1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 #include <linux/sched/isolation.h> 53 54 #include "internal.h" 55 56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 58 enum rw_hint hint, struct writeback_control *wbc); 59 60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 61 62 inline void touch_buffer(struct buffer_head *bh) 63 { 64 trace_block_touch_buffer(bh); 65 folio_mark_accessed(bh->b_folio); 66 } 67 EXPORT_SYMBOL(touch_buffer); 68 69 void __lock_buffer(struct buffer_head *bh) 70 { 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 72 } 73 EXPORT_SYMBOL(__lock_buffer); 74 75 void unlock_buffer(struct buffer_head *bh) 76 { 77 clear_bit_unlock(BH_Lock, &bh->b_state); 78 smp_mb__after_atomic(); 79 wake_up_bit(&bh->b_state, BH_Lock); 80 } 81 EXPORT_SYMBOL(unlock_buffer); 82 83 /* 84 * Returns if the folio has dirty or writeback buffers. If all the buffers 85 * are unlocked and clean then the folio_test_dirty information is stale. If 86 * any of the buffers are locked, it is assumed they are locked for IO. 87 */ 88 void buffer_check_dirty_writeback(struct folio *folio, 89 bool *dirty, bool *writeback) 90 { 91 struct buffer_head *head, *bh; 92 *dirty = false; 93 *writeback = false; 94 95 BUG_ON(!folio_test_locked(folio)); 96 97 head = folio_buffers(folio); 98 if (!head) 99 return; 100 101 if (folio_test_writeback(folio)) 102 *writeback = true; 103 104 bh = head; 105 do { 106 if (buffer_locked(bh)) 107 *writeback = true; 108 109 if (buffer_dirty(bh)) 110 *dirty = true; 111 112 bh = bh->b_this_page; 113 } while (bh != head); 114 } 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 put_bh(bh); 161 __end_buffer_read_notouch(bh, uptodate); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 static struct buffer_head * 180 __find_get_block_slow(struct block_device *bdev, sector_t block, bool atomic) 181 { 182 struct address_space *bd_mapping = bdev->bd_mapping; 183 const int blkbits = bd_mapping->host->i_blkbits; 184 struct buffer_head *ret = NULL; 185 pgoff_t index; 186 struct buffer_head *bh; 187 struct buffer_head *head; 188 struct folio *folio; 189 int all_mapped = 1; 190 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 191 192 index = ((loff_t)block << blkbits) / PAGE_SIZE; 193 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); 194 if (IS_ERR(folio)) 195 goto out; 196 197 /* 198 * Folio lock protects the buffers. Callers that cannot block 199 * will fallback to serializing vs try_to_free_buffers() via 200 * the i_private_lock. 201 */ 202 if (atomic) 203 spin_lock(&bd_mapping->i_private_lock); 204 else 205 folio_lock(folio); 206 207 head = folio_buffers(folio); 208 if (!head) 209 goto out_unlock; 210 /* 211 * Upon a noref migration, the folio lock serializes here; 212 * otherwise bail. 213 */ 214 if (test_bit_acquire(BH_Migrate, &head->b_state)) { 215 WARN_ON(!atomic); 216 goto out_unlock; 217 } 218 219 bh = head; 220 do { 221 if (!buffer_mapped(bh)) 222 all_mapped = 0; 223 else if (bh->b_blocknr == block) { 224 ret = bh; 225 get_bh(bh); 226 goto out_unlock; 227 } 228 bh = bh->b_this_page; 229 } while (bh != head); 230 231 /* we might be here because some of the buffers on this page are 232 * not mapped. This is due to various races between 233 * file io on the block device and getblk. It gets dealt with 234 * elsewhere, don't buffer_error if we had some unmapped buffers 235 */ 236 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 237 if (all_mapped && __ratelimit(&last_warned)) { 238 printk("__find_get_block_slow() failed. block=%llu, " 239 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 240 "device %pg blocksize: %d\n", 241 (unsigned long long)block, 242 (unsigned long long)bh->b_blocknr, 243 bh->b_state, bh->b_size, bdev, 244 1 << blkbits); 245 } 246 out_unlock: 247 if (atomic) 248 spin_unlock(&bd_mapping->i_private_lock); 249 else 250 folio_unlock(folio); 251 folio_put(folio); 252 out: 253 return ret; 254 } 255 256 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 257 { 258 unsigned long flags; 259 struct buffer_head *first; 260 struct buffer_head *tmp; 261 struct folio *folio; 262 int folio_uptodate = 1; 263 264 BUG_ON(!buffer_async_read(bh)); 265 266 folio = bh->b_folio; 267 if (uptodate) { 268 set_buffer_uptodate(bh); 269 } else { 270 clear_buffer_uptodate(bh); 271 buffer_io_error(bh, ", async page read"); 272 } 273 274 /* 275 * Be _very_ careful from here on. Bad things can happen if 276 * two buffer heads end IO at almost the same time and both 277 * decide that the page is now completely done. 278 */ 279 first = folio_buffers(folio); 280 spin_lock_irqsave(&first->b_uptodate_lock, flags); 281 clear_buffer_async_read(bh); 282 unlock_buffer(bh); 283 tmp = bh; 284 do { 285 if (!buffer_uptodate(tmp)) 286 folio_uptodate = 0; 287 if (buffer_async_read(tmp)) { 288 BUG_ON(!buffer_locked(tmp)); 289 goto still_busy; 290 } 291 tmp = tmp->b_this_page; 292 } while (tmp != bh); 293 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 294 295 folio_end_read(folio, folio_uptodate); 296 return; 297 298 still_busy: 299 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 300 } 301 302 struct postprocess_bh_ctx { 303 struct work_struct work; 304 struct buffer_head *bh; 305 }; 306 307 static void verify_bh(struct work_struct *work) 308 { 309 struct postprocess_bh_ctx *ctx = 310 container_of(work, struct postprocess_bh_ctx, work); 311 struct buffer_head *bh = ctx->bh; 312 bool valid; 313 314 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 315 end_buffer_async_read(bh, valid); 316 kfree(ctx); 317 } 318 319 static bool need_fsverity(struct buffer_head *bh) 320 { 321 struct folio *folio = bh->b_folio; 322 struct inode *inode = folio->mapping->host; 323 324 return fsverity_active(inode) && 325 /* needed by ext4 */ 326 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 327 } 328 329 static void decrypt_bh(struct work_struct *work) 330 { 331 struct postprocess_bh_ctx *ctx = 332 container_of(work, struct postprocess_bh_ctx, work); 333 struct buffer_head *bh = ctx->bh; 334 int err; 335 336 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 337 bh_offset(bh)); 338 if (err == 0 && need_fsverity(bh)) { 339 /* 340 * We use different work queues for decryption and for verity 341 * because verity may require reading metadata pages that need 342 * decryption, and we shouldn't recurse to the same workqueue. 343 */ 344 INIT_WORK(&ctx->work, verify_bh); 345 fsverity_enqueue_verify_work(&ctx->work); 346 return; 347 } 348 end_buffer_async_read(bh, err == 0); 349 kfree(ctx); 350 } 351 352 /* 353 * I/O completion handler for block_read_full_folio() - pages 354 * which come unlocked at the end of I/O. 355 */ 356 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 357 { 358 struct inode *inode = bh->b_folio->mapping->host; 359 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 360 bool verify = need_fsverity(bh); 361 362 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 363 if (uptodate && (decrypt || verify)) { 364 struct postprocess_bh_ctx *ctx = 365 kmalloc(sizeof(*ctx), GFP_ATOMIC); 366 367 if (ctx) { 368 ctx->bh = bh; 369 if (decrypt) { 370 INIT_WORK(&ctx->work, decrypt_bh); 371 fscrypt_enqueue_decrypt_work(&ctx->work); 372 } else { 373 INIT_WORK(&ctx->work, verify_bh); 374 fsverity_enqueue_verify_work(&ctx->work); 375 } 376 return; 377 } 378 uptodate = 0; 379 } 380 end_buffer_async_read(bh, uptodate); 381 } 382 383 /* 384 * Completion handler for block_write_full_folio() - folios which are unlocked 385 * during I/O, and which have the writeback flag cleared upon I/O completion. 386 */ 387 static void end_buffer_async_write(struct buffer_head *bh, int uptodate) 388 { 389 unsigned long flags; 390 struct buffer_head *first; 391 struct buffer_head *tmp; 392 struct folio *folio; 393 394 BUG_ON(!buffer_async_write(bh)); 395 396 folio = bh->b_folio; 397 if (uptodate) { 398 set_buffer_uptodate(bh); 399 } else { 400 buffer_io_error(bh, ", lost async page write"); 401 mark_buffer_write_io_error(bh); 402 clear_buffer_uptodate(bh); 403 } 404 405 first = folio_buffers(folio); 406 spin_lock_irqsave(&first->b_uptodate_lock, flags); 407 408 clear_buffer_async_write(bh); 409 unlock_buffer(bh); 410 tmp = bh->b_this_page; 411 while (tmp != bh) { 412 if (buffer_async_write(tmp)) { 413 BUG_ON(!buffer_locked(tmp)); 414 goto still_busy; 415 } 416 tmp = tmp->b_this_page; 417 } 418 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 419 folio_end_writeback(folio); 420 return; 421 422 still_busy: 423 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 424 } 425 426 /* 427 * If a page's buffers are under async readin (end_buffer_async_read 428 * completion) then there is a possibility that another thread of 429 * control could lock one of the buffers after it has completed 430 * but while some of the other buffers have not completed. This 431 * locked buffer would confuse end_buffer_async_read() into not unlocking 432 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 433 * that this buffer is not under async I/O. 434 * 435 * The page comes unlocked when it has no locked buffer_async buffers 436 * left. 437 * 438 * PageLocked prevents anyone starting new async I/O reads any of 439 * the buffers. 440 * 441 * PageWriteback is used to prevent simultaneous writeout of the same 442 * page. 443 * 444 * PageLocked prevents anyone from starting writeback of a page which is 445 * under read I/O (PageWriteback is only ever set against a locked page). 446 */ 447 static void mark_buffer_async_read(struct buffer_head *bh) 448 { 449 bh->b_end_io = end_buffer_async_read_io; 450 set_buffer_async_read(bh); 451 } 452 453 static void mark_buffer_async_write_endio(struct buffer_head *bh, 454 bh_end_io_t *handler) 455 { 456 bh->b_end_io = handler; 457 set_buffer_async_write(bh); 458 } 459 460 void mark_buffer_async_write(struct buffer_head *bh) 461 { 462 mark_buffer_async_write_endio(bh, end_buffer_async_write); 463 } 464 EXPORT_SYMBOL(mark_buffer_async_write); 465 466 467 /* 468 * fs/buffer.c contains helper functions for buffer-backed address space's 469 * fsync functions. A common requirement for buffer-based filesystems is 470 * that certain data from the backing blockdev needs to be written out for 471 * a successful fsync(). For example, ext2 indirect blocks need to be 472 * written back and waited upon before fsync() returns. 473 * 474 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(), 475 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 476 * management of a list of dependent buffers at ->i_mapping->i_private_list. 477 * 478 * Locking is a little subtle: try_to_free_buffers() will remove buffers 479 * from their controlling inode's queue when they are being freed. But 480 * try_to_free_buffers() will be operating against the *blockdev* mapping 481 * at the time, not against the S_ISREG file which depends on those buffers. 