xref: /linux/fs/buffer.c (revision 1fb8510cdb5b7befe8a59f533c7fc12ef0dac73e)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
45 
46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47 
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49 
50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 inline void touch_buffer(struct buffer_head *bh)
58 {
59 	trace_block_touch_buffer(bh);
60 	mark_page_accessed(bh->b_page);
61 }
62 EXPORT_SYMBOL(touch_buffer);
63 
64 void __lock_buffer(struct buffer_head *bh)
65 {
66 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
67 }
68 EXPORT_SYMBOL(__lock_buffer);
69 
70 void unlock_buffer(struct buffer_head *bh)
71 {
72 	clear_bit_unlock(BH_Lock, &bh->b_state);
73 	smp_mb__after_atomic();
74 	wake_up_bit(&bh->b_state, BH_Lock);
75 }
76 EXPORT_SYMBOL(unlock_buffer);
77 
78 /*
79  * Returns if the page has dirty or writeback buffers. If all the buffers
80  * are unlocked and clean then the PageDirty information is stale. If
81  * any of the pages are locked, it is assumed they are locked for IO.
82  */
83 void buffer_check_dirty_writeback(struct page *page,
84 				     bool *dirty, bool *writeback)
85 {
86 	struct buffer_head *head, *bh;
87 	*dirty = false;
88 	*writeback = false;
89 
90 	BUG_ON(!PageLocked(page));
91 
92 	if (!page_has_buffers(page))
93 		return;
94 
95 	if (PageWriteback(page))
96 		*writeback = true;
97 
98 	head = page_buffers(page);
99 	bh = head;
100 	do {
101 		if (buffer_locked(bh))
102 			*writeback = true;
103 
104 		if (buffer_dirty(bh))
105 			*dirty = true;
106 
107 		bh = bh->b_this_page;
108 	} while (bh != head);
109 }
110 EXPORT_SYMBOL(buffer_check_dirty_writeback);
111 
112 /*
113  * Block until a buffer comes unlocked.  This doesn't stop it
114  * from becoming locked again - you have to lock it yourself
115  * if you want to preserve its state.
116  */
117 void __wait_on_buffer(struct buffer_head * bh)
118 {
119 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
120 }
121 EXPORT_SYMBOL(__wait_on_buffer);
122 
123 static void
124 __clear_page_buffers(struct page *page)
125 {
126 	ClearPagePrivate(page);
127 	set_page_private(page, 0);
128 	page_cache_release(page);
129 }
130 
131 
132 static int quiet_error(struct buffer_head *bh)
133 {
134 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
135 		return 0;
136 	return 1;
137 }
138 
139 
140 static void buffer_io_error(struct buffer_head *bh)
141 {
142 	char b[BDEVNAME_SIZE];
143 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
144 			bdevname(bh->b_bdev, b),
145 			(unsigned long long)bh->b_blocknr);
146 }
147 
148 /*
149  * End-of-IO handler helper function which does not touch the bh after
150  * unlocking it.
151  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152  * a race there is benign: unlock_buffer() only use the bh's address for
153  * hashing after unlocking the buffer, so it doesn't actually touch the bh
154  * itself.
155  */
156 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
157 {
158 	if (uptodate) {
159 		set_buffer_uptodate(bh);
160 	} else {
161 		/* This happens, due to failed READA attempts. */
162 		clear_buffer_uptodate(bh);
163 	}
164 	unlock_buffer(bh);
165 }
166 
167 /*
168  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
169  * unlock the buffer. This is what ll_rw_block uses too.
170  */
171 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
172 {
173 	__end_buffer_read_notouch(bh, uptodate);
174 	put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_read_sync);
177 
178 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
179 {
180 	char b[BDEVNAME_SIZE];
181 
182 	if (uptodate) {
183 		set_buffer_uptodate(bh);
184 	} else {
185 		if (!quiet_error(bh)) {
186 			buffer_io_error(bh);
187 			printk(KERN_WARNING "lost page write due to "
188 					"I/O error on %s\n",
189 				       bdevname(bh->b_bdev, b));
190 		}
191 		set_buffer_write_io_error(bh);
192 		clear_buffer_uptodate(bh);
193 	}
194 	unlock_buffer(bh);
195 	put_bh(bh);
196 }
197 EXPORT_SYMBOL(end_buffer_write_sync);
198 
199 /*
200  * Various filesystems appear to want __find_get_block to be non-blocking.
201  * But it's the page lock which protects the buffers.  To get around this,
202  * we get exclusion from try_to_free_buffers with the blockdev mapping's
203  * private_lock.
