xref: /linux/fs/buffer.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 
51 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
52 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
53 			 enum rw_hint hint, struct writeback_control *wbc);
54 
55 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56 
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 	trace_block_touch_buffer(bh);
60 	mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63 
64 void __lock_buffer(struct buffer_head *bh)
65 {
66 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69 
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 	clear_bit_unlock(BH_Lock, &bh->b_state);
73 	smp_mb__after_atomic();
74 	wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77 
78 /*
79  * Returns if the page has dirty or writeback buffers. If all the buffers
80  * are unlocked and clean then the PageDirty information is stale. If
81  * any of the pages are locked, it is assumed they are locked for IO.
82  */
83 void buffer_check_dirty_writeback(struct page *page,
84 				     bool *dirty, bool *writeback)
85 {
86 	struct buffer_head *head, *bh;
87 	*dirty = false;
88 	*writeback = false;
89 
90 	BUG_ON(!PageLocked(page));
91 
92 	if (!page_has_buffers(page))
93 		return;
94 
95 	if (PageWriteback(page))
96 		*writeback = true;
97 
98 	head = page_buffers(page);
99 	bh = head;
100 	do {
101 		if (buffer_locked(bh))
102 			*writeback = true;
103 
104 		if (buffer_dirty(bh))
105 			*dirty = true;
106 
107 		bh = bh->b_this_page;
108 	} while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111 
112 /*
113  * Block until a buffer comes unlocked.  This doesn't stop it
114  * from becoming locked again - you have to lock it yourself
115  * if you want to preserve its state.
116  */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122 
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126 	ClearPagePrivate(page);
127 	set_page_private(page, 0);
128 	put_page(page);
129 }
130 
131 static void buffer_io_error(struct buffer_head *bh, char *msg)
132 {
133 	if (!test_bit(BH_Quiet, &bh->b_state))
134 		printk_ratelimited(KERN_ERR
135 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
136 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
137 }
138 
139 /*
140  * End-of-IO handler helper function which does not touch the bh after
141  * unlocking it.
142  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
143  * a race there is benign: unlock_buffer() only use the bh's address for
144  * hashing after unlocking the buffer, so it doesn't actually touch the bh
145  * itself.
146  */
147 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
148 {
149 	if (uptodate) {
150 		set_buffer_uptodate(bh);
151 	} else {
152 		/* This happens, due to failed read-ahead attempts. */
153 		clear_buffer_uptodate(bh);
154 	}
155 	unlock_buffer(bh);
156 }
157 
158 /*
159  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
160  * unlock the buffer. This is what ll_rw_block uses too.
161  */
162 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
163 {
164 	__end_buffer_read_notouch(bh, uptodate);
165 	put_bh(bh);
166 }
167 EXPORT_SYMBOL(end_buffer_read_sync);
168 
169 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
170 {
171 	if (uptodate) {
172 		set_buffer_uptodate(bh);
173 	} else {
174 		buffer_io_error(bh, ", lost sync page write");
175 		mark_buffer_write_io_error(bh);
176 		clear_buffer_uptodate(bh);
177 	}
178 	unlock_buffer(bh);
179 	put_bh(bh);
180 }
181 EXPORT_SYMBOL(end_buffer_write_sync);
182 
183 /*
184  * Various filesystems appear to want __find_get_block to be non-blocking.
185  * But it's the page lock which protects the buffers.  To get around this,
186  * we get exclusion from try_to_free_buffers with the blockdev mapping's
187  * private_lock.
188  *
189  * Hack idea: for the blockdev mapping, private_lock contention
190  * may be quite high.  This code could TryLock the page, and if that
191  * succeeds, there is no need to take private_lock.
192  */
193 static struct buffer_head *
194 __find_get_block_slow(struct block_device *bdev, sector_t block)
195 {
196 	struct inode *bd_inode = bdev->bd_inode;
197 	struct address_space *bd_mapping = bd_inode->i_mapping;
198 	struct buffer_head *ret = NULL;
199 	pgoff_t index;
200 	struct buffer_head *bh;
201 	struct buffer_head *head;
202 	struct page *page;
203 	int all_mapped = 1;
204 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
205 
206 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
207 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
208 	if (!page)
209 		goto out;
210 
211 	spin_lock(&bd_mapping->private_lock);
212 	if (!page_has_buffers(page))
213 		goto out_unlock;
214 	head = page_buffers(page);
215 	bh = head;
216 	do {
217 		if (!buffer_mapped(bh))
218 			all_mapped = 0;
219 		else if (bh->b_blocknr == block) {
220 			ret = bh;
221 			get_bh(bh);
222 			goto out_unlock;
223 		}
224 		bh = bh->b_this_page;
225 	} while (bh != head);
226 
227 	/* we might be here because some of the buffers on this page are
228 	 * not mapped.  This is due to various races between
229 	 * file io on the block device and getblk.  It gets dealt with
230 	 * elsewhere, don't buffer_error if we had some unmapped buffers
231 	 */
232 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
233 	if (all_mapped && __ratelimit(&last_warned)) {
234 		printk("__find_get_block_slow() failed. block=%llu, "
235 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
236 		       "device %pg blocksize: %d\n",
237 		       (unsigned long long)block,
238 		       (unsigned long long)bh->b_blocknr,
239 		       bh->b_state, bh->b_size, bdev,
240 		       1 << bd_inode->i_blkbits);
241 	}
242 out_unlock:
243 	spin_unlock(&bd_mapping->private_lock);
244 	put_page(page);
245 out:
246 	return ret;
247 }
248 
249 /*
250  * I/O completion handler for block_read_full_page() - pages
251  * which come unlocked at the end of I/O.
252  */
253 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
254 {
255 	unsigned long flags;
256 	struct buffer_head *first;
257 	struct buffer_head *tmp;
258 	struct page *page;
259 	int page_uptodate = 1;
260 
261 	BUG_ON(!buffer_async_read(bh));
262 
263 	page = bh->b_page;
264 	if (uptodate) {
265 		set_buffer_uptodate(bh);
266 	} else {
267 		clear_buffer_uptodate(bh);
268 		buffer_io_error(bh, ", async page read");
269 		SetPageError(page);
270 	}
271 
272 	/*
273 	 * Be _very_ careful from here on. Bad things can happen if
274 	 * two buffer heads end IO at almost the same time and both
275 	 * decide that the page is now completely done.
276 	 */
277 	first = page_buffers(page);
278 	local_irq_save(flags);
279 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
280 	clear_buffer_async_read(bh);
281 	unlock_buffer(bh);
282 	tmp = bh;
283 	do {
284 		if (!buffer_uptodate(tmp))
285 			page_uptodate = 0;
286 		if (buffer_async_read(tmp)) {
287 			BUG_ON(!buffer_locked(tmp));
288 			goto still_busy;
289 		}
290 		tmp = tmp->b_this_page;
291 	} while (tmp != bh);
292 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
293 	local_irq_restore(flags);
294 
295 	/*
296 	 * If none of the buffers had errors and they are all
297 	 * uptodate then we can set the page uptodate.
298 	 */
299 	if (page_uptodate && !PageError(page))
300 		SetPageUptodate(page);
301 	unlock_page(page);
302 	return;
303 
304 still_busy:
305 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306 	local_irq_restore(flags);
307 	return;
308 }
309 
310 /*
311  * Completion handler for block_write_full_page() - pages which are unlocked
312  * during I/O, and which have PageWriteback cleared upon I/O completion.
313  */
314 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
315 {
316 	unsigned long flags;
317 	struct buffer_head *first;
318 	struct buffer_head *tmp;
319 	struct page *page;
320 
321 	BUG_ON(!buffer_async_write(bh));
322 
323 	page = bh->b_page;
324 	if (uptodate) {
325 		set_buffer_uptodate(bh);
326 	} else {
327 		buffer_io_error(bh, ", lost async page write");
328 		mark_buffer_write_io_error(bh);
329 		clear_buffer_uptodate(bh);
330 		SetPageError(page);
331 	}
332 
333 	first = page_buffers(page);
334 	local_irq_save(flags);
335 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336 
337 	clear_buffer_async_write(bh);
338 	unlock_buffer(bh);
339 	tmp = bh->b_this_page;
340 	while (tmp != bh) {
341 		if (buffer_async_write(tmp)) {
342 			BUG_ON(!buffer_locked(tmp));
343 			goto still_busy;
344 		}
345 		tmp = tmp->b_this_page;
346 	}
347 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
348 	local_irq_restore(flags);
349 	end_page_writeback(page);
350 	return;
351 
352 still_busy:
353 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
354 	local_irq_restore(flags);
355 	return;
356 }
357 EXPORT_SYMBOL(end_buffer_async_write);
358 
359 /*
360  * If a page's buffers are under async readin (end_buffer_async_read
361  * completion) then there is a possibility that another thread of
362  * control could lock one of the buffers after it has completed
363  * but while some of the other buffers have not completed.  This
364  * locked buffer would confuse end_buffer_async_read() into not unlocking
365  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
366  * that this buffer is not under async I/O.
367  *
368  * The page comes unlocked when it has no locked buffer_async buffers
369  * left.
370  *
371  * PageLocked prevents anyone starting new async I/O reads any of
372  * the buffers.
373  *
374  * PageWriteback is used to prevent simultaneous writeout of the same
375  * page.
376  *
377  * PageLocked prevents anyone from starting writeback of a page which is
378  * under read I/O (PageWriteback is only ever set against a locked page).
379  */
380 static void mark_buffer_async_read(struct buffer_head *bh)
381 {
382 	bh->b_end_io = end_buffer_async_read;
383 	set_buffer_async_read(bh);
384 }
385 
386 static void mark_buffer_async_write_endio(struct buffer_head *bh,
387 					  bh_end_io_t *handler)
388 {
389 	bh->b_end_io = handler;
390 	set_buffer_async_write(bh);
391 }
392 
393 void mark_buffer_async_write(struct buffer_head *bh)
394 {
395 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
396 }
397 EXPORT_SYMBOL(mark_buffer_async_write);
398 
399 
400 /*
401  * fs/buffer.c contains helper functions for buffer-backed address space's
402  * fsync functions.  A common requirement for buffer-based filesystems is
403  * that certain data from the backing blockdev needs to be written out for
404  * a successful fsync().  For example, ext2 indirect blocks need to be
405  * written back and waited upon before fsync() returns.
406  *
407  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
408  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
409  * management of a list of dependent buffers at ->i_mapping->private_list.
410  *
411  * Locking is a little subtle: try_to_free_buffers() will remove buffers
412  * from their controlling inode's queue when they are being freed.  But
413  * try_to_free_buffers() will be operating against the *blockdev* mapping
414  * at the time, not against the S_ISREG file which depends on those buffers.
415  * So the locking for private_list is via the private_lock in the address_space
416  * which backs the buffers.  Which is different from the address_space
417  * against which the buffers are listed.  So for a particular address_space,
418  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
419  * mapping->private_list will always be protected by the backing blockdev's
420  * ->private_lock.
421  *
422  * Which introduces a requirement: all buffers on an address_space's
423  * ->private_list must be from the same address_space: the blockdev's.
424  *
425  * address_spaces which do not place buffers at ->private_list via these
426  * utility functions are free to use private_lock and private_list for
427  * whatever they want.  The only requirement is that list_empty(private_list)
428  * be true at clear_inode() time.
429  *
430  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
431  * filesystems should do that.  invalidate_inode_buffers() should just go
432  * BUG_ON(!list_empty).
433  *
434  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
435  * take an address_space, not an inode.  And it should be called
436  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
437  * queued up.
438  *
439  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
440  * list if it is already on a list.  Because if the buffer is on a list,
441  * it *must* already be on the right one.  If not, the filesystem is being
442  * silly.  This will save a ton of locking.  But first we have to ensure
443  * that buffers are taken *off* the old inode's list when they are freed
444  * (presumably in truncate).  That requires careful auditing of all
445  * filesystems (do it inside bforget()).  It could also be done by bringing
446  * b_inode back.
447  */
448 
449 /*
450  * The buffer's backing address_space's private_lock must be held
451  */
452 static void __remove_assoc_queue(struct buffer_head *bh)
453 {
454 	list_del_init(&bh->b_assoc_buffers);
455 	WARN_ON(!bh->b_assoc_map);
456 	bh->b_assoc_map = NULL;
457 }
458 
459 int inode_has_buffers(struct inode *inode)
460 {
461 	return !list_empty(&inode->i_data.private_list);
462 }
463 
464 /*
465  * osync is designed to support O_SYNC io.  It waits synchronously for
466  * all already-submitted IO to complete, but does not queue any new
467  * writes to the disk.
468  *
469  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
470  * you dirty the buffers, and then use osync_inode_buffers to wait for
471  * completion.  Any other dirty buffers which are not yet queued for
472  * write will not be flushed to disk by the osync.
473  */
474 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
475 {
476 	struct buffer_head *bh;
477 	struct list_head *p;
478 	int err = 0;
479 
480 	spin_lock(lock);
481 repeat:
482 	list_for_each_prev(p, list) {
483 		bh = BH_ENTRY(p);
484 		if (buffer_locked(bh)) {
485 			get_bh(bh);
486 			spin_unlock(lock);
487 			wait_on_buffer(bh);
488 			if (!buffer_uptodate(bh))
489 				err = -EIO;
490 			brelse(bh);
491 			spin_lock(lock);
492 			goto repeat;
493 		}
494 	}
495 	spin_unlock(lock);
496 	return err;
497 }
498 
499 void emergency_thaw_bdev(struct super_block *sb)
500 {
501 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
502 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
503 }
504 
505 /**
506  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
507  * @mapping: the mapping which wants those buffers written
508  *
509  * Starts I/O against the buffers at mapping->private_list, and waits upon
510  * that I/O.
511  *
512  * Basically, this is a convenience function for fsync().
513  * @mapping is a file or directory which needs those buffers to be written for
514  * a successful fsync().