482 * So the locking for i_private_list is via the i_private_lock in the address_space 483 * which backs the buffers. Which is different from the address_space 484 * against which the buffers are listed. So for a particular address_space, 485 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact, 486 * mapping->i_private_list will always be protected by the backing blockdev's 487 * ->i_private_lock. 488 * 489 * Which introduces a requirement: all buffers on an address_space's 490 * ->i_private_list must be from the same address_space: the blockdev's. 491 * 492 * address_spaces which do not place buffers at ->i_private_list via these 493 * utility functions are free to use i_private_lock and i_private_list for 494 * whatever they want. The only requirement is that list_empty(i_private_list) 495 * be true at clear_inode() time. 496 * 497 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 498 * filesystems should do that. invalidate_inode_buffers() should just go 499 * BUG_ON(!list_empty). 500 * 501 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 502 * take an address_space, not an inode. And it should be called 503 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 504 * queued up. 505 * 506 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 507 * list if it is already on a list. Because if the buffer is on a list, 508 * it *must* already be on the right one. If not, the filesystem is being 509 * silly. This will save a ton of locking. But first we have to ensure 510 * that buffers are taken *off* the old inode's list when they are freed 511 * (presumably in truncate). That requires careful auditing of all 512 * filesystems (do it inside bforget()). It could also be done by bringing 513 * b_inode back. 514 */ 515 516 /* 517 * The buffer's backing address_space's i_private_lock must be held 518 */ 519 static void __remove_assoc_queue(struct buffer_head *bh) 520 { 521 list_del_init(&bh->b_assoc_buffers); 522 WARN_ON(!bh->b_assoc_map); 523 bh->b_assoc_map = NULL; 524 } 525 526 int inode_has_buffers(struct inode *inode) 527 { 528 return !list_empty(&inode->i_data.i_private_list); 529 } 530 531 /* 532 * osync is designed to support O_SYNC io. It waits synchronously for 533 * all already-submitted IO to complete, but does not queue any new 534 * writes to the disk. 535 * 536 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 537 * as you dirty the buffers, and then use osync_inode_buffers to wait for 538 * completion. Any other dirty buffers which are not yet queued for 539 * write will not be flushed to disk by the osync. 540 */ 541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 542 { 543 struct buffer_head *bh; 544 struct list_head *p; 545 int err = 0; 546 547 spin_lock(lock); 548 repeat: 549 list_for_each_prev(p, list) { 550 bh = BH_ENTRY(p); 551 if (buffer_locked(bh)) { 552 get_bh(bh); 553 spin_unlock(lock); 554 wait_on_buffer(bh); 555 if (!buffer_uptodate(bh)) 556 err = -EIO; 557 brelse(bh); 558 spin_lock(lock); 559 goto repeat; 560 } 561 } 562 spin_unlock(lock); 563 return err; 564 } 565 566 /** 567 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 568 * @mapping: the mapping which wants those buffers written 569 * 570 * Starts I/O against the buffers at mapping->i_private_list, and waits upon 571 * that I/O. 572 * 573 * Basically, this is a convenience function for fsync(). 574 * @mapping is a file or directory which needs those buffers to be written for 575 * a successful fsync(). 576 */ 577 int sync_mapping_buffers(struct address_space *mapping) 578 { 579 struct address_space *buffer_mapping = mapping->i_private_data; 580 581 if (buffer_mapping == NULL || list_empty(&mapping->i_private_list)) 582 return 0; 583 584 return fsync_buffers_list(&buffer_mapping->i_private_lock, 585 &mapping->i_private_list); 586 } 587 EXPORT_SYMBOL(sync_mapping_buffers); 588 589 /** 590 * generic_buffers_fsync_noflush - generic buffer fsync implementation 591 * for simple filesystems with no inode lock 592 * 593 * @file: file to synchronize 594 * @start: start offset in bytes 595 * @end: end offset in bytes (inclusive) 596 * @datasync: only synchronize essential metadata if true 597 * 598 * This is a generic implementation of the fsync method for simple 599 * filesystems which track all non-inode metadata in the buffers list 600 * hanging off the address_space structure. 601 */ 602 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, 603 bool datasync) 604 { 605 struct inode *inode = file->f_mapping->host; 606 int err; 607 int ret; 608 609 err = file_write_and_wait_range(file, start, end); 610 if (err) 611 return err; 612 613 ret = sync_mapping_buffers(inode->i_mapping); 614 if (!(inode->i_state & I_DIRTY_ALL)) 615 goto out; 616 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 617 goto out; 618 619 err = sync_inode_metadata(inode, 1); 620 if (ret == 0) 621 ret = err; 622 623 out: 624 /* check and advance again to catch errors after syncing out buffers */ 625 err = file_check_and_advance_wb_err(file); 626 if (ret == 0) 627 ret = err; 628 return ret; 629 } 630 EXPORT_SYMBOL(generic_buffers_fsync_noflush); 631 632 /** 633 * generic_buffers_fsync - generic buffer fsync implementation 634 * for simple filesystems with no inode lock 635 * 636 * @file: file to synchronize 637 * @start: start offset in bytes 638 * @end: end offset in bytes (inclusive) 639 * @datasync: only synchronize essential metadata if true 640 * 641 * This is a generic implementation of the fsync method for simple 642 * filesystems which track all non-inode metadata in the buffers list 643 * hanging off the address_space structure. This also makes sure that 644 * a device cache flush operation is called at the end. 645 */ 646 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, 647 bool datasync) 648 { 649 struct inode *inode = file->f_mapping->host; 650 int ret; 651 652 ret = generic_buffers_fsync_noflush(file, start, end, datasync); 653 if (!ret) 654 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 655 return ret; 656 } 657 EXPORT_SYMBOL(generic_buffers_fsync); 658 659 /* 660 * Called when we've recently written block `bblock', and it is known that 661 * `bblock' was for a buffer_boundary() buffer. This means that the block at 662 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 663 * dirty, schedule it for IO. So that indirects merge nicely with their data. 664 */ 665 void write_boundary_block(struct block_device *bdev, 666 sector_t bblock, unsigned blocksize) 667 { 668 struct buffer_head *bh; 669 670 bh = __find_get_block_nonatomic(bdev, bblock + 1, blocksize); 671 if (bh) { 672 if (buffer_dirty(bh)) 673 write_dirty_buffer(bh, 0); 674 put_bh(bh); 675 } 676 } 677 678 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 679 { 680 struct address_space *mapping = inode->i_mapping; 681 struct address_space *buffer_mapping = bh->b_folio->mapping; 682 683 mark_buffer_dirty(bh); 684 if (!mapping->i_private_data) { 685 mapping->i_private_data = buffer_mapping; 686 } else { 687 BUG_ON(mapping->i_private_data != buffer_mapping); 688 } 689 if (!bh->b_assoc_map) { 690 spin_lock(&buffer_mapping->i_private_lock); 691 list_move_tail(&bh->b_assoc_buffers, 692 &mapping->i_private_list); 693 bh->b_assoc_map = mapping; 694 spin_unlock(&buffer_mapping->i_private_lock); 695 } 696 } 697 EXPORT_SYMBOL(mark_buffer_dirty_inode); 698 699 /** 700 * block_dirty_folio - Mark a folio as dirty. 701 * @mapping: The address space containing this folio. 702 * @folio: The folio to mark dirty. 703 * 704 * Filesystems which use buffer_heads can use this function as their 705 * ->dirty_folio implementation. Some filesystems need to do a little 706 * work before calling this function. Filesystems which do not use 707 * buffer_heads should call filemap_dirty_folio() instead. 708 * 709 * If the folio has buffers, the uptodate buffers are set dirty, to 710 * preserve dirty-state coherency between the folio and the buffers. 711 * Buffers added to a dirty folio are created dirty. 712 * 713 * The buffers are dirtied before the folio is dirtied. There's a small 714 * race window in which writeback may see the folio cleanness but not the 715 * buffer dirtiness. That's fine. If this code were to set the folio 716 * dirty before the buffers, writeback could clear the folio dirty flag, 717 * see a bunch of clean buffers and we'd end up with dirty buffers/clean 718 * folio on the dirty folio list. 719 * 720 * We use i_private_lock to lock against try_to_free_buffers() while 721 * using the folio's buffer list. This also prevents clean buffers 722 * being added to the folio after it was set dirty. 723 * 724 * Context: May only be called from process context. Does not sleep. 725 * Caller must ensure that @folio cannot be truncated during this call, 726 * typically by holding the folio lock or having a page in the folio 727 * mapped and holding the page table lock. 728 * 729 * Return: True if the folio was dirtied; false if it was already dirtied. 730 */ 731 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 732 { 733 struct buffer_head *head; 734 bool newly_dirty; 735 736 spin_lock(&mapping->i_private_lock); 737 head = folio_buffers(folio); 738 if (head) { 739 struct buffer_head *bh = head; 740 741 do { 742 set_buffer_dirty(bh); 743 bh = bh->b_this_page; 744 } while (bh != head); 745 } 746 /* 747 * Lock out page's memcg migration to keep PageDirty 748 * synchronized with per-memcg dirty page counters. 749 */ 750 newly_dirty = !folio_test_set_dirty(folio); 751 spin_unlock(&mapping->i_private_lock); 752 753 if (newly_dirty) 754 __folio_mark_dirty(folio, mapping, 1); 755 756 if (newly_dirty) 757 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 758 759 return newly_dirty; 760 } 761 EXPORT_SYMBOL(block_dirty_folio); 762 763 /* 764 * Write out and wait upon a list of buffers. 765 * 766 * We have conflicting pressures: we want to make sure that all 767 * initially dirty buffers get waited on, but that any subsequently 768 * dirtied buffers don't. After all, we don't want fsync to last 769 * forever if somebody is actively writing to the file. 770 * 771 * Do this in two main stages: first we copy dirty buffers to a 772 * temporary inode list, queueing the writes as we go. Then we clean 773 * up, waiting for those writes to complete. 774 * 775 * During this second stage, any subsequent updates to the file may end 776 * up refiling the buffer on the original inode's dirty list again, so 777 * there is a chance we will end up with a buffer queued for write but 778 * not yet completed on that list. So, as a final cleanup we go through 779 * the osync code to catch these locked, dirty buffers without requeuing 780 * any newly dirty buffers for write. 781 */ 782 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 783 { 784 struct buffer_head *bh; 785 struct address_space *mapping; 786 int err = 0, err2; 787 struct blk_plug plug; 788 LIST_HEAD(tmp); 789 790 blk_start_plug(&plug); 791 792 spin_lock(lock); 793 while (!list_empty(list)) { 794 bh = BH_ENTRY(list->next); 795 mapping = bh->b_assoc_map; 796 __remove_assoc_queue(bh); 797 /* Avoid race with mark_buffer_dirty_inode() which does 798 * a lockless check and we rely on seeing the dirty bit */ 799 smp_mb(); 800 if (buffer_dirty(bh) || buffer_locked(bh)) { 801 list_add(&bh->b_assoc_buffers, &tmp); 802 bh->b_assoc_map = mapping; 803 if (buffer_dirty(bh)) { 804 get_bh(bh); 805 spin_unlock(lock); 806 /* 807 * Ensure any pending I/O completes so that 808 * write_dirty_buffer() actually writes the 809 * current contents - it is a noop if I/O is 810 * still in flight on potentially older 811 * contents. 812 */ 813 write_dirty_buffer(bh, REQ_SYNC); 814 815 /* 816 * Kick off IO for the previous mapping. Note 817 * that we will not run the very last mapping, 818 * wait_on_buffer() will do that for us 819 * through sync_buffer(). 