1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 static int sleep_on_buffer(void *word) 58 { 59 io_schedule(); 60 return 0; 61 } 62 63 void __lock_buffer(struct buffer_head *bh) 64 { 65 wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer, 66 TASK_UNINTERRUPTIBLE); 67 } 68 EXPORT_SYMBOL(__lock_buffer); 69 70 void unlock_buffer(struct buffer_head *bh) 71 { 72 clear_bit_unlock(BH_Lock, &bh->b_state); 73 smp_mb__after_clear_bit(); 74 wake_up_bit(&bh->b_state, BH_Lock); 75 } 76 EXPORT_SYMBOL(unlock_buffer); 77 78 /* 79 * Block until a buffer comes unlocked. This doesn't stop it 80 * from becoming locked again - you have to lock it yourself 81 * if you want to preserve its state. 82 */ 83 void __wait_on_buffer(struct buffer_head * bh) 84 { 85 wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE); 86 } 87 EXPORT_SYMBOL(__wait_on_buffer); 88 89 static void 90 __clear_page_buffers(struct page *page) 91 { 92 ClearPagePrivate(page); 93 set_page_private(page, 0); 94 page_cache_release(page); 95 } 96 97 98 static int quiet_error(struct buffer_head *bh) 99 { 100 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 101 return 0; 102 return 1; 103 } 104 105 106 static void buffer_io_error(struct buffer_head *bh) 107 { 108 char b[BDEVNAME_SIZE]; 109 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 110 bdevname(bh->b_bdev, b), 111 (unsigned long long)bh->b_blocknr); 112 } 113 114 /* 115 * End-of-IO handler helper function which does not touch the bh after 116 * unlocking it. 117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 118 * a race there is benign: unlock_buffer() only use the bh's address for 119 * hashing after unlocking the buffer, so it doesn't actually touch the bh 120 * itself. 121 */ 122 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 123 { 124 if (uptodate) { 125 set_buffer_uptodate(bh); 126 } else { 127 /* This happens, due to failed READA attempts. */ 128 clear_buffer_uptodate(bh); 129 } 130 unlock_buffer(bh); 131 } 132 133 /* 134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 135 * unlock the buffer. This is what ll_rw_block uses too. 136 */ 137 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 138 { 139 __end_buffer_read_notouch(bh, uptodate); 140 put_bh(bh); 141 } 142 EXPORT_SYMBOL(end_buffer_read_sync); 143 144 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 145 { 146 char b[BDEVNAME_SIZE]; 147 148 if (uptodate) { 149 set_buffer_uptodate(bh); 150 } else { 151 if (!quiet_error(bh)) { 152 buffer_io_error(bh); 153 printk(KERN_WARNING "lost page write due to " 154 "I/O error on %s\n", 155 bdevname(bh->b_bdev, b)); 156 } 157 set_buffer_write_io_error(bh); 158 clear_buffer_uptodate(bh); 159 } 160 unlock_buffer(bh); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_write_sync); 164 165 /* 166 * Various filesystems appear to want __find_get_block to be non-blocking. 167 * But it's the page lock which protects the buffers. To get around this, 168 * we get exclusion from try_to_free_buffers with the blockdev mapping's 169 * private_lock. 170 * 171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 172 * may be quite high. This code could TryLock the page, and if that 173 * succeeds, there is no need to take private_lock. (But if 174 * private_lock is contended then so is mapping->tree_lock). 175 */ 176 static struct buffer_head * 177 __find_get_block_slow(struct block_device *bdev, sector_t block) 178 { 179 struct inode *bd_inode = bdev->bd_inode; 180 struct address_space *bd_mapping = bd_inode->i_mapping; 181 struct buffer_head *ret = NULL; 182 pgoff_t index; 183 struct buffer_head *bh; 184 struct buffer_head *head; 185 struct page *page; 186 int all_mapped = 1; 187 188 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 189 page = find_get_page(bd_mapping, index); 190 if (!page) 191 goto out; 192 193 spin_lock(&bd_mapping->private_lock); 194 if (!page_has_buffers(page)) 195 goto out_unlock; 196 head = page_buffers(page); 197 bh = head; 198 do { 199 if (!buffer_mapped(bh)) 200 all_mapped = 0; 201 else if (bh->b_blocknr == block) { 202 ret = bh; 203 get_bh(bh); 204 goto out_unlock; 205 } 206 bh = bh->b_this_page; 207 } while (bh != head); 208 209 /* we might be here because some of the buffers on this page are 210 * not mapped. This is due to various races between 211 * file io on the block device and getblk. It gets dealt with 212 * elsewhere, don't buffer_error if we had some unmapped buffers 213 */ 214 if (all_mapped) { 215 char b[BDEVNAME_SIZE]; 216 217 printk("__find_get_block_slow() failed. " 218 "block=%llu, b_blocknr=%llu\n", 219 (unsigned long long)block, 220 (unsigned long long)bh->b_blocknr); 221 printk("b_state=0x%08lx, b_size=%zu\n", 222 bh->b_state, bh->b_size); 223 printk("device %s blocksize: %d\n", bdevname(bdev, b), 224 1 << bd_inode->i_blkbits); 225 } 226 out_unlock: 227 spin_unlock(&bd_mapping->private_lock); 228 page_cache_release(page); 229 out: 230 return ret; 231 } 232 233 /* 234 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 235 */ 236 static void free_more_memory(void) 237 { 238 struct zone *zone; 239 int nid; 240 241 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 242 yield(); 243 244 for_each_online_node(nid) { 245 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 246 gfp_zone(GFP_NOFS), NULL, 247 &zone); 248 if (zone) 249 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 250 GFP_NOFS, NULL); 251 } 252 } 253 254 /* 255 * I/O completion handler for block_read_full_page() - pages 256 * which come unlocked at the end of I/O. 257 */ 258 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 259 { 260 unsigned long flags; 261 struct buffer_head *first; 262 struct buffer_head *tmp; 263 struct page *page; 264 int page_uptodate = 1; 265 266 BUG_ON(!buffer_async_read(bh)); 267 268 page = bh->b_page; 269 if (uptodate) { 270 set_buffer_uptodate(bh); 271 } else { 272 clear_buffer_uptodate(bh); 273 if (!quiet_error(bh)) 274 buffer_io_error(bh); 275 SetPageError(page); 276 } 277 278 /* 279 * Be _very_ careful from here on. Bad things can happen if 280 * two buffer heads end IO at almost the same time and both 281 * decide that the page is now completely done. 282 */ 283 first = page_buffers(page); 284 local_irq_save(flags); 285 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 286 clear_buffer_async_read(bh); 287 unlock_buffer(bh); 288 tmp = bh; 289 do { 290 if (!buffer_uptodate(tmp)) 291 page_uptodate = 0; 292 if (buffer_async_read(tmp)) { 293 BUG_ON(!buffer_locked(tmp)); 294 goto still_busy; 295 } 296 tmp = tmp->b_this_page; 297 } while (tmp != bh); 298 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 299 local_irq_restore(flags); 300 301 /* 302 * If none of the buffers had errors and they are all 303 * uptodate then we can set the page uptodate. 304 */ 305 if (page_uptodate && !PageError(page)) 306 SetPageUptodate(page); 307 unlock_page(page); 308 return; 309 310 still_busy: 311 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 312 local_irq_restore(flags); 313 return; 314 } 315 316 /* 317 * Completion handler for block_write_full_page() - pages which are unlocked 318 * during I/O, and which have PageWriteback cleared upon I/O completion. 319 */ 320 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 321 { 322 char b[BDEVNAME_SIZE]; 323 unsigned long flags; 324 struct buffer_head *first; 325 struct buffer_head *tmp; 326 struct page *page; 327 328 BUG_ON(!buffer_async_write(bh)); 329 330 page = bh->b_page; 331 if (uptodate) { 332 set_buffer_uptodate(bh); 333 } else { 334 if (!quiet_error(bh)) { 335 buffer_io_error(bh); 336 printk(KERN_WARNING "lost page write due to " 337 "I/O error on %s\n", 338 bdevname(bh->b_bdev, b)); 339 } 340 set_bit(AS_EIO, &page->mapping->flags); 341 set_buffer_write_io_error(bh); 342 clear_buffer_uptodate(bh); 343 SetPageError(page); 344 } 345 346 first = page_buffers(page); 347 local_irq_save(flags); 348 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 349 350 clear_buffer_async_write(bh); 351 unlock_buffer(bh); 352 tmp = bh->b_this_page; 353 while (tmp != bh) { 354 if (buffer_async_write(tmp)) { 355 BUG_ON(!buffer_locked(tmp)); 356 goto still_busy; 357 } 358 tmp = tmp->b_this_page; 359 } 360 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 361 local_irq_restore(flags); 362 end_page_writeback(page); 363 return; 364 365 still_busy: 366 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 367 local_irq_restore(flags); 368 return; 369 } 370 EXPORT_SYMBOL(end_buffer_async_write); 371 372 /* 373 * If a page's buffers are under async readin (end_buffer_async_read 374 * completion) then there is a possibility that another thread of 375 * control could lock one of the buffers after it has completed 376 * but while some of the other buffers have not completed. This 377 * locked buffer would confuse end_buffer_async_read() into not unlocking 378 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 379 * that this buffer is not under async I/O. 380 * 381 * The page comes unlocked when it has no locked buffer_async buffers 382 * left. 383 * 384 * PageLocked prevents anyone starting new async I/O reads any of 385 * the buffers. 386 * 387 * PageWriteback is used to prevent simultaneous writeout of the same 388 * page. 389 * 390 * PageLocked prevents anyone from starting writeback of a page which is 391 * under read I/O (PageWriteback is only ever set against a locked page). 392 */ 393 static void mark_buffer_async_read(struct buffer_head *bh) 394 { 395 bh->b_end_io = end_buffer_async_read; 396 set_buffer_async_read(bh); 397 } 398 399 static void mark_buffer_async_write_endio(struct buffer_head *bh, 400 bh_end_io_t *handler) 401 { 402 bh->b_end_io = handler; 403 set_buffer_async_write(bh); 404 } 405 406 void mark_buffer_async_write(struct buffer_head *bh) 407 { 408 mark_buffer_async_write_endio(bh, end_buffer_async_write); 409 } 410 EXPORT_SYMBOL(mark_buffer_async_write); 411 412 413 /* 414 * fs/buffer.c contains helper functions for buffer-backed address space's 415 * fsync functions. A common requirement for buffer-based filesystems is 416 * that certain data from the backing blockdev needs to be written out for 417 * a successful fsync(). For example, ext2 indirect blocks need to be 418 * written back and waited upon before fsync() returns. 419 * 420 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 421 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 422 * management of a list of dependent buffers at ->i_mapping->private_list. 423 * 424 * Locking is a little subtle: try_to_free_buffers() will remove buffers 425 * from their controlling inode's queue when they are being freed. But 426 * try_to_free_buffers() will be operating against the *blockdev* mapping 427 * at the time, not against the S_ISREG file which depends on those buffers. 428 * So the locking for private_list is via the private_lock in the address_space 429 * which backs the buffers. Which is different from the address_space 430 * against which the buffers are listed. So for a particular address_space, 431 * mapping->private_lock does *not* protect mapping->private_list! In fact, 432 * mapping->private_list will always be protected by the backing blockdev's 433 * ->private_lock. 434 * 435 * Which introduces a requirement: all buffers on an address_space's 436 * ->private_list must be from the same address_space: the blockdev's. 437 * 438 * address_spaces which do not place buffers at ->private_list via these 439 * utility functions are free to use private_lock and private_list for 440 * whatever they want. The only requirement is that list_empty(private_list) 441 * be true at clear_inode() time. 442 * 443 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 444 * filesystems should do that. invalidate_inode_buffers() should just go 445 * BUG_ON(!list_empty). 