xref: /linux/fs/buffer.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53 
54 #include "internal.h"
55 
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 			  enum rw_hint hint, struct writeback_control *wbc);
59 
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61 
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64 	trace_block_touch_buffer(bh);
65 	folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68 
69 void __lock_buffer(struct buffer_head *bh)
70 {
71 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74 
75 void unlock_buffer(struct buffer_head *bh)
76 {
77 	clear_bit_unlock(BH_Lock, &bh->b_state);
78 	smp_mb__after_atomic();
79 	wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82 
83 /*
84  * Returns if the folio has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the folio_test_dirty information is stale. If
86  * any of the buffers are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct folio *folio,
89 				     bool *dirty, bool *writeback)
90 {
91 	struct buffer_head *head, *bh;
92 	*dirty = false;
93 	*writeback = false;
94 
95 	BUG_ON(!folio_test_locked(folio));
96 
97 	head = folio_buffers(folio);
98 	if (!head)
99 		return;
100 
101 	if (folio_test_writeback(folio))
102 		*writeback = true;
103 
104 	bh = head;
105 	do {
106 		if (buffer_locked(bh))
107 			*writeback = true;
108 
109 		if (buffer_dirty(bh))
110 			*dirty = true;
111 
112 		bh = bh->b_this_page;
113 	} while (bh != head);
114 }
115 
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126 
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129 	if (!test_bit(BH_Quiet, &bh->b_state))
130 		printk_ratelimited(KERN_ERR
131 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
132 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134 
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		/* This happens, due to failed read-ahead attempts. */
149 		clear_buffer_uptodate(bh);
150 	}
151 	unlock_buffer(bh);
152 }
153 
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160 	__end_buffer_read_notouch(bh, uptodate);
161 	put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164 
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167 	if (uptodate) {
168 		set_buffer_uptodate(bh);
169 	} else {
170 		buffer_io_error(bh, ", lost sync page write");
171 		mark_buffer_write_io_error(bh);
172 		clear_buffer_uptodate(bh);
173 	}
174 	unlock_buffer(bh);
175 	put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178 
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * i_private_lock.
184  *
185  * Hack idea: for the blockdev mapping, i_private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take i_private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192 	struct address_space *bd_mapping = bdev->bd_mapping;
193 	const int blkbits = bd_mapping->host->i_blkbits;
194 	struct buffer_head *ret = NULL;
195 	pgoff_t index;
196 	struct buffer_head *bh;
197 	struct buffer_head *head;
198 	struct folio *folio;
199 	int all_mapped = 1;
200 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201 
202 	index = ((loff_t)block << blkbits) / PAGE_SIZE;
203 	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204 	if (IS_ERR(folio))
205 		goto out;
206 
207 	spin_lock(&bd_mapping->i_private_lock);
208 	head = folio_buffers(folio);
209 	if (!head)
210 		goto out_unlock;
211 	bh = head;
212 	do {
213 		if (!buffer_mapped(bh))
214 			all_mapped = 0;
215 		else if (bh->b_blocknr == block) {
216 			ret = bh;
217 			get_bh(bh);
218 			goto out_unlock;
219 		}
220 		bh = bh->b_this_page;
221 	} while (bh != head);
222 
223 	/* we might be here because some of the buffers on this page are
224 	 * not mapped.  This is due to various races between
225 	 * file io on the block device and getblk.  It gets dealt with
226 	 * elsewhere, don't buffer_error if we had some unmapped buffers
227 	 */
228 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229 	if (all_mapped && __ratelimit(&last_warned)) {
230 		printk("__find_get_block_slow() failed. block=%llu, "
231 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 		       "device %pg blocksize: %d\n",
233 		       (unsigned long long)block,
234 		       (unsigned long long)bh->b_blocknr,
235 		       bh->b_state, bh->b_size, bdev,
236 		       1 << blkbits);
237 	}
238 out_unlock:
239 	spin_unlock(&bd_mapping->i_private_lock);
240 	folio_put(folio);
241 out:
242 	return ret;
243 }
244 
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247 	unsigned long flags;
248 	struct buffer_head *first;
249 	struct buffer_head *tmp;
250 	struct folio *folio;
251 	int folio_uptodate = 1;
252 
253 	BUG_ON(!buffer_async_read(bh));
254 
255 	folio = bh->b_folio;
256 	if (uptodate) {
257 		set_buffer_uptodate(bh);
258 	} else {
259 		clear_buffer_uptodate(bh);
260 		buffer_io_error(bh, ", async page read");
261 	}
262 
263 	/*
264 	 * Be _very_ careful from here on. Bad things can happen if
265 	 * two buffer heads end IO at almost the same time and both
266 	 * decide that the page is now completely done.
267 	 */
268 	first = folio_buffers(folio);
269 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 	clear_buffer_async_read(bh);
271 	unlock_buffer(bh);
272 	tmp = bh;
273 	do {
274 		if (!buffer_uptodate(tmp))
275 			folio_uptodate = 0;
276 		if (buffer_async_read(tmp)) {
277 			BUG_ON(!buffer_locked(tmp));
278 			goto still_busy;
279 		}
280 		tmp = tmp->b_this_page;
281 	} while (tmp != bh);
282 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284 	folio_end_read(folio, folio_uptodate);
285 	return;
286 
287 still_busy:
288 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
289 	return;
290 }
291 
292 struct postprocess_bh_ctx {
293 	struct work_struct work;
294 	struct buffer_head *bh;
295 };
296 
297 static void verify_bh(struct work_struct *work)
298 {
299 	struct postprocess_bh_ctx *ctx =
300 		container_of(work, struct postprocess_bh_ctx, work);
301 	struct buffer_head *bh = ctx->bh;
302 	bool valid;
303 
304 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
305 	end_buffer_async_read(bh, valid);
306 	kfree(ctx);
307 }
308 
309 static bool need_fsverity(struct buffer_head *bh)
310 {
311 	struct folio *folio = bh->b_folio;
312 	struct inode *inode = folio->mapping->host;
313 
314 	return fsverity_active(inode) &&
315 		/* needed by ext4 */
316 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
317 }
318 
319 static void decrypt_bh(struct work_struct *work)
320 {
321 	struct postprocess_bh_ctx *ctx =
322 		container_of(work, struct postprocess_bh_ctx, work);
323 	struct buffer_head *bh = ctx->bh;
324 	int err;
325 
326 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
327 					       bh_offset(bh));
328 	if (err == 0 && need_fsverity(bh)) {
329 		/*
330 		 * We use different work queues for decryption and for verity
331 		 * because verity may require reading metadata pages that need
332 		 * decryption, and we shouldn't recurse to the same workqueue.
333 		 */
334 		INIT_WORK(&ctx->work, verify_bh);
335 		fsverity_enqueue_verify_work(&ctx->work);
336 		return;
337 	}
338 	end_buffer_async_read(bh, err == 0);
339 	kfree(ctx);
340 }
341 
342 /*
343  * I/O completion handler for block_read_full_folio() - pages
344  * which come unlocked at the end of I/O.
345  */
346 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
347 {
348 	struct inode *inode = bh->b_folio->mapping->host;
349 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
350 	bool verify = need_fsverity(bh);
351 
352 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
353 	if (uptodate && (decrypt || verify)) {
354 		struct postprocess_bh_ctx *ctx =
355 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
356 
357 		if (ctx) {
358 			ctx->bh = bh;
359 			if (decrypt) {
360 				INIT_WORK(&ctx->work, decrypt_bh);
361 				fscrypt_enqueue_decrypt_work(&ctx->work);
362 			} else {
363 				INIT_WORK(&ctx->work, verify_bh);
364 				fsverity_enqueue_verify_work(&ctx->work);
365 			}
366 			return;
367 		}
368 		uptodate = 0;
369 	}
370 	end_buffer_async_read(bh, uptodate);
371 }
372 
373 /*
374  * Completion handler for block_write_full_folio() - folios which are unlocked
375  * during I/O, and which have the writeback flag cleared upon I/O completion.
376  */
377 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
378 {
379 	unsigned long flags;
380 	struct buffer_head *first;
381 	struct buffer_head *tmp;
382 	struct folio *folio;
383 
384 	BUG_ON(!buffer_async_write(bh));
385 
386 	folio = bh->b_folio;
387 	if (uptodate) {
388 		set_buffer_uptodate(bh);
389 	} else {
390 		buffer_io_error(bh, ", lost async page write");
391 		mark_buffer_write_io_error(bh);
392 		clear_buffer_uptodate(bh);
393 	}
394 
395 	first = folio_buffers(folio);
396 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
397 
398 	clear_buffer_async_write(bh);
399 	unlock_buffer(bh);
400 	tmp = bh->b_this_page;
401 	while (tmp != bh) {
402 		if (buffer_async_write(tmp)) {
403 			BUG_ON(!buffer_locked(tmp));
404 			goto still_busy;
405 		}
406 		tmp = tmp->b_this_page;
407 	}
408 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
409 	folio_end_writeback(folio);
410 	return;
411 
412 still_busy:
413 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
414 	return;
415 }
416 
417 /*
418  * If a page's buffers are under async readin (end_buffer_async_read
419  * completion) then there is a possibility that another thread of
420  * control could lock one of the buffers after it has completed
421  * but while some of the other buffers have not completed.  This
422  * locked buffer would confuse end_buffer_async_read() into not unlocking
423  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
424  * that this buffer is not under async I/O.
425  *
426  * The page comes unlocked when it has no locked buffer_async buffers
427  * left.
428  *
429  * PageLocked prevents anyone starting new async I/O reads any of
430  * the buffers.
431  *
432  * PageWriteback is used to prevent simultaneous writeout of the same
433  * page.
434  *
435  * PageLocked prevents anyone from starting writeback of a page which is
436  * under read I/O (PageWriteback is only ever set against a locked page).
437  */
438 static void mark_buffer_async_read(struct buffer_head *bh)
439 {
440 	bh->b_end_io = end_buffer_async_read_io;
441 	set_buffer_async_read(bh);
442 }
443 
444 static void mark_buffer_async_write_endio(struct buffer_head *bh,
445 					  bh_end_io_t *handler)
446 {
447 	bh->b_end_io = handler;
448 	set_buffer_async_write(bh);
449 }
450 
451 void mark_buffer_async_write(struct buffer_head *bh)
452 {
453 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
454 }
455 EXPORT_SYMBOL(mark_buffer_async_write);
456 
457 
458 /*
459  * fs/buffer.c contains helper functions for buffer-backed address space's
460  * fsync functions.  A common requirement for buffer-based filesystems is
461  * that certain data from the backing blockdev needs to be written out for
462  * a successful fsync().  For example, ext2 indirect blocks need to be
463  * written back and waited upon before fsync() returns.
464  *
465  * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
466  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
467  * management of a list of dependent buffers at ->i_mapping->i_private_list.
468  *
469  * Locking is a little subtle: try_to_free_buffers() will remove buffers
470  * from their controlling inode's queue when they are being freed.  But
471  * try_to_free_buffers() will be operating against the *blockdev* mapping
472  * at the time, not against the S_ISREG file which depends on those buffers.
473  * So the locking for i_private_list is via the i_private_lock in the address_space
474  * which backs the buffers.  Which is different from the address_space
475  * against which the buffers are listed.  So for a particular address_space,
476  * mapping->i_private_lock does *not* protect mapping->i_private_list!  In fact,
477  * mapping->i_private_list will always be protected by the backing blockdev's
478  * ->i_private_lock.
479  *
480  * Which introduces a requirement: all buffers on an address_space's
481  * ->i_private_list must be from the same address_space: the blockdev's.
482  *
483  * address_spaces which do not place buffers at ->i_private_list via these
484  * utility functions are free to use i_private_lock and i_private_list for
485  * whatever they want.  The only requirement is that list_empty(i_private_list)
486  * be true at clear_inode() time.
487  *
488  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
489  * filesystems should do that.  invalidate_inode_buffers() should just go
490  * BUG_ON(!list_empty).
491  *
492  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
493  * take an address_space, not an inode.  And it should be called
494  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
495  * queued up.
496  *
497  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
498  * list if it is already on a list.  Because if the buffer is on a list,
499  * it *must* already be on the right one.  If not, the filesystem is being
500  * silly.  This will save a ton of locking.  But first we have to ensure
501  * that buffers are taken *off* the old inode's list when they are freed
502  * (presumably in truncate).  That requires careful auditing of all
503  * filesystems (do it inside bforget()).  It could also be done by bringing
504  * b_inode back.
