1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 #include <linux/sched/isolation.h> 53 54 #include "internal.h" 55 56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 58 enum rw_hint hint, struct writeback_control *wbc); 59 60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 61 62 inline void touch_buffer(struct buffer_head *bh) 63 { 64 trace_block_touch_buffer(bh); 65 folio_mark_accessed(bh->b_folio); 66 } 67 EXPORT_SYMBOL(touch_buffer); 68 69 void __lock_buffer(struct buffer_head *bh) 70 { 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 72 } 73 EXPORT_SYMBOL(__lock_buffer); 74 75 void unlock_buffer(struct buffer_head *bh) 76 { 77 clear_bit_unlock(BH_Lock, &bh->b_state); 78 smp_mb__after_atomic(); 79 wake_up_bit(&bh->b_state, BH_Lock); 80 } 81 EXPORT_SYMBOL(unlock_buffer); 82 83 /* 84 * Returns if the folio has dirty or writeback buffers. If all the buffers 85 * are unlocked and clean then the folio_test_dirty information is stale. If 86 * any of the buffers are locked, it is assumed they are locked for IO. 87 */ 88 void buffer_check_dirty_writeback(struct folio *folio, 89 bool *dirty, bool *writeback) 90 { 91 struct buffer_head *head, *bh; 92 *dirty = false; 93 *writeback = false; 94 95 BUG_ON(!folio_test_locked(folio)); 96 97 head = folio_buffers(folio); 98 if (!head) 99 return; 100 101 if (folio_test_writeback(folio)) 102 *writeback = true; 103 104 bh = head; 105 do { 106 if (buffer_locked(bh)) 107 *writeback = true; 108 109 if (buffer_dirty(bh)) 110 *dirty = true; 111 112 bh = bh->b_this_page; 113 } while (bh != head); 114 } 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 __end_buffer_read_notouch(bh, uptodate); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 static struct buffer_head * 180 __find_get_block_slow(struct block_device *bdev, sector_t block, bool atomic) 181 { 182 struct address_space *bd_mapping = bdev->bd_mapping; 183 const int blkbits = bd_mapping->host->i_blkbits; 184 struct buffer_head *ret = NULL; 185 pgoff_t index; 186 struct buffer_head *bh; 187 struct buffer_head *head; 188 struct folio *folio; 189 int all_mapped = 1; 190 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 191 192 index = ((loff_t)block << blkbits) / PAGE_SIZE; 193 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); 194 if (IS_ERR(folio)) 195 goto out; 196 197 /* 198 * Folio lock protects the buffers. Callers that cannot block 199 * will fallback to serializing vs try_to_free_buffers() via 200 * the i_private_lock. 201 */ 202 if (atomic) 203 spin_lock(&bd_mapping->i_private_lock); 204 else 205 folio_lock(folio); 206 207 head = folio_buffers(folio); 208 if (!head) 209 goto out_unlock; 210 /* 211 * Upon a noref migration, the folio lock serializes here; 212 * otherwise bail. 213 */ 214 if (test_bit_acquire(BH_Migrate, &head->b_state)) { 215 WARN_ON(!atomic); 216 goto out_unlock; 217 } 218 219 bh = head; 220 do { 221 if (!buffer_mapped(bh)) 222 all_mapped = 0; 223 else if (bh->b_blocknr == block) { 224 ret = bh; 225 get_bh(bh); 226 goto out_unlock; 227 } 228 bh = bh->b_this_page; 229 } while (bh != head); 230 231 /* we might be here because some of the buffers on this page are 232 * not mapped. This is due to various races between 233 * file io on the block device and getblk. It gets dealt with 234 * elsewhere, don't buffer_error if we had some unmapped buffers 235 */ 236 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 237 if (all_mapped && __ratelimit(&last_warned)) { 238 printk("__find_get_block_slow() failed. block=%llu, " 239 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 240 "device %pg blocksize: %d\n", 241 (unsigned long long)block, 242 (unsigned long long)bh->b_blocknr, 243 bh->b_state, bh->b_size, bdev, 244 1 << blkbits); 245 } 246 out_unlock: 247 if (atomic) 248 spin_unlock(&bd_mapping->i_private_lock); 249 else 250 folio_unlock(folio); 251 folio_put(folio); 252 out: 253 return ret; 254 } 255 256 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 257 { 258 unsigned long flags; 259 struct buffer_head *first; 260 struct buffer_head *tmp; 261 struct folio *folio; 262 int folio_uptodate = 1; 263 264 BUG_ON(!buffer_async_read(bh)); 265 266 folio = bh->b_folio; 267 if (uptodate) { 268 set_buffer_uptodate(bh); 269 } else { 270 clear_buffer_uptodate(bh); 271 buffer_io_error(bh, ", async page read"); 272 } 273 274 /* 275 * Be _very_ careful from here on. Bad things can happen if 276 * two buffer heads end IO at almost the same time and both 277 * decide that the page is now completely done. 278 */ 279 first = folio_buffers(folio); 280 spin_lock_irqsave(&first->b_uptodate_lock, flags); 281 clear_buffer_async_read(bh); 282 unlock_buffer(bh); 283 tmp = bh; 284 do { 285 if (!buffer_uptodate(tmp)) 286 folio_uptodate = 0; 287 if (buffer_async_read(tmp)) { 288 BUG_ON(!buffer_locked(tmp)); 289 goto still_busy; 290 } 291 tmp = tmp->b_this_page; 292 } while (tmp != bh); 293 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 294 295 folio_end_read(folio, folio_uptodate); 296 return; 297 298 still_busy: 299 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 300 return; 301 } 302 303 struct postprocess_bh_ctx { 304 struct work_struct work; 305 struct buffer_head *bh; 306 }; 307 308 static void verify_bh(struct work_struct *work) 309 { 310 struct postprocess_bh_ctx *ctx = 311 container_of(work, struct postprocess_bh_ctx, work); 312 struct buffer_head *bh = ctx->bh; 313 bool valid; 314 315 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 316 end_buffer_async_read(bh, valid); 317 kfree(ctx); 318 } 319 320 static bool need_fsverity(struct buffer_head *bh) 321 { 322 struct folio *folio = bh->b_folio; 323 struct inode *inode = folio->mapping->host; 324 325 return fsverity_active(inode) && 326 /* needed by ext4 */ 327 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 328 } 329 330 static void decrypt_bh(struct work_struct *work) 331 { 332 struct postprocess_bh_ctx *ctx = 333 container_of(work, struct postprocess_bh_ctx, work); 334 struct buffer_head *bh = ctx->bh; 335 int err; 336 337 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 338 bh_offset(bh)); 339 if (err == 0 && need_fsverity(bh)) { 340 /* 341 * We use different work queues for decryption and for verity 342 * because verity may require reading metadata pages that need 343 * decryption, and we shouldn't recurse to the same workqueue. 344 */ 345 INIT_WORK(&ctx->work, verify_bh); 346 fsverity_enqueue_verify_work(&ctx->work); 347 return; 348 } 349 end_buffer_async_read(bh, err == 0); 350 kfree(ctx); 351 } 352 353 /* 354 * I/O completion handler for block_read_full_folio() - pages 355 * which come unlocked at the end of I/O. 356 */ 357 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 358 { 359 struct inode *inode = bh->b_folio->mapping->host; 360 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 361 bool verify = need_fsverity(bh); 362 363 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 364 if (uptodate && (decrypt || verify)) { 365 struct postprocess_bh_ctx *ctx = 366 kmalloc(sizeof(*ctx), GFP_ATOMIC); 367 368 if (ctx) { 369 ctx->bh = bh; 370 if (decrypt) { 371 INIT_WORK(&ctx->work, decrypt_bh); 372 fscrypt_enqueue_decrypt_work(&ctx->work); 373 } else { 374 INIT_WORK(&ctx->work, verify_bh); 375 fsverity_enqueue_verify_work(&ctx->work); 376 } 377 return; 378 } 379 uptodate = 0; 380 } 381 end_buffer_async_read(bh, uptodate); 382 } 383 384 /* 385 * Completion handler for block_write_full_folio() - folios which are unlocked 386 * during I/O, and which have the writeback flag cleared upon I/O completion. 387 */ 388 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 389 { 390 unsigned long flags; 391 struct buffer_head *first; 392 struct buffer_head *tmp; 393 struct folio *folio; 394 395 BUG_ON(!buffer_async_write(bh)); 396 397 folio = bh->b_folio; 398 if (uptodate) { 399 set_buffer_uptodate(bh); 400 } else { 401 buffer_io_error(bh, ", lost async page write"); 402 mark_buffer_write_io_error(bh); 403 clear_buffer_uptodate(bh); 404 } 405 406 first = folio_buffers(folio); 407 spin_lock_irqsave(&first->b_uptodate_lock, flags); 408 409 clear_buffer_async_write(bh); 410 unlock_buffer(bh); 411 tmp = bh->b_this_page; 412 while (tmp != bh) { 413 if (buffer_async_write(tmp)) { 414 BUG_ON(!buffer_locked(tmp)); 415 goto still_busy; 416 } 417 tmp = tmp->b_this_page; 418 } 419 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 420 folio_end_writeback(folio); 421 return; 422 423 still_busy: 424 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 425 return; 426 } 427 428 /* 429 * If a page's buffers are under async readin (end_buffer_async_read 430 * completion) then there is a possibility that another thread of 431 * control could lock one of the buffers after it has completed 432 * but while some of the other buffers have not completed. This 433 * locked buffer would confuse end_buffer_async_read() into not unlocking 434 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 435 * that this buffer is not under async I/O. 436 * 437 * The page comes unlocked when it has no locked buffer_async buffers 438 * left. 439 * 440 * PageLocked prevents anyone starting new async I/O reads any of 441 * the buffers. 442 * 443 * PageWriteback is used to prevent simultaneous writeout of the same 444 * page. 445 * 446 * PageLocked prevents anyone from starting writeback of a page which is 447 * under read I/O (PageWriteback is only ever set against a locked page). 448 */ 449 static void mark_buffer_async_read(struct buffer_head *bh) 450 { 451 bh->b_end_io = end_buffer_async_read_io; 452 set_buffer_async_read(bh); 453 } 454 455 static void mark_buffer_async_write_endio(struct buffer_head *bh, 456 bh_end_io_t *handler) 457 { 458 bh->b_end_io = handler; 459 set_buffer_async_write(bh); 460 } 461 462 void mark_buffer_async_write(struct buffer_head *bh) 463 { 464 mark_buffer_async_write_endio(bh, end_buffer_async_write); 465 } 466 EXPORT_SYMBOL(mark_buffer_async_write); 467 468 469 /* 470 * fs/buffer.c contains helper functions for buffer-backed address space's 471 * fsync functions. A common requirement for buffer-based filesystems is 472 * that certain data from the backing blockdev needs to be written out for 473 * a successful fsync(). For example, ext2 indirect blocks need to be 474 * written back and waited upon before fsync() returns. 475 * 476 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(), 477 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 478 * management of a list of dependent buffers at ->i_mapping->i_private_list. 479 * 480 * Locking is a little subtle: try_to_free_buffers() will remove buffers 481 * from their controlling inode's queue when they are being freed. But 482 * try_to_free_buffers() will be operating against the *blockdev* mapping 483 * at the time, not against the S_ISREG file which depends on those buffers. 