820 */ 821 brelse(bh); 822 spin_lock(lock); 823 } 824 } 825 } 826 827 spin_unlock(lock); 828 blk_finish_plug(&plug); 829 spin_lock(lock); 830 831 while (!list_empty(&tmp)) { 832 bh = BH_ENTRY(tmp.prev); 833 get_bh(bh); 834 mapping = bh->b_assoc_map; 835 __remove_assoc_queue(bh); 836 /* Avoid race with mark_buffer_dirty_inode() which does 837 * a lockless check and we rely on seeing the dirty bit */ 838 smp_mb(); 839 if (buffer_dirty(bh)) { 840 list_add(&bh->b_assoc_buffers, 841 &mapping->i_private_list); 842 bh->b_assoc_map = mapping; 843 } 844 spin_unlock(lock); 845 wait_on_buffer(bh); 846 if (!buffer_uptodate(bh)) 847 err = -EIO; 848 brelse(bh); 849 spin_lock(lock); 850 } 851 852 spin_unlock(lock); 853 err2 = osync_buffers_list(lock, list); 854 if (err) 855 return err; 856 else 857 return err2; 858 } 859 860 /* 861 * Invalidate any and all dirty buffers on a given inode. We are 862 * probably unmounting the fs, but that doesn't mean we have already 863 * done a sync(). Just drop the buffers from the inode list. 864 * 865 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which 866 * assumes that all the buffers are against the blockdev. 867 */ 868 void invalidate_inode_buffers(struct inode *inode) 869 { 870 if (inode_has_buffers(inode)) { 871 struct address_space *mapping = &inode->i_data; 872 struct list_head *list = &mapping->i_private_list; 873 struct address_space *buffer_mapping = mapping->i_private_data; 874 875 spin_lock(&buffer_mapping->i_private_lock); 876 while (!list_empty(list)) 877 __remove_assoc_queue(BH_ENTRY(list->next)); 878 spin_unlock(&buffer_mapping->i_private_lock); 879 } 880 } 881 EXPORT_SYMBOL(invalidate_inode_buffers); 882 883 /* 884 * Remove any clean buffers from the inode's buffer list. This is called 885 * when we're trying to free the inode itself. Those buffers can pin it. 886 * 887 * Returns true if all buffers were removed. 888 */ 889 int remove_inode_buffers(struct inode *inode) 890 { 891 int ret = 1; 892 893 if (inode_has_buffers(inode)) { 894 struct address_space *mapping = &inode->i_data; 895 struct list_head *list = &mapping->i_private_list; 896 struct address_space *buffer_mapping = mapping->i_private_data; 897 898 spin_lock(&buffer_mapping->i_private_lock); 899 while (!list_empty(list)) { 900 struct buffer_head *bh = BH_ENTRY(list->next); 901 if (buffer_dirty(bh)) { 902 ret = 0; 903 break; 904 } 905 __remove_assoc_queue(bh); 906 } 907 spin_unlock(&buffer_mapping->i_private_lock); 908 } 909 return ret; 910 } 911 912 /* 913 * Create the appropriate buffers when given a folio for data area and 914 * the size of each buffer.. Use the bh->b_this_page linked list to 915 * follow the buffers created. Return NULL if unable to create more 916 * buffers. 917 * 918 * The retry flag is used to differentiate async IO (paging, swapping) 919 * which may not fail from ordinary buffer allocations. 920 */ 921 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 922 gfp_t gfp) 923 { 924 struct buffer_head *bh, *head; 925 long offset; 926 struct mem_cgroup *memcg, *old_memcg; 927 928 /* The folio lock pins the memcg */ 929 memcg = folio_memcg(folio); 930 old_memcg = set_active_memcg(memcg); 931 932 head = NULL; 933 offset = folio_size(folio); 934 while ((offset -= size) >= 0) { 935 bh = alloc_buffer_head(gfp); 936 if (!bh) 937 goto no_grow; 938 939 bh->b_this_page = head; 940 bh->b_blocknr = -1; 941 head = bh; 942 943 bh->b_size = size; 944 945 /* Link the buffer to its folio */ 946 folio_set_bh(bh, folio, offset); 947 } 948 out: 949 set_active_memcg(old_memcg); 950 return head; 951 /* 952 * In case anything failed, we just free everything we got. 953 */ 954 no_grow: 955 if (head) { 956 do { 957 bh = head; 958 head = head->b_this_page; 959 free_buffer_head(bh); 960 } while (head); 961 } 962 963 goto out; 964 } 965 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 966 967 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size) 968 { 969 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 970 971 return folio_alloc_buffers(page_folio(page), size, gfp); 972 } 973 EXPORT_SYMBOL_GPL(alloc_page_buffers); 974 975 static inline void link_dev_buffers(struct folio *folio, 976 struct buffer_head *head) 977 { 978 struct buffer_head *bh, *tail; 979 980 bh = head; 981 do { 982 tail = bh; 983 bh = bh->b_this_page; 984 } while (bh); 985 tail->b_this_page = head; 986 folio_attach_private(folio, head); 987 } 988 989 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 990 { 991 sector_t retval = ~((sector_t)0); 992 loff_t sz = bdev_nr_bytes(bdev); 993 994 if (sz) { 995 unsigned int sizebits = blksize_bits(size); 996 retval = (sz >> sizebits); 997 } 998 return retval; 999 } 1000 1001 /* 1002 * Initialise the state of a blockdev folio's buffers. 1003 */ 1004 static sector_t folio_init_buffers(struct folio *folio, 1005 struct block_device *bdev, unsigned size) 1006 { 1007 struct buffer_head *head = folio_buffers(folio); 1008 struct buffer_head *bh = head; 1009 bool uptodate = folio_test_uptodate(folio); 1010 sector_t block = div_u64(folio_pos(folio), size); 1011 sector_t end_block = blkdev_max_block(bdev, size); 1012 1013 do { 1014 if (!buffer_mapped(bh)) { 1015 bh->b_end_io = NULL; 1016 bh->b_private = NULL; 1017 bh->b_bdev = bdev; 1018 bh->b_blocknr = block; 1019 if (uptodate) 1020 set_buffer_uptodate(bh); 1021 if (block < end_block) 1022 set_buffer_mapped(bh); 1023 } 1024 block++; 1025 bh = bh->b_this_page; 1026 } while (bh != head); 1027 1028 /* 1029 * Caller needs to validate requested block against end of device. 1030 */ 1031 return end_block; 1032 } 1033 1034 /* 1035 * Create the page-cache folio that contains the requested block. 1036 * 1037 * This is used purely for blockdev mappings. 1038 * 1039 * Returns false if we have a failure which cannot be cured by retrying 1040 * without sleeping. Returns true if we succeeded, or the caller should retry. 1041 */ 1042 static bool grow_dev_folio(struct block_device *bdev, sector_t block, 1043 pgoff_t index, unsigned size, gfp_t gfp) 1044 { 1045 struct address_space *mapping = bdev->bd_mapping; 1046 struct folio *folio; 1047 struct buffer_head *bh; 1048 sector_t end_block = 0; 1049 1050 folio = __filemap_get_folio(mapping, index, 1051 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp); 1052 if (IS_ERR(folio)) 1053 return false; 1054 1055 bh = folio_buffers(folio); 1056 if (bh) { 1057 if (bh->b_size == size) { 1058 end_block = folio_init_buffers(folio, bdev, size); 1059 goto unlock; 1060 } 1061 1062 /* 1063 * Retrying may succeed; for example the folio may finish 1064 * writeback, or buffers may be cleaned. This should not 1065 * happen very often; maybe we have old buffers attached to 1066 * this blockdev's page cache and we're trying to change 1067 * the block size? 1068 */ 1069 if (!try_to_free_buffers(folio)) { 1070 end_block = ~0ULL; 1071 goto unlock; 1072 } 1073 } 1074 1075 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT); 1076 if (!bh) 1077 goto unlock; 1078 1079 /* 1080 * Link the folio to the buffers and initialise them. Take the 1081 * lock to be atomic wrt __find_get_block(), which does not 1082 * run under the folio lock. 1083 */ 1084 spin_lock(&mapping->i_private_lock); 1085 link_dev_buffers(folio, bh); 1086 end_block = folio_init_buffers(folio, bdev, size); 1087 spin_unlock(&mapping->i_private_lock); 1088 unlock: 1089 folio_unlock(folio); 1090 folio_put(folio); 1091 return block < end_block; 1092 } 1093 1094 /* 1095 * Create buffers for the specified block device block's folio. If 1096 * that folio was dirty, the buffers are set dirty also. Returns false 1097 * if we've hit a permanent error. 1098 */ 1099 static bool grow_buffers(struct block_device *bdev, sector_t block, 1100 unsigned size, gfp_t gfp) 1101 { 1102 loff_t pos; 1103 1104 /* 1105 * Check for a block which lies outside our maximum possible 1106 * pagecache index. 1107 */ 1108 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) { 1109 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n", 1110 __func__, (unsigned long long)block, 1111 bdev); 1112 return false; 1113 } 1114 1115 /* Create a folio with the proper size buffers */ 1116 return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp); 1117 } 1118 1119 static struct buffer_head * 1120 __getblk_slow(struct block_device *bdev, sector_t block, 1121 unsigned size, gfp_t gfp) 1122 { 1123 bool blocking = gfpflags_allow_blocking(gfp); 1124 1125 if (WARN_ON_ONCE(!IS_ALIGNED(size, bdev_logical_block_size(bdev)))) { 1126 printk(KERN_ERR "getblk(): block size %d not aligned to logical block size %d\n", 1127 size, bdev_logical_block_size(bdev)); 1128 return NULL; 1129 } 1130 1131 for (;;) { 1132 struct buffer_head *bh; 1133 1134 if (!grow_buffers(bdev, block, size, gfp)) 1135 return NULL; 1136 1137 if (blocking) 1138 bh = __find_get_block_nonatomic(bdev, block, size); 1139 else 1140 bh = __find_get_block(bdev, block, size); 1141 if (bh) 1142 return bh; 1143 } 1144 } 1145 1146 /* 1147 * The relationship between dirty buffers and dirty pages: 1148 * 1149 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1150 * the page is tagged dirty in the page cache. 1151 * 1152 * At all times, the dirtiness of the buffers represents the dirtiness of 1153 * subsections of the page. If the page has buffers, the page dirty bit is 1154 * merely a hint about the true dirty state. 1155 * 1156 * When a page is set dirty in its entirety, all its buffers are marked dirty 1157 * (if the page has buffers). 1158 * 1159 * When a buffer is marked dirty, its page is dirtied, but the page's other 1160 * buffers are not. 1161 * 1162 * Also. When blockdev buffers are explicitly read with bread(), they 1163 * individually become uptodate. But their backing page remains not 1164 * uptodate - even if all of its buffers are uptodate. A subsequent 1165 * block_read_full_folio() against that folio will discover all the uptodate 1166 * buffers, will set the folio uptodate and will perform no I/O. 1167 */ 1168 1169 /** 1170 * mark_buffer_dirty - mark a buffer_head as needing writeout 1171 * @bh: the buffer_head to mark dirty 1172 * 1173 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1174 * its backing page dirty, then tag the page as dirty in the page cache 1175 * and then attach the address_space's inode to its superblock's dirty 1176 * inode list. 1177 * 1178 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock, 1179 * i_pages lock and mapping->host->i_lock. 1180 */ 1181 void mark_buffer_dirty(struct buffer_head *bh) 1182 { 1183 WARN_ON_ONCE(!buffer_uptodate(bh)); 1184 1185 trace_block_dirty_buffer(bh); 1186 1187 /* 1188 * Very *carefully* optimize the it-is-already-dirty case. 1189 * 1190 * Don't let the final "is it dirty" escape to before we 1191 * perhaps modified the buffer. 1192 */ 1193 if (buffer_dirty(bh)) { 1194 smp_mb(); 1195 if (buffer_dirty(bh)) 1196 return; 1197 } 1198 1199 if (!test_set_buffer_dirty(bh)) { 1200 struct folio *folio = bh->b_folio; 1201 struct address_space *mapping = NULL; 1202 1203 if (!folio_test_set_dirty(folio)) { 1204 mapping = folio->mapping; 1205 if (mapping) 1206 __folio_mark_dirty(folio, mapping, 0); 1207 } 1208 if (mapping) 1209 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1210 } 1211 } 1212 EXPORT_SYMBOL(mark_buffer_dirty); 1213 1214 void mark_buffer_write_io_error(struct buffer_head *bh) 1215 { 1216 set_buffer_write_io_error(bh); 1217 /* FIXME: do we need to set this in both places? */ 1218 if (bh->b_folio && bh->b_folio->mapping) 1219 mapping_set_error(bh->b_folio->mapping, -EIO); 1220 if (bh->b_assoc_map) 1221 mapping_set_error(bh->b_assoc_map, -EIO); 1222 } 1223 EXPORT_SYMBOL(mark_buffer_write_io_error); 1224 1225 /** 1226 * __brelse - Release a buffer. 