505  */
506 
507 /*
508  * The buffer's backing address_space's i_private_lock must be held
509  */
510 static void __remove_assoc_queue(struct buffer_head *bh)
511 {
512 	list_del_init(&bh->b_assoc_buffers);
513 	WARN_ON(!bh->b_assoc_map);
514 	bh->b_assoc_map = NULL;
515 }
516 
517 int inode_has_buffers(struct inode *inode)
518 {
519 	return !list_empty(&inode->i_data.i_private_list);
520 }
521 
522 /*
523  * osync is designed to support O_SYNC io.  It waits synchronously for
524  * all already-submitted IO to complete, but does not queue any new
525  * writes to the disk.
526  *
527  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
528  * as you dirty the buffers, and then use osync_inode_buffers to wait for
529  * completion.  Any other dirty buffers which are not yet queued for
530  * write will not be flushed to disk by the osync.
531  */
532 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
533 {
534 	struct buffer_head *bh;
535 	struct list_head *p;
536 	int err = 0;
537 
538 	spin_lock(lock);
539 repeat:
540 	list_for_each_prev(p, list) {
541 		bh = BH_ENTRY(p);
542 		if (buffer_locked(bh)) {
543 			get_bh(bh);
544 			spin_unlock(lock);
545 			wait_on_buffer(bh);
546 			if (!buffer_uptodate(bh))
547 				err = -EIO;
548 			brelse(bh);
549 			spin_lock(lock);
550 			goto repeat;
551 		}
552 	}
553 	spin_unlock(lock);
554 	return err;
555 }
556 
557 /**
558  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
559  * @mapping: the mapping which wants those buffers written
560  *
561  * Starts I/O against the buffers at mapping->i_private_list, and waits upon
562  * that I/O.
563  *
564  * Basically, this is a convenience function for fsync().
565  * @mapping is a file or directory which needs those buffers to be written for
566  * a successful fsync().
567  */
568 int sync_mapping_buffers(struct address_space *mapping)
569 {
570 	struct address_space *buffer_mapping = mapping->i_private_data;
571 
572 	if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
573 		return 0;
574 
575 	return fsync_buffers_list(&buffer_mapping->i_private_lock,
576 					&mapping->i_private_list);
577 }
578 EXPORT_SYMBOL(sync_mapping_buffers);
579 
580 /**
581  * generic_buffers_fsync_noflush - generic buffer fsync implementation
582  * for simple filesystems with no inode lock
583  *
584  * @file:	file to synchronize
585  * @start:	start offset in bytes
586  * @end:	end offset in bytes (inclusive)
587  * @datasync:	only synchronize essential metadata if true
588  *
589  * This is a generic implementation of the fsync method for simple
590  * filesystems which track all non-inode metadata in the buffers list
591  * hanging off the address_space structure.
592  */
593 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
594 				  bool datasync)
595 {
596 	struct inode *inode = file->f_mapping->host;
597 	int err;
598 	int ret;
599 
600 	err = file_write_and_wait_range(file, start, end);
601 	if (err)
602 		return err;
603 
604 	ret = sync_mapping_buffers(inode->i_mapping);
605 	if (!(inode->i_state & I_DIRTY_ALL))
606 		goto out;
607 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
608 		goto out;
609 
610 	err = sync_inode_metadata(inode, 1);
611 	if (ret == 0)
612 		ret = err;
613 
614 out:
615 	/* check and advance again to catch errors after syncing out buffers */
616 	err = file_check_and_advance_wb_err(file);
617 	if (ret == 0)
618 		ret = err;
619 	return ret;
620 }
621 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
622 
623 /**
624  * generic_buffers_fsync - generic buffer fsync implementation
625  * for simple filesystems with no inode lock
626  *
627  * @file:	file to synchronize
628  * @start:	start offset in bytes
629  * @end:	end offset in bytes (inclusive)
630  * @datasync:	only synchronize essential metadata if true
631  *
632  * This is a generic implementation of the fsync method for simple
633  * filesystems which track all non-inode metadata in the buffers list
634  * hanging off the address_space structure. This also makes sure that
635  * a device cache flush operation is called at the end.
636  */
637 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
638 			  bool datasync)
639 {
640 	struct inode *inode = file->f_mapping->host;
641 	int ret;
642 
643 	ret = generic_buffers_fsync_noflush(file, start, end, datasync);
644 	if (!ret)
645 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
646 	return ret;
647 }
648 EXPORT_SYMBOL(generic_buffers_fsync);
649 
650 /*
651  * Called when we've recently written block `bblock', and it is known that
652  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
653  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
654  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
655  */
656 void write_boundary_block(struct block_device *bdev,
657 			sector_t bblock, unsigned blocksize)
658 {
659 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
660 	if (bh) {
661 		if (buffer_dirty(bh))
662 			write_dirty_buffer(bh, 0);
663 		put_bh(bh);
664 	}
665 }
666 
667 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
668 {
669 	struct address_space *mapping = inode->i_mapping;
670 	struct address_space *buffer_mapping = bh->b_folio->mapping;
671 
672 	mark_buffer_dirty(bh);
673 	if (!mapping->i_private_data) {
674 		mapping->i_private_data = buffer_mapping;
675 	} else {
676 		BUG_ON(mapping->i_private_data != buffer_mapping);
677 	}
678 	if (!bh->b_assoc_map) {
679 		spin_lock(&buffer_mapping->i_private_lock);
680 		list_move_tail(&bh->b_assoc_buffers,
681 				&mapping->i_private_list);
682 		bh->b_assoc_map = mapping;
683 		spin_unlock(&buffer_mapping->i_private_lock);
684 	}
685 }
686 EXPORT_SYMBOL(mark_buffer_dirty_inode);
687 
688 /**
689  * block_dirty_folio - Mark a folio as dirty.
690  * @mapping: The address space containing this folio.
691  * @folio: The folio to mark dirty.
692  *
693  * Filesystems which use buffer_heads can use this function as their
694  * ->dirty_folio implementation.  Some filesystems need to do a little
695  * work before calling this function.  Filesystems which do not use
696  * buffer_heads should call filemap_dirty_folio() instead.
697  *
698  * If the folio has buffers, the uptodate buffers are set dirty, to
699  * preserve dirty-state coherency between the folio and the buffers.
700  * Buffers added to a dirty folio are created dirty.
701  *
702  * The buffers are dirtied before the folio is dirtied.  There's a small
703  * race window in which writeback may see the folio cleanness but not the
704  * buffer dirtiness.  That's fine.  If this code were to set the folio
705  * dirty before the buffers, writeback could clear the folio dirty flag,
706  * see a bunch of clean buffers and we'd end up with dirty buffers/clean
707  * folio on the dirty folio list.
708  *
709  * We use i_private_lock to lock against try_to_free_buffers() while
710  * using the folio's buffer list.  This also prevents clean buffers
711  * being added to the folio after it was set dirty.
712  *
713  * Context: May only be called from process context.  Does not sleep.
714  * Caller must ensure that @folio cannot be truncated during this call,
715  * typically by holding the folio lock or having a page in the folio
716  * mapped and holding the page table lock.
717  *
718  * Return: True if the folio was dirtied; false if it was already dirtied.
719  */
720 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
721 {
722 	struct buffer_head *head;
723 	bool newly_dirty;
724 
725 	spin_lock(&mapping->i_private_lock);
726 	head = folio_buffers(folio);
727 	if (head) {
728 		struct buffer_head *bh = head;
729 
730 		do {
731 			set_buffer_dirty(bh);
732 			bh = bh->b_this_page;
733 		} while (bh != head);
734 	}
735 	/*
736 	 * Lock out page's memcg migration to keep PageDirty
737 	 * synchronized with per-memcg dirty page counters.
738 	 */
739 	folio_memcg_lock(folio);
740 	newly_dirty = !folio_test_set_dirty(folio);
741 	spin_unlock(&mapping->i_private_lock);
742 
743 	if (newly_dirty)
744 		__folio_mark_dirty(folio, mapping, 1);
745 
746 	folio_memcg_unlock(folio);
747 
748 	if (newly_dirty)
749 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
750 
751 	return newly_dirty;
752 }
753 EXPORT_SYMBOL(block_dirty_folio);
754 
755 /*
756  * Write out and wait upon a list of buffers.
757  *
758  * We have conflicting pressures: we want to make sure that all
759  * initially dirty buffers get waited on, but that any subsequently
760  * dirtied buffers don't.  After all, we don't want fsync to last
761  * forever if somebody is actively writing to the file.
762  *
763  * Do this in two main stages: first we copy dirty buffers to a
764  * temporary inode list, queueing the writes as we go.  Then we clean
765  * up, waiting for those writes to complete.
766  *
767  * During this second stage, any subsequent updates to the file may end
768  * up refiling the buffer on the original inode's dirty list again, so
769  * there is a chance we will end up with a buffer queued for write but
770  * not yet completed on that list.  So, as a final cleanup we go through
771  * the osync code to catch these locked, dirty buffers without requeuing
772  * any newly dirty buffers for write.
773  */
774 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
775 {
776 	struct buffer_head *bh;
777 	struct address_space *mapping;
778 	int err = 0, err2;
779 	struct blk_plug plug;
780 	LIST_HEAD(tmp);
781 
782 	blk_start_plug(&plug);
783 
784 	spin_lock(lock);
785 	while (!list_empty(list)) {
786 		bh = BH_ENTRY(list->next);
787 		mapping = bh->b_assoc_map;
788 		__remove_assoc_queue(bh);
789 		/* Avoid race with mark_buffer_dirty_inode() which does
790 		 * a lockless check and we rely on seeing the dirty bit */
791 		smp_mb();
792 		if (buffer_dirty(bh) || buffer_locked(bh)) {
793 			list_add(&bh->b_assoc_buffers, &tmp);
794 			bh->b_assoc_map = mapping;
795 			if (buffer_dirty(bh)) {
796 				get_bh(bh);
797 				spin_unlock(lock);
798 				/*
799 				 * Ensure any pending I/O completes so that
800 				 * write_dirty_buffer() actually writes the
801 				 * current contents - it is a noop if I/O is
802 				 * still in flight on potentially older
803 				 * contents.
804 				 */
805 				write_dirty_buffer(bh, REQ_SYNC);
806 
807 				/*
808 				 * Kick off IO for the previous mapping. Note
809 				 * that we will not run the very last mapping,
810 				 * wait_on_buffer() will do that for us
811 				 * through sync_buffer().
812 				 */
813 				brelse(bh);
814 				spin_lock(lock);
815 			}
816 		}
817 	}
818 
819 	spin_unlock(lock);
820 	blk_finish_plug(&plug);
821 	spin_lock(lock);
822 
823 	while (!list_empty(&tmp)) {
824 		bh = BH_ENTRY(tmp.prev);
825 		get_bh(bh);
826 		mapping = bh->b_assoc_map;
827 		__remove_assoc_queue(bh);
828 		/* Avoid race with mark_buffer_dirty_inode() which does
829 		 * a lockless check and we rely on seeing the dirty bit */
830 		smp_mb();
831 		if (buffer_dirty(bh)) {
832 			list_add(&bh->b_assoc_buffers,
833 				 &mapping->i_private_list);
834 			bh->b_assoc_map = mapping;
835 		}
836 		spin_unlock(lock);
837 		wait_on_buffer(bh);
838 		if (!buffer_uptodate(bh))
839 			err = -EIO;
840 		brelse(bh);
841 		spin_lock(lock);
842 	}
843 
844 	spin_unlock(lock);
845 	err2 = osync_buffers_list(lock, list);
846 	if (err)
847 		return err;
848 	else
849 		return err2;
850 }
851 
852 /*
853  * Invalidate any and all dirty buffers on a given inode.  We are
854  * probably unmounting the fs, but that doesn't mean we have already
855  * done a sync().  Just drop the buffers from the inode list.
856  *
857  * NOTE: we take the inode's blockdev's mapping's i_private_lock.  Which
858  * assumes that all the buffers are against the blockdev.  Not true
859  * for reiserfs.
860  */
861 void invalidate_inode_buffers(struct inode *inode)
862 {
863 	if (inode_has_buffers(inode)) {
864 		struct address_space *mapping = &inode->i_data;
865 		struct list_head *list = &mapping->i_private_list;
866 		struct address_space *buffer_mapping = mapping->i_private_data;
867 
868 		spin_lock(&buffer_mapping->i_private_lock);
869 		while (!list_empty(list))
870 			__remove_assoc_queue(BH_ENTRY(list->next));
871 		spin_unlock(&buffer_mapping->i_private_lock);
872 	}
873 }
874 EXPORT_SYMBOL(invalidate_inode_buffers);
875 
876 /*
877  * Remove any clean buffers from the inode's buffer list.  This is called
878  * when we're trying to free the inode itself.  Those buffers can pin it.
