1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/sched/signal.h> 23 #include <linux/syscalls.h> 24 #include <linux/fs.h> 25 #include <linux/iomap.h> 26 #include <linux/mm.h> 27 #include <linux/percpu.h> 28 #include <linux/slab.h> 29 #include <linux/capability.h> 30 #include <linux/blkdev.h> 31 #include <linux/file.h> 32 #include <linux/quotaops.h> 33 #include <linux/highmem.h> 34 #include <linux/export.h> 35 #include <linux/backing-dev.h> 36 #include <linux/writeback.h> 37 #include <linux/hash.h> 38 #include <linux/suspend.h> 39 #include <linux/buffer_head.h> 40 #include <linux/task_io_accounting_ops.h> 41 #include <linux/bio.h> 42 #include <linux/cpu.h> 43 #include <linux/bitops.h> 44 #include <linux/mpage.h> 45 #include <linux/bit_spinlock.h> 46 #include <linux/pagevec.h> 47 #include <linux/sched/mm.h> 48 #include <trace/events/block.h> 49 50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 52 enum rw_hint hint, struct writeback_control *wbc); 53 54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 55 56 inline void touch_buffer(struct buffer_head *bh) 57 { 58 trace_block_touch_buffer(bh); 59 mark_page_accessed(bh->b_page); 60 } 61 EXPORT_SYMBOL(touch_buffer); 62 63 void __lock_buffer(struct buffer_head *bh) 64 { 65 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 66 } 67 EXPORT_SYMBOL(__lock_buffer); 68 69 void unlock_buffer(struct buffer_head *bh) 70 { 71 clear_bit_unlock(BH_Lock, &bh->b_state); 72 smp_mb__after_atomic(); 73 wake_up_bit(&bh->b_state, BH_Lock); 74 } 75 EXPORT_SYMBOL(unlock_buffer); 76 77 /* 78 * Returns if the page has dirty or writeback buffers. If all the buffers 79 * are unlocked and clean then the PageDirty information is stale. If 80 * any of the pages are locked, it is assumed they are locked for IO. 81 */ 82 void buffer_check_dirty_writeback(struct page *page, 83 bool *dirty, bool *writeback) 84 { 85 struct buffer_head *head, *bh; 86 *dirty = false; 87 *writeback = false; 88 89 BUG_ON(!PageLocked(page)); 90 91 if (!page_has_buffers(page)) 92 return; 93 94 if (PageWriteback(page)) 95 *writeback = true; 96 97 head = page_buffers(page); 98 bh = head; 99 do { 100 if (buffer_locked(bh)) 101 *writeback = true; 102 103 if (buffer_dirty(bh)) 104 *dirty = true; 105 106 bh = bh->b_this_page; 107 } while (bh != head); 108 } 109 EXPORT_SYMBOL(buffer_check_dirty_writeback); 110 111 /* 112 * Block until a buffer comes unlocked. This doesn't stop it 113 * from becoming locked again - you have to lock it yourself 114 * if you want to preserve its state. 115 */ 116 void __wait_on_buffer(struct buffer_head * bh) 117 { 118 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 119 } 120 EXPORT_SYMBOL(__wait_on_buffer); 121 122 static void 123 __clear_page_buffers(struct page *page) 124 { 125 ClearPagePrivate(page); 126 set_page_private(page, 0); 127 put_page(page); 128 } 129 130 static void buffer_io_error(struct buffer_head *bh, char *msg) 131 { 132 if (!test_bit(BH_Quiet, &bh->b_state)) 133 printk_ratelimited(KERN_ERR 134 "Buffer I/O error on dev %pg, logical block %llu%s\n", 135 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 136 } 137 138 /* 139 * End-of-IO handler helper function which does not touch the bh after 140 * unlocking it. 141 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 142 * a race there is benign: unlock_buffer() only use the bh's address for 143 * hashing after unlocking the buffer, so it doesn't actually touch the bh 144 * itself. 145 */ 146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 147 { 148 if (uptodate) { 149 set_buffer_uptodate(bh); 150 } else { 151 /* This happens, due to failed read-ahead attempts. */ 152 clear_buffer_uptodate(bh); 153 } 154 unlock_buffer(bh); 155 } 156 157 /* 158 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 159 * unlock the buffer. This is what ll_rw_block uses too. 160 */ 161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 162 { 163 __end_buffer_read_notouch(bh, uptodate); 164 put_bh(bh); 165 } 166 EXPORT_SYMBOL(end_buffer_read_sync); 167 168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 169 { 170 if (uptodate) { 171 set_buffer_uptodate(bh); 172 } else { 173 buffer_io_error(bh, ", lost sync page write"); 174 mark_buffer_write_io_error(bh); 175 clear_buffer_uptodate(bh); 176 } 177 unlock_buffer(bh); 178 put_bh(bh); 179 } 180 EXPORT_SYMBOL(end_buffer_write_sync); 181 182 /* 183 * Various filesystems appear to want __find_get_block to be non-blocking. 184 * But it's the page lock which protects the buffers. To get around this, 185 * we get exclusion from try_to_free_buffers with the blockdev mapping's 186 * private_lock. 187 * 188 * Hack idea: for the blockdev mapping, private_lock contention 189 * may be quite high. This code could TryLock the page, and if that 190 * succeeds, there is no need to take private_lock. 191 */ 192 static struct buffer_head * 193 __find_get_block_slow(struct block_device *bdev, sector_t block) 194 { 195 struct inode *bd_inode = bdev->bd_inode; 196 struct address_space *bd_mapping = bd_inode->i_mapping; 197 struct buffer_head *ret = NULL; 198 pgoff_t index; 199 struct buffer_head *bh; 200 struct buffer_head *head; 201 struct page *page; 202 int all_mapped = 1; 203 204 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 205 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 206 if (!page) 207 goto out; 208 209 spin_lock(&bd_mapping->private_lock); 210 if (!page_has_buffers(page)) 211 goto out_unlock; 212 head = page_buffers(page); 213 bh = head; 214 do { 215 if (!buffer_mapped(bh)) 216 all_mapped = 0; 217 else if (bh->b_blocknr == block) { 218 ret = bh; 219 get_bh(bh); 220 goto out_unlock; 221 } 222 bh = bh->b_this_page; 223 } while (bh != head); 224 225 /* we might be here because some of the buffers on this page are 226 * not mapped. This is due to various races between 227 * file io on the block device and getblk. It gets dealt with 228 * elsewhere, don't buffer_error if we had some unmapped buffers 229 */ 230 if (all_mapped) { 231 printk("__find_get_block_slow() failed. " 232 "block=%llu, b_blocknr=%llu\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr); 235 printk("b_state=0x%08lx, b_size=%zu\n", 236 bh->b_state, bh->b_size); 237 printk("device %pg blocksize: %d\n", bdev, 238 1 << bd_inode->i_blkbits); 239 } 240 out_unlock: 241 spin_unlock(&bd_mapping->private_lock); 242 put_page(page); 243 out: 244 return ret; 245 } 246 247 /* 248 * I/O completion handler for block_read_full_page() - pages 249 * which come unlocked at the end of I/O. 250 */ 251 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 252 { 253 unsigned long flags; 254 struct buffer_head *first; 255 struct buffer_head *tmp; 256 struct page *page; 257 int page_uptodate = 1; 258 259 BUG_ON(!buffer_async_read(bh)); 260 261 page = bh->b_page; 262 if (uptodate) { 263 set_buffer_uptodate(bh); 264 } else { 265 clear_buffer_uptodate(bh); 266 buffer_io_error(bh, ", async page read"); 267 SetPageError(page); 268 } 269 270 /* 271 * Be _very_ careful from here on. Bad things can happen if 272 * two buffer heads end IO at almost the same time and both 273 * decide that the page is now completely done. 274 */ 275 first = page_buffers(page); 276 local_irq_save(flags); 277 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 278 clear_buffer_async_read(bh); 279 unlock_buffer(bh); 280 tmp = bh; 281 do { 282 if (!buffer_uptodate(tmp)) 283 page_uptodate = 0; 284 if (buffer_async_read(tmp)) { 285 BUG_ON(!buffer_locked(tmp)); 286 goto still_busy; 287 } 288 tmp = tmp->b_this_page; 289 } while (tmp != bh); 290 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 291 local_irq_restore(flags); 292 293 /* 294 * If none of the buffers had errors and they are all 295 * uptodate then we can set the page uptodate. 296 */ 297 if (page_uptodate && !PageError(page)) 298 SetPageUptodate(page); 299 unlock_page(page); 300 return; 301 302 still_busy: 303 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 304 local_irq_restore(flags); 305 return; 306 } 307 308 /* 309 * Completion handler for block_write_full_page() - pages which are unlocked 310 * during I/O, and which have PageWriteback cleared upon I/O completion. 311 */ 312 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 313 { 314 unsigned long flags; 315 struct buffer_head *first; 316 struct buffer_head *tmp; 317 struct page *page; 318 319 BUG_ON(!buffer_async_write(bh)); 320 321 page = bh->b_page; 322 if (uptodate) { 323 set_buffer_uptodate(bh); 324 } else { 325 buffer_io_error(bh, ", lost async page write"); 326 mark_buffer_write_io_error(bh); 327 clear_buffer_uptodate(bh); 328 SetPageError(page); 329 } 330 331 first = page_buffers(page); 332 local_irq_save(flags); 333 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 334 335 clear_buffer_async_write(bh); 336 unlock_buffer(bh); 337 tmp = bh->b_this_page; 338 while (tmp != bh) { 339 if (buffer_async_write(tmp)) { 340 BUG_ON(!buffer_locked(tmp)); 341 goto still_busy; 342 } 343 tmp = tmp->b_this_page; 344 } 345 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 346 local_irq_restore(flags); 347 end_page_writeback(page); 348 return; 349 350 still_busy: 351 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 352 local_irq_restore(flags); 353 return; 354 } 355 EXPORT_SYMBOL(end_buffer_async_write); 356 357 /* 358 * If a page's buffers are under async readin (end_buffer_async_read 359 * completion) then there is a possibility that another thread of 360 * control could lock one of the buffers after it has completed 361 * but while some of the other buffers have not completed. This 362 * locked buffer would confuse end_buffer_async_read() into not unlocking 363 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 364 * that this buffer is not under async I/O. 365 * 366 * The page comes unlocked when it has no locked buffer_async buffers 367 * left. 368 * 369 * PageLocked prevents anyone starting new async I/O reads any of 370 * the buffers. 371 * 372 * PageWriteback is used to prevent simultaneous writeout of the same 373 * page. 374 * 375 * PageLocked prevents anyone from starting writeback of a page which is 376 * under read I/O (PageWriteback is only ever set against a locked page). 377 */ 378 static void mark_buffer_async_read(struct buffer_head *bh) 379 { 380 bh->b_end_io = end_buffer_async_read; 381 set_buffer_async_read(bh); 382 } 383 384 static void mark_buffer_async_write_endio(struct buffer_head *bh, 385 bh_end_io_t *handler) 386 { 387 bh->b_end_io = handler; 388 set_buffer_async_write(bh); 389 } 390 391 void mark_buffer_async_write(struct buffer_head *bh) 392 { 393 mark_buffer_async_write_endio(bh, end_buffer_async_write); 394 } 395 EXPORT_SYMBOL(mark_buffer_async_write); 396 397 398 /* 399 * fs/buffer.c contains helper functions for buffer-backed address space's 400 * fsync functions. A common requirement for buffer-based filesystems is 401 * that certain data from the backing blockdev needs to be written out for 402 * a successful fsync(). For example, ext2 indirect blocks need to be 403 * written back and waited upon before fsync() returns. 404 * 405 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 406 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 407 * management of a list of dependent buffers at ->i_mapping->private_list. 408 * 409 * Locking is a little subtle: try_to_free_buffers() will remove buffers 410 * from their controlling inode's queue when they are being freed. But 411 * try_to_free_buffers() will be operating against the *blockdev* mapping 412 * at the time, not against the S_ISREG file which depends on those buffers. 413 * So the locking for private_list is via the private_lock in the address_space 414 * which backs the buffers. Which is different from the address_space 415 * against which the buffers are listed. So for a particular address_space, 416 * mapping->private_lock does *not* protect mapping->private_list! In fact, 417 * mapping->private_list will always be protected by the backing blockdev's 418 * ->private_lock. 419 * 420 * Which introduces a requirement: all buffers on an address_space's 421 * ->private_list must be from the same address_space: the blockdev's. 422 * 423 * address_spaces which do not place buffers at ->private_list via these 424 * utility functions are free to use private_lock and private_list for 425 * whatever they want. The only requirement is that list_empty(private_list) 426 * be true at clear_inode() time. 427 * 428 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 429 * filesystems should do that. invalidate_inode_buffers() should just go 430 * BUG_ON(!list_empty). 