446 * 447 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 448 * take an address_space, not an inode. And it should be called 449 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 450 * queued up. 451 * 452 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 453 * list if it is already on a list. Because if the buffer is on a list, 454 * it *must* already be on the right one. If not, the filesystem is being 455 * silly. This will save a ton of locking. But first we have to ensure 456 * that buffers are taken *off* the old inode's list when they are freed 457 * (presumably in truncate). That requires careful auditing of all 458 * filesystems (do it inside bforget()). It could also be done by bringing 459 * b_inode back. 460 */ 461 462 /* 463 * The buffer's backing address_space's private_lock must be held 464 */ 465 static void __remove_assoc_queue(struct buffer_head *bh) 466 { 467 list_del_init(&bh->b_assoc_buffers); 468 WARN_ON(!bh->b_assoc_map); 469 if (buffer_write_io_error(bh)) 470 set_bit(AS_EIO, &bh->b_assoc_map->flags); 471 bh->b_assoc_map = NULL; 472 } 473 474 int inode_has_buffers(struct inode *inode) 475 { 476 return !list_empty(&inode->i_data.private_list); 477 } 478 479 /* 480 * osync is designed to support O_SYNC io. It waits synchronously for 481 * all already-submitted IO to complete, but does not queue any new 482 * writes to the disk. 483 * 484 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 485 * you dirty the buffers, and then use osync_inode_buffers to wait for 486 * completion. Any other dirty buffers which are not yet queued for 487 * write will not be flushed to disk by the osync. 488 */ 489 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 490 { 491 struct buffer_head *bh; 492 struct list_head *p; 493 int err = 0; 494 495 spin_lock(lock); 496 repeat: 497 list_for_each_prev(p, list) { 498 bh = BH_ENTRY(p); 499 if (buffer_locked(bh)) { 500 get_bh(bh); 501 spin_unlock(lock); 502 wait_on_buffer(bh); 503 if (!buffer_uptodate(bh)) 504 err = -EIO; 505 brelse(bh); 506 spin_lock(lock); 507 goto repeat; 508 } 509 } 510 spin_unlock(lock); 511 return err; 512 } 513 514 static void do_thaw_one(struct super_block *sb, void *unused) 515 { 516 char b[BDEVNAME_SIZE]; 517 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 518 printk(KERN_WARNING "Emergency Thaw on %s\n", 519 bdevname(sb->s_bdev, b)); 520 } 521 522 static void do_thaw_all(struct work_struct *work) 523 { 524 iterate_supers(do_thaw_one, NULL); 525 kfree(work); 526 printk(KERN_WARNING "Emergency Thaw complete\n"); 527 } 528 529 /** 530 * emergency_thaw_all -- forcibly thaw every frozen filesystem 531 * 532 * Used for emergency unfreeze of all filesystems via SysRq 533 */ 534 void emergency_thaw_all(void) 535 { 536 struct work_struct *work; 537 538 work = kmalloc(sizeof(*work), GFP_ATOMIC); 539 if (work) { 540 INIT_WORK(work, do_thaw_all); 541 schedule_work(work); 542 } 543 } 544 545 /** 546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 547 * @mapping: the mapping which wants those buffers written 548 * 549 * Starts I/O against the buffers at mapping->private_list, and waits upon 550 * that I/O. 551 * 552 * Basically, this is a convenience function for fsync(). 553 * @mapping is a file or directory which needs those buffers to be written for 554 * a successful fsync(). 555 */ 556 int sync_mapping_buffers(struct address_space *mapping) 557 { 558 struct address_space *buffer_mapping = mapping->assoc_mapping; 559 560 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 561 return 0; 562 563 return fsync_buffers_list(&buffer_mapping->private_lock, 564 &mapping->private_list); 565 } 566 EXPORT_SYMBOL(sync_mapping_buffers); 567 568 /* 569 * Called when we've recently written block `bblock', and it is known that 570 * `bblock' was for a buffer_boundary() buffer. This means that the block at 571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 572 * dirty, schedule it for IO. So that indirects merge nicely with their data. 573 */ 574 void write_boundary_block(struct block_device *bdev, 575 sector_t bblock, unsigned blocksize) 576 { 577 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 578 if (bh) { 579 if (buffer_dirty(bh)) 580 ll_rw_block(WRITE, 1, &bh); 581 put_bh(bh); 582 } 583 } 584 585 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 586 { 587 struct address_space *mapping = inode->i_mapping; 588 struct address_space *buffer_mapping = bh->b_page->mapping; 589 590 mark_buffer_dirty(bh); 591 if (!mapping->assoc_mapping) { 592 mapping->assoc_mapping = buffer_mapping; 593 } else { 594 BUG_ON(mapping->assoc_mapping != buffer_mapping); 595 } 596 if (!bh->b_assoc_map) { 597 spin_lock(&buffer_mapping->private_lock); 598 list_move_tail(&bh->b_assoc_buffers, 599 &mapping->private_list); 600 bh->b_assoc_map = mapping; 601 spin_unlock(&buffer_mapping->private_lock); 602 } 603 } 604 EXPORT_SYMBOL(mark_buffer_dirty_inode); 605 606 /* 607 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 608 * dirty. 609 * 610 * If warn is true, then emit a warning if the page is not uptodate and has 611 * not been truncated. 612 */ 613 static void __set_page_dirty(struct page *page, 614 struct address_space *mapping, int warn) 615 { 616 spin_lock_irq(&mapping->tree_lock); 617 if (page->mapping) { /* Race with truncate? */ 618 WARN_ON_ONCE(warn && !PageUptodate(page)); 619 account_page_dirtied(page, mapping); 620 radix_tree_tag_set(&mapping->page_tree, 621 page_index(page), PAGECACHE_TAG_DIRTY); 622 } 623 spin_unlock_irq(&mapping->tree_lock); 624 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 625 } 626 627 /* 628 * Add a page to the dirty page list. 629 * 630 * It is a sad fact of life that this function is called from several places 631 * deeply under spinlocking. It may not sleep. 632 * 633 * If the page has buffers, the uptodate buffers are set dirty, to preserve 634 * dirty-state coherency between the page and the buffers. It the page does 635 * not have buffers then when they are later attached they will all be set 636 * dirty. 637 * 638 * The buffers are dirtied before the page is dirtied. There's a small race 639 * window in which a writepage caller may see the page cleanness but not the 640 * buffer dirtiness. That's fine. If this code were to set the page dirty 641 * before the buffers, a concurrent writepage caller could clear the page dirty 642 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 643 * page on the dirty page list. 644 * 645 * We use private_lock to lock against try_to_free_buffers while using the 646 * page's buffer list. Also use this to protect against clean buffers being 647 * added to the page after it was set dirty. 648 * 649 * FIXME: may need to call ->reservepage here as well. That's rather up to the 650 * address_space though. 651 */ 652 int __set_page_dirty_buffers(struct page *page) 653 { 654 int newly_dirty; 655 struct address_space *mapping = page_mapping(page); 656 657 if (unlikely(!mapping)) 658 return !TestSetPageDirty(page); 659 660 spin_lock(&mapping->private_lock); 661 if (page_has_buffers(page)) { 662 struct buffer_head *head = page_buffers(page); 663 struct buffer_head *bh = head; 664 665 do { 666 set_buffer_dirty(bh); 667 bh = bh->b_this_page; 668 } while (bh != head); 669 } 670 newly_dirty = !TestSetPageDirty(page); 671 spin_unlock(&mapping->private_lock); 672 673 if (newly_dirty) 674 __set_page_dirty(page, mapping, 1); 675 return newly_dirty; 676 } 677 EXPORT_SYMBOL(__set_page_dirty_buffers); 678 679 /* 680 * Write out and wait upon a list of buffers. 681 * 682 * We have conflicting pressures: we want to make sure that all 683 * initially dirty buffers get waited on, but that any subsequently 684 * dirtied buffers don't. After all, we don't want fsync to last 685 * forever if somebody is actively writing to the file. 686 * 687 * Do this in two main stages: first we copy dirty buffers to a 688 * temporary inode list, queueing the writes as we go. Then we clean 689 * up, waiting for those writes to complete. 690 * 691 * During this second stage, any subsequent updates to the file may end 692 * up refiling the buffer on the original inode's dirty list again, so 693 * there is a chance we will end up with a buffer queued for write but 694 * not yet completed on that list. So, as a final cleanup we go through 695 * the osync code to catch these locked, dirty buffers without requeuing 696 * any newly dirty buffers for write. 697 */ 698 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 699 { 700 struct buffer_head *bh; 701 struct list_head tmp; 702 struct address_space *mapping; 703 int err = 0, err2; 704 struct blk_plug plug; 705 706 INIT_LIST_HEAD(&tmp); 707 blk_start_plug(&plug); 708 709 spin_lock(lock); 710 while (!list_empty(list)) { 711 bh = BH_ENTRY(list->next); 712 mapping = bh->b_assoc_map; 713 __remove_assoc_queue(bh); 714 /* Avoid race with mark_buffer_dirty_inode() which does 715 * a lockless check and we rely on seeing the dirty bit */ 716 smp_mb(); 717 if (buffer_dirty(bh) || buffer_locked(bh)) { 718 list_add(&bh->b_assoc_buffers, &tmp); 719 bh->b_assoc_map = mapping; 720 if (buffer_dirty(bh)) { 721 get_bh(bh); 722 spin_unlock(lock); 723 /* 724 * Ensure any pending I/O completes so that 725 * write_dirty_buffer() actually writes the 726 * current contents - it is a noop if I/O is 727 * still in flight on potentially older 728 * contents. 729 */ 730 write_dirty_buffer(bh, WRITE_SYNC); 731 732 /* 733 * Kick off IO for the previous mapping. Note 734 * that we will not run the very last mapping, 735 * wait_on_buffer() will do that for us 736 * through sync_buffer(). 737 */ 738 brelse(bh); 739 spin_lock(lock); 740 } 741 } 742 } 743 744 spin_unlock(lock); 745 blk_finish_plug(&plug); 746 spin_lock(lock); 747 748 while (!list_empty(&tmp)) { 749 bh = BH_ENTRY(tmp.prev); 750 get_bh(bh); 751 mapping = bh->b_assoc_map; 752 __remove_assoc_queue(bh); 753 /* Avoid race with mark_buffer_dirty_inode() which does 754 * a lockless check and we rely on seeing the dirty bit */ 755 smp_mb(); 756 if (buffer_dirty(bh)) { 757 list_add(&bh->b_assoc_buffers, 758 &mapping->private_list); 759 bh->b_assoc_map = mapping; 760 } 761 spin_unlock(lock); 762 wait_on_buffer(bh); 763 if (!buffer_uptodate(bh)) 764 err = -EIO; 765 brelse(bh); 766 spin_lock(lock); 767 } 768 769 spin_unlock(lock); 770 err2 = osync_buffers_list(lock, list); 771 if (err) 772 return err; 773 else 774 return err2; 775 } 776 777 /* 778 * Invalidate any and all dirty buffers on a given inode. We are 779 * probably unmounting the fs, but that doesn't mean we have already 780 * done a sync(). Just drop the buffers from the inode list. 781 * 782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 783 * assumes that all the buffers are against the blockdev. Not true 784 * for reiserfs. 785 */ 786 void invalidate_inode_buffers(struct inode *inode) 787 { 788 if (inode_has_buffers(inode)) { 789 struct address_space *mapping = &inode->i_data; 790 struct list_head *list = &mapping->private_list; 791 struct address_space *buffer_mapping = mapping->assoc_mapping; 792 793 spin_lock(&buffer_mapping->private_lock); 794 while (!list_empty(list)) 795 __remove_assoc_queue(BH_ENTRY(list->next)); 796 spin_unlock(&buffer_mapping->private_lock); 797 } 798 } 799 EXPORT_SYMBOL(invalidate_inode_buffers); 800 801 /* 802 * Remove any clean buffers from the inode's buffer list. This is called 803 * when we're trying to free the inode itself. Those buffers can pin it. 804 * 805 * Returns true if all buffers were removed. 806 */ 807 int remove_inode_buffers(struct inode *inode) 808 { 809 int ret = 1; 810 811 if (inode_has_buffers(inode)) { 812 struct address_space *mapping = &inode->i_data; 813 struct list_head *list = &mapping->private_list; 814 struct address_space *buffer_mapping = mapping->assoc_mapping; 815 816 spin_lock(&buffer_mapping->private_lock); 817 while (!list_empty(list)) { 818 struct buffer_head *bh = BH_ENTRY(list->next); 819 if (buffer_dirty(bh)) { 820 ret = 0; 821 break; 822 } 823 __remove_assoc_queue(bh); 824 } 825 spin_unlock(&buffer_mapping->private_lock); 826 } 827 return ret; 828 } 829 830 /* 831 * Create the appropriate buffers when given a page for data area and 832 * the size of each buffer.. Use the bh->b_this_page linked list to 833 * follow the buffers created. Return NULL if unable to create more 834 * buffers. 