484 * So the locking for i_private_list is via the i_private_lock in the address_space 485 * which backs the buffers. Which is different from the address_space 486 * against which the buffers are listed. So for a particular address_space, 487 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact, 488 * mapping->i_private_list will always be protected by the backing blockdev's 489 * ->i_private_lock. 490 * 491 * Which introduces a requirement: all buffers on an address_space's 492 * ->i_private_list must be from the same address_space: the blockdev's. 493 * 494 * address_spaces which do not place buffers at ->i_private_list via these 495 * utility functions are free to use i_private_lock and i_private_list for 496 * whatever they want. The only requirement is that list_empty(i_private_list) 497 * be true at clear_inode() time. 498 * 499 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 500 * filesystems should do that. invalidate_inode_buffers() should just go 501 * BUG_ON(!list_empty). 502 * 503 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 504 * take an address_space, not an inode. And it should be called 505 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 506 * queued up. 507 * 508 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 509 * list if it is already on a list. Because if the buffer is on a list, 510 * it *must* already be on the right one. If not, the filesystem is being 511 * silly. This will save a ton of locking. But first we have to ensure 512 * that buffers are taken *off* the old inode's list when they are freed 513 * (presumably in truncate). That requires careful auditing of all 514 * filesystems (do it inside bforget()). It could also be done by bringing 515 * b_inode back. 516 */ 517 518 /* 519 * The buffer's backing address_space's i_private_lock must be held 520 */ 521 static void __remove_assoc_queue(struct buffer_head *bh) 522 { 523 list_del_init(&bh->b_assoc_buffers); 524 WARN_ON(!bh->b_assoc_map); 525 bh->b_assoc_map = NULL; 526 } 527 528 int inode_has_buffers(struct inode *inode) 529 { 530 return !list_empty(&inode->i_data.i_private_list); 531 } 532 533 /* 534 * osync is designed to support O_SYNC io. It waits synchronously for 535 * all already-submitted IO to complete, but does not queue any new 536 * writes to the disk. 537 * 538 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 539 * as you dirty the buffers, and then use osync_inode_buffers to wait for 540 * completion. Any other dirty buffers which are not yet queued for 541 * write will not be flushed to disk by the osync. 542 */ 543 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 544 { 545 struct buffer_head *bh; 546 struct list_head *p; 547 int err = 0; 548 549 spin_lock(lock); 550 repeat: 551 list_for_each_prev(p, list) { 552 bh = BH_ENTRY(p); 553 if (buffer_locked(bh)) { 554 get_bh(bh); 555 spin_unlock(lock); 556 wait_on_buffer(bh); 557 if (!buffer_uptodate(bh)) 558 err = -EIO; 559 brelse(bh); 560 spin_lock(lock); 561 goto repeat; 562 } 563 } 564 spin_unlock(lock); 565 return err; 566 } 567 568 /** 569 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 570 * @mapping: the mapping which wants those buffers written 571 * 572 * Starts I/O against the buffers at mapping->i_private_list, and waits upon 573 * that I/O. 574 * 575 * Basically, this is a convenience function for fsync(). 576 * @mapping is a file or directory which needs those buffers to be written for 577 * a successful fsync(). 578 */ 579 int sync_mapping_buffers(struct address_space *mapping) 580 { 581 struct address_space *buffer_mapping = mapping->i_private_data; 582 583 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list)) 584 return 0; 585 586 return fsync_buffers_list(&buffer_mapping->i_private_lock, 587 &mapping->i_private_list); 588 } 589 EXPORT_SYMBOL(sync_mapping_buffers); 590 591 /** 592 * generic_buffers_fsync_noflush - generic buffer fsync implementation 593 * for simple filesystems with no inode lock 594 * 595 * @file: file to synchronize 596 * @start: start offset in bytes 597 * @end: end offset in bytes (inclusive) 598 * @datasync: only synchronize essential metadata if true 599 * 600 * This is a generic implementation of the fsync method for simple 601 * filesystems which track all non-inode metadata in the buffers list 602 * hanging off the address_space structure. 603 */ 604 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, 605 bool datasync) 606 { 607 struct inode *inode = file->f_mapping->host; 608 int err; 609 int ret; 610 611 err = file_write_and_wait_range(file, start, end); 612 if (err) 613 return err; 614 615 ret = sync_mapping_buffers(inode->i_mapping); 616 if (!(inode->i_state & I_DIRTY_ALL)) 617 goto out; 618 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 619 goto out; 620 621 err = sync_inode_metadata(inode, 1); 622 if (ret == 0) 623 ret = err; 624 625 out: 626 /* check and advance again to catch errors after syncing out buffers */ 627 err = file_check_and_advance_wb_err(file); 628 if (ret == 0) 629 ret = err; 630 return ret; 631 } 632 EXPORT_SYMBOL(generic_buffers_fsync_noflush); 633 634 /** 635 * generic_buffers_fsync - generic buffer fsync implementation 636 * for simple filesystems with no inode lock 637 * 638 * @file: file to synchronize 639 * @start: start offset in bytes 640 * @end: end offset in bytes (inclusive) 641 * @datasync: only synchronize essential metadata if true 642 * 643 * This is a generic implementation of the fsync method for simple 644 * filesystems which track all non-inode metadata in the buffers list 645 * hanging off the address_space structure. This also makes sure that 646 * a device cache flush operation is called at the end. 647 */ 648 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, 649 bool datasync) 650 { 651 struct inode *inode = file->f_mapping->host; 652 int ret; 653 654 ret = generic_buffers_fsync_noflush(file, start, end, datasync); 655 if (!ret) 656 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 657 return ret; 658 } 659 EXPORT_SYMBOL(generic_buffers_fsync); 660 661 /* 662 * Called when we've recently written block `bblock', and it is known that 663 * `bblock' was for a buffer_boundary() buffer. This means that the block at 664 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 665 * dirty, schedule it for IO. So that indirects merge nicely with their data. 666 */ 667 void write_boundary_block(struct block_device *bdev, 668 sector_t bblock, unsigned blocksize) 669 { 670 struct buffer_head *bh; 671 672 bh = __find_get_block_nonatomic(bdev, bblock + 1, blocksize); 673 if (bh) { 674 if (buffer_dirty(bh)) 675 write_dirty_buffer(bh, 0); 676 put_bh(bh); 677 } 678 } 679 680 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 681 { 682 struct address_space *mapping = inode->i_mapping; 683 struct address_space *buffer_mapping = bh->b_folio->mapping; 684 685 mark_buffer_dirty(bh); 686 if (!mapping->i_private_data) { 687 mapping->i_private_data = buffer_mapping; 688 } else { 689 BUG_ON(mapping->i_private_data != buffer_mapping); 690 } 691 if (!bh->b_assoc_map) { 692 spin_lock(&buffer_mapping->i_private_lock); 693 list_move_tail(&bh->b_assoc_buffers, 694 &mapping->i_private_list); 695 bh->b_assoc_map = mapping; 696 spin_unlock(&buffer_mapping->i_private_lock); 697 } 698 } 699 EXPORT_SYMBOL(mark_buffer_dirty_inode); 700 701 /** 702 * block_dirty_folio - Mark a folio as dirty. 703 * @mapping: The address space containing this folio. 704 * @folio: The folio to mark dirty. 705 * 706 * Filesystems which use buffer_heads can use this function as their 707 * ->dirty_folio implementation. Some filesystems need to do a little 708 * work before calling this function. Filesystems which do not use 709 * buffer_heads should call filemap_dirty_folio() instead. 710 * 711 * If the folio has buffers, the uptodate buffers are set dirty, to 712 * preserve dirty-state coherency between the folio and the buffers. 713 * Buffers added to a dirty folio are created dirty. 714 * 715 * The buffers are dirtied before the folio is dirtied. There's a small 716 * race window in which writeback may see the folio cleanness but not the 717 * buffer dirtiness. That's fine. If this code were to set the folio 718 * dirty before the buffers, writeback could clear the folio dirty flag, 719 * see a bunch of clean buffers and we'd end up with dirty buffers/clean 720 * folio on the dirty folio list. 721 * 722 * We use i_private_lock to lock against try_to_free_buffers() while 723 * using the folio's buffer list. This also prevents clean buffers 724 * being added to the folio after it was set dirty. 725 * 726 * Context: May only be called from process context. Does not sleep. 727 * Caller must ensure that @folio cannot be truncated during this call, 728 * typically by holding the folio lock or having a page in the folio 729 * mapped and holding the page table lock. 730 * 731 * Return: True if the folio was dirtied; false if it was already dirtied. 732 */ 733 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 734 { 735 struct buffer_head *head; 736 bool newly_dirty; 737 738 spin_lock(&mapping->i_private_lock); 739 head = folio_buffers(folio); 740 if (head) { 741 struct buffer_head *bh = head; 742 743 do { 744 set_buffer_dirty(bh); 745 bh = bh->b_this_page; 746 } while (bh != head); 747 } 748 /* 749 * Lock out page's memcg migration to keep PageDirty 750 * synchronized with per-memcg dirty page counters. 751 */ 752 newly_dirty = !folio_test_set_dirty(folio); 753 spin_unlock(&mapping->i_private_lock); 754 755 if (newly_dirty) 756 __folio_mark_dirty(folio, mapping, 1); 757 758 if (newly_dirty) 759 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 760 761 return newly_dirty; 762 } 763 EXPORT_SYMBOL(block_dirty_folio); 764 765 /* 766 * Write out and wait upon a list of buffers. 767 * 768 * We have conflicting pressures: we want to make sure that all 769 * initially dirty buffers get waited on, but that any subsequently 770 * dirtied buffers don't. After all, we don't want fsync to last 771 * forever if somebody is actively writing to the file. 772 * 773 * Do this in two main stages: first we copy dirty buffers to a 774 * temporary inode list, queueing the writes as we go. Then we clean 775 * up, waiting for those writes to complete. 776 * 777 * During this second stage, any subsequent updates to the file may end 778 * up refiling the buffer on the original inode's dirty list again, so 779 * there is a chance we will end up with a buffer queued for write but 780 * not yet completed on that list. So, as a final cleanup we go through 781 * the osync code to catch these locked, dirty buffers without requeuing 782 * any newly dirty buffers for write. 783 */ 784 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 785 { 786 struct buffer_head *bh; 787 struct address_space *mapping; 788 int err = 0, err2; 789 struct blk_plug plug; 790 LIST_HEAD(tmp); 791 792 blk_start_plug(&plug); 793 794 spin_lock(lock); 795 while (!list_empty(list)) { 796 bh = BH_ENTRY(list->next); 797 mapping = bh->b_assoc_map; 798 __remove_assoc_queue(bh); 799 /* Avoid race with mark_buffer_dirty_inode() which does 800 * a lockless check and we rely on seeing the dirty bit */ 801 smp_mb(); 802 if (buffer_dirty(bh) || buffer_locked(bh)) { 803 list_add(&bh->b_assoc_buffers, &tmp); 804 bh->b_assoc_map = mapping; 805 if (buffer_dirty(bh)) { 806 get_bh(bh); 807 spin_unlock(lock); 808 /* 809 * Ensure any pending I/O completes so that 810 * write_dirty_buffer() actually writes the 811 * current contents - it is a noop if I/O is 812 * still in flight on potentially older 813 * contents. 814 */ 815 write_dirty_buffer(bh, REQ_SYNC); 816 817 /* 818 * Kick off IO for the previous mapping. Note 819 * that we will not run the very last mapping, 820 * wait_on_buffer() will do that for us 821 * through sync_buffer(). 