204  *
205  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
206  * may be quite high.  This code could TryLock the page, and if that
207  * succeeds, there is no need to take private_lock. (But if
208  * private_lock is contended then so is mapping->tree_lock).
209  */
210 static struct buffer_head *
211 __find_get_block_slow(struct block_device *bdev, sector_t block)
212 {
213 	struct inode *bd_inode = bdev->bd_inode;
214 	struct address_space *bd_mapping = bd_inode->i_mapping;
215 	struct buffer_head *ret = NULL;
216 	pgoff_t index;
217 	struct buffer_head *bh;
218 	struct buffer_head *head;
219 	struct page *page;
220 	int all_mapped = 1;
221 
222 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
223 	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
224 	if (!page)
225 		goto out;
226 
227 	spin_lock(&bd_mapping->private_lock);
228 	if (!page_has_buffers(page))
229 		goto out_unlock;
230 	head = page_buffers(page);
231 	bh = head;
232 	do {
233 		if (!buffer_mapped(bh))
234 			all_mapped = 0;
235 		else if (bh->b_blocknr == block) {
236 			ret = bh;
237 			get_bh(bh);
238 			goto out_unlock;
239 		}
240 		bh = bh->b_this_page;
241 	} while (bh != head);
242 
243 	/* we might be here because some of the buffers on this page are
244 	 * not mapped.  This is due to various races between
245 	 * file io on the block device and getblk.  It gets dealt with
246 	 * elsewhere, don't buffer_error if we had some unmapped buffers
247 	 */
248 	if (all_mapped) {
249 		char b[BDEVNAME_SIZE];
250 
251 		printk("__find_get_block_slow() failed. "
252 			"block=%llu, b_blocknr=%llu\n",
253 			(unsigned long long)block,
254 			(unsigned long long)bh->b_blocknr);
255 		printk("b_state=0x%08lx, b_size=%zu\n",
256 			bh->b_state, bh->b_size);
257 		printk("device %s blocksize: %d\n", bdevname(bdev, b),
258 			1 << bd_inode->i_blkbits);
259 	}
260 out_unlock:
261 	spin_unlock(&bd_mapping->private_lock);
262 	page_cache_release(page);
263 out:
264 	return ret;
265 }
266 
267 /*
268  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
269  */
270 static void free_more_memory(void)
271 {
272 	struct zone *zone;
273 	int nid;
274 
275 	wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
276 	yield();
277 
278 	for_each_online_node(nid) {
279 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
280 						gfp_zone(GFP_NOFS), NULL,
281 						&zone);
282 		if (zone)
283 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
284 						GFP_NOFS, NULL);
285 	}
286 }
287 
288 /*
289  * I/O completion handler for block_read_full_page() - pages
290  * which come unlocked at the end of I/O.
291  */
292 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
293 {
294 	unsigned long flags;
295 	struct buffer_head *first;
296 	struct buffer_head *tmp;
297 	struct page *page;
298 	int page_uptodate = 1;
299 
300 	BUG_ON(!buffer_async_read(bh));
301 
302 	page = bh->b_page;
303 	if (uptodate) {
304 		set_buffer_uptodate(bh);
305 	} else {
306 		clear_buffer_uptodate(bh);
307 		if (!quiet_error(bh))
308 			buffer_io_error(bh);
309 		SetPageError(page);
310 	}
311 
312 	/*
313 	 * Be _very_ careful from here on. Bad things can happen if
314 	 * two buffer heads end IO at almost the same time and both
315 	 * decide that the page is now completely done.
316 	 */
317 	first = page_buffers(page);
318 	local_irq_save(flags);
319 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
320 	clear_buffer_async_read(bh);
321 	unlock_buffer(bh);
322 	tmp = bh;
323 	do {
324 		if (!buffer_uptodate(tmp))
325 			page_uptodate = 0;
326 		if (buffer_async_read(tmp)) {
327 			BUG_ON(!buffer_locked(tmp));
328 			goto still_busy;
329 		}
330 		tmp = tmp->b_this_page;
331 	} while (tmp != bh);
332 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 	local_irq_restore(flags);
334 
335 	/*
336 	 * If none of the buffers had errors and they are all
337 	 * uptodate then we can set the page uptodate.
338 	 */
339 	if (page_uptodate && !PageError(page))
340 		SetPageUptodate(page);
341 	unlock_page(page);
342 	return;
343 
344 still_busy:
345 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 	local_irq_restore(flags);
347 	return;
348 }
349 
350 /*
351  * Completion handler for block_write_full_page() - pages which are unlocked
352  * during I/O, and which have PageWriteback cleared upon I/O completion.