515  */
516 int sync_mapping_buffers(struct address_space *mapping)
517 {
518 	struct address_space *buffer_mapping = mapping->private_data;
519 
520 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
521 		return 0;
522 
523 	return fsync_buffers_list(&buffer_mapping->private_lock,
524 					&mapping->private_list);
525 }
526 EXPORT_SYMBOL(sync_mapping_buffers);
527 
528 /*
529  * Called when we've recently written block `bblock', and it is known that
530  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
531  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
532  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
533  */
534 void write_boundary_block(struct block_device *bdev,
535 			sector_t bblock, unsigned blocksize)
536 {
537 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
538 	if (bh) {
539 		if (buffer_dirty(bh))
540 			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
541 		put_bh(bh);
542 	}
543 }
544 
545 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
546 {
547 	struct address_space *mapping = inode->i_mapping;
548 	struct address_space *buffer_mapping = bh->b_page->mapping;
549 
550 	mark_buffer_dirty(bh);
551 	if (!mapping->private_data) {
552 		mapping->private_data = buffer_mapping;
553 	} else {
554 		BUG_ON(mapping->private_data != buffer_mapping);
555 	}
556 	if (!bh->b_assoc_map) {
557 		spin_lock(&buffer_mapping->private_lock);
558 		list_move_tail(&bh->b_assoc_buffers,
559 				&mapping->private_list);
560 		bh->b_assoc_map = mapping;
561 		spin_unlock(&buffer_mapping->private_lock);
562 	}
563 }
564 EXPORT_SYMBOL(mark_buffer_dirty_inode);
565 
566 /*
567  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
568  * dirty.
569  *
570  * If warn is true, then emit a warning if the page is not uptodate and has
571  * not been truncated.
572  *
573  * The caller must hold lock_page_memcg().
574  */
575 void __set_page_dirty(struct page *page, struct address_space *mapping,
576 			     int warn)
577 {
578 	unsigned long flags;
579 
580 	xa_lock_irqsave(&mapping->i_pages, flags);
581 	if (page->mapping) {	/* Race with truncate? */
582 		WARN_ON_ONCE(warn && !PageUptodate(page));
583 		account_page_dirtied(page, mapping);
584 		__xa_set_mark(&mapping->i_pages, page_index(page),
585 				PAGECACHE_TAG_DIRTY);
586 	}
587 	xa_unlock_irqrestore(&mapping->i_pages, flags);
588 }
589 EXPORT_SYMBOL_GPL(__set_page_dirty);
590 
591 /*
592  * Add a page to the dirty page list.
593  *
594  * It is a sad fact of life that this function is called from several places
595  * deeply under spinlocking.  It may not sleep.
596  *
597  * If the page has buffers, the uptodate buffers are set dirty, to preserve
598  * dirty-state coherency between the page and the buffers.  It the page does
599  * not have buffers then when they are later attached they will all be set
600  * dirty.
601  *
602  * The buffers are dirtied before the page is dirtied.  There's a small race
603  * window in which a writepage caller may see the page cleanness but not the
604  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
605  * before the buffers, a concurrent writepage caller could clear the page dirty
606  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607  * page on the dirty page list.
608  *
609  * We use private_lock to lock against try_to_free_buffers while using the
610  * page's buffer list.  Also use this to protect against clean buffers being
611  * added to the page after it was set dirty.
612  *
613  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
614  * address_space though.
615  */
616 int __set_page_dirty_buffers(struct page *page)
617 {
618 	int newly_dirty;
619 	struct address_space *mapping = page_mapping(page);
620 
621 	if (unlikely(!mapping))
622 		return !TestSetPageDirty(page);
623 
624 	spin_lock(&mapping->private_lock);
625 	if (page_has_buffers(page)) {
626 		struct buffer_head *head = page_buffers(page);
627 		struct buffer_head *bh = head;
628 
629 		do {
630 			set_buffer_dirty(bh);
631 			bh = bh->b_this_page;
632 		} while (bh != head);
633 	}
634 	/*
635 	 * Lock out page->mem_cgroup migration to keep PageDirty
636 	 * synchronized with per-memcg dirty page counters.
637 	 */
638 	lock_page_memcg(page);
639 	newly_dirty = !TestSetPageDirty(page);
640 	spin_unlock(&mapping->private_lock);
641 
642 	if (newly_dirty)
643 		__set_page_dirty(page, mapping, 1);
644 
645 	unlock_page_memcg(page);
646 
647 	if (newly_dirty)
648 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
649 
650 	return newly_dirty;
651 }
652 EXPORT_SYMBOL(__set_page_dirty_buffers);
653 
654 /*
655  * Write out and wait upon a list of buffers.
656  *
657  * We have conflicting pressures: we want to make sure that all
658  * initially dirty buffers get waited on, but that any subsequently
659  * dirtied buffers don't.  After all, we don't want fsync to last
660  * forever if somebody is actively writing to the file.
661  *
662  * Do this in two main stages: first we copy dirty buffers to a
663  * temporary inode list, queueing the writes as we go.  Then we clean
664  * up, waiting for those writes to complete.
665  *
666  * During this second stage, any subsequent updates to the file may end
667  * up refiling the buffer on the original inode's dirty list again, so
668  * there is a chance we will end up with a buffer queued for write but
669  * not yet completed on that list.  So, as a final cleanup we go through
670  * the osync code to catch these locked, dirty buffers without requeuing
671  * any newly dirty buffers for write.
672  */
673 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
674 {
675 	struct buffer_head *bh;
676 	struct list_head tmp;
677 	struct address_space *mapping;
678 	int err = 0, err2;
679 	struct blk_plug plug;
680 
681 	INIT_LIST_HEAD(&tmp);
682 	blk_start_plug(&plug);
683 
684 	spin_lock(lock);
685 	while (!list_empty(list)) {
686 		bh = BH_ENTRY(list->next);
687 		mapping = bh->b_assoc_map;
688 		__remove_assoc_queue(bh);
689 		/* Avoid race with mark_buffer_dirty_inode() which does
690 		 * a lockless check and we rely on seeing the dirty bit */
691 		smp_mb();
692 		if (buffer_dirty(bh) || buffer_locked(bh)) {
693 			list_add(&bh->b_assoc_buffers, &tmp);
694 			bh->b_assoc_map = mapping;
695 			if (buffer_dirty(bh)) {
696 				get_bh(bh);
697 				spin_unlock(lock);
698 				/*
699 				 * Ensure any pending I/O completes so that
700 				 * write_dirty_buffer() actually writes the
701 				 * current contents - it is a noop if I/O is
702 				 * still in flight on potentially older
703 				 * contents.
704 				 */
705 				write_dirty_buffer(bh, REQ_SYNC);
706 
707 				/*
708 				 * Kick off IO for the previous mapping. Note
709 				 * that we will not run the very last mapping,
710 				 * wait_on_buffer() will do that for us
711 				 * through sync_buffer().
712 				 */
713 				brelse(bh);
714 				spin_lock(lock);
715 			}
716 		}
717 	}
718 
719 	spin_unlock(lock);
720 	blk_finish_plug(&plug);
721 	spin_lock(lock);
722 
723 	while (!list_empty(&tmp)) {
724 		bh = BH_ENTRY(tmp.prev);
725 		get_bh(bh);
726 		mapping = bh->b_assoc_map;
727 		__remove_assoc_queue(bh);
728 		/* Avoid race with mark_buffer_dirty_inode() which does
729 		 * a lockless check and we rely on seeing the dirty bit */
730 		smp_mb();
731 		if (buffer_dirty(bh)) {
732 			list_add(&bh->b_assoc_buffers,
733 				 &mapping->private_list);
734 			bh->b_assoc_map = mapping;
735 		}
736 		spin_unlock(lock);
737 		wait_on_buffer(bh);
738 		if (!buffer_uptodate(bh))
739 			err = -EIO;
740 		brelse(bh);
741 		spin_lock(lock);
742 	}
743 
744 	spin_unlock(lock);
745 	err2 = osync_buffers_list(lock, list);
746 	if (err)
747 		return err;
748 	else
749 		return err2;
750 }
751 
752 /*
753  * Invalidate any and all dirty buffers on a given inode.  We are
754  * probably unmounting the fs, but that doesn't mean we have already
755  * done a sync().  Just drop the buffers from the inode list.
756  *
757  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
758  * assumes that all the buffers are against the blockdev.  Not true
759  * for reiserfs.
760  */
761 void invalidate_inode_buffers(struct inode *inode)
762 {
763 	if (inode_has_buffers(inode)) {
764 		struct address_space *mapping = &inode->i_data;
765 		struct list_head *list = &mapping->private_list;
766 		struct address_space *buffer_mapping = mapping->private_data;
767 
768 		spin_lock(&buffer_mapping->private_lock);
769 		while (!list_empty(list))
770 			__remove_assoc_queue(BH_ENTRY(list->next));
771 		spin_unlock(&buffer_mapping->private_lock);
772 	}
773 }
774 EXPORT_SYMBOL(invalidate_inode_buffers);
775 
776 /*
777  * Remove any clean buffers from the inode's buffer list.  This is called
778  * when we're trying to free the inode itself.  Those buffers can pin it.
779  *
780  * Returns true if all buffers were removed.
781  */
782 int remove_inode_buffers(struct inode *inode)
783 {
784 	int ret = 1;
785 
786 	if (inode_has_buffers(inode)) {
787 		struct address_space *mapping = &inode->i_data;
788 		struct list_head *list = &mapping->private_list;
789 		struct address_space *buffer_mapping = mapping->private_data;
790 
791 		spin_lock(&buffer_mapping->private_lock);
792 		while (!list_empty(list)) {
793 			struct buffer_head *bh = BH_ENTRY(list->next);
794 			if (buffer_dirty(bh)) {
795 				ret = 0;
796 				break;
797 			}
798 			__remove_assoc_queue(bh);
799 		}
800 		spin_unlock(&buffer_mapping->private_lock);
801 	}
802 	return ret;
803 }
804 
805 /*
806  * Create the appropriate buffers when given a page for data area and
807  * the size of each buffer.. Use the bh->b_this_page linked list to
808  * follow the buffers created.  Return NULL if unable to create more
809  * buffers.
810  *
811  * The retry flag is used to differentiate async IO (paging, swapping)
812  * which may not fail from ordinary buffer allocations.
813  */
814 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
815 		bool retry)
816 {
817 	struct buffer_head *bh, *head;
818 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
819 	long offset;
820 	struct mem_cgroup *memcg;
821 
822 	if (retry)
823 		gfp |= __GFP_NOFAIL;
824 
825 	memcg = get_mem_cgroup_from_page(page);
826 	memalloc_use_memcg(memcg);
827 
828 	head = NULL;
829 	offset = PAGE_SIZE;
830 	while ((offset -= size) >= 0) {
831 		bh = alloc_buffer_head(gfp);
832 		if (!bh)
833 			goto no_grow;
834 
835 		bh->b_this_page = head;
836 		bh->b_blocknr = -1;
837 		head = bh;
838 
839 		bh->b_size = size;
840 
841 		/* Link the buffer to its page */
842 		set_bh_page(bh, page, offset);
843 	}
844 out:
845 	memalloc_unuse_memcg();
846 	mem_cgroup_put(memcg);
847 	return head;
848 /*
849  * In case anything failed, we just free everything we got.
850  */
851 no_grow:
852 	if (head) {
853 		do {
854 			bh = head;
855 			head = head->b_this_page;
856 			free_buffer_head(bh);
857 		} while (head);
858 	}
859 
860 	goto out;
861 }
862 EXPORT_SYMBOL_GPL(alloc_page_buffers);
863 
864 static inline void
865 link_dev_buffers(struct page *page, struct buffer_head *head)
866 {
867 	struct buffer_head *bh, *tail;
868 
869 	bh = head;
870 	do {
871 		tail = bh;
872 		bh = bh->b_this_page;
873 	} while (bh);
874 	tail->b_this_page = head;
875 	attach_page_buffers(page, head);
876 }
877 
878 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
879 {
880 	sector_t retval = ~((sector_t)0);
881 	loff_t sz = i_size_read(bdev->bd_inode);
882 
883 	if (sz) {
884 		unsigned int sizebits = blksize_bits(size);
885 		retval = (sz >> sizebits);
886 	}
887 	return retval;
888 }
889 
890 /*
891  * Initialise the state of a blockdev page's buffers.
892  */
893 static sector_t
894 init_page_buffers(struct page *page, struct block_device *bdev,
895 			sector_t block, int size)
896 {
897 	struct buffer_head *head = page_buffers(page);
898 	struct buffer_head *bh = head;
899 	int uptodate = PageUptodate(page);
900 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
901 
902 	do {
903 		if (!buffer_mapped(bh)) {
904 			bh->b_end_io = NULL;
905 			bh->b_private = NULL;
906 			bh->b_bdev = bdev;
907 			bh->b_blocknr = block;
908 			if (uptodate)
909 				set_buffer_uptodate(bh);
910 			if (block < end_block)
911 				set_buffer_mapped(bh);
912 		}
913 		block++;
914 		bh = bh->b_this_page;
915 	} while (bh != head);
916 
917 	/*
918 	 * Caller needs to validate requested block against end of device.
919 	 */
920 	return end_block;
921 }
922 
923 /*
924  * Create the page-cache page that contains the requested block.
925  *
926  * This is used purely for blockdev mappings.
927  */
928 static int
929 grow_dev_page(struct block_device *bdev, sector_t block,
930 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
931 {
932 	struct inode *inode = bdev->bd_inode;
933 	struct page *page;
934 	struct buffer_head *bh;
935 	sector_t end_block;
936 	int ret = 0;		/* Will call free_more_memory() */
937 	gfp_t gfp_mask;
938 
939 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
940 
941 	/*
942 	 * XXX: __getblk_slow() can not really deal with failure and
943 	 * will endlessly loop on improvised global reclaim.  Prefer
944 	 * looping in the allocator rather than here, at least that
945 	 * code knows what it's doing.