431 * 432 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 433 * take an address_space, not an inode. And it should be called 434 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 435 * queued up. 436 * 437 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 438 * list if it is already on a list. Because if the buffer is on a list, 439 * it *must* already be on the right one. If not, the filesystem is being 440 * silly. This will save a ton of locking. But first we have to ensure 441 * that buffers are taken *off* the old inode's list when they are freed 442 * (presumably in truncate). That requires careful auditing of all 443 * filesystems (do it inside bforget()). It could also be done by bringing 444 * b_inode back. 445 */ 446 447 /* 448 * The buffer's backing address_space's private_lock must be held 449 */ 450 static void __remove_assoc_queue(struct buffer_head *bh) 451 { 452 list_del_init(&bh->b_assoc_buffers); 453 WARN_ON(!bh->b_assoc_map); 454 bh->b_assoc_map = NULL; 455 } 456 457 int inode_has_buffers(struct inode *inode) 458 { 459 return !list_empty(&inode->i_data.private_list); 460 } 461 462 /* 463 * osync is designed to support O_SYNC io. It waits synchronously for 464 * all already-submitted IO to complete, but does not queue any new 465 * writes to the disk. 466 * 467 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 468 * you dirty the buffers, and then use osync_inode_buffers to wait for 469 * completion. Any other dirty buffers which are not yet queued for 470 * write will not be flushed to disk by the osync. 471 */ 472 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 473 { 474 struct buffer_head *bh; 475 struct list_head *p; 476 int err = 0; 477 478 spin_lock(lock); 479 repeat: 480 list_for_each_prev(p, list) { 481 bh = BH_ENTRY(p); 482 if (buffer_locked(bh)) { 483 get_bh(bh); 484 spin_unlock(lock); 485 wait_on_buffer(bh); 486 if (!buffer_uptodate(bh)) 487 err = -EIO; 488 brelse(bh); 489 spin_lock(lock); 490 goto repeat; 491 } 492 } 493 spin_unlock(lock); 494 return err; 495 } 496 497 void emergency_thaw_bdev(struct super_block *sb) 498 { 499 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 500 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 501 } 502 503 /** 504 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 505 * @mapping: the mapping which wants those buffers written 506 * 507 * Starts I/O against the buffers at mapping->private_list, and waits upon 508 * that I/O. 509 * 510 * Basically, this is a convenience function for fsync(). 511 * @mapping is a file or directory which needs those buffers to be written for 512 * a successful fsync(). 513 */ 514 int sync_mapping_buffers(struct address_space *mapping) 515 { 516 struct address_space *buffer_mapping = mapping->private_data; 517 518 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 519 return 0; 520 521 return fsync_buffers_list(&buffer_mapping->private_lock, 522 &mapping->private_list); 523 } 524 EXPORT_SYMBOL(sync_mapping_buffers); 525 526 /* 527 * Called when we've recently written block `bblock', and it is known that 528 * `bblock' was for a buffer_boundary() buffer. This means that the block at 529 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 530 * dirty, schedule it for IO. So that indirects merge nicely with their data. 531 */ 532 void write_boundary_block(struct block_device *bdev, 533 sector_t bblock, unsigned blocksize) 534 { 535 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 536 if (bh) { 537 if (buffer_dirty(bh)) 538 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh); 539 put_bh(bh); 540 } 541 } 542 543 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 544 { 545 struct address_space *mapping = inode->i_mapping; 546 struct address_space *buffer_mapping = bh->b_page->mapping; 547 548 mark_buffer_dirty(bh); 549 if (!mapping->private_data) { 550 mapping->private_data = buffer_mapping; 551 } else { 552 BUG_ON(mapping->private_data != buffer_mapping); 553 } 554 if (!bh->b_assoc_map) { 555 spin_lock(&buffer_mapping->private_lock); 556 list_move_tail(&bh->b_assoc_buffers, 557 &mapping->private_list); 558 bh->b_assoc_map = mapping; 559 spin_unlock(&buffer_mapping->private_lock); 560 } 561 } 562 EXPORT_SYMBOL(mark_buffer_dirty_inode); 563 564 /* 565 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 566 * dirty. 567 * 568 * If warn is true, then emit a warning if the page is not uptodate and has 569 * not been truncated. 570 * 571 * The caller must hold lock_page_memcg(). 572 */ 573 void __set_page_dirty(struct page *page, struct address_space *mapping, 574 int warn) 575 { 576 unsigned long flags; 577 578 xa_lock_irqsave(&mapping->i_pages, flags); 579 if (page->mapping) { /* Race with truncate? */ 580 WARN_ON_ONCE(warn && !PageUptodate(page)); 581 account_page_dirtied(page, mapping); 582 __xa_set_mark(&mapping->i_pages, page_index(page), 583 PAGECACHE_TAG_DIRTY); 584 } 585 xa_unlock_irqrestore(&mapping->i_pages, flags); 586 } 587 EXPORT_SYMBOL_GPL(__set_page_dirty); 588 589 /* 590 * Add a page to the dirty page list. 591 * 592 * It is a sad fact of life that this function is called from several places 593 * deeply under spinlocking. It may not sleep. 594 * 595 * If the page has buffers, the uptodate buffers are set dirty, to preserve 596 * dirty-state coherency between the page and the buffers. It the page does 597 * not have buffers then when they are later attached they will all be set 598 * dirty. 599 * 600 * The buffers are dirtied before the page is dirtied. There's a small race 601 * window in which a writepage caller may see the page cleanness but not the 602 * buffer dirtiness. That's fine. If this code were to set the page dirty 603 * before the buffers, a concurrent writepage caller could clear the page dirty 604 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 605 * page on the dirty page list. 606 * 607 * We use private_lock to lock against try_to_free_buffers while using the 608 * page's buffer list. Also use this to protect against clean buffers being 609 * added to the page after it was set dirty. 610 * 611 * FIXME: may need to call ->reservepage here as well. That's rather up to the 612 * address_space though. 613 */ 614 int __set_page_dirty_buffers(struct page *page) 615 { 616 int newly_dirty; 617 struct address_space *mapping = page_mapping(page); 618 619 if (unlikely(!mapping)) 620 return !TestSetPageDirty(page); 621 622 spin_lock(&mapping->private_lock); 623 if (page_has_buffers(page)) { 624 struct buffer_head *head = page_buffers(page); 625 struct buffer_head *bh = head; 626 627 do { 628 set_buffer_dirty(bh); 629 bh = bh->b_this_page; 630 } while (bh != head); 631 } 632 /* 633 * Lock out page->mem_cgroup migration to keep PageDirty 634 * synchronized with per-memcg dirty page counters. 635 */ 636 lock_page_memcg(page); 637 newly_dirty = !TestSetPageDirty(page); 638 spin_unlock(&mapping->private_lock); 639 640 if (newly_dirty) 641 __set_page_dirty(page, mapping, 1); 642 643 unlock_page_memcg(page); 644 645 if (newly_dirty) 646 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 647 648 return newly_dirty; 649 } 650 EXPORT_SYMBOL(__set_page_dirty_buffers); 651 652 /* 653 * Write out and wait upon a list of buffers. 654 * 655 * We have conflicting pressures: we want to make sure that all 656 * initially dirty buffers get waited on, but that any subsequently 657 * dirtied buffers don't. After all, we don't want fsync to last 658 * forever if somebody is actively writing to the file. 659 * 660 * Do this in two main stages: first we copy dirty buffers to a 661 * temporary inode list, queueing the writes as we go. Then we clean 662 * up, waiting for those writes to complete. 663 * 664 * During this second stage, any subsequent updates to the file may end 665 * up refiling the buffer on the original inode's dirty list again, so 666 * there is a chance we will end up with a buffer queued for write but 667 * not yet completed on that list. So, as a final cleanup we go through 668 * the osync code to catch these locked, dirty buffers without requeuing 669 * any newly dirty buffers for write. 670 */ 671 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 672 { 673 struct buffer_head *bh; 674 struct list_head tmp; 675 struct address_space *mapping; 676 int err = 0, err2; 677 struct blk_plug plug; 678 679 INIT_LIST_HEAD(&tmp); 680 blk_start_plug(&plug); 681 682 spin_lock(lock); 683 while (!list_empty(list)) { 684 bh = BH_ENTRY(list->next); 685 mapping = bh->b_assoc_map; 686 __remove_assoc_queue(bh); 687 /* Avoid race with mark_buffer_dirty_inode() which does 688 * a lockless check and we rely on seeing the dirty bit */ 689 smp_mb(); 690 if (buffer_dirty(bh) || buffer_locked(bh)) { 691 list_add(&bh->b_assoc_buffers, &tmp); 692 bh->b_assoc_map = mapping; 693 if (buffer_dirty(bh)) { 694 get_bh(bh); 695 spin_unlock(lock); 696 /* 697 * Ensure any pending I/O completes so that 698 * write_dirty_buffer() actually writes the 699 * current contents - it is a noop if I/O is 700 * still in flight on potentially older 701 * contents. 702 */ 703 write_dirty_buffer(bh, REQ_SYNC); 704 705 /* 706 * Kick off IO for the previous mapping. Note 707 * that we will not run the very last mapping, 708 * wait_on_buffer() will do that for us 709 * through sync_buffer(). 710 */ 711 brelse(bh); 712 spin_lock(lock); 713 } 714 } 715 } 716 717 spin_unlock(lock); 718 blk_finish_plug(&plug); 719 spin_lock(lock); 720 721 while (!list_empty(&tmp)) { 722 bh = BH_ENTRY(tmp.prev); 723 get_bh(bh); 724 mapping = bh->b_assoc_map; 725 __remove_assoc_queue(bh); 726 /* Avoid race with mark_buffer_dirty_inode() which does 727 * a lockless check and we rely on seeing the dirty bit */ 728 smp_mb(); 729 if (buffer_dirty(bh)) { 730 list_add(&bh->b_assoc_buffers, 731 &mapping->private_list); 732 bh->b_assoc_map = mapping; 733 } 734 spin_unlock(lock); 735 wait_on_buffer(bh); 736 if (!buffer_uptodate(bh)) 737 err = -EIO; 738 brelse(bh); 739 spin_lock(lock); 740 } 741 742 spin_unlock(lock); 743 err2 = osync_buffers_list(lock, list); 744 if (err) 745 return err; 746 else 747 return err2; 748 } 749 750 /* 751 * Invalidate any and all dirty buffers on a given inode. We are 752 * probably unmounting the fs, but that doesn't mean we have already 753 * done a sync(). Just drop the buffers from the inode list. 754 * 755 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 756 * assumes that all the buffers are against the blockdev. Not true 757 * for reiserfs. 758 */ 759 void invalidate_inode_buffers(struct inode *inode) 760 { 761 if (inode_has_buffers(inode)) { 762 struct address_space *mapping = &inode->i_data; 763 struct list_head *list = &mapping->private_list; 764 struct address_space *buffer_mapping = mapping->private_data; 765 766 spin_lock(&buffer_mapping->private_lock); 767 while (!list_empty(list)) 768 __remove_assoc_queue(BH_ENTRY(list->next)); 769 spin_unlock(&buffer_mapping->private_lock); 770 } 771 } 772 EXPORT_SYMBOL(invalidate_inode_buffers); 773 774 /* 775 * Remove any clean buffers from the inode's buffer list. This is called 776 * when we're trying to free the inode itself. Those buffers can pin it. 777 * 778 * Returns true if all buffers were removed. 779 */ 780 int remove_inode_buffers(struct inode *inode) 781 { 782 int ret = 1; 783 784 if (inode_has_buffers(inode)) { 785 struct address_space *mapping = &inode->i_data; 786 struct list_head *list = &mapping->private_list; 787 struct address_space *buffer_mapping = mapping->private_data; 788 789 spin_lock(&buffer_mapping->private_lock); 790 while (!list_empty(list)) { 791 struct buffer_head *bh = BH_ENTRY(list->next); 792 if (buffer_dirty(bh)) { 793 ret = 0; 794 break; 795 } 796 __remove_assoc_queue(bh); 797 } 798 spin_unlock(&buffer_mapping->private_lock); 799 } 800 return ret; 801 } 802 803 /* 804 * Create the appropriate buffers when given a page for data area and 805 * the size of each buffer.. Use the bh->b_this_page linked list to 806 * follow the buffers created. Return NULL if unable to create more 807 * buffers. 808 * 809 * The retry flag is used to differentiate async IO (paging, swapping) 810 * which may not fail from ordinary buffer allocations. 