822 */ 823 brelse(bh); 824 spin_lock(lock); 825 } 826 } 827 } 828 829 spin_unlock(lock); 830 blk_finish_plug(&plug); 831 spin_lock(lock); 832 833 while (!list_empty(&tmp)) { 834 bh = BH_ENTRY(tmp.prev); 835 get_bh(bh); 836 mapping = bh->b_assoc_map; 837 __remove_assoc_queue(bh); 838 /* Avoid race with mark_buffer_dirty_inode() which does 839 * a lockless check and we rely on seeing the dirty bit */ 840 smp_mb(); 841 if (buffer_dirty(bh)) { 842 list_add(&bh->b_assoc_buffers, 843 &mapping->i_private_list); 844 bh->b_assoc_map = mapping; 845 } 846 spin_unlock(lock); 847 wait_on_buffer(bh); 848 if (!buffer_uptodate(bh)) 849 err = -EIO; 850 brelse(bh); 851 spin_lock(lock); 852 } 853 854 spin_unlock(lock); 855 err2 = osync_buffers_list(lock, list); 856 if (err) 857 return err; 858 else 859 return err2; 860 } 861 862 /* 863 * Invalidate any and all dirty buffers on a given inode. We are 864 * probably unmounting the fs, but that doesn't mean we have already 865 * done a sync(). Just drop the buffers from the inode list. 866 * 867 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which 868 * assumes that all the buffers are against the blockdev. 869 */ 870 void invalidate_inode_buffers(struct inode *inode) 871 { 872 if (inode_has_buffers(inode)) { 873 struct address_space *mapping = &inode->i_data; 874 struct list_head *list = &mapping->i_private_list; 875 struct address_space *buffer_mapping = mapping->i_private_data; 876 877 spin_lock(&buffer_mapping->i_private_lock); 878 while (!list_empty(list)) 879 __remove_assoc_queue(BH_ENTRY(list->next)); 880 spin_unlock(&buffer_mapping->i_private_lock); 881 } 882 } 883 EXPORT_SYMBOL(invalidate_inode_buffers); 884 885 /* 886 * Remove any clean buffers from the inode's buffer list. This is called 887 * when we're trying to free the inode itself. Those buffers can pin it. 888 * 889 * Returns true if all buffers were removed. 890 */ 891 int remove_inode_buffers(struct inode *inode) 892 { 893 int ret = 1; 894 895 if (inode_has_buffers(inode)) { 896 struct address_space *mapping = &inode->i_data; 897 struct list_head *list = &mapping->i_private_list; 898 struct address_space *buffer_mapping = mapping->i_private_data; 899 900 spin_lock(&buffer_mapping->i_private_lock); 901 while (!list_empty(list)) { 902 struct buffer_head *bh = BH_ENTRY(list->next); 903 if (buffer_dirty(bh)) { 904 ret = 0; 905 break; 906 } 907 __remove_assoc_queue(bh); 908 } 909 spin_unlock(&buffer_mapping->i_private_lock); 910 } 911 return ret; 912 } 913 914 /* 915 * Create the appropriate buffers when given a folio for data area and 916 * the size of each buffer.. Use the bh->b_this_page linked list to 917 * follow the buffers created. Return NULL if unable to create more 918 * buffers. 919 * 920 * The retry flag is used to differentiate async IO (paging, swapping) 921 * which may not fail from ordinary buffer allocations. 922 */ 923 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 924 gfp_t gfp) 925 { 926 struct buffer_head *bh, *head; 927 long offset; 928 struct mem_cgroup *memcg, *old_memcg; 929 930 /* The folio lock pins the memcg */ 931 memcg = folio_memcg(folio); 932 old_memcg = set_active_memcg(memcg); 933 934 head = NULL; 935 offset = folio_size(folio); 936 while ((offset -= size) >= 0) { 937 bh = alloc_buffer_head(gfp); 938 if (!bh) 939 goto no_grow; 940 941 bh->b_this_page = head; 942 bh->b_blocknr = -1; 943 head = bh; 944 945 bh->b_size = size; 946 947 /* Link the buffer to its folio */ 948 folio_set_bh(bh, folio, offset); 949 } 950 out: 951 set_active_memcg(old_memcg); 952 return head; 953 /* 954 * In case anything failed, we just free everything we got. 955 */ 956 no_grow: 957 if (head) { 958 do { 959 bh = head; 960 head = head->b_this_page; 961 free_buffer_head(bh); 962 } while (head); 963 } 964 965 goto out; 966 } 967 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 968 969 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size) 970 { 971 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 972 973 return folio_alloc_buffers(page_folio(page), size, gfp); 974 } 975 EXPORT_SYMBOL_GPL(alloc_page_buffers); 976 977 static inline void link_dev_buffers(struct folio *folio, 978 struct buffer_head *head) 979 { 980 struct buffer_head *bh, *tail; 981 982 bh = head; 983 do { 984 tail = bh; 985 bh = bh->b_this_page; 986 } while (bh); 987 tail->b_this_page = head; 988 folio_attach_private(folio, head); 989 } 990 991 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 992 { 993 sector_t retval = ~((sector_t)0); 994 loff_t sz = bdev_nr_bytes(bdev); 995 996 if (sz) { 997 unsigned int sizebits = blksize_bits(size); 998 retval = (sz >> sizebits); 999 } 1000 return retval; 1001 } 1002 1003 /* 1004 * Initialise the state of a blockdev folio's buffers. 1005 */ 1006 static sector_t folio_init_buffers(struct folio *folio, 1007 struct block_device *bdev, unsigned size) 1008 { 1009 struct buffer_head *head = folio_buffers(folio); 1010 struct buffer_head *bh = head; 1011 bool uptodate = folio_test_uptodate(folio); 1012 sector_t block = div_u64(folio_pos(folio), size); 1013 sector_t end_block = blkdev_max_block(bdev, size); 1014 1015 do { 1016 if (!buffer_mapped(bh)) { 1017 bh->b_end_io = NULL; 1018 bh->b_private = NULL; 1019 bh->b_bdev = bdev; 1020 bh->b_blocknr = block; 1021 if (uptodate) 1022 set_buffer_uptodate(bh); 1023 if (block < end_block) 1024 set_buffer_mapped(bh); 1025 } 1026 block++; 1027 bh = bh->b_this_page; 1028 } while (bh != head); 1029 1030 /* 1031 * Caller needs to validate requested block against end of device. 1032 */ 1033 return end_block; 1034 } 1035 1036 /* 1037 * Create the page-cache folio that contains the requested block. 1038 * 1039 * This is used purely for blockdev mappings. 1040 * 1041 * Returns false if we have a failure which cannot be cured by retrying 1042 * without sleeping. Returns true if we succeeded, or the caller should retry. 1043 */ 1044 static bool grow_dev_folio(struct block_device *bdev, sector_t block, 1045 pgoff_t index, unsigned size, gfp_t gfp) 1046 { 1047 struct address_space *mapping = bdev->bd_mapping; 1048 struct folio *folio; 1049 struct buffer_head *bh; 1050 sector_t end_block = 0; 1051 1052 folio = __filemap_get_folio(mapping, index, 1053 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1054 if (IS_ERR(folio)) 1055 return false; 1056 1057 bh = folio_buffers(folio); 1058 if (bh) { 1059 if (bh->b_size == size) { 1060 end_block = folio_init_buffers(folio, bdev, size); 1061 goto unlock; 1062 } 1063 1064 /* 1065 * Retrying may succeed; for example the folio may finish 1066 * writeback, or buffers may be cleaned. This should not 1067 * happen very often; maybe we have old buffers attached to 1068 * this blockdev's page cache and we're trying to change 1069 * the block size? 1070 */ 1071 if (!try_to_free_buffers(folio)) { 1072 end_block = ~0ULL; 1073 goto unlock; 1074 } 1075 } 1076 1077 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT); 1078 if (!bh) 1079 goto unlock; 1080 1081 /* 1082 * Link the folio to the buffers and initialise them. Take the 1083 * lock to be atomic wrt __find_get_block(), which does not 1084 * run under the folio lock. 1085 */ 1086 spin_lock(&mapping->i_private_lock); 1087 link_dev_buffers(folio, bh); 1088 end_block = folio_init_buffers(folio, bdev, size); 1089 spin_unlock(&mapping->i_private_lock); 1090 unlock: 1091 folio_unlock(folio); 1092 folio_put(folio); 1093 return block < end_block; 1094 } 1095 1096 /* 1097 * Create buffers for the specified block device block's folio. If 1098 * that folio was dirty, the buffers are set dirty also. Returns false 1099 * if we've hit a permanent error. 1100 */ 1101 static bool grow_buffers(struct block_device *bdev, sector_t block, 1102 unsigned size, gfp_t gfp) 1103 { 1104 loff_t pos; 1105 1106 /* 1107 * Check for a block which lies outside our maximum possible 1108 * pagecache index. 1109 */ 1110 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) { 1111 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n", 1112 __func__, (unsigned long long)block, 1113 bdev); 1114 return false; 1115 } 1116 1117 /* Create a folio with the proper size buffers */ 1118 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp); 1119 } 1120 1121 static struct buffer_head * 1122 __getblk_slow(struct block_device *bdev, sector_t block, 1123 unsigned size, gfp_t gfp) 1124 { 1125 /* Size must be multiple of hard sectorsize */ 1126 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1127 (size < 512 || size > PAGE_SIZE))) { 1128 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1129 size); 1130 printk(KERN_ERR "logical block size: %d\n", 1131 bdev_logical_block_size(bdev)); 1132 1133 dump_stack(); 1134 return NULL; 1135 } 1136 1137 for (;;) { 1138 struct buffer_head *bh; 1139 1140 bh = __find_get_block(bdev, block, size); 1141 if (bh) 1142 return bh; 1143 1144 if (!grow_buffers(bdev, block, size, gfp)) 1145 return NULL; 1146 } 1147 } 1148 1149 /* 1150 * The relationship between dirty buffers and dirty pages: 1151 * 1152 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1153 * the page is tagged dirty in the page cache. 1154 * 1155 * At all times, the dirtiness of the buffers represents the dirtiness of 1156 * subsections of the page. If the page has buffers, the page dirty bit is 1157 * merely a hint about the true dirty state. 1158 * 1159 * When a page is set dirty in its entirety, all its buffers are marked dirty 1160 * (if the page has buffers). 1161 * 1162 * When a buffer is marked dirty, its page is dirtied, but the page's other 1163 * buffers are not. 1164 * 1165 * Also. When blockdev buffers are explicitly read with bread(), they 1166 * individually become uptodate. But their backing page remains not 1167 * uptodate - even if all of its buffers are uptodate. A subsequent 1168 * block_read_full_folio() against that folio will discover all the uptodate 1169 * buffers, will set the folio uptodate and will perform no I/O. 1170 */ 1171 1172 /** 1173 * mark_buffer_dirty - mark a buffer_head as needing writeout 1174 * @bh: the buffer_head to mark dirty 1175 * 1176 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1177 * its backing page dirty, then tag the page as dirty in the page cache 1178 * and then attach the address_space's inode to its superblock's dirty 1179 * inode list. 1180 * 1181 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock, 1182 * i_pages lock and mapping->host->i_lock. 1183 */ 1184 void mark_buffer_dirty(struct buffer_head *bh) 1185 { 1186 WARN_ON_ONCE(!buffer_uptodate(bh)); 1187 1188 trace_block_dirty_buffer(bh); 1189 1190 /* 1191 * Very *carefully* optimize the it-is-already-dirty case. 1192 * 1193 * Don't let the final "is it dirty" escape to before we 1194 * perhaps modified the buffer. 1195 */ 1196 if (buffer_dirty(bh)) { 1197 smp_mb(); 1198 if (buffer_dirty(bh)) 1199 return; 1200 } 1201 1202 if (!test_set_buffer_dirty(bh)) { 1203 struct folio *folio = bh->b_folio; 1204 struct address_space *mapping = NULL; 1205 1206 if (!folio_test_set_dirty(folio)) { 1207 mapping = folio->mapping; 1208 if (mapping) 1209 __folio_mark_dirty(folio, mapping, 0); 1210 } 1211 if (mapping) 1212 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1213 } 1214 } 1215 EXPORT_SYMBOL(mark_buffer_dirty); 1216 1217 void mark_buffer_write_io_error(struct buffer_head *bh) 1218 { 1219 set_buffer_write_io_error(bh); 1220 /* FIXME: do we need to set this in both places? */ 1221 if (bh->b_folio && bh->b_folio->mapping) 1222 mapping_set_error(bh->b_folio->mapping, -EIO); 1223 if (bh->b_assoc_map) 1224 mapping_set_error(bh->b_assoc_map, -EIO); 1225 } 1226 EXPORT_SYMBOL(mark_buffer_write_io_error); 1227 1228 /** 1229 * __brelse - Release a buffer. 