1227 * @bh: The buffer to release. 1228 * 1229 * This variant of brelse() can be called if @bh is guaranteed to not be NULL. 1230 */ 1231 void __brelse(struct buffer_head *bh) 1232 { 1233 if (atomic_read(&bh->b_count)) { 1234 put_bh(bh); 1235 return; 1236 } 1237 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1238 } 1239 EXPORT_SYMBOL(__brelse); 1240 1241 /** 1242 * __bforget - Discard any dirty data in a buffer. 1243 * @bh: The buffer to forget. 1244 * 1245 * This variant of bforget() can be called if @bh is guaranteed to not 1246 * be NULL. 1247 */ 1248 void __bforget(struct buffer_head *bh) 1249 { 1250 clear_buffer_dirty(bh); 1251 if (bh->b_assoc_map) { 1252 struct address_space *buffer_mapping = bh->b_folio->mapping; 1253 1254 spin_lock(&buffer_mapping->i_private_lock); 1255 list_del_init(&bh->b_assoc_buffers); 1256 bh->b_assoc_map = NULL; 1257 spin_unlock(&buffer_mapping->i_private_lock); 1258 } 1259 __brelse(bh); 1260 } 1261 EXPORT_SYMBOL(__bforget); 1262 1263 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1264 { 1265 lock_buffer(bh); 1266 if (buffer_uptodate(bh)) { 1267 unlock_buffer(bh); 1268 return bh; 1269 } else { 1270 get_bh(bh); 1271 bh->b_end_io = end_buffer_read_sync; 1272 submit_bh(REQ_OP_READ, bh); 1273 wait_on_buffer(bh); 1274 if (buffer_uptodate(bh)) 1275 return bh; 1276 } 1277 brelse(bh); 1278 return NULL; 1279 } 1280 1281 /* 1282 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1283 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1284 * refcount elevated by one when they're in an LRU. A buffer can only appear 1285 * once in a particular CPU's LRU. A single buffer can be present in multiple 1286 * CPU's LRUs at the same time. 1287 * 1288 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1289 * sb_find_get_block(). 1290 * 1291 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1292 * a local interrupt disable for that. 1293 */ 1294 1295 #define BH_LRU_SIZE 16 1296 1297 struct bh_lru { 1298 struct buffer_head *bhs[BH_LRU_SIZE]; 1299 }; 1300 1301 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1302 1303 #ifdef CONFIG_SMP 1304 #define bh_lru_lock() local_irq_disable() 1305 #define bh_lru_unlock() local_irq_enable() 1306 #else 1307 #define bh_lru_lock() preempt_disable() 1308 #define bh_lru_unlock() preempt_enable() 1309 #endif 1310 1311 static inline void check_irqs_on(void) 1312 { 1313 #ifdef irqs_disabled 1314 BUG_ON(irqs_disabled()); 1315 #endif 1316 } 1317 1318 /* 1319 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1320 * inserted at the front, and the buffer_head at the back if any is evicted. 1321 * Or, if already in the LRU it is moved to the front. 1322 */ 1323 static void bh_lru_install(struct buffer_head *bh) 1324 { 1325 struct buffer_head *evictee = bh; 1326 struct bh_lru *b; 1327 int i; 1328 1329 check_irqs_on(); 1330 bh_lru_lock(); 1331 1332 /* 1333 * the refcount of buffer_head in bh_lru prevents dropping the 1334 * attached page(i.e., try_to_free_buffers) so it could cause 1335 * failing page migration. 1336 * Skip putting upcoming bh into bh_lru until migration is done. 1337 */ 1338 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) { 1339 bh_lru_unlock(); 1340 return; 1341 } 1342 1343 b = this_cpu_ptr(&bh_lrus); 1344 for (i = 0; i < BH_LRU_SIZE; i++) { 1345 swap(evictee, b->bhs[i]); 1346 if (evictee == bh) { 1347 bh_lru_unlock(); 1348 return; 1349 } 1350 } 1351 1352 get_bh(bh); 1353 bh_lru_unlock(); 1354 brelse(evictee); 1355 } 1356 1357 /* 1358 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1359 */ 1360 static struct buffer_head * 1361 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1362 { 1363 struct buffer_head *ret = NULL; 1364 unsigned int i; 1365 1366 check_irqs_on(); 1367 bh_lru_lock(); 1368 if (cpu_is_isolated(smp_processor_id())) { 1369 bh_lru_unlock(); 1370 return NULL; 1371 } 1372 for (i = 0; i < BH_LRU_SIZE; i++) { 1373 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1374 1375 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1376 bh->b_size == size) { 1377 if (i) { 1378 while (i) { 1379 __this_cpu_write(bh_lrus.bhs[i], 1380 __this_cpu_read(bh_lrus.bhs[i - 1])); 1381 i--; 1382 } 1383 __this_cpu_write(bh_lrus.bhs[0], bh); 1384 } 1385 get_bh(bh); 1386 ret = bh; 1387 break; 1388 } 1389 } 1390 bh_lru_unlock(); 1391 return ret; 1392 } 1393 1394 /* 1395 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1396 * it in the LRU and mark it as accessed. If it is not present then return 1397 * NULL. Atomic context callers may also return NULL if the buffer is being 1398 * migrated; similarly the page is not marked accessed either. 1399 */ 1400 static struct buffer_head * 1401 find_get_block_common(struct block_device *bdev, sector_t block, 1402 unsigned size, bool atomic) 1403 { 1404 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1405 1406 if (bh == NULL) { 1407 /* __find_get_block_slow will mark the page accessed */ 1408 bh = __find_get_block_slow(bdev, block, atomic); 1409 if (bh) 1410 bh_lru_install(bh); 1411 } else 1412 touch_buffer(bh); 1413 1414 return bh; 1415 } 1416 1417 struct buffer_head * 1418 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1419 { 1420 return find_get_block_common(bdev, block, size, true); 1421 } 1422 EXPORT_SYMBOL(__find_get_block); 1423 1424 /* same as __find_get_block() but allows sleeping contexts */ 1425 struct buffer_head * 1426 __find_get_block_nonatomic(struct block_device *bdev, sector_t block, 1427 unsigned size) 1428 { 1429 return find_get_block_common(bdev, block, size, false); 1430 } 1431 EXPORT_SYMBOL(__find_get_block_nonatomic); 1432 1433 /** 1434 * bdev_getblk - Get a buffer_head in a block device's buffer cache. 1435 * @bdev: The block device. 1436 * @block: The block number. 1437 * @size: The size of buffer_heads for this @bdev. 1438 * @gfp: The memory allocation flags to use. 1439 * 1440 * The returned buffer head has its reference count incremented, but is 1441 * not locked. The caller should call brelse() when it has finished 1442 * with the buffer. The buffer may not be uptodate. If needed, the 1443 * caller can bring it uptodate either by reading it or overwriting it. 1444 * 1445 * Return: The buffer head, or NULL if memory could not be allocated. 1446 */ 1447 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block, 1448 unsigned size, gfp_t gfp) 1449 { 1450 struct buffer_head *bh; 1451 1452 if (gfpflags_allow_blocking(gfp)) 1453 bh = __find_get_block_nonatomic(bdev, block, size); 1454 else 1455 bh = __find_get_block(bdev, block, size); 1456 1457 might_alloc(gfp); 1458 if (bh) 1459 return bh; 1460 1461 return __getblk_slow(bdev, block, size, gfp); 1462 } 1463 EXPORT_SYMBOL(bdev_getblk); 1464 1465 /* 1466 * Do async read-ahead on a buffer.. 1467 */ 1468 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1469 { 1470 struct buffer_head *bh = bdev_getblk(bdev, block, size, 1471 GFP_NOWAIT | __GFP_MOVABLE); 1472 1473 if (likely(bh)) { 1474 bh_readahead(bh, REQ_RAHEAD); 1475 brelse(bh); 1476 } 1477 } 1478 EXPORT_SYMBOL(__breadahead); 1479 1480 /** 1481 * __bread_gfp() - Read a block. 1482 * @bdev: The block device to read from. 1483 * @block: Block number in units of block size. 1484 * @size: The block size of this device in bytes. 1485 * @gfp: Not page allocation flags; see below. 1486 * 1487 * You are not expected to call this function. You should use one of 1488 * sb_bread(), sb_bread_unmovable() or __bread(). 1489 * 1490 * Read a specified block, and return the buffer head that refers to it. 1491 * If @gfp is 0, the memory will be allocated using the block device's 1492 * default GFP flags. If @gfp is __GFP_MOVABLE, the memory may be 1493 * allocated from a movable area. Do not pass in a complete set of 1494 * GFP flags. 1495 * 1496 * The returned buffer head has its refcount increased. The caller should 1497 * call brelse() when it has finished with the buffer. 1498 * 1499 * Context: May sleep waiting for I/O. 1500 * Return: NULL if the block was unreadable. 1501 */ 1502 struct buffer_head *__bread_gfp(struct block_device *bdev, sector_t block, 1503 unsigned size, gfp_t gfp) 1504 { 1505 struct buffer_head *bh; 1506 1507 gfp |= mapping_gfp_constraint(bdev->bd_mapping, ~__GFP_FS); 1508 1509 /* 1510 * Prefer looping in the allocator rather than here, at least that 1511 * code knows what it's doing. 1512 */ 1513 gfp |= __GFP_NOFAIL; 1514 1515 bh = bdev_getblk(bdev, block, size, gfp); 1516 1517 if (likely(bh) && !buffer_uptodate(bh)) 1518 bh = __bread_slow(bh); 1519 return bh; 1520 } 1521 EXPORT_SYMBOL(__bread_gfp); 1522 1523 static void __invalidate_bh_lrus(struct bh_lru *b) 1524 { 1525 int i; 1526 1527 for (i = 0; i < BH_LRU_SIZE; i++) { 1528 brelse(b->bhs[i]); 1529 b->bhs[i] = NULL; 1530 } 1531 } 1532 /* 1533 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1534 * This doesn't race because it runs in each cpu either in irq 1535 * or with preempt disabled. 1536 */ 1537 static void invalidate_bh_lru(void *arg) 1538 { 1539 struct bh_lru *b = &get_cpu_var(bh_lrus); 1540 1541 __invalidate_bh_lrus(b); 1542 put_cpu_var(bh_lrus); 1543 } 1544 1545 bool has_bh_in_lru(int cpu, void *dummy) 1546 { 1547 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1548 int i; 1549 1550 for (i = 0; i < BH_LRU_SIZE; i++) { 1551 if (b->bhs[i]) 1552 return true; 1553 } 1554 1555 return false; 1556 } 1557 1558 void invalidate_bh_lrus(void) 1559 { 1560 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1561 } 1562 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1563 1564 /* 1565 * It's called from workqueue context so we need a bh_lru_lock to close 1566 * the race with preemption/irq. 1567 */ 1568 void invalidate_bh_lrus_cpu(void) 1569 { 1570 struct bh_lru *b; 1571 1572 bh_lru_lock(); 1573 b = this_cpu_ptr(&bh_lrus); 1574 __invalidate_bh_lrus(b); 1575 bh_lru_unlock(); 1576 } 1577 1578 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1579 unsigned long offset) 1580 { 1581 bh->b_folio = folio; 1582 BUG_ON(offset >= folio_size(folio)); 1583 if (folio_test_highmem(folio)) 1584 /* 1585 * This catches illegal uses and preserves the offset: 1586 */ 1587 bh->b_data = (char *)(0 + offset); 1588 else 1589 bh->b_data = folio_address(folio) + offset; 1590 } 1591 EXPORT_SYMBOL(folio_set_bh); 1592 1593 /* 1594 * Called when truncating a buffer on a page completely. 1595 */ 1596 1597 /* Bits that are cleared during an invalidate */ 1598 #define BUFFER_FLAGS_DISCARD \ 1599 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1600 1 << BH_Delay | 1 << BH_Unwritten) 1601 1602 static void discard_buffer(struct buffer_head * bh) 1603 { 1604 unsigned long b_state; 1605 1606 lock_buffer(bh); 1607 clear_buffer_dirty(bh); 1608 bh->b_bdev = NULL; 1609 b_state = READ_ONCE(bh->b_state); 1610 do { 1611 } while (!try_cmpxchg_relaxed(&bh->b_state, &b_state, 1612 b_state & ~BUFFER_FLAGS_DISCARD)); 1613 unlock_buffer(bh); 1614 } 1615 1616 /** 1617 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1618 * @folio: The folio which is affected. 