811 */ 812 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 813 bool retry) 814 { 815 struct buffer_head *bh, *head; 816 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 817 long offset; 818 struct mem_cgroup *memcg; 819 820 if (retry) 821 gfp |= __GFP_NOFAIL; 822 823 memcg = get_mem_cgroup_from_page(page); 824 memalloc_use_memcg(memcg); 825 826 head = NULL; 827 offset = PAGE_SIZE; 828 while ((offset -= size) >= 0) { 829 bh = alloc_buffer_head(gfp); 830 if (!bh) 831 goto no_grow; 832 833 bh->b_this_page = head; 834 bh->b_blocknr = -1; 835 head = bh; 836 837 bh->b_size = size; 838 839 /* Link the buffer to its page */ 840 set_bh_page(bh, page, offset); 841 } 842 out: 843 memalloc_unuse_memcg(); 844 mem_cgroup_put(memcg); 845 return head; 846 /* 847 * In case anything failed, we just free everything we got. 848 */ 849 no_grow: 850 if (head) { 851 do { 852 bh = head; 853 head = head->b_this_page; 854 free_buffer_head(bh); 855 } while (head); 856 } 857 858 goto out; 859 } 860 EXPORT_SYMBOL_GPL(alloc_page_buffers); 861 862 static inline void 863 link_dev_buffers(struct page *page, struct buffer_head *head) 864 { 865 struct buffer_head *bh, *tail; 866 867 bh = head; 868 do { 869 tail = bh; 870 bh = bh->b_this_page; 871 } while (bh); 872 tail->b_this_page = head; 873 attach_page_buffers(page, head); 874 } 875 876 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 877 { 878 sector_t retval = ~((sector_t)0); 879 loff_t sz = i_size_read(bdev->bd_inode); 880 881 if (sz) { 882 unsigned int sizebits = blksize_bits(size); 883 retval = (sz >> sizebits); 884 } 885 return retval; 886 } 887 888 /* 889 * Initialise the state of a blockdev page's buffers. 890 */ 891 static sector_t 892 init_page_buffers(struct page *page, struct block_device *bdev, 893 sector_t block, int size) 894 { 895 struct buffer_head *head = page_buffers(page); 896 struct buffer_head *bh = head; 897 int uptodate = PageUptodate(page); 898 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 899 900 do { 901 if (!buffer_mapped(bh)) { 902 bh->b_end_io = NULL; 903 bh->b_private = NULL; 904 bh->b_bdev = bdev; 905 bh->b_blocknr = block; 906 if (uptodate) 907 set_buffer_uptodate(bh); 908 if (block < end_block) 909 set_buffer_mapped(bh); 910 } 911 block++; 912 bh = bh->b_this_page; 913 } while (bh != head); 914 915 /* 916 * Caller needs to validate requested block against end of device. 917 */ 918 return end_block; 919 } 920 921 /* 922 * Create the page-cache page that contains the requested block. 923 * 924 * This is used purely for blockdev mappings. 925 */ 926 static int 927 grow_dev_page(struct block_device *bdev, sector_t block, 928 pgoff_t index, int size, int sizebits, gfp_t gfp) 929 { 930 struct inode *inode = bdev->bd_inode; 931 struct page *page; 932 struct buffer_head *bh; 933 sector_t end_block; 934 int ret = 0; /* Will call free_more_memory() */ 935 gfp_t gfp_mask; 936 937 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 938 939 /* 940 * XXX: __getblk_slow() can not really deal with failure and 941 * will endlessly loop on improvised global reclaim. Prefer 942 * looping in the allocator rather than here, at least that 943 * code knows what it's doing. 944 */ 945 gfp_mask |= __GFP_NOFAIL; 946 947 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 948 949 BUG_ON(!PageLocked(page)); 950 951 if (page_has_buffers(page)) { 952 bh = page_buffers(page); 953 if (bh->b_size == size) { 954 end_block = init_page_buffers(page, bdev, 955 (sector_t)index << sizebits, 956 size); 957 goto done; 958 } 959 if (!try_to_free_buffers(page)) 960 goto failed; 961 } 962 963 /* 964 * Allocate some buffers for this page 965 */ 966 bh = alloc_page_buffers(page, size, true); 967 968 /* 969 * Link the page to the buffers and initialise them. Take the 970 * lock to be atomic wrt __find_get_block(), which does not 971 * run under the page lock. 972 */ 973 spin_lock(&inode->i_mapping->private_lock); 974 link_dev_buffers(page, bh); 975 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 976 size); 977 spin_unlock(&inode->i_mapping->private_lock); 978 done: 979 ret = (block < end_block) ? 1 : -ENXIO; 980 failed: 981 unlock_page(page); 982 put_page(page); 983 return ret; 984 } 985 986 /* 987 * Create buffers for the specified block device block's page. If 988 * that page was dirty, the buffers are set dirty also. 989 */ 990 static int 991 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 992 { 993 pgoff_t index; 994 int sizebits; 995 996 sizebits = -1; 997 do { 998 sizebits++; 999 } while ((size << sizebits) < PAGE_SIZE); 1000 1001 index = block >> sizebits; 1002 1003 /* 1004 * Check for a block which wants to lie outside our maximum possible 1005 * pagecache index. (this comparison is done using sector_t types). 1006 */ 1007 if (unlikely(index != block >> sizebits)) { 1008 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1009 "device %pg\n", 1010 __func__, (unsigned long long)block, 1011 bdev); 1012 return -EIO; 1013 } 1014 1015 /* Create a page with the proper size buffers.. */ 1016 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1017 } 1018 1019 static struct buffer_head * 1020 __getblk_slow(struct block_device *bdev, sector_t block, 1021 unsigned size, gfp_t gfp) 1022 { 1023 /* Size must be multiple of hard sectorsize */ 1024 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1025 (size < 512 || size > PAGE_SIZE))) { 1026 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1027 size); 1028 printk(KERN_ERR "logical block size: %d\n", 1029 bdev_logical_block_size(bdev)); 1030 1031 dump_stack(); 1032 return NULL; 1033 } 1034 1035 for (;;) { 1036 struct buffer_head *bh; 1037 int ret; 1038 1039 bh = __find_get_block(bdev, block, size); 1040 if (bh) 1041 return bh; 1042 1043 ret = grow_buffers(bdev, block, size, gfp); 1044 if (ret < 0) 1045 return NULL; 1046 } 1047 } 1048 1049 /* 1050 * The relationship between dirty buffers and dirty pages: 1051 * 1052 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1053 * the page is tagged dirty in the page cache. 1054 * 1055 * At all times, the dirtiness of the buffers represents the dirtiness of 1056 * subsections of the page. If the page has buffers, the page dirty bit is 1057 * merely a hint about the true dirty state. 1058 * 1059 * When a page is set dirty in its entirety, all its buffers are marked dirty 1060 * (if the page has buffers). 1061 * 1062 * When a buffer is marked dirty, its page is dirtied, but the page's other 1063 * buffers are not. 1064 * 1065 * Also. When blockdev buffers are explicitly read with bread(), they 1066 * individually become uptodate. But their backing page remains not 1067 * uptodate - even if all of its buffers are uptodate. A subsequent 1068 * block_read_full_page() against that page will discover all the uptodate 1069 * buffers, will set the page uptodate and will perform no I/O. 1070 */ 1071 1072 /** 1073 * mark_buffer_dirty - mark a buffer_head as needing writeout 1074 * @bh: the buffer_head to mark dirty 1075 * 1076 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1077 * its backing page dirty, then tag the page as dirty in the page cache 1078 * and then attach the address_space's inode to its superblock's dirty 1079 * inode list. 1080 * 1081 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1082 * i_pages lock and mapping->host->i_lock. 1083 */ 1084 void mark_buffer_dirty(struct buffer_head *bh) 1085 { 1086 WARN_ON_ONCE(!buffer_uptodate(bh)); 1087 1088 trace_block_dirty_buffer(bh); 1089 1090 /* 1091 * Very *carefully* optimize the it-is-already-dirty case. 1092 * 1093 * Don't let the final "is it dirty" escape to before we 1094 * perhaps modified the buffer. 1095 */ 1096 if (buffer_dirty(bh)) { 1097 smp_mb(); 1098 if (buffer_dirty(bh)) 1099 return; 1100 } 1101 1102 if (!test_set_buffer_dirty(bh)) { 1103 struct page *page = bh->b_page; 1104 struct address_space *mapping = NULL; 1105 1106 lock_page_memcg(page); 1107 if (!TestSetPageDirty(page)) { 1108 mapping = page_mapping(page); 1109 if (mapping) 1110 __set_page_dirty(page, mapping, 0); 1111 } 1112 unlock_page_memcg(page); 1113 if (mapping) 1114 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1115 } 1116 } 1117 EXPORT_SYMBOL(mark_buffer_dirty); 1118 1119 void mark_buffer_write_io_error(struct buffer_head *bh) 1120 { 1121 set_buffer_write_io_error(bh); 1122 /* FIXME: do we need to set this in both places? */ 1123 if (bh->b_page && bh->b_page->mapping) 1124 mapping_set_error(bh->b_page->mapping, -EIO); 1125 if (bh->b_assoc_map) 1126 mapping_set_error(bh->b_assoc_map, -EIO); 1127 } 1128 EXPORT_SYMBOL(mark_buffer_write_io_error); 1129 1130 /* 1131 * Decrement a buffer_head's reference count. If all buffers against a page 1132 * have zero reference count, are clean and unlocked, and if the page is clean 1133 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1134 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1135 * a page but it ends up not being freed, and buffers may later be reattached). 1136 */ 1137 void __brelse(struct buffer_head * buf) 1138 { 1139 if (atomic_read(&buf->b_count)) { 1140 put_bh(buf); 1141 return; 1142 } 1143 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1144 } 1145 EXPORT_SYMBOL(__brelse); 1146 1147 /* 1148 * bforget() is like brelse(), except it discards any 1149 * potentially dirty data. 1150 */ 1151 void __bforget(struct buffer_head *bh) 1152 { 1153 clear_buffer_dirty(bh); 1154 if (bh->b_assoc_map) { 1155 struct address_space *buffer_mapping = bh->b_page->mapping; 1156 1157 spin_lock(&buffer_mapping->private_lock); 1158 list_del_init(&bh->b_assoc_buffers); 1159 bh->b_assoc_map = NULL; 1160 spin_unlock(&buffer_mapping->private_lock); 1161 } 1162 __brelse(bh); 1163 } 1164 EXPORT_SYMBOL(__bforget); 1165 1166 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1167 { 1168 lock_buffer(bh); 1169 if (buffer_uptodate(bh)) { 1170 unlock_buffer(bh); 1171 return bh; 1172 } else { 1173 get_bh(bh); 1174 bh->b_end_io = end_buffer_read_sync; 1175 submit_bh(REQ_OP_READ, 0, bh); 1176 wait_on_buffer(bh); 1177 if (buffer_uptodate(bh)) 1178 return bh; 1179 } 1180 brelse(bh); 1181 return NULL; 1182 } 1183 1184 /* 1185 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1186 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1187 * refcount elevated by one when they're in an LRU. A buffer can only appear 1188 * once in a particular CPU's LRU. A single buffer can be present in multiple 1189 * CPU's LRUs at the same time. 1190 * 1191 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1192 * sb_find_get_block(). 1193 * 1194 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1195 * a local interrupt disable for that. 1196 */ 1197 1198 #define BH_LRU_SIZE 16 1199 1200 struct bh_lru { 1201 struct buffer_head *bhs[BH_LRU_SIZE]; 1202 }; 1203 1204 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1205 1206 #ifdef CONFIG_SMP 1207 #define bh_lru_lock() local_irq_disable() 1208 #define bh_lru_unlock() local_irq_enable() 1209 #else 1210 #define bh_lru_lock() preempt_disable() 1211 #define bh_lru_unlock() preempt_enable() 1212 #endif 1213 1214 static inline void check_irqs_on(void) 1215 { 1216 #ifdef irqs_disabled 1217 BUG_ON(irqs_disabled()); 1218 #endif 1219 } 1220 1221 /* 1222 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1223 * inserted at the front, and the buffer_head at the back if any is evicted. 1224 * Or, if already in the LRU it is moved to the front. 1225 */ 1226 static void bh_lru_install(struct buffer_head *bh) 1227 { 1228 struct buffer_head *evictee = bh; 1229 struct bh_lru *b; 1230 int i; 1231 1232 check_irqs_on(); 1233 bh_lru_lock(); 1234 1235 b = this_cpu_ptr(&bh_lrus); 1236 for (i = 0; i < BH_LRU_SIZE; i++) { 1237 swap(evictee, b->bhs[i]); 1238 if (evictee == bh) { 1239 bh_lru_unlock(); 1240 return; 1241 } 1242 } 1243 1244 get_bh(bh); 1245 bh_lru_unlock(); 1246 brelse(evictee); 1247 } 1248 1249 /* 1250 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1251 */ 1252 static struct buffer_head * 1253 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1254 { 1255 struct buffer_head *ret = NULL; 1256 unsigned int i; 1257 1258 check_irqs_on(); 1259 bh_lru_lock(); 1260 for (i = 0; i < BH_LRU_SIZE; i++) { 1261 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1262 1263 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1264 bh->b_size == size) { 1265 if (i) { 1266 while (i) { 1267 __this_cpu_write(bh_lrus.bhs[i], 1268 __this_cpu_read(bh_lrus.bhs[i - 1])); 1269 i--; 1270 } 1271 __this_cpu_write(bh_lrus.bhs[0], bh); 1272 } 1273 get_bh(bh); 1274 ret = bh; 1275 break; 1276 } 1277 } 1278 bh_lru_unlock(); 1279 return ret; 1280 } 1281 1282 /* 1283 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1284 * it in the LRU and mark it as accessed. If it is not present then return 1285 * NULL 1286 */ 1287 struct buffer_head * 1288 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1289 { 1290 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1291 1292 if (bh == NULL) { 1293 /* __find_get_block_slow will mark the page accessed */ 1294 bh = __find_get_block_slow(bdev, block); 1295 if (bh) 1296 bh_lru_install(bh); 1297 } else 1298 touch_buffer(bh); 1299 1300 return bh; 1301 } 1302 EXPORT_SYMBOL(__find_get_block); 1303 1304 /* 1305 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1306 * which corresponds to the passed block_device, block and size. The 1307 * returned buffer has its reference count incremented. 