879  *
880  * Returns true if all buffers were removed.
881  */
882 int remove_inode_buffers(struct inode *inode)
883 {
884 	int ret = 1;
885 
886 	if (inode_has_buffers(inode)) {
887 		struct address_space *mapping = &inode->i_data;
888 		struct list_head *list = &mapping->i_private_list;
889 		struct address_space *buffer_mapping = mapping->i_private_data;
890 
891 		spin_lock(&buffer_mapping->i_private_lock);
892 		while (!list_empty(list)) {
893 			struct buffer_head *bh = BH_ENTRY(list->next);
894 			if (buffer_dirty(bh)) {
895 				ret = 0;
896 				break;
897 			}
898 			__remove_assoc_queue(bh);
899 		}
900 		spin_unlock(&buffer_mapping->i_private_lock);
901 	}
902 	return ret;
903 }
904 
905 /*
906  * Create the appropriate buffers when given a folio for data area and
907  * the size of each buffer.. Use the bh->b_this_page linked list to
908  * follow the buffers created.  Return NULL if unable to create more
909  * buffers.
910  *
911  * The retry flag is used to differentiate async IO (paging, swapping)
912  * which may not fail from ordinary buffer allocations.
913  */
914 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
915 					gfp_t gfp)
916 {
917 	struct buffer_head *bh, *head;
918 	long offset;
919 	struct mem_cgroup *memcg, *old_memcg;
920 
921 	/* The folio lock pins the memcg */
922 	memcg = folio_memcg(folio);
923 	old_memcg = set_active_memcg(memcg);
924 
925 	head = NULL;
926 	offset = folio_size(folio);
927 	while ((offset -= size) >= 0) {
928 		bh = alloc_buffer_head(gfp);
929 		if (!bh)
930 			goto no_grow;
931 
932 		bh->b_this_page = head;
933 		bh->b_blocknr = -1;
934 		head = bh;
935 
936 		bh->b_size = size;
937 
938 		/* Link the buffer to its folio */
939 		folio_set_bh(bh, folio, offset);
940 	}
941 out:
942 	set_active_memcg(old_memcg);
943 	return head;
944 /*
945  * In case anything failed, we just free everything we got.
946  */
947 no_grow:
948 	if (head) {
949 		do {
950 			bh = head;
951 			head = head->b_this_page;
952 			free_buffer_head(bh);
953 		} while (head);
954 	}
955 
956 	goto out;
957 }
958 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
959 
960 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size)
961 {
962 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
963 
964 	return folio_alloc_buffers(page_folio(page), size, gfp);
965 }
966 EXPORT_SYMBOL_GPL(alloc_page_buffers);
967 
968 static inline void link_dev_buffers(struct folio *folio,
969 		struct buffer_head *head)
970 {
971 	struct buffer_head *bh, *tail;
972 
973 	bh = head;
974 	do {
975 		tail = bh;
976 		bh = bh->b_this_page;
977 	} while (bh);
978 	tail->b_this_page = head;
979 	folio_attach_private(folio, head);
980 }
981 
982 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
983 {
984 	sector_t retval = ~((sector_t)0);
985 	loff_t sz = bdev_nr_bytes(bdev);
986 
987 	if (sz) {
988 		unsigned int sizebits = blksize_bits(size);
989 		retval = (sz >> sizebits);
990 	}
991 	return retval;
992 }
993 
994 /*
995  * Initialise the state of a blockdev folio's buffers.
996  */
997 static sector_t folio_init_buffers(struct folio *folio,
998 		struct block_device *bdev, unsigned size)
999 {
1000 	struct buffer_head *head = folio_buffers(folio);
1001 	struct buffer_head *bh = head;
1002 	bool uptodate = folio_test_uptodate(folio);
1003 	sector_t block = div_u64(folio_pos(folio), size);
1004 	sector_t end_block = blkdev_max_block(bdev, size);
1005 
1006 	do {
1007 		if (!buffer_mapped(bh)) {
1008 			bh->b_end_io = NULL;
1009 			bh->b_private = NULL;
1010 			bh->b_bdev = bdev;
1011 			bh->b_blocknr = block;
1012 			if (uptodate)
1013 				set_buffer_uptodate(bh);
1014 			if (block < end_block)
1015 				set_buffer_mapped(bh);
1016 		}
1017 		block++;
1018 		bh = bh->b_this_page;
1019 	} while (bh != head);
1020 
1021 	/*
1022 	 * Caller needs to validate requested block against end of device.
1023 	 */
1024 	return end_block;
1025 }
1026 
1027 /*
1028  * Create the page-cache folio that contains the requested block.
1029  *
1030  * This is used purely for blockdev mappings.
1031  *
1032  * Returns false if we have a failure which cannot be cured by retrying
1033  * without sleeping.  Returns true if we succeeded, or the caller should retry.
1034  */
1035 static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1036 		pgoff_t index, unsigned size, gfp_t gfp)
1037 {
1038 	struct address_space *mapping = bdev->bd_mapping;
1039 	struct folio *folio;
1040 	struct buffer_head *bh;
1041 	sector_t end_block = 0;
1042 
1043 	folio = __filemap_get_folio(mapping, index,
1044 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1045 	if (IS_ERR(folio))
1046 		return false;
1047 
1048 	bh = folio_buffers(folio);
1049 	if (bh) {
1050 		if (bh->b_size == size) {
1051 			end_block = folio_init_buffers(folio, bdev, size);
1052 			goto unlock;
1053 		}
1054 
1055 		/*
1056 		 * Retrying may succeed; for example the folio may finish
1057 		 * writeback, or buffers may be cleaned.  This should not
1058 		 * happen very often; maybe we have old buffers attached to
1059 		 * this blockdev's page cache and we're trying to change
1060 		 * the block size?
1061 		 */
1062 		if (!try_to_free_buffers(folio)) {
1063 			end_block = ~0ULL;
1064 			goto unlock;
1065 		}
1066 	}
1067 
1068 	bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1069 	if (!bh)
1070 		goto unlock;
1071 
1072 	/*
1073 	 * Link the folio to the buffers and initialise them.  Take the
1074 	 * lock to be atomic wrt __find_get_block(), which does not
1075 	 * run under the folio lock.
1076 	 */
1077 	spin_lock(&mapping->i_private_lock);
1078 	link_dev_buffers(folio, bh);
1079 	end_block = folio_init_buffers(folio, bdev, size);
1080 	spin_unlock(&mapping->i_private_lock);
1081 unlock:
1082 	folio_unlock(folio);
1083 	folio_put(folio);
1084 	return block < end_block;
1085 }
1086 
1087 /*
1088  * Create buffers for the specified block device block's folio.  If
1089  * that folio was dirty, the buffers are set dirty also.  Returns false
1090  * if we've hit a permanent error.
1091  */
1092 static bool grow_buffers(struct block_device *bdev, sector_t block,
1093 		unsigned size, gfp_t gfp)
1094 {
1095 	loff_t pos;
1096 
1097 	/*
1098 	 * Check for a block which lies outside our maximum possible
1099 	 * pagecache index.
1100 	 */
1101 	if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1102 		printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1103 			__func__, (unsigned long long)block,
1104 			bdev);
1105 		return false;
1106 	}
1107 
1108 	/* Create a folio with the proper size buffers */
1109 	return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1110 }
1111 
1112 static struct buffer_head *
1113 __getblk_slow(struct block_device *bdev, sector_t block,
1114 	     unsigned size, gfp_t gfp)
1115 {
1116 	/* Size must be multiple of hard sectorsize */
1117 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1118 			(size < 512 || size > PAGE_SIZE))) {
1119 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1120 					size);
1121 		printk(KERN_ERR "logical block size: %d\n",
1122 					bdev_logical_block_size(bdev));
1123 
1124 		dump_stack();
1125 		return NULL;
1126 	}
1127 
1128 	for (;;) {
1129 		struct buffer_head *bh;
1130 
1131 		bh = __find_get_block(bdev, block, size);
1132 		if (bh)
1133 			return bh;
1134 
1135 		if (!grow_buffers(bdev, block, size, gfp))
1136 			return NULL;
1137 	}
1138 }
1139 
1140 /*
1141  * The relationship between dirty buffers and dirty pages:
1142  *
1143  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1144  * the page is tagged dirty in the page cache.
1145  *
1146  * At all times, the dirtiness of the buffers represents the dirtiness of
1147  * subsections of the page.  If the page has buffers, the page dirty bit is
1148  * merely a hint about the true dirty state.
1149  *
1150  * When a page is set dirty in its entirety, all its buffers are marked dirty
1151  * (if the page has buffers).
1152  *
1153  * When a buffer is marked dirty, its page is dirtied, but the page's other
1154  * buffers are not.
1155  *
1156  * Also.  When blockdev buffers are explicitly read with bread(), they
1157  * individually become uptodate.  But their backing page remains not
1158  * uptodate - even if all of its buffers are uptodate.  A subsequent
1159  * block_read_full_folio() against that folio will discover all the uptodate
1160  * buffers, will set the folio uptodate and will perform no I/O.
1161  */
1162 
1163 /**
1164  * mark_buffer_dirty - mark a buffer_head as needing writeout
1165  * @bh: the buffer_head to mark dirty
1166  *
1167  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1168  * its backing page dirty, then tag the page as dirty in the page cache
1169  * and then attach the address_space's inode to its superblock's dirty
1170  * inode list.
1171  *
1172  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->i_private_lock,
1173  * i_pages lock and mapping->host->i_lock.
1174  */
1175 void mark_buffer_dirty(struct buffer_head *bh)
1176 {
1177 	WARN_ON_ONCE(!buffer_uptodate(bh));
1178 
1179 	trace_block_dirty_buffer(bh);
1180 
1181 	/*
1182 	 * Very *carefully* optimize the it-is-already-dirty case.
1183 	 *
1184 	 * Don't let the final "is it dirty" escape to before we
1185 	 * perhaps modified the buffer.
1186 	 */
1187 	if (buffer_dirty(bh)) {
1188 		smp_mb();
1189 		if (buffer_dirty(bh))
1190 			return;
1191 	}
1192 
1193 	if (!test_set_buffer_dirty(bh)) {
1194 		struct folio *folio = bh->b_folio;
1195 		struct address_space *mapping = NULL;
1196 
1197 		folio_memcg_lock(folio);
1198 		if (!folio_test_set_dirty(folio)) {
1199 			mapping = folio->mapping;
1200 			if (mapping)
1201 				__folio_mark_dirty(folio, mapping, 0);
1202 		}
1203 		folio_memcg_unlock(folio);
1204 		if (mapping)
1205 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1206 	}
1207 }
1208 EXPORT_SYMBOL(mark_buffer_dirty);
1209 
1210 void mark_buffer_write_io_error(struct buffer_head *bh)
1211 {
1212 	set_buffer_write_io_error(bh);
1213 	/* FIXME: do we need to set this in both places? */
1214 	if (bh->b_folio && bh->b_folio->mapping)
1215 		mapping_set_error(bh->b_folio->mapping, -EIO);
1216 	if (bh->b_assoc_map) {
1217 		mapping_set_error(bh->b_assoc_map, -EIO);
1218 		errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1219 	}
1220 }
1221 EXPORT_SYMBOL(mark_buffer_write_io_error);
1222 
1223 /**
1224  * __brelse - Release a buffer.
1225  * @bh: The buffer to release.
1226  *
1227  * This variant of brelse() can be called if @bh is guaranteed to not be NULL.
1228  */
1229 void __brelse(struct buffer_head *bh)
1230 {
1231 	if (atomic_read(&bh->b_count)) {
1232 		put_bh(bh);
1233 		return;
1234 	}
1235 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1236 }
1237 EXPORT_SYMBOL(__brelse);
1238 
1239 /**
1240  * __bforget - Discard any dirty data in a buffer.
1241  * @bh: The buffer to forget.
1242  *
1243  * This variant of bforget() can be called if @bh is guaranteed to not
1244  * be NULL.