835 * 836 * The retry flag is used to differentiate async IO (paging, swapping) 837 * which may not fail from ordinary buffer allocations. 838 */ 839 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 840 int retry) 841 { 842 struct buffer_head *bh, *head; 843 long offset; 844 845 try_again: 846 head = NULL; 847 offset = PAGE_SIZE; 848 while ((offset -= size) >= 0) { 849 bh = alloc_buffer_head(GFP_NOFS); 850 if (!bh) 851 goto no_grow; 852 853 bh->b_bdev = NULL; 854 bh->b_this_page = head; 855 bh->b_blocknr = -1; 856 head = bh; 857 858 bh->b_state = 0; 859 atomic_set(&bh->b_count, 0); 860 bh->b_size = size; 861 862 /* Link the buffer to its page */ 863 set_bh_page(bh, page, offset); 864 865 init_buffer(bh, NULL, NULL); 866 } 867 return head; 868 /* 869 * In case anything failed, we just free everything we got. 870 */ 871 no_grow: 872 if (head) { 873 do { 874 bh = head; 875 head = head->b_this_page; 876 free_buffer_head(bh); 877 } while (head); 878 } 879 880 /* 881 * Return failure for non-async IO requests. Async IO requests 882 * are not allowed to fail, so we have to wait until buffer heads 883 * become available. But we don't want tasks sleeping with 884 * partially complete buffers, so all were released above. 885 */ 886 if (!retry) 887 return NULL; 888 889 /* We're _really_ low on memory. Now we just 890 * wait for old buffer heads to become free due to 891 * finishing IO. Since this is an async request and 892 * the reserve list is empty, we're sure there are 893 * async buffer heads in use. 894 */ 895 free_more_memory(); 896 goto try_again; 897 } 898 EXPORT_SYMBOL_GPL(alloc_page_buffers); 899 900 static inline void 901 link_dev_buffers(struct page *page, struct buffer_head *head) 902 { 903 struct buffer_head *bh, *tail; 904 905 bh = head; 906 do { 907 tail = bh; 908 bh = bh->b_this_page; 909 } while (bh); 910 tail->b_this_page = head; 911 attach_page_buffers(page, head); 912 } 913 914 /* 915 * Initialise the state of a blockdev page's buffers. 916 */ 917 static void 918 init_page_buffers(struct page *page, struct block_device *bdev, 919 sector_t block, int size) 920 { 921 struct buffer_head *head = page_buffers(page); 922 struct buffer_head *bh = head; 923 int uptodate = PageUptodate(page); 924 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode)); 925 926 do { 927 if (!buffer_mapped(bh)) { 928 init_buffer(bh, NULL, NULL); 929 bh->b_bdev = bdev; 930 bh->b_blocknr = block; 931 if (uptodate) 932 set_buffer_uptodate(bh); 933 if (block < end_block) 934 set_buffer_mapped(bh); 935 } 936 block++; 937 bh = bh->b_this_page; 938 } while (bh != head); 939 } 940 941 /* 942 * Create the page-cache page that contains the requested block. 943 * 944 * This is user purely for blockdev mappings. 945 */ 946 static struct page * 947 grow_dev_page(struct block_device *bdev, sector_t block, 948 pgoff_t index, int size) 949 { 950 struct inode *inode = bdev->bd_inode; 951 struct page *page; 952 struct buffer_head *bh; 953 954 page = find_or_create_page(inode->i_mapping, index, 955 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 956 if (!page) 957 return NULL; 958 959 BUG_ON(!PageLocked(page)); 960 961 if (page_has_buffers(page)) { 962 bh = page_buffers(page); 963 if (bh->b_size == size) { 964 init_page_buffers(page, bdev, block, size); 965 return page; 966 } 967 if (!try_to_free_buffers(page)) 968 goto failed; 969 } 970 971 /* 972 * Allocate some buffers for this page 973 */ 974 bh = alloc_page_buffers(page, size, 0); 975 if (!bh) 976 goto failed; 977 978 /* 979 * Link the page to the buffers and initialise them. Take the 980 * lock to be atomic wrt __find_get_block(), which does not 981 * run under the page lock. 982 */ 983 spin_lock(&inode->i_mapping->private_lock); 984 link_dev_buffers(page, bh); 985 init_page_buffers(page, bdev, block, size); 986 spin_unlock(&inode->i_mapping->private_lock); 987 return page; 988 989 failed: 990 unlock_page(page); 991 page_cache_release(page); 992 return NULL; 993 } 994 995 /* 996 * Create buffers for the specified block device block's page. If 997 * that page was dirty, the buffers are set dirty also. 998 */ 999 static int 1000 grow_buffers(struct block_device *bdev, sector_t block, int size) 1001 { 1002 struct page *page; 1003 pgoff_t index; 1004 int sizebits; 1005 1006 sizebits = -1; 1007 do { 1008 sizebits++; 1009 } while ((size << sizebits) < PAGE_SIZE); 1010 1011 index = block >> sizebits; 1012 1013 /* 1014 * Check for a block which wants to lie outside our maximum possible 1015 * pagecache index. (this comparison is done using sector_t types). 1016 */ 1017 if (unlikely(index != block >> sizebits)) { 1018 char b[BDEVNAME_SIZE]; 1019 1020 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1021 "device %s\n", 1022 __func__, (unsigned long long)block, 1023 bdevname(bdev, b)); 1024 return -EIO; 1025 } 1026 block = index << sizebits; 1027 /* Create a page with the proper size buffers.. */ 1028 page = grow_dev_page(bdev, block, index, size); 1029 if (!page) 1030 return 0; 1031 unlock_page(page); 1032 page_cache_release(page); 1033 return 1; 1034 } 1035 1036 static struct buffer_head * 1037 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1038 { 1039 /* Size must be multiple of hard sectorsize */ 1040 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1041 (size < 512 || size > PAGE_SIZE))) { 1042 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1043 size); 1044 printk(KERN_ERR "logical block size: %d\n", 1045 bdev_logical_block_size(bdev)); 1046 1047 dump_stack(); 1048 return NULL; 1049 } 1050 1051 for (;;) { 1052 struct buffer_head * bh; 1053 int ret; 1054 1055 bh = __find_get_block(bdev, block, size); 1056 if (bh) 1057 return bh; 1058 1059 ret = grow_buffers(bdev, block, size); 1060 if (ret < 0) 1061 return NULL; 1062 if (ret == 0) 1063 free_more_memory(); 1064 } 1065 } 1066 1067 /* 1068 * The relationship between dirty buffers and dirty pages: 1069 * 1070 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1071 * the page is tagged dirty in its radix tree. 1072 * 1073 * At all times, the dirtiness of the buffers represents the dirtiness of 1074 * subsections of the page. If the page has buffers, the page dirty bit is 1075 * merely a hint about the true dirty state. 1076 * 1077 * When a page is set dirty in its entirety, all its buffers are marked dirty 1078 * (if the page has buffers). 1079 * 1080 * When a buffer is marked dirty, its page is dirtied, but the page's other 1081 * buffers are not. 1082 * 1083 * Also. When blockdev buffers are explicitly read with bread(), they 1084 * individually become uptodate. But their backing page remains not 1085 * uptodate - even if all of its buffers are uptodate. A subsequent 1086 * block_read_full_page() against that page will discover all the uptodate 1087 * buffers, will set the page uptodate and will perform no I/O. 1088 */ 1089 1090 /** 1091 * mark_buffer_dirty - mark a buffer_head as needing writeout 1092 * @bh: the buffer_head to mark dirty 1093 * 1094 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1095 * backing page dirty, then tag the page as dirty in its address_space's radix 1096 * tree and then attach the address_space's inode to its superblock's dirty 1097 * inode list. 1098 * 1099 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1100 * mapping->tree_lock and mapping->host->i_lock. 1101 */ 1102 void mark_buffer_dirty(struct buffer_head *bh) 1103 { 1104 WARN_ON_ONCE(!buffer_uptodate(bh)); 1105 1106 /* 1107 * Very *carefully* optimize the it-is-already-dirty case. 1108 * 1109 * Don't let the final "is it dirty" escape to before we 1110 * perhaps modified the buffer. 1111 */ 1112 if (buffer_dirty(bh)) { 1113 smp_mb(); 1114 if (buffer_dirty(bh)) 1115 return; 1116 } 1117 1118 if (!test_set_buffer_dirty(bh)) { 1119 struct page *page = bh->b_page; 1120 if (!TestSetPageDirty(page)) { 1121 struct address_space *mapping = page_mapping(page); 1122 if (mapping) 1123 __set_page_dirty(page, mapping, 0); 1124 } 1125 } 1126 } 1127 EXPORT_SYMBOL(mark_buffer_dirty); 1128 1129 /* 1130 * Decrement a buffer_head's reference count. If all buffers against a page 1131 * have zero reference count, are clean and unlocked, and if the page is clean 1132 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1133 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1134 * a page but it ends up not being freed, and buffers may later be reattached). 1135 */ 1136 void __brelse(struct buffer_head * buf) 1137 { 1138 if (atomic_read(&buf->b_count)) { 1139 put_bh(buf); 1140 return; 1141 } 1142 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1143 } 1144 EXPORT_SYMBOL(__brelse); 1145 1146 /* 1147 * bforget() is like brelse(), except it discards any 1148 * potentially dirty data. 1149 */ 1150 void __bforget(struct buffer_head *bh) 1151 { 1152 clear_buffer_dirty(bh); 1153 if (bh->b_assoc_map) { 1154 struct address_space *buffer_mapping = bh->b_page->mapping; 1155 1156 spin_lock(&buffer_mapping->private_lock); 1157 list_del_init(&bh->b_assoc_buffers); 1158 bh->b_assoc_map = NULL; 1159 spin_unlock(&buffer_mapping->private_lock); 1160 } 1161 __brelse(bh); 1162 } 1163 EXPORT_SYMBOL(__bforget); 1164 1165 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1166 { 1167 lock_buffer(bh); 1168 if (buffer_uptodate(bh)) { 1169 unlock_buffer(bh); 1170 return bh; 1171 } else { 1172 get_bh(bh); 1173 bh->b_end_io = end_buffer_read_sync; 1174 submit_bh(READ, bh); 1175 wait_on_buffer(bh); 1176 if (buffer_uptodate(bh)) 1177 return bh; 1178 } 1179 brelse(bh); 1180 return NULL; 1181 } 1182 1183 /* 1184 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1185 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1186 * refcount elevated by one when they're in an LRU. A buffer can only appear 1187 * once in a particular CPU's LRU. A single buffer can be present in multiple 1188 * CPU's LRUs at the same time. 1189 * 1190 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1191 * sb_find_get_block(). 1192 * 1193 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1194 * a local interrupt disable for that. 1195 */ 1196 1197 #define BH_LRU_SIZE 8 1198 1199 struct bh_lru { 1200 struct buffer_head *bhs[BH_LRU_SIZE]; 1201 }; 1202 1203 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1204 1205 #ifdef CONFIG_SMP 1206 #define bh_lru_lock() local_irq_disable() 1207 #define bh_lru_unlock() local_irq_enable() 1208 #else 1209 #define bh_lru_lock() preempt_disable() 1210 #define bh_lru_unlock() preempt_enable() 1211 #endif 1212 1213 static inline void check_irqs_on(void) 1214 { 1215 #ifdef irqs_disabled 1216 BUG_ON(irqs_disabled()); 1217 #endif 1218 } 1219 1220 /* 1221 * The LRU management algorithm is dopey-but-simple. Sorry. 