1230 * @bh: The buffer to release. 1231 * 1232 * This variant of brelse() can be called if @bh is guaranteed to not be NULL. 1233 */ 1234 void __brelse(struct buffer_head *bh) 1235 { 1236 if (atomic_read(&bh->b_count)) { 1237 put_bh(bh); 1238 return; 1239 } 1240 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1241 } 1242 EXPORT_SYMBOL(__brelse); 1243 1244 /** 1245 * __bforget - Discard any dirty data in a buffer. 1246 * @bh: The buffer to forget. 1247 * 1248 * This variant of bforget() can be called if @bh is guaranteed to not 1249 * be NULL. 1250 */ 1251 void __bforget(struct buffer_head *bh) 1252 { 1253 clear_buffer_dirty(bh); 1254 if (bh->b_assoc_map) { 1255 struct address_space *buffer_mapping = bh->b_folio->mapping; 1256 1257 spin_lock(&buffer_mapping->i_private_lock); 1258 list_del_init(&bh->b_assoc_buffers); 1259 bh->b_assoc_map = NULL; 1260 spin_unlock(&buffer_mapping->i_private_lock); 1261 } 1262 __brelse(bh); 1263 } 1264 EXPORT_SYMBOL(__bforget); 1265 1266 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1267 { 1268 lock_buffer(bh); 1269 if (buffer_uptodate(bh)) { 1270 unlock_buffer(bh); 1271 return bh; 1272 } else { 1273 get_bh(bh); 1274 bh->b_end_io = end_buffer_read_sync; 1275 submit_bh(REQ_OP_READ, bh); 1276 wait_on_buffer(bh); 1277 if (buffer_uptodate(bh)) 1278 return bh; 1279 } 1280 brelse(bh); 1281 return NULL; 1282 } 1283 1284 /* 1285 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1286 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1287 * refcount elevated by one when they're in an LRU. A buffer can only appear 1288 * once in a particular CPU's LRU. A single buffer can be present in multiple 1289 * CPU's LRUs at the same time. 1290 * 1291 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1292 * sb_find_get_block(). 1293 * 1294 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1295 * a local interrupt disable for that. 1296 */ 1297 1298 #define BH_LRU_SIZE 16 1299 1300 struct bh_lru { 1301 struct buffer_head *bhs[BH_LRU_SIZE]; 1302 }; 1303 1304 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1305 1306 #ifdef CONFIG_SMP 1307 #define bh_lru_lock() local_irq_disable() 1308 #define bh_lru_unlock() local_irq_enable() 1309 #else 1310 #define bh_lru_lock() preempt_disable() 1311 #define bh_lru_unlock() preempt_enable() 1312 #endif 1313 1314 static inline void check_irqs_on(void) 1315 { 1316 #ifdef irqs_disabled 1317 BUG_ON(irqs_disabled()); 1318 #endif 1319 } 1320 1321 /* 1322 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1323 * inserted at the front, and the buffer_head at the back if any is evicted. 1324 * Or, if already in the LRU it is moved to the front. 1325 */ 1326 static void bh_lru_install(struct buffer_head *bh) 1327 { 1328 struct buffer_head *evictee = bh; 1329 struct bh_lru *b; 1330 int i; 1331 1332 check_irqs_on(); 1333 bh_lru_lock(); 1334 1335 /* 1336 * the refcount of buffer_head in bh_lru prevents dropping the 1337 * attached page(i.e., try_to_free_buffers) so it could cause 1338 * failing page migration. 1339 * Skip putting upcoming bh into bh_lru until migration is done. 1340 */ 1341 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) { 1342 bh_lru_unlock(); 1343 return; 1344 } 1345 1346 b = this_cpu_ptr(&bh_lrus); 1347 for (i = 0; i < BH_LRU_SIZE; i++) { 1348 swap(evictee, b->bhs[i]); 1349 if (evictee == bh) { 1350 bh_lru_unlock(); 1351 return; 1352 } 1353 } 1354 1355 get_bh(bh); 1356 bh_lru_unlock(); 1357 brelse(evictee); 1358 } 1359 1360 /* 1361 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1362 */ 1363 static struct buffer_head * 1364 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1365 { 1366 struct buffer_head *ret = NULL; 1367 unsigned int i; 1368 1369 check_irqs_on(); 1370 bh_lru_lock(); 1371 if (cpu_is_isolated(smp_processor_id())) { 1372 bh_lru_unlock(); 1373 return NULL; 1374 } 1375 for (i = 0; i < BH_LRU_SIZE; i++) { 1376 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1377 1378 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1379 bh->b_size == size) { 1380 if (i) { 1381 while (i) { 1382 __this_cpu_write(bh_lrus.bhs[i], 1383 __this_cpu_read(bh_lrus.bhs[i - 1])); 1384 i--; 1385 } 1386 __this_cpu_write(bh_lrus.bhs[0], bh); 1387 } 1388 get_bh(bh); 1389 ret = bh; 1390 break; 1391 } 1392 } 1393 bh_lru_unlock(); 1394 return ret; 1395 } 1396 1397 /* 1398 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1399 * it in the LRU and mark it as accessed. If it is not present then return 1400 * NULL. Atomic context callers may also return NULL if the buffer is being 1401 * migrated; similarly the page is not marked accessed either. 1402 */ 1403 static struct buffer_head * 1404 find_get_block_common(struct block_device *bdev, sector_t block, 1405 unsigned size, bool atomic) 1406 { 1407 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1408 1409 if (bh == NULL) { 1410 /* __find_get_block_slow will mark the page accessed */ 1411 bh = __find_get_block_slow(bdev, block, atomic); 1412 if (bh) 1413 bh_lru_install(bh); 1414 } else 1415 touch_buffer(bh); 1416 1417 return bh; 1418 } 1419 1420 struct buffer_head * 1421 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1422 { 1423 return find_get_block_common(bdev, block, size, true); 1424 } 1425 EXPORT_SYMBOL(__find_get_block); 1426 1427 /* same as __find_get_block() but allows sleeping contexts */ 1428 struct buffer_head * 1429 __find_get_block_nonatomic(struct block_device *bdev, sector_t block, 1430 unsigned size) 1431 { 1432 return find_get_block_common(bdev, block, size, false); 1433 } 1434 EXPORT_SYMBOL(__find_get_block_nonatomic); 1435 1436 /** 1437 * bdev_getblk - Get a buffer_head in a block device's buffer cache. 1438 * @bdev: The block device. 1439 * @block: The block number. 1440 * @size: The size of buffer_heads for this @bdev. 1441 * @gfp: The memory allocation flags to use. 1442 * 1443 * The returned buffer head has its reference count incremented, but is 1444 * not locked. The caller should call brelse() when it has finished 1445 * with the buffer. The buffer may not be uptodate. If needed, the 1446 * caller can bring it uptodate either by reading it or overwriting it. 1447 * 1448 * Return: The buffer head, or NULL if memory could not be allocated. 1449 */ 1450 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block, 1451 unsigned size, gfp_t gfp) 1452 { 1453 struct buffer_head *bh; 1454 1455 if (gfpflags_allow_blocking(gfp)) 1456 bh = __find_get_block_nonatomic(bdev, block, size); 1457 else 1458 bh = __find_get_block(bdev, block, size); 1459 1460 might_alloc(gfp); 1461 if (bh) 1462 return bh; 1463 1464 return __getblk_slow(bdev, block, size, gfp); 1465 } 1466 EXPORT_SYMBOL(bdev_getblk); 1467 1468 /* 1469 * Do async read-ahead on a buffer.. 1470 */ 1471 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1472 { 1473 struct buffer_head *bh = bdev_getblk(bdev, block, size, 1474 GFP_NOWAIT | __GFP_MOVABLE); 1475 1476 if (likely(bh)) { 1477 bh_readahead(bh, REQ_RAHEAD); 1478 brelse(bh); 1479 } 1480 } 1481 EXPORT_SYMBOL(__breadahead); 1482 1483 /** 1484 * __bread_gfp() - Read a block. 1485 * @bdev: The block device to read from. 1486 * @block: Block number in units of block size. 1487 * @size: The block size of this device in bytes. 1488 * @gfp: Not page allocation flags; see below. 1489 * 1490 * You are not expected to call this function. You should use one of 1491 * sb_bread(), sb_bread_unmovable() or __bread(). 1492 * 1493 * Read a specified block, and return the buffer head that refers to it. 1494 * If @gfp is 0, the memory will be allocated using the block device's 1495 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be 1496 * allocated from a movable area. Do not pass in a complete set of 1497 * GFP flags. 1498 * 1499 * The returned buffer head has its refcount increased. The caller should 1500 * call brelse() when it has finished with the buffer. 1501 * 1502 * Context: May sleep waiting for I/O. 1503 * Return: NULL if the block was unreadable. 1504 */ 1505 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block, 1506 unsigned size, gfp_t gfp) 1507 { 1508 struct buffer_head *bh; 1509 1510 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS); 1511 1512 /* 1513 * Prefer looping in the allocator rather than here, at least that 1514 * code knows what it's doing. 1515 */ 1516 gfp |= __GFP_NOFAIL; 1517 1518 bh = bdev_getblk(bdev, block, size, gfp); 1519 1520 if (likely(bh) && !buffer_uptodate(bh)) 1521 bh = __bread_slow(bh); 1522 return bh; 1523 } 1524 EXPORT_SYMBOL(__bread_gfp); 1525 1526 static void __invalidate_bh_lrus(struct bh_lru *b) 1527 { 1528 int i; 1529 1530 for (i = 0; i < BH_LRU_SIZE; i++) { 1531 brelse(b->bhs[i]); 1532 b->bhs[i] = NULL; 1533 } 1534 } 1535 /* 1536 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1537 * This doesn't race because it runs in each cpu either in irq 1538 * or with preempt disabled. 1539 */ 1540 static void invalidate_bh_lru(void *arg) 1541 { 1542 struct bh_lru *b = &get_cpu_var(bh_lrus); 1543 1544 __invalidate_bh_lrus(b); 1545 put_cpu_var(bh_lrus); 1546 } 1547 1548 bool has_bh_in_lru(int cpu, void *dummy) 1549 { 1550 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1551 int i; 1552 1553 for (i = 0; i < BH_LRU_SIZE; i++) { 1554 if (b->bhs[i]) 1555 return true; 1556 } 1557 1558 return false; 1559 } 1560 1561 void invalidate_bh_lrus(void) 1562 { 1563 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1564 } 1565 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1566 1567 /* 1568 * It's called from workqueue context so we need a bh_lru_lock to close 1569 * the race with preemption/irq. 1570 */ 1571 void invalidate_bh_lrus_cpu(void) 1572 { 1573 struct bh_lru *b; 1574 1575 bh_lru_lock(); 1576 b = this_cpu_ptr(&bh_lrus); 1577 __invalidate_bh_lrus(b); 1578 bh_lru_unlock(); 1579 } 1580 1581 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1582 unsigned long offset) 1583 { 1584 bh->b_folio = folio; 1585 BUG_ON(offset >= folio_size(folio)); 1586 if (folio_test_highmem(folio)) 1587 /* 1588 * This catches illegal uses and preserves the offset: 1589 */ 1590 bh->b_data = (char *)(0 + offset); 1591 else 1592 bh->b_data = folio_address(folio) + offset; 1593 } 1594 EXPORT_SYMBOL(folio_set_bh); 1595 1596 /* 1597 * Called when truncating a buffer on a page completely. 1598 */ 1599 1600 /* Bits that are cleared during an invalidate */ 1601 #define BUFFER_FLAGS_DISCARD \ 1602 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1603 1 << BH_Delay | 1 << BH_Unwritten) 1604 1605 static void discard_buffer(struct buffer_head * bh) 1606 { 1607 unsigned long b_state; 1608 1609 lock_buffer(bh); 1610 clear_buffer_dirty(bh); 1611 bh->b_bdev = NULL; 1612 b_state = READ_ONCE(bh->b_state); 1613 do { 1614 } while (!try_cmpxchg(&bh->b_state, &b_state, 1615 b_state & ~BUFFER_FLAGS_DISCARD)); 1616 unlock_buffer(bh); 1617 } 1618 1619 /** 1620 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1621 * @folio: The folio which is affected. 