1245  */
1246 void __bforget(struct buffer_head *bh)
1247 {
1248 	clear_buffer_dirty(bh);
1249 	if (bh->b_assoc_map) {
1250 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1251 
1252 		spin_lock(&buffer_mapping->i_private_lock);
1253 		list_del_init(&bh->b_assoc_buffers);
1254 		bh->b_assoc_map = NULL;
1255 		spin_unlock(&buffer_mapping->i_private_lock);
1256 	}
1257 	__brelse(bh);
1258 }
1259 EXPORT_SYMBOL(__bforget);
1260 
1261 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1262 {
1263 	lock_buffer(bh);
1264 	if (buffer_uptodate(bh)) {
1265 		unlock_buffer(bh);
1266 		return bh;
1267 	} else {
1268 		get_bh(bh);
1269 		bh->b_end_io = end_buffer_read_sync;
1270 		submit_bh(REQ_OP_READ, bh);
1271 		wait_on_buffer(bh);
1272 		if (buffer_uptodate(bh))
1273 			return bh;
1274 	}
1275 	brelse(bh);
1276 	return NULL;
1277 }
1278 
1279 /*
1280  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1281  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1282  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1283  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1284  * CPU's LRUs at the same time.
1285  *
1286  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1287  * sb_find_get_block().
1288  *
1289  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1290  * a local interrupt disable for that.
1291  */
1292 
1293 #define BH_LRU_SIZE	16
1294 
1295 struct bh_lru {
1296 	struct buffer_head *bhs[BH_LRU_SIZE];
1297 };
1298 
1299 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1300 
1301 #ifdef CONFIG_SMP
1302 #define bh_lru_lock()	local_irq_disable()
1303 #define bh_lru_unlock()	local_irq_enable()
1304 #else
1305 #define bh_lru_lock()	preempt_disable()
1306 #define bh_lru_unlock()	preempt_enable()
1307 #endif
1308 
1309 static inline void check_irqs_on(void)
1310 {
1311 #ifdef irqs_disabled
1312 	BUG_ON(irqs_disabled());
1313 #endif
1314 }
1315 
1316 /*
1317  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1318  * inserted at the front, and the buffer_head at the back if any is evicted.
1319  * Or, if already in the LRU it is moved to the front.
1320  */
1321 static void bh_lru_install(struct buffer_head *bh)
1322 {
1323 	struct buffer_head *evictee = bh;
1324 	struct bh_lru *b;
1325 	int i;
1326 
1327 	check_irqs_on();
1328 	bh_lru_lock();
1329 
1330 	/*
1331 	 * the refcount of buffer_head in bh_lru prevents dropping the
1332 	 * attached page(i.e., try_to_free_buffers) so it could cause
1333 	 * failing page migration.
1334 	 * Skip putting upcoming bh into bh_lru until migration is done.
1335 	 */
1336 	if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1337 		bh_lru_unlock();
1338 		return;
1339 	}
1340 
1341 	b = this_cpu_ptr(&bh_lrus);
1342 	for (i = 0; i < BH_LRU_SIZE; i++) {
1343 		swap(evictee, b->bhs[i]);
1344 		if (evictee == bh) {
1345 			bh_lru_unlock();
1346 			return;
1347 		}
1348 	}
1349 
1350 	get_bh(bh);
1351 	bh_lru_unlock();
1352 	brelse(evictee);
1353 }
1354 
1355 /*
1356  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1357  */
1358 static struct buffer_head *
1359 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1360 {
1361 	struct buffer_head *ret = NULL;
1362 	unsigned int i;
1363 
1364 	check_irqs_on();
1365 	bh_lru_lock();
1366 	if (cpu_is_isolated(smp_processor_id())) {
1367 		bh_lru_unlock();
1368 		return NULL;
1369 	}
1370 	for (i = 0; i < BH_LRU_SIZE; i++) {
1371 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1372 
1373 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1374 		    bh->b_size == size) {
1375 			if (i) {
1376 				while (i) {
1377 					__this_cpu_write(bh_lrus.bhs[i],
1378 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1379 					i--;
1380 				}
1381 				__this_cpu_write(bh_lrus.bhs[0], bh);
1382 			}
1383 			get_bh(bh);
1384 			ret = bh;
1385 			break;
1386 		}
1387 	}
1388 	bh_lru_unlock();
1389 	return ret;
1390 }
1391 
1392 /*
1393  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1394  * it in the LRU and mark it as accessed.  If it is not present then return
1395  * NULL
1396  */
1397 struct buffer_head *
1398 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1399 {
1400 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1401 
1402 	if (bh == NULL) {
1403 		/* __find_get_block_slow will mark the page accessed */
1404 		bh = __find_get_block_slow(bdev, block);
1405 		if (bh)
1406 			bh_lru_install(bh);
1407 	} else
1408 		touch_buffer(bh);
1409 
1410 	return bh;
1411 }
1412 EXPORT_SYMBOL(__find_get_block);
1413 
1414 /**
1415  * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1416  * @bdev: The block device.
1417  * @block: The block number.
1418  * @size: The size of buffer_heads for this @bdev.
1419  * @gfp: The memory allocation flags to use.
1420  *
1421  * The returned buffer head has its reference count incremented, but is
1422  * not locked.  The caller should call brelse() when it has finished
1423  * with the buffer.  The buffer may not be uptodate.  If needed, the
1424  * caller can bring it uptodate either by reading it or overwriting it.
1425  *
1426  * Return: The buffer head, or NULL if memory could not be allocated.
1427  */
1428 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1429 		unsigned size, gfp_t gfp)
1430 {
1431 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1432 
1433 	might_alloc(gfp);
1434 	if (bh)
1435 		return bh;
1436 
1437 	return __getblk_slow(bdev, block, size, gfp);
1438 }
1439 EXPORT_SYMBOL(bdev_getblk);
1440 
1441 /*
1442  * Do async read-ahead on a buffer..
1443  */
1444 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1445 {
1446 	struct buffer_head *bh = bdev_getblk(bdev, block, size,
1447 			GFP_NOWAIT | __GFP_MOVABLE);
1448 
1449 	if (likely(bh)) {
1450 		bh_readahead(bh, REQ_RAHEAD);
1451 		brelse(bh);
1452 	}
1453 }
1454 EXPORT_SYMBOL(__breadahead);
1455 
1456 /**
1457  * __bread_gfp() - Read a block.
1458  * @bdev: The block device to read from.
1459  * @block: Block number in units of block size.
1460  * @size: The block size of this device in bytes.
1461  * @gfp: Not page allocation flags; see below.
1462  *
1463  * You are not expected to call this function.  You should use one of
1464  * sb_bread(), sb_bread_unmovable() or __bread().
1465  *
1466  * Read a specified block, and return the buffer head that refers to it.
1467  * If @gfp is 0, the memory will be allocated using the block device's
1468  * default GFP flags.  If @gfp is __GFP_MOVABLE, the memory may be
1469  * allocated from a movable area.  Do not pass in a complete set of
1470  * GFP flags.
1471  *
1472  * The returned buffer head has its refcount increased.  The caller should
1473  * call brelse() when it has finished with the buffer.
1474  *
1475  * Context: May sleep waiting for I/O.
1476  * Return: NULL if the block was unreadable.
1477  */
1478 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block,
1479 		unsigned size, gfp_t gfp)
1480 {
1481 	struct buffer_head *bh;
1482 
1483 	gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS);
1484 
1485 	/*
1486 	 * Prefer looping in the allocator rather than here, at least that
1487 	 * code knows what it's doing.
1488 	 */
1489 	gfp |= __GFP_NOFAIL;
1490 
1491 	bh = bdev_getblk(bdev, block, size, gfp);
1492 
1493 	if (likely(bh) && !buffer_uptodate(bh))
1494 		bh = __bread_slow(bh);
1495 	return bh;
1496 }
1497 EXPORT_SYMBOL(__bread_gfp);
1498 
1499 static void __invalidate_bh_lrus(struct bh_lru *b)
1500 {
1501 	int i;
1502 
1503 	for (i = 0; i < BH_LRU_SIZE; i++) {
1504 		brelse(b->bhs[i]);
1505 		b->bhs[i] = NULL;
1506 	}
1507 }
1508 /*
1509  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1510  * This doesn't race because it runs in each cpu either in irq
1511  * or with preempt disabled.
1512  */
1513 static void invalidate_bh_lru(void *arg)
1514 {
1515 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1516 
1517 	__invalidate_bh_lrus(b);
1518 	put_cpu_var(bh_lrus);
1519 }
1520 
1521 bool has_bh_in_lru(int cpu, void *dummy)
1522 {
1523 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1524 	int i;
1525 
1526 	for (i = 0; i < BH_LRU_SIZE; i++) {
1527 		if (b->bhs[i])
1528 			return true;
1529 	}
1530 
1531 	return false;
1532 }
1533 
1534 void invalidate_bh_lrus(void)
1535 {
1536 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1537 }
1538 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1539 
1540 /*
1541  * It's called from workqueue context so we need a bh_lru_lock to close
1542  * the race with preemption/irq.
1543  */
1544 void invalidate_bh_lrus_cpu(void)
1545 {
1546 	struct bh_lru *b;
1547 
1548 	bh_lru_lock();
1549 	b = this_cpu_ptr(&bh_lrus);
1550 	__invalidate_bh_lrus(b);
1551 	bh_lru_unlock();
1552 }
1553 
1554 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1555 		  unsigned long offset)
1556 {
1557 	bh->b_folio = folio;
1558 	BUG_ON(offset >= folio_size(folio));
1559 	if (folio_test_highmem(folio))
1560 		/*
1561 		 * This catches illegal uses and preserves the offset:
1562 		 */
1563 		bh->b_data = (char *)(0 + offset);
1564 	else
1565 		bh->b_data = folio_address(folio) + offset;
1566 }
1567 EXPORT_SYMBOL(folio_set_bh);
1568 
1569 /*
1570  * Called when truncating a buffer on a page completely.
1571  */
1572 
1573 /* Bits that are cleared during an invalidate */
1574 #define BUFFER_FLAGS_DISCARD \
1575 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1576 	 1 << BH_Delay | 1 << BH_Unwritten)
1577 
1578 static void discard_buffer(struct buffer_head * bh)
1579 {
1580 	unsigned long b_state;
1581 
1582 	lock_buffer(bh);
1583 	clear_buffer_dirty(bh);
1584 	bh->b_bdev = NULL;
1585 	b_state = READ_ONCE(bh->b_state);
1586 	do {
1587 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1588 			      b_state & ~BUFFER_FLAGS_DISCARD));
1589 	unlock_buffer(bh);
1590 }
1591 
1592 /**
1593  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1594  * @folio: The folio which is affected.
1595  * @offset: start of the range to invalidate
1596  * @length: length of the range to invalidate
1597  *
1598  * block_invalidate_folio() is called when all or part of the folio has been
1599  * invalidated by a truncate operation.
1600  *
1601  * block_invalidate_folio() does not have to release all buffers, but it must
1602  * ensure that no dirty buffer is left outside @offset and that no I/O
1603  * is underway against any of the blocks which are outside the truncation
1604  * point.  Because the caller is about to free (and possibly reuse) those
1605  * blocks on-disk.
1606  */
1607 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1608 {
1609 	struct buffer_head *head, *bh, *next;
1610 	size_t curr_off = 0;
1611 	size_t stop = length + offset;
1612 
1613 	BUG_ON(!folio_test_locked(folio));
1614 
1615 	/*
1616 	 * Check for overflow
1617 	 */
1618 	BUG_ON(stop > folio_size(folio) || stop < length);
1619 
1620 	head = folio_buffers(folio);
1621 	if (!head)
1622 		return;
1623 
1624 	bh = head;
1625 	do {
1626 		size_t next_off = curr_off + bh->b_size;
1627 		next = bh->b_this_page;
1628 
1629 		/*
1630 		 * Are we still fully in range ?
1631 		 */
1632 		if (next_off > stop)
1633 			goto out;
1634 
1635 		/*
1636 		 * is this block fully invalidated?
1637 		 */
1638 		if (offset <= curr_off)
1639 			discard_buffer(bh);
1640 		curr_off = next_off;
1641 		bh = next;
1642 	} while (bh != head);
1643 
1644 	/*
1645 	 * We release buffers only if the entire folio is being invalidated.
1646 	 * The get_block cached value has been unconditionally invalidated,
1647 	 * so real IO is not possible anymore.
1648 	 */
1649 	if (length == folio_size(folio))
1650 		filemap_release_folio(folio, 0);
1651 out:
1652 	folio_clear_mappedtodisk(folio);
1653 	return;
1654 }
1655 EXPORT_SYMBOL(block_invalidate_folio);
1656 
1657 /*
1658  * We attach and possibly dirty the buffers atomically wrt
1659  * block_dirty_folio() via i_private_lock.  try_to_free_buffers
1660  * is already excluded via the folio lock.