946 	 */
947 	gfp_mask |= __GFP_NOFAIL;
948 
949 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
950 
951 	BUG_ON(!PageLocked(page));
952 
953 	if (page_has_buffers(page)) {
954 		bh = page_buffers(page);
955 		if (bh->b_size == size) {
956 			end_block = init_page_buffers(page, bdev,
957 						(sector_t)index << sizebits,
958 						size);
959 			goto done;
960 		}
961 		if (!try_to_free_buffers(page))
962 			goto failed;
963 	}
964 
965 	/*
966 	 * Allocate some buffers for this page
967 	 */
968 	bh = alloc_page_buffers(page, size, true);
969 
970 	/*
971 	 * Link the page to the buffers and initialise them.  Take the
972 	 * lock to be atomic wrt __find_get_block(), which does not
973 	 * run under the page lock.
974 	 */
975 	spin_lock(&inode->i_mapping->private_lock);
976 	link_dev_buffers(page, bh);
977 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
978 			size);
979 	spin_unlock(&inode->i_mapping->private_lock);
980 done:
981 	ret = (block < end_block) ? 1 : -ENXIO;
982 failed:
983 	unlock_page(page);
984 	put_page(page);
985 	return ret;
986 }
987 
988 /*
989  * Create buffers for the specified block device block's page.  If
990  * that page was dirty, the buffers are set dirty also.
991  */
992 static int
993 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
994 {
995 	pgoff_t index;
996 	int sizebits;
997 
998 	sizebits = -1;
999 	do {
1000 		sizebits++;
1001 	} while ((size << sizebits) < PAGE_SIZE);
1002 
1003 	index = block >> sizebits;
1004 
1005 	/*
1006 	 * Check for a block which wants to lie outside our maximum possible
1007 	 * pagecache index.  (this comparison is done using sector_t types).
1008 	 */
1009 	if (unlikely(index != block >> sizebits)) {
1010 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1011 			"device %pg\n",
1012 			__func__, (unsigned long long)block,
1013 			bdev);
1014 		return -EIO;
1015 	}
1016 
1017 	/* Create a page with the proper size buffers.. */
1018 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1019 }
1020 
1021 static struct buffer_head *
1022 __getblk_slow(struct block_device *bdev, sector_t block,
1023 	     unsigned size, gfp_t gfp)
1024 {
1025 	/* Size must be multiple of hard sectorsize */
1026 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1027 			(size < 512 || size > PAGE_SIZE))) {
1028 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1029 					size);
1030 		printk(KERN_ERR "logical block size: %d\n",
1031 					bdev_logical_block_size(bdev));
1032 
1033 		dump_stack();
1034 		return NULL;
1035 	}
1036 
1037 	for (;;) {
1038 		struct buffer_head *bh;
1039 		int ret;
1040 
1041 		bh = __find_get_block(bdev, block, size);
1042 		if (bh)
1043 			return bh;
1044 
1045 		ret = grow_buffers(bdev, block, size, gfp);
1046 		if (ret < 0)
1047 			return NULL;
1048 	}
1049 }
1050 
1051 /*
1052  * The relationship between dirty buffers and dirty pages:
1053  *
1054  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1055  * the page is tagged dirty in the page cache.
1056  *
1057  * At all times, the dirtiness of the buffers represents the dirtiness of
1058  * subsections of the page.  If the page has buffers, the page dirty bit is
1059  * merely a hint about the true dirty state.
1060  *
1061  * When a page is set dirty in its entirety, all its buffers are marked dirty
1062  * (if the page has buffers).
1063  *
1064  * When a buffer is marked dirty, its page is dirtied, but the page's other
1065  * buffers are not.
1066  *
1067  * Also.  When blockdev buffers are explicitly read with bread(), they
1068  * individually become uptodate.  But their backing page remains not
1069  * uptodate - even if all of its buffers are uptodate.  A subsequent
1070  * block_read_full_page() against that page will discover all the uptodate
1071  * buffers, will set the page uptodate and will perform no I/O.
1072  */
1073 
1074 /**
1075  * mark_buffer_dirty - mark a buffer_head as needing writeout
1076  * @bh: the buffer_head to mark dirty
1077  *
1078  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1079  * its backing page dirty, then tag the page as dirty in the page cache
1080  * and then attach the address_space's inode to its superblock's dirty
1081  * inode list.
1082  *
1083  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1084  * i_pages lock and mapping->host->i_lock.
1085  */
1086 void mark_buffer_dirty(struct buffer_head *bh)
1087 {
1088 	WARN_ON_ONCE(!buffer_uptodate(bh));
1089 
1090 	trace_block_dirty_buffer(bh);
1091 
1092 	/*
1093 	 * Very *carefully* optimize the it-is-already-dirty case.
1094 	 *
1095 	 * Don't let the final "is it dirty" escape to before we
1096 	 * perhaps modified the buffer.
1097 	 */
1098 	if (buffer_dirty(bh)) {
1099 		smp_mb();
1100 		if (buffer_dirty(bh))
1101 			return;
1102 	}
1103 
1104 	if (!test_set_buffer_dirty(bh)) {
1105 		struct page *page = bh->b_page;
1106 		struct address_space *mapping = NULL;
1107 
1108 		lock_page_memcg(page);
1109 		if (!TestSetPageDirty(page)) {
1110 			mapping = page_mapping(page);
1111 			if (mapping)
1112 				__set_page_dirty(page, mapping, 0);
1113 		}
1114 		unlock_page_memcg(page);
1115 		if (mapping)
1116 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1117 	}
1118 }
1119 EXPORT_SYMBOL(mark_buffer_dirty);
1120 
1121 void mark_buffer_write_io_error(struct buffer_head *bh)
1122 {
1123 	set_buffer_write_io_error(bh);
1124 	/* FIXME: do we need to set this in both places? */
1125 	if (bh->b_page && bh->b_page->mapping)
1126 		mapping_set_error(bh->b_page->mapping, -EIO);
1127 	if (bh->b_assoc_map)
1128 		mapping_set_error(bh->b_assoc_map, -EIO);
1129 }
1130 EXPORT_SYMBOL(mark_buffer_write_io_error);
1131 
1132 /*
1133  * Decrement a buffer_head's reference count.  If all buffers against a page
1134  * have zero reference count, are clean and unlocked, and if the page is clean
1135  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137  * a page but it ends up not being freed, and buffers may later be reattached).
1138  */
1139 void __brelse(struct buffer_head * buf)
1140 {
1141 	if (atomic_read(&buf->b_count)) {
1142 		put_bh(buf);
1143 		return;
1144 	}
1145 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1146 }
1147 EXPORT_SYMBOL(__brelse);
1148 
1149 /*
1150  * bforget() is like brelse(), except it discards any
1151  * potentially dirty data.
1152  */
1153 void __bforget(struct buffer_head *bh)
1154 {
1155 	clear_buffer_dirty(bh);
1156 	if (bh->b_assoc_map) {
1157 		struct address_space *buffer_mapping = bh->b_page->mapping;
1158 
1159 		spin_lock(&buffer_mapping->private_lock);
1160 		list_del_init(&bh->b_assoc_buffers);
1161 		bh->b_assoc_map = NULL;
1162 		spin_unlock(&buffer_mapping->private_lock);
1163 	}
1164 	__brelse(bh);
1165 }
1166 EXPORT_SYMBOL(__bforget);
1167 
1168 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1169 {
1170 	lock_buffer(bh);
1171 	if (buffer_uptodate(bh)) {
1172 		unlock_buffer(bh);
1173 		return bh;
1174 	} else {
1175 		get_bh(bh);
1176 		bh->b_end_io = end_buffer_read_sync;
1177 		submit_bh(REQ_OP_READ, 0, bh);
1178 		wait_on_buffer(bh);
1179 		if (buffer_uptodate(bh))
1180 			return bh;
1181 	}
1182 	brelse(bh);
1183 	return NULL;
1184 }
1185 
1186 /*
1187  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1188  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1189  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1190  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1191  * CPU's LRUs at the same time.
1192  *
1193  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194  * sb_find_get_block().
1195  *
1196  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1197  * a local interrupt disable for that.
1198  */
1199 
1200 #define BH_LRU_SIZE	16
1201 
1202 struct bh_lru {
1203 	struct buffer_head *bhs[BH_LRU_SIZE];
1204 };
1205 
1206 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1207 
1208 #ifdef CONFIG_SMP
1209 #define bh_lru_lock()	local_irq_disable()
1210 #define bh_lru_unlock()	local_irq_enable()
1211 #else
1212 #define bh_lru_lock()	preempt_disable()
1213 #define bh_lru_unlock()	preempt_enable()
1214 #endif
1215 
1216 static inline void check_irqs_on(void)
1217 {
1218 #ifdef irqs_disabled
1219 	BUG_ON(irqs_disabled());
1220 #endif
1221 }
1222 
1223 /*
1224  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1225  * inserted at the front, and the buffer_head at the back if any is evicted.
1226  * Or, if already in the LRU it is moved to the front.
1227  */
1228 static void bh_lru_install(struct buffer_head *bh)
1229 {
1230 	struct buffer_head *evictee = bh;
1231 	struct bh_lru *b;
1232 	int i;
1233 
1234 	check_irqs_on();
1235 	bh_lru_lock();
1236 
1237 	b = this_cpu_ptr(&bh_lrus);
1238 	for (i = 0; i < BH_LRU_SIZE; i++) {
1239 		swap(evictee, b->bhs[i]);
1240 		if (evictee == bh) {
1241 			bh_lru_unlock();
1242 			return;
1243 		}
1244 	}
1245 
1246 	get_bh(bh);
1247 	bh_lru_unlock();
1248 	brelse(evictee);
1249 }
1250 
1251 /*
1252  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1253  */
1254 static struct buffer_head *
1255 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1256 {
1257 	struct buffer_head *ret = NULL;
1258 	unsigned int i;
1259 
1260 	check_irqs_on();
1261 	bh_lru_lock();
1262 	for (i = 0; i < BH_LRU_SIZE; i++) {
1263 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1264 
1265 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1266 		    bh->b_size == size) {
1267 			if (i) {
1268 				while (i) {
1269 					__this_cpu_write(bh_lrus.bhs[i],
1270 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1271 					i--;
1272 				}
1273 				__this_cpu_write(bh_lrus.bhs[0], bh);
1274 			}
1275 			get_bh(bh);
1276 			ret = bh;
1277 			break;
1278 		}
1279 	}
1280 	bh_lru_unlock();
1281 	return ret;
1282 }
1283 
1284 /*
1285  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1286  * it in the LRU and mark it as accessed.  If it is not present then return
1287  * NULL
1288  */
1289 struct buffer_head *
1290 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1291 {
1292 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1293 
1294 	if (bh == NULL) {
1295 		/* __find_get_block_slow will mark the page accessed */
1296 		bh = __find_get_block_slow(bdev, block);
1297 		if (bh)
1298 			bh_lru_install(bh);
1299 	} else
1300 		touch_buffer(bh);
1301 
1302 	return bh;
1303 }
1304 EXPORT_SYMBOL(__find_get_block);
1305 
1306 /*
1307  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1308  * which corresponds to the passed block_device, block and size. The
1309  * returned buffer has its reference count incremented.
1310  *
1311  * __getblk_gfp() will lock up the machine if grow_dev_page's
1312  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1313  */
1314 struct buffer_head *
1315 __getblk_gfp(struct block_device *bdev, sector_t block,
1316 	     unsigned size, gfp_t gfp)
1317 {
1318 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1319 
1320 	might_sleep();
1321 	if (bh == NULL)
1322 		bh = __getblk_slow(bdev, block, size, gfp);
1323 	return bh;
1324 }
1325 EXPORT_SYMBOL(__getblk_gfp);
1326 
1327 /*
1328  * Do async read-ahead on a buffer..
1329  */
1330 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1331 {
1332 	struct buffer_head *bh = __getblk(bdev, block, size);
1333 	if (likely(bh)) {
1334 		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1335 		brelse(bh);
1336 	}
1337 }
1338 EXPORT_SYMBOL(__breadahead);
1339 
1340 /**
1341  *  __bread_gfp() - reads a specified block and returns the bh
1342  *  @bdev: the block_device to read from
1343  *  @block: number of block
1344  *  @size: size (in bytes) to read
1345  *  @gfp: page allocation flag
1346  *
1347  *  Reads a specified block, and returns buffer head that contains it.
1348  *  The page cache can be allocated from non-movable area
1349  *  not to prevent page migration if you set gfp to zero.
1350  *  It returns NULL if the block was unreadable.
1351  */
1352 struct buffer_head *
1353 __bread_gfp(struct block_device *bdev, sector_t block,
1354 		   unsigned size, gfp_t gfp)
1355 {
1356 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1357 
1358 	if (likely(bh) && !buffer_uptodate(bh))
1359 		bh = __bread_slow(bh);
1360 	return bh;
1361 }
1362 EXPORT_SYMBOL(__bread_gfp);
1363 
1364 /*
1365  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1366  * This doesn't race because it runs in each cpu either in irq
1367  * or with preempt disabled.
1368  */
1369 static void invalidate_bh_lru(void *arg)
1370 {
1371 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1372 	int i;
1373 
1374 	for (i = 0; i < BH_LRU_SIZE; i++) {
1375 		brelse(b->bhs[i]);
1376 		b->bhs[i] = NULL;
1377 	}
1378 	put_cpu_var(bh_lrus);
1379 }
1380 
1381 static bool has_bh_in_lru(int cpu, void *dummy)
1382 {
1383 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1384 	int i;
1385 
1386 	for (i = 0; i < BH_LRU_SIZE; i++) {
1387 		if (b->bhs[i])
1388 			return 1;
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 void invalidate_bh_lrus(void)
1395 {
1396 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1397 }
1398 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1399 
1400 void set_bh_page(struct buffer_head *bh,
1401 		struct page *page, unsigned long offset)
1402 {
1403 	bh->b_page = page;
1404 	BUG_ON(offset >= PAGE_SIZE);
1405 	if (PageHighMem(page))
1406 		/*
1407 		 * This catches illegal uses and preserves the offset:
1408 		 */
1409 		bh->b_data = (char *)(0 + offset);
1410 	else
1411 		bh->b_data = page_address(page) + offset;
1412 }
1413 EXPORT_SYMBOL(set_bh_page);
1414 
1415 /*
1416  * Called when truncating a buffer on a page completely.