1619 * @offset: start of the range to invalidate 1620 * @length: length of the range to invalidate 1621 * 1622 * block_invalidate_folio() is called when all or part of the folio has been 1623 * invalidated by a truncate operation. 1624 * 1625 * block_invalidate_folio() does not have to release all buffers, but it must 1626 * ensure that no dirty buffer is left outside @offset and that no I/O 1627 * is underway against any of the blocks which are outside the truncation 1628 * point. Because the caller is about to free (and possibly reuse) those 1629 * blocks on-disk. 1630 */ 1631 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1632 { 1633 struct buffer_head *head, *bh, *next; 1634 size_t curr_off = 0; 1635 size_t stop = length + offset; 1636 1637 BUG_ON(!folio_test_locked(folio)); 1638 1639 /* 1640 * Check for overflow 1641 */ 1642 BUG_ON(stop > folio_size(folio) || stop < length); 1643 1644 head = folio_buffers(folio); 1645 if (!head) 1646 return; 1647 1648 bh = head; 1649 do { 1650 size_t next_off = curr_off + bh->b_size; 1651 next = bh->b_this_page; 1652 1653 /* 1654 * Are we still fully in range ? 1655 */ 1656 if (next_off > stop) 1657 goto out; 1658 1659 /* 1660 * is this block fully invalidated? 1661 */ 1662 if (offset <= curr_off) 1663 discard_buffer(bh); 1664 curr_off = next_off; 1665 bh = next; 1666 } while (bh != head); 1667 1668 /* 1669 * We release buffers only if the entire folio is being invalidated. 1670 * The get_block cached value has been unconditionally invalidated, 1671 * so real IO is not possible anymore. 1672 */ 1673 if (length == folio_size(folio)) 1674 filemap_release_folio(folio, 0); 1675 out: 1676 folio_clear_mappedtodisk(folio); 1677 } 1678 EXPORT_SYMBOL(block_invalidate_folio); 1679 1680 /* 1681 * We attach and possibly dirty the buffers atomically wrt 1682 * block_dirty_folio() via i_private_lock. try_to_free_buffers 1683 * is already excluded via the folio lock. 1684 */ 1685 struct buffer_head *create_empty_buffers(struct folio *folio, 1686 unsigned long blocksize, unsigned long b_state) 1687 { 1688 struct buffer_head *bh, *head, *tail; 1689 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL; 1690 1691 head = folio_alloc_buffers(folio, blocksize, gfp); 1692 bh = head; 1693 do { 1694 bh->b_state |= b_state; 1695 tail = bh; 1696 bh = bh->b_this_page; 1697 } while (bh); 1698 tail->b_this_page = head; 1699 1700 spin_lock(&folio->mapping->i_private_lock); 1701 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1702 bh = head; 1703 do { 1704 if (folio_test_dirty(folio)) 1705 set_buffer_dirty(bh); 1706 if (folio_test_uptodate(folio)) 1707 set_buffer_uptodate(bh); 1708 bh = bh->b_this_page; 1709 } while (bh != head); 1710 } 1711 folio_attach_private(folio, head); 1712 spin_unlock(&folio->mapping->i_private_lock); 1713 1714 return head; 1715 } 1716 EXPORT_SYMBOL(create_empty_buffers); 1717 1718 /** 1719 * clean_bdev_aliases: clean a range of buffers in block device 1720 * @bdev: Block device to clean buffers in 1721 * @block: Start of a range of blocks to clean 1722 * @len: Number of blocks to clean 1723 * 1724 * We are taking a range of blocks for data and we don't want writeback of any 1725 * buffer-cache aliases starting from return from this function and until the 1726 * moment when something will explicitly mark the buffer dirty (hopefully that 1727 * will not happen until we will free that block ;-) We don't even need to mark 1728 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1729 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1730 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1731 * would confuse anyone who might pick it with bread() afterwards... 1732 * 1733 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1734 * writeout I/O going on against recently-freed buffers. We don't wait on that 1735 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1736 * need to. That happens here. 1737 */ 1738 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1739 { 1740 struct address_space *bd_mapping = bdev->bd_mapping; 1741 const int blkbits = bd_mapping->host->i_blkbits; 1742 struct folio_batch fbatch; 1743 pgoff_t index = ((loff_t)block << blkbits) / PAGE_SIZE; 1744 pgoff_t end; 1745 int i, count; 1746 struct buffer_head *bh; 1747 struct buffer_head *head; 1748 1749 end = ((loff_t)(block + len - 1) << blkbits) / PAGE_SIZE; 1750 folio_batch_init(&fbatch); 1751 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1752 count = folio_batch_count(&fbatch); 1753 for (i = 0; i < count; i++) { 1754 struct folio *folio = fbatch.folios[i]; 1755 1756 if (!folio_buffers(folio)) 1757 continue; 1758 /* 1759 * We use folio lock instead of bd_mapping->i_private_lock 1760 * to pin buffers here since we can afford to sleep and 1761 * it scales better than a global spinlock lock. 1762 */ 1763 folio_lock(folio); 1764 /* Recheck when the folio is locked which pins bhs */ 1765 head = folio_buffers(folio); 1766 if (!head) 1767 goto unlock_page; 1768 bh = head; 1769 do { 1770 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1771 goto next; 1772 if (bh->b_blocknr >= block + len) 1773 break; 1774 clear_buffer_dirty(bh); 1775 wait_on_buffer(bh); 1776 clear_buffer_req(bh); 1777 next: 1778 bh = bh->b_this_page; 1779 } while (bh != head); 1780 unlock_page: 1781 folio_unlock(folio); 1782 } 1783 folio_batch_release(&fbatch); 1784 cond_resched(); 1785 /* End of range already reached? */ 1786 if (index > end || !index) 1787 break; 1788 } 1789 } 1790 EXPORT_SYMBOL(clean_bdev_aliases); 1791 1792 static struct buffer_head *folio_create_buffers(struct folio *folio, 1793 struct inode *inode, 1794 unsigned int b_state) 1795 { 1796 struct buffer_head *bh; 1797 1798 BUG_ON(!folio_test_locked(folio)); 1799 1800 bh = folio_buffers(folio); 1801 if (!bh) 1802 bh = create_empty_buffers(folio, 1803 1 << READ_ONCE(inode->i_blkbits), b_state); 1804 return bh; 1805 } 1806 1807 /* 1808 * NOTE! All mapped/uptodate combinations are valid: 1809 * 1810 * Mapped Uptodate Meaning 1811 * 1812 * No No "unknown" - must do get_block() 1813 * No Yes "hole" - zero-filled 1814 * Yes No "allocated" - allocated on disk, not read in 1815 * Yes Yes "valid" - allocated and up-to-date in memory. 1816 * 1817 * "Dirty" is valid only with the last case (mapped+uptodate). 1818 */ 1819 1820 /* 1821 * While block_write_full_folio is writing back the dirty buffers under 1822 * the page lock, whoever dirtied the buffers may decide to clean them 1823 * again at any time. We handle that by only looking at the buffer 1824 * state inside lock_buffer(). 1825 * 1826 * If block_write_full_folio() is called for regular writeback 1827 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1828 * locked buffer. This only can happen if someone has written the buffer 1829 * directly, with submit_bh(). At the address_space level PageWriteback 1830 * prevents this contention from occurring. 1831 * 1832 * If block_write_full_folio() is called with wbc->sync_mode == 1833 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1834 * causes the writes to be flagged as synchronous writes. 1835 */ 1836 int __block_write_full_folio(struct inode *inode, struct folio *folio, 1837 get_block_t *get_block, struct writeback_control *wbc) 1838 { 1839 int err; 1840 sector_t block; 1841 sector_t last_block; 1842 struct buffer_head *bh, *head; 1843 size_t blocksize; 1844 int nr_underway = 0; 1845 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1846 1847 head = folio_create_buffers(folio, inode, 1848 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1849 1850 /* 1851 * Be very careful. We have no exclusion from block_dirty_folio 1852 * here, and the (potentially unmapped) buffers may become dirty at 1853 * any time. If a buffer becomes dirty here after we've inspected it 1854 * then we just miss that fact, and the folio stays dirty. 1855 * 1856 * Buffers outside i_size may be dirtied by block_dirty_folio; 1857 * handle that here by just cleaning them. 1858 */ 1859 1860 bh = head; 1861 blocksize = bh->b_size; 1862 1863 block = div_u64(folio_pos(folio), blocksize); 1864 last_block = div_u64(i_size_read(inode) - 1, blocksize); 1865 1866 /* 1867 * Get all the dirty buffers mapped to disk addresses and 1868 * handle any aliases from the underlying blockdev's mapping. 1869 */ 1870 do { 1871 if (block > last_block) { 1872 /* 1873 * mapped buffers outside i_size will occur, because 1874 * this folio can be outside i_size when there is a 1875 * truncate in progress. 1876 */ 1877 /* 1878 * The buffer was zeroed by block_write_full_folio() 1879 */ 1880 clear_buffer_dirty(bh); 1881 set_buffer_uptodate(bh); 1882 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1883 buffer_dirty(bh)) { 1884 WARN_ON(bh->b_size != blocksize); 1885 err = get_block(inode, block, bh, 1); 1886 if (err) 1887 goto recover; 1888 clear_buffer_delay(bh); 1889 if (buffer_new(bh)) { 1890 /* blockdev mappings never come here */ 1891 clear_buffer_new(bh); 1892 clean_bdev_bh_alias(bh); 1893 } 1894 } 1895 bh = bh->b_this_page; 1896 block++; 1897 } while (bh != head); 1898 1899 do { 1900 if (!buffer_mapped(bh)) 1901 continue; 1902 /* 1903 * If it's a fully non-blocking write attempt and we cannot 1904 * lock the buffer then redirty the folio. Note that this can 1905 * potentially cause a busy-wait loop from writeback threads 1906 * and kswapd activity, but those code paths have their own 1907 * higher-level throttling. 1908 */ 1909 if (wbc->sync_mode != WB_SYNC_NONE) { 1910 lock_buffer(bh); 1911 } else if (!trylock_buffer(bh)) { 1912 folio_redirty_for_writepage(wbc, folio); 1913 continue; 1914 } 1915 if (test_clear_buffer_dirty(bh)) { 1916 mark_buffer_async_write_endio(bh, 1917 end_buffer_async_write); 1918 } else { 1919 unlock_buffer(bh); 1920 } 1921 } while ((bh = bh->b_this_page) != head); 1922 1923 /* 1924 * The folio and its buffers are protected by the writeback flag, 1925 * so we can drop the bh refcounts early. 1926 */ 1927 BUG_ON(folio_test_writeback(folio)); 1928 folio_start_writeback(folio); 1929 1930 do { 1931 struct buffer_head *next = bh->b_this_page; 1932 if (buffer_async_write(bh)) { 1933 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1934 inode->i_write_hint, wbc); 1935 nr_underway++; 1936 } 1937 bh = next; 1938 } while (bh != head); 1939 folio_unlock(folio); 1940 1941 err = 0; 1942 done: 1943 if (nr_underway == 0) { 1944 /* 1945 * The folio was marked dirty, but the buffers were 1946 * clean. Someone wrote them back by hand with 1947 * write_dirty_buffer/submit_bh. A rare case. 1948 */ 1949 folio_end_writeback(folio); 1950 1951 /* 1952 * The folio and buffer_heads can be released at any time from 1953 * here on. 1954 */ 1955 } 1956 return err; 1957 1958 recover: 1959 /* 1960 * ENOSPC, or some other error. We may already have added some 1961 * blocks to the file, so we need to write these out to avoid 1962 * exposing stale data. 1963 * The folio is currently locked and not marked for writeback 1964 */ 1965 bh = head; 1966 /* Recovery: lock and submit the mapped buffers */ 1967 do { 1968 if (buffer_mapped(bh) && buffer_dirty(bh) && 1969 !buffer_delay(bh)) { 1970 lock_buffer(bh); 1971 mark_buffer_async_write_endio(bh, 1972 end_buffer_async_write); 1973 } else { 1974 /* 1975 * The buffer may have been set dirty during 1976 * attachment to a dirty folio. 