1622 * @offset: start of the range to invalidate 1623 * @length: length of the range to invalidate 1624 * 1625 * block_invalidate_folio() is called when all or part of the folio has been 1626 * invalidated by a truncate operation. 1627 * 1628 * block_invalidate_folio() does not have to release all buffers, but it must 1629 * ensure that no dirty buffer is left outside @offset and that no I/O 1630 * is underway against any of the blocks which are outside the truncation 1631 * point. Because the caller is about to free (and possibly reuse) those 1632 * blocks on-disk. 1633 */ 1634 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1635 { 1636 struct buffer_head *head, *bh, *next; 1637 size_t curr_off = 0; 1638 size_t stop = length + offset; 1639 1640 BUG_ON(!folio_test_locked(folio)); 1641 1642 /* 1643 * Check for overflow 1644 */ 1645 BUG_ON(stop > folio_size(folio) || stop < length); 1646 1647 head = folio_buffers(folio); 1648 if (!head) 1649 return; 1650 1651 bh = head; 1652 do { 1653 size_t next_off = curr_off + bh->b_size; 1654 next = bh->b_this_page; 1655 1656 /* 1657 * Are we still fully in range ? 1658 */ 1659 if (next_off > stop) 1660 goto out; 1661 1662 /* 1663 * is this block fully invalidated? 1664 */ 1665 if (offset <= curr_off) 1666 discard_buffer(bh); 1667 curr_off = next_off; 1668 bh = next; 1669 } while (bh != head); 1670 1671 /* 1672 * We release buffers only if the entire folio is being invalidated. 1673 * The get_block cached value has been unconditionally invalidated, 1674 * so real IO is not possible anymore. 1675 */ 1676 if (length == folio_size(folio)) 1677 filemap_release_folio(folio, 0); 1678 out: 1679 folio_clear_mappedtodisk(folio); 1680 return; 1681 } 1682 EXPORT_SYMBOL(block_invalidate_folio); 1683 1684 /* 1685 * We attach and possibly dirty the buffers atomically wrt 1686 * block_dirty_folio() via i_private_lock. try_to_free_buffers 1687 * is already excluded via the folio lock. 1688 */ 1689 struct buffer_head *create_empty_buffers(struct folio *folio, 1690 unsigned long blocksize, unsigned long b_state) 1691 { 1692 struct buffer_head *bh, *head, *tail; 1693 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL; 1694 1695 head = folio_alloc_buffers(folio, blocksize, gfp); 1696 bh = head; 1697 do { 1698 bh->b_state |= b_state; 1699 tail = bh; 1700 bh = bh->b_this_page; 1701 } while (bh); 1702 tail->b_this_page = head; 1703 1704 spin_lock(&folio->mapping->i_private_lock); 1705 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1706 bh = head; 1707 do { 1708 if (folio_test_dirty(folio)) 1709 set_buffer_dirty(bh); 1710 if (folio_test_uptodate(folio)) 1711 set_buffer_uptodate(bh); 1712 bh = bh->b_this_page; 1713 } while (bh != head); 1714 } 1715 folio_attach_private(folio, head); 1716 spin_unlock(&folio->mapping->i_private_lock); 1717 1718 return head; 1719 } 1720 EXPORT_SYMBOL(create_empty_buffers); 1721 1722 /** 1723 * clean_bdev_aliases: clean a range of buffers in block device 1724 * @bdev: Block device to clean buffers in 1725 * @block: Start of a range of blocks to clean 1726 * @len: Number of blocks to clean 1727 * 1728 * We are taking a range of blocks for data and we don't want writeback of any 1729 * buffer-cache aliases starting from return from this function and until the 1730 * moment when something will explicitly mark the buffer dirty (hopefully that 1731 * will not happen until we will free that block ;-) We don't even need to mark 1732 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1733 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1734 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1735 * would confuse anyone who might pick it with bread() afterwards... 1736 * 1737 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1738 * writeout I/O going on against recently-freed buffers. We don't wait on that 1739 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1740 * need to. That happens here. 1741 */ 1742 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1743 { 1744 struct address_space *bd_mapping = bdev->bd_mapping; 1745 const int blkbits = bd_mapping->host->i_blkbits; 1746 struct folio_batch fbatch; 1747 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE; 1748 pgoff_t end; 1749 int i, count; 1750 struct buffer_head *bh; 1751 struct buffer_head *head; 1752 1753 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE; 1754 folio_batch_init(&fbatch); 1755 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1756 count = folio_batch_count(&fbatch); 1757 for (i = 0; i < count; i++) { 1758 struct folio *folio = fbatch.folios[i]; 1759 1760 if (!folio_buffers(folio)) 1761 continue; 1762 /* 1763 * We use folio lock instead of bd_mapping->i_private_lock 1764 * to pin buffers here since we can afford to sleep and 1765 * it scales better than a global spinlock lock. 1766 */ 1767 folio_lock(folio); 1768 /* Recheck when the folio is locked which pins bhs */ 1769 head = folio_buffers(folio); 1770 if (!head) 1771 goto unlock_page; 1772 bh = head; 1773 do { 1774 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1775 goto next; 1776 if (bh->b_blocknr >= block + len) 1777 break; 1778 clear_buffer_dirty(bh); 1779 wait_on_buffer(bh); 1780 clear_buffer_req(bh); 1781 next: 1782 bh = bh->b_this_page; 1783 } while (bh != head); 1784 unlock_page: 1785 folio_unlock(folio); 1786 } 1787 folio_batch_release(&fbatch); 1788 cond_resched(); 1789 /* End of range already reached? */ 1790 if (index > end || !index) 1791 break; 1792 } 1793 } 1794 EXPORT_SYMBOL(clean_bdev_aliases); 1795 1796 static struct buffer_head *folio_create_buffers(struct folio *folio, 1797 struct inode *inode, 1798 unsigned int b_state) 1799 { 1800 struct buffer_head *bh; 1801 1802 BUG_ON(!folio_test_locked(folio)); 1803 1804 bh = folio_buffers(folio); 1805 if (!bh) 1806 bh = create_empty_buffers(folio, 1807 1 << READ_ONCE(inode->i_blkbits), b_state); 1808 return bh; 1809 } 1810 1811 /* 1812 * NOTE! All mapped/uptodate combinations are valid: 1813 * 1814 * Mapped Uptodate Meaning 1815 * 1816 * No No "unknown" - must do get_block() 1817 * No Yes "hole" - zero-filled 1818 * Yes No "allocated" - allocated on disk, not read in 1819 * Yes Yes "valid" - allocated and up-to-date in memory. 1820 * 1821 * "Dirty" is valid only with the last case (mapped+uptodate). 1822 */ 1823 1824 /* 1825 * While block_write_full_folio is writing back the dirty buffers under 1826 * the page lock, whoever dirtied the buffers may decide to clean them 1827 * again at any time. We handle that by only looking at the buffer 1828 * state inside lock_buffer(). 1829 * 1830 * If block_write_full_folio() is called for regular writeback 1831 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1832 * locked buffer. This only can happen if someone has written the buffer 1833 * directly, with submit_bh(). At the address_space level PageWriteback 1834 * prevents this contention from occurring. 1835 * 1836 * If block_write_full_folio() is called with wbc->sync_mode == 1837 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1838 * causes the writes to be flagged as synchronous writes. 1839 */ 1840 int __block_write_full_folio(struct inode *inode, struct folio *folio, 1841 get_block_t *get_block, struct writeback_control *wbc) 1842 { 1843 int err; 1844 sector_t block; 1845 sector_t last_block; 1846 struct buffer_head *bh, *head; 1847 size_t blocksize; 1848 int nr_underway = 0; 1849 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1850 1851 head = folio_create_buffers(folio, inode, 1852 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1853 1854 /* 1855 * Be very careful. We have no exclusion from block_dirty_folio 1856 * here, and the (potentially unmapped) buffers may become dirty at 1857 * any time. If a buffer becomes dirty here after we've inspected it 1858 * then we just miss that fact, and the folio stays dirty. 1859 * 1860 * Buffers outside i_size may be dirtied by block_dirty_folio; 1861 * handle that here by just cleaning them. 1862 */ 1863 1864 bh = head; 1865 blocksize = bh->b_size; 1866 1867 block = div_u64(folio_pos(folio), blocksize); 1868 last_block = div_u64(i_size_read(inode) - 1, blocksize); 1869 1870 /* 1871 * Get all the dirty buffers mapped to disk addresses and 1872 * handle any aliases from the underlying blockdev's mapping. 1873 */ 1874 do { 1875 if (block > last_block) { 1876 /* 1877 * mapped buffers outside i_size will occur, because 1878 * this folio can be outside i_size when there is a 1879 * truncate in progress. 1880 */ 1881 /* 1882 * The buffer was zeroed by block_write_full_folio() 1883 */ 1884 clear_buffer_dirty(bh); 1885 set_buffer_uptodate(bh); 1886 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1887 buffer_dirty(bh)) { 1888 WARN_ON(bh->b_size != blocksize); 1889 err = get_block(inode, block, bh, 1); 1890 if (err) 1891 goto recover; 1892 clear_buffer_delay(bh); 1893 if (buffer_new(bh)) { 1894 /* blockdev mappings never come here */ 1895 clear_buffer_new(bh); 1896 clean_bdev_bh_alias(bh); 1897 } 1898 } 1899 bh = bh->b_this_page; 1900 block++; 1901 } while (bh != head); 1902 1903 do { 1904 if (!buffer_mapped(bh)) 1905 continue; 1906 /* 1907 * If it's a fully non-blocking write attempt and we cannot 1908 * lock the buffer then redirty the folio. Note that this can 1909 * potentially cause a busy-wait loop from writeback threads 1910 * and kswapd activity, but those code paths have their own 1911 * higher-level throttling. 1912 */ 1913 if (wbc->sync_mode != WB_SYNC_NONE) { 1914 lock_buffer(bh); 1915 } else if (!trylock_buffer(bh)) { 1916 folio_redirty_for_writepage(wbc, folio); 1917 continue; 1918 } 1919 if (test_clear_buffer_dirty(bh)) { 1920 mark_buffer_async_write_endio(bh, 1921 end_buffer_async_write); 1922 } else { 1923 unlock_buffer(bh); 1924 } 1925 } while ((bh = bh->b_this_page) != head); 1926 1927 /* 1928 * The folio and its buffers are protected by the writeback flag, 1929 * so we can drop the bh refcounts early. 1930 */ 1931 BUG_ON(folio_test_writeback(folio)); 1932 folio_start_writeback(folio); 1933 1934 do { 1935 struct buffer_head *next = bh->b_this_page; 1936 if (buffer_async_write(bh)) { 1937 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1938 inode->i_write_hint, wbc); 1939 nr_underway++; 1940 } 1941 bh = next; 1942 } while (bh != head); 1943 folio_unlock(folio); 1944 1945 err = 0; 1946 done: 1947 if (nr_underway == 0) { 1948 /* 1949 * The folio was marked dirty, but the buffers were 1950 * clean. Someone wrote them back by hand with 1951 * write_dirty_buffer/submit_bh. A rare case. 1952 */ 1953 folio_end_writeback(folio); 1954 1955 /* 1956 * The folio and buffer_heads can be released at any time from 1957 * here on. 1958 */ 1959 } 1960 return err; 1961 1962 recover: 1963 /* 1964 * ENOSPC, or some other error. We may already have added some 1965 * blocks to the file, so we need to write these out to avoid 1966 * exposing stale data. 1967 * The folio is currently locked and not marked for writeback 1968 */ 1969 bh = head; 1970 /* Recovery: lock and submit the mapped buffers */ 1971 do { 1972 if (buffer_mapped(bh) && buffer_dirty(bh) && 1973 !buffer_delay(bh)) { 1974 lock_buffer(bh); 1975 mark_buffer_async_write_endio(bh, 1976 end_buffer_async_write); 1977 } else { 1978 /* 1979 * The buffer may have been set dirty during 1980 * attachment to a dirty folio. 