353  */
354 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
355 {
356 	char b[BDEVNAME_SIZE];
357 	unsigned long flags;
358 	struct buffer_head *first;
359 	struct buffer_head *tmp;
360 	struct page *page;
361 
362 	BUG_ON(!buffer_async_write(bh));
363 
364 	page = bh->b_page;
365 	if (uptodate) {
366 		set_buffer_uptodate(bh);
367 	} else {
368 		if (!quiet_error(bh)) {
369 			buffer_io_error(bh);
370 			printk(KERN_WARNING "lost page write due to "
371 					"I/O error on %s\n",
372 			       bdevname(bh->b_bdev, b));
373 		}
374 		set_bit(AS_EIO, &page->mapping->flags);
375 		set_buffer_write_io_error(bh);
376 		clear_buffer_uptodate(bh);
377 		SetPageError(page);
378 	}
379 
380 	first = page_buffers(page);
381 	local_irq_save(flags);
382 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
383 
384 	clear_buffer_async_write(bh);
385 	unlock_buffer(bh);
386 	tmp = bh->b_this_page;
387 	while (tmp != bh) {
388 		if (buffer_async_write(tmp)) {
389 			BUG_ON(!buffer_locked(tmp));
390 			goto still_busy;
391 		}
392 		tmp = tmp->b_this_page;
393 	}
394 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
395 	local_irq_restore(flags);
396 	end_page_writeback(page);
397 	return;
398 
399 still_busy:
400 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
401 	local_irq_restore(flags);
402 	return;
403 }
404 EXPORT_SYMBOL(end_buffer_async_write);
405 
406 /*
407  * If a page's buffers are under async readin (end_buffer_async_read
408  * completion) then there is a possibility that another thread of
409  * control could lock one of the buffers after it has completed
410  * but while some of the other buffers have not completed.  This
411  * locked buffer would confuse end_buffer_async_read() into not unlocking
412  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
413  * that this buffer is not under async I/O.
414  *
415  * The page comes unlocked when it has no locked buffer_async buffers
416  * left.
417  *
418  * PageLocked prevents anyone starting new async I/O reads any of
419  * the buffers.
420  *
421  * PageWriteback is used to prevent simultaneous writeout of the same
422  * page.
423  *
424  * PageLocked prevents anyone from starting writeback of a page which is
425  * under read I/O (PageWriteback is only ever set against a locked page).
426  */
427 static void mark_buffer_async_read(struct buffer_head *bh)
428 {
429 	bh->b_end_io = end_buffer_async_read;
430 	set_buffer_async_read(bh);
431 }
432 
433 static void mark_buffer_async_write_endio(struct buffer_head *bh,
434 					  bh_end_io_t *handler)
435 {
436 	bh->b_end_io = handler;
437 	set_buffer_async_write(bh);
438 }
439 
440 void mark_buffer_async_write(struct buffer_head *bh)
441 {
442 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
443 }
444 EXPORT_SYMBOL(mark_buffer_async_write);
445 
446 
447 /*
448  * fs/buffer.c contains helper functions for buffer-backed address space's
449  * fsync functions.  A common requirement for buffer-based filesystems is
450  * that certain data from the backing blockdev needs to be written out for
451  * a successful fsync().  For example, ext2 indirect blocks need to be
452  * written back and waited upon before fsync() returns.
453  *
454  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
455  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
456  * management of a list of dependent buffers at ->i_mapping->private_list.
457  *
458  * Locking is a little subtle: try_to_free_buffers() will remove buffers
459  * from their controlling inode's queue when they are being freed.  But
460  * try_to_free_buffers() will be operating against the *blockdev* mapping
461  * at the time, not against the S_ISREG file which depends on those buffers.
462  * So the locking for private_list is via the private_lock in the address_space
463  * which backs the buffers.  Which is different from the address_space
464  * against which the buffers are listed.  So for a particular address_space,
465  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
466  * mapping->private_list will always be protected by the backing blockdev's
467  * ->private_lock.
468  *
469  * Which introduces a requirement: all buffers on an address_space's
470  * ->private_list must be from the same address_space: the blockdev's.
471  *
472  * address_spaces which do not place buffers at ->private_list via these
473  * utility functions are free to use private_lock and private_list for
474  * whatever they want.  The only requirement is that list_empty(private_list)
475  * be true at clear_inode() time.
476  *
477  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
478  * filesystems should do that.  invalidate_inode_buffers() should just go
479  * BUG_ON(!list_empty).
480  *
481  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
482  * take an address_space, not an inode.  And it should be called
483  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
484  * queued up.