1417  */
1418 
1419 /* Bits that are cleared during an invalidate */
1420 #define BUFFER_FLAGS_DISCARD \
1421 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1422 	 1 << BH_Delay | 1 << BH_Unwritten)
1423 
1424 static void discard_buffer(struct buffer_head * bh)
1425 {
1426 	unsigned long b_state, b_state_old;
1427 
1428 	lock_buffer(bh);
1429 	clear_buffer_dirty(bh);
1430 	bh->b_bdev = NULL;
1431 	b_state = bh->b_state;
1432 	for (;;) {
1433 		b_state_old = cmpxchg(&bh->b_state, b_state,
1434 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1435 		if (b_state_old == b_state)
1436 			break;
1437 		b_state = b_state_old;
1438 	}
1439 	unlock_buffer(bh);
1440 }
1441 
1442 /**
1443  * block_invalidatepage - invalidate part or all of a buffer-backed page
1444  *
1445  * @page: the page which is affected
1446  * @offset: start of the range to invalidate
1447  * @length: length of the range to invalidate
1448  *
1449  * block_invalidatepage() is called when all or part of the page has become
1450  * invalidated by a truncate operation.
1451  *
1452  * block_invalidatepage() does not have to release all buffers, but it must
1453  * ensure that no dirty buffer is left outside @offset and that no I/O
1454  * is underway against any of the blocks which are outside the truncation
1455  * point.  Because the caller is about to free (and possibly reuse) those
1456  * blocks on-disk.
1457  */
1458 void block_invalidatepage(struct page *page, unsigned int offset,
1459 			  unsigned int length)
1460 {
1461 	struct buffer_head *head, *bh, *next;
1462 	unsigned int curr_off = 0;
1463 	unsigned int stop = length + offset;
1464 
1465 	BUG_ON(!PageLocked(page));
1466 	if (!page_has_buffers(page))
1467 		goto out;
1468 
1469 	/*
1470 	 * Check for overflow
1471 	 */
1472 	BUG_ON(stop > PAGE_SIZE || stop < length);
1473 
1474 	head = page_buffers(page);
1475 	bh = head;
1476 	do {
1477 		unsigned int next_off = curr_off + bh->b_size;
1478 		next = bh->b_this_page;
1479 
1480 		/*
1481 		 * Are we still fully in range ?
1482 		 */
1483 		if (next_off > stop)
1484 			goto out;
1485 
1486 		/*
1487 		 * is this block fully invalidated?
1488 		 */
1489 		if (offset <= curr_off)
1490 			discard_buffer(bh);
1491 		curr_off = next_off;
1492 		bh = next;
1493 	} while (bh != head);
1494 
1495 	/*
1496 	 * We release buffers only if the entire page is being invalidated.
1497 	 * The get_block cached value has been unconditionally invalidated,
1498 	 * so real IO is not possible anymore.
1499 	 */
1500 	if (length == PAGE_SIZE)
1501 		try_to_release_page(page, 0);
1502 out:
1503 	return;
1504 }
1505 EXPORT_SYMBOL(block_invalidatepage);
1506 
1507 
1508 /*
1509  * We attach and possibly dirty the buffers atomically wrt
1510  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1511  * is already excluded via the page lock.
1512  */
1513 void create_empty_buffers(struct page *page,
1514 			unsigned long blocksize, unsigned long b_state)
1515 {
1516 	struct buffer_head *bh, *head, *tail;
1517 
1518 	head = alloc_page_buffers(page, blocksize, true);
1519 	bh = head;
1520 	do {
1521 		bh->b_state |= b_state;
1522 		tail = bh;
1523 		bh = bh->b_this_page;
1524 	} while (bh);
1525 	tail->b_this_page = head;
1526 
1527 	spin_lock(&page->mapping->private_lock);
1528 	if (PageUptodate(page) || PageDirty(page)) {
1529 		bh = head;
1530 		do {
1531 			if (PageDirty(page))
1532 				set_buffer_dirty(bh);
1533 			if (PageUptodate(page))
1534 				set_buffer_uptodate(bh);
1535 			bh = bh->b_this_page;
1536 		} while (bh != head);
1537 	}
1538 	attach_page_buffers(page, head);
1539 	spin_unlock(&page->mapping->private_lock);
1540 }
1541 EXPORT_SYMBOL(create_empty_buffers);
1542 
1543 /**
1544  * clean_bdev_aliases: clean a range of buffers in block device
1545  * @bdev: Block device to clean buffers in
1546  * @block: Start of a range of blocks to clean
1547  * @len: Number of blocks to clean
1548  *
1549  * We are taking a range of blocks for data and we don't want writeback of any
1550  * buffer-cache aliases starting from return from this function and until the
1551  * moment when something will explicitly mark the buffer dirty (hopefully that
1552  * will not happen until we will free that block ;-) We don't even need to mark
1553  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1554  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1555  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1556  * would confuse anyone who might pick it with bread() afterwards...
1557  *
1558  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1559  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1560  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1561  * need to.  That happens here.
1562  */
1563 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1564 {
1565 	struct inode *bd_inode = bdev->bd_inode;
1566 	struct address_space *bd_mapping = bd_inode->i_mapping;
1567 	struct pagevec pvec;
1568 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1569 	pgoff_t end;
1570 	int i, count;
1571 	struct buffer_head *bh;
1572 	struct buffer_head *head;
1573 
1574 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1575 	pagevec_init(&pvec);
1576 	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1577 		count = pagevec_count(&pvec);
1578 		for (i = 0; i < count; i++) {
1579 			struct page *page = pvec.pages[i];
1580 
1581 			if (!page_has_buffers(page))
1582 				continue;
1583 			/*
1584 			 * We use page lock instead of bd_mapping->private_lock
1585 			 * to pin buffers here since we can afford to sleep and
1586 			 * it scales better than a global spinlock lock.
1587 			 */
1588 			lock_page(page);
1589 			/* Recheck when the page is locked which pins bhs */
1590 			if (!page_has_buffers(page))
1591 				goto unlock_page;
1592 			head = page_buffers(page);
1593 			bh = head;
1594 			do {
1595 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1596 					goto next;
1597 				if (bh->b_blocknr >= block + len)
1598 					break;
1599 				clear_buffer_dirty(bh);
1600 				wait_on_buffer(bh);
1601 				clear_buffer_req(bh);
1602 next:
1603 				bh = bh->b_this_page;
1604 			} while (bh != head);
1605 unlock_page:
1606 			unlock_page(page);
1607 		}
1608 		pagevec_release(&pvec);
1609 		cond_resched();
1610 		/* End of range already reached? */
1611 		if (index > end || !index)
1612 			break;
1613 	}
1614 }
1615 EXPORT_SYMBOL(clean_bdev_aliases);
1616 
1617 /*
1618  * Size is a power-of-two in the range 512..PAGE_SIZE,
1619  * and the case we care about most is PAGE_SIZE.
1620  *
1621  * So this *could* possibly be written with those
1622  * constraints in mind (relevant mostly if some
1623  * architecture has a slow bit-scan instruction)
1624  */
1625 static inline int block_size_bits(unsigned int blocksize)
1626 {
1627 	return ilog2(blocksize);
1628 }
1629 
1630 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1631 {
1632 	BUG_ON(!PageLocked(page));
1633 
1634 	if (!page_has_buffers(page))
1635 		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1636 				     b_state);
1637 	return page_buffers(page);
1638 }
1639 
1640 /*
1641  * NOTE! All mapped/uptodate combinations are valid:
1642  *
1643  *	Mapped	Uptodate	Meaning
1644  *
1645  *	No	No		"unknown" - must do get_block()
1646  *	No	Yes		"hole" - zero-filled
1647  *	Yes	No		"allocated" - allocated on disk, not read in
1648  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1649  *
1650  * "Dirty" is valid only with the last case (mapped+uptodate).
1651  */
1652 
1653 /*
1654  * While block_write_full_page is writing back the dirty buffers under
1655  * the page lock, whoever dirtied the buffers may decide to clean them
1656  * again at any time.  We handle that by only looking at the buffer
1657  * state inside lock_buffer().
1658  *
1659  * If block_write_full_page() is called for regular writeback
1660  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1661  * locked buffer.   This only can happen if someone has written the buffer
1662  * directly, with submit_bh().  At the address_space level PageWriteback
1663  * prevents this contention from occurring.
1664  *
1665  * If block_write_full_page() is called with wbc->sync_mode ==
1666  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1667  * causes the writes to be flagged as synchronous writes.
1668  */
1669 int __block_write_full_page(struct inode *inode, struct page *page,
1670 			get_block_t *get_block, struct writeback_control *wbc,
1671 			bh_end_io_t *handler)
1672 {
1673 	int err;
1674 	sector_t block;
1675 	sector_t last_block;
1676 	struct buffer_head *bh, *head;
1677 	unsigned int blocksize, bbits;
1678 	int nr_underway = 0;
1679 	int write_flags = wbc_to_write_flags(wbc);
1680 
1681 	head = create_page_buffers(page, inode,
1682 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1683 
1684 	/*
1685 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1686 	 * here, and the (potentially unmapped) buffers may become dirty at
1687 	 * any time.  If a buffer becomes dirty here after we've inspected it
1688 	 * then we just miss that fact, and the page stays dirty.
1689 	 *
1690 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1691 	 * handle that here by just cleaning them.
1692 	 */
1693 
1694 	bh = head;
1695 	blocksize = bh->b_size;
1696 	bbits = block_size_bits(blocksize);
1697 
1698 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1699 	last_block = (i_size_read(inode) - 1) >> bbits;
1700 
1701 	/*
1702 	 * Get all the dirty buffers mapped to disk addresses and
1703 	 * handle any aliases from the underlying blockdev's mapping.
1704 	 */
1705 	do {
1706 		if (block > last_block) {
1707 			/*
1708 			 * mapped buffers outside i_size will occur, because
1709 			 * this page can be outside i_size when there is a
1710 			 * truncate in progress.
1711 			 */
1712 			/*
1713 			 * The buffer was zeroed by block_write_full_page()
1714 			 */
1715 			clear_buffer_dirty(bh);
1716 			set_buffer_uptodate(bh);
1717 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1718 			   buffer_dirty(bh)) {
1719 			WARN_ON(bh->b_size != blocksize);
1720 			err = get_block(inode, block, bh, 1);
1721 			if (err)
1722 				goto recover;
1723 			clear_buffer_delay(bh);
1724 			if (buffer_new(bh)) {
1725 				/* blockdev mappings never come here */
1726 				clear_buffer_new(bh);
1727 				clean_bdev_bh_alias(bh);
1728 			}
1729 		}
1730 		bh = bh->b_this_page;
1731 		block++;
1732 	} while (bh != head);
1733 
1734 	do {
1735 		if (!buffer_mapped(bh))
1736 			continue;
1737 		/*
1738 		 * If it's a fully non-blocking write attempt and we cannot
1739 		 * lock the buffer then redirty the page.  Note that this can
1740 		 * potentially cause a busy-wait loop from writeback threads
1741 		 * and kswapd activity, but those code paths have their own
1742 		 * higher-level throttling.
1743 		 */
1744 		if (wbc->sync_mode != WB_SYNC_NONE) {
1745 			lock_buffer(bh);
1746 		} else if (!trylock_buffer(bh)) {
1747 			redirty_page_for_writepage(wbc, page);
1748 			continue;
1749 		}
1750 		if (test_clear_buffer_dirty(bh)) {
1751 			mark_buffer_async_write_endio(bh, handler);
1752 		} else {
1753 			unlock_buffer(bh);
1754 		}
1755 	} while ((bh = bh->b_this_page) != head);
1756 
1757 	/*
1758 	 * The page and its buffers are protected by PageWriteback(), so we can
1759 	 * drop the bh refcounts early.
1760 	 */
1761 	BUG_ON(PageWriteback(page));
1762 	set_page_writeback(page);
1763 
1764 	do {
1765 		struct buffer_head *next = bh->b_this_page;
1766 		if (buffer_async_write(bh)) {
1767 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1768 					inode->i_write_hint, wbc);
1769 			nr_underway++;
1770 		}
1771 		bh = next;
1772 	} while (bh != head);
1773 	unlock_page(page);
1774 
1775 	err = 0;
1776 done:
1777 	if (nr_underway == 0) {
1778 		/*
1779 		 * The page was marked dirty, but the buffers were
1780 		 * clean.  Someone wrote them back by hand with
1781 		 * ll_rw_block/submit_bh.  A rare case.
1782 		 */
1783 		end_page_writeback(page);
1784 
1785 		/*
1786 		 * The page and buffer_heads can be released at any time from
1787 		 * here on.
1788 		 */
1789 	}
1790 	return err;
1791 
1792 recover:
1793 	/*
1794 	 * ENOSPC, or some other error.  We may already have added some
1795 	 * blocks to the file, so we need to write these out to avoid
1796 	 * exposing stale data.
1797 	 * The page is currently locked and not marked for writeback
1798 	 */
1799 	bh = head;
1800 	/* Recovery: lock and submit the mapped buffers */
1801 	do {
1802 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1803 		    !buffer_delay(bh)) {
1804 			lock_buffer(bh);
1805 			mark_buffer_async_write_endio(bh, handler);
1806 		} else {
1807 			/*
1808 			 * The buffer may have been set dirty during
1809 			 * attachment to a dirty page.