1981 */ 1982 clear_buffer_dirty(bh); 1983 } 1984 } while ((bh = bh->b_this_page) != head); 1985 BUG_ON(folio_test_writeback(folio)); 1986 mapping_set_error(folio->mapping, err); 1987 folio_start_writeback(folio); 1988 do { 1989 struct buffer_head *next = bh->b_this_page; 1990 if (buffer_async_write(bh)) { 1991 clear_buffer_dirty(bh); 1992 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1993 inode->i_write_hint, wbc); 1994 nr_underway++; 1995 } 1996 bh = next; 1997 } while (bh != head); 1998 folio_unlock(folio); 1999 goto done; 2000 } 2001 EXPORT_SYMBOL(__block_write_full_folio); 2002 2003 /* 2004 * If a folio has any new buffers, zero them out here, and mark them uptodate 2005 * and dirty so they'll be written out (in order to prevent uninitialised 2006 * block data from leaking). And clear the new bit. 2007 */ 2008 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) 2009 { 2010 size_t block_start, block_end; 2011 struct buffer_head *head, *bh; 2012 2013 BUG_ON(!folio_test_locked(folio)); 2014 head = folio_buffers(folio); 2015 if (!head) 2016 return; 2017 2018 bh = head; 2019 block_start = 0; 2020 do { 2021 block_end = block_start + bh->b_size; 2022 2023 if (buffer_new(bh)) { 2024 if (block_end > from && block_start < to) { 2025 if (!folio_test_uptodate(folio)) { 2026 size_t start, xend; 2027 2028 start = max(from, block_start); 2029 xend = min(to, block_end); 2030 2031 folio_zero_segment(folio, start, xend); 2032 set_buffer_uptodate(bh); 2033 } 2034 2035 clear_buffer_new(bh); 2036 mark_buffer_dirty(bh); 2037 } 2038 } 2039 2040 block_start = block_end; 2041 bh = bh->b_this_page; 2042 } while (bh != head); 2043 } 2044 EXPORT_SYMBOL(folio_zero_new_buffers); 2045 2046 static int 2047 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 2048 const struct iomap *iomap) 2049 { 2050 loff_t offset = (loff_t)block << inode->i_blkbits; 2051 2052 bh->b_bdev = iomap->bdev; 2053 2054 /* 2055 * Block points to offset in file we need to map, iomap contains 2056 * the offset at which the map starts. If the map ends before the 2057 * current block, then do not map the buffer and let the caller 2058 * handle it. 2059 */ 2060 if (offset >= iomap->offset + iomap->length) 2061 return -EIO; 2062 2063 switch (iomap->type) { 2064 case IOMAP_HOLE: 2065 /* 2066 * If the buffer is not up to date or beyond the current EOF, 2067 * we need to mark it as new to ensure sub-block zeroing is 2068 * executed if necessary. 2069 */ 2070 if (!buffer_uptodate(bh) || 2071 (offset >= i_size_read(inode))) 2072 set_buffer_new(bh); 2073 return 0; 2074 case IOMAP_DELALLOC: 2075 if (!buffer_uptodate(bh) || 2076 (offset >= i_size_read(inode))) 2077 set_buffer_new(bh); 2078 set_buffer_uptodate(bh); 2079 set_buffer_mapped(bh); 2080 set_buffer_delay(bh); 2081 return 0; 2082 case IOMAP_UNWRITTEN: 2083 /* 2084 * For unwritten regions, we always need to ensure that regions 2085 * in the block we are not writing to are zeroed. Mark the 2086 * buffer as new to ensure this. 2087 */ 2088 set_buffer_new(bh); 2089 set_buffer_unwritten(bh); 2090 fallthrough; 2091 case IOMAP_MAPPED: 2092 if ((iomap->flags & IOMAP_F_NEW) || 2093 offset >= i_size_read(inode)) { 2094 /* 2095 * This can happen if truncating the block device races 2096 * with the check in the caller as i_size updates on 2097 * block devices aren't synchronized by i_rwsem for 2098 * block devices. 2099 */ 2100 if (S_ISBLK(inode->i_mode)) 2101 return -EIO; 2102 set_buffer_new(bh); 2103 } 2104 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2105 inode->i_blkbits; 2106 set_buffer_mapped(bh); 2107 return 0; 2108 default: 2109 WARN_ON_ONCE(1); 2110 return -EIO; 2111 } 2112 } 2113 2114 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2115 get_block_t *get_block, const struct iomap *iomap) 2116 { 2117 size_t from = offset_in_folio(folio, pos); 2118 size_t to = from + len; 2119 struct inode *inode = folio->mapping->host; 2120 size_t block_start, block_end; 2121 sector_t block; 2122 int err = 0; 2123 size_t blocksize; 2124 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2125 2126 BUG_ON(!folio_test_locked(folio)); 2127 BUG_ON(to > folio_size(folio)); 2128 BUG_ON(from > to); 2129 2130 head = folio_create_buffers(folio, inode, 0); 2131 blocksize = head->b_size; 2132 block = div_u64(folio_pos(folio), blocksize); 2133 2134 for (bh = head, block_start = 0; bh != head || !block_start; 2135 block++, block_start=block_end, bh = bh->b_this_page) { 2136 block_end = block_start + blocksize; 2137 if (block_end <= from || block_start >= to) { 2138 if (folio_test_uptodate(folio)) { 2139 if (!buffer_uptodate(bh)) 2140 set_buffer_uptodate(bh); 2141 } 2142 continue; 2143 } 2144 if (buffer_new(bh)) 2145 clear_buffer_new(bh); 2146 if (!buffer_mapped(bh)) { 2147 WARN_ON(bh->b_size != blocksize); 2148 if (get_block) 2149 err = get_block(inode, block, bh, 1); 2150 else 2151 err = iomap_to_bh(inode, block, bh, iomap); 2152 if (err) 2153 break; 2154 2155 if (buffer_new(bh)) { 2156 clean_bdev_bh_alias(bh); 2157 if (folio_test_uptodate(folio)) { 2158 clear_buffer_new(bh); 2159 set_buffer_uptodate(bh); 2160 mark_buffer_dirty(bh); 2161 continue; 2162 } 2163 if (block_end > to || block_start < from) 2164 folio_zero_segments(folio, 2165 to, block_end, 2166 block_start, from); 2167 continue; 2168 } 2169 } 2170 if (folio_test_uptodate(folio)) { 2171 if (!buffer_uptodate(bh)) 2172 set_buffer_uptodate(bh); 2173 continue; 2174 } 2175 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2176 !buffer_unwritten(bh) && 2177 (block_start < from || block_end > to)) { 2178 bh_read_nowait(bh, 0); 2179 *wait_bh++=bh; 2180 } 2181 } 2182 /* 2183 * If we issued read requests - let them complete. 2184 */ 2185 while(wait_bh > wait) { 2186 wait_on_buffer(*--wait_bh); 2187 if (!buffer_uptodate(*wait_bh)) 2188 err = -EIO; 2189 } 2190 if (unlikely(err)) 2191 folio_zero_new_buffers(folio, from, to); 2192 return err; 2193 } 2194 2195 int __block_write_begin(struct folio *folio, loff_t pos, unsigned len, 2196 get_block_t *get_block) 2197 { 2198 return __block_write_begin_int(folio, pos, len, get_block, NULL); 2199 } 2200 EXPORT_SYMBOL(__block_write_begin); 2201 2202 void block_commit_write(struct folio *folio, size_t from, size_t to) 2203 { 2204 size_t block_start, block_end; 2205 bool partial = false; 2206 unsigned blocksize; 2207 struct buffer_head *bh, *head; 2208 2209 bh = head = folio_buffers(folio); 2210 if (!bh) 2211 return; 2212 blocksize = bh->b_size; 2213 2214 block_start = 0; 2215 do { 2216 block_end = block_start + blocksize; 2217 if (block_end <= from || block_start >= to) { 2218 if (!buffer_uptodate(bh)) 2219 partial = true; 2220 } else { 2221 set_buffer_uptodate(bh); 2222 mark_buffer_dirty(bh); 2223 } 2224 if (buffer_new(bh)) 2225 clear_buffer_new(bh); 2226 2227 block_start = block_end; 2228 bh = bh->b_this_page; 2229 } while (bh != head); 2230 2231 /* 2232 * If this is a partial write which happened to make all buffers 2233 * uptodate then we can optimize away a bogus read_folio() for 2234 * the next read(). Here we 'discover' whether the folio went 2235 * uptodate as a result of this (potentially partial) write. 2236 */ 2237 if (!partial) 2238 folio_mark_uptodate(folio); 2239 } 2240 EXPORT_SYMBOL(block_commit_write); 2241 2242 /* 2243 * block_write_begin takes care of the basic task of block allocation and 2244 * bringing partial write blocks uptodate first. 2245 * 2246 * The filesystem needs to handle block truncation upon failure. 2247 */ 2248 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2249 struct folio **foliop, get_block_t *get_block) 2250 { 2251 pgoff_t index = pos >> PAGE_SHIFT; 2252 struct folio *folio; 2253 int status; 2254 2255 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2256 mapping_gfp_mask(mapping)); 2257 if (IS_ERR(folio)) 2258 return PTR_ERR(folio); 2259 2260 status = __block_write_begin_int(folio, pos, len, get_block, NULL); 2261 if (unlikely(status)) { 2262 folio_unlock(folio); 2263 folio_put(folio); 2264 folio = NULL; 2265 } 2266 2267 *foliop = folio; 2268 return status; 2269 } 2270 EXPORT_SYMBOL(block_write_begin); 2271 2272 int block_write_end(struct file *file, struct address_space *mapping, 2273 loff_t pos, unsigned len, unsigned copied, 2274 struct folio *folio, void *fsdata) 2275 { 2276 size_t start = pos - folio_pos(folio); 2277 2278 if (unlikely(copied < len)) { 2279 /* 2280 * The buffers that were written will now be uptodate, so 2281 * we don't have to worry about a read_folio reading them 2282 * and overwriting a partial write. However if we have 2283 * encountered a short write and only partially written 2284 * into a buffer, it will not be marked uptodate, so a 2285 * read_folio might come in and destroy our partial write. 2286 * 2287 * Do the simplest thing, and just treat any short write to a 2288 * non uptodate folio as a zero-length write, and force the 2289 * caller to redo the whole thing. 2290 */ 2291 if (!folio_test_uptodate(folio)) 2292 copied = 0; 2293 2294 folio_zero_new_buffers(folio, start+copied, start+len); 2295 } 2296 flush_dcache_folio(folio); 2297 2298 /* This could be a short (even 0-length) commit */ 2299 block_commit_write(folio, start, start + copied); 2300 2301 return copied; 2302 } 2303 EXPORT_SYMBOL(block_write_end); 2304 2305 int generic_write_end(struct file *file, struct address_space *mapping, 2306 loff_t pos, unsigned len, unsigned copied, 2307 struct folio *folio, void *fsdata) 2308 { 2309 struct inode *inode = mapping->host; 2310 loff_t old_size = inode->i_size; 2311 bool i_size_changed = false; 2312 2313 copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata); 2314 2315 /* 2316 * No need to use i_size_read() here, the i_size cannot change under us 2317 * because we hold i_rwsem. 2318 * 2319 * But it's important to update i_size while still holding folio lock: 2320 * page writeout could otherwise come in and zero beyond i_size. 2321 */ 2322 if (pos + copied > inode->i_size) { 2323 i_size_write(inode, pos + copied); 2324 i_size_changed = true; 2325 } 2326 2327 folio_unlock(folio); 2328 folio_put(folio); 2329 2330 if (old_size < pos) 2331 pagecache_isize_extended(inode, old_size, pos); 2332 /* 2333 * Don't mark the inode dirty under page lock. First, it unnecessarily 2334 * makes the holding time of page lock longer. Second, it forces lock 2335 * ordering of page lock and transaction start for journaling 2336 * filesystems. 2337 */ 2338 if (i_size_changed) 2339 mark_inode_dirty(inode); 2340 return copied; 2341 } 2342 EXPORT_SYMBOL(generic_write_end); 2343 2344 /* 2345 * block_is_partially_uptodate checks whether buffers within a folio are 2346 * uptodate or not. 2347 * 2348 * Returns true if all buffers which correspond to the specified part 2349 * of the folio are uptodate. 2350 */ 2351 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2352 { 2353 unsigned block_start, block_end, blocksize; 2354 unsigned to; 2355 struct buffer_head *bh, *head; 2356 bool ret = true; 2357 2358 head = folio_buffers(folio); 2359 if (!head) 2360 return false; 2361 blocksize = head->b_size; 2362 to = min_t(unsigned, folio_size(folio) - from, count); 2363 to = from + to; 2364 if (from < blocksize && to > folio_size(folio) - blocksize) 2365 return false; 2366 2367 bh = head; 2368 block_start = 0; 2369 do { 2370 block_end = block_start + blocksize; 2371 if (block_end > from && block_start < to) { 2372 if (!buffer_uptodate(bh)) { 2373 ret = false; 2374 break; 2375 } 2376 if (block_end >= to) 2377 break; 2378 } 2379 block_start = block_end; 2380 bh = bh->b_this_page; 2381 } while (bh != head); 2382 2383 return ret; 2384 } 2385 EXPORT_SYMBOL(block_is_partially_uptodate); 2386 2387 /* 2388 * Generic "read_folio" function for block devices that have the normal 2389 * get_block functionality. This is most of the block device filesystems. 