1661  */
1662 struct buffer_head *create_empty_buffers(struct folio *folio,
1663 		unsigned long blocksize, unsigned long b_state)
1664 {
1665 	struct buffer_head *bh, *head, *tail;
1666 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1667 
1668 	head = folio_alloc_buffers(folio, blocksize, gfp);
1669 	bh = head;
1670 	do {
1671 		bh->b_state |= b_state;
1672 		tail = bh;
1673 		bh = bh->b_this_page;
1674 	} while (bh);
1675 	tail->b_this_page = head;
1676 
1677 	spin_lock(&folio->mapping->i_private_lock);
1678 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1679 		bh = head;
1680 		do {
1681 			if (folio_test_dirty(folio))
1682 				set_buffer_dirty(bh);
1683 			if (folio_test_uptodate(folio))
1684 				set_buffer_uptodate(bh);
1685 			bh = bh->b_this_page;
1686 		} while (bh != head);
1687 	}
1688 	folio_attach_private(folio, head);
1689 	spin_unlock(&folio->mapping->i_private_lock);
1690 
1691 	return head;
1692 }
1693 EXPORT_SYMBOL(create_empty_buffers);
1694 
1695 /**
1696  * clean_bdev_aliases: clean a range of buffers in block device
1697  * @bdev: Block device to clean buffers in
1698  * @block: Start of a range of blocks to clean
1699  * @len: Number of blocks to clean
1700  *
1701  * We are taking a range of blocks for data and we don't want writeback of any
1702  * buffer-cache aliases starting from return from this function and until the
1703  * moment when something will explicitly mark the buffer dirty (hopefully that
1704  * will not happen until we will free that block ;-) We don't even need to mark
1705  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1706  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1707  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1708  * would confuse anyone who might pick it with bread() afterwards...
1709  *
1710  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1711  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1712  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1713  * need to.  That happens here.
1714  */
1715 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1716 {
1717 	struct address_space *bd_mapping = bdev->bd_mapping;
1718 	const int blkbits = bd_mapping->host->i_blkbits;
1719 	struct folio_batch fbatch;
1720 	pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE;
1721 	pgoff_t end;
1722 	int i, count;
1723 	struct buffer_head *bh;
1724 	struct buffer_head *head;
1725 
1726 	end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE;
1727 	folio_batch_init(&fbatch);
1728 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1729 		count = folio_batch_count(&fbatch);
1730 		for (i = 0; i < count; i++) {
1731 			struct folio *folio = fbatch.folios[i];
1732 
1733 			if (!folio_buffers(folio))
1734 				continue;
1735 			/*
1736 			 * We use folio lock instead of bd_mapping->i_private_lock
1737 			 * to pin buffers here since we can afford to sleep and
1738 			 * it scales better than a global spinlock lock.
1739 			 */
1740 			folio_lock(folio);
1741 			/* Recheck when the folio is locked which pins bhs */
1742 			head = folio_buffers(folio);
1743 			if (!head)
1744 				goto unlock_page;
1745 			bh = head;
1746 			do {
1747 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1748 					goto next;
1749 				if (bh->b_blocknr >= block + len)
1750 					break;
1751 				clear_buffer_dirty(bh);
1752 				wait_on_buffer(bh);
1753 				clear_buffer_req(bh);
1754 next:
1755 				bh = bh->b_this_page;
1756 			} while (bh != head);
1757 unlock_page:
1758 			folio_unlock(folio);
1759 		}
1760 		folio_batch_release(&fbatch);
1761 		cond_resched();
1762 		/* End of range already reached? */
1763 		if (index > end || !index)
1764 			break;
1765 	}
1766 }
1767 EXPORT_SYMBOL(clean_bdev_aliases);
1768 
1769 static struct buffer_head *folio_create_buffers(struct folio *folio,
1770 						struct inode *inode,
1771 						unsigned int b_state)
1772 {
1773 	struct buffer_head *bh;
1774 
1775 	BUG_ON(!folio_test_locked(folio));
1776 
1777 	bh = folio_buffers(folio);
1778 	if (!bh)
1779 		bh = create_empty_buffers(folio,
1780 				1 << READ_ONCE(inode->i_blkbits), b_state);
1781 	return bh;
1782 }
1783 
1784 /*
1785  * NOTE! All mapped/uptodate combinations are valid:
1786  *
1787  *	Mapped	Uptodate	Meaning
1788  *
1789  *	No	No		"unknown" - must do get_block()
1790  *	No	Yes		"hole" - zero-filled
1791  *	Yes	No		"allocated" - allocated on disk, not read in
1792  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1793  *
1794  * "Dirty" is valid only with the last case (mapped+uptodate).
1795  */
1796 
1797 /*
1798  * While block_write_full_folio is writing back the dirty buffers under
1799  * the page lock, whoever dirtied the buffers may decide to clean them
1800  * again at any time.  We handle that by only looking at the buffer
1801  * state inside lock_buffer().
1802  *
1803  * If block_write_full_folio() is called for regular writeback
1804  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1805  * locked buffer.   This only can happen if someone has written the buffer
1806  * directly, with submit_bh().  At the address_space level PageWriteback
1807  * prevents this contention from occurring.
1808  *
1809  * If block_write_full_folio() is called with wbc->sync_mode ==
1810  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1811  * causes the writes to be flagged as synchronous writes.
1812  */
1813 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1814 			get_block_t *get_block, struct writeback_control *wbc)
1815 {
1816 	int err;
1817 	sector_t block;
1818 	sector_t last_block;
1819 	struct buffer_head *bh, *head;
1820 	size_t blocksize;
1821 	int nr_underway = 0;
1822 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1823 
1824 	head = folio_create_buffers(folio, inode,
1825 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1826 
1827 	/*
1828 	 * Be very careful.  We have no exclusion from block_dirty_folio
1829 	 * here, and the (potentially unmapped) buffers may become dirty at
1830 	 * any time.  If a buffer becomes dirty here after we've inspected it
1831 	 * then we just miss that fact, and the folio stays dirty.
1832 	 *
1833 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1834 	 * handle that here by just cleaning them.
1835 	 */
1836 
1837 	bh = head;
1838 	blocksize = bh->b_size;
1839 
1840 	block = div_u64(folio_pos(folio), blocksize);
1841 	last_block = div_u64(i_size_read(inode) - 1, blocksize);
1842 
1843 	/*
1844 	 * Get all the dirty buffers mapped to disk addresses and
1845 	 * handle any aliases from the underlying blockdev's mapping.
1846 	 */
1847 	do {
1848 		if (block > last_block) {
1849 			/*
1850 			 * mapped buffers outside i_size will occur, because
1851 			 * this folio can be outside i_size when there is a
1852 			 * truncate in progress.
1853 			 */
1854 			/*
1855 			 * The buffer was zeroed by block_write_full_folio()
1856 			 */
1857 			clear_buffer_dirty(bh);
1858 			set_buffer_uptodate(bh);
1859 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1860 			   buffer_dirty(bh)) {
1861 			WARN_ON(bh->b_size != blocksize);
1862 			err = get_block(inode, block, bh, 1);
1863 			if (err)
1864 				goto recover;
1865 			clear_buffer_delay(bh);
1866 			if (buffer_new(bh)) {
1867 				/* blockdev mappings never come here */
1868 				clear_buffer_new(bh);
1869 				clean_bdev_bh_alias(bh);
1870 			}
1871 		}
1872 		bh = bh->b_this_page;
1873 		block++;
1874 	} while (bh != head);
1875 
1876 	do {
1877 		if (!buffer_mapped(bh))
1878 			continue;
1879 		/*
1880 		 * If it's a fully non-blocking write attempt and we cannot
1881 		 * lock the buffer then redirty the folio.  Note that this can
1882 		 * potentially cause a busy-wait loop from writeback threads
1883 		 * and kswapd activity, but those code paths have their own
1884 		 * higher-level throttling.
1885 		 */
1886 		if (wbc->sync_mode != WB_SYNC_NONE) {
1887 			lock_buffer(bh);
1888 		} else if (!trylock_buffer(bh)) {
1889 			folio_redirty_for_writepage(wbc, folio);
1890 			continue;
1891 		}
1892 		if (test_clear_buffer_dirty(bh)) {
1893 			mark_buffer_async_write_endio(bh,
1894 				end_buffer_async_write);
1895 		} else {
1896 			unlock_buffer(bh);
1897 		}
1898 	} while ((bh = bh->b_this_page) != head);
1899 
1900 	/*
1901 	 * The folio and its buffers are protected by the writeback flag,
1902 	 * so we can drop the bh refcounts early.
1903 	 */
1904 	BUG_ON(folio_test_writeback(folio));
1905 	folio_start_writeback(folio);
1906 
1907 	do {
1908 		struct buffer_head *next = bh->b_this_page;
1909 		if (buffer_async_write(bh)) {
1910 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1911 				      inode->i_write_hint, wbc);
1912 			nr_underway++;
1913 		}
1914 		bh = next;
1915 	} while (bh != head);
1916 	folio_unlock(folio);
1917 
1918 	err = 0;
1919 done:
1920 	if (nr_underway == 0) {
1921 		/*
1922 		 * The folio was marked dirty, but the buffers were
1923 		 * clean.  Someone wrote them back by hand with
1924 		 * write_dirty_buffer/submit_bh.  A rare case.
1925 		 */
1926 		folio_end_writeback(folio);
1927 
1928 		/*
1929 		 * The folio and buffer_heads can be released at any time from
1930 		 * here on.
1931 		 */
1932 	}
1933 	return err;
1934 
1935 recover:
1936 	/*
1937 	 * ENOSPC, or some other error.  We may already have added some
1938 	 * blocks to the file, so we need to write these out to avoid
1939 	 * exposing stale data.
1940 	 * The folio is currently locked and not marked for writeback
1941 	 */
1942 	bh = head;
1943 	/* Recovery: lock and submit the mapped buffers */
1944 	do {
1945 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1946 		    !buffer_delay(bh)) {
1947 			lock_buffer(bh);
1948 			mark_buffer_async_write_endio(bh,
1949 				end_buffer_async_write);
1950 		} else {
1951 			/*
1952 			 * The buffer may have been set dirty during
1953 			 * attachment to a dirty folio.
1954 			 */
1955 			clear_buffer_dirty(bh);
1956 		}
1957 	} while ((bh = bh->b_this_page) != head);
1958 	BUG_ON(folio_test_writeback(folio));
1959 	mapping_set_error(folio->mapping, err);
1960 	folio_start_writeback(folio);
1961 	do {
1962 		struct buffer_head *next = bh->b_this_page;
1963 		if (buffer_async_write(bh)) {
1964 			clear_buffer_dirty(bh);
1965 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1966 				      inode->i_write_hint, wbc);
1967 			nr_underway++;
1968 		}
1969 		bh = next;
1970 	} while (bh != head);
1971 	folio_unlock(folio);
1972 	goto done;
1973 }
1974 EXPORT_SYMBOL(__block_write_full_folio);
1975 
1976 /*
1977  * If a folio has any new buffers, zero them out here, and mark them uptodate
1978  * and dirty so they'll be written out (in order to prevent uninitialised
1979  * block data from leaking). And clear the new bit.
1980  */
1981 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1982 {
1983 	size_t block_start, block_end;
1984 	struct buffer_head *head, *bh;
1985 
1986 	BUG_ON(!folio_test_locked(folio));
1987 	head = folio_buffers(folio);
1988 	if (!head)
1989 		return;
1990 
1991 	bh = head;
1992 	block_start = 0;
1993 	do {
1994 		block_end = block_start + bh->b_size;
1995 
1996 		if (buffer_new(bh)) {
1997 			if (block_end > from && block_start < to) {
1998 				if (!folio_test_uptodate(folio)) {
1999 					size_t start, xend;
2000 
2001 					start = max(from, block_start);
2002 					xend = min(to, block_end);
2003 
2004 					folio_zero_segment(folio, start, xend);
2005 					set_buffer_uptodate(bh);
2006 				}
2007 
2008 				clear_buffer_new(bh);
2009 				mark_buffer_dirty(bh);
2010 			}
2011 		}
2012 
2013 		block_start = block_end;
2014 		bh = bh->b_this_page;
2015 	} while (bh != head);
2016 }
2017 EXPORT_SYMBOL(folio_zero_new_buffers);
2018 
2019 static int
2020 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2021 		const struct iomap *iomap)
2022 {
2023 	loff_t offset = (loff_t)block << inode->i_blkbits;
2024 
2025 	bh->b_bdev = iomap->bdev;
2026 
2027 	/*
2028 	 * Block points to offset in file we need to map, iomap contains
2029 	 * the offset at which the map starts. If the map ends before the
2030 	 * current block, then do not map the buffer and let the caller
2031 	 * handle it.