1308 * 1309 * __getblk_gfp() will lock up the machine if grow_dev_page's 1310 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1311 */ 1312 struct buffer_head * 1313 __getblk_gfp(struct block_device *bdev, sector_t block, 1314 unsigned size, gfp_t gfp) 1315 { 1316 struct buffer_head *bh = __find_get_block(bdev, block, size); 1317 1318 might_sleep(); 1319 if (bh == NULL) 1320 bh = __getblk_slow(bdev, block, size, gfp); 1321 return bh; 1322 } 1323 EXPORT_SYMBOL(__getblk_gfp); 1324 1325 /* 1326 * Do async read-ahead on a buffer.. 1327 */ 1328 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1329 { 1330 struct buffer_head *bh = __getblk(bdev, block, size); 1331 if (likely(bh)) { 1332 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh); 1333 brelse(bh); 1334 } 1335 } 1336 EXPORT_SYMBOL(__breadahead); 1337 1338 /** 1339 * __bread_gfp() - reads a specified block and returns the bh 1340 * @bdev: the block_device to read from 1341 * @block: number of block 1342 * @size: size (in bytes) to read 1343 * @gfp: page allocation flag 1344 * 1345 * Reads a specified block, and returns buffer head that contains it. 1346 * The page cache can be allocated from non-movable area 1347 * not to prevent page migration if you set gfp to zero. 1348 * It returns NULL if the block was unreadable. 1349 */ 1350 struct buffer_head * 1351 __bread_gfp(struct block_device *bdev, sector_t block, 1352 unsigned size, gfp_t gfp) 1353 { 1354 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1355 1356 if (likely(bh) && !buffer_uptodate(bh)) 1357 bh = __bread_slow(bh); 1358 return bh; 1359 } 1360 EXPORT_SYMBOL(__bread_gfp); 1361 1362 /* 1363 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1364 * This doesn't race because it runs in each cpu either in irq 1365 * or with preempt disabled. 1366 */ 1367 static void invalidate_bh_lru(void *arg) 1368 { 1369 struct bh_lru *b = &get_cpu_var(bh_lrus); 1370 int i; 1371 1372 for (i = 0; i < BH_LRU_SIZE; i++) { 1373 brelse(b->bhs[i]); 1374 b->bhs[i] = NULL; 1375 } 1376 put_cpu_var(bh_lrus); 1377 } 1378 1379 static bool has_bh_in_lru(int cpu, void *dummy) 1380 { 1381 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1382 int i; 1383 1384 for (i = 0; i < BH_LRU_SIZE; i++) { 1385 if (b->bhs[i]) 1386 return 1; 1387 } 1388 1389 return 0; 1390 } 1391 1392 void invalidate_bh_lrus(void) 1393 { 1394 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1395 } 1396 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1397 1398 void set_bh_page(struct buffer_head *bh, 1399 struct page *page, unsigned long offset) 1400 { 1401 bh->b_page = page; 1402 BUG_ON(offset >= PAGE_SIZE); 1403 if (PageHighMem(page)) 1404 /* 1405 * This catches illegal uses and preserves the offset: 1406 */ 1407 bh->b_data = (char *)(0 + offset); 1408 else 1409 bh->b_data = page_address(page) + offset; 1410 } 1411 EXPORT_SYMBOL(set_bh_page); 1412 1413 /* 1414 * Called when truncating a buffer on a page completely. 1415 */ 1416 1417 /* Bits that are cleared during an invalidate */ 1418 #define BUFFER_FLAGS_DISCARD \ 1419 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1420 1 << BH_Delay | 1 << BH_Unwritten) 1421 1422 static void discard_buffer(struct buffer_head * bh) 1423 { 1424 unsigned long b_state, b_state_old; 1425 1426 lock_buffer(bh); 1427 clear_buffer_dirty(bh); 1428 bh->b_bdev = NULL; 1429 b_state = bh->b_state; 1430 for (;;) { 1431 b_state_old = cmpxchg(&bh->b_state, b_state, 1432 (b_state & ~BUFFER_FLAGS_DISCARD)); 1433 if (b_state_old == b_state) 1434 break; 1435 b_state = b_state_old; 1436 } 1437 unlock_buffer(bh); 1438 } 1439 1440 /** 1441 * block_invalidatepage - invalidate part or all of a buffer-backed page 1442 * 1443 * @page: the page which is affected 1444 * @offset: start of the range to invalidate 1445 * @length: length of the range to invalidate 1446 * 1447 * block_invalidatepage() is called when all or part of the page has become 1448 * invalidated by a truncate operation. 1449 * 1450 * block_invalidatepage() does not have to release all buffers, but it must 1451 * ensure that no dirty buffer is left outside @offset and that no I/O 1452 * is underway against any of the blocks which are outside the truncation 1453 * point. Because the caller is about to free (and possibly reuse) those 1454 * blocks on-disk. 1455 */ 1456 void block_invalidatepage(struct page *page, unsigned int offset, 1457 unsigned int length) 1458 { 1459 struct buffer_head *head, *bh, *next; 1460 unsigned int curr_off = 0; 1461 unsigned int stop = length + offset; 1462 1463 BUG_ON(!PageLocked(page)); 1464 if (!page_has_buffers(page)) 1465 goto out; 1466 1467 /* 1468 * Check for overflow 1469 */ 1470 BUG_ON(stop > PAGE_SIZE || stop < length); 1471 1472 head = page_buffers(page); 1473 bh = head; 1474 do { 1475 unsigned int next_off = curr_off + bh->b_size; 1476 next = bh->b_this_page; 1477 1478 /* 1479 * Are we still fully in range ? 1480 */ 1481 if (next_off > stop) 1482 goto out; 1483 1484 /* 1485 * is this block fully invalidated? 1486 */ 1487 if (offset <= curr_off) 1488 discard_buffer(bh); 1489 curr_off = next_off; 1490 bh = next; 1491 } while (bh != head); 1492 1493 /* 1494 * We release buffers only if the entire page is being invalidated. 1495 * The get_block cached value has been unconditionally invalidated, 1496 * so real IO is not possible anymore. 1497 */ 1498 if (length == PAGE_SIZE) 1499 try_to_release_page(page, 0); 1500 out: 1501 return; 1502 } 1503 EXPORT_SYMBOL(block_invalidatepage); 1504 1505 1506 /* 1507 * We attach and possibly dirty the buffers atomically wrt 1508 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1509 * is already excluded via the page lock. 1510 */ 1511 void create_empty_buffers(struct page *page, 1512 unsigned long blocksize, unsigned long b_state) 1513 { 1514 struct buffer_head *bh, *head, *tail; 1515 1516 head = alloc_page_buffers(page, blocksize, true); 1517 bh = head; 1518 do { 1519 bh->b_state |= b_state; 1520 tail = bh; 1521 bh = bh->b_this_page; 1522 } while (bh); 1523 tail->b_this_page = head; 1524 1525 spin_lock(&page->mapping->private_lock); 1526 if (PageUptodate(page) || PageDirty(page)) { 1527 bh = head; 1528 do { 1529 if (PageDirty(page)) 1530 set_buffer_dirty(bh); 1531 if (PageUptodate(page)) 1532 set_buffer_uptodate(bh); 1533 bh = bh->b_this_page; 1534 } while (bh != head); 1535 } 1536 attach_page_buffers(page, head); 1537 spin_unlock(&page->mapping->private_lock); 1538 } 1539 EXPORT_SYMBOL(create_empty_buffers); 1540 1541 /** 1542 * clean_bdev_aliases: clean a range of buffers in block device 1543 * @bdev: Block device to clean buffers in 1544 * @block: Start of a range of blocks to clean 1545 * @len: Number of blocks to clean 1546 * 1547 * We are taking a range of blocks for data and we don't want writeback of any 1548 * buffer-cache aliases starting from return from this function and until the 1549 * moment when something will explicitly mark the buffer dirty (hopefully that 1550 * will not happen until we will free that block ;-) We don't even need to mark 1551 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1552 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1553 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1554 * would confuse anyone who might pick it with bread() afterwards... 1555 * 1556 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1557 * writeout I/O going on against recently-freed buffers. We don't wait on that 1558 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1559 * need to. That happens here. 1560 */ 1561 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1562 { 1563 struct inode *bd_inode = bdev->bd_inode; 1564 struct address_space *bd_mapping = bd_inode->i_mapping; 1565 struct pagevec pvec; 1566 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1567 pgoff_t end; 1568 int i, count; 1569 struct buffer_head *bh; 1570 struct buffer_head *head; 1571 1572 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1573 pagevec_init(&pvec); 1574 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) { 1575 count = pagevec_count(&pvec); 1576 for (i = 0; i < count; i++) { 1577 struct page *page = pvec.pages[i]; 1578 1579 if (!page_has_buffers(page)) 1580 continue; 1581 /* 1582 * We use page lock instead of bd_mapping->private_lock 1583 * to pin buffers here since we can afford to sleep and 1584 * it scales better than a global spinlock lock. 1585 */ 1586 lock_page(page); 1587 /* Recheck when the page is locked which pins bhs */ 1588 if (!page_has_buffers(page)) 1589 goto unlock_page; 1590 head = page_buffers(page); 1591 bh = head; 1592 do { 1593 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1594 goto next; 1595 if (bh->b_blocknr >= block + len) 1596 break; 1597 clear_buffer_dirty(bh); 1598 wait_on_buffer(bh); 1599 clear_buffer_req(bh); 1600 next: 1601 bh = bh->b_this_page; 1602 } while (bh != head); 1603 unlock_page: 1604 unlock_page(page); 1605 } 1606 pagevec_release(&pvec); 1607 cond_resched(); 1608 /* End of range already reached? */ 1609 if (index > end || !index) 1610 break; 1611 } 1612 } 1613 EXPORT_SYMBOL(clean_bdev_aliases); 1614 1615 /* 1616 * Size is a power-of-two in the range 512..PAGE_SIZE, 1617 * and the case we care about most is PAGE_SIZE. 1618 * 1619 * So this *could* possibly be written with those 1620 * constraints in mind (relevant mostly if some 1621 * architecture has a slow bit-scan instruction) 1622 */ 1623 static inline int block_size_bits(unsigned int blocksize) 1624 { 1625 return ilog2(blocksize); 1626 } 1627 1628 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1629 { 1630 BUG_ON(!PageLocked(page)); 1631 1632 if (!page_has_buffers(page)) 1633 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits), 1634 b_state); 1635 return page_buffers(page); 1636 } 1637 1638 /* 1639 * NOTE! All mapped/uptodate combinations are valid: 1640 * 1641 * Mapped Uptodate Meaning 1642 * 1643 * No No "unknown" - must do get_block() 1644 * No Yes "hole" - zero-filled 1645 * Yes No "allocated" - allocated on disk, not read in 1646 * Yes Yes "valid" - allocated and up-to-date in memory. 1647 * 1648 * "Dirty" is valid only with the last case (mapped+uptodate). 1649 */ 1650 1651 /* 1652 * While block_write_full_page is writing back the dirty buffers under 1653 * the page lock, whoever dirtied the buffers may decide to clean them 1654 * again at any time. We handle that by only looking at the buffer 1655 * state inside lock_buffer(). 1656 * 1657 * If block_write_full_page() is called for regular writeback 1658 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1659 * locked buffer. This only can happen if someone has written the buffer 1660 * directly, with submit_bh(). At the address_space level PageWriteback 1661 * prevents this contention from occurring. 1662 * 1663 * If block_write_full_page() is called with wbc->sync_mode == 1664 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1665 * causes the writes to be flagged as synchronous writes. 1666 */ 1667 int __block_write_full_page(struct inode *inode, struct page *page, 1668 get_block_t *get_block, struct writeback_control *wbc, 1669 bh_end_io_t *handler) 1670 { 1671 int err; 1672 sector_t block; 1673 sector_t last_block; 1674 struct buffer_head *bh, *head; 1675 unsigned int blocksize, bbits; 1676 int nr_underway = 0; 1677 int write_flags = wbc_to_write_flags(wbc); 1678 1679 head = create_page_buffers(page, inode, 1680 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1681 1682 /* 1683 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1684 * here, and the (potentially unmapped) buffers may become dirty at 1685 * any time. If a buffer becomes dirty here after we've inspected it 1686 * then we just miss that fact, and the page stays dirty. 1687 * 1688 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1689 * handle that here by just cleaning them. 1690 */ 1691 1692 bh = head; 1693 blocksize = bh->b_size; 1694 bbits = block_size_bits(blocksize); 1695 1696 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1697 last_block = (i_size_read(inode) - 1) >> bbits; 1698 1699 /* 1700 * Get all the dirty buffers mapped to disk addresses and 1701 * handle any aliases from the underlying blockdev's mapping. 