119 } 3120 } 3121 EXPORT_SYMBOL(__bh_read_batch); 3122 3123 void __init buffer_init(void) 3124 { 3125 unsigned long nrpages; 3126 int ret; 3127 3128 bh_cachep = KMEM_CACHE(buffer_head, 3129 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC); 3130 /* 3131 * Limit the bh occupancy to 10% of ZONE_NORMAL 3132 */ 3133 nrpages = (nr_free_buffer_pages() * 10) / 100; 3134 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3135 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3136 NULL, buffer_exit_cpu_dead); 3137 WARN_ON(ret < 0); 3138 } 3139