2032 	 */
2033 	if (offset >= iomap->offset + iomap->length)
2034 		return -EIO;
2035 
2036 	switch (iomap->type) {
2037 	case IOMAP_HOLE:
2038 		/*
2039 		 * If the buffer is not up to date or beyond the current EOF,
2040 		 * we need to mark it as new to ensure sub-block zeroing is
2041 		 * executed if necessary.
2042 		 */
2043 		if (!buffer_uptodate(bh) ||
2044 		    (offset >= i_size_read(inode)))
2045 			set_buffer_new(bh);
2046 		return 0;
2047 	case IOMAP_DELALLOC:
2048 		if (!buffer_uptodate(bh) ||
2049 		    (offset >= i_size_read(inode)))
2050 			set_buffer_new(bh);
2051 		set_buffer_uptodate(bh);
2052 		set_buffer_mapped(bh);
2053 		set_buffer_delay(bh);
2054 		return 0;
2055 	case IOMAP_UNWRITTEN:
2056 		/*
2057 		 * For unwritten regions, we always need to ensure that regions
2058 		 * in the block we are not writing to are zeroed. Mark the
2059 		 * buffer as new to ensure this.
2060 		 */
2061 		set_buffer_new(bh);
2062 		set_buffer_unwritten(bh);
2063 		fallthrough;
2064 	case IOMAP_MAPPED:
2065 		if ((iomap->flags & IOMAP_F_NEW) ||
2066 		    offset >= i_size_read(inode)) {
2067 			/*
2068 			 * This can happen if truncating the block device races
2069 			 * with the check in the caller as i_size updates on
2070 			 * block devices aren't synchronized by i_rwsem for
2071 			 * block devices.
2072 			 */
2073 			if (S_ISBLK(inode->i_mode))
2074 				return -EIO;
2075 			set_buffer_new(bh);
2076 		}
2077 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2078 				inode->i_blkbits;
2079 		set_buffer_mapped(bh);
2080 		return 0;
2081 	default:
2082 		WARN_ON_ONCE(1);
2083 		return -EIO;
2084 	}
2085 }
2086 
2087 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2088 		get_block_t *get_block, const struct iomap *iomap)
2089 {
2090 	size_t from = offset_in_folio(folio, pos);
2091 	size_t to = from + len;
2092 	struct inode *inode = folio->mapping->host;
2093 	size_t block_start, block_end;
2094 	sector_t block;
2095 	int err = 0;
2096 	size_t blocksize;
2097 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2098 
2099 	BUG_ON(!folio_test_locked(folio));
2100 	BUG_ON(to > folio_size(folio));
2101 	BUG_ON(from > to);
2102 
2103 	head = folio_create_buffers(folio, inode, 0);
2104 	blocksize = head->b_size;
2105 	block = div_u64(folio_pos(folio), blocksize);
2106 
2107 	for (bh = head, block_start = 0; bh != head || !block_start;
2108 	    block++, block_start=block_end, bh = bh->b_this_page) {
2109 		block_end = block_start + blocksize;
2110 		if (block_end <= from || block_start >= to) {
2111 			if (folio_test_uptodate(folio)) {
2112 				if (!buffer_uptodate(bh))
2113 					set_buffer_uptodate(bh);
2114 			}
2115 			continue;
2116 		}
2117 		if (buffer_new(bh))
2118 			clear_buffer_new(bh);
2119 		if (!buffer_mapped(bh)) {
2120 			WARN_ON(bh->b_size != blocksize);
2121 			if (get_block)
2122 				err = get_block(inode, block, bh, 1);
2123 			else
2124 				err = iomap_to_bh(inode, block, bh, iomap);
2125 			if (err)
2126 				break;
2127 
2128 			if (buffer_new(bh)) {
2129 				clean_bdev_bh_alias(bh);
2130 				if (folio_test_uptodate(folio)) {
2131 					clear_buffer_new(bh);
2132 					set_buffer_uptodate(bh);
2133 					mark_buffer_dirty(bh);
2134 					continue;
2135 				}
2136 				if (block_end > to || block_start < from)
2137 					folio_zero_segments(folio,
2138 						to, block_end,
2139 						block_start, from);
2140 				continue;
2141 			}
2142 		}
2143 		if (folio_test_uptodate(folio)) {
2144 			if (!buffer_uptodate(bh))
2145 				set_buffer_uptodate(bh);
2146 			continue;
2147 		}
2148 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2149 		    !buffer_unwritten(bh) &&
2150 		     (block_start < from || block_end > to)) {
2151 			bh_read_nowait(bh, 0);
2152 			*wait_bh++=bh;
2153 		}
2154 	}
2155 	/*
2156 	 * If we issued read requests - let them complete.
2157 	 */
2158 	while(wait_bh > wait) {
2159 		wait_on_buffer(*--wait_bh);
2160 		if (!buffer_uptodate(*wait_bh))
2161 			err = -EIO;
2162 	}
2163 	if (unlikely(err))
2164 		folio_zero_new_buffers(folio, from, to);
2165 	return err;
2166 }
2167 
2168 int __block_write_begin(struct folio *folio, loff_t pos, unsigned len,
2169 		get_block_t *get_block)
2170 {
2171 	return __block_write_begin_int(folio, pos, len, get_block, NULL);
2172 }
2173 EXPORT_SYMBOL(__block_write_begin);
2174 
2175 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2176 {
2177 	size_t block_start, block_end;
2178 	bool partial = false;
2179 	unsigned blocksize;
2180 	struct buffer_head *bh, *head;
2181 
2182 	bh = head = folio_buffers(folio);
2183 	if (!bh)
2184 		return;
2185 	blocksize = bh->b_size;
2186 
2187 	block_start = 0;
2188 	do {
2189 		block_end = block_start + blocksize;
2190 		if (block_end <= from || block_start >= to) {
2191 			if (!buffer_uptodate(bh))
2192 				partial = true;
2193 		} else {
2194 			set_buffer_uptodate(bh);
2195 			mark_buffer_dirty(bh);
2196 		}
2197 		if (buffer_new(bh))
2198 			clear_buffer_new(bh);
2199 
2200 		block_start = block_end;
2201 		bh = bh->b_this_page;
2202 	} while (bh != head);
2203 
2204 	/*
2205 	 * If this is a partial write which happened to make all buffers
2206 	 * uptodate then we can optimize away a bogus read_folio() for
2207 	 * the next read(). Here we 'discover' whether the folio went
2208 	 * uptodate as a result of this (potentially partial) write.
2209 	 */
2210 	if (!partial)
2211 		folio_mark_uptodate(folio);
2212 }
2213 
2214 /*
2215  * block_write_begin takes care of the basic task of block allocation and
2216  * bringing partial write blocks uptodate first.
2217  *
2218  * The filesystem needs to handle block truncation upon failure.
2219  */
2220 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2221 		struct folio **foliop, get_block_t *get_block)
2222 {
2223 	pgoff_t index = pos >> PAGE_SHIFT;
2224 	struct folio *folio;
2225 	int status;
2226 
2227 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2228 			mapping_gfp_mask(mapping));
2229 	if (IS_ERR(folio))
2230 		return PTR_ERR(folio);
2231 
2232 	status = __block_write_begin_int(folio, pos, len, get_block, NULL);
2233 	if (unlikely(status)) {
2234 		folio_unlock(folio);
2235 		folio_put(folio);
2236 		folio = NULL;
2237 	}
2238 
2239 	*foliop = folio;
2240 	return status;
2241 }
2242 EXPORT_SYMBOL(block_write_begin);
2243 
2244 int block_write_end(struct file *file, struct address_space *mapping,
2245 			loff_t pos, unsigned len, unsigned copied,
2246 			struct folio *folio, void *fsdata)
2247 {
2248 	size_t start = pos - folio_pos(folio);
2249 
2250 	if (unlikely(copied < len)) {
2251 		/*
2252 		 * The buffers that were written will now be uptodate, so
2253 		 * we don't have to worry about a read_folio reading them
2254 		 * and overwriting a partial write. However if we have
2255 		 * encountered a short write and only partially written
2256 		 * into a buffer, it will not be marked uptodate, so a
2257 		 * read_folio might come in and destroy our partial write.
2258 		 *
2259 		 * Do the simplest thing, and just treat any short write to a
2260 		 * non uptodate folio as a zero-length write, and force the
2261 		 * caller to redo the whole thing.
2262 		 */
2263 		if (!folio_test_uptodate(folio))
2264 			copied = 0;
2265 
2266 		folio_zero_new_buffers(folio, start+copied, start+len);
2267 	}
2268 	flush_dcache_folio(folio);
2269 
2270 	/* This could be a short (even 0-length) commit */
2271 	__block_commit_write(folio, start, start + copied);
2272 
2273 	return copied;
2274 }
2275 EXPORT_SYMBOL(block_write_end);
2276 
2277 int generic_write_end(struct file *file, struct address_space *mapping,
2278 			loff_t pos, unsigned len, unsigned copied,
2279 			struct folio *folio, void *fsdata)
2280 {
2281 	struct inode *inode = mapping->host;
2282 	loff_t old_size = inode->i_size;
2283 	bool i_size_changed = false;
2284 
2285 	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
2286 
2287 	/*
2288 	 * No need to use i_size_read() here, the i_size cannot change under us
2289 	 * because we hold i_rwsem.
2290 	 *
2291 	 * But it's important to update i_size while still holding folio lock:
2292 	 * page writeout could otherwise come in and zero beyond i_size.
2293 	 */
2294 	if (pos + copied > inode->i_size) {
2295 		i_size_write(inode, pos + copied);
2296 		i_size_changed = true;
2297 	}
2298 
2299 	folio_unlock(folio);
2300 	folio_put(folio);
2301 
2302 	if (old_size < pos)
2303 		pagecache_isize_extended(inode, old_size, pos);
2304 	/*
2305 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2306 	 * makes the holding time of page lock longer. Second, it forces lock
2307 	 * ordering of page lock and transaction start for journaling
2308 	 * filesystems.
2309 	 */
2310 	if (i_size_changed)
2311 		mark_inode_dirty(inode);
2312 	return copied;
2313 }
2314 EXPORT_SYMBOL(generic_write_end);
2315 
2316 /*
2317  * block_is_partially_uptodate checks whether buffers within a folio are
2318  * uptodate or not.
2319  *
2320  * Returns true if all buffers which correspond to the specified part
2321  * of the folio are uptodate.
2322  */
2323 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2324 {
2325 	unsigned block_start, block_end, blocksize;
2326 	unsigned to;
2327 	struct buffer_head *bh, *head;
2328 	bool ret = true;
2329 
2330 	head = folio_buffers(folio);
2331 	if (!head)
2332 		return false;
2333 	blocksize = head->b_size;
2334 	to = min_t(unsigned, folio_size(folio) - from, count);
2335 	to = from + to;
2336 	if (from < blocksize && to > folio_size(folio) - blocksize)
2337 		return false;
2338 
2339 	bh = head;
2340 	block_start = 0;
2341 	do {
2342 		block_end = block_start + blocksize;
2343 		if (block_end > from && block_start < to) {
2344 			if (!buffer_uptodate(bh)) {
2345 				ret = false;
2346 				break;
2347 			}
2348 			if (block_end >= to)
2349 				break;
2350 		}
2351 		block_start = block_end;
2352 		bh = bh->b_this_page;
2353 	} while (bh != head);
2354 
2355 	return ret;
2356 }
2357 EXPORT_SYMBOL(block_is_partially_uptodate);
2358 
2359 /*
2360  * Generic "read_folio" function for block devices that have the normal
2361  * get_block functionality. This is most of the block device filesystems.
2362  * Reads the folio asynchronously --- the unlock_buffer() and
2363  * set/clear_buffer_uptodate() functions propagate buffer state into the
2364  * folio once IO has completed.