2390 * Reads the folio asynchronously --- the unlock_buffer() and 2391 * set/clear_buffer_uptodate() functions propagate buffer state into the 2392 * folio once IO has completed. 2393 */ 2394 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2395 { 2396 struct inode *inode = folio->mapping->host; 2397 sector_t iblock, lblock; 2398 struct buffer_head *bh, *head, *prev = NULL; 2399 size_t blocksize; 2400 int fully_mapped = 1; 2401 bool page_error = false; 2402 loff_t limit = i_size_read(inode); 2403 2404 /* This is needed for ext4. */ 2405 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2406 limit = inode->i_sb->s_maxbytes; 2407 2408 head = folio_create_buffers(folio, inode, 0); 2409 blocksize = head->b_size; 2410 2411 iblock = div_u64(folio_pos(folio), blocksize); 2412 lblock = div_u64(limit + blocksize - 1, blocksize); 2413 bh = head; 2414 2415 do { 2416 if (buffer_uptodate(bh)) 2417 continue; 2418 2419 if (!buffer_mapped(bh)) { 2420 int err = 0; 2421 2422 fully_mapped = 0; 2423 if (iblock < lblock) { 2424 WARN_ON(bh->b_size != blocksize); 2425 err = get_block(inode, iblock, bh, 0); 2426 if (err) 2427 page_error = true; 2428 } 2429 if (!buffer_mapped(bh)) { 2430 folio_zero_range(folio, bh_offset(bh), 2431 blocksize); 2432 if (!err) 2433 set_buffer_uptodate(bh); 2434 continue; 2435 } 2436 /* 2437 * get_block() might have updated the buffer 2438 * synchronously 2439 */ 2440 if (buffer_uptodate(bh)) 2441 continue; 2442 } 2443 2444 lock_buffer(bh); 2445 if (buffer_uptodate(bh)) { 2446 unlock_buffer(bh); 2447 continue; 2448 } 2449 2450 mark_buffer_async_read(bh); 2451 if (prev) 2452 submit_bh(REQ_OP_READ, prev); 2453 prev = bh; 2454 } while (iblock++, (bh = bh->b_this_page) != head); 2455 2456 if (fully_mapped) 2457 folio_set_mappedtodisk(folio); 2458 2459 /* 2460 * All buffers are uptodate or get_block() returned an error 2461 * when trying to map them - we must finish the read because 2462 * end_buffer_async_read() will never be called on any buffer 2463 * in this folio. 2464 */ 2465 if (prev) 2466 submit_bh(REQ_OP_READ, prev); 2467 else 2468 folio_end_read(folio, !page_error); 2469 2470 return 0; 2471 } 2472 EXPORT_SYMBOL(block_read_full_folio); 2473 2474 /* utility function for filesystems that need to do work on expanding 2475 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2476 * deal with the hole. 2477 */ 2478 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2479 { 2480 struct address_space *mapping = inode->i_mapping; 2481 const struct address_space_operations *aops = mapping->a_ops; 2482 struct folio *folio; 2483 void *fsdata = NULL; 2484 int err; 2485 2486 err = inode_newsize_ok(inode, size); 2487 if (err) 2488 goto out; 2489 2490 err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata); 2491 if (err) 2492 goto out; 2493 2494 err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata); 2495 BUG_ON(err > 0); 2496 2497 out: 2498 return err; 2499 } 2500 EXPORT_SYMBOL(generic_cont_expand_simple); 2501 2502 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2503 loff_t pos, loff_t *bytes) 2504 { 2505 struct inode *inode = mapping->host; 2506 const struct address_space_operations *aops = mapping->a_ops; 2507 unsigned int blocksize = i_blocksize(inode); 2508 struct folio *folio; 2509 void *fsdata = NULL; 2510 pgoff_t index, curidx; 2511 loff_t curpos; 2512 unsigned zerofrom, offset, len; 2513 int err = 0; 2514 2515 index = pos >> PAGE_SHIFT; 2516 offset = pos & ~PAGE_MASK; 2517 2518 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2519 zerofrom = curpos & ~PAGE_MASK; 2520 if (zerofrom & (blocksize-1)) { 2521 *bytes |= (blocksize-1); 2522 (*bytes)++; 2523 } 2524 len = PAGE_SIZE - zerofrom; 2525 2526 err = aops->write_begin(file, mapping, curpos, len, 2527 &folio, &fsdata); 2528 if (err) 2529 goto out; 2530 folio_zero_range(folio, offset_in_folio(folio, curpos), len); 2531 err = aops->write_end(file, mapping, curpos, len, len, 2532 folio, fsdata); 2533 if (err < 0) 2534 goto out; 2535 BUG_ON(err != len); 2536 err = 0; 2537 2538 balance_dirty_pages_ratelimited(mapping); 2539 2540 if (fatal_signal_pending(current)) { 2541 err = -EINTR; 2542 goto out; 2543 } 2544 } 2545 2546 /* page covers the boundary, find the boundary offset */ 2547 if (index == curidx) { 2548 zerofrom = curpos & ~PAGE_MASK; 2549 /* if we will expand the thing last block will be filled */ 2550 if (offset <= zerofrom) { 2551 goto out; 2552 } 2553 if (zerofrom & (blocksize-1)) { 2554 *bytes |= (blocksize-1); 2555 (*bytes)++; 2556 } 2557 len = offset - zerofrom; 2558 2559 err = aops->write_begin(file, mapping, curpos, len, 2560 &folio, &fsdata); 2561 if (err) 2562 goto out; 2563 folio_zero_range(folio, offset_in_folio(folio, curpos), len); 2564 err = aops->write_end(file, mapping, curpos, len, len, 2565 folio, fsdata); 2566 if (err < 0) 2567 goto out; 2568 BUG_ON(err != len); 2569 err = 0; 2570 } 2571 out: 2572 return err; 2573 } 2574 2575 /* 2576 * For moronic filesystems that do not allow holes in file. 2577 * We may have to extend the file. 2578 */ 2579 int cont_write_begin(struct file *file, struct address_space *mapping, 2580 loff_t pos, unsigned len, 2581 struct folio **foliop, void **fsdata, 2582 get_block_t *get_block, loff_t *bytes) 2583 { 2584 struct inode *inode = mapping->host; 2585 unsigned int blocksize = i_blocksize(inode); 2586 unsigned int zerofrom; 2587 int err; 2588 2589 err = cont_expand_zero(file, mapping, pos, bytes); 2590 if (err) 2591 return err; 2592 2593 zerofrom = *bytes & ~PAGE_MASK; 2594 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2595 *bytes |= (blocksize-1); 2596 (*bytes)++; 2597 } 2598 2599 return block_write_begin(mapping, pos, len, foliop, get_block); 2600 } 2601 EXPORT_SYMBOL(cont_write_begin); 2602 2603 /* 2604 * block_page_mkwrite() is not allowed to change the file size as it gets 2605 * called from a page fault handler when a page is first dirtied. Hence we must 2606 * be careful to check for EOF conditions here. We set the page up correctly 2607 * for a written page which means we get ENOSPC checking when writing into 2608 * holes and correct delalloc and unwritten extent mapping on filesystems that 2609 * support these features. 2610 * 2611 * We are not allowed to take the i_mutex here so we have to play games to 2612 * protect against truncate races as the page could now be beyond EOF. Because 2613 * truncate writes the inode size before removing pages, once we have the 2614 * page lock we can determine safely if the page is beyond EOF. If it is not 2615 * beyond EOF, then the page is guaranteed safe against truncation until we 2616 * unlock the page. 2617 * 2618 * Direct callers of this function should protect against filesystem freezing 2619 * using sb_start_pagefault() - sb_end_pagefault() functions. 2620 */ 2621 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2622 get_block_t get_block) 2623 { 2624 struct folio *folio = page_folio(vmf->page); 2625 struct inode *inode = file_inode(vma->vm_file); 2626 unsigned long end; 2627 loff_t size; 2628 int ret; 2629 2630 folio_lock(folio); 2631 size = i_size_read(inode); 2632 if ((folio->mapping != inode->i_mapping) || 2633 (folio_pos(folio) >= size)) { 2634 /* We overload EFAULT to mean page got truncated */ 2635 ret = -EFAULT; 2636 goto out_unlock; 2637 } 2638 2639 end = folio_size(folio); 2640 /* folio is wholly or partially inside EOF */ 2641 if (folio_pos(folio) + end > size) 2642 end = size - folio_pos(folio); 2643 2644 ret = __block_write_begin_int(folio, 0, end, get_block, NULL); 2645 if (unlikely(ret)) 2646 goto out_unlock; 2647 2648 block_commit_write(folio, 0, end); 2649 2650 folio_mark_dirty(folio); 2651 folio_wait_stable(folio); 2652 return 0; 2653 out_unlock: 2654 folio_unlock(folio); 2655 return ret; 2656 } 2657 EXPORT_SYMBOL(block_page_mkwrite); 2658 2659 int block_truncate_page(struct address_space *mapping, 2660 loff_t from, get_block_t *get_block) 2661 { 2662 pgoff_t index = from >> PAGE_SHIFT; 2663 unsigned blocksize; 2664 sector_t iblock; 2665 size_t offset, length, pos; 2666 struct inode *inode = mapping->host; 2667 struct folio *folio; 2668 struct buffer_head *bh; 2669 int err = 0; 2670 2671 blocksize = i_blocksize(inode); 2672 length = from & (blocksize - 1); 2673 2674 /* Block boundary? Nothing to do */ 2675 if (!length) 2676 return 0; 2677 2678 length = blocksize - length; 2679 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits; 2680 2681 folio = filemap_grab_folio(mapping, index); 2682 if (IS_ERR(folio)) 2683 return PTR_ERR(folio); 2684 2685 bh = folio_buffers(folio); 2686 if (!bh) 2687 bh = create_empty_buffers(folio, blocksize, 0); 2688 2689 /* Find the buffer that contains "offset" */ 2690 offset = offset_in_folio(folio, from); 2691 pos = blocksize; 2692 while (offset >= pos) { 2693 bh = bh->b_this_page; 2694 iblock++; 2695 pos += blocksize; 2696 } 2697 2698 if (!buffer_mapped(bh)) { 2699 WARN_ON(bh->b_size != blocksize); 2700 err = get_block(inode, iblock, bh, 0); 2701 if (err) 2702 goto unlock; 2703 /* unmapped? It's a hole - nothing to do */ 2704 if (!buffer_mapped(bh)) 2705 goto unlock; 2706 } 2707 2708 /* Ok, it's mapped. Make sure it's up-to-date */ 2709 if (folio_test_uptodate(folio)) 2710 set_buffer_uptodate(bh); 2711 2712 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2713 err = bh_read(bh, 0); 2714 /* Uhhuh. Read error. Complain and punt. */ 2715 if (err < 0) 2716 goto unlock; 2717 } 2718 2719 folio_zero_range(folio, offset, length); 2720 mark_buffer_dirty(bh); 2721 2722 unlock: 2723 folio_unlock(folio); 2724 folio_put(folio); 2725 2726 return err; 2727 } 2728 EXPORT_SYMBOL(block_truncate_page); 2729 2730 /* 2731 * The generic ->writepage function for buffer-backed address_spaces 2732 */ 2733 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc, 2734 void *get_block) 2735 { 2736 struct inode * const inode = folio->mapping->host; 2737 loff_t i_size = i_size_read(inode); 2738 2739 /* Is the folio fully inside i_size? */ 2740 if (folio_pos(folio) + folio_size(folio) <= i_size) 2741 return __block_write_full_folio(inode, folio, get_block, wbc); 2742 2743 /* Is the folio fully outside i_size? (truncate in progress) */ 2744 if (folio_pos(folio) >= i_size) { 2745 folio_unlock(folio); 2746 return 0; /* don't care */ 2747 } 2748 2749 /* 2750 * The folio straddles i_size. It must be zeroed out on each and every 2751 * writepage invocation because it may be mmapped. "A file is mapped 2752 * in multiples of the page size. For a file that is not a multiple of 2753 * the page size, the remaining memory is zeroed when mapped, and 2754 * writes to that region are not written out to the file." 2755 */ 2756 folio_zero_segment(folio, offset_in_folio(folio, i_size), 2757 folio_size(folio)); 2758 return __block_write_full_folio(inode, folio, get_block, wbc); 2759 } 2760 2761 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2762 