1222 */ 1223 static void bh_lru_install(struct buffer_head *bh) 1224 { 1225 struct buffer_head *evictee = NULL; 1226 1227 check_irqs_on(); 1228 bh_lru_lock(); 1229 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1230 struct buffer_head *bhs[BH_LRU_SIZE]; 1231 int in; 1232 int out = 0; 1233 1234 get_bh(bh); 1235 bhs[out++] = bh; 1236 for (in = 0; in < BH_LRU_SIZE; in++) { 1237 struct buffer_head *bh2 = 1238 __this_cpu_read(bh_lrus.bhs[in]); 1239 1240 if (bh2 == bh) { 1241 __brelse(bh2); 1242 } else { 1243 if (out >= BH_LRU_SIZE) { 1244 BUG_ON(evictee != NULL); 1245 evictee = bh2; 1246 } else { 1247 bhs[out++] = bh2; 1248 } 1249 } 1250 } 1251 while (out < BH_LRU_SIZE) 1252 bhs[out++] = NULL; 1253 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1254 } 1255 bh_lru_unlock(); 1256 1257 if (evictee) 1258 __brelse(evictee); 1259 } 1260 1261 /* 1262 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1263 */ 1264 static struct buffer_head * 1265 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1266 { 1267 struct buffer_head *ret = NULL; 1268 unsigned int i; 1269 1270 check_irqs_on(); 1271 bh_lru_lock(); 1272 for (i = 0; i < BH_LRU_SIZE; i++) { 1273 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1274 1275 if (bh && bh->b_bdev == bdev && 1276 bh->b_blocknr == block && bh->b_size == size) { 1277 if (i) { 1278 while (i) { 1279 __this_cpu_write(bh_lrus.bhs[i], 1280 __this_cpu_read(bh_lrus.bhs[i - 1])); 1281 i--; 1282 } 1283 __this_cpu_write(bh_lrus.bhs[0], bh); 1284 } 1285 get_bh(bh); 1286 ret = bh; 1287 break; 1288 } 1289 } 1290 bh_lru_unlock(); 1291 return ret; 1292 } 1293 1294 /* 1295 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1296 * it in the LRU and mark it as accessed. If it is not present then return 1297 * NULL 1298 */ 1299 struct buffer_head * 1300 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1301 { 1302 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1303 1304 if (bh == NULL) { 1305 bh = __find_get_block_slow(bdev, block); 1306 if (bh) 1307 bh_lru_install(bh); 1308 } 1309 if (bh) 1310 touch_buffer(bh); 1311 return bh; 1312 } 1313 EXPORT_SYMBOL(__find_get_block); 1314 1315 /* 1316 * __getblk will locate (and, if necessary, create) the buffer_head 1317 * which corresponds to the passed block_device, block and size. The 1318 * returned buffer has its reference count incremented. 1319 * 1320 * __getblk() cannot fail - it just keeps trying. If you pass it an 1321 * illegal block number, __getblk() will happily return a buffer_head 1322 * which represents the non-existent block. Very weird. 1323 * 1324 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1325 * attempt is failing. FIXME, perhaps? 1326 */ 1327 struct buffer_head * 1328 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1329 { 1330 struct buffer_head *bh = __find_get_block(bdev, block, size); 1331 1332 might_sleep(); 1333 if (bh == NULL) 1334 bh = __getblk_slow(bdev, block, size); 1335 return bh; 1336 } 1337 EXPORT_SYMBOL(__getblk); 1338 1339 /* 1340 * Do async read-ahead on a buffer.. 1341 */ 1342 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1343 { 1344 struct buffer_head *bh = __getblk(bdev, block, size); 1345 if (likely(bh)) { 1346 ll_rw_block(READA, 1, &bh); 1347 brelse(bh); 1348 } 1349 } 1350 EXPORT_SYMBOL(__breadahead); 1351 1352 /** 1353 * __bread() - reads a specified block and returns the bh 1354 * @bdev: the block_device to read from 1355 * @block: number of block 1356 * @size: size (in bytes) to read 1357 * 1358 * Reads a specified block, and returns buffer head that contains it. 1359 * It returns NULL if the block was unreadable. 1360 */ 1361 struct buffer_head * 1362 __bread(struct block_device *bdev, sector_t block, unsigned size) 1363 { 1364 struct buffer_head *bh = __getblk(bdev, block, size); 1365 1366 if (likely(bh) && !buffer_uptodate(bh)) 1367 bh = __bread_slow(bh); 1368 return bh; 1369 } 1370 EXPORT_SYMBOL(__bread); 1371 1372 /* 1373 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1374 * This doesn't race because it runs in each cpu either in irq 1375 * or with preempt disabled. 1376 */ 1377 static void invalidate_bh_lru(void *arg) 1378 { 1379 struct bh_lru *b = &get_cpu_var(bh_lrus); 1380 int i; 1381 1382 for (i = 0; i < BH_LRU_SIZE; i++) { 1383 brelse(b->bhs[i]); 1384 b->bhs[i] = NULL; 1385 } 1386 put_cpu_var(bh_lrus); 1387 } 1388 1389 static bool has_bh_in_lru(int cpu, void *dummy) 1390 { 1391 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1392 int i; 1393 1394 for (i = 0; i < BH_LRU_SIZE; i++) { 1395 if (b->bhs[i]) 1396 return 1; 1397 } 1398 1399 return 0; 1400 } 1401 1402 void invalidate_bh_lrus(void) 1403 { 1404 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1405 } 1406 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1407 1408 void set_bh_page(struct buffer_head *bh, 1409 struct page *page, unsigned long offset) 1410 { 1411 bh->b_page = page; 1412 BUG_ON(offset >= PAGE_SIZE); 1413 if (PageHighMem(page)) 1414 /* 1415 * This catches illegal uses and preserves the offset: 1416 */ 1417 bh->b_data = (char *)(0 + offset); 1418 else 1419 bh->b_data = page_address(page) + offset; 1420 } 1421 EXPORT_SYMBOL(set_bh_page); 1422 1423 /* 1424 * Called when truncating a buffer on a page completely. 1425 */ 1426 static void discard_buffer(struct buffer_head * bh) 1427 { 1428 lock_buffer(bh); 1429 clear_buffer_dirty(bh); 1430 bh->b_bdev = NULL; 1431 clear_buffer_mapped(bh); 1432 clear_buffer_req(bh); 1433 clear_buffer_new(bh); 1434 clear_buffer_delay(bh); 1435 clear_buffer_unwritten(bh); 1436 unlock_buffer(bh); 1437 } 1438 1439 /** 1440 * block_invalidatepage - invalidate part or all of a buffer-backed page 1441 * 1442 * @page: the page which is affected 1443 * @offset: the index of the truncation point 1444 * 1445 * block_invalidatepage() is called when all or part of the page has become 1446 * invalidated by a truncate operation. 1447 * 1448 * block_invalidatepage() does not have to release all buffers, but it must 1449 * ensure that no dirty buffer is left outside @offset and that no I/O 1450 * is underway against any of the blocks which are outside the truncation 1451 * point. Because the caller is about to free (and possibly reuse) those 1452 * blocks on-disk. 1453 */ 1454 void block_invalidatepage(struct page *page, unsigned long offset) 1455 { 1456 struct buffer_head *head, *bh, *next; 1457 unsigned int curr_off = 0; 1458 1459 BUG_ON(!PageLocked(page)); 1460 if (!page_has_buffers(page)) 1461 goto out; 1462 1463 head = page_buffers(page); 1464 bh = head; 1465 do { 1466 unsigned int next_off = curr_off + bh->b_size; 1467 next = bh->b_this_page; 1468 1469 /* 1470 * is this block fully invalidated? 1471 */ 1472 if (offset <= curr_off) 1473 discard_buffer(bh); 1474 curr_off = next_off; 1475 bh = next; 1476 } while (bh != head); 1477 1478 /* 1479 * We release buffers only if the entire page is being invalidated. 1480 * The get_block cached value has been unconditionally invalidated, 1481 * so real IO is not possible anymore. 1482 */ 1483 if (offset == 0) 1484 try_to_release_page(page, 0); 1485 out: 1486 return; 1487 } 1488 EXPORT_SYMBOL(block_invalidatepage); 1489 1490 /* 1491 * We attach and possibly dirty the buffers atomically wrt 1492 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1493 * is already excluded via the page lock. 1494 */ 1495 void create_empty_buffers(struct page *page, 1496 unsigned long blocksize, unsigned long b_state) 1497 { 1498 struct buffer_head *bh, *head, *tail; 1499 1500 head = alloc_page_buffers(page, blocksize, 1); 1501 bh = head; 1502 do { 1503 bh->b_state |= b_state; 1504 tail = bh; 1505 bh = bh->b_this_page; 1506 } while (bh); 1507 tail->b_this_page = head; 1508 1509 spin_lock(&page->mapping->private_lock); 1510 if (PageUptodate(page) || PageDirty(page)) { 1511 bh = head; 1512 do { 1513 if (PageDirty(page)) 1514 set_buffer_dirty(bh); 1515 if (PageUptodate(page)) 1516 set_buffer_uptodate(bh); 1517 bh = bh->b_this_page; 1518 } while (bh != head); 1519 } 1520 attach_page_buffers(page, head); 1521 spin_unlock(&page->mapping->private_lock); 1522 } 1523 EXPORT_SYMBOL(create_empty_buffers); 1524 1525 /* 1526 * We are taking a block for data and we don't want any output from any 1527 * buffer-cache aliases starting from return from that function and 1528 * until the moment when something will explicitly mark the buffer 1529 * dirty (hopefully that will not happen until we will free that block ;-) 1530 * We don't even need to mark it not-uptodate - nobody can expect 1531 * anything from a newly allocated buffer anyway. We used to used 1532 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1533 * don't want to mark the alias unmapped, for example - it would confuse 1534 * anyone who might pick it with bread() afterwards... 1535 * 1536 * Also.. Note that bforget() doesn't lock the buffer. So there can 1537 * be writeout I/O going on against recently-freed buffers. We don't 1538 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1539 * only if we really need to. That happens here. 1540 */ 1541 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1542 { 1543 struct buffer_head *old_bh; 1544 1545 might_sleep(); 1546 1547 old_bh = __find_get_block_slow(bdev, block); 1548 if (old_bh) { 1549 clear_buffer_dirty(old_bh); 1550 wait_on_buffer(old_bh); 1551 clear_buffer_req(old_bh); 1552 __brelse(old_bh); 1553 } 1554 } 1555 EXPORT_SYMBOL(unmap_underlying_metadata); 1556 1557 /* 1558 * NOTE! All mapped/uptodate combinations are valid: 1559 * 1560 * Mapped Uptodate Meaning 1561 * 1562 * No No "unknown" - must do get_block() 1563 * No Yes "hole" - zero-filled 1564 * Yes No "allocated" - allocated on disk, not read in 1565 * Yes Yes "valid" - allocated and up-to-date in memory. 1566 * 1567 * "Dirty" is valid only with the last case (mapped+uptodate). 1568 */ 1569 1570 /* 1571 * While block_write_full_page is writing back the dirty buffers under 1572 * the page lock, whoever dirtied the buffers may decide to clean them 1573 * again at any time. We handle that by only looking at the buffer 1574 * state inside lock_buffer(). 1575 * 1576 * If block_write_full_page() is called for regular writeback 1577 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1578 * locked buffer. This only can happen if someone has written the buffer 1579 * directly, with submit_bh(). At the address_space level PageWriteback 1580 * prevents this contention from occurring. 1581 * 1582 * If block_write_full_page() is called with wbc->sync_mode == 1583 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1584 * causes the writes to be flagged as synchronous writes. 1585 */ 1586 static int __block_write_full_page(struct inode *inode, struct page *page, 1587 get_block_t *get_block, struct writeback_control *wbc, 1588 bh_end_io_t *handler) 1589 { 1590 int err; 1591 sector_t block; 1592 sector_t last_block; 1593 struct buffer_head *bh, *head; 1594 const unsigned blocksize = 1 << inode->i_blkbits; 1595 int nr_underway = 0; 1596 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1597 WRITE_SYNC : WRITE); 1598 1599 BUG_ON(!PageLocked(page)); 1600 1601 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1602 1603 if (!page_has_buffers(page)) { 1604 create_empty_buffers(page, blocksize, 1605 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1606 } 1607 1608 /* 1609 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1610 * here, and the (potentially unmapped) buffers may become dirty at 1611 * any time. If a buffer becomes dirty here after we've inspected it 1612 * then we just miss that fact, and the page stays dirty. 1613 * 1614 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1615 * handle that here by just cleaning them. 1616 */ 1617 1618 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1619 head = page_buffers(page); 1620 bh = head; 1621 1622 /* 1623 * Get all the dirty buffers mapped to disk addresses and 1624 * handle any aliases from the underlying blockdev's mapping. 1625 */ 1626 do { 1627 if (block > last_block) { 1628 /* 1629 * mapped buffers outside i_size will occur, because 1630 * this page can be outside i_size when there is a 1631 * truncate in progress. 1632 */ 1633 /* 1634 * The buffer was zeroed by block_write_full_page() 1635 */ 1636 clear_buffer_dirty(bh); 1637 set_buffer_uptodate(bh); 1638 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1639 buffer_dirty(bh)) { 1640 WARN_ON(bh->b_size != blocksize); 1641 err = get_block(inode, block, bh, 1); 1642 if (err) 1643 goto recover; 1644 clear_buffer_delay(bh); 1645 if (buffer_new(bh)) { 1646 /* blockdev mappings never come here */ 1647 clear_buffer_new(bh); 1648 unmap_underlying_metadata(bh->b_bdev, 1649 bh->b_blocknr); 1650 } 1651 } 1652 bh = bh->b_this_page; 1653 block++; 1654 } while (bh != head); 1655 1656 do { 1657 if (!buffer_mapped(bh)) 1658 continue; 1659 /* 1660 * If it's a fully non-blocking write attempt and we cannot 1661 * lock the buffer then redirty the page. Note that this can 1662 * potentially cause a busy-wait loop from writeback threads 1663 * and kswapd activity, but those code paths have their own 1664 * higher-level throttling. 