1810 			 */
1811 			clear_buffer_dirty(bh);
1812 		}
1813 	} while ((bh = bh->b_this_page) != head);
1814 	SetPageError(page);
1815 	BUG_ON(PageWriteback(page));
1816 	mapping_set_error(page->mapping, err);
1817 	set_page_writeback(page);
1818 	do {
1819 		struct buffer_head *next = bh->b_this_page;
1820 		if (buffer_async_write(bh)) {
1821 			clear_buffer_dirty(bh);
1822 			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1823 					inode->i_write_hint, wbc);
1824 			nr_underway++;
1825 		}
1826 		bh = next;
1827 	} while (bh != head);
1828 	unlock_page(page);
1829 	goto done;
1830 }
1831 EXPORT_SYMBOL(__block_write_full_page);
1832 
1833 /*
1834  * If a page has any new buffers, zero them out here, and mark them uptodate
1835  * and dirty so they'll be written out (in order to prevent uninitialised
1836  * block data from leaking). And clear the new bit.
1837  */
1838 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1839 {
1840 	unsigned int block_start, block_end;
1841 	struct buffer_head *head, *bh;
1842 
1843 	BUG_ON(!PageLocked(page));
1844 	if (!page_has_buffers(page))
1845 		return;
1846 
1847 	bh = head = page_buffers(page);
1848 	block_start = 0;
1849 	do {
1850 		block_end = block_start + bh->b_size;
1851 
1852 		if (buffer_new(bh)) {
1853 			if (block_end > from && block_start < to) {
1854 				if (!PageUptodate(page)) {
1855 					unsigned start, size;
1856 
1857 					start = max(from, block_start);
1858 					size = min(to, block_end) - start;
1859 
1860 					zero_user(page, start, size);
1861 					set_buffer_uptodate(bh);
1862 				}
1863 
1864 				clear_buffer_new(bh);
1865 				mark_buffer_dirty(bh);
1866 			}
1867 		}
1868 
1869 		block_start = block_end;
1870 		bh = bh->b_this_page;
1871 	} while (bh != head);
1872 }
1873 EXPORT_SYMBOL(page_zero_new_buffers);
1874 
1875 static void
1876 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1877 		struct iomap *iomap)
1878 {
1879 	loff_t offset = block << inode->i_blkbits;
1880 
1881 	bh->b_bdev = iomap->bdev;
1882 
1883 	/*
1884 	 * Block points to offset in file we need to map, iomap contains
1885 	 * the offset at which the map starts. If the map ends before the
1886 	 * current block, then do not map the buffer and let the caller
1887 	 * handle it.
1888 	 */
1889 	BUG_ON(offset >= iomap->offset + iomap->length);
1890 
1891 	switch (iomap->type) {
1892 	case IOMAP_HOLE:
1893 		/*
1894 		 * If the buffer is not up to date or beyond the current EOF,
1895 		 * we need to mark it as new to ensure sub-block zeroing is
1896 		 * executed if necessary.
1897 		 */
1898 		if (!buffer_uptodate(bh) ||
1899 		    (offset >= i_size_read(inode)))
1900 			set_buffer_new(bh);
1901 		break;
1902 	case IOMAP_DELALLOC:
1903 		if (!buffer_uptodate(bh) ||
1904 		    (offset >= i_size_read(inode)))
1905 			set_buffer_new(bh);
1906 		set_buffer_uptodate(bh);
1907 		set_buffer_mapped(bh);
1908 		set_buffer_delay(bh);
1909 		break;
1910 	case IOMAP_UNWRITTEN:
1911 		/*
1912 		 * For unwritten regions, we always need to ensure that regions
1913 		 * in the block we are not writing to are zeroed. Mark the
1914 		 * buffer as new to ensure this.
1915 		 */
1916 		set_buffer_new(bh);
1917 		set_buffer_unwritten(bh);
1918 		/* FALLTHRU */
1919 	case IOMAP_MAPPED:
1920 		if ((iomap->flags & IOMAP_F_NEW) ||
1921 		    offset >= i_size_read(inode))
1922 			set_buffer_new(bh);
1923 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1924 				inode->i_blkbits;
1925 		set_buffer_mapped(bh);
1926 		break;
1927 	}
1928 }
1929 
1930 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1931 		get_block_t *get_block, struct iomap *iomap)
1932 {
1933 	unsigned from = pos & (PAGE_SIZE - 1);
1934 	unsigned to = from + len;
1935 	struct inode *inode = page->mapping->host;
1936 	unsigned block_start, block_end;
1937 	sector_t block;
1938 	int err = 0;
1939 	unsigned blocksize, bbits;
1940 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1941 
1942 	BUG_ON(!PageLocked(page));
1943 	BUG_ON(from > PAGE_SIZE);
1944 	BUG_ON(to > PAGE_SIZE);
1945 	BUG_ON(from > to);
1946 
1947 	head = create_page_buffers(page, inode, 0);
1948 	blocksize = head->b_size;
1949 	bbits = block_size_bits(blocksize);
1950 
1951 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1952 
1953 	for(bh = head, block_start = 0; bh != head || !block_start;
1954 	    block++, block_start=block_end, bh = bh->b_this_page) {
1955 		block_end = block_start + blocksize;
1956 		if (block_end <= from || block_start >= to) {
1957 			if (PageUptodate(page)) {
1958 				if (!buffer_uptodate(bh))
1959 					set_buffer_uptodate(bh);
1960 			}
1961 			continue;
1962 		}
1963 		if (buffer_new(bh))
1964 			clear_buffer_new(bh);
1965 		if (!buffer_mapped(bh)) {
1966 			WARN_ON(bh->b_size != blocksize);
1967 			if (get_block) {
1968 				err = get_block(inode, block, bh, 1);
1969 				if (err)
1970 					break;
1971 			} else {
1972 				iomap_to_bh(inode, block, bh, iomap);
1973 			}
1974 
1975 			if (buffer_new(bh)) {
1976 				clean_bdev_bh_alias(bh);
1977 				if (PageUptodate(page)) {
1978 					clear_buffer_new(bh);
1979 					set_buffer_uptodate(bh);
1980 					mark_buffer_dirty(bh);
1981 					continue;
1982 				}
1983 				if (block_end > to || block_start < from)
1984 					zero_user_segments(page,
1985 						to, block_end,
1986 						block_start, from);
1987 				continue;
1988 			}
1989 		}
1990 		if (PageUptodate(page)) {
1991 			if (!buffer_uptodate(bh))
1992 				set_buffer_uptodate(bh);
1993 			continue;
1994 		}
1995 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1996 		    !buffer_unwritten(bh) &&
1997 		     (block_start < from || block_end > to)) {
1998 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1999 			*wait_bh++=bh;
2000 		}
2001 	}
2002 	/*
2003 	 * If we issued read requests - let them complete.
2004 	 */
2005 	while(wait_bh > wait) {
2006 		wait_on_buffer(*--wait_bh);
2007 		if (!buffer_uptodate(*wait_bh))
2008 			err = -EIO;
2009 	}
2010 	if (unlikely(err))
2011 		page_zero_new_buffers(page, from, to);
2012 	return err;
2013 }
2014 
2015 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2016 		get_block_t *get_block)
2017 {
2018 	return __block_write_begin_int(page, pos, len, get_block, NULL);
2019 }
2020 EXPORT_SYMBOL(__block_write_begin);
2021 
2022 static int __block_commit_write(struct inode *inode, struct page *page,
2023 		unsigned from, unsigned to)
2024 {
2025 	unsigned block_start, block_end;
2026 	int partial = 0;
2027 	unsigned blocksize;
2028 	struct buffer_head *bh, *head;
2029 
2030 	bh = head = page_buffers(page);
2031 	blocksize = bh->b_size;
2032 
2033 	block_start = 0;
2034 	do {
2035 		block_end = block_start + blocksize;
2036 		if (block_end <= from || block_start >= to) {
2037 			if (!buffer_uptodate(bh))
2038 				partial = 1;
2039 		} else {
2040 			set_buffer_uptodate(bh);
2041 			mark_buffer_dirty(bh);
2042 		}
2043 		clear_buffer_new(bh);
2044 
2045 		block_start = block_end;
2046 		bh = bh->b_this_page;
2047 	} while (bh != head);
2048 
2049 	/*
2050 	 * If this is a partial write which happened to make all buffers
2051 	 * uptodate then we can optimize away a bogus readpage() for
2052 	 * the next read(). Here we 'discover' whether the page went
2053 	 * uptodate as a result of this (potentially partial) write.
2054 	 */
2055 	if (!partial)
2056 		SetPageUptodate(page);
2057 	return 0;
2058 }
2059 
2060 /*
2061  * block_write_begin takes care of the basic task of block allocation and
2062  * bringing partial write blocks uptodate first.
2063  *
2064  * The filesystem needs to handle block truncation upon failure.
2065  */
2066 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2067 		unsigned flags, struct page **pagep, get_block_t *get_block)
2068 {
2069 	pgoff_t index = pos >> PAGE_SHIFT;
2070 	struct page *page;
2071 	int status;
2072 
2073 	page = grab_cache_page_write_begin(mapping, index, flags);
2074 	if (!page)
2075 		return -ENOMEM;
2076 
2077 	status = __block_write_begin(page, pos, len, get_block);
2078 	if (unlikely(status)) {
2079 		unlock_page(page);
2080 		put_page(page);
2081 		page = NULL;
2082 	}
2083 
2084 	*pagep = page;
2085 	return status;
2086 }
2087 EXPORT_SYMBOL(block_write_begin);
2088 
2089 int block_write_end(struct file *file, struct address_space *mapping,
2090 			loff_t pos, unsigned len, unsigned copied,
2091 			struct page *page, void *fsdata)
2092 {
2093 	struct inode *inode = mapping->host;
2094 	unsigned start;
2095 
2096 	start = pos & (PAGE_SIZE - 1);
2097 
2098 	if (unlikely(copied < len)) {
2099 		/*
2100 		 * The buffers that were written will now be uptodate, so we
2101 		 * don't have to worry about a readpage reading them and
2102 		 * overwriting a partial write. However if we have encountered
2103 		 * a short write and only partially written into a buffer, it
2104 		 * will not be marked uptodate, so a readpage might come in and
2105 		 * destroy our partial write.
2106 		 *
2107 		 * Do the simplest thing, and just treat any short write to a
2108 		 * non uptodate page as a zero-length write, and force the
2109 		 * caller to redo the whole thing.
2110 		 */
2111 		if (!PageUptodate(page))
2112 			copied = 0;
2113 
2114 		page_zero_new_buffers(page, start+copied, start+len);
2115 	}
2116 	flush_dcache_page(page);
2117 
2118 	/* This could be a short (even 0-length) commit */
2119 	__block_commit_write(inode, page, start, start+copied);
2120 
2121 	return copied;
2122 }
2123 EXPORT_SYMBOL(block_write_end);
2124 
2125 int generic_write_end(struct file *file, struct address_space *mapping,
2126 			loff_t pos, unsigned len, unsigned copied,
2127 			struct page *page, void *fsdata)
2128 {
2129 	struct inode *inode = mapping->host;
2130 	loff_t old_size = inode->i_size;
2131 	bool i_size_changed = false;
2132 
2133 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2134 
2135 	/*
2136 	 * No need to use i_size_read() here, the i_size cannot change under us
2137 	 * because we hold i_rwsem.
2138 	 *
2139 	 * But it's important to update i_size while still holding page lock:
2140 	 * page writeout could otherwise come in and zero beyond i_size.
2141 	 */
2142 	if (pos + copied > inode->i_size) {
2143 		i_size_write(inode, pos + copied);
2144 		i_size_changed = true;
2145 	}
2146 
2147 	unlock_page(page);
2148 	put_page(page);
2149 
2150 	if (old_size < pos)
2151 		pagecache_isize_extended(inode, old_size, pos);
2152 	/*
2153 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2154 	 * makes the holding time of page lock longer. Second, it forces lock
2155 	 * ordering of page lock and transaction start for journaling
2156 	 * filesystems.
2157 	 */
2158 	if (i_size_changed)
2159 		mark_inode_dirty(inode);
2160 	return copied;
2161 }
2162 EXPORT_SYMBOL(generic_write_end);
2163 
2164 /*
2165  * block_is_partially_uptodate checks whether buffers within a page are
2166  * uptodate or not.
2167  *
2168  * Returns true if all buffers which correspond to a file portion
2169  * we want to read are uptodate.
2170  */
2171 int block_is_partially_uptodate(struct page *page, unsigned long from,
2172 					unsigned long count)
2173 {
2174 	unsigned block_start, block_end, blocksize;
2175 	unsigned to;
2176 	struct buffer_head *bh, *head;
2177 	int ret = 1;
2178 
2179 	if (!page_has_buffers(page))
2180 		return 0;
2181 
2182 	head = page_buffers(page);
2183 	blocksize = head->b_size;
2184 	to = min_t(unsigned, PAGE_SIZE - from, count);
2185 	to = from + to;
2186 	if (from < blocksize && to > PAGE_SIZE - blocksize)
2187 		return 0;
2188 
2189 	bh = head;
2190 	block_start = 0;
2191 	do {
2192 		block_end = block_start + blocksize;
2193 		if (block_end > from && block_start < to) {
2194 			if (!buffer_uptodate(bh)) {
2195 				ret = 0;
2196 				break;
2197 			}
2198 			if (block_end >= to)
2199 				break;
2200 		}
2201 		block_start = block_end;
2202 		bh = bh->b_this_page;
2203 	} while (bh != head);
2204 
2205 	return ret;
2206 }
2207 EXPORT_SYMBOL(block_is_partially_uptodate);
2208 
2209 /*
2210  * Generic "read page" function for block devices that have the normal
2211  * get_block functionality. This is most of the block device filesystems.
2212  * Reads the page asynchronously --- the unlock_buffer() and
2213  * set/clear_buffer_uptodate() functions propagate buffer state into the
2214  * page struct once IO has completed.