1977 */ 1978 clear_buffer_dirty(bh); 1979 } 1980 } while ((bh = bh->b_this_page) != head); 1981 BUG_ON(folio_test_writeback(folio)); 1982 mapping_set_error(folio->mapping, err); 1983 folio_start_writeback(folio); 1984 do { 1985 struct buffer_head *next = bh->b_this_page; 1986 if (buffer_async_write(bh)) { 1987 clear_buffer_dirty(bh); 1988 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, 1989 inode->i_write_hint, wbc); 1990 nr_underway++; 1991 } 1992 bh = next; 1993 } while (bh != head); 1994 folio_unlock(folio); 1995 goto done; 1996 } 1997 EXPORT_SYMBOL(__block_write_full_folio); 1998 1999 /* 2000 * If a folio has any new buffers, zero them out here, and mark them uptodate 2001 * and dirty so they'll be written out (in order to prevent uninitialised 2002 * block data from leaking). And clear the new bit. 2003 */ 2004 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) 2005 { 2006 size_t block_start, block_end; 2007 struct buffer_head *head, *bh; 2008 2009 BUG_ON(!folio_test_locked(folio)); 2010 head = folio_buffers(folio); 2011 if (!head) 2012 return; 2013 2014 bh = head; 2015 block_start = 0; 2016 do { 2017 block_end = block_start + bh->b_size; 2018 2019 if (buffer_new(bh)) { 2020 if (block_end > from && block_start < to) { 2021 if (!folio_test_uptodate(folio)) { 2022 size_t start, xend; 2023 2024 start = max(from, block_start); 2025 xend = min(to, block_end); 2026 2027 folio_zero_segment(folio, start, xend); 2028 set_buffer_uptodate(bh); 2029 } 2030 2031 clear_buffer_new(bh); 2032 mark_buffer_dirty(bh); 2033 } 2034 } 2035 2036 block_start = block_end; 2037 bh = bh->b_this_page; 2038 } while (bh != head); 2039 } 2040 EXPORT_SYMBOL(folio_zero_new_buffers); 2041 2042 static int 2043 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 2044 const struct iomap *iomap) 2045 { 2046 loff_t offset = (loff_t)block << inode->i_blkbits; 2047 2048 bh->b_bdev = iomap->bdev; 2049 2050 /* 2051 * Block points to offset in file we need to map, iomap contains 2052 * the offset at which the map starts. If the map ends before the 2053 * current block, then do not map the buffer and let the caller 2054 * handle it. 2055 */ 2056 if (offset >= iomap->offset + iomap->length) 2057 return -EIO; 2058 2059 switch (iomap->type) { 2060 case IOMAP_HOLE: 2061 /* 2062 * If the buffer is not up to date or beyond the current EOF, 2063 * we need to mark it as new to ensure sub-block zeroing is 2064 * executed if necessary. 2065 */ 2066 if (!buffer_uptodate(bh) || 2067 (offset >= i_size_read(inode))) 2068 set_buffer_new(bh); 2069 return 0; 2070 case IOMAP_DELALLOC: 2071 if (!buffer_uptodate(bh) || 2072 (offset >= i_size_read(inode))) 2073 set_buffer_new(bh); 2074 set_buffer_uptodate(bh); 2075 set_buffer_mapped(bh); 2076 set_buffer_delay(bh); 2077 return 0; 2078 case IOMAP_UNWRITTEN: 2079 /* 2080 * For unwritten regions, we always need to ensure that regions 2081 * in the block we are not writing to are zeroed. Mark the 2082 * buffer as new to ensure this. 2083 */ 2084 set_buffer_new(bh); 2085 set_buffer_unwritten(bh); 2086 fallthrough; 2087 case IOMAP_MAPPED: 2088 if ((iomap->flags & IOMAP_F_NEW) || 2089 offset >= i_size_read(inode)) { 2090 /* 2091 * This can happen if truncating the block device races 2092 * with the check in the caller as i_size updates on 2093 * block devices aren't synchronized by i_rwsem for 2094 * block devices. 2095 */ 2096 if (S_ISBLK(inode->i_mode)) 2097 return -EIO; 2098 set_buffer_new(bh); 2099 } 2100 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2101 inode->i_blkbits; 2102 set_buffer_mapped(bh); 2103 return 0; 2104 default: 2105 WARN_ON_ONCE(1); 2106 return -EIO; 2107 } 2108 } 2109 2110 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2111 get_block_t *get_block, const struct iomap *iomap) 2112 { 2113 size_t from = offset_in_folio(folio, pos); 2114 size_t to = from + len; 2115 struct inode *inode = folio->mapping->host; 2116 size_t block_start, block_end; 2117 sector_t block; 2118 int err = 0; 2119 size_t blocksize; 2120 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2121 2122 BUG_ON(!folio_test_locked(folio)); 2123 BUG_ON(to > folio_size(folio)); 2124 BUG_ON(from > to); 2125 2126 head = folio_create_buffers(folio, inode, 0); 2127 blocksize = head->b_size; 2128 block = div_u64(folio_pos(folio), blocksize); 2129 2130 for (bh = head, block_start = 0; bh != head || !block_start; 2131 block++, block_start=block_end, bh = bh->b_this_page) { 2132 block_end = block_start + blocksize; 2133 if (block_end <= from || block_start >= to) { 2134 if (folio_test_uptodate(folio)) { 2135 if (!buffer_uptodate(bh)) 2136 set_buffer_uptodate(bh); 2137 } 2138 continue; 2139 } 2140 if (buffer_new(bh)) 2141 clear_buffer_new(bh); 2142 if (!buffer_mapped(bh)) { 2143 WARN_ON(bh->b_size != blocksize); 2144 if (get_block) 2145 err = get_block(inode, block, bh, 1); 2146 else 2147 err = iomap_to_bh(inode, block, bh, iomap); 2148 if (err) 2149 break; 2150 2151 if (buffer_new(bh)) { 2152 clean_bdev_bh_alias(bh); 2153 if (folio_test_uptodate(folio)) { 2154 clear_buffer_new(bh); 2155 set_buffer_uptodate(bh); 2156 mark_buffer_dirty(bh); 2157 continue; 2158 } 2159 if (block_end > to || block_start < from) 2160 folio_zero_segments(folio, 2161 to, block_end, 2162 block_start, from); 2163 continue; 2164 } 2165 } 2166 if (folio_test_uptodate(folio)) { 2167 if (!buffer_uptodate(bh)) 2168 set_buffer_uptodate(bh); 2169 continue; 2170 } 2171 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2172 !buffer_unwritten(bh) && 2173 (block_start < from || block_end > to)) { 2174 bh_read_nowait(bh, 0); 2175 *wait_bh++=bh; 2176 } 2177 } 2178 /* 2179 * If we issued read requests - let them complete. 2180 */ 2181 while(wait_bh > wait) { 2182 wait_on_buffer(*--wait_bh); 2183 if (!buffer_uptodate(*wait_bh)) 2184 err = -EIO; 2185 } 2186 if (unlikely(err)) 2187 folio_zero_new_buffers(folio, from, to); 2188 return err; 2189 } 2190 2191 int __block_write_begin(struct folio *folio, loff_t pos, unsigned len, 2192 get_block_t *get_block) 2193 { 2194 return __block_write_begin_int(folio, pos, len, get_block, NULL); 2195 } 2196 EXPORT_SYMBOL(__block_write_begin); 2197 2198 void block_commit_write(struct folio *folio, size_t from, size_t to) 2199 { 2200 size_t block_start, block_end; 2201 bool partial = false; 2202 unsigned blocksize; 2203 struct buffer_head *bh, *head; 2204 2205 bh = head = folio_buffers(folio); 2206 if (!bh) 2207 return; 2208 blocksize = bh->b_size; 2209 2210 block_start = 0; 2211 do { 2212 block_end = block_start + blocksize; 2213 if (block_end <= from || block_start >= to) { 2214 if (!buffer_uptodate(bh)) 2215 partial = true; 2216 } else { 2217 set_buffer_uptodate(bh); 2218 mark_buffer_dirty(bh); 2219 } 2220 if (buffer_new(bh)) 2221 clear_buffer_new(bh); 2222 2223 block_start = block_end; 2224 bh = bh->b_this_page; 2225 } while (bh != head); 2226 2227 /* 2228 * If this is a partial write which happened to make all buffers 2229 * uptodate then we can optimize away a bogus read_folio() for 2230 * the next read(). Here we 'discover' whether the folio went 2231 * uptodate as a result of this (potentially partial) write. 2232 */ 2233 if (!partial) 2234 folio_mark_uptodate(folio); 2235 } 2236 EXPORT_SYMBOL(block_commit_write); 2237 2238 /* 2239 * block_write_begin takes care of the basic task of block allocation and 2240 * bringing partial write blocks uptodate first. 2241 * 2242 * The filesystem needs to handle block truncation upon failure. 2243 */ 2244 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2245 struct folio **foliop, get_block_t *get_block) 2246 { 2247 pgoff_t index = pos >> PAGE_SHIFT; 2248 struct folio *folio; 2249 int status; 2250 2251 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2252 mapping_gfp_mask(mapping)); 2253 if (IS_ERR(folio)) 2254 return PTR_ERR(folio); 2255 2256 status = __block_write_begin_int(folio, pos, len, get_block, NULL); 2257 if (unlikely(status)) { 2258 folio_unlock(folio); 2259 folio_put(folio); 2260 folio = NULL; 2261 } 2262 2263 *foliop = folio; 2264 return status; 2265 } 2266 EXPORT_SYMBOL(block_write_begin); 2267 2268 int block_write_end(loff_t pos, unsigned len, unsigned copied, 2269 struct folio *folio) 2270 { 2271 size_t start = pos - folio_pos(folio); 2272 2273 if (unlikely(copied < len)) { 2274 /* 2275 * The buffers that were written will now be uptodate, so 2276 * we don't have to worry about a read_folio reading them 2277 * and overwriting a partial write. However if we have 2278 * encountered a short write and only partially written 2279 * into a buffer, it will not be marked uptodate, so a 2280 * read_folio might come in and destroy our partial write. 2281 * 2282 * Do the simplest thing, and just treat any short write to a 2283 * non uptodate folio as a zero-length write, and force the 2284 * caller to redo the whole thing. 2285 */ 2286 if (!folio_test_uptodate(folio)) 2287 copied = 0; 2288 2289 folio_zero_new_buffers(folio, start+copied, start+len); 2290 } 2291 flush_dcache_folio(folio); 2292 2293 /* This could be a short (even 0-length) commit */ 2294 block_commit_write(folio, start, start + copied); 2295 2296 return copied; 2297 } 2298 EXPORT_SYMBOL(block_write_end); 2299 2300 int generic_write_end(const struct kiocb *iocb, struct address_space *mapping, 2301 loff_t pos, unsigned len, unsigned copied, 2302 struct folio *folio, void *fsdata) 2303 { 2304 struct inode *inode = mapping->host; 2305 loff_t old_size = inode->i_size; 2306 bool i_size_changed = false; 2307 2308 copied = block_write_end(pos, len, copied, folio); 2309 2310 /* 2311 * No need to use i_size_read() here, the i_size cannot change under us 2312 * because we hold i_rwsem. 2313 * 2314 * But it's important to update i_size while still holding folio lock: 2315 * page writeout could otherwise come in and zero beyond i_size. 2316 */ 2317 if (pos + copied > inode->i_size) { 2318 i_size_write(inode, pos + copied); 2319 i_size_changed = true; 2320 } 2321 2322 folio_unlock(folio); 2323 folio_put(folio); 2324 2325 if (old_size < pos) 2326 pagecache_isize_extended(inode, old_size, pos); 2327 /* 2328 * Don't mark the inode dirty under page lock. First, it unnecessarily 2329 * makes the holding time of page lock longer. Second, it forces lock 2330 * ordering of page lock and transaction start for journaling 2331 * filesystems. 2332 */ 2333 if (i_size_changed) 2334 mark_inode_dirty(inode); 2335 return copied; 2336 } 2337 EXPORT_SYMBOL(generic_write_end); 2338 2339 /* 2340 * block_is_partially_uptodate checks whether buffers within a folio are 2341 * uptodate or not. 2342 * 2343 * Returns true if all buffers which correspond to the specified part 2344 * of the folio are uptodate. 2345 */ 2346 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2347 { 2348 unsigned block_start, block_end, blocksize; 2349 unsigned to; 2350 struct buffer_head *bh, *head; 2351 bool ret = true; 2352 2353 head = folio_buffers(folio); 2354 if (!head) 2355 return false; 2356 blocksize = head->b_size; 2357 to = min_t(unsigned, folio_size(folio) - from, count); 2358 to = from + to; 2359 if (from < blocksize && to > folio_size(folio) - blocksize) 2360 return false; 2361 2362 bh = head; 2363 block_start = 0; 2364 do { 2365 block_end = block_start + blocksize; 2366 if (block_end > from && block_start < to) { 2367 if (!buffer_uptodate(bh)) { 2368 ret = false; 2369 break; 2370 } 2371 if (block_end >= to) 2372 break; 2373 } 2374 block_start = block_end; 2375 bh = bh->b_this_page; 2376 } while (bh != head); 2377 2378 return ret; 2379 } 2380 EXPORT_SYMBOL(block_is_partially_uptodate); 2381 2382 /* 2383 * Generic "read_folio" function for block devices that have the normal 2384 * get_block functionality. This is most of the block device filesystems. 