1665 */ 1666 if (wbc->sync_mode != WB_SYNC_NONE) { 1667 lock_buffer(bh); 1668 } else if (!trylock_buffer(bh)) { 1669 redirty_page_for_writepage(wbc, page); 1670 continue; 1671 } 1672 if (test_clear_buffer_dirty(bh)) { 1673 mark_buffer_async_write_endio(bh, handler); 1674 } else { 1675 unlock_buffer(bh); 1676 } 1677 } while ((bh = bh->b_this_page) != head); 1678 1679 /* 1680 * The page and its buffers are protected by PageWriteback(), so we can 1681 * drop the bh refcounts early. 1682 */ 1683 BUG_ON(PageWriteback(page)); 1684 set_page_writeback(page); 1685 1686 do { 1687 struct buffer_head *next = bh->b_this_page; 1688 if (buffer_async_write(bh)) { 1689 submit_bh(write_op, bh); 1690 nr_underway++; 1691 } 1692 bh = next; 1693 } while (bh != head); 1694 unlock_page(page); 1695 1696 err = 0; 1697 done: 1698 if (nr_underway == 0) { 1699 /* 1700 * The page was marked dirty, but the buffers were 1701 * clean. Someone wrote them back by hand with 1702 * ll_rw_block/submit_bh. A rare case. 1703 */ 1704 end_page_writeback(page); 1705 1706 /* 1707 * The page and buffer_heads can be released at any time from 1708 * here on. 1709 */ 1710 } 1711 return err; 1712 1713 recover: 1714 /* 1715 * ENOSPC, or some other error. We may already have added some 1716 * blocks to the file, so we need to write these out to avoid 1717 * exposing stale data. 1718 * The page is currently locked and not marked for writeback 1719 */ 1720 bh = head; 1721 /* Recovery: lock and submit the mapped buffers */ 1722 do { 1723 if (buffer_mapped(bh) && buffer_dirty(bh) && 1724 !buffer_delay(bh)) { 1725 lock_buffer(bh); 1726 mark_buffer_async_write_endio(bh, handler); 1727 } else { 1728 /* 1729 * The buffer may have been set dirty during 1730 * attachment to a dirty page. 1731 */ 1732 clear_buffer_dirty(bh); 1733 } 1734 } while ((bh = bh->b_this_page) != head); 1735 SetPageError(page); 1736 BUG_ON(PageWriteback(page)); 1737 mapping_set_error(page->mapping, err); 1738 set_page_writeback(page); 1739 do { 1740 struct buffer_head *next = bh->b_this_page; 1741 if (buffer_async_write(bh)) { 1742 clear_buffer_dirty(bh); 1743 submit_bh(write_op, bh); 1744 nr_underway++; 1745 } 1746 bh = next; 1747 } while (bh != head); 1748 unlock_page(page); 1749 goto done; 1750 } 1751 1752 /* 1753 * If a page has any new buffers, zero them out here, and mark them uptodate 1754 * and dirty so they'll be written out (in order to prevent uninitialised 1755 * block data from leaking). And clear the new bit. 1756 */ 1757 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1758 { 1759 unsigned int block_start, block_end; 1760 struct buffer_head *head, *bh; 1761 1762 BUG_ON(!PageLocked(page)); 1763 if (!page_has_buffers(page)) 1764 return; 1765 1766 bh = head = page_buffers(page); 1767 block_start = 0; 1768 do { 1769 block_end = block_start + bh->b_size; 1770 1771 if (buffer_new(bh)) { 1772 if (block_end > from && block_start < to) { 1773 if (!PageUptodate(page)) { 1774 unsigned start, size; 1775 1776 start = max(from, block_start); 1777 size = min(to, block_end) - start; 1778 1779 zero_user(page, start, size); 1780 set_buffer_uptodate(bh); 1781 } 1782 1783 clear_buffer_new(bh); 1784 mark_buffer_dirty(bh); 1785 } 1786 } 1787 1788 block_start = block_end; 1789 bh = bh->b_this_page; 1790 } while (bh != head); 1791 } 1792 EXPORT_SYMBOL(page_zero_new_buffers); 1793 1794 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1795 get_block_t *get_block) 1796 { 1797 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1798 unsigned to = from + len; 1799 struct inode *inode = page->mapping->host; 1800 unsigned block_start, block_end; 1801 sector_t block; 1802 int err = 0; 1803 unsigned blocksize, bbits; 1804 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1805 1806 BUG_ON(!PageLocked(page)); 1807 BUG_ON(from > PAGE_CACHE_SIZE); 1808 BUG_ON(to > PAGE_CACHE_SIZE); 1809 BUG_ON(from > to); 1810 1811 blocksize = 1 << inode->i_blkbits; 1812 if (!page_has_buffers(page)) 1813 create_empty_buffers(page, blocksize, 0); 1814 head = page_buffers(page); 1815 1816 bbits = inode->i_blkbits; 1817 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1818 1819 for(bh = head, block_start = 0; bh != head || !block_start; 1820 block++, block_start=block_end, bh = bh->b_this_page) { 1821 block_end = block_start + blocksize; 1822 if (block_end <= from || block_start >= to) { 1823 if (PageUptodate(page)) { 1824 if (!buffer_uptodate(bh)) 1825 set_buffer_uptodate(bh); 1826 } 1827 continue; 1828 } 1829 if (buffer_new(bh)) 1830 clear_buffer_new(bh); 1831 if (!buffer_mapped(bh)) { 1832 WARN_ON(bh->b_size != blocksize); 1833 err = get_block(inode, block, bh, 1); 1834 if (err) 1835 break; 1836 if (buffer_new(bh)) { 1837 unmap_underlying_metadata(bh->b_bdev, 1838 bh->b_blocknr); 1839 if (PageUptodate(page)) { 1840 clear_buffer_new(bh); 1841 set_buffer_uptodate(bh); 1842 mark_buffer_dirty(bh); 1843 continue; 1844 } 1845 if (block_end > to || block_start < from) 1846 zero_user_segments(page, 1847 to, block_end, 1848 block_start, from); 1849 continue; 1850 } 1851 } 1852 if (PageUptodate(page)) { 1853 if (!buffer_uptodate(bh)) 1854 set_buffer_uptodate(bh); 1855 continue; 1856 } 1857 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1858 !buffer_unwritten(bh) && 1859 (block_start < from || block_end > to)) { 1860 ll_rw_block(READ, 1, &bh); 1861 *wait_bh++=bh; 1862 } 1863 } 1864 /* 1865 * If we issued read requests - let them complete. 1866 */ 1867 while(wait_bh > wait) { 1868 wait_on_buffer(*--wait_bh); 1869 if (!buffer_uptodate(*wait_bh)) 1870 err = -EIO; 1871 } 1872 if (unlikely(err)) 1873 page_zero_new_buffers(page, from, to); 1874 return err; 1875 } 1876 EXPORT_SYMBOL(__block_write_begin); 1877 1878 static int __block_commit_write(struct inode *inode, struct page *page, 1879 unsigned from, unsigned to) 1880 { 1881 unsigned block_start, block_end; 1882 int partial = 0; 1883 unsigned blocksize; 1884 struct buffer_head *bh, *head; 1885 1886 blocksize = 1 << inode->i_blkbits; 1887 1888 for(bh = head = page_buffers(page), block_start = 0; 1889 bh != head || !block_start; 1890 block_start=block_end, bh = bh->b_this_page) { 1891 block_end = block_start + blocksize; 1892 if (block_end <= from || block_start >= to) { 1893 if (!buffer_uptodate(bh)) 1894 partial = 1; 1895 } else { 1896 set_buffer_uptodate(bh); 1897 mark_buffer_dirty(bh); 1898 } 1899 clear_buffer_new(bh); 1900 } 1901 1902 /* 1903 * If this is a partial write which happened to make all buffers 1904 * uptodate then we can optimize away a bogus readpage() for 1905 * the next read(). Here we 'discover' whether the page went 1906 * uptodate as a result of this (potentially partial) write. 1907 */ 1908 if (!partial) 1909 SetPageUptodate(page); 1910 return 0; 1911 } 1912 1913 /* 1914 * block_write_begin takes care of the basic task of block allocation and 1915 * bringing partial write blocks uptodate first. 1916 * 1917 * The filesystem needs to handle block truncation upon failure. 1918 */ 1919 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 1920 unsigned flags, struct page **pagep, get_block_t *get_block) 1921 { 1922 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1923 struct page *page; 1924 int status; 1925 1926 page = grab_cache_page_write_begin(mapping, index, flags); 1927 if (!page) 1928 return -ENOMEM; 1929 1930 status = __block_write_begin(page, pos, len, get_block); 1931 if (unlikely(status)) { 1932 unlock_page(page); 1933 page_cache_release(page); 1934 page = NULL; 1935 } 1936 1937 *pagep = page; 1938 return status; 1939 } 1940 EXPORT_SYMBOL(block_write_begin); 1941 1942 int block_write_end(struct file *file, struct address_space *mapping, 1943 loff_t pos, unsigned len, unsigned copied, 1944 struct page *page, void *fsdata) 1945 { 1946 struct inode *inode = mapping->host; 1947 unsigned start; 1948 1949 start = pos & (PAGE_CACHE_SIZE - 1); 1950 1951 if (unlikely(copied < len)) { 1952 /* 1953 * The buffers that were written will now be uptodate, so we 1954 * don't have to worry about a readpage reading them and 1955 * overwriting a partial write. However if we have encountered 1956 * a short write and only partially written into a buffer, it 1957 * will not be marked uptodate, so a readpage might come in and 1958 * destroy our partial write. 1959 * 1960 * Do the simplest thing, and just treat any short write to a 1961 * non uptodate page as a zero-length write, and force the 1962 * caller to redo the whole thing. 1963 */ 1964 if (!PageUptodate(page)) 1965 copied = 0; 1966 1967 page_zero_new_buffers(page, start+copied, start+len); 1968 } 1969 flush_dcache_page(page); 1970 1971 /* This could be a short (even 0-length) commit */ 1972 __block_commit_write(inode, page, start, start+copied); 1973 1974 return copied; 1975 } 1976 EXPORT_SYMBOL(block_write_end); 1977 1978 int generic_write_end(struct file *file, struct address_space *mapping, 1979 loff_t pos, unsigned len, unsigned copied, 1980 struct page *page, void *fsdata) 1981 { 1982 struct inode *inode = mapping->host; 1983 int i_size_changed = 0; 1984 1985 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1986 1987 /* 1988 * No need to use i_size_read() here, the i_size 1989 * cannot change under us because we hold i_mutex. 1990 * 1991 * But it's important to update i_size while still holding page lock: 1992 * page writeout could otherwise come in and zero beyond i_size. 1993 */ 1994 if (pos+copied > inode->i_size) { 1995 i_size_write(inode, pos+copied); 1996 i_size_changed = 1; 1997 } 1998 1999 unlock_page(page); 2000 page_cache_release(page); 2001 2002 /* 2003 * Don't mark the inode dirty under page lock. First, it unnecessarily 2004 * makes the holding time of page lock longer. Second, it forces lock 2005 * ordering of page lock and transaction start for journaling 2006 * filesystems. 2007 */ 2008 if (i_size_changed) 2009 mark_inode_dirty(inode); 2010 2011 return copied; 2012 } 2013 EXPORT_SYMBOL(generic_write_end); 2014 2015 /* 2016 * block_is_partially_uptodate checks whether buffers within a page are 2017 * uptodate or not. 2018 * 2019 * Returns true if all buffers which correspond to a file portion 2020 * we want to read are uptodate. 2021 */ 2022 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2023 unsigned long from) 2024 { 2025 struct inode *inode = page->mapping->host; 2026 unsigned block_start, block_end, blocksize; 2027 unsigned to; 2028 struct buffer_head *bh, *head; 2029 int ret = 1; 2030 2031 if (!page_has_buffers(page)) 2032 return 0; 2033 2034 blocksize = 1 << inode->i_blkbits; 2035 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2036 to = from + to; 2037 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2038 return 0; 2039 2040 head = page_buffers(page); 2041 bh = head; 2042 block_start = 0; 2043 do { 2044 block_end = block_start + blocksize; 2045 if (block_end > from && block_start < to) { 2046 if (!buffer_uptodate(bh)) { 2047 ret = 0; 2048 break; 2049 } 2050 if (block_end >= to) 2051 break; 2052 } 2053 block_start = block_end; 2054 bh = bh->b_this_page; 2055 } while (bh != head); 2056 2057 return ret; 2058 } 2059 EXPORT_SYMBOL(block_is_partially_uptodate); 2060 2061 /* 2062 * Generic "read page" function for block devices that have the normal 2063 * get_block functionality. This is most of the block device filesystems. 2064 * Reads the page asynchronously --- the unlock_buffer() and 2065 * set/clear_buffer_uptodate() functions propagate buffer state into the 2066 * page struct once IO has completed. 