get_block_t *get_block) 2763 { 2764 struct inode *inode = mapping->host; 2765 struct buffer_head tmp = { 2766 .b_size = i_blocksize(inode), 2767 }; 2768 2769 get_block(inode, block, &tmp, 0); 2770 return tmp.b_blocknr; 2771 } 2772 EXPORT_SYMBOL(generic_block_bmap); 2773 2774 static void end_bio_bh_io_sync(struct bio *bio) 2775 { 2776 struct buffer_head *bh = bio->bi_private; 2777 2778 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2779 set_bit(BH_Quiet, &bh->b_state); 2780 2781 bh->b_end_io(bh, !bio->bi_status); 2782 bio_put(bio); 2783 } 2784 2785 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2786 enum rw_hint write_hint, 2787 struct writeback_control *wbc) 2788 { 2789 const enum req_op op = opf & REQ_OP_MASK; 2790 struct bio *bio; 2791 2792 BUG_ON(!buffer_locked(bh)); 2793 BUG_ON(!buffer_mapped(bh)); 2794 BUG_ON(!bh->b_end_io); 2795 BUG_ON(buffer_delay(bh)); 2796 BUG_ON(buffer_unwritten(bh)); 2797 2798 /* 2799 * Only clear out a write error when rewriting 2800 */ 2801 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2802 clear_buffer_write_io_error(bh); 2803 2804 if (buffer_meta(bh)) 2805 opf |= REQ_META; 2806 if (buffer_prio(bh)) 2807 opf |= REQ_PRIO; 2808 2809 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2810 2811 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2812 2813 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2814 bio->bi_write_hint = write_hint; 2815 2816 bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh)); 2817 2818 bio->bi_end_io = end_bio_bh_io_sync; 2819 bio->bi_private = bh; 2820 2821 /* Take care of bh's that straddle the end of the device */ 2822 guard_bio_eod(bio); 2823 2824 if (wbc) { 2825 wbc_init_bio(wbc, bio); 2826 wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size); 2827 } 2828 2829 submit_bio(bio); 2830 } 2831 2832 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2833 { 2834 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL); 2835 } 2836 EXPORT_SYMBOL(submit_bh); 2837 2838 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2839 { 2840 lock_buffer(bh); 2841 if (!test_clear_buffer_dirty(bh)) { 2842 unlock_buffer(bh); 2843 return; 2844 } 2845 bh->b_end_io = end_buffer_write_sync; 2846 get_bh(bh); 2847 submit_bh(REQ_OP_WRITE | op_flags, bh); 2848 } 2849 EXPORT_SYMBOL(write_dirty_buffer); 2850 2851 /* 2852 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2853 * and then start new I/O and then wait upon it. The caller must have a ref on 2854 * the buffer_head. 2855 */ 2856 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2857 { 2858 WARN_ON(atomic_read(&bh->b_count) < 1); 2859 lock_buffer(bh); 2860 if (test_clear_buffer_dirty(bh)) { 2861 /* 2862 * The bh should be mapped, but it might not be if the 2863 * device was hot-removed. Not much we can do but fail the I/O. 2864 */ 2865 if (!buffer_mapped(bh)) { 2866 unlock_buffer(bh); 2867 return -EIO; 2868 } 2869 2870 get_bh(bh); 2871 bh->b_end_io = end_buffer_write_sync; 2872 submit_bh(REQ_OP_WRITE | op_flags, bh); 2873 wait_on_buffer(bh); 2874 if (!buffer_uptodate(bh)) 2875 return -EIO; 2876 } else { 2877 unlock_buffer(bh); 2878 } 2879 return 0; 2880 } 2881 EXPORT_SYMBOL(__sync_dirty_buffer); 2882 2883 int sync_dirty_buffer(struct buffer_head *bh) 2884 { 2885 return __sync_dirty_buffer(bh, REQ_SYNC); 2886 } 2887 EXPORT_SYMBOL(sync_dirty_buffer); 2888 2889 static inline int buffer_busy(struct buffer_head *bh) 2890 { 2891 return atomic_read(&bh->b_count) | 2892 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2893 } 2894 2895 static bool 2896 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2897 { 2898 struct buffer_head *head = folio_buffers(folio); 2899 struct buffer_head *bh; 2900 2901 bh = head; 2902 do { 2903 if (buffer_busy(bh)) 2904 goto failed; 2905 bh = bh->b_this_page; 2906 } while (bh != head); 2907 2908 do { 2909 struct buffer_head *next = bh->b_this_page; 2910 2911 if (bh->b_assoc_map) 2912 __remove_assoc_queue(bh); 2913 bh = next; 2914 } while (bh != head); 2915 *buffers_to_free = head; 2916 folio_detach_private(folio); 2917 return true; 2918 failed: 2919 return false; 2920 } 2921 2922 /** 2923 * try_to_free_buffers - Release buffers attached to this folio. 2924 * @folio: The folio. 2925 * 2926 * If any buffers are in use (dirty, under writeback, elevated refcount), 2927 * no buffers will be freed. 2928 * 2929 * If the folio is dirty but all the buffers are clean then we need to 2930 * be sure to mark the folio clean as well. This is because the folio 2931 * may be against a block device, and a later reattachment of buffers 2932 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2933 * filesystem data on the same device. 2934 * 2935 * The same applies to regular filesystem folios: if all the buffers are 2936 * clean then we set the folio clean and proceed. To do that, we require 2937 * total exclusion from block_dirty_folio(). That is obtained with 2938 * i_private_lock. 2939 * 2940 * Exclusion against try_to_free_buffers may be obtained by either 2941 * locking the folio or by holding its mapping's i_private_lock. 2942 * 2943 * Context: Process context. @folio must be locked. Will not sleep. 2944 * Return: true if all buffers attached to this folio were freed. 2945 */ 2946 bool try_to_free_buffers(struct folio *folio) 2947 { 2948 struct address_space * const mapping = folio->mapping; 2949 struct buffer_head *buffers_to_free = NULL; 2950 bool ret = 0; 2951 2952 BUG_ON(!folio_test_locked(folio)); 2953 if (folio_test_writeback(folio)) 2954 return false; 2955 2956 if (mapping == NULL) { /* can this still happen? */ 2957 ret = drop_buffers(folio, &buffers_to_free); 2958 goto out; 2959 } 2960 2961 spin_lock(&mapping->i_private_lock); 2962 ret = drop_buffers(folio, &buffers_to_free); 2963 2964 /* 2965 * If the filesystem writes its buffers by hand (eg ext3) 2966 * then we can have clean buffers against a dirty folio. We 2967 * clean the folio here; otherwise the VM will never notice 2968 * that the filesystem did any IO at all. 2969 * 2970 * Also, during truncate, discard_buffer will have marked all 2971 * the folio's buffers clean. We discover that here and clean 2972 * the folio also. 2973 * 2974 * i_private_lock must be held over this entire operation in order 2975 * to synchronise against block_dirty_folio and prevent the 2976 * dirty bit from being lost. 2977 */ 2978 if (ret) 2979 folio_cancel_dirty(folio); 2980 spin_unlock(&mapping->i_private_lock); 2981 out: 2982 if (buffers_to_free) { 2983 struct buffer_head *bh = buffers_to_free; 2984 2985 do { 2986 struct buffer_head *next = bh->b_this_page; 2987 free_buffer_head(bh); 2988 bh = next; 2989 } while (bh != buffers_to_free); 2990 } 2991 return ret; 2992 } 2993 EXPORT_SYMBOL(try_to_free_buffers); 2994 2995 /* 2996 * Buffer-head allocation 2997 */ 2998 static struct kmem_cache *bh_cachep __ro_after_init; 2999 3000 /* 3001 * Once the number of bh's in the machine exceeds this level, we start 3002 * stripping them in writeback. 3003 */ 3004 static unsigned long max_buffer_heads __ro_after_init; 3005 3006 int buffer_heads_over_limit; 3007 3008 struct bh_accounting { 3009 int nr; /* Number of live bh's */ 3010 int ratelimit; /* Limit cacheline bouncing */ 3011 }; 3012 3013 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3014 3015 static void recalc_bh_state(void) 3016 { 3017 int i; 3018 int tot = 0; 3019 3020 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3021 return; 3022 __this_cpu_write(bh_accounting.ratelimit, 0); 3023 for_each_online_cpu(i) 3024 tot += per_cpu(bh_accounting, i).nr; 3025 buffer_heads_over_limit = (tot > max_buffer_heads); 3026 } 3027 3028 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3029 { 3030 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3031 if (ret) { 3032 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3033 spin_lock_init(&ret->b_uptodate_lock); 3034 preempt_disable(); 3035 __this_cpu_inc(bh_accounting.nr); 3036 recalc_bh_state(); 3037 preempt_enable(); 3038 } 3039 return ret; 3040 } 3041 EXPORT_SYMBOL(alloc_buffer_head); 3042 3043 void free_buffer_head(struct buffer_head *bh) 3044 { 3045 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3046 kmem_cache_free(bh_cachep, bh); 3047 preempt_disable(); 3048 __this_cpu_dec(bh_accounting.nr); 3049 recalc_bh_state(); 3050 preempt_enable(); 3051 } 3052 EXPORT_SYMBOL(free_buffer_head); 3053 3054 static int buffer_exit_cpu_dead(unsigned int cpu) 3055 { 3056 int i; 3057 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3058 3059 for (i = 0; i < BH_LRU_SIZE; i++) { 3060 brelse(b->bhs[i]); 3061 b->bhs[i] = NULL; 3062 } 3063 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3064 per_cpu(bh_accounting, cpu).nr = 0; 3065 return 0; 3066 } 3067 3068 /** 3069 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3070 * @bh: struct buffer_head 3071 * 3072 * Return true if the buffer is up-to-date and false, 3073 * with the buffer locked, if not. 3074 */ 3075 int bh_uptodate_or_lock(struct buffer_head *bh) 3076 { 3077 if (!buffer_uptodate(bh)) { 3078 lock_buffer(bh); 3079 if (!buffer_uptodate(bh)) 3080 return 0; 3081 unlock_buffer(bh); 3082 } 3083 return 1; 3084 } 3085 EXPORT_SYMBOL(bh_uptodate_or_lock); 3086 3087 /** 3088 * __bh_read - Submit read for a locked buffer 3089 * @bh: struct buffer_head 3090 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3091 * @wait: wait until reading finish 3092 * 3093 * Returns zero on success or don't wait, and -EIO on error. 3094 */ 3095 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3096 { 3097 int ret = 0; 3098 3099 BUG_ON(!buffer_locked(bh)); 3100 3101 get_bh(bh); 3102 bh->b_end_io = end_buffer_read_sync; 3103 submit_bh(REQ_OP_READ | op_flags, bh); 3104 if (wait) { 3105 wait_on_buffer(bh); 3106 if (!buffer_uptodate(bh)) 3107 ret = -EIO; 3108 } 3109 return ret; 3110 } 3111 EXPORT_SYMBOL(__bh_read); 3112 3113 /** 3114 * __bh_read_batch - Submit read for a batch of unlocked buffers 3115 * @nr: entry number of the buffer batch 3116 * @bhs: a batch of struct buffer_head 3117 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3118 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3119 * buffer that cannot lock. 3120 * 3121 * Returns zero on success or don't wait, and -EIO on error. 3122 */ 3123 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3124 blk_opf_t op_flags, bool force_lock) 3125 { 3126 int i; 3127 3128 for (i = 0; i < nr; i++) { 3129 struct buffer_head *bh = bhs[i]; 3130 3131 if (buffer_uptodate(bh)) 3132 continue; 3133 3134 if (force_lock) 3135 lock_buffer(bh); 3136 else 3137 if (!trylock_buffer(bh)) 3138 continue; 3139 3140 if (buffer_uptodate(bh)) { 3141 unlock_buffer(bh); 3142 continue; 3143 } 3144 3145 bh->b_end_io = end_buffer_read_sync; 3146 get_bh(bh); 3147 submit_bh(REQ_OP_READ | op_flags, bh); 3148 } 3149 } 3150 EXPORT_SYMBOL(__bh_read_batch); 3151 3152 void __init buffer_init(void) 3153 { 3154 unsigned long nrpages; 3155 int ret; 3156 3157 bh_cachep = KMEM_CACHE(buffer_head, 3158 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC); 3159 /* 3160 * Limit the bh occupancy to 10% of ZONE_NORMAL 3161 */ 3162 nrpages = (nr_free_buffer_pages() * 10) / 100; 3163 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3164 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3165 NULL, buffer_exit_cpu_dead); 3166 WARN_ON(ret < 0); 3167 } 3168