485  *
486  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
487  * list if it is already on a list.  Because if the buffer is on a list,
488  * it *must* already be on the right one.  If not, the filesystem is being
489  * silly.  This will save a ton of locking.  But first we have to ensure
490  * that buffers are taken *off* the old inode's list when they are freed
491  * (presumably in truncate).  That requires careful auditing of all
492  * filesystems (do it inside bforget()).  It could also be done by bringing
493  * b_inode back.
494  */
495 
496 /*
497  * The buffer's backing address_space's private_lock must be held
498  */
499 static void __remove_assoc_queue(struct buffer_head *bh)
500 {
501 	list_del_init(&bh->b_assoc_buffers);
502 	WARN_ON(!bh->b_assoc_map);
503 	if (buffer_write_io_error(bh))
504 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
505 	bh->b_assoc_map = NULL;
506 }
507 
508 int inode_has_buffers(struct inode *inode)
509 {
510 	return !list_empty(&inode->i_data.private_list);
511 }
512 
513 /*
514  * osync is designed to support O_SYNC io.  It waits synchronously for
515  * all already-submitted IO to complete, but does not queue any new
516  * writes to the disk.
517  *
518  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
519  * you dirty the buffers, and then use osync_inode_buffers to wait for
520  * completion.  Any other dirty buffers which are not yet queued for
521  * write will not be flushed to disk by the osync.
522  */
523 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
524 {
525 	struct buffer_head *bh;
526 	struct list_head *p;
527 	int err = 0;
528 
529 	spin_lock(lock);
530 repeat:
531 	list_for_each_prev(p, list) {
532 		bh = BH_ENTRY(p);
533 		if (buffer_locked(bh)) {
534 			get_bh(bh);
535 			spin_unlock(lock);
536 			wait_on_buffer(bh);
537 			if (!buffer_uptodate(bh))
538 				err = -EIO;
539 			brelse(bh);
540 			spin_lock(lock);
541 			goto repeat;
542 		}
543 	}
544 	spin_unlock(lock);
545 	return err;
546 }
547 
548 static void do_thaw_one(struct super_block *sb, void *unused)
549 {
550 	char b[BDEVNAME_SIZE];
551 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
552 		printk(KERN_WARNING "Emergency Thaw on %s\n",
553 		       bdevname(sb->s_bdev, b));
554 }
555 
556 static void do_thaw_all(struct work_struct *work)
557 {
558 	iterate_supers(do_thaw_one, NULL);
559 	kfree(work);
560 	printk(KERN_WARNING "Emergency Thaw complete\n");
561 }
562 
563 /**
564  * emergency_thaw_all -- forcibly thaw every frozen filesystem
565  *
566  * Used for emergency unfreeze of all filesystems via SysRq
567  */
568 void emergency_thaw_all(void)
569 {
570 	struct work_struct *work;
571 
572 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
573 	if (work) {
574 		INIT_WORK(work, do_thaw_all);
575 		schedule_work(work);
576 	}
577 }
578 
579 /**
580  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
581  * @mapping: the mapping which wants those buffers written
582  *
583  * Starts I/O against the buffers at mapping->private_list, and waits upon
584  * that I/O.
585  *
586  * Basically, this is a convenience function for fsync().
587  * @mapping is a file or directory which needs those buffers to be written for
588  * a successful fsync().
589  */
590 int sync_mapping_buffers(struct address_space *mapping)
591 {
592 	struct address_space *buffer_mapping = mapping->private_data;
593 
594 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
595 		return 0;
596 
597 	return fsync_buffers_list(&buffer_mapping->private_lock,
598 					&mapping->private_list);
599 }
600 EXPORT_SYMBOL(sync_mapping_buffers);
601 
602 /*
603  * Called when we've recently written block `bblock', and it is known that
604  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
605  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
606  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
607  */
608 void write_boundary_block(struct block_device *bdev,
609 			sector_t bblock, unsigned blocksize)
610 {
611 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
612 	if (bh) {
613 		if (buffer_dirty(bh))
614 			ll_rw_block(WRITE, 1, &bh);
615 		put_bh(bh);
616 	}
617 }
618 
619 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
620 {
621 	struct address_space *mapping = inode->i_mapping;
622 	struct address_space *buffer_mapping = bh->b_page->mapping;
623 
624 	mark_buffer_dirty(bh);
625 	if (!mapping->private_data) {
626 		mapping->private_data = buffer_mapping;
627 	} else {
628 		BUG_ON(mapping->private_data != buffer_mapping);
629 	}
630 	if (!bh->b_assoc_map) {
631 		spin_lock(&buffer_mapping->private_lock);
632 		list_move_tail(&bh->b_assoc_buffers,
633 				&mapping->private_list);
634 		bh->b_assoc_map = mapping;
635 		spin_unlock(&buffer_mapping->private_lock);
636 	}
637 }
638 EXPORT_SYMBOL(mark_buffer_dirty_inode);
639 
640 /*
641  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
642  * dirty.