2215  */
2216 int block_read_full_page(struct page *page, get_block_t *get_block)
2217 {
2218 	struct inode *inode = page->mapping->host;
2219 	sector_t iblock, lblock;
2220 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2221 	unsigned int blocksize, bbits;
2222 	int nr, i;
2223 	int fully_mapped = 1;
2224 
2225 	head = create_page_buffers(page, inode, 0);
2226 	blocksize = head->b_size;
2227 	bbits = block_size_bits(blocksize);
2228 
2229 	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2230 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2231 	bh = head;
2232 	nr = 0;
2233 	i = 0;
2234 
2235 	do {
2236 		if (buffer_uptodate(bh))
2237 			continue;
2238 
2239 		if (!buffer_mapped(bh)) {
2240 			int err = 0;
2241 
2242 			fully_mapped = 0;
2243 			if (iblock < lblock) {
2244 				WARN_ON(bh->b_size != blocksize);
2245 				err = get_block(inode, iblock, bh, 0);
2246 				if (err)
2247 					SetPageError(page);
2248 			}
2249 			if (!buffer_mapped(bh)) {
2250 				zero_user(page, i * blocksize, blocksize);
2251 				if (!err)
2252 					set_buffer_uptodate(bh);
2253 				continue;
2254 			}
2255 			/*
2256 			 * get_block() might have updated the buffer
2257 			 * synchronously
2258 			 */
2259 			if (buffer_uptodate(bh))
2260 				continue;
2261 		}
2262 		arr[nr++] = bh;
2263 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2264 
2265 	if (fully_mapped)
2266 		SetPageMappedToDisk(page);
2267 
2268 	if (!nr) {
2269 		/*
2270 		 * All buffers are uptodate - we can set the page uptodate
2271 		 * as well. But not if get_block() returned an error.
2272 		 */
2273 		if (!PageError(page))
2274 			SetPageUptodate(page);
2275 		unlock_page(page);
2276 		return 0;
2277 	}
2278 
2279 	/* Stage two: lock the buffers */
2280 	for (i = 0; i < nr; i++) {
2281 		bh = arr[i];
2282 		lock_buffer(bh);
2283 		mark_buffer_async_read(bh);
2284 	}
2285 
2286 	/*
2287 	 * Stage 3: start the IO.  Check for uptodateness
2288 	 * inside the buffer lock in case another process reading
2289 	 * the underlying blockdev brought it uptodate (the sct fix).
2290 	 */
2291 	for (i = 0; i < nr; i++) {
2292 		bh = arr[i];
2293 		if (buffer_uptodate(bh))
2294 			end_buffer_async_read(bh, 1);
2295 		else
2296 			submit_bh(REQ_OP_READ, 0, bh);
2297 	}
2298 	return 0;
2299 }
2300 EXPORT_SYMBOL(block_read_full_page);
2301 
2302 /* utility function for filesystems that need to do work on expanding
2303  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2304  * deal with the hole.
2305  */
2306 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2307 {
2308 	struct address_space *mapping = inode->i_mapping;
2309 	struct page *page;
2310 	void *fsdata;
2311 	int err;
2312 
2313 	err = inode_newsize_ok(inode, size);
2314 	if (err)
2315 		goto out;
2316 
2317 	err = pagecache_write_begin(NULL, mapping, size, 0,
2318 				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2319 	if (err)
2320 		goto out;
2321 
2322 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2323 	BUG_ON(err > 0);
2324 
2325 out:
2326 	return err;
2327 }
2328 EXPORT_SYMBOL(generic_cont_expand_simple);
2329 
2330 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2331 			    loff_t pos, loff_t *bytes)
2332 {
2333 	struct inode *inode = mapping->host;
2334 	unsigned int blocksize = i_blocksize(inode);
2335 	struct page *page;
2336 	void *fsdata;
2337 	pgoff_t index, curidx;
2338 	loff_t curpos;
2339 	unsigned zerofrom, offset, len;
2340 	int err = 0;
2341 
2342 	index = pos >> PAGE_SHIFT;
2343 	offset = pos & ~PAGE_MASK;
2344 
2345 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2346 		zerofrom = curpos & ~PAGE_MASK;
2347 		if (zerofrom & (blocksize-1)) {
2348 			*bytes |= (blocksize-1);
2349 			(*bytes)++;
2350 		}
2351 		len = PAGE_SIZE - zerofrom;
2352 
2353 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2354 					    &page, &fsdata);
2355 		if (err)
2356 			goto out;
2357 		zero_user(page, zerofrom, len);
2358 		err = pagecache_write_end(file, mapping, curpos, len, len,
2359 						page, fsdata);
2360 		if (err < 0)
2361 			goto out;
2362 		BUG_ON(err != len);
2363 		err = 0;
2364 
2365 		balance_dirty_pages_ratelimited(mapping);
2366 
2367 		if (fatal_signal_pending(current)) {
2368 			err = -EINTR;
2369 			goto out;
2370 		}
2371 	}
2372 
2373 	/* page covers the boundary, find the boundary offset */
2374 	if (index == curidx) {
2375 		zerofrom = curpos & ~PAGE_MASK;
2376 		/* if we will expand the thing last block will be filled */
2377 		if (offset <= zerofrom) {
2378 			goto out;
2379 		}
2380 		if (zerofrom & (blocksize-1)) {
2381 			*bytes |= (blocksize-1);
2382 			(*bytes)++;
2383 		}
2384 		len = offset - zerofrom;
2385 
2386 		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2387 					    &page, &fsdata);
2388 		if (err)
2389 			goto out;
2390 		zero_user(page, zerofrom, len);
2391 		err = pagecache_write_end(file, mapping, curpos, len, len,
2392 						page, fsdata);
2393 		if (err < 0)
2394 			goto out;
2395 		BUG_ON(err != len);
2396 		err = 0;
2397 	}
2398 out:
2399 	return err;
2400 }
2401 
2402 /*
2403  * For moronic filesystems that do not allow holes in file.
2404  * We may have to extend the file.
2405  */
2406 int cont_write_begin(struct file *file, struct address_space *mapping,
2407 			loff_t pos, unsigned len, unsigned flags,
2408 			struct page **pagep, void **fsdata,
2409 			get_block_t *get_block, loff_t *bytes)
2410 {
2411 	struct inode *inode = mapping->host;
2412 	unsigned int blocksize = i_blocksize(inode);
2413 	unsigned int zerofrom;
2414 	int err;
2415 
2416 	err = cont_expand_zero(file, mapping, pos, bytes);
2417 	if (err)
2418 		return err;
2419 
2420 	zerofrom = *bytes & ~PAGE_MASK;
2421 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2422 		*bytes |= (blocksize-1);
2423 		(*bytes)++;
2424 	}
2425 
2426 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2427 }
2428 EXPORT_SYMBOL(cont_write_begin);
2429 
2430 int block_commit_write(struct page *page, unsigned from, unsigned to)
2431 {
2432 	struct inode *inode = page->mapping->host;
2433 	__block_commit_write(inode,page,from,to);
2434 	return 0;
2435 }
2436 EXPORT_SYMBOL(block_commit_write);
2437 
2438 /*
2439  * block_page_mkwrite() is not allowed to change the file size as it gets
2440  * called from a page fault handler when a page is first dirtied. Hence we must
2441  * be careful to check for EOF conditions here. We set the page up correctly
2442  * for a written page which means we get ENOSPC checking when writing into
2443  * holes and correct delalloc and unwritten extent mapping on filesystems that
2444  * support these features.
2445  *
2446  * We are not allowed to take the i_mutex here so we have to play games to
2447  * protect against truncate races as the page could now be beyond EOF.  Because
2448  * truncate writes the inode size before removing pages, once we have the
2449  * page lock we can determine safely if the page is beyond EOF. If it is not
2450  * beyond EOF, then the page is guaranteed safe against truncation until we
2451  * unlock the page.
2452  *
2453  * Direct callers of this function should protect against filesystem freezing
2454  * using sb_start_pagefault() - sb_end_pagefault() functions.
2455  */
2456 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2457 			 get_block_t get_block)
2458 {
2459 	struct page *page = vmf->page;
2460 	struct inode *inode = file_inode(vma->vm_file);
2461 	unsigned long end;
2462 	loff_t size;
2463 	int ret;
2464 
2465 	lock_page(page);
2466 	size = i_size_read(inode);
2467 	if ((page->mapping != inode->i_mapping) ||
2468 	    (page_offset(page) > size)) {
2469 		/* We overload EFAULT to mean page got truncated */
2470 		ret = -EFAULT;
2471 		goto out_unlock;
2472 	}
2473 
2474 	/* page is wholly or partially inside EOF */
2475 	if (((page->index + 1) << PAGE_SHIFT) > size)
2476 		end = size & ~PAGE_MASK;
2477 	else
2478 		end = PAGE_SIZE;
2479 
2480 	ret = __block_write_begin(page, 0, end, get_block);
2481 	if (!ret)
2482 		ret = block_commit_write(page, 0, end);
2483 
2484 	if (unlikely(ret < 0))
2485 		goto out_unlock;
2486 	set_page_dirty(page);
2487 	wait_for_stable_page(page);
2488 	return 0;
2489 out_unlock:
2490 	unlock_page(page);
2491 	return ret;
2492 }
2493 EXPORT_SYMBOL(block_page_mkwrite);
2494 
2495 /*
2496  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2497  * immediately, while under the page lock.  So it needs a special end_io
2498  * handler which does not touch the bh after unlocking it.
2499  */
2500 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2501 {
2502 	__end_buffer_read_notouch(bh, uptodate);
2503 }
2504 
2505 /*
2506  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2507  * the page (converting it to circular linked list and taking care of page
2508  * dirty races).
2509  */
2510 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2511 {
2512 	struct buffer_head *bh;
2513 
2514 	BUG_ON(!PageLocked(page));
2515 
2516 	spin_lock(&page->mapping->private_lock);
2517 	bh = head;
2518 	do {
2519 		if (PageDirty(page))
2520 			set_buffer_dirty(bh);
2521 		if (!bh->b_this_page)
2522 			bh->b_this_page = head;
2523 		bh = bh->b_this_page;
2524 	} while (bh != head);
2525 	attach_page_buffers(page, head);
2526 	spin_unlock(&page->mapping->private_lock);
2527 }
2528 
2529 /*
2530  * On entry, the page is fully not uptodate.
2531  * On exit the page is fully uptodate in the areas outside (from,to)
2532  * The filesystem needs to handle block truncation upon failure.
2533  */
2534 int nobh_write_begin(struct address_space *mapping,
2535 			loff_t pos, unsigned len, unsigned flags,
2536 			struct page **pagep, void **fsdata,
2537 			get_block_t *get_block)
2538 {
2539 	struct inode *inode = mapping->host;
2540 	const unsigned blkbits = inode->i_blkbits;
2541 	const unsigned blocksize = 1 << blkbits;
2542 	struct buffer_head *head, *bh;
2543 	struct page *page;
2544 	pgoff_t index;
2545 	unsigned from, to;
2546 	unsigned block_in_page;
2547 	unsigned block_start, block_end;
2548 	sector_t block_in_file;
2549 	int nr_reads = 0;
2550 	int ret = 0;
2551 	int is_mapped_to_disk = 1;
2552 
2553 	index = pos >> PAGE_SHIFT;
2554 	from = pos & (PAGE_SIZE - 1);
2555 	to = from + len;
2556 
2557 	page = grab_cache_page_write_begin(mapping, index, flags);
2558 	if (!page)
2559 		return -ENOMEM;
2560 	*pagep = page;
2561 	*fsdata = NULL;
2562 
2563 	if (page_has_buffers(page)) {
2564 		ret = __block_write_begin(page, pos, len, get_block);
2565 		if (unlikely(ret))
2566 			goto out_release;
2567 		return ret;
2568 	}
2569 
2570 	if (PageMappedToDisk(page))
2571 		return 0;
2572 
2573 	/*
2574 	 * Allocate buffers so that we can keep track of state, and potentially
2575 	 * attach them to the page if an error occurs. In the common case of
2576 	 * no error, they will just be freed again without ever being attached
2577 	 * to the page (which is all OK, because we're under the page lock).
2578 	 *
2579 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2580 	 * than the circular one we're used to.
2581 	 */
2582 	head = alloc_page_buffers(page, blocksize, false);
2583 	if (!head) {
2584 		ret = -ENOMEM;
2585 		goto out_release;
2586 	}
2587 
2588 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2589 
2590 	/*
2591 	 * We loop across all blocks in the page, whether or not they are
2592 	 * part of the affected region.  This is so we can discover if the
2593 	 * page is fully mapped-to-disk.
2594 	 */
2595 	for (block_start = 0, block_in_page = 0, bh = head;
2596 		  block_start < PAGE_SIZE;
2597 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2598 		int create;
2599 
2600 		block_end = block_start + blocksize;
2601 		bh->b_state = 0;
2602 		create = 1;
2603 		if (block_start >= to)
2604 			create = 0;
2605 		ret = get_block(inode, block_in_file + block_in_page,
2606 					bh, create);
2607 		if (ret)
2608 			goto failed;
2609 		if (!buffer_mapped(bh))
2610 			is_mapped_to_disk = 0;
2611 		if (buffer_new(bh))
2612 			clean_bdev_bh_alias(bh);
2613 		if (PageUptodate(page)) {
2614 			set_buffer_uptodate(bh);
2615 			continue;
2616 		}
2617 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2618 			zero_user_segments(page, block_start, from,
2619 							to, block_end);
2620 			continue;
2621 		}
2622 		if (buffer_uptodate(bh))
2623 			continue;	/* reiserfs does this */
2624 		if (block_start < from || block_end > to) {
2625 			lock_buffer(bh);
2626 			bh->b_end_io = end_buffer_read_nobh;
2627 			submit_bh(REQ_OP_READ, 0, bh);
2628 			nr_reads++;
2629 		}
2630 	}
2631 
2632 	if (nr_reads) {
2633 		/*
2634 		 * The page is locked, so these buffers are protected from
2635 		 * any VM or truncate activity.  Hence we don't need to care
2636 		 * for the buffer_head refcounts.