2365  */
2366 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2367 {
2368 	struct inode *inode = folio->mapping->host;
2369 	sector_t iblock, lblock;
2370 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2371 	size_t blocksize;
2372 	int nr, i;
2373 	int fully_mapped = 1;
2374 	bool page_error = false;
2375 	loff_t limit = i_size_read(inode);
2376 
2377 	/* This is needed for ext4. */
2378 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2379 		limit = inode->i_sb->s_maxbytes;
2380 
2381 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2382 
2383 	head = folio_create_buffers(folio, inode, 0);
2384 	blocksize = head->b_size;
2385 
2386 	iblock = div_u64(folio_pos(folio), blocksize);
2387 	lblock = div_u64(limit + blocksize - 1, blocksize);
2388 	bh = head;
2389 	nr = 0;
2390 	i = 0;
2391 
2392 	do {
2393 		if (buffer_uptodate(bh))
2394 			continue;
2395 
2396 		if (!buffer_mapped(bh)) {
2397 			int err = 0;
2398 
2399 			fully_mapped = 0;
2400 			if (iblock < lblock) {
2401 				WARN_ON(bh->b_size != blocksize);
2402 				err = get_block(inode, iblock, bh, 0);
2403 				if (err)
2404 					page_error = true;
2405 			}
2406 			if (!buffer_mapped(bh)) {
2407 				folio_zero_range(folio, i * blocksize,
2408 						blocksize);
2409 				if (!err)
2410 					set_buffer_uptodate(bh);
2411 				continue;
2412 			}
2413 			/*
2414 			 * get_block() might have updated the buffer
2415 			 * synchronously
2416 			 */
2417 			if (buffer_uptodate(bh))
2418 				continue;
2419 		}
2420 		arr[nr++] = bh;
2421 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2422 
2423 	if (fully_mapped)
2424 		folio_set_mappedtodisk(folio);
2425 
2426 	if (!nr) {
2427 		/*
2428 		 * All buffers are uptodate or get_block() returned an
2429 		 * error when trying to map them - we can finish the read.
2430 		 */
2431 		folio_end_read(folio, !page_error);
2432 		return 0;
2433 	}
2434 
2435 	/* Stage two: lock the buffers */
2436 	for (i = 0; i < nr; i++) {
2437 		bh = arr[i];
2438 		lock_buffer(bh);
2439 		mark_buffer_async_read(bh);
2440 	}
2441 
2442 	/*
2443 	 * Stage 3: start the IO.  Check for uptodateness
2444 	 * inside the buffer lock in case another process reading
2445 	 * the underlying blockdev brought it uptodate (the sct fix).
2446 	 */
2447 	for (i = 0; i < nr; i++) {
2448 		bh = arr[i];
2449 		if (buffer_uptodate(bh))
2450 			end_buffer_async_read(bh, 1);
2451 		else
2452 			submit_bh(REQ_OP_READ, bh);
2453 	}
2454 	return 0;
2455 }
2456 EXPORT_SYMBOL(block_read_full_folio);
2457 
2458 /* utility function for filesystems that need to do work on expanding
2459  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2460  * deal with the hole.
2461  */
2462 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2463 {
2464 	struct address_space *mapping = inode->i_mapping;
2465 	const struct address_space_operations *aops = mapping->a_ops;
2466 	struct folio *folio;
2467 	void *fsdata = NULL;
2468 	int err;
2469 
2470 	err = inode_newsize_ok(inode, size);
2471 	if (err)
2472 		goto out;
2473 
2474 	err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata);
2475 	if (err)
2476 		goto out;
2477 
2478 	err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata);
2479 	BUG_ON(err > 0);
2480 
2481 out:
2482 	return err;
2483 }
2484 EXPORT_SYMBOL(generic_cont_expand_simple);
2485 
2486 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2487 			    loff_t pos, loff_t *bytes)
2488 {
2489 	struct inode *inode = mapping->host;
2490 	const struct address_space_operations *aops = mapping->a_ops;
2491 	unsigned int blocksize = i_blocksize(inode);
2492 	struct folio *folio;
2493 	void *fsdata = NULL;
2494 	pgoff_t index, curidx;
2495 	loff_t curpos;
2496 	unsigned zerofrom, offset, len;
2497 	int err = 0;
2498 
2499 	index = pos >> PAGE_SHIFT;
2500 	offset = pos & ~PAGE_MASK;
2501 
2502 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2503 		zerofrom = curpos & ~PAGE_MASK;
2504 		if (zerofrom & (blocksize-1)) {
2505 			*bytes |= (blocksize-1);
2506 			(*bytes)++;
2507 		}
2508 		len = PAGE_SIZE - zerofrom;
2509 
2510 		err = aops->write_begin(file, mapping, curpos, len,
2511 					    &folio, &fsdata);
2512 		if (err)
2513 			goto out;
2514 		folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2515 		err = aops->write_end(file, mapping, curpos, len, len,
2516 						folio, fsdata);
2517 		if (err < 0)
2518 			goto out;
2519 		BUG_ON(err != len);
2520 		err = 0;
2521 
2522 		balance_dirty_pages_ratelimited(mapping);
2523 
2524 		if (fatal_signal_pending(current)) {
2525 			err = -EINTR;
2526 			goto out;
2527 		}
2528 	}
2529 
2530 	/* page covers the boundary, find the boundary offset */
2531 	if (index == curidx) {
2532 		zerofrom = curpos & ~PAGE_MASK;
2533 		/* if we will expand the thing last block will be filled */
2534 		if (offset <= zerofrom) {
2535 			goto out;
2536 		}
2537 		if (zerofrom & (blocksize-1)) {
2538 			*bytes |= (blocksize-1);
2539 			(*bytes)++;
2540 		}
2541 		len = offset - zerofrom;
2542 
2543 		err = aops->write_begin(file, mapping, curpos, len,
2544 					    &folio, &fsdata);
2545 		if (err)
2546 			goto out;
2547 		folio_zero_range(folio, offset_in_folio(folio, curpos), len);
2548 		err = aops->write_end(file, mapping, curpos, len, len,
2549 						folio, fsdata);
2550 		if (err < 0)
2551 			goto out;
2552 		BUG_ON(err != len);
2553 		err = 0;
2554 	}
2555 out:
2556 	return err;
2557 }
2558 
2559 /*
2560  * For moronic filesystems that do not allow holes in file.
2561  * We may have to extend the file.
2562  */
2563 int cont_write_begin(struct file *file, struct address_space *mapping,
2564 			loff_t pos, unsigned len,
2565 			struct folio **foliop, void **fsdata,
2566 			get_block_t *get_block, loff_t *bytes)
2567 {
2568 	struct inode *inode = mapping->host;
2569 	unsigned int blocksize = i_blocksize(inode);
2570 	unsigned int zerofrom;
2571 	int err;
2572 
2573 	err = cont_expand_zero(file, mapping, pos, bytes);
2574 	if (err)
2575 		return err;
2576 
2577 	zerofrom = *bytes & ~PAGE_MASK;
2578 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2579 		*bytes |= (blocksize-1);
2580 		(*bytes)++;
2581 	}
2582 
2583 	return block_write_begin(mapping, pos, len, foliop, get_block);
2584 }
2585 EXPORT_SYMBOL(cont_write_begin);
2586 
2587 void block_commit_write(struct page *page, unsigned from, unsigned to)
2588 {
2589 	struct folio *folio = page_folio(page);
2590 	__block_commit_write(folio, from, to);
2591 }
2592 EXPORT_SYMBOL(block_commit_write);
2593 
2594 /*
2595  * block_page_mkwrite() is not allowed to change the file size as it gets
2596  * called from a page fault handler when a page is first dirtied. Hence we must
2597  * be careful to check for EOF conditions here. We set the page up correctly
2598  * for a written page which means we get ENOSPC checking when writing into
2599  * holes and correct delalloc and unwritten extent mapping on filesystems that
2600  * support these features.
2601  *
2602  * We are not allowed to take the i_mutex here so we have to play games to
2603  * protect against truncate races as the page could now be beyond EOF.  Because
2604  * truncate writes the inode size before removing pages, once we have the
2605  * page lock we can determine safely if the page is beyond EOF. If it is not
2606  * beyond EOF, then the page is guaranteed safe against truncation until we
2607  * unlock the page.
2608  *
2609  * Direct callers of this function should protect against filesystem freezing
2610  * using sb_start_pagefault() - sb_end_pagefault() functions.
2611  */
2612 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2613 			 get_block_t get_block)
2614 {
2615 	struct folio *folio = page_folio(vmf->page);
2616 	struct inode *inode = file_inode(vma->vm_file);
2617 	unsigned long end;
2618 	loff_t size;
2619 	int ret;
2620 
2621 	folio_lock(folio);
2622 	size = i_size_read(inode);
2623 	if ((folio->mapping != inode->i_mapping) ||
2624 	    (folio_pos(folio) >= size)) {
2625 		/* We overload EFAULT to mean page got truncated */
2626 		ret = -EFAULT;
2627 		goto out_unlock;
2628 	}
2629 
2630 	end = folio_size(folio);
2631 	/* folio is wholly or partially inside EOF */
2632 	if (folio_pos(folio) + end > size)
2633 		end = size - folio_pos(folio);
2634 
2635 	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2636 	if (unlikely(ret))
2637 		goto out_unlock;
2638 
2639 	__block_commit_write(folio, 0, end);
2640 
2641 	folio_mark_dirty(folio);
2642 	folio_wait_stable(folio);
2643 	return 0;
2644 out_unlock:
2645 	folio_unlock(folio);
2646 	return ret;
2647 }
2648 EXPORT_SYMBOL(block_page_mkwrite);
2649 
2650 int block_truncate_page(struct address_space *mapping,
2651 			loff_t from, get_block_t *get_block)
2652 {
2653 	pgoff_t index = from >> PAGE_SHIFT;
2654 	unsigned blocksize;
2655 	sector_t iblock;
2656 	size_t offset, length, pos;
2657 	struct inode *inode = mapping->host;
2658 	struct folio *folio;
2659 	struct buffer_head *bh;
2660 	int err = 0;
2661 
2662 	blocksize = i_blocksize(inode);
2663 	length = from & (blocksize - 1);
2664 
2665 	/* Block boundary? Nothing to do */
2666 	if (!length)
2667 		return 0;
2668 
2669 	length = blocksize - length;
2670 	iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2671 
2672 	folio = filemap_grab_folio(mapping, index);
2673 	if (IS_ERR(folio))
2674 		return PTR_ERR(folio);
2675 
2676 	bh = folio_buffers(folio);
2677 	if (!bh)
2678 		bh = create_empty_buffers(folio, blocksize, 0);
2679 
2680 	/* Find the buffer that contains "offset" */
2681 	offset = offset_in_folio(folio, from);
2682 	pos = blocksize;
2683 	while (offset >= pos) {
2684 		bh = bh->b_this_page;
2685 		iblock++;
2686 		pos += blocksize;
2687 	}
2688 
2689 	if (!buffer_mapped(bh)) {
2690 		WARN_ON(bh->b_size != blocksize);
2691 		err = get_block(inode, iblock, bh, 0);
2692 		if (err)
2693 			goto unlock;
2694 		/* unmapped? It's a hole - nothing to do */
2695 		if (!buffer_mapped(bh))
2696 			goto unlock;
2697 	}
2698 
2699 	/* Ok, it's mapped. Make sure it's up-to-date */
2700 	if (folio_test_uptodate(folio))
2701 		set_buffer_uptodate(bh);
2702 
2703 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2704 		err = bh_read(bh, 0);
2705 		/* Uhhuh. Read error. Complain and punt. */
2706 		if (err < 0)
2707 			goto unlock;
2708 	}
2709 
2710 	folio_zero_range(folio, offset, length);
2711 	mark_buffer_dirty(bh);
2712 
2713 unlock:
2714 	folio_unlock(folio);
2715 	folio_put(folio);
2716 
2717 	return err;
2718 }
2719 EXPORT_SYMBOL(block_truncate_page);
2720 
2721 /*
2722  * The generic ->writepage function for buffer-backed address_spaces
2723  */
2724 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2725 		void *get_block)
2726 {
2727 	struct inode * const inode = folio->mapping->host;
2728 	loff_t i_size = i_size_read(inode);
2729 
2730 	/* Is the folio fully inside i_size? */
2731 	if (folio_pos(folio) + folio_size(folio) <= i_size)
2732 		return __block_write_full_folio(inode, folio, get_block, wbc);
2733 
2734 	/* Is the folio fully outside i_size? (truncate in progress) */
2735 	if (folio_pos(folio) >= i_size) {
2736 		folio_unlock(folio);
2737 		return 0; /* don't care */
2738 	}
2739 
2740 	/*
2741 	 * The folio straddles i_size.  It must be zeroed out on each and every
2742 	 * writepage invocation because it may be mmapped.  "A file is mapped
2743 	 * in multiples of the page size.  For a file that is not a multiple of
2744 	 * the page size, the remaining memory is zeroed when mapped, and
2745 	 * writes to that region are not written out to the file."