1702 */ 1703 do { 1704 if (block > last_block) { 1705 /* 1706 * mapped buffers outside i_size will occur, because 1707 * this page can be outside i_size when there is a 1708 * truncate in progress. 1709 */ 1710 /* 1711 * The buffer was zeroed by block_write_full_page() 1712 */ 1713 clear_buffer_dirty(bh); 1714 set_buffer_uptodate(bh); 1715 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1716 buffer_dirty(bh)) { 1717 WARN_ON(bh->b_size != blocksize); 1718 err = get_block(inode, block, bh, 1); 1719 if (err) 1720 goto recover; 1721 clear_buffer_delay(bh); 1722 if (buffer_new(bh)) { 1723 /* blockdev mappings never come here */ 1724 clear_buffer_new(bh); 1725 clean_bdev_bh_alias(bh); 1726 } 1727 } 1728 bh = bh->b_this_page; 1729 block++; 1730 } while (bh != head); 1731 1732 do { 1733 if (!buffer_mapped(bh)) 1734 continue; 1735 /* 1736 * If it's a fully non-blocking write attempt and we cannot 1737 * lock the buffer then redirty the page. Note that this can 1738 * potentially cause a busy-wait loop from writeback threads 1739 * and kswapd activity, but those code paths have their own 1740 * higher-level throttling. 1741 */ 1742 if (wbc->sync_mode != WB_SYNC_NONE) { 1743 lock_buffer(bh); 1744 } else if (!trylock_buffer(bh)) { 1745 redirty_page_for_writepage(wbc, page); 1746 continue; 1747 } 1748 if (test_clear_buffer_dirty(bh)) { 1749 mark_buffer_async_write_endio(bh, handler); 1750 } else { 1751 unlock_buffer(bh); 1752 } 1753 } while ((bh = bh->b_this_page) != head); 1754 1755 /* 1756 * The page and its buffers are protected by PageWriteback(), so we can 1757 * drop the bh refcounts early. 1758 */ 1759 BUG_ON(PageWriteback(page)); 1760 set_page_writeback(page); 1761 1762 do { 1763 struct buffer_head *next = bh->b_this_page; 1764 if (buffer_async_write(bh)) { 1765 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1766 inode->i_write_hint, wbc); 1767 nr_underway++; 1768 } 1769 bh = next; 1770 } while (bh != head); 1771 unlock_page(page); 1772 1773 err = 0; 1774 done: 1775 if (nr_underway == 0) { 1776 /* 1777 * The page was marked dirty, but the buffers were 1778 * clean. Someone wrote them back by hand with 1779 * ll_rw_block/submit_bh. A rare case. 1780 */ 1781 end_page_writeback(page); 1782 1783 /* 1784 * The page and buffer_heads can be released at any time from 1785 * here on. 1786 */ 1787 } 1788 return err; 1789 1790 recover: 1791 /* 1792 * ENOSPC, or some other error. We may already have added some 1793 * blocks to the file, so we need to write these out to avoid 1794 * exposing stale data. 1795 * The page is currently locked and not marked for writeback 1796 */ 1797 bh = head; 1798 /* Recovery: lock and submit the mapped buffers */ 1799 do { 1800 if (buffer_mapped(bh) && buffer_dirty(bh) && 1801 !buffer_delay(bh)) { 1802 lock_buffer(bh); 1803 mark_buffer_async_write_endio(bh, handler); 1804 } else { 1805 /* 1806 * The buffer may have been set dirty during 1807 * attachment to a dirty page. 1808 */ 1809 clear_buffer_dirty(bh); 1810 } 1811 } while ((bh = bh->b_this_page) != head); 1812 SetPageError(page); 1813 BUG_ON(PageWriteback(page)); 1814 mapping_set_error(page->mapping, err); 1815 set_page_writeback(page); 1816 do { 1817 struct buffer_head *next = bh->b_this_page; 1818 if (buffer_async_write(bh)) { 1819 clear_buffer_dirty(bh); 1820 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 1821 inode->i_write_hint, wbc); 1822 nr_underway++; 1823 } 1824 bh = next; 1825 } while (bh != head); 1826 unlock_page(page); 1827 goto done; 1828 } 1829 EXPORT_SYMBOL(__block_write_full_page); 1830 1831 /* 1832 * If a page has any new buffers, zero them out here, and mark them uptodate 1833 * and dirty so they'll be written out (in order to prevent uninitialised 1834 * block data from leaking). And clear the new bit. 1835 */ 1836 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1837 { 1838 unsigned int block_start, block_end; 1839 struct buffer_head *head, *bh; 1840 1841 BUG_ON(!PageLocked(page)); 1842 if (!page_has_buffers(page)) 1843 return; 1844 1845 bh = head = page_buffers(page); 1846 block_start = 0; 1847 do { 1848 block_end = block_start + bh->b_size; 1849 1850 if (buffer_new(bh)) { 1851 if (block_end > from && block_start < to) { 1852 if (!PageUptodate(page)) { 1853 unsigned start, size; 1854 1855 start = max(from, block_start); 1856 size = min(to, block_end) - start; 1857 1858 zero_user(page, start, size); 1859 set_buffer_uptodate(bh); 1860 } 1861 1862 clear_buffer_new(bh); 1863 mark_buffer_dirty(bh); 1864 } 1865 } 1866 1867 block_start = block_end; 1868 bh = bh->b_this_page; 1869 } while (bh != head); 1870 } 1871 EXPORT_SYMBOL(page_zero_new_buffers); 1872 1873 static void 1874 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 1875 struct iomap *iomap) 1876 { 1877 loff_t offset = block << inode->i_blkbits; 1878 1879 bh->b_bdev = iomap->bdev; 1880 1881 /* 1882 * Block points to offset in file we need to map, iomap contains 1883 * the offset at which the map starts. If the map ends before the 1884 * current block, then do not map the buffer and let the caller 1885 * handle it. 1886 */ 1887 BUG_ON(offset >= iomap->offset + iomap->length); 1888 1889 switch (iomap->type) { 1890 case IOMAP_HOLE: 1891 /* 1892 * If the buffer is not up to date or beyond the current EOF, 1893 * we need to mark it as new to ensure sub-block zeroing is 1894 * executed if necessary. 1895 */ 1896 if (!buffer_uptodate(bh) || 1897 (offset >= i_size_read(inode))) 1898 set_buffer_new(bh); 1899 break; 1900 case IOMAP_DELALLOC: 1901 if (!buffer_uptodate(bh) || 1902 (offset >= i_size_read(inode))) 1903 set_buffer_new(bh); 1904 set_buffer_uptodate(bh); 1905 set_buffer_mapped(bh); 1906 set_buffer_delay(bh); 1907 break; 1908 case IOMAP_UNWRITTEN: 1909 /* 1910 * For unwritten regions, we always need to ensure that regions 1911 * in the block we are not writing to are zeroed. Mark the 1912 * buffer as new to ensure this. 1913 */ 1914 set_buffer_new(bh); 1915 set_buffer_unwritten(bh); 1916 /* FALLTHRU */ 1917 case IOMAP_MAPPED: 1918 if ((iomap->flags & IOMAP_F_NEW) || 1919 offset >= i_size_read(inode)) 1920 set_buffer_new(bh); 1921 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 1922 inode->i_blkbits; 1923 set_buffer_mapped(bh); 1924 break; 1925 } 1926 } 1927 1928 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len, 1929 get_block_t *get_block, struct iomap *iomap) 1930 { 1931 unsigned from = pos & (PAGE_SIZE - 1); 1932 unsigned to = from + len; 1933 struct inode *inode = page->mapping->host; 1934 unsigned block_start, block_end; 1935 sector_t block; 1936 int err = 0; 1937 unsigned blocksize, bbits; 1938 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1939 1940 BUG_ON(!PageLocked(page)); 1941 BUG_ON(from > PAGE_SIZE); 1942 BUG_ON(to > PAGE_SIZE); 1943 BUG_ON(from > to); 1944 1945 head = create_page_buffers(page, inode, 0); 1946 blocksize = head->b_size; 1947 bbits = block_size_bits(blocksize); 1948 1949 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1950 1951 for(bh = head, block_start = 0; bh != head || !block_start; 1952 block++, block_start=block_end, bh = bh->b_this_page) { 1953 block_end = block_start + blocksize; 1954 if (block_end <= from || block_start >= to) { 1955 if (PageUptodate(page)) { 1956 if (!buffer_uptodate(bh)) 1957 set_buffer_uptodate(bh); 1958 } 1959 continue; 1960 } 1961 if (buffer_new(bh)) 1962 clear_buffer_new(bh); 1963 if (!buffer_mapped(bh)) { 1964 WARN_ON(bh->b_size != blocksize); 1965 if (get_block) { 1966 err = get_block(inode, block, bh, 1); 1967 if (err) 1968 break; 1969 } else { 1970 iomap_to_bh(inode, block, bh, iomap); 1971 } 1972 1973 if (buffer_new(bh)) { 1974 clean_bdev_bh_alias(bh); 1975 if (PageUptodate(page)) { 1976 clear_buffer_new(bh); 1977 set_buffer_uptodate(bh); 1978 mark_buffer_dirty(bh); 1979 continue; 1980 } 1981 if (block_end > to || block_start < from) 1982 zero_user_segments(page, 1983 to, block_end, 1984 block_start, from); 1985 continue; 1986 } 1987 } 1988 if (PageUptodate(page)) { 1989 if (!buffer_uptodate(bh)) 1990 set_buffer_uptodate(bh); 1991 continue; 1992 } 1993 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1994 !buffer_unwritten(bh) && 1995 (block_start < from || block_end > to)) { 1996 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1997 *wait_bh++=bh; 1998 } 1999 } 2000 /* 2001 * If we issued read requests - let them complete. 2002 */ 2003 while(wait_bh > wait) { 2004 wait_on_buffer(*--wait_bh); 2005 if (!buffer_uptodate(*wait_bh)) 2006 err = -EIO; 2007 } 2008 if (unlikely(err)) 2009 page_zero_new_buffers(page, from, to); 2010 return err; 2011 } 2012 2013 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2014 get_block_t *get_block) 2015 { 2016 return __block_write_begin_int(page, pos, len, get_block, NULL); 2017 } 2018 EXPORT_SYMBOL(__block_write_begin); 2019 2020 static int __block_commit_write(struct inode *inode, struct page *page, 2021 unsigned from, unsigned to) 2022 { 2023 unsigned block_start, block_end; 2024 int partial = 0; 2025 unsigned blocksize; 2026 struct buffer_head *bh, *head; 2027 2028 bh = head = page_buffers(page); 2029 blocksize = bh->b_size; 2030 2031 block_start = 0; 2032 do { 2033 block_end = block_start + blocksize; 2034 if (block_end <= from || block_start >= to) { 2035 if (!buffer_uptodate(bh)) 2036 partial = 1; 2037 } else { 2038 set_buffer_uptodate(bh); 2039 mark_buffer_dirty(bh); 2040 } 2041 clear_buffer_new(bh); 2042 2043 block_start = block_end; 2044 bh = bh->b_this_page; 2045 } while (bh != head); 2046 2047 /* 2048 * If this is a partial write which happened to make all buffers 2049 * uptodate then we can optimize away a bogus readpage() for 2050 * the next read(). Here we 'discover' whether the page went 2051 * uptodate as a result of this (potentially partial) write. 2052 */ 2053 if (!partial) 2054 SetPageUptodate(page); 2055 return 0; 2056 } 2057 2058 /* 2059 * block_write_begin takes care of the basic task of block allocation and 2060 * bringing partial write blocks uptodate first. 2061 * 2062 * The filesystem needs to handle block truncation upon failure. 2063 */ 2064 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2065 unsigned flags, struct page **pagep, get_block_t *get_block) 2066 { 2067 pgoff_t index = pos >> PAGE_SHIFT; 2068 struct page *page; 2069 int status; 2070 2071 page = grab_cache_page_write_begin(mapping, index, flags); 2072 if (!page) 2073 return -ENOMEM; 2074 2075 status = __block_write_begin(page, pos, len, get_block); 2076 if (unlikely(status)) { 2077 unlock_page(page); 2078 put_page(page); 2079 page = NULL; 2080 } 2081 2082 *pagep = page; 2083 return status; 2084 } 2085 EXPORT_SYMBOL(block_write_begin); 2086 2087 int __generic_write_end(struct inode *inode, loff_t pos, unsigned copied, 2088 struct page *page) 2089 { 2090 loff_t old_size = inode->i_size; 2091 bool i_size_changed = false; 2092 2093 /* 2094 * No need to use i_size_read() here, the i_size cannot change under us 2095 * because we hold i_rwsem. 2096 * 2097 * But it's important to update i_size while still holding page lock: 2098 * page writeout could otherwise come in and zero beyond i_size. 2099 */ 2100 if (pos + copied > inode->i_size) { 2101 i_size_write(inode, pos + copied); 2102 i_size_changed = true; 2103 } 2104 2105 unlock_page(page); 2106 put_page(page); 2107 2108 if (old_size < pos) 2109 pagecache_isize_extended(inode, old_size, pos); 2110 /* 2111 * Don't mark the inode dirty under page lock. First, it unnecessarily 2112 * makes the holding time of page lock longer. Second, it forces lock 2113 * ordering of page lock and transaction start for journaling 2114 * filesystems. 2115 */ 2116 if (i_size_changed) 2117 mark_inode_dirty(inode); 2118 return copied; 2119 } 2120 2121 int block_write_end(struct file *file, struct address_space *mapping, 2122 loff_t pos, unsigned len, unsigned copied, 2123 struct page *page, void *fsdata) 2124 { 2125 struct inode *inode = mapping->host; 2126 unsigned start; 2127 2128 start = pos & (PAGE_SIZE - 1); 2129 2130 if (unlikely(copied < len)) { 2131 /* 2132 * The buffers that were written will now be uptodate, so we 2133 * don't have to worry about a readpage reading them and 2134 * overwriting a partial write. However if we have encountered 2135 * a short write and only partially written into a buffer, it 2136 * will not be marked uptodate, so a readpage might come in and 2137 * destroy our partial write. 2138 * 2139 * Do the simplest thing, and just treat any short write to a 2140 * non uptodate page as a zero-length write, and force the 2141 * caller to redo the whole thing. 