2637 		 */
2638 		for (bh = head; bh; bh = bh->b_this_page) {
2639 			wait_on_buffer(bh);
2640 			if (!buffer_uptodate(bh))
2641 				ret = -EIO;
2642 		}
2643 		if (ret)
2644 			goto failed;
2645 	}
2646 
2647 	if (is_mapped_to_disk)
2648 		SetPageMappedToDisk(page);
2649 
2650 	*fsdata = head; /* to be released by nobh_write_end */
2651 
2652 	return 0;
2653 
2654 failed:
2655 	BUG_ON(!ret);
2656 	/*
2657 	 * Error recovery is a bit difficult. We need to zero out blocks that
2658 	 * were newly allocated, and dirty them to ensure they get written out.
2659 	 * Buffers need to be attached to the page at this point, otherwise
2660 	 * the handling of potential IO errors during writeout would be hard
2661 	 * (could try doing synchronous writeout, but what if that fails too?)
2662 	 */
2663 	attach_nobh_buffers(page, head);
2664 	page_zero_new_buffers(page, from, to);
2665 
2666 out_release:
2667 	unlock_page(page);
2668 	put_page(page);
2669 	*pagep = NULL;
2670 
2671 	return ret;
2672 }
2673 EXPORT_SYMBOL(nobh_write_begin);
2674 
2675 int nobh_write_end(struct file *file, struct address_space *mapping,
2676 			loff_t pos, unsigned len, unsigned copied,
2677 			struct page *page, void *fsdata)
2678 {
2679 	struct inode *inode = page->mapping->host;
2680 	struct buffer_head *head = fsdata;
2681 	struct buffer_head *bh;
2682 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2683 
2684 	if (unlikely(copied < len) && head)
2685 		attach_nobh_buffers(page, head);
2686 	if (page_has_buffers(page))
2687 		return generic_write_end(file, mapping, pos, len,
2688 					copied, page, fsdata);
2689 
2690 	SetPageUptodate(page);
2691 	set_page_dirty(page);
2692 	if (pos+copied > inode->i_size) {
2693 		i_size_write(inode, pos+copied);
2694 		mark_inode_dirty(inode);
2695 	}
2696 
2697 	unlock_page(page);
2698 	put_page(page);
2699 
2700 	while (head) {
2701 		bh = head;
2702 		head = head->b_this_page;
2703 		free_buffer_head(bh);
2704 	}
2705 
2706 	return copied;
2707 }
2708 EXPORT_SYMBOL(nobh_write_end);
2709 
2710 /*
2711  * nobh_writepage() - based on block_full_write_page() except
2712  * that it tries to operate without attaching bufferheads to
2713  * the page.
2714  */
2715 int nobh_writepage(struct page *page, get_block_t *get_block,
2716 			struct writeback_control *wbc)
2717 {
2718 	struct inode * const inode = page->mapping->host;
2719 	loff_t i_size = i_size_read(inode);
2720 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2721 	unsigned offset;
2722 	int ret;
2723 
2724 	/* Is the page fully inside i_size? */
2725 	if (page->index < end_index)
2726 		goto out;
2727 
2728 	/* Is the page fully outside i_size? (truncate in progress) */
2729 	offset = i_size & (PAGE_SIZE-1);
2730 	if (page->index >= end_index+1 || !offset) {
2731 		/*
2732 		 * The page may have dirty, unmapped buffers.  For example,
2733 		 * they may have been added in ext3_writepage().  Make them
2734 		 * freeable here, so the page does not leak.
2735 		 */
2736 #if 0
2737 		/* Not really sure about this  - do we need this ? */
2738 		if (page->mapping->a_ops->invalidatepage)
2739 			page->mapping->a_ops->invalidatepage(page, offset);
2740 #endif
2741 		unlock_page(page);
2742 		return 0; /* don't care */
2743 	}
2744 
2745 	/*
2746 	 * The page straddles i_size.  It must be zeroed out on each and every
2747 	 * writepage invocation because it may be mmapped.  "A file is mapped
2748 	 * in multiples of the page size.  For a file that is not a multiple of
2749 	 * the  page size, the remaining memory is zeroed when mapped, and
2750 	 * writes to that region are not written out to the file."
2751 	 */
2752 	zero_user_segment(page, offset, PAGE_SIZE);
2753 out:
2754 	ret = mpage_writepage(page, get_block, wbc);
2755 	if (ret == -EAGAIN)
2756 		ret = __block_write_full_page(inode, page, get_block, wbc,
2757 					      end_buffer_async_write);
2758 	return ret;
2759 }
2760 EXPORT_SYMBOL(nobh_writepage);
2761 
2762 int nobh_truncate_page(struct address_space *mapping,
2763 			loff_t from, get_block_t *get_block)
2764 {
2765 	pgoff_t index = from >> PAGE_SHIFT;
2766 	unsigned offset = from & (PAGE_SIZE-1);
2767 	unsigned blocksize;
2768 	sector_t iblock;
2769 	unsigned length, pos;
2770 	struct inode *inode = mapping->host;
2771 	struct page *page;
2772 	struct buffer_head map_bh;
2773 	int err;
2774 
2775 	blocksize = i_blocksize(inode);
2776 	length = offset & (blocksize - 1);
2777 
2778 	/* Block boundary? Nothing to do */
2779 	if (!length)
2780 		return 0;
2781 
2782 	length = blocksize - length;
2783 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2784 
2785 	page = grab_cache_page(mapping, index);
2786 	err = -ENOMEM;
2787 	if (!page)
2788 		goto out;
2789 
2790 	if (page_has_buffers(page)) {
2791 has_buffers:
2792 		unlock_page(page);
2793 		put_page(page);
2794 		return block_truncate_page(mapping, from, get_block);
2795 	}
2796 
2797 	/* Find the buffer that contains "offset" */
2798 	pos = blocksize;
2799 	while (offset >= pos) {
2800 		iblock++;
2801 		pos += blocksize;
2802 	}
2803 
2804 	map_bh.b_size = blocksize;
2805 	map_bh.b_state = 0;
2806 	err = get_block(inode, iblock, &map_bh, 0);
2807 	if (err)
2808 		goto unlock;
2809 	/* unmapped? It's a hole - nothing to do */
2810 	if (!buffer_mapped(&map_bh))
2811 		goto unlock;
2812 
2813 	/* Ok, it's mapped. Make sure it's up-to-date */
2814 	if (!PageUptodate(page)) {
2815 		err = mapping->a_ops->readpage(NULL, page);
2816 		if (err) {
2817 			put_page(page);
2818 			goto out;
2819 		}
2820 		lock_page(page);
2821 		if (!PageUptodate(page)) {
2822 			err = -EIO;
2823 			goto unlock;
2824 		}
2825 		if (page_has_buffers(page))
2826 			goto has_buffers;
2827 	}
2828 	zero_user(page, offset, length);
2829 	set_page_dirty(page);
2830 	err = 0;
2831 
2832 unlock:
2833 	unlock_page(page);
2834 	put_page(page);
2835 out:
2836 	return err;
2837 }
2838 EXPORT_SYMBOL(nobh_truncate_page);
2839 
2840 int block_truncate_page(struct address_space *mapping,
2841 			loff_t from, get_block_t *get_block)
2842 {
2843 	pgoff_t index = from >> PAGE_SHIFT;
2844 	unsigned offset = from & (PAGE_SIZE-1);
2845 	unsigned blocksize;
2846 	sector_t iblock;
2847 	unsigned length, pos;
2848 	struct inode *inode = mapping->host;
2849 	struct page *page;
2850 	struct buffer_head *bh;
2851 	int err;
2852 
2853 	blocksize = i_blocksize(inode);
2854 	length = offset & (blocksize - 1);
2855 
2856 	/* Block boundary? Nothing to do */
2857 	if (!length)
2858 		return 0;
2859 
2860 	length = blocksize - length;
2861 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2862 
2863 	page = grab_cache_page(mapping, index);
2864 	err = -ENOMEM;
2865 	if (!page)
2866 		goto out;
2867 
2868 	if (!page_has_buffers(page))
2869 		create_empty_buffers(page, blocksize, 0);
2870 
2871 	/* Find the buffer that contains "offset" */
2872 	bh = page_buffers(page);
2873 	pos = blocksize;
2874 	while (offset >= pos) {
2875 		bh = bh->b_this_page;
2876 		iblock++;
2877 		pos += blocksize;
2878 	}
2879 
2880 	err = 0;
2881 	if (!buffer_mapped(bh)) {
2882 		WARN_ON(bh->b_size != blocksize);
2883 		err = get_block(inode, iblock, bh, 0);
2884 		if (err)
2885 			goto unlock;
2886 		/* unmapped? It's a hole - nothing to do */
2887 		if (!buffer_mapped(bh))
2888 			goto unlock;
2889 	}
2890 
2891 	/* Ok, it's mapped. Make sure it's up-to-date */
2892 	if (PageUptodate(page))
2893 		set_buffer_uptodate(bh);
2894 
2895 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2896 		err = -EIO;
2897 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2898 		wait_on_buffer(bh);
2899 		/* Uhhuh. Read error. Complain and punt. */
2900 		if (!buffer_uptodate(bh))
2901 			goto unlock;
2902 	}
2903 
2904 	zero_user(page, offset, length);
2905 	mark_buffer_dirty(bh);
2906 	err = 0;
2907 
2908 unlock:
2909 	unlock_page(page);
2910 	put_page(page);
2911 out:
2912 	return err;
2913 }
2914 EXPORT_SYMBOL(block_truncate_page);
2915 
2916 /*
2917  * The generic ->writepage function for buffer-backed address_spaces
2918  */
2919 int block_write_full_page(struct page *page, get_block_t *get_block,
2920 			struct writeback_control *wbc)
2921 {
2922 	struct inode * const inode = page->mapping->host;
2923 	loff_t i_size = i_size_read(inode);
2924 	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2925 	unsigned offset;
2926 
2927 	/* Is the page fully inside i_size? */
2928 	if (page->index < end_index)
2929 		return __block_write_full_page(inode, page, get_block, wbc,
2930 					       end_buffer_async_write);
2931 
2932 	/* Is the page fully outside i_size? (truncate in progress) */
2933 	offset = i_size & (PAGE_SIZE-1);
2934 	if (page->index >= end_index+1 || !offset) {
2935 		/*
2936 		 * The page may have dirty, unmapped buffers.  For example,
2937 		 * they may have been added in ext3_writepage().  Make them
2938 		 * freeable here, so the page does not leak.
2939 		 */
2940 		do_invalidatepage(page, 0, PAGE_SIZE);
2941 		unlock_page(page);
2942 		return 0; /* don't care */
2943 	}
2944 
2945 	/*
2946 	 * The page straddles i_size.  It must be zeroed out on each and every
2947 	 * writepage invocation because it may be mmapped.  "A file is mapped
2948 	 * in multiples of the page size.  For a file that is not a multiple of
2949 	 * the  page size, the remaining memory is zeroed when mapped, and
2950 	 * writes to that region are not written out to the file."
2951 	 */
2952 	zero_user_segment(page, offset, PAGE_SIZE);
2953 	return __block_write_full_page(inode, page, get_block, wbc,
2954 							end_buffer_async_write);
2955 }
2956 EXPORT_SYMBOL(block_write_full_page);
2957 
2958 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2959 			    get_block_t *get_block)
2960 {
2961 	struct inode *inode = mapping->host;
2962 	struct buffer_head tmp = {
2963 		.b_size = i_blocksize(inode),
2964 	};
2965 
2966 	get_block(inode, block, &tmp, 0);
2967 	return tmp.b_blocknr;
2968 }
2969 EXPORT_SYMBOL(generic_block_bmap);
2970 
2971 static void end_bio_bh_io_sync(struct bio *bio)
2972 {
2973 	struct buffer_head *bh = bio->bi_private;
2974 
2975 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2976 		set_bit(BH_Quiet, &bh->b_state);
2977 
2978 	bh->b_end_io(bh, !bio->bi_status);
2979 	bio_put(bio);
2980 }
2981 
2982 /*
2983  * This allows us to do IO even on the odd last sectors
2984  * of a device, even if the block size is some multiple
2985  * of the physical sector size.
2986  *
2987  * We'll just truncate the bio to the size of the device,
2988  * and clear the end of the buffer head manually.
2989  *
2990  * Truly out-of-range accesses will turn into actual IO
2991  * errors, this only handles the "we need to be able to
2992  * do IO at the final sector" case.
2993  */
2994 void guard_bio_eod(int op, struct bio *bio)
2995 {
2996 	sector_t maxsector;
2997 	struct bio_vec *bvec = bio_last_bvec_all(bio);
2998 	unsigned truncated_bytes;
2999 	struct hd_struct *part;
3000 
3001 	rcu_read_lock();
3002 	part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3003 	if (part)
3004 		maxsector = part_nr_sects_read(part);
3005 	else
3006 		maxsector = get_capacity(bio->bi_disk);
3007 	rcu_read_unlock();
3008 
3009 	if (!maxsector)
3010 		return;
3011 
3012 	/*
3013 	 * If the *whole* IO is past the end of the device,
3014 	 * let it through, and the IO layer will turn it into
3015 	 * an EIO.