2385 * Reads the folio asynchronously --- the unlock_buffer() and 2386 * set/clear_buffer_uptodate() functions propagate buffer state into the 2387 * folio once IO has completed. 2388 */ 2389 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2390 { 2391 struct inode *inode = folio->mapping->host; 2392 sector_t iblock, lblock; 2393 struct buffer_head *bh, *head, *prev = NULL; 2394 size_t blocksize; 2395 int fully_mapped = 1; 2396 bool page_error = false; 2397 loff_t limit = i_size_read(inode); 2398 2399 /* This is needed for ext4. */ 2400 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2401 limit = inode->i_sb->s_maxbytes; 2402 2403 head = folio_create_buffers(folio, inode, 0); 2404 blocksize = head->b_size; 2405 2406 iblock = div_u64(folio_pos(folio), blocksize); 2407 lblock = div_u64(limit + blocksize - 1, blocksize); 2408 bh = head; 2409 2410 do { 2411 if (buffer_uptodate(bh)) 2412 continue; 2413 2414 if (!buffer_mapped(bh)) { 2415 int err = 0; 2416 2417 fully_mapped = 0; 2418 if (iblock < lblock) { 2419 WARN_ON(bh->b_size != blocksize); 2420 err = get_block(inode, iblock, bh, 0); 2421 if (err) 2422 page_error = true; 2423 } 2424 if (!buffer_mapped(bh)) { 2425 folio_zero_range(folio, bh_offset(bh), 2426 blocksize); 2427 if (!err) 2428 set_buffer_uptodate(bh); 2429 continue; 2430 } 2431 /* 2432 * get_block() might have updated the buffer 2433 * synchronously 2434 */ 2435 if (buffer_uptodate(bh)) 2436 continue; 2437 } 2438 2439 lock_buffer(bh); 2440 if (buffer_uptodate(bh)) { 2441 unlock_buffer(bh); 2442 continue; 2443 } 2444 2445 mark_buffer_async_read(bh); 2446 if (prev) 2447 submit_bh(REQ_OP_READ, prev); 2448 prev = bh; 2449 } while (iblock++, (bh = bh->b_this_page) != head); 2450 2451 if (fully_mapped) 2452 folio_set_mappedtodisk(folio); 2453 2454 /* 2455 * All buffers are uptodate or get_block() returned an error 2456 * when trying to map them - we must finish the read because 2457 * end_buffer_async_read() will never be called on any buffer 2458 * in this folio. 2459 */ 2460 if (prev) 2461 submit_bh(REQ_OP_READ, prev); 2462 else 2463 folio_end_read(folio, !page_error); 2464 2465 return 0; 2466 } 2467 EXPORT_SYMBOL(block_read_full_folio); 2468 2469 /* utility function for filesystems that need to do work on expanding 2470 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2471 * deal with the hole. 2472 */ 2473 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2474 { 2475 struct address_space *mapping = inode->i_mapping; 2476 const struct address_space_operations *aops = mapping->a_ops; 2477 struct folio *folio; 2478 void *fsdata = NULL; 2479 int err; 2480 2481 err = inode_newsize_ok(inode, size); 2482 if (err) 2483 goto out; 2484 2485 err = aops->write_begin(NULL, mapping, size, 0, &folio, &fsdata); 2486 if (err) 2487 goto out; 2488 2489 err = aops->write_end(NULL, mapping, size, 0, 0, folio, fsdata); 2490 BUG_ON(err > 0); 2491 2492 out: 2493 return err; 2494 } 2495 EXPORT_SYMBOL(generic_cont_expand_simple); 2496 2497 static int cont_expand_zero(const struct kiocb *iocb, 2498 struct address_space *mapping, 2499 loff_t pos, loff_t *bytes) 2500 { 2501 struct inode *inode = mapping->host; 2502 const struct address_space_operations *aops = mapping->a_ops; 2503 unsigned int blocksize = i_blocksize(inode); 2504 struct folio *folio; 2505 void *fsdata = NULL; 2506 pgoff_t index, curidx; 2507 loff_t curpos; 2508 unsigned zerofrom, offset, len; 2509 int err = 0; 2510 2511 index = pos >> PAGE_SHIFT; 2512 offset = pos & ~PAGE_MASK; 2513 2514 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2515 zerofrom = curpos & ~PAGE_MASK; 2516 if (zerofrom & (blocksize-1)) { 2517 *bytes |= (blocksize-1); 2518 (*bytes)++; 2519 } 2520 len = PAGE_SIZE - zerofrom; 2521 2522 err = aops->write_begin(iocb, mapping, curpos, len, 2523 &folio, &fsdata); 2524 if (err) 2525 goto out; 2526 folio_zero_range(folio, offset_in_folio(folio, curpos), len); 2527 err = aops->write_end(iocb, mapping, curpos, len, len, 2528 folio, fsdata); 2529 if (err < 0) 2530 goto out; 2531 BUG_ON(err != len); 2532 err = 0; 2533 2534 balance_dirty_pages_ratelimited(mapping); 2535 2536 if (fatal_signal_pending(current)) { 2537 err = -EINTR; 2538 goto out; 2539 } 2540 } 2541 2542 /* page covers the boundary, find the boundary offset */ 2543 if (index == curidx) { 2544 zerofrom = curpos & ~PAGE_MASK; 2545 /* if we will expand the thing last block will be filled */ 2546 if (offset <= zerofrom) { 2547 goto out; 2548 } 2549 if (zerofrom & (blocksize-1)) { 2550 *bytes |= (blocksize-1); 2551 (*bytes)++; 2552 } 2553 len = offset - zerofrom; 2554 2555 err = aops->write_begin(iocb, mapping, curpos, len, 2556 &folio, &fsdata); 2557 if (err) 2558 goto out; 2559 folio_zero_range(folio, offset_in_folio(folio, curpos), len); 2560 err = aops->write_end(iocb, mapping, curpos, len, len, 2561 folio, fsdata); 2562 if (err < 0) 2563 goto out; 2564 BUG_ON(err != len); 2565 err = 0; 2566 } 2567 out: 2568 return err; 2569 } 2570 2571 /* 2572 * For moronic filesystems that do not allow holes in file. 2573 * We may have to extend the file. 2574 */ 2575 int cont_write_begin(const struct kiocb *iocb, struct address_space *mapping, 2576 loff_t pos, unsigned len, struct folio **foliop, 2577 void **fsdata, get_block_t *get_block, loff_t *bytes) 2578 { 2579 struct inode *inode = mapping->host; 2580 unsigned int blocksize = i_blocksize(inode); 2581 unsigned int zerofrom; 2582 int err; 2583 2584 err = cont_expand_zero(iocb, mapping, pos, bytes); 2585 if (err) 2586 return err; 2587 2588 zerofrom = *bytes & ~PAGE_MASK; 2589 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2590 *bytes |= (blocksize-1); 2591 (*bytes)++; 2592 } 2593 2594 return block_write_begin(mapping, pos, len, foliop, get_block); 2595 } 2596 EXPORT_SYMBOL(cont_write_begin); 2597 2598 /* 2599 * block_page_mkwrite() is not allowed to change the file size as it gets 2600 * called from a page fault handler when a page is first dirtied. Hence we must 2601 * be careful to check for EOF conditions here. We set the page up correctly 2602 * for a written page which means we get ENOSPC checking when writing into 2603 * holes and correct delalloc and unwritten extent mapping on filesystems that 2604 * support these features. 2605 * 2606 * We are not allowed to take the i_rwsem here so we have to play games to 2607 * protect against truncate races as the page could now be beyond EOF. Because 2608 * truncate writes the inode size before removing pages, once we have the 2609 * page lock we can determine safely if the page is beyond EOF. If it is not 2610 * beyond EOF, then the page is guaranteed safe against truncation until we 2611 * unlock the page. 2612 * 2613 * Direct callers of this function should protect against filesystem freezing 2614 * using sb_start_pagefault() - sb_end_pagefault() functions. 2615 */ 2616 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2617 get_block_t get_block) 2618 { 2619 struct folio *folio = page_folio(vmf->page); 2620 struct inode *inode = file_inode(vma->vm_file); 2621 unsigned long end; 2622 loff_t size; 2623 int ret; 2624 2625 folio_lock(folio); 2626 size = i_size_read(inode); 2627 if ((folio->mapping != inode->i_mapping) || 2628 (folio_pos(folio) >= size)) { 2629 /* We overload EFAULT to mean page got truncated */ 2630 ret = -EFAULT; 2631 goto out_unlock; 2632 } 2633 2634 end = folio_size(folio); 2635 /* folio is wholly or partially inside EOF */ 2636 if (folio_pos(folio) + end > size) 2637 end = size - folio_pos(folio); 2638 2639 ret = __block_write_begin_int(folio, 0, end, get_block, NULL); 2640 if (unlikely(ret)) 2641 goto out_unlock; 2642 2643 block_commit_write(folio, 0, end); 2644 2645 folio_mark_dirty(folio); 2646 folio_wait_stable(folio); 2647 return 0; 2648 out_unlock: 2649 folio_unlock(folio); 2650 return ret; 2651 } 2652 EXPORT_SYMBOL(block_page_mkwrite); 2653 2654 int block_truncate_page(struct address_space *mapping, 2655 loff_t from, get_block_t *get_block) 2656 { 2657 pgoff_t index = from >> PAGE_SHIFT; 2658 unsigned blocksize; 2659 sector_t iblock; 2660 size_t offset, length, pos; 2661 struct inode *inode = mapping->host; 2662 struct folio *folio; 2663 struct buffer_head *bh; 2664 int err = 0; 2665 2666 blocksize = i_blocksize(inode); 2667 length = from & (blocksize - 1); 2668 2669 /* Block boundary? Nothing to do */ 2670 if (!length) 2671 return 0; 2672 2673 length = blocksize - length; 2674 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits; 2675 2676 folio = filemap_grab_folio(mapping, index); 2677 if (IS_ERR(folio)) 2678 return PTR_ERR(folio); 2679 2680 bh = folio_buffers(folio); 2681 if (!bh) 2682 bh = create_empty_buffers(folio, blocksize, 0); 2683 2684 /* Find the buffer that contains "offset" */ 2685 offset = offset_in_folio(folio, from); 2686 pos = blocksize; 2687 while (offset >= pos) { 2688 bh = bh->b_this_page; 2689 iblock++; 2690 pos += blocksize; 2691 } 2692 2693 if (!buffer_mapped(bh)) { 2694 WARN_ON(bh->b_size != blocksize); 2695 err = get_block(inode, iblock, bh, 0); 2696 if (err) 2697 goto unlock; 2698 /* unmapped? It's a hole - nothing to do */ 2699 if (!buffer_mapped(bh)) 2700 goto unlock; 2701 } 2702 2703 /* Ok, it's mapped. Make sure it's up-to-date */ 2704 if (folio_test_uptodate(folio)) 2705 set_buffer_uptodate(bh); 2706 2707 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2708 err = bh_read(bh, 0); 2709 /* Uhhuh. Read error. Complain and punt. */ 2710 if (err < 0) 2711 goto unlock; 2712 } 2713 2714 folio_zero_range(folio, offset, length); 2715 mark_buffer_dirty(bh); 2716 2717 unlock: 2718 folio_unlock(folio); 2719 folio_put(folio); 2720 2721 return err; 2722 } 2723 EXPORT_SYMBOL(block_truncate_page); 2724 2725 /* 2726 * The generic write folio function for buffer-backed address_spaces 2727 */ 2728 int block_write_full_folio(struct folio *folio, struct writeback_control *wbc, 2729 void *get_block) 2730 { 2731 struct inode * const inode = folio->mapping->host; 2732 loff_t i_size = i_size_read(inode); 2733 2734 /* Is the folio fully inside i_size? */ 2735 if (folio_pos(folio) + folio_size(folio) <= i_size) 2736 return __block_write_full_folio(inode, folio, get_block, wbc); 2737 2738 /* Is the folio fully outside i_size? (truncate in progress) */ 2739 if (folio_pos(folio) >= i_size) { 2740 folio_unlock(folio); 2741 return 0; /* don't care */ 2742 } 2743 2744 /* 2745 * The folio straddles i_size. It must be zeroed out on each and every 2746 * writeback invocation because it may be mmapped. "A file is mapped 2747 * in multiples of the page size. For a file that is not a multiple of 2748 * the page size, the remaining memory is zeroed when mapped, and 2749 * writes to that region are not written out to the file." 2750 */ 2751 folio_zero_segment(folio, offset_in_folio(folio, i_size), 2752 folio_size(folio)); 2753 return __block_write_full_folio(inode, folio, get_block, wbc); 2754 } 2755 2756 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2757 