2746 	 */
2747 	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2748 			folio_size(folio));
2749 	return __block_write_full_folio(inode, folio, get_block, wbc);
2750 }
2751 
2752 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2753 			    get_block_t *get_block)
2754 {
2755 	struct inode *inode = mapping->host;
2756 	struct buffer_head tmp = {
2757 		.b_size = i_blocksize(inode),
2758 	};
2759 
2760 	get_block(inode, block, &tmp, 0);
2761 	return tmp.b_blocknr;
2762 }
2763 EXPORT_SYMBOL(generic_block_bmap);
2764 
2765 static void end_bio_bh_io_sync(struct bio *bio)
2766 {
2767 	struct buffer_head *bh = bio->bi_private;
2768 
2769 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2770 		set_bit(BH_Quiet, &bh->b_state);
2771 
2772 	bh->b_end_io(bh, !bio->bi_status);
2773 	bio_put(bio);
2774 }
2775 
2776 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2777 			  enum rw_hint write_hint,
2778 			  struct writeback_control *wbc)
2779 {
2780 	const enum req_op op = opf & REQ_OP_MASK;
2781 	struct bio *bio;
2782 
2783 	BUG_ON(!buffer_locked(bh));
2784 	BUG_ON(!buffer_mapped(bh));
2785 	BUG_ON(!bh->b_end_io);
2786 	BUG_ON(buffer_delay(bh));
2787 	BUG_ON(buffer_unwritten(bh));
2788 
2789 	/*
2790 	 * Only clear out a write error when rewriting
2791 	 */
2792 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2793 		clear_buffer_write_io_error(bh);
2794 
2795 	if (buffer_meta(bh))
2796 		opf |= REQ_META;
2797 	if (buffer_prio(bh))
2798 		opf |= REQ_PRIO;
2799 
2800 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2801 
2802 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2803 
2804 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2805 	bio->bi_write_hint = write_hint;
2806 
2807 	bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh));
2808 
2809 	bio->bi_end_io = end_bio_bh_io_sync;
2810 	bio->bi_private = bh;
2811 
2812 	/* Take care of bh's that straddle the end of the device */
2813 	guard_bio_eod(bio);
2814 
2815 	if (wbc) {
2816 		wbc_init_bio(wbc, bio);
2817 		wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size);
2818 	}
2819 
2820 	submit_bio(bio);
2821 }
2822 
2823 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2824 {
2825 	submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2826 }
2827 EXPORT_SYMBOL(submit_bh);
2828 
2829 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2830 {
2831 	lock_buffer(bh);
2832 	if (!test_clear_buffer_dirty(bh)) {
2833 		unlock_buffer(bh);
2834 		return;
2835 	}
2836 	bh->b_end_io = end_buffer_write_sync;
2837 	get_bh(bh);
2838 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2839 }
2840 EXPORT_SYMBOL(write_dirty_buffer);
2841 
2842 /*
2843  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2844  * and then start new I/O and then wait upon it.  The caller must have a ref on
2845  * the buffer_head.
2846  */
2847 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2848 {
2849 	WARN_ON(atomic_read(&bh->b_count) < 1);
2850 	lock_buffer(bh);
2851 	if (test_clear_buffer_dirty(bh)) {
2852 		/*
2853 		 * The bh should be mapped, but it might not be if the
2854 		 * device was hot-removed. Not much we can do but fail the I/O.
2855 		 */
2856 		if (!buffer_mapped(bh)) {
2857 			unlock_buffer(bh);
2858 			return -EIO;
2859 		}
2860 
2861 		get_bh(bh);
2862 		bh->b_end_io = end_buffer_write_sync;
2863 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2864 		wait_on_buffer(bh);
2865 		if (!buffer_uptodate(bh))
2866 			return -EIO;
2867 	} else {
2868 		unlock_buffer(bh);
2869 	}
2870 	return 0;
2871 }
2872 EXPORT_SYMBOL(__sync_dirty_buffer);
2873 
2874 int sync_dirty_buffer(struct buffer_head *bh)
2875 {
2876 	return __sync_dirty_buffer(bh, REQ_SYNC);
2877 }
2878 EXPORT_SYMBOL(sync_dirty_buffer);
2879 
2880 static inline int buffer_busy(struct buffer_head *bh)
2881 {
2882 	return atomic_read(&bh->b_count) |
2883 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2884 }
2885 
2886 static bool
2887 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2888 {
2889 	struct buffer_head *head = folio_buffers(folio);
2890 	struct buffer_head *bh;
2891 
2892 	bh = head;
2893 	do {
2894 		if (buffer_busy(bh))
2895 			goto failed;
2896 		bh = bh->b_this_page;
2897 	} while (bh != head);
2898 
2899 	do {
2900 		struct buffer_head *next = bh->b_this_page;
2901 
2902 		if (bh->b_assoc_map)
2903 			__remove_assoc_queue(bh);
2904 		bh = next;
2905 	} while (bh != head);
2906 	*buffers_to_free = head;
2907 	folio_detach_private(folio);
2908 	return true;
2909 failed:
2910 	return false;
2911 }
2912 
2913 /**
2914  * try_to_free_buffers - Release buffers attached to this folio.
2915  * @folio: The folio.
2916  *
2917  * If any buffers are in use (dirty, under writeback, elevated refcount),
2918  * no buffers will be freed.
2919  *
2920  * If the folio is dirty but all the buffers are clean then we need to
2921  * be sure to mark the folio clean as well.  This is because the folio
2922  * may be against a block device, and a later reattachment of buffers
2923  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2924  * filesystem data on the same device.
2925  *
2926  * The same applies to regular filesystem folios: if all the buffers are
2927  * clean then we set the folio clean and proceed.  To do that, we require
2928  * total exclusion from block_dirty_folio().  That is obtained with
2929  * i_private_lock.
2930  *
2931  * Exclusion against try_to_free_buffers may be obtained by either
2932  * locking the folio or by holding its mapping's i_private_lock.
2933  *
2934  * Context: Process context.  @folio must be locked.  Will not sleep.
2935  * Return: true if all buffers attached to this folio were freed.
2936  */
2937 bool try_to_free_buffers(struct folio *folio)
2938 {
2939 	struct address_space * const mapping = folio->mapping;
2940 	struct buffer_head *buffers_to_free = NULL;
2941 	bool ret = 0;
2942 
2943 	BUG_ON(!folio_test_locked(folio));
2944 	if (folio_test_writeback(folio))
2945 		return false;
2946 
2947 	if (mapping == NULL) {		/* can this still happen? */
2948 		ret = drop_buffers(folio, &buffers_to_free);
2949 		goto out;
2950 	}
2951 
2952 	spin_lock(&mapping->i_private_lock);
2953 	ret = drop_buffers(folio, &buffers_to_free);
2954 
2955 	/*
2956 	 * If the filesystem writes its buffers by hand (eg ext3)
2957 	 * then we can have clean buffers against a dirty folio.  We
2958 	 * clean the folio here; otherwise the VM will never notice
2959 	 * that the filesystem did any IO at all.
2960 	 *
2961 	 * Also, during truncate, discard_buffer will have marked all
2962 	 * the folio's buffers clean.  We discover that here and clean
2963 	 * the folio also.
2964 	 *
2965 	 * i_private_lock must be held over this entire operation in order
2966 	 * to synchronise against block_dirty_folio and prevent the
2967 	 * dirty bit from being lost.
2968 	 */
2969 	if (ret)
2970 		folio_cancel_dirty(folio);
2971 	spin_unlock(&mapping->i_private_lock);
2972 out:
2973 	if (buffers_to_free) {
2974 		struct buffer_head *bh = buffers_to_free;
2975 
2976 		do {
2977 			struct buffer_head *next = bh->b_this_page;
2978 			free_buffer_head(bh);
2979 			bh = next;
2980 		} while (bh != buffers_to_free);
2981 	}
2982 	return ret;
2983 }
2984 EXPORT_SYMBOL(try_to_free_buffers);
2985 
2986 /*
2987  * Buffer-head allocation
2988  */
2989 static struct kmem_cache *bh_cachep __ro_after_init;
2990 
2991 /*
2992  * Once the number of bh's in the machine exceeds this level, we start
2993  * stripping them in writeback.
2994  */
2995 static unsigned long max_buffer_heads __ro_after_init;
2996 
2997 int buffer_heads_over_limit;
2998 
2999 struct bh_accounting {
3000 	int nr;			/* Number of live bh's */
3001 	int ratelimit;		/* Limit cacheline bouncing */
3002 };
3003 
3004 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3005 
3006 static void recalc_bh_state(void)
3007 {
3008 	int i;
3009 	int tot = 0;
3010 
3011 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3012 		return;
3013 	__this_cpu_write(bh_accounting.ratelimit, 0);
3014 	for_each_online_cpu(i)
3015 		tot += per_cpu(bh_accounting, i).nr;
3016 	buffer_heads_over_limit = (tot > max_buffer_heads);
3017 }
3018 
3019 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3020 {
3021 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3022 	if (ret) {
3023 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3024 		spin_lock_init(&ret->b_uptodate_lock);
3025 		preempt_disable();
3026 		__this_cpu_inc(bh_accounting.nr);
3027 		recalc_bh_state();
3028 		preempt_enable();
3029 	}
3030 	return ret;
3031 }
3032 EXPORT_SYMBOL(alloc_buffer_head);
3033 
3034 void free_buffer_head(struct buffer_head *bh)
3035 {
3036 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3037 	kmem_cache_free(bh_cachep, bh);
3038 	preempt_disable();
3039 	__this_cpu_dec(bh_accounting.nr);
3040 	recalc_bh_state();
3041 	preempt_enable();
3042 }
3043 EXPORT_SYMBOL(free_buffer_head);
3044 
3045 static int buffer_exit_cpu_dead(unsigned int cpu)
3046 {
3047 	int i;
3048 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3049 
3050 	for (i = 0; i < BH_LRU_SIZE; i++) {
3051 		brelse(b->bhs[i]);
3052 		b->bhs[i] = NULL;
3053 	}
3054 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3055 	per_cpu(bh_accounting, cpu).nr = 0;
3056 	return 0;
3057 }
3058 
3059 /**
3060  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3061  * @bh: struct buffer_head
3062  *
3063  * Return true if the buffer is up-to-date and false,
3064  * with the buffer locked, if not.
3065  */
3066 int bh_uptodate_or_lock(struct buffer_head *bh)
3067 {
3068 	if (!buffer_uptodate(bh)) {
3069 		lock_buffer(bh);
3070 		if (!buffer_uptodate(bh))
3071 			return 0;
3072 		unlock_buffer(bh);
3073 	}
3074 	return 1;
3075 }
3076 EXPORT_SYMBOL(bh_uptodate_or_lock);
3077 
3078 /**
3079  * __bh_read - Submit read for a locked buffer
3080  * @bh: struct buffer_head
3081  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3082  * @wait: wait until reading finish
3083  *
3084  * Returns zero on success or don't wait, and -EIO on error.
3085  */
3086 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3087 {
3088 	int ret = 0;
3089 
3090 	BUG_ON(!buffer_locked(bh));
3091 
3092 	get_bh(bh);
3093 	bh->b_end_io = end_buffer_read_sync;
3094 	submit_bh(REQ_OP_READ | op_flags, bh);
3095 	if (wait) {
3096 		wait_on_buffer(bh);
3097 		if (!buffer_uptodate(bh))
3098 			ret = -EIO;
3099 	}
3100 	return ret;
3101 }
3102 EXPORT_SYMBOL(__bh_read);
3103 
3104 /**
3105  * __bh_read_batch - Submit read for a batch of unlocked buffers
3106  * @nr: entry number of the buffer batch
3107  * @bhs: a batch of struct buffer_head
3108  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3109  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3110  *              buffer that cannot lock.
3111  *
3112  * Returns zero on success or don't wait, and -EIO on error.
3113  */
3114 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3115 		     blk_opf_t op_flags, bool force_lock)
3116 {
3117 	int i;
3118 
3119 	for (i = 0; i < nr; i++) {
3120 		struct buffer_head *bh = bhs[i];
3121 
3122 		if (buffer_uptodate(bh))
3123 			continue;
3124 
3125 		if (force_lock)
3126 			lock_buffer(bh);
3127 		else
3128 			if (!trylock_buffer(bh))
3129 				continue;
3130 
3131 		if (buffer_uptodate(bh)) {
3132 			unlock_buffer(bh);
3133 			continue;
3134 		}
3135 
3136 		bh->b_end_io = end_buffer_read_sync;
3137 		get_bh(bh);
3138 		submit_bh(REQ_OP_READ | op_flags, bh);
3139 	}
3140 }
3141 EXPORT_SYMBOL(__bh_read_batch);
3142 
3143 void __init buffer_init(void)
3144 {
3145 	unsigned long nrpages;
3146 	int ret;
3147 
3148 	bh_cachep = KMEM_CACHE(buffer_head,
3149 				SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3150 	/*
3151 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3152 	 */
3153 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3154 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3155 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3156 					NULL, buffer_exit_cpu_dead);
3157 	WARN_ON(ret < 0);
3158 }
3159