2067 */ 2068 int block_read_full_page(struct page *page, get_block_t *get_block) 2069 { 2070 struct inode *inode = page->mapping->host; 2071 sector_t iblock, lblock; 2072 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2073 unsigned int blocksize; 2074 int nr, i; 2075 int fully_mapped = 1; 2076 2077 BUG_ON(!PageLocked(page)); 2078 blocksize = 1 << inode->i_blkbits; 2079 if (!page_has_buffers(page)) 2080 create_empty_buffers(page, blocksize, 0); 2081 head = page_buffers(page); 2082 2083 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2084 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2085 bh = head; 2086 nr = 0; 2087 i = 0; 2088 2089 do { 2090 if (buffer_uptodate(bh)) 2091 continue; 2092 2093 if (!buffer_mapped(bh)) { 2094 int err = 0; 2095 2096 fully_mapped = 0; 2097 if (iblock < lblock) { 2098 WARN_ON(bh->b_size != blocksize); 2099 err = get_block(inode, iblock, bh, 0); 2100 if (err) 2101 SetPageError(page); 2102 } 2103 if (!buffer_mapped(bh)) { 2104 zero_user(page, i * blocksize, blocksize); 2105 if (!err) 2106 set_buffer_uptodate(bh); 2107 continue; 2108 } 2109 /* 2110 * get_block() might have updated the buffer 2111 * synchronously 2112 */ 2113 if (buffer_uptodate(bh)) 2114 continue; 2115 } 2116 arr[nr++] = bh; 2117 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2118 2119 if (fully_mapped) 2120 SetPageMappedToDisk(page); 2121 2122 if (!nr) { 2123 /* 2124 * All buffers are uptodate - we can set the page uptodate 2125 * as well. But not if get_block() returned an error. 2126 */ 2127 if (!PageError(page)) 2128 SetPageUptodate(page); 2129 unlock_page(page); 2130 return 0; 2131 } 2132 2133 /* Stage two: lock the buffers */ 2134 for (i = 0; i < nr; i++) { 2135 bh = arr[i]; 2136 lock_buffer(bh); 2137 mark_buffer_async_read(bh); 2138 } 2139 2140 /* 2141 * Stage 3: start the IO. Check for uptodateness 2142 * inside the buffer lock in case another process reading 2143 * the underlying blockdev brought it uptodate (the sct fix). 2144 */ 2145 for (i = 0; i < nr; i++) { 2146 bh = arr[i]; 2147 if (buffer_uptodate(bh)) 2148 end_buffer_async_read(bh, 1); 2149 else 2150 submit_bh(READ, bh); 2151 } 2152 return 0; 2153 } 2154 EXPORT_SYMBOL(block_read_full_page); 2155 2156 /* utility function for filesystems that need to do work on expanding 2157 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2158 * deal with the hole. 2159 */ 2160 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2161 { 2162 struct address_space *mapping = inode->i_mapping; 2163 struct page *page; 2164 void *fsdata; 2165 int err; 2166 2167 err = inode_newsize_ok(inode, size); 2168 if (err) 2169 goto out; 2170 2171 err = pagecache_write_begin(NULL, mapping, size, 0, 2172 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2173 &page, &fsdata); 2174 if (err) 2175 goto out; 2176 2177 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2178 BUG_ON(err > 0); 2179 2180 out: 2181 return err; 2182 } 2183 EXPORT_SYMBOL(generic_cont_expand_simple); 2184 2185 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2186 loff_t pos, loff_t *bytes) 2187 { 2188 struct inode *inode = mapping->host; 2189 unsigned blocksize = 1 << inode->i_blkbits; 2190 struct page *page; 2191 void *fsdata; 2192 pgoff_t index, curidx; 2193 loff_t curpos; 2194 unsigned zerofrom, offset, len; 2195 int err = 0; 2196 2197 index = pos >> PAGE_CACHE_SHIFT; 2198 offset = pos & ~PAGE_CACHE_MASK; 2199 2200 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2201 zerofrom = curpos & ~PAGE_CACHE_MASK; 2202 if (zerofrom & (blocksize-1)) { 2203 *bytes |= (blocksize-1); 2204 (*bytes)++; 2205 } 2206 len = PAGE_CACHE_SIZE - zerofrom; 2207 2208 err = pagecache_write_begin(file, mapping, curpos, len, 2209 AOP_FLAG_UNINTERRUPTIBLE, 2210 &page, &fsdata); 2211 if (err) 2212 goto out; 2213 zero_user(page, zerofrom, len); 2214 err = pagecache_write_end(file, mapping, curpos, len, len, 2215 page, fsdata); 2216 if (err < 0) 2217 goto out; 2218 BUG_ON(err != len); 2219 err = 0; 2220 2221 balance_dirty_pages_ratelimited(mapping); 2222 } 2223 2224 /* page covers the boundary, find the boundary offset */ 2225 if (index == curidx) { 2226 zerofrom = curpos & ~PAGE_CACHE_MASK; 2227 /* if we will expand the thing last block will be filled */ 2228 if (offset <= zerofrom) { 2229 goto out; 2230 } 2231 if (zerofrom & (blocksize-1)) { 2232 *bytes |= (blocksize-1); 2233 (*bytes)++; 2234 } 2235 len = offset - zerofrom; 2236 2237 err = pagecache_write_begin(file, mapping, curpos, len, 2238 AOP_FLAG_UNINTERRUPTIBLE, 2239 &page, &fsdata); 2240 if (err) 2241 goto out; 2242 zero_user(page, zerofrom, len); 2243 err = pagecache_write_end(file, mapping, curpos, len, len, 2244 page, fsdata); 2245 if (err < 0) 2246 goto out; 2247 BUG_ON(err != len); 2248 err = 0; 2249 } 2250 out: 2251 return err; 2252 } 2253 2254 /* 2255 * For moronic filesystems that do not allow holes in file. 2256 * We may have to extend the file. 2257 */ 2258 int cont_write_begin(struct file *file, struct address_space *mapping, 2259 loff_t pos, unsigned len, unsigned flags, 2260 struct page **pagep, void **fsdata, 2261 get_block_t *get_block, loff_t *bytes) 2262 { 2263 struct inode *inode = mapping->host; 2264 unsigned blocksize = 1 << inode->i_blkbits; 2265 unsigned zerofrom; 2266 int err; 2267 2268 err = cont_expand_zero(file, mapping, pos, bytes); 2269 if (err) 2270 return err; 2271 2272 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2273 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2274 *bytes |= (blocksize-1); 2275 (*bytes)++; 2276 } 2277 2278 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2279 } 2280 EXPORT_SYMBOL(cont_write_begin); 2281 2282 int block_commit_write(struct page *page, unsigned from, unsigned to) 2283 { 2284 struct inode *inode = page->mapping->host; 2285 __block_commit_write(inode,page,from,to); 2286 return 0; 2287 } 2288 EXPORT_SYMBOL(block_commit_write); 2289 2290 /* 2291 * block_page_mkwrite() is not allowed to change the file size as it gets 2292 * called from a page fault handler when a page is first dirtied. Hence we must 2293 * be careful to check for EOF conditions here. We set the page up correctly 2294 * for a written page which means we get ENOSPC checking when writing into 2295 * holes and correct delalloc and unwritten extent mapping on filesystems that 2296 * support these features. 2297 * 2298 * We are not allowed to take the i_mutex here so we have to play games to 2299 * protect against truncate races as the page could now be beyond EOF. Because 2300 * truncate writes the inode size before removing pages, once we have the 2301 * page lock we can determine safely if the page is beyond EOF. If it is not 2302 * beyond EOF, then the page is guaranteed safe against truncation until we 2303 * unlock the page. 2304 * 2305 * Direct callers of this function should call vfs_check_frozen() so that page 2306 * fault does not busyloop until the fs is thawed. 2307 */ 2308 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2309 get_block_t get_block) 2310 { 2311 struct page *page = vmf->page; 2312 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2313 unsigned long end; 2314 loff_t size; 2315 int ret; 2316 2317 lock_page(page); 2318 size = i_size_read(inode); 2319 if ((page->mapping != inode->i_mapping) || 2320 (page_offset(page) > size)) { 2321 /* We overload EFAULT to mean page got truncated */ 2322 ret = -EFAULT; 2323 goto out_unlock; 2324 } 2325 2326 /* page is wholly or partially inside EOF */ 2327 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2328 end = size & ~PAGE_CACHE_MASK; 2329 else 2330 end = PAGE_CACHE_SIZE; 2331 2332 ret = __block_write_begin(page, 0, end, get_block); 2333 if (!ret) 2334 ret = block_commit_write(page, 0, end); 2335 2336 if (unlikely(ret < 0)) 2337 goto out_unlock; 2338 /* 2339 * Freezing in progress? We check after the page is marked dirty and 2340 * with page lock held so if the test here fails, we are sure freezing 2341 * code will wait during syncing until the page fault is done - at that 2342 * point page will be dirty and unlocked so freezing code will write it 2343 * and writeprotect it again. 2344 */ 2345 set_page_dirty(page); 2346 if (inode->i_sb->s_frozen != SB_UNFROZEN) { 2347 ret = -EAGAIN; 2348 goto out_unlock; 2349 } 2350 wait_on_page_writeback(page); 2351 return 0; 2352 out_unlock: 2353 unlock_page(page); 2354 return ret; 2355 } 2356 EXPORT_SYMBOL(__block_page_mkwrite); 2357 2358 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2359 get_block_t get_block) 2360 { 2361 int ret; 2362 struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb; 2363 2364 /* 2365 * This check is racy but catches the common case. The check in 2366 * __block_page_mkwrite() is reliable. 2367 */ 2368 vfs_check_frozen(sb, SB_FREEZE_WRITE); 2369 ret = __block_page_mkwrite(vma, vmf, get_block); 2370 return block_page_mkwrite_return(ret); 2371 } 2372 EXPORT_SYMBOL(block_page_mkwrite); 2373 2374 /* 2375 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2376 * immediately, while under the page lock. So it needs a special end_io 2377 * handler which does not touch the bh after unlocking it. 2378 */ 2379 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2380 { 2381 __end_buffer_read_notouch(bh, uptodate); 2382 } 2383 2384 /* 2385 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2386 * the page (converting it to circular linked list and taking care of page 2387 * dirty races). 2388 */ 2389 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2390 { 2391 struct buffer_head *bh; 2392 2393 BUG_ON(!PageLocked(page)); 2394 2395 spin_lock(&page->mapping->private_lock); 2396 bh = head; 2397 do { 2398 if (PageDirty(page)) 2399 set_buffer_dirty(bh); 2400 if (!bh->b_this_page) 2401 bh->b_this_page = head; 2402 bh = bh->b_this_page; 2403 } while (bh != head); 2404 attach_page_buffers(page, head); 2405 spin_unlock(&page->mapping->private_lock); 2406 } 2407 2408 /* 2409 * On entry, the page is fully not uptodate. 2410 * On exit the page is fully uptodate in the areas outside (from,to) 2411 * The filesystem needs to handle block truncation upon failure. 2412 */ 2413 int nobh_write_begin(struct address_space *mapping, 2414 loff_t pos, unsigned len, unsigned flags, 2415 struct page **pagep, void **fsdata, 2416 get_block_t *get_block) 2417 { 2418 struct inode *inode = mapping->host; 2419 const unsigned blkbits = inode->i_blkbits; 2420 const unsigned blocksize = 1 << blkbits; 2421 struct buffer_head *head, *bh; 2422 struct page *page; 2423 pgoff_t index; 2424 unsigned from, to; 2425 unsigned block_in_page; 2426 unsigned block_start, block_end; 2427 sector_t block_in_file; 2428 int nr_reads = 0; 2429 int ret = 0; 2430 int is_mapped_to_disk = 1; 2431 2432 index = pos >> PAGE_CACHE_SHIFT; 2433 from = pos & (PAGE_CACHE_SIZE - 1); 2434 to = from + len; 2435 2436 page = grab_cache_page_write_begin(mapping, index, flags); 2437 if (!page) 2438 return -ENOMEM; 2439 *pagep = page; 2440 *fsdata = NULL; 2441 2442 if (page_has_buffers(page)) { 2443 ret = __block_write_begin(page, pos, len, get_block); 2444 if (unlikely(ret)) 2445 goto out_release; 2446 return ret; 2447 } 2448 2449 if (PageMappedToDisk(page)) 2450 return 0; 2451 2452 /* 2453 * Allocate buffers so that we can keep track of state, and potentially 2454 * attach them to the page if an error occurs. In the common case of 2455 * no error, they will just be freed again without ever being attached 2456 * to the page (which is all OK, because we're under the page lock). 