get_block_t *get_block) 2758 { 2759 struct inode *inode = mapping->host; 2760 struct buffer_head tmp = { 2761 .b_size = i_blocksize(inode), 2762 }; 2763 2764 get_block(inode, block, &tmp, 0); 2765 return tmp.b_blocknr; 2766 } 2767 EXPORT_SYMBOL(generic_block_bmap); 2768 2769 static void end_bio_bh_io_sync(struct bio *bio) 2770 { 2771 struct buffer_head *bh = bio->bi_private; 2772 2773 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2774 set_bit(BH_Quiet, &bh->b_state); 2775 2776 bh->b_end_io(bh, !bio->bi_status); 2777 bio_put(bio); 2778 } 2779 2780 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2781 enum rw_hint write_hint, 2782 struct writeback_control *wbc) 2783 { 2784 const enum req_op op = opf & REQ_OP_MASK; 2785 struct bio *bio; 2786 2787 BUG_ON(!buffer_locked(bh)); 2788 BUG_ON(!buffer_mapped(bh)); 2789 BUG_ON(!bh->b_end_io); 2790 BUG_ON(buffer_delay(bh)); 2791 BUG_ON(buffer_unwritten(bh)); 2792 2793 /* 2794 * Only clear out a write error when rewriting 2795 */ 2796 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2797 clear_buffer_write_io_error(bh); 2798 2799 if (buffer_meta(bh)) 2800 opf |= REQ_META; 2801 if (buffer_prio(bh)) 2802 opf |= REQ_PRIO; 2803 2804 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2805 2806 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2807 2808 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2809 bio->bi_write_hint = write_hint; 2810 2811 bio_add_folio_nofail(bio, bh->b_folio, bh->b_size, bh_offset(bh)); 2812 2813 bio->bi_end_io = end_bio_bh_io_sync; 2814 bio->bi_private = bh; 2815 2816 /* Take care of bh's that straddle the end of the device */ 2817 guard_bio_eod(bio); 2818 2819 if (wbc) { 2820 wbc_init_bio(wbc, bio); 2821 wbc_account_cgroup_owner(wbc, bh->b_folio, bh->b_size); 2822 } 2823 2824 submit_bio(bio); 2825 } 2826 2827 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2828 { 2829 submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL); 2830 } 2831 EXPORT_SYMBOL(submit_bh); 2832 2833 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2834 { 2835 lock_buffer(bh); 2836 if (!test_clear_buffer_dirty(bh)) { 2837 unlock_buffer(bh); 2838 return; 2839 } 2840 bh->b_end_io = end_buffer_write_sync; 2841 get_bh(bh); 2842 submit_bh(REQ_OP_WRITE | op_flags, bh); 2843 } 2844 EXPORT_SYMBOL(write_dirty_buffer); 2845 2846 /* 2847 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2848 * and then start new I/O and then wait upon it. The caller must have a ref on 2849 * the buffer_head. 2850 */ 2851 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2852 { 2853 WARN_ON(atomic_read(&bh->b_count) < 1); 2854 lock_buffer(bh); 2855 if (test_clear_buffer_dirty(bh)) { 2856 /* 2857 * The bh should be mapped, but it might not be if the 2858 * device was hot-removed. Not much we can do but fail the I/O. 2859 */ 2860 if (!buffer_mapped(bh)) { 2861 unlock_buffer(bh); 2862 return -EIO; 2863 } 2864 2865 get_bh(bh); 2866 bh->b_end_io = end_buffer_write_sync; 2867 submit_bh(REQ_OP_WRITE | op_flags, bh); 2868 wait_on_buffer(bh); 2869 if (!buffer_uptodate(bh)) 2870 return -EIO; 2871 } else { 2872 unlock_buffer(bh); 2873 } 2874 return 0; 2875 } 2876 EXPORT_SYMBOL(__sync_dirty_buffer); 2877 2878 int sync_dirty_buffer(struct buffer_head *bh) 2879 { 2880 return __sync_dirty_buffer(bh, REQ_SYNC); 2881 } 2882 EXPORT_SYMBOL(sync_dirty_buffer); 2883 2884 static inline int buffer_busy(struct buffer_head *bh) 2885 { 2886 return atomic_read(&bh->b_count) | 2887 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2888 } 2889 2890 static bool 2891 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2892 { 2893 struct buffer_head *head = folio_buffers(folio); 2894 struct buffer_head *bh; 2895 2896 bh = head; 2897 do { 2898 if (buffer_busy(bh)) 2899 goto failed; 2900 bh = bh->b_this_page; 2901 } while (bh != head); 2902 2903 do { 2904 struct buffer_head *next = bh->b_this_page; 2905 2906 if (bh->b_assoc_map) 2907 __remove_assoc_queue(bh); 2908 bh = next; 2909 } while (bh != head); 2910 *buffers_to_free = head; 2911 folio_detach_private(folio); 2912 return true; 2913 failed: 2914 return false; 2915 } 2916 2917 /** 2918 * try_to_free_buffers - Release buffers attached to this folio. 2919 * @folio: The folio. 2920 * 2921 * If any buffers are in use (dirty, under writeback, elevated refcount), 2922 * no buffers will be freed. 2923 * 2924 * If the folio is dirty but all the buffers are clean then we need to 2925 * be sure to mark the folio clean as well. This is because the folio 2926 * may be against a block device, and a later reattachment of buffers 2927 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2928 * filesystem data on the same device. 2929 * 2930 * The same applies to regular filesystem folios: if all the buffers are 2931 * clean then we set the folio clean and proceed. To do that, we require 2932 * total exclusion from block_dirty_folio(). That is obtained with 2933 * i_private_lock. 2934 * 2935 * Exclusion against try_to_free_buffers may be obtained by either 2936 * locking the folio or by holding its mapping's i_private_lock. 2937 * 2938 * Context: Process context. @folio must be locked. Will not sleep. 2939 * Return: true if all buffers attached to this folio were freed. 2940 */ 2941 bool try_to_free_buffers(struct folio *folio) 2942 { 2943 struct address_space * const mapping = folio->mapping; 2944 struct buffer_head *buffers_to_free = NULL; 2945 bool ret = 0; 2946 2947 BUG_ON(!folio_test_locked(folio)); 2948 if (folio_test_writeback(folio)) 2949 return false; 2950 2951 if (mapping == NULL) { /* can this still happen? */ 2952 ret = drop_buffers(folio, &buffers_to_free); 2953 goto out; 2954 } 2955 2956 spin_lock(&mapping->i_private_lock); 2957 ret = drop_buffers(folio, &buffers_to_free); 2958 2959 /* 2960 * If the filesystem writes its buffers by hand (eg ext3) 2961 * then we can have clean buffers against a dirty folio. We 2962 * clean the folio here; otherwise the VM will never notice 2963 * that the filesystem did any IO at all. 2964 * 2965 * Also, during truncate, discard_buffer will have marked all 2966 * the folio's buffers clean. We discover that here and clean 2967 * the folio also. 2968 * 2969 * i_private_lock must be held over this entire operation in order 2970 * to synchronise against block_dirty_folio and prevent the 2971 * dirty bit from being lost. 2972 */ 2973 if (ret) 2974 folio_cancel_dirty(folio); 2975 spin_unlock(&mapping->i_private_lock); 2976 out: 2977 if (buffers_to_free) { 2978 struct buffer_head *bh = buffers_to_free; 2979 2980 do { 2981 struct buffer_head *next = bh->b_this_page; 2982 free_buffer_head(bh); 2983 bh = next; 2984 } while (bh != buffers_to_free); 2985 } 2986 return ret; 2987 } 2988 EXPORT_SYMBOL(try_to_free_buffers); 2989 2990 /* 2991 * Buffer-head allocation 2992 */ 2993 static struct kmem_cache *bh_cachep __ro_after_init; 2994 2995 /* 2996 * Once the number of bh's in the machine exceeds this level, we start 2997 * stripping them in writeback. 2998 */ 2999 static unsigned long max_buffer_heads __ro_after_init; 3000 3001 int buffer_heads_over_limit; 3002 3003 struct bh_accounting { 3004 int nr; /* Number of live bh's */ 3005 int ratelimit; /* Limit cacheline bouncing */ 3006 }; 3007 3008 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3009 3010 static void recalc_bh_state(void) 3011 { 3012 int i; 3013 int tot = 0; 3014 3015 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3016 return; 3017 __this_cpu_write(bh_accounting.ratelimit, 0); 3018 for_each_online_cpu(i) 3019 tot += per_cpu(bh_accounting, i).nr; 3020 buffer_heads_over_limit = (tot > max_buffer_heads); 3021 } 3022 3023 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3024 { 3025 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3026 if (ret) { 3027 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3028 spin_lock_init(&ret->b_uptodate_lock); 3029 preempt_disable(); 3030 __this_cpu_inc(bh_accounting.nr); 3031 recalc_bh_state(); 3032 preempt_enable(); 3033 } 3034 return ret; 3035 } 3036 EXPORT_SYMBOL(alloc_buffer_head); 3037 3038 void free_buffer_head(struct buffer_head *bh) 3039 { 3040 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3041 kmem_cache_free(bh_cachep, bh); 3042 preempt_disable(); 3043 __this_cpu_dec(bh_accounting.nr); 3044 recalc_bh_state(); 3045 preempt_enable(); 3046 } 3047 EXPORT_SYMBOL(free_buffer_head); 3048 3049 static int buffer_exit_cpu_dead(unsigned int cpu) 3050 { 3051 int i; 3052 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3053 3054 for (i = 0; i < BH_LRU_SIZE; i++) { 3055 brelse(b->bhs[i]); 3056 b->bhs[i] = NULL; 3057 } 3058 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3059 per_cpu(bh_accounting, cpu).nr = 0; 3060 return 0; 3061 } 3062 3063 /** 3064 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3065 * @bh: struct buffer_head 3066 * 3067 * Return true if the buffer is up-to-date and false, 3068 * with the buffer locked, if not. 3069 */ 3070 int bh_uptodate_or_lock(struct buffer_head *bh) 3071 { 3072 if (!buffer_uptodate(bh)) { 3073 lock_buffer(bh); 3074 if (!buffer_uptodate(bh)) 3075 return 0; 3076 unlock_buffer(bh); 3077 } 3078 return 1; 3079 } 3080 EXPORT_SYMBOL(bh_uptodate_or_lock); 3081 3082 /** 3083 * __bh_read - Submit read for a locked buffer 3084 * @bh: struct buffer_head 3085 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3086 * @wait: wait until reading finish 3087 * 3088 * Returns zero on success or don't wait, and -EIO on error. 3089 */ 3090 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3091 { 3092 int ret = 0; 3093 3094 BUG_ON(!buffer_locked(bh)); 3095 3096 get_bh(bh); 3097 bh->b_end_io = end_buffer_read_sync; 3098 submit_bh(REQ_OP_READ | op_flags, bh); 3099 if (wait) { 3100 wait_on_buffer(bh); 3101 if (!buffer_uptodate(bh)) 3102 ret = -EIO; 3103 } 3104 return ret; 3105 } 3106 EXPORT_SYMBOL(__bh_read); 3107 3108 /** 3109 * __bh_read_batch - Submit read for a batch of unlocked buffers 3110 * @nr: entry number of the buffer batch 3111 * @bhs: a batch of struct buffer_head 3112 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3113 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3114 * buffer that cannot lock. 3115 * 3116 * Returns zero on success or don't wait, and -EIO on error. 3117 */ 3118 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3119 blk_opf_t op_flags, bool force_lock) 3120 { 3121 int i; 3122 3123 for (i = 0; i < nr; i++) { 3124 struct buffer_head *bh = bhs[i]; 3125 3126 if (buffer_uptodate(bh)) 3127 continue; 3128 3129 if (force_lock) 3130 lock_buffer(bh); 3131 else 3132 if (!trylock_buffer(bh)) 3133 continue; 3134 3135 if (buffer_uptodate(bh)) { 3136 unlock_buffer(bh); 3137 continue; 3138 } 3139 3140 bh->b_end_io = end_buffer_read_sync; 3141 get_bh(bh); 3142 submit_bh(REQ_OP_READ | op_flags, bh); 3143 } 3144 } 3145 EXPORT_SYMBOL(__bh_read_batch); 3146 3147 void __init buffer_init(void) 3148 { 3149 unsigned long nrpages; 3150 int ret; 3151 3152 bh_cachep = KMEM_CACHE(buffer_head, 3153 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC); 3154 /* 3155 * Limit the bh occupancy to 10% of ZONE_NORMAL 3156 */ 3157 nrpages = (nr_free_buffer_pages() * 10) / 100; 3158 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3159 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3160 NULL, buffer_exit_cpu_dead); 3161 WARN_ON(ret < 0); 3162 } 3163