3016 	 */
3017 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3018 		return;
3019 
3020 	maxsector -= bio->bi_iter.bi_sector;
3021 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3022 		return;
3023 
3024 	/* Uhhuh. We've got a bio that straddles the device size! */
3025 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3026 
3027 	/*
3028 	 * The bio contains more than one segment which spans EOD, just return
3029 	 * and let IO layer turn it into an EIO
3030 	 */
3031 	if (truncated_bytes > bvec->bv_len)
3032 		return;
3033 
3034 	/* Truncate the bio.. */
3035 	bio->bi_iter.bi_size -= truncated_bytes;
3036 	bvec->bv_len -= truncated_bytes;
3037 
3038 	/* ..and clear the end of the buffer for reads */
3039 	if (op == REQ_OP_READ) {
3040 		struct bio_vec bv;
3041 
3042 		mp_bvec_last_segment(bvec, &bv);
3043 		zero_user(bv.bv_page, bv.bv_offset + bv.bv_len,
3044 				truncated_bytes);
3045 	}
3046 }
3047 
3048 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3049 			 enum rw_hint write_hint, struct writeback_control *wbc)
3050 {
3051 	struct bio *bio;
3052 
3053 	BUG_ON(!buffer_locked(bh));
3054 	BUG_ON(!buffer_mapped(bh));
3055 	BUG_ON(!bh->b_end_io);
3056 	BUG_ON(buffer_delay(bh));
3057 	BUG_ON(buffer_unwritten(bh));
3058 
3059 	/*
3060 	 * Only clear out a write error when rewriting
3061 	 */
3062 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3063 		clear_buffer_write_io_error(bh);
3064 
3065 	/*
3066 	 * from here on down, it's all bio -- do the initial mapping,
3067 	 * submit_bio -> generic_make_request may further map this bio around
3068 	 */
3069 	bio = bio_alloc(GFP_NOIO, 1);
3070 
3071 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3072 	bio_set_dev(bio, bh->b_bdev);
3073 	bio->bi_write_hint = write_hint;
3074 
3075 	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3076 	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3077 
3078 	bio->bi_end_io = end_bio_bh_io_sync;
3079 	bio->bi_private = bh;
3080 
3081 	/* Take care of bh's that straddle the end of the device */
3082 	guard_bio_eod(op, bio);
3083 
3084 	if (buffer_meta(bh))
3085 		op_flags |= REQ_META;
3086 	if (buffer_prio(bh))
3087 		op_flags |= REQ_PRIO;
3088 	bio_set_op_attrs(bio, op, op_flags);
3089 
3090 	if (wbc) {
3091 		wbc_init_bio(wbc, bio);
3092 		wbc_account_io(wbc, bh->b_page, bh->b_size);
3093 	}
3094 
3095 	submit_bio(bio);
3096 	return 0;
3097 }
3098 
3099 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3100 {
3101 	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3102 }
3103 EXPORT_SYMBOL(submit_bh);
3104 
3105 /**
3106  * ll_rw_block: low-level access to block devices (DEPRECATED)
3107  * @op: whether to %READ or %WRITE
3108  * @op_flags: req_flag_bits
3109  * @nr: number of &struct buffer_heads in the array
3110  * @bhs: array of pointers to &struct buffer_head
3111  *
3112  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3113  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3114  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3115  * %REQ_RAHEAD.
3116  *
3117  * This function drops any buffer that it cannot get a lock on (with the
3118  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3119  * request, and any buffer that appears to be up-to-date when doing read
3120  * request.  Further it marks as clean buffers that are processed for
3121  * writing (the buffer cache won't assume that they are actually clean
3122  * until the buffer gets unlocked).
3123  *
3124  * ll_rw_block sets b_end_io to simple completion handler that marks
3125  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3126  * any waiters.
3127  *
3128  * All of the buffers must be for the same device, and must also be a
3129  * multiple of the current approved size for the device.
3130  */
3131 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3132 {
3133 	int i;
3134 
3135 	for (i = 0; i < nr; i++) {
3136 		struct buffer_head *bh = bhs[i];
3137 
3138 		if (!trylock_buffer(bh))
3139 			continue;
3140 		if (op == WRITE) {
3141 			if (test_clear_buffer_dirty(bh)) {
3142 				bh->b_end_io = end_buffer_write_sync;
3143 				get_bh(bh);
3144 				submit_bh(op, op_flags, bh);
3145 				continue;
3146 			}
3147 		} else {
3148 			if (!buffer_uptodate(bh)) {
3149 				bh->b_end_io = end_buffer_read_sync;
3150 				get_bh(bh);
3151 				submit_bh(op, op_flags, bh);
3152 				continue;
3153 			}
3154 		}
3155 		unlock_buffer(bh);
3156 	}
3157 }
3158 EXPORT_SYMBOL(ll_rw_block);
3159 
3160 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3161 {
3162 	lock_buffer(bh);
3163 	if (!test_clear_buffer_dirty(bh)) {
3164 		unlock_buffer(bh);
3165 		return;
3166 	}
3167 	bh->b_end_io = end_buffer_write_sync;
3168 	get_bh(bh);
3169 	submit_bh(REQ_OP_WRITE, op_flags, bh);
3170 }
3171 EXPORT_SYMBOL(write_dirty_buffer);
3172 
3173 /*
3174  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3175  * and then start new I/O and then wait upon it.  The caller must have a ref on
3176  * the buffer_head.
3177  */
3178 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3179 {
3180 	int ret = 0;
3181 
3182 	WARN_ON(atomic_read(&bh->b_count) < 1);
3183 	lock_buffer(bh);
3184 	if (test_clear_buffer_dirty(bh)) {
3185 		get_bh(bh);
3186 		bh->b_end_io = end_buffer_write_sync;
3187 		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3188 		wait_on_buffer(bh);
3189 		if (!ret && !buffer_uptodate(bh))
3190 			ret = -EIO;
3191 	} else {
3192 		unlock_buffer(bh);
3193 	}
3194 	return ret;
3195 }
3196 EXPORT_SYMBOL(__sync_dirty_buffer);
3197 
3198 int sync_dirty_buffer(struct buffer_head *bh)
3199 {
3200 	return __sync_dirty_buffer(bh, REQ_SYNC);
3201 }
3202 EXPORT_SYMBOL(sync_dirty_buffer);
3203 
3204 /*
3205  * try_to_free_buffers() checks if all the buffers on this particular page
3206  * are unused, and releases them if so.
3207  *
3208  * Exclusion against try_to_free_buffers may be obtained by either
3209  * locking the page or by holding its mapping's private_lock.
3210  *
3211  * If the page is dirty but all the buffers are clean then we need to
3212  * be sure to mark the page clean as well.  This is because the page
3213  * may be against a block device, and a later reattachment of buffers
3214  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3215  * filesystem data on the same device.
3216  *
3217  * The same applies to regular filesystem pages: if all the buffers are
3218  * clean then we set the page clean and proceed.  To do that, we require
3219  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3220  * private_lock.
3221  *
3222  * try_to_free_buffers() is non-blocking.
3223  */
3224 static inline int buffer_busy(struct buffer_head *bh)
3225 {
3226 	return atomic_read(&bh->b_count) |
3227 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3228 }
3229 
3230 static int
3231 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3232 {
3233 	struct buffer_head *head = page_buffers(page);
3234 	struct buffer_head *bh;
3235 
3236 	bh = head;
3237 	do {
3238 		if (buffer_busy(bh))
3239 			goto failed;
3240 		bh = bh->b_this_page;
3241 	} while (bh != head);
3242 
3243 	do {
3244 		struct buffer_head *next = bh->b_this_page;
3245 
3246 		if (bh->b_assoc_map)
3247 			__remove_assoc_queue(bh);
3248 		bh = next;
3249 	} while (bh != head);
3250 	*buffers_to_free = head;
3251 	__clear_page_buffers(page);
3252 	return 1;
3253 failed:
3254 	return 0;
3255 }
3256 
3257 int try_to_free_buffers(struct page *page)
3258 {
3259 	struct address_space * const mapping = page->mapping;
3260 	struct buffer_head *buffers_to_free = NULL;
3261 	int ret = 0;
3262 
3263 	BUG_ON(!PageLocked(page));
3264 	if (PageWriteback(page))
3265 		return 0;
3266 
3267 	if (mapping == NULL) {		/* can this still happen? */
3268 		ret = drop_buffers(page, &buffers_to_free);
3269 		goto out;
3270 	}
3271 
3272 	spin_lock(&mapping->private_lock);
3273 	ret = drop_buffers(page, &buffers_to_free);
3274 
3275 	/*
3276 	 * If the filesystem writes its buffers by hand (eg ext3)
3277 	 * then we can have clean buffers against a dirty page.  We
3278 	 * clean the page here; otherwise the VM will never notice
3279 	 * that the filesystem did any IO at all.
3280 	 *
3281 	 * Also, during truncate, discard_buffer will have marked all
3282 	 * the page's buffers clean.  We discover that here and clean
3283 	 * the page also.
3284 	 *
3285 	 * private_lock must be held over this entire operation in order
3286 	 * to synchronise against __set_page_dirty_buffers and prevent the
3287 	 * dirty bit from being lost.
3288 	 */
3289 	if (ret)
3290 		cancel_dirty_page(page);
3291 	spin_unlock(&mapping->private_lock);
3292 out:
3293 	if (buffers_to_free) {
3294 		struct buffer_head *bh = buffers_to_free;
3295 
3296 		do {
3297 			struct buffer_head *next = bh->b_this_page;
3298 			free_buffer_head(bh);
3299 			bh = next;
3300 		} while (bh != buffers_to_free);
3301 	}
3302 	return ret;
3303 }
3304 EXPORT_SYMBOL(try_to_free_buffers);
3305 
3306 /*
3307  * There are no bdflush tunables left.  But distributions are
3308  * still running obsolete flush daemons, so we terminate them here.
3309  *
3310  * Use of bdflush() is deprecated and will be removed in a future kernel.
3311  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3312  */
3313 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3314 {
3315 	static int msg_count;
3316 
3317 	if (!capable(CAP_SYS_ADMIN))
3318 		return -EPERM;
3319 
3320 	if (msg_count < 5) {
3321 		msg_count++;
3322 		printk(KERN_INFO
3323 			"warning: process `%s' used the obsolete bdflush"
3324 			" system call\n", current->comm);
3325 		printk(KERN_INFO "Fix your initscripts?\n");
3326 	}
3327 
3328 	if (func == 1)
3329 		do_exit(0);
3330 	return 0;
3331 }
3332 
3333 /*
3334  * Buffer-head allocation
3335  */
3336 static struct kmem_cache *bh_cachep __read_mostly;
3337 
3338 /*
3339  * Once the number of bh's in the machine exceeds this level, we start
3340  * stripping them in writeback.
3341  */
3342 static unsigned long max_buffer_heads;
3343 
3344 int buffer_heads_over_limit;
3345 
3346 struct bh_accounting {
3347 	int nr;			/* Number of live bh's */
3348 	int ratelimit;		/* Limit cacheline bouncing */
3349 };
3350 
3351 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3352 
3353 static void recalc_bh_state(void)
3354 {
3355 	int i;
3356 	int tot = 0;
3357 
3358 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3359 		return;
3360 	__this_cpu_write(bh_accounting.ratelimit, 0);
3361 	for_each_online_cpu(i)
3362 		tot += per_cpu(bh_accounting, i).nr;
3363 	buffer_heads_over_limit = (tot > max_buffer_heads);
3364 }
3365 
3366 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3367 {
3368 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3369 	if (ret) {
3370 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3371 		preempt_disable();
3372 		__this_cpu_inc(bh_accounting.nr);
3373 		recalc_bh_state();
3374 		preempt_enable();
3375 	}
3376 	return ret;
3377 }
3378 EXPORT_SYMBOL(alloc_buffer_head);
3379 
3380 void free_buffer_head(struct buffer_head *bh)
3381 {
3382 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3383 	kmem_cache_free(bh_cachep, bh);
3384 	preempt_disable();
3385 	__this_cpu_dec(bh_accounting.nr);
3386 	recalc_bh_state();
3387 	preempt_enable();
3388 }
3389 EXPORT_SYMBOL(free_buffer_head);
3390 
3391 static int buffer_exit_cpu_dead(unsigned int cpu)
3392 {
3393 	int i;
3394 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3395 
3396 	for (i = 0; i < BH_LRU_SIZE; i++) {
3397 		brelse(b->bhs[i]);
3398 		b->bhs[i] = NULL;
3399 	}
3400 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3401 	per_cpu(bh_accounting, cpu).nr = 0;
3402 	return 0;
3403 }
3404 
3405 /**
3406  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3407  * @bh: struct buffer_head
3408  *
3409  * Return true if the buffer is up-to-date and false,
3410  * with the buffer locked, if not.
3411  */
3412 int bh_uptodate_or_lock(struct buffer_head *bh)
3413 {
3414 	if (!buffer_uptodate(bh)) {
3415 		lock_buffer(bh);
3416 		if (!buffer_uptodate(bh))
3417 			return 0;
3418 		unlock_buffer(bh);
3419 	}
3420 	return 1;
3421 }
3422 EXPORT_SYMBOL(bh_uptodate_or_lock);
3423 
3424 /**
3425  * bh_submit_read - Submit a locked buffer for reading
3426  * @bh: struct buffer_head
3427  *
3428  * Returns zero on success and -EIO on error.
3429  */
3430 int bh_submit_read(struct buffer_head *bh)
3431 {
3432 	BUG_ON(!buffer_locked(bh));
3433 
3434 	if (buffer_uptodate(bh)) {
3435 		unlock_buffer(bh);
3436 		return 0;
3437 	}
3438 
3439 	get_bh(bh);
3440 	bh->b_end_io = end_buffer_read_sync;
3441 	submit_bh(REQ_OP_READ, 0, bh);
3442 	wait_on_buffer(bh);
3443 	if (buffer_uptodate(bh))
3444 		return 0;
3445 	return -EIO;
3446 }
3447 EXPORT_SYMBOL(bh_submit_read);
3448 
3449 void __init buffer_init(void)
3450 {
3451 	unsigned long nrpages;
3452 	int ret;
3453 
3454 	bh_cachep = kmem_cache_create("buffer_head",
3455 			sizeof(struct buffer_head), 0,
3456 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3457 				SLAB_MEM_SPREAD),
3458 				NULL);
3459 
3460 	/*
3461 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3462 	 */
3463 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3464 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3465 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3466 					NULL, buffer_exit_cpu_dead);
3467 	WARN_ON(ret < 0);
3468 }
3469