2457 * 2458 * Be careful: the buffer linked list is a NULL terminated one, rather 2459 * than the circular one we're used to. 2460 */ 2461 head = alloc_page_buffers(page, blocksize, 0); 2462 if (!head) { 2463 ret = -ENOMEM; 2464 goto out_release; 2465 } 2466 2467 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2468 2469 /* 2470 * We loop across all blocks in the page, whether or not they are 2471 * part of the affected region. This is so we can discover if the 2472 * page is fully mapped-to-disk. 2473 */ 2474 for (block_start = 0, block_in_page = 0, bh = head; 2475 block_start < PAGE_CACHE_SIZE; 2476 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2477 int create; 2478 2479 block_end = block_start + blocksize; 2480 bh->b_state = 0; 2481 create = 1; 2482 if (block_start >= to) 2483 create = 0; 2484 ret = get_block(inode, block_in_file + block_in_page, 2485 bh, create); 2486 if (ret) 2487 goto failed; 2488 if (!buffer_mapped(bh)) 2489 is_mapped_to_disk = 0; 2490 if (buffer_new(bh)) 2491 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2492 if (PageUptodate(page)) { 2493 set_buffer_uptodate(bh); 2494 continue; 2495 } 2496 if (buffer_new(bh) || !buffer_mapped(bh)) { 2497 zero_user_segments(page, block_start, from, 2498 to, block_end); 2499 continue; 2500 } 2501 if (buffer_uptodate(bh)) 2502 continue; /* reiserfs does this */ 2503 if (block_start < from || block_end > to) { 2504 lock_buffer(bh); 2505 bh->b_end_io = end_buffer_read_nobh; 2506 submit_bh(READ, bh); 2507 nr_reads++; 2508 } 2509 } 2510 2511 if (nr_reads) { 2512 /* 2513 * The page is locked, so these buffers are protected from 2514 * any VM or truncate activity. Hence we don't need to care 2515 * for the buffer_head refcounts. 2516 */ 2517 for (bh = head; bh; bh = bh->b_this_page) { 2518 wait_on_buffer(bh); 2519 if (!buffer_uptodate(bh)) 2520 ret = -EIO; 2521 } 2522 if (ret) 2523 goto failed; 2524 } 2525 2526 if (is_mapped_to_disk) 2527 SetPageMappedToDisk(page); 2528 2529 *fsdata = head; /* to be released by nobh_write_end */ 2530 2531 return 0; 2532 2533 failed: 2534 BUG_ON(!ret); 2535 /* 2536 * Error recovery is a bit difficult. We need to zero out blocks that 2537 * were newly allocated, and dirty them to ensure they get written out. 2538 * Buffers need to be attached to the page at this point, otherwise 2539 * the handling of potential IO errors during writeout would be hard 2540 * (could try doing synchronous writeout, but what if that fails too?) 2541 */ 2542 attach_nobh_buffers(page, head); 2543 page_zero_new_buffers(page, from, to); 2544 2545 out_release: 2546 unlock_page(page); 2547 page_cache_release(page); 2548 *pagep = NULL; 2549 2550 return ret; 2551 } 2552 EXPORT_SYMBOL(nobh_write_begin); 2553 2554 int nobh_write_end(struct file *file, struct address_space *mapping, 2555 loff_t pos, unsigned len, unsigned copied, 2556 struct page *page, void *fsdata) 2557 { 2558 struct inode *inode = page->mapping->host; 2559 struct buffer_head *head = fsdata; 2560 struct buffer_head *bh; 2561 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2562 2563 if (unlikely(copied < len) && head) 2564 attach_nobh_buffers(page, head); 2565 if (page_has_buffers(page)) 2566 return generic_write_end(file, mapping, pos, len, 2567 copied, page, fsdata); 2568 2569 SetPageUptodate(page); 2570 set_page_dirty(page); 2571 if (pos+copied > inode->i_size) { 2572 i_size_write(inode, pos+copied); 2573 mark_inode_dirty(inode); 2574 } 2575 2576 unlock_page(page); 2577 page_cache_release(page); 2578 2579 while (head) { 2580 bh = head; 2581 head = head->b_this_page; 2582 free_buffer_head(bh); 2583 } 2584 2585 return copied; 2586 } 2587 EXPORT_SYMBOL(nobh_write_end); 2588 2589 /* 2590 * nobh_writepage() - based on block_full_write_page() except 2591 * that it tries to operate without attaching bufferheads to 2592 * the page. 2593 */ 2594 int nobh_writepage(struct page *page, get_block_t *get_block, 2595 struct writeback_control *wbc) 2596 { 2597 struct inode * const inode = page->mapping->host; 2598 loff_t i_size = i_size_read(inode); 2599 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2600 unsigned offset; 2601 int ret; 2602 2603 /* Is the page fully inside i_size? */ 2604 if (page->index < end_index) 2605 goto out; 2606 2607 /* Is the page fully outside i_size? (truncate in progress) */ 2608 offset = i_size & (PAGE_CACHE_SIZE-1); 2609 if (page->index >= end_index+1 || !offset) { 2610 /* 2611 * The page may have dirty, unmapped buffers. For example, 2612 * they may have been added in ext3_writepage(). Make them 2613 * freeable here, so the page does not leak. 2614 */ 2615 #if 0 2616 /* Not really sure about this - do we need this ? */ 2617 if (page->mapping->a_ops->invalidatepage) 2618 page->mapping->a_ops->invalidatepage(page, offset); 2619 #endif 2620 unlock_page(page); 2621 return 0; /* don't care */ 2622 } 2623 2624 /* 2625 * The page straddles i_size. It must be zeroed out on each and every 2626 * writepage invocation because it may be mmapped. "A file is mapped 2627 * in multiples of the page size. For a file that is not a multiple of 2628 * the page size, the remaining memory is zeroed when mapped, and 2629 * writes to that region are not written out to the file." 2630 */ 2631 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2632 out: 2633 ret = mpage_writepage(page, get_block, wbc); 2634 if (ret == -EAGAIN) 2635 ret = __block_write_full_page(inode, page, get_block, wbc, 2636 end_buffer_async_write); 2637 return ret; 2638 } 2639 EXPORT_SYMBOL(nobh_writepage); 2640 2641 int nobh_truncate_page(struct address_space *mapping, 2642 loff_t from, get_block_t *get_block) 2643 { 2644 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2645 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2646 unsigned blocksize; 2647 sector_t iblock; 2648 unsigned length, pos; 2649 struct inode *inode = mapping->host; 2650 struct page *page; 2651 struct buffer_head map_bh; 2652 int err; 2653 2654 blocksize = 1 << inode->i_blkbits; 2655 length = offset & (blocksize - 1); 2656 2657 /* Block boundary? Nothing to do */ 2658 if (!length) 2659 return 0; 2660 2661 length = blocksize - length; 2662 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2663 2664 page = grab_cache_page(mapping, index); 2665 err = -ENOMEM; 2666 if (!page) 2667 goto out; 2668 2669 if (page_has_buffers(page)) { 2670 has_buffers: 2671 unlock_page(page); 2672 page_cache_release(page); 2673 return block_truncate_page(mapping, from, get_block); 2674 } 2675 2676 /* Find the buffer that contains "offset" */ 2677 pos = blocksize; 2678 while (offset >= pos) { 2679 iblock++; 2680 pos += blocksize; 2681 } 2682 2683 map_bh.b_size = blocksize; 2684 map_bh.b_state = 0; 2685 err = get_block(inode, iblock, &map_bh, 0); 2686 if (err) 2687 goto unlock; 2688 /* unmapped? It's a hole - nothing to do */ 2689 if (!buffer_mapped(&map_bh)) 2690 goto unlock; 2691 2692 /* Ok, it's mapped. Make sure it's up-to-date */ 2693 if (!PageUptodate(page)) { 2694 err = mapping->a_ops->readpage(NULL, page); 2695 if (err) { 2696 page_cache_release(page); 2697 goto out; 2698 } 2699 lock_page(page); 2700 if (!PageUptodate(page)) { 2701 err = -EIO; 2702 goto unlock; 2703 } 2704 if (page_has_buffers(page)) 2705 goto has_buffers; 2706 } 2707 zero_user(page, offset, length); 2708 set_page_dirty(page); 2709 err = 0; 2710 2711 unlock: 2712 unlock_page(page); 2713 page_cache_release(page); 2714 out: 2715 return err; 2716 } 2717 EXPORT_SYMBOL(nobh_truncate_page); 2718 2719 int block_truncate_page(struct address_space *mapping, 2720 loff_t from, get_block_t *get_block) 2721 { 2722 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2723 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2724 unsigned blocksize; 2725 sector_t iblock; 2726 unsigned length, pos; 2727 struct inode *inode = mapping->host; 2728 struct page *page; 2729 struct buffer_head *bh; 2730 int err; 2731 2732 blocksize = 1 << inode->i_blkbits; 2733 length = offset & (blocksize - 1); 2734 2735 /* Block boundary? Nothing to do */ 2736 if (!length) 2737 return 0; 2738 2739 length = blocksize - length; 2740 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2741 2742 page = grab_cache_page(mapping, index); 2743 err = -ENOMEM; 2744 if (!page) 2745 goto out; 2746 2747 if (!page_has_buffers(page)) 2748 create_empty_buffers(page, blocksize, 0); 2749 2750 /* Find the buffer that contains "offset" */ 2751 bh = page_buffers(page); 2752 pos = blocksize; 2753 while (offset >= pos) { 2754 bh = bh->b_this_page; 2755 iblock++; 2756 pos += blocksize; 2757 } 2758 2759 err = 0; 2760 if (!buffer_mapped(bh)) { 2761 WARN_ON(bh->b_size != blocksize); 2762 err = get_block(inode, iblock, bh, 0); 2763 if (err) 2764 goto unlock; 2765 /* unmapped? It's a hole - nothing to do */ 2766 if (!buffer_mapped(bh)) 2767 goto unlock; 2768 } 2769 2770 /* Ok, it's mapped. Make sure it's up-to-date */ 2771 if (PageUptodate(page)) 2772 set_buffer_uptodate(bh); 2773 2774 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2775 err = -EIO; 2776 ll_rw_block(READ, 1, &bh); 2777 wait_on_buffer(bh); 2778 /* Uhhuh. Read error. Complain and punt. */ 2779 if (!buffer_uptodate(bh)) 2780 goto unlock; 2781 } 2782 2783 zero_user(page, offset, length); 2784 mark_buffer_dirty(bh); 2785 err = 0; 2786 2787 unlock: 2788 unlock_page(page); 2789 page_cache_release(page); 2790 out: 2791 return err; 2792 } 2793 EXPORT_SYMBOL(block_truncate_page); 2794 2795 /* 2796 * The generic ->writepage function for buffer-backed address_spaces 2797 * this form passes in the end_io handler used to finish the IO. 2798 */ 2799 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2800 struct writeback_control *wbc, bh_end_io_t *handler) 2801 { 2802 struct inode * const inode = page->mapping->host; 2803 loff_t i_size = i_size_read(inode); 2804 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2805 unsigned offset; 2806 2807 /* Is the page fully inside i_size? */ 2808 if (page->index < end_index) 2809 return __block_write_full_page(inode, page, get_block, wbc, 2810 handler); 2811 2812 /* Is the page fully outside i_size? (truncate in progress) */ 2813 offset = i_size & (PAGE_CACHE_SIZE-1); 2814 if (page->index >= end_index+1 || !offset) { 2815 /* 2816 * The page may have dirty, unmapped buffers. For example, 2817 * they may have been added in ext3_writepage(). Make them 2818 * freeable here, so the page does not leak. 2819 */ 2820 do_invalidatepage(page, 0); 2821 unlock_page(page); 2822 return 0; /* don't care */ 2823 } 2824 2825 /* 2826 * The page straddles i_size. It must be zeroed out on each and every 2827 * writepage invocation because it may be mmapped. "A file is mapped 2828 * in multiples of the page size. For a file that is not a multiple of 2829 * the page size, the remaining memory is zeroed when mapped, and 2830 * writes to that region are not written out to the file." 2831 */ 2832 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2833 return __block_write_full_page(inode, page, get_block, wbc, handler); 2834 } 2835 EXPORT_SYMBOL(block_write_full_page_endio); 2836 2837 /* 2838 * The generic ->writepage function for buffer-backed address_spaces 2839 */ 2840 int block_write_full_page(struct page *page, get_block_t *get_block, 2841 struct writeback_control *wbc) 2842 { 2843 return block_write_full_page_endio(page, get_block, wbc, 2844 end_buffer_async_write); 2845 } 2846 EXPORT_SYMBOL(block_write_full_page); 2847 2848 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2849 get_block_t *get_block) 2850 { 2851 struct buffer_head tmp; 2852 struct inode *inode = mapping->host; 2853 tmp.b_state = 0; 2854 tmp.b_blocknr = 0; 2855 tmp.b_size = 1 << inode->i_blkbits; 2856 get_block(inode, block, &tmp, 0); 2857 return tmp.b_blocknr; 2858 } 2859 EXPORT_SYMBOL(generic_block_bmap); 2860 2861 static void end_bio_bh_io_sync(struct bio *bio, int err) 2862 { 2863 struct buffer_head *bh = bio->bi_private; 2864 2865 if (err == -EOPNOTSUPP) { 2866 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2867 } 2868 2869 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2870 set_bit(BH_Quiet, &bh->b_state); 2871 2872 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2873 bio_put(bio); 2874 } 2875 2876 int submit_bh(int rw, struct buffer_head * bh) 2877 { 2878 struct bio *bio; 2879 int ret = 0; 2880 2881 BUG_ON(!buffer_locked(bh)); 2882 BUG_ON(!buffer_mapped(bh)); 2883 BUG_ON(!bh->b_end_io); 2884 BUG_ON(buffer_delay(bh)); 2885 BUG_ON(buffer_unwritten(bh)); 2886 2887 /* 2888 * Only clear out a write error when rewriting 2889 */ 2890 if (test_set_buffer_req(bh) && (rw & WRITE)) 2891 clear_buffer_write_io_error(bh); 2892 2893 /* 2894 * from here on down, it's all bio -- do the initial mapping, 2895 * submit_bio -> generic_make_request may further map this bio around 2896 */ 2897 bio = bio_alloc(GFP_NOIO, 1); 2898 2899 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2900 bio->bi_bdev = bh->b_bdev; 2901 bio->bi_io_vec[0].bv_page = bh->b_page; 2902 bio->bi_io_vec[0].bv_len = bh->b_size; 2903 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2904 2905 bio->bi_vcnt = 1; 2906 bio->bi_idx = 0; 2907 bio->bi_size = bh->b_size; 2908 2909 bio->bi_end_io = end_bio_bh_io_sync; 2910 bio->bi_private = bh; 2911 2912 bio_get(bio); 2913 submit_bio(rw, bio); 2914 2915 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2916 ret = -EOPNOTSUPP; 2917 2918 bio_put(bio); 2919 return ret; 2920 } 2921 EXPORT_SYMBOL(submit_bh); 2922 2923 /** 2924 * ll_rw_block: low-level access to block devices (DEPRECATED) 2925 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 2926 * @nr: number of &struct buffer_heads in the array 2927 * @bhs: array of pointers to &struct buffer_head 2928 * 2929 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 2930 * requests an I/O operation on them, either a %READ or a %WRITE. The third 2931 * %READA option is described in the documentation for generic_make_request() 2932 * which ll_rw_block() calls. 