2142 */ 2143 if (!PageUptodate(page)) 2144 copied = 0; 2145 2146 page_zero_new_buffers(page, start+copied, start+len); 2147 } 2148 flush_dcache_page(page); 2149 2150 /* This could be a short (even 0-length) commit */ 2151 __block_commit_write(inode, page, start, start+copied); 2152 2153 return copied; 2154 } 2155 EXPORT_SYMBOL(block_write_end); 2156 2157 int generic_write_end(struct file *file, struct address_space *mapping, 2158 loff_t pos, unsigned len, unsigned copied, 2159 struct page *page, void *fsdata) 2160 { 2161 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2162 return __generic_write_end(mapping->host, pos, copied, page); 2163 } 2164 EXPORT_SYMBOL(generic_write_end); 2165 2166 /* 2167 * block_is_partially_uptodate checks whether buffers within a page are 2168 * uptodate or not. 2169 * 2170 * Returns true if all buffers which correspond to a file portion 2171 * we want to read are uptodate. 2172 */ 2173 int block_is_partially_uptodate(struct page *page, unsigned long from, 2174 unsigned long count) 2175 { 2176 unsigned block_start, block_end, blocksize; 2177 unsigned to; 2178 struct buffer_head *bh, *head; 2179 int ret = 1; 2180 2181 if (!page_has_buffers(page)) 2182 return 0; 2183 2184 head = page_buffers(page); 2185 blocksize = head->b_size; 2186 to = min_t(unsigned, PAGE_SIZE - from, count); 2187 to = from + to; 2188 if (from < blocksize && to > PAGE_SIZE - blocksize) 2189 return 0; 2190 2191 bh = head; 2192 block_start = 0; 2193 do { 2194 block_end = block_start + blocksize; 2195 if (block_end > from && block_start < to) { 2196 if (!buffer_uptodate(bh)) { 2197 ret = 0; 2198 break; 2199 } 2200 if (block_end >= to) 2201 break; 2202 } 2203 block_start = block_end; 2204 bh = bh->b_this_page; 2205 } while (bh != head); 2206 2207 return ret; 2208 } 2209 EXPORT_SYMBOL(block_is_partially_uptodate); 2210 2211 /* 2212 * Generic "read page" function for block devices that have the normal 2213 * get_block functionality. This is most of the block device filesystems. 2214 * Reads the page asynchronously --- the unlock_buffer() and 2215 * set/clear_buffer_uptodate() functions propagate buffer state into the 2216 * page struct once IO has completed. 2217 */ 2218 int block_read_full_page(struct page *page, get_block_t *get_block) 2219 { 2220 struct inode *inode = page->mapping->host; 2221 sector_t iblock, lblock; 2222 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2223 unsigned int blocksize, bbits; 2224 int nr, i; 2225 int fully_mapped = 1; 2226 2227 head = create_page_buffers(page, inode, 0); 2228 blocksize = head->b_size; 2229 bbits = block_size_bits(blocksize); 2230 2231 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits); 2232 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2233 bh = head; 2234 nr = 0; 2235 i = 0; 2236 2237 do { 2238 if (buffer_uptodate(bh)) 2239 continue; 2240 2241 if (!buffer_mapped(bh)) { 2242 int err = 0; 2243 2244 fully_mapped = 0; 2245 if (iblock < lblock) { 2246 WARN_ON(bh->b_size != blocksize); 2247 err = get_block(inode, iblock, bh, 0); 2248 if (err) 2249 SetPageError(page); 2250 } 2251 if (!buffer_mapped(bh)) { 2252 zero_user(page, i * blocksize, blocksize); 2253 if (!err) 2254 set_buffer_uptodate(bh); 2255 continue; 2256 } 2257 /* 2258 * get_block() might have updated the buffer 2259 * synchronously 2260 */ 2261 if (buffer_uptodate(bh)) 2262 continue; 2263 } 2264 arr[nr++] = bh; 2265 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2266 2267 if (fully_mapped) 2268 SetPageMappedToDisk(page); 2269 2270 if (!nr) { 2271 /* 2272 * All buffers are uptodate - we can set the page uptodate 2273 * as well. But not if get_block() returned an error. 2274 */ 2275 if (!PageError(page)) 2276 SetPageUptodate(page); 2277 unlock_page(page); 2278 return 0; 2279 } 2280 2281 /* Stage two: lock the buffers */ 2282 for (i = 0; i < nr; i++) { 2283 bh = arr[i]; 2284 lock_buffer(bh); 2285 mark_buffer_async_read(bh); 2286 } 2287 2288 /* 2289 * Stage 3: start the IO. Check for uptodateness 2290 * inside the buffer lock in case another process reading 2291 * the underlying blockdev brought it uptodate (the sct fix). 2292 */ 2293 for (i = 0; i < nr; i++) { 2294 bh = arr[i]; 2295 if (buffer_uptodate(bh)) 2296 end_buffer_async_read(bh, 1); 2297 else 2298 submit_bh(REQ_OP_READ, 0, bh); 2299 } 2300 return 0; 2301 } 2302 EXPORT_SYMBOL(block_read_full_page); 2303 2304 /* utility function for filesystems that need to do work on expanding 2305 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2306 * deal with the hole. 2307 */ 2308 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2309 { 2310 struct address_space *mapping = inode->i_mapping; 2311 struct page *page; 2312 void *fsdata; 2313 int err; 2314 2315 err = inode_newsize_ok(inode, size); 2316 if (err) 2317 goto out; 2318 2319 err = pagecache_write_begin(NULL, mapping, size, 0, 2320 AOP_FLAG_CONT_EXPAND, &page, &fsdata); 2321 if (err) 2322 goto out; 2323 2324 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2325 BUG_ON(err > 0); 2326 2327 out: 2328 return err; 2329 } 2330 EXPORT_SYMBOL(generic_cont_expand_simple); 2331 2332 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2333 loff_t pos, loff_t *bytes) 2334 { 2335 struct inode *inode = mapping->host; 2336 unsigned int blocksize = i_blocksize(inode); 2337 struct page *page; 2338 void *fsdata; 2339 pgoff_t index, curidx; 2340 loff_t curpos; 2341 unsigned zerofrom, offset, len; 2342 int err = 0; 2343 2344 index = pos >> PAGE_SHIFT; 2345 offset = pos & ~PAGE_MASK; 2346 2347 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2348 zerofrom = curpos & ~PAGE_MASK; 2349 if (zerofrom & (blocksize-1)) { 2350 *bytes |= (blocksize-1); 2351 (*bytes)++; 2352 } 2353 len = PAGE_SIZE - zerofrom; 2354 2355 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2356 &page, &fsdata); 2357 if (err) 2358 goto out; 2359 zero_user(page, zerofrom, len); 2360 err = pagecache_write_end(file, mapping, curpos, len, len, 2361 page, fsdata); 2362 if (err < 0) 2363 goto out; 2364 BUG_ON(err != len); 2365 err = 0; 2366 2367 balance_dirty_pages_ratelimited(mapping); 2368 2369 if (fatal_signal_pending(current)) { 2370 err = -EINTR; 2371 goto out; 2372 } 2373 } 2374 2375 /* page covers the boundary, find the boundary offset */ 2376 if (index == curidx) { 2377 zerofrom = curpos & ~PAGE_MASK; 2378 /* if we will expand the thing last block will be filled */ 2379 if (offset <= zerofrom) { 2380 goto out; 2381 } 2382 if (zerofrom & (blocksize-1)) { 2383 *bytes |= (blocksize-1); 2384 (*bytes)++; 2385 } 2386 len = offset - zerofrom; 2387 2388 err = pagecache_write_begin(file, mapping, curpos, len, 0, 2389 &page, &fsdata); 2390 if (err) 2391 goto out; 2392 zero_user(page, zerofrom, len); 2393 err = pagecache_write_end(file, mapping, curpos, len, len, 2394 page, fsdata); 2395 if (err < 0) 2396 goto out; 2397 BUG_ON(err != len); 2398 err = 0; 2399 } 2400 out: 2401 return err; 2402 } 2403 2404 /* 2405 * For moronic filesystems that do not allow holes in file. 2406 * We may have to extend the file. 2407 */ 2408 int cont_write_begin(struct file *file, struct address_space *mapping, 2409 loff_t pos, unsigned len, unsigned flags, 2410 struct page **pagep, void **fsdata, 2411 get_block_t *get_block, loff_t *bytes) 2412 { 2413 struct inode *inode = mapping->host; 2414 unsigned int blocksize = i_blocksize(inode); 2415 unsigned int zerofrom; 2416 int err; 2417 2418 err = cont_expand_zero(file, mapping, pos, bytes); 2419 if (err) 2420 return err; 2421 2422 zerofrom = *bytes & ~PAGE_MASK; 2423 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2424 *bytes |= (blocksize-1); 2425 (*bytes)++; 2426 } 2427 2428 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2429 } 2430 EXPORT_SYMBOL(cont_write_begin); 2431 2432 int block_commit_write(struct page *page, unsigned from, unsigned to) 2433 { 2434 struct inode *inode = page->mapping->host; 2435 __block_commit_write(inode,page,from,to); 2436 return 0; 2437 } 2438 EXPORT_SYMBOL(block_commit_write); 2439 2440 /* 2441 * block_page_mkwrite() is not allowed to change the file size as it gets 2442 * called from a page fault handler when a page is first dirtied. Hence we must 2443 * be careful to check for EOF conditions here. We set the page up correctly 2444 * for a written page which means we get ENOSPC checking when writing into 2445 * holes and correct delalloc and unwritten extent mapping on filesystems that 2446 * support these features. 2447 * 2448 * We are not allowed to take the i_mutex here so we have to play games to 2449 * protect against truncate races as the page could now be beyond EOF. Because 2450 * truncate writes the inode size before removing pages, once we have the 2451 * page lock we can determine safely if the page is beyond EOF. If it is not 2452 * beyond EOF, then the page is guaranteed safe against truncation until we 2453 * unlock the page. 2454 * 2455 * Direct callers of this function should protect against filesystem freezing 2456 * using sb_start_pagefault() - sb_end_pagefault() functions. 2457 */ 2458 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2459 get_block_t get_block) 2460 { 2461 struct page *page = vmf->page; 2462 struct inode *inode = file_inode(vma->vm_file); 2463 unsigned long end; 2464 loff_t size; 2465 int ret; 2466 2467 lock_page(page); 2468 size = i_size_read(inode); 2469 if ((page->mapping != inode->i_mapping) || 2470 (page_offset(page) > size)) { 2471 /* We overload EFAULT to mean page got truncated */ 2472 ret = -EFAULT; 2473 goto out_unlock; 2474 } 2475 2476 /* page is wholly or partially inside EOF */ 2477 if (((page->index + 1) << PAGE_SHIFT) > size) 2478 end = size & ~PAGE_MASK; 2479 else 2480 end = PAGE_SIZE; 2481 2482 ret = __block_write_begin(page, 0, end, get_block); 2483 if (!ret) 2484 ret = block_commit_write(page, 0, end); 2485 2486 if (unlikely(ret < 0)) 2487 goto out_unlock; 2488 set_page_dirty(page); 2489 wait_for_stable_page(page); 2490 return 0; 2491 out_unlock: 2492 unlock_page(page); 2493 return ret; 2494 } 2495 EXPORT_SYMBOL(block_page_mkwrite); 2496 2497 /* 2498 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2499 * immediately, while under the page lock. So it needs a special end_io 2500 * handler which does not touch the bh after unlocking it. 2501 */ 2502 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2503 { 2504 __end_buffer_read_notouch(bh, uptodate); 2505 } 2506 2507 /* 2508 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2509 * the page (converting it to circular linked list and taking care of page 2510 * dirty races). 2511 */ 2512 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2513 { 2514 struct buffer_head *bh; 2515 2516 BUG_ON(!PageLocked(page)); 2517 2518 spin_lock(&page->mapping->private_lock); 2519 bh = head; 2520 do { 2521 if (PageDirty(page)) 2522 set_buffer_dirty(bh); 2523 if (!bh->b_this_page) 2524 bh->b_this_page = head; 2525 bh = bh->b_this_page; 2526 } while (bh != head); 2527 attach_page_buffers(page, head); 2528 spin_unlock(&page->mapping->private_lock); 2529 } 2530 2531 /* 2532 * On entry, the page is fully not uptodate. 2533 * On exit the page is fully uptodate in the areas outside (from,to) 2534 * The filesystem needs to handle block truncation upon failure. 2535 */ 2536 int nobh_write_begin(struct address_space *mapping, 2537 loff_t pos, unsigned len, unsigned flags, 2538 struct page **pagep, void **fsdata, 2539 get_block_t *get_block) 2540 { 2541 struct inode *inode = mapping->host; 2542 const unsigned blkbits = inode->i_blkbits; 2543 const unsigned blocksize = 1 << blkbits; 2544 struct buffer_head *head, *bh; 2545 struct page *page; 2546 pgoff_t index; 2547 unsigned from, to; 2548 unsigned block_in_page; 2549 unsigned block_start, block_end; 2550 sector_t block_in_file; 2551 int nr_reads = 0; 2552 int ret = 0; 2553 int is_mapped_to_disk = 1; 2554 2555 index = pos >> PAGE_SHIFT; 2556 from = pos & (PAGE_SIZE - 1); 2557 to = from + len; 2558 2559 page = grab_cache_page_write_begin(mapping, index, flags); 2560 if (!page) 2561 return -ENOMEM; 2562 *pagep = page; 2563 *fsdata = NULL; 2564 2565 if (page_has_buffers(page)) { 2566 ret = __block_write_begin(page, pos, len, get_block); 2567 if (unlikely(ret)) 2568 goto out_release; 2569 return ret; 2570 } 2571 2572 if (PageMappedToDisk(page)) 2573 return 0; 2574 2575 /* 2576 * Allocate buffers so that we can keep track of state, and potentially 2577 * attach them to the page if an error occurs. In the common case of 2578 * no error, they will just be freed again without ever being attached 2579 * to the page (which is all OK, because we're under the page lock). 