2933 * 2934 * This function drops any buffer that it cannot get a lock on (with the 2935 * BH_Lock state bit), any buffer that appears to be clean when doing a write 2936 * request, and any buffer that appears to be up-to-date when doing read 2937 * request. Further it marks as clean buffers that are processed for 2938 * writing (the buffer cache won't assume that they are actually clean 2939 * until the buffer gets unlocked). 2940 * 2941 * ll_rw_block sets b_end_io to simple completion handler that marks 2942 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 2943 * any waiters. 2944 * 2945 * All of the buffers must be for the same device, and must also be a 2946 * multiple of the current approved size for the device. 2947 */ 2948 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 2949 { 2950 int i; 2951 2952 for (i = 0; i < nr; i++) { 2953 struct buffer_head *bh = bhs[i]; 2954 2955 if (!trylock_buffer(bh)) 2956 continue; 2957 if (rw == WRITE) { 2958 if (test_clear_buffer_dirty(bh)) { 2959 bh->b_end_io = end_buffer_write_sync; 2960 get_bh(bh); 2961 submit_bh(WRITE, bh); 2962 continue; 2963 } 2964 } else { 2965 if (!buffer_uptodate(bh)) { 2966 bh->b_end_io = end_buffer_read_sync; 2967 get_bh(bh); 2968 submit_bh(rw, bh); 2969 continue; 2970 } 2971 } 2972 unlock_buffer(bh); 2973 } 2974 } 2975 EXPORT_SYMBOL(ll_rw_block); 2976 2977 void write_dirty_buffer(struct buffer_head *bh, int rw) 2978 { 2979 lock_buffer(bh); 2980 if (!test_clear_buffer_dirty(bh)) { 2981 unlock_buffer(bh); 2982 return; 2983 } 2984 bh->b_end_io = end_buffer_write_sync; 2985 get_bh(bh); 2986 submit_bh(rw, bh); 2987 } 2988 EXPORT_SYMBOL(write_dirty_buffer); 2989 2990 /* 2991 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2992 * and then start new I/O and then wait upon it. The caller must have a ref on 2993 * the buffer_head. 2994 */ 2995 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 2996 { 2997 int ret = 0; 2998 2999 WARN_ON(atomic_read(&bh->b_count) < 1); 3000 lock_buffer(bh); 3001 if (test_clear_buffer_dirty(bh)) { 3002 get_bh(bh); 3003 bh->b_end_io = end_buffer_write_sync; 3004 ret = submit_bh(rw, bh); 3005 wait_on_buffer(bh); 3006 if (!ret && !buffer_uptodate(bh)) 3007 ret = -EIO; 3008 } else { 3009 unlock_buffer(bh); 3010 } 3011 return ret; 3012 } 3013 EXPORT_SYMBOL(__sync_dirty_buffer); 3014 3015 int sync_dirty_buffer(struct buffer_head *bh) 3016 { 3017 return __sync_dirty_buffer(bh, WRITE_SYNC); 3018 } 3019 EXPORT_SYMBOL(sync_dirty_buffer); 3020 3021 /* 3022 * try_to_free_buffers() checks if all the buffers on this particular page 3023 * are unused, and releases them if so. 3024 * 3025 * Exclusion against try_to_free_buffers may be obtained by either 3026 * locking the page or by holding its mapping's private_lock. 3027 * 3028 * If the page is dirty but all the buffers are clean then we need to 3029 * be sure to mark the page clean as well. This is because the page 3030 * may be against a block device, and a later reattachment of buffers 3031 * to a dirty page will set *all* buffers dirty. Which would corrupt 3032 * filesystem data on the same device. 3033 * 3034 * The same applies to regular filesystem pages: if all the buffers are 3035 * clean then we set the page clean and proceed. To do that, we require 3036 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3037 * private_lock. 3038 * 3039 * try_to_free_buffers() is non-blocking. 3040 */ 3041 static inline int buffer_busy(struct buffer_head *bh) 3042 { 3043 return atomic_read(&bh->b_count) | 3044 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3045 } 3046 3047 static int 3048 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3049 { 3050 struct buffer_head *head = page_buffers(page); 3051 struct buffer_head *bh; 3052 3053 bh = head; 3054 do { 3055 if (buffer_write_io_error(bh) && page->mapping) 3056 set_bit(AS_EIO, &page->mapping->flags); 3057 if (buffer_busy(bh)) 3058 goto failed; 3059 bh = bh->b_this_page; 3060 } while (bh != head); 3061 3062 do { 3063 struct buffer_head *next = bh->b_this_page; 3064 3065 if (bh->b_assoc_map) 3066 __remove_assoc_queue(bh); 3067 bh = next; 3068 } while (bh != head); 3069 *buffers_to_free = head; 3070 __clear_page_buffers(page); 3071 return 1; 3072 failed: 3073 return 0; 3074 } 3075 3076 int try_to_free_buffers(struct page *page) 3077 { 3078 struct address_space * const mapping = page->mapping; 3079 struct buffer_head *buffers_to_free = NULL; 3080 int ret = 0; 3081 3082 BUG_ON(!PageLocked(page)); 3083 if (PageWriteback(page)) 3084 return 0; 3085 3086 if (mapping == NULL) { /* can this still happen? */ 3087 ret = drop_buffers(page, &buffers_to_free); 3088 goto out; 3089 } 3090 3091 spin_lock(&mapping->private_lock); 3092 ret = drop_buffers(page, &buffers_to_free); 3093 3094 /* 3095 * If the filesystem writes its buffers by hand (eg ext3) 3096 * then we can have clean buffers against a dirty page. We 3097 * clean the page here; otherwise the VM will never notice 3098 * that the filesystem did any IO at all. 3099 * 3100 * Also, during truncate, discard_buffer will have marked all 3101 * the page's buffers clean. We discover that here and clean 3102 * the page also. 3103 * 3104 * private_lock must be held over this entire operation in order 3105 * to synchronise against __set_page_dirty_buffers and prevent the 3106 * dirty bit from being lost. 3107 */ 3108 if (ret) 3109 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3110 spin_unlock(&mapping->private_lock); 3111 out: 3112 if (buffers_to_free) { 3113 struct buffer_head *bh = buffers_to_free; 3114 3115 do { 3116 struct buffer_head *next = bh->b_this_page; 3117 free_buffer_head(bh); 3118 bh = next; 3119 } while (bh != buffers_to_free); 3120 } 3121 return ret; 3122 } 3123 EXPORT_SYMBOL(try_to_free_buffers); 3124 3125 /* 3126 * There are no bdflush tunables left. But distributions are 3127 * still running obsolete flush daemons, so we terminate them here. 3128 * 3129 * Use of bdflush() is deprecated and will be removed in a future kernel. 3130 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3131 */ 3132 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3133 { 3134 static int msg_count; 3135 3136 if (!capable(CAP_SYS_ADMIN)) 3137 return -EPERM; 3138 3139 if (msg_count < 5) { 3140 msg_count++; 3141 printk(KERN_INFO 3142 "warning: process `%s' used the obsolete bdflush" 3143 " system call\n", current->comm); 3144 printk(KERN_INFO "Fix your initscripts?\n"); 3145 } 3146 3147 if (func == 1) 3148 do_exit(0); 3149 return 0; 3150 } 3151 3152 /* 3153 * Buffer-head allocation 3154 */ 3155 static struct kmem_cache *bh_cachep __read_mostly; 3156 3157 /* 3158 * Once the number of bh's in the machine exceeds this level, we start 3159 * stripping them in writeback. 3160 */ 3161 static int max_buffer_heads; 3162 3163 int buffer_heads_over_limit; 3164 3165 struct bh_accounting { 3166 int nr; /* Number of live bh's */ 3167 int ratelimit; /* Limit cacheline bouncing */ 3168 }; 3169 3170 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3171 3172 static void recalc_bh_state(void) 3173 { 3174 int i; 3175 int tot = 0; 3176 3177 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3178 return; 3179 __this_cpu_write(bh_accounting.ratelimit, 0); 3180 for_each_online_cpu(i) 3181 tot += per_cpu(bh_accounting, i).nr; 3182 buffer_heads_over_limit = (tot > max_buffer_heads); 3183 } 3184 3185 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3186 { 3187 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3188 if (ret) { 3189 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3190 preempt_disable(); 3191 __this_cpu_inc(bh_accounting.nr); 3192 recalc_bh_state(); 3193 preempt_enable(); 3194 } 3195 return ret; 3196 } 3197 EXPORT_SYMBOL(alloc_buffer_head); 3198 3199 void free_buffer_head(struct buffer_head *bh) 3200 { 3201 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3202 kmem_cache_free(bh_cachep, bh); 3203 preempt_disable(); 3204 __this_cpu_dec(bh_accounting.nr); 3205 recalc_bh_state(); 3206 preempt_enable(); 3207 } 3208 EXPORT_SYMBOL(free_buffer_head); 3209 3210 static void buffer_exit_cpu(int cpu) 3211 { 3212 int i; 3213 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3214 3215 for (i = 0; i < BH_LRU_SIZE; i++) { 3216 brelse(b->bhs[i]); 3217 b->bhs[i] = NULL; 3218 } 3219 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3220 per_cpu(bh_accounting, cpu).nr = 0; 3221 } 3222 3223 static int buffer_cpu_notify(struct notifier_block *self, 3224 unsigned long action, void *hcpu) 3225 { 3226 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3227 buffer_exit_cpu((unsigned long)hcpu); 3228 return NOTIFY_OK; 3229 } 3230 3231 /** 3232 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3233 * @bh: struct buffer_head 3234 * 3235 * Return true if the buffer is up-to-date and false, 3236 * with the buffer locked, if not. 3237 */ 3238 int bh_uptodate_or_lock(struct buffer_head *bh) 3239 { 3240 if (!buffer_uptodate(bh)) { 3241 lock_buffer(bh); 3242 if (!buffer_uptodate(bh)) 3243 return 0; 3244 unlock_buffer(bh); 3245 } 3246 return 1; 3247 } 3248 EXPORT_SYMBOL(bh_uptodate_or_lock); 3249 3250 /** 3251 * bh_submit_read - Submit a locked buffer for reading 3252 * @bh: struct buffer_head 3253 * 3254 * Returns zero on success and -EIO on error. 3255 */ 3256 int bh_submit_read(struct buffer_head *bh) 3257 { 3258 BUG_ON(!buffer_locked(bh)); 3259 3260 if (buffer_uptodate(bh)) { 3261 unlock_buffer(bh); 3262 return 0; 3263 } 3264 3265 get_bh(bh); 3266 bh->b_end_io = end_buffer_read_sync; 3267 submit_bh(READ, bh); 3268 wait_on_buffer(bh); 3269 if (buffer_uptodate(bh)) 3270 return 0; 3271 return -EIO; 3272 } 3273 EXPORT_SYMBOL(bh_submit_read); 3274 3275 void __init buffer_init(void) 3276 { 3277 int nrpages; 3278 3279 bh_cachep = kmem_cache_create("buffer_head", 3280 sizeof(struct buffer_head), 0, 3281 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3282 SLAB_MEM_SPREAD), 3283 NULL); 3284 3285 /* 3286 * Limit the bh occupancy to 10% of ZONE_NORMAL 3287 */ 3288 nrpages = (nr_free_buffer_pages() * 10) / 100; 3289 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3290 hotcpu_notifier(buffer_cpu_notify, 0); 3291 } 3292