2580 * 2581 * Be careful: the buffer linked list is a NULL terminated one, rather 2582 * than the circular one we're used to. 2583 */ 2584 head = alloc_page_buffers(page, blocksize, false); 2585 if (!head) { 2586 ret = -ENOMEM; 2587 goto out_release; 2588 } 2589 2590 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 2591 2592 /* 2593 * We loop across all blocks in the page, whether or not they are 2594 * part of the affected region. This is so we can discover if the 2595 * page is fully mapped-to-disk. 2596 */ 2597 for (block_start = 0, block_in_page = 0, bh = head; 2598 block_start < PAGE_SIZE; 2599 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2600 int create; 2601 2602 block_end = block_start + blocksize; 2603 bh->b_state = 0; 2604 create = 1; 2605 if (block_start >= to) 2606 create = 0; 2607 ret = get_block(inode, block_in_file + block_in_page, 2608 bh, create); 2609 if (ret) 2610 goto failed; 2611 if (!buffer_mapped(bh)) 2612 is_mapped_to_disk = 0; 2613 if (buffer_new(bh)) 2614 clean_bdev_bh_alias(bh); 2615 if (PageUptodate(page)) { 2616 set_buffer_uptodate(bh); 2617 continue; 2618 } 2619 if (buffer_new(bh) || !buffer_mapped(bh)) { 2620 zero_user_segments(page, block_start, from, 2621 to, block_end); 2622 continue; 2623 } 2624 if (buffer_uptodate(bh)) 2625 continue; /* reiserfs does this */ 2626 if (block_start < from || block_end > to) { 2627 lock_buffer(bh); 2628 bh->b_end_io = end_buffer_read_nobh; 2629 submit_bh(REQ_OP_READ, 0, bh); 2630 nr_reads++; 2631 } 2632 } 2633 2634 if (nr_reads) { 2635 /* 2636 * The page is locked, so these buffers are protected from 2637 * any VM or truncate activity. Hence we don't need to care 2638 * for the buffer_head refcounts. 2639 */ 2640 for (bh = head; bh; bh = bh->b_this_page) { 2641 wait_on_buffer(bh); 2642 if (!buffer_uptodate(bh)) 2643 ret = -EIO; 2644 } 2645 if (ret) 2646 goto failed; 2647 } 2648 2649 if (is_mapped_to_disk) 2650 SetPageMappedToDisk(page); 2651 2652 *fsdata = head; /* to be released by nobh_write_end */ 2653 2654 return 0; 2655 2656 failed: 2657 BUG_ON(!ret); 2658 /* 2659 * Error recovery is a bit difficult. We need to zero out blocks that 2660 * were newly allocated, and dirty them to ensure they get written out. 2661 * Buffers need to be attached to the page at this point, otherwise 2662 * the handling of potential IO errors during writeout would be hard 2663 * (could try doing synchronous writeout, but what if that fails too?) 2664 */ 2665 attach_nobh_buffers(page, head); 2666 page_zero_new_buffers(page, from, to); 2667 2668 out_release: 2669 unlock_page(page); 2670 put_page(page); 2671 *pagep = NULL; 2672 2673 return ret; 2674 } 2675 EXPORT_SYMBOL(nobh_write_begin); 2676 2677 int nobh_write_end(struct file *file, struct address_space *mapping, 2678 loff_t pos, unsigned len, unsigned copied, 2679 struct page *page, void *fsdata) 2680 { 2681 struct inode *inode = page->mapping->host; 2682 struct buffer_head *head = fsdata; 2683 struct buffer_head *bh; 2684 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2685 2686 if (unlikely(copied < len) && head) 2687 attach_nobh_buffers(page, head); 2688 if (page_has_buffers(page)) 2689 return generic_write_end(file, mapping, pos, len, 2690 copied, page, fsdata); 2691 2692 SetPageUptodate(page); 2693 set_page_dirty(page); 2694 if (pos+copied > inode->i_size) { 2695 i_size_write(inode, pos+copied); 2696 mark_inode_dirty(inode); 2697 } 2698 2699 unlock_page(page); 2700 put_page(page); 2701 2702 while (head) { 2703 bh = head; 2704 head = head->b_this_page; 2705 free_buffer_head(bh); 2706 } 2707 2708 return copied; 2709 } 2710 EXPORT_SYMBOL(nobh_write_end); 2711 2712 /* 2713 * nobh_writepage() - based on block_full_write_page() except 2714 * that it tries to operate without attaching bufferheads to 2715 * the page. 2716 */ 2717 int nobh_writepage(struct page *page, get_block_t *get_block, 2718 struct writeback_control *wbc) 2719 { 2720 struct inode * const inode = page->mapping->host; 2721 loff_t i_size = i_size_read(inode); 2722 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2723 unsigned offset; 2724 int ret; 2725 2726 /* Is the page fully inside i_size? */ 2727 if (page->index < end_index) 2728 goto out; 2729 2730 /* Is the page fully outside i_size? (truncate in progress) */ 2731 offset = i_size & (PAGE_SIZE-1); 2732 if (page->index >= end_index+1 || !offset) { 2733 /* 2734 * The page may have dirty, unmapped buffers. For example, 2735 * they may have been added in ext3_writepage(). Make them 2736 * freeable here, so the page does not leak. 2737 */ 2738 #if 0 2739 /* Not really sure about this - do we need this ? */ 2740 if (page->mapping->a_ops->invalidatepage) 2741 page->mapping->a_ops->invalidatepage(page, offset); 2742 #endif 2743 unlock_page(page); 2744 return 0; /* don't care */ 2745 } 2746 2747 /* 2748 * The page straddles i_size. It must be zeroed out on each and every 2749 * writepage invocation because it may be mmapped. "A file is mapped 2750 * in multiples of the page size. For a file that is not a multiple of 2751 * the page size, the remaining memory is zeroed when mapped, and 2752 * writes to that region are not written out to the file." 2753 */ 2754 zero_user_segment(page, offset, PAGE_SIZE); 2755 out: 2756 ret = mpage_writepage(page, get_block, wbc); 2757 if (ret == -EAGAIN) 2758 ret = __block_write_full_page(inode, page, get_block, wbc, 2759 end_buffer_async_write); 2760 return ret; 2761 } 2762 EXPORT_SYMBOL(nobh_writepage); 2763 2764 int nobh_truncate_page(struct address_space *mapping, 2765 loff_t from, get_block_t *get_block) 2766 { 2767 pgoff_t index = from >> PAGE_SHIFT; 2768 unsigned offset = from & (PAGE_SIZE-1); 2769 unsigned blocksize; 2770 sector_t iblock; 2771 unsigned length, pos; 2772 struct inode *inode = mapping->host; 2773 struct page *page; 2774 struct buffer_head map_bh; 2775 int err; 2776 2777 blocksize = i_blocksize(inode); 2778 length = offset & (blocksize - 1); 2779 2780 /* Block boundary? Nothing to do */ 2781 if (!length) 2782 return 0; 2783 2784 length = blocksize - length; 2785 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2786 2787 page = grab_cache_page(mapping, index); 2788 err = -ENOMEM; 2789 if (!page) 2790 goto out; 2791 2792 if (page_has_buffers(page)) { 2793 has_buffers: 2794 unlock_page(page); 2795 put_page(page); 2796 return block_truncate_page(mapping, from, get_block); 2797 } 2798 2799 /* Find the buffer that contains "offset" */ 2800 pos = blocksize; 2801 while (offset >= pos) { 2802 iblock++; 2803 pos += blocksize; 2804 } 2805 2806 map_bh.b_size = blocksize; 2807 map_bh.b_state = 0; 2808 err = get_block(inode, iblock, &map_bh, 0); 2809 if (err) 2810 goto unlock; 2811 /* unmapped? It's a hole - nothing to do */ 2812 if (!buffer_mapped(&map_bh)) 2813 goto unlock; 2814 2815 /* Ok, it's mapped. Make sure it's up-to-date */ 2816 if (!PageUptodate(page)) { 2817 err = mapping->a_ops->readpage(NULL, page); 2818 if (err) { 2819 put_page(page); 2820 goto out; 2821 } 2822 lock_page(page); 2823 if (!PageUptodate(page)) { 2824 err = -EIO; 2825 goto unlock; 2826 } 2827 if (page_has_buffers(page)) 2828 goto has_buffers; 2829 } 2830 zero_user(page, offset, length); 2831 set_page_dirty(page); 2832 err = 0; 2833 2834 unlock: 2835 unlock_page(page); 2836 put_page(page); 2837 out: 2838 return err; 2839 } 2840 EXPORT_SYMBOL(nobh_truncate_page); 2841 2842 int block_truncate_page(struct address_space *mapping, 2843 loff_t from, get_block_t *get_block) 2844 { 2845 pgoff_t index = from >> PAGE_SHIFT; 2846 unsigned offset = from & (PAGE_SIZE-1); 2847 unsigned blocksize; 2848 sector_t iblock; 2849 unsigned length, pos; 2850 struct inode *inode = mapping->host; 2851 struct page *page; 2852 struct buffer_head *bh; 2853 int err; 2854 2855 blocksize = i_blocksize(inode); 2856 length = offset & (blocksize - 1); 2857 2858 /* Block boundary? Nothing to do */ 2859 if (!length) 2860 return 0; 2861 2862 length = blocksize - length; 2863 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2864 2865 page = grab_cache_page(mapping, index); 2866 err = -ENOMEM; 2867 if (!page) 2868 goto out; 2869 2870 if (!page_has_buffers(page)) 2871 create_empty_buffers(page, blocksize, 0); 2872 2873 /* Find the buffer that contains "offset" */ 2874 bh = page_buffers(page); 2875 pos = blocksize; 2876 while (offset >= pos) { 2877 bh = bh->b_this_page; 2878 iblock++; 2879 pos += blocksize; 2880 } 2881 2882 err = 0; 2883 if (!buffer_mapped(bh)) { 2884 WARN_ON(bh->b_size != blocksize); 2885 err = get_block(inode, iblock, bh, 0); 2886 if (err) 2887 goto unlock; 2888 /* unmapped? It's a hole - nothing to do */ 2889 if (!buffer_mapped(bh)) 2890 goto unlock; 2891 } 2892 2893 /* Ok, it's mapped. Make sure it's up-to-date */ 2894 if (PageUptodate(page)) 2895 set_buffer_uptodate(bh); 2896 2897 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2898 err = -EIO; 2899 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 2900 wait_on_buffer(bh); 2901 /* Uhhuh. Read error. Complain and punt. */ 2902 if (!buffer_uptodate(bh)) 2903 goto unlock; 2904 } 2905 2906 zero_user(page, offset, length); 2907 mark_buffer_dirty(bh); 2908 err = 0; 2909 2910 unlock: 2911 unlock_page(page); 2912 put_page(page); 2913 out: 2914 return err; 2915 } 2916 EXPORT_SYMBOL(block_truncate_page); 2917 2918 /* 2919 * The generic ->writepage function for buffer-backed address_spaces 2920 */ 2921 int block_write_full_page(struct page *page, get_block_t *get_block, 2922 struct writeback_control *wbc) 2923 { 2924 struct inode * const inode = page->mapping->host; 2925 loff_t i_size = i_size_read(inode); 2926 const pgoff_t end_index = i_size >> PAGE_SHIFT; 2927 unsigned offset; 2928 2929 /* Is the page fully inside i_size? */ 2930 if (page->index < end_index) 2931 return __block_write_full_page(inode, page, get_block, wbc, 2932 end_buffer_async_write); 2933 2934 /* Is the page fully outside i_size? (truncate in progress) */ 2935 offset = i_size & (PAGE_SIZE-1); 2936 if (page->index >= end_index+1 || !offset) { 2937 /* 2938 * The page may have dirty, unmapped buffers. For example, 2939 * they may have been added in ext3_writepage(). Make them 2940 * freeable here, so the page does not leak. 2941 */ 2942 do_invalidatepage(page, 0, PAGE_SIZE); 2943 unlock_page(page); 2944 return 0; /* don't care */ 2945 } 2946 2947 /* 2948 * The page straddles i_size. It must be zeroed out on each and every 2949 * writepage invocation because it may be mmapped. "A file is mapped 2950 * in multiples of the page size. For a file that is not a multiple of 2951 * the page size, the remaining memory is zeroed when mapped, and 2952 * writes to that region are not written out to the file." 2953 */ 2954 zero_user_segment(page, offset, PAGE_SIZE); 2955 return __block_write_full_page(inode, page, get_block, wbc, 2956 end_buffer_async_write); 2957 } 2958 EXPORT_SYMBOL(block_write_full_page); 2959 2960 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2961 get_block_t *get_block) 2962 { 2963 struct inode *inode = mapping->host; 2964 struct buffer_head tmp = { 2965 .b_size = i_blocksize(inode), 2966 }; 2967 2968 get_block(inode, block, &tmp, 0); 2969 return tmp.b_blocknr; 2970 } 2971 EXPORT_SYMBOL(generic_block_bmap); 2972 2973 static void end_bio_bh_io_sync(struct bio *bio) 2974 { 2975 struct buffer_head *bh = bio->bi_private; 2976 2977 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2978 set_bit(BH_Quiet, &bh->b_state); 2979 2980 bh->b_end_io(bh, !bio->bi_status); 2981 bio_put(bio); 2982 } 2983 2984 /* 2985 * This allows us to do IO even on the odd last sectors 2986 * of a device, even if the block size is some multiple 2987 * of the physical sector size. 2988 * 2989 * We'll just truncate the bio to the size of the device, 2990 * and clear the end of the buffer head manually. 2991 * 2992 * Truly out-of-range accesses will turn into actual IO 2993 * errors, this only handles the "we need to be able to 2994 * do IO at the final sector" case. 2995 */ 2996 void guard_bio_eod(int op, struct bio *bio) 2997 { 2998 sector_t maxsector; 2999 struct bio_vec *bvec = bio_last_bvec_all(bio); 3000 unsigned truncated_bytes; 3001 struct hd_struct *part; 3002 3003 rcu_read_lock(); 3004 part = __disk_get_part(bio->bi_disk, bio->bi_partno); 3005 if (part) 3006 maxsector = part_nr_sects_read(part); 3007 else 3008 maxsector = get_capacity(bio->bi_disk); 3009 rcu_read_unlock(); 3010 3011 if (!maxsector) 3012 return; 3013 3014 /* 3015 * If the *whole* IO is past the end of the device, 3016 * let it through, and the IO layer will turn it into 3017 * an EIO. 3018 */ 3019 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3020 return; 3021 3022 maxsector -= bio->bi_iter.bi_sector; 3023 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3024 return; 3025 3026 /* Uhhuh. We've got a bio that straddles the device size! */ 3027 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3028 3029 /* Truncate the bio.. */ 3030 bio->bi_iter.bi_size -= truncated_bytes; 3031 bvec->bv_len -= truncated_bytes; 3032 3033 /* ..and clear the end of the buffer for reads */ 3034 if (op == REQ_OP_READ) { 3035 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 3036 truncated_bytes); 3037 } 3038 } 3039 3040 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh, 3041 enum rw_hint write_hint, struct writeback_control *wbc) 3042 { 3043 struct bio *bio; 3044 3045 BUG_ON(!buffer_locked(bh)); 3046 BUG_ON(!buffer_mapped(bh)); 3047 BUG_ON(!bh->b_end_io); 3048 BUG_ON(buffer_delay(bh)); 3049 BUG_ON(buffer_unwritten(bh)); 3050 3051 /* 3052 * Only clear out a write error when rewriting 3053 */ 3054 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 3055 clear_buffer_write_io_error(bh); 3056 3057 /* 3058 * from here on down, it's all bio -- do the initial mapping, 3059 * submit_bio -> generic_make_request may further map this bio around 3060 */ 3061 bio = bio_alloc(GFP_NOIO, 1); 3062 3063 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3064 bio_set_dev(bio, bh->b_bdev); 3065 bio->bi_write_hint = write_hint; 3066 3067 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 3068 BUG_ON(bio->bi_iter.bi_size != bh->b_size); 3069 3070 bio->bi_end_io = end_bio_bh_io_sync; 3071 bio->bi_private = bh; 3072 3073 /* Take care of bh's that straddle the end of the device */ 3074 guard_bio_eod(op, bio); 3075 3076 if (buffer_meta(bh)) 3077 op_flags |= REQ_META; 3078 if (buffer_prio(bh)) 3079 op_flags |= REQ_PRIO; 3080 bio_set_op_attrs(bio, op, op_flags); 3081 3082 if (wbc) { 3083 wbc_init_bio(wbc, bio); 3084 wbc_account_io(wbc, bh->b_page, bh->b_size); 3085 } 3086 3087 submit_bio(bio); 3088 return 0; 3089 } 3090 3091 int submit_bh(int op, int op_flags, struct buffer_head *bh) 3092 { 3093 return submit_bh_wbc(op, op_flags, bh, 0, NULL); 3094 } 3095 EXPORT_SYMBOL(submit_bh); 3096 3097 /** 3098 * ll_rw_block: low-level access to block devices (DEPRECATED) 3099 * @op: whether to %READ or %WRITE 3100 * @op_flags: req_flag_bits 3101 * @nr: number of &struct buffer_heads in the array 3102 * @bhs: array of pointers to &struct buffer_head 3103 * 3104 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3105 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE. 3106 * @op_flags contains flags modifying the detailed I/O behavior, most notably 3107 * %REQ_RAHEAD. 3108 * 3109 * This function drops any buffer that it cannot get a lock on (with the 3110 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3111 * request, and any buffer that appears to be up-to-date when doing read 3112 * request. Further it marks as clean buffers that are processed for 3113 * writing (the buffer cache won't assume that they are actually clean 3114 * until the buffer gets unlocked). 3115 * 3116 * ll_rw_block sets b_end_io to simple completion handler that marks 3117 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3118 * any waiters. 3119 * 3120 * All of the buffers must be for the same device, and must also be a 3121 * multiple of the current approved size for the device. 3122 */ 3123 void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[]) 3124 { 3125 int i; 3126 3127 for (i = 0; i < nr; i++) { 3128 struct buffer_head *bh = bhs[i]; 3129 3130 if (!trylock_buffer(bh)) 3131 continue; 3132 if (op == WRITE) { 3133 if (test_clear_buffer_dirty(bh)) { 3134 bh->b_end_io = end_buffer_write_sync; 3135 get_bh(bh); 3136 submit_bh(op, op_flags, bh); 3137 continue; 3138 } 3139 } else { 3140 if (!buffer_uptodate(bh)) { 3141 bh->b_end_io = end_buffer_read_sync; 3142 get_bh(bh); 3143 submit_bh(op, op_flags, bh); 3144 continue; 3145 } 3146 } 3147 unlock_buffer(bh); 3148 } 3149 } 3150 EXPORT_SYMBOL(ll_rw_block); 3151 3152 void write_dirty_buffer(struct buffer_head *bh, int op_flags) 3153 { 3154 lock_buffer(bh); 3155 if (!test_clear_buffer_dirty(bh)) { 3156 unlock_buffer(bh); 3157 return; 3158 } 3159 bh->b_end_io = end_buffer_write_sync; 3160 get_bh(bh); 3161 submit_bh(REQ_OP_WRITE, op_flags, bh); 3162 } 3163 EXPORT_SYMBOL(write_dirty_buffer); 3164 3165 /* 3166 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3167 * and then start new I/O and then wait upon it. The caller must have a ref on 3168 * the buffer_head. 3169 */ 3170 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags) 3171 { 3172 int ret = 0; 3173 3174 WARN_ON(atomic_read(&bh->b_count) < 1); 3175 lock_buffer(bh); 3176 if (test_clear_buffer_dirty(bh)) { 3177 get_bh(bh); 3178 bh->b_end_io = end_buffer_write_sync; 3179 ret = submit_bh(REQ_OP_WRITE, op_flags, bh); 3180 wait_on_buffer(bh); 3181 if (!ret && !buffer_uptodate(bh)) 3182 ret = -EIO; 3183 } else { 3184 unlock_buffer(bh); 3185 } 3186 return ret; 3187 } 3188 EXPORT_SYMBOL(__sync_dirty_buffer); 3189 3190 int sync_dirty_buffer(struct buffer_head *bh) 3191 { 3192 return __sync_dirty_buffer(bh, REQ_SYNC); 3193 } 3194 EXPORT_SYMBOL(sync_dirty_buffer); 3195 3196 /* 3197 * try_to_free_buffers() checks if all the buffers on this particular page 3198 * are unused, and releases them if so. 3199 * 3200 * Exclusion against try_to_free_buffers may be obtained by either 3201 * locking the page or by holding its mapping's private_lock. 3202 * 3203 * If the page is dirty but all the buffers are clean then we need to 3204 * be sure to mark the page clean as well. This is because the page 3205 * may be against a block device, and a later reattachment of buffers 3206 * to a dirty page will set *all* buffers dirty. Which would corrupt 3207 * filesystem data on the same device. 3208 * 3209 * The same applies to regular filesystem pages: if all the buffers are 3210 * clean then we set the page clean and proceed. To do that, we require 3211 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3212 * private_lock. 3213 * 3214 * try_to_free_buffers() is non-blocking. 3215 */ 3216 static inline int buffer_busy(struct buffer_head *bh) 3217 { 3218 return atomic_read(&bh->b_count) | 3219 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3220 } 3221 3222 static int 3223 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3224 { 3225 struct buffer_head *head = page_buffers(page); 3226 struct buffer_head *bh; 3227 3228 bh = head; 3229 do { 3230 if (buffer_busy(bh)) 3231 goto failed; 3232 bh = bh->b_this_page; 3233 } while (bh != head); 3234 3235 do { 3236 struct buffer_head *next = bh->b_this_page; 3237 3238 if (bh->b_assoc_map) 3239 __remove_assoc_queue(bh); 3240 bh = next; 3241 } while (bh != head); 3242 *buffers_to_free = head; 3243 __clear_page_buffers(page); 3244 return 1; 3245 failed: 3246 return 0; 3247 } 3248 3249 int try_to_free_buffers(struct page *page) 3250 { 3251 struct address_space * const mapping = page->mapping; 3252 struct buffer_head *buffers_to_free = NULL; 3253 int ret = 0; 3254 3255 BUG_ON(!PageLocked(page)); 3256 if (PageWriteback(page)) 3257 return 0; 3258 3259 if (mapping == NULL) { /* can this still happen? */ 3260 ret = drop_buffers(page, &buffers_to_free); 3261 goto out; 3262 } 3263 3264 spin_lock(&mapping->private_lock); 3265 ret = drop_buffers(page, &buffers_to_free); 3266 3267 /* 3268 * If the filesystem writes its buffers by hand (eg ext3) 3269 * then we can have clean buffers against a dirty page. We 3270 * clean the page here; otherwise the VM will never notice 3271 * that the filesystem did any IO at all. 3272 * 3273 * Also, during truncate, discard_buffer will have marked all 3274 * the page's buffers clean. We discover that here and clean 3275 * the page also. 3276 * 3277 * private_lock must be held over this entire operation in order 3278 * to synchronise against __set_page_dirty_buffers and prevent the 3279 * dirty bit from being lost. 3280 */ 3281 if (ret) 3282 cancel_dirty_page(page); 3283 spin_unlock(&mapping->private_lock); 3284 out: 3285 if (buffers_to_free) { 3286 struct buffer_head *bh = buffers_to_free; 3287 3288 do { 3289 struct buffer_head *next = bh->b_this_page; 3290 free_buffer_head(bh); 3291 bh = next; 3292 } while (bh != buffers_to_free); 3293 } 3294 return ret; 3295 } 3296 EXPORT_SYMBOL(try_to_free_buffers); 3297 3298 /* 3299 * There are no bdflush tunables left. But distributions are 3300 * still running obsolete flush daemons, so we terminate them here. 3301 * 3302 * Use of bdflush() is deprecated and will be removed in a future kernel. 3303 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3304 */ 3305 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3306 { 3307 static int msg_count; 3308 3309 if (!capable(CAP_SYS_ADMIN)) 3310 return -EPERM; 3311 3312 if (msg_count < 5) { 3313 msg_count++; 3314 printk(KERN_INFO 3315 "warning: process `%s' used the obsolete bdflush" 3316 " system call\n", current->comm); 3317 printk(KERN_INFO "Fix your initscripts?\n"); 3318 } 3319 3320 if (func == 1) 3321 do_exit(0); 3322 return 0; 3323 } 3324 3325 /* 3326 * Buffer-head allocation 3327 */ 3328 static struct kmem_cache *bh_cachep __read_mostly; 3329 3330 /* 3331 * Once the number of bh's in the machine exceeds this level, we start 3332 * stripping them in writeback. 3333 */ 3334 static unsigned long max_buffer_heads; 3335 3336 int buffer_heads_over_limit; 3337 3338 struct bh_accounting { 3339 int nr; /* Number of live bh's */ 3340 int ratelimit; /* Limit cacheline bouncing */ 3341 }; 3342 3343 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3344 3345 static void recalc_bh_state(void) 3346 { 3347 int i; 3348 int tot = 0; 3349 3350 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3351 return; 3352 __this_cpu_write(bh_accounting.ratelimit, 0); 3353 for_each_online_cpu(i) 3354 tot += per_cpu(bh_accounting, i).nr; 3355 buffer_heads_over_limit = (tot > max_buffer_heads); 3356 } 3357 3358 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3359 { 3360 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3361 if (ret) { 3362 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3363 preempt_disable(); 3364 __this_cpu_inc(bh_accounting.nr); 3365 recalc_bh_state(); 3366 preempt_enable(); 3367 } 3368 return ret; 3369 } 3370 EXPORT_SYMBOL(alloc_buffer_head); 3371 3372 void free_buffer_head(struct buffer_head *bh) 3373 { 3374 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3375 kmem_cache_free(bh_cachep, bh); 3376 preempt_disable(); 3377 __this_cpu_dec(bh_accounting.nr); 3378 recalc_bh_state(); 3379 preempt_enable(); 3380 } 3381 EXPORT_SYMBOL(free_buffer_head); 3382 3383 static int buffer_exit_cpu_dead(unsigned int cpu) 3384 { 3385 int i; 3386 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3387 3388 for (i = 0; i < BH_LRU_SIZE; i++) { 3389 brelse(b->bhs[i]); 3390 b->bhs[i] = NULL; 3391 } 3392 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3393 per_cpu(bh_accounting, cpu).nr = 0; 3394 return 0; 3395 } 3396 3397 /** 3398 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3399 * @bh: struct buffer_head 3400 * 3401 * Return true if the buffer is up-to-date and false, 3402 * with the buffer locked, if not. 3403 */ 3404 int bh_uptodate_or_lock(struct buffer_head *bh) 3405 { 3406 if (!buffer_uptodate(bh)) { 3407 lock_buffer(bh); 3408 if (!buffer_uptodate(bh)) 3409 return 0; 3410 unlock_buffer(bh); 3411 } 3412 return 1; 3413 } 3414 EXPORT_SYMBOL(bh_uptodate_or_lock); 3415 3416 /** 3417 * bh_submit_read - Submit a locked buffer for reading 3418 * @bh: struct buffer_head 3419 * 3420 * Returns zero on success and -EIO on error. 3421 */ 3422 int bh_submit_read(struct buffer_head *bh) 3423 { 3424 BUG_ON(!buffer_locked(bh)); 3425 3426 if (buffer_uptodate(bh)) { 3427 unlock_buffer(bh); 3428 return 0; 3429 } 3430 3431 get_bh(bh); 3432 bh->b_end_io = end_buffer_read_sync; 3433 submit_bh(REQ_OP_READ, 0, bh); 3434 wait_on_buffer(bh); 3435 if (buffer_uptodate(bh)) 3436 return 0; 3437 return -EIO; 3438 } 3439 EXPORT_SYMBOL(bh_submit_read); 3440 3441 void __init buffer_init(void) 3442 { 3443 unsigned long nrpages; 3444 int ret; 3445 3446 bh_cachep = kmem_cache_create("buffer_head", 3447 sizeof(struct buffer_head), 0, 3448 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3449 SLAB_MEM_SPREAD), 3450 NULL); 3451 3452 /* 3453 * Limit the bh occupancy to 10% of ZONE_NORMAL 3454 */ 3455 nrpages = (nr_free_buffer_pages() * 10) / 100; 3456 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3457 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3458 NULL, buffer_exit_cpu_dead); 3459 WARN_ON(ret < 0); 3460 } 3461