643  *
644  * If warn is true, then emit a warning if the page is not uptodate and has
645  * not been truncated.
646  */
647 static void __set_page_dirty(struct page *page,
648 		struct address_space *mapping, int warn)
649 {
650 	unsigned long flags;
651 
652 	spin_lock_irqsave(&mapping->tree_lock, flags);
653 	if (page->mapping) {	/* Race with truncate? */
654 		WARN_ON_ONCE(warn && !PageUptodate(page));
655 		account_page_dirtied(page, mapping);
656 		radix_tree_tag_set(&mapping->page_tree,
657 				page_index(page), PAGECACHE_TAG_DIRTY);
658 	}
659 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
660 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
661 }
662 
663 /*
664  * Add a page to the dirty page list.
665  *
666  * It is a sad fact of life that this function is called from several places
667  * deeply under spinlocking.  It may not sleep.
668  *
669  * If the page has buffers, the uptodate buffers are set dirty, to preserve
670  * dirty-state coherency between the page and the buffers.  It the page does
671  * not have buffers then when they are later attached they will all be set
672  * dirty.
673  *
674  * The buffers are dirtied before the page is dirtied.  There's a small race
675  * window in which a writepage caller may see the page cleanness but not the
676  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
677  * before the buffers, a concurrent writepage caller could clear the page dirty
678  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
679  * page on the dirty page list.
680  *
681  * We use private_lock to lock against try_to_free_buffers while using the
682  * page's buffer list.  Also use this to protect against clean buffers being
683  * added to the page after it was set dirty.
684  *
685  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
686  * address_space though.
687  */
688 int __set_page_dirty_buffers(struct page *page)
689 {
690 	int newly_dirty;
691 	struct address_space *mapping = page_mapping(page);
692 
693 	if (unlikely(!mapping))
694 		return !TestSetPageDirty(page);
695 
696 	spin_lock(&mapping->private_lock);
697 	if (page_has_buffers(page)) {
698 		struct buffer_head *head = page_buffers(page);
699 		struct buffer_head *bh = head;
700 
701 		do {
702 			set_buffer_dirty(bh);
703 			bh = bh->b_this_page;
704 		} while (bh != head);
705 	}
706 	newly_dirty = !TestSetPageDirty(page);
707 	spin_unlock(&mapping->private_lock);
708 
709 	if (newly_dirty)
710 		__set_page_dirty(page, mapping, 1);
711 	return newly_dirty;
712 }
713 EXPORT_SYMBOL(__set_page_dirty_buffers);
714 
715 /*
716  * Write out and wait upon a list of buffers.
717  *
718  * We have conflicting pressures: we want to make sure that all
719  * initially dirty buffers get waited on, but that any subsequently
720  * dirtied buffers don't.  After all, we don't want fsync to last
721  * forever if somebody is actively writing to the file.
722  *
723  * Do this in two main stages: first we copy dirty buffers to a
724  * temporary inode list, queueing the writes as we go.  Then we clean
725  * up, waiting for those writes to complete.
726  *
727  * During this second stage, any subsequent updates to the file may end
728  * up refiling the buffer on the original inode's dirty list again, so
729  * there is a chance we will end up with a buffer queued for write but
730  * not yet completed on that list.  So, as a final cleanup we go through
731  * the osync code to catch these locked, dirty buffers without requeuing
732  * any newly dirty buffers for write.
733  */
734 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
735 {
736 	struct buffer_head *bh;
737 	struct list_head tmp;
738 	struct address_space *mapping;
739 	int err = 0, err2;
740 	struct blk_plug plug;
741 
742 	INIT_LIST_HEAD(&tmp);
743 	blk_start_plug(&plug);
744 
745 	spin_lock(lock);
746 	while (!list_empty(list)) {
747 		bh = BH_ENTRY(list->next);
748 		mapping = bh->b_assoc_map;
749 		__remove_assoc_queue(bh);
750 		/* Avoid race with mark_buffer_dirty_inode() which does
751 		 * a lockless check and we rely on seeing the dirty bit */
752 		smp_mb();
753 		if (buffer_dirty(bh) || buffer_locked(bh)) {
754 			list_add(&bh->b_assoc_buffers, &tmp);
755 			bh->b_assoc_map = mapping;
756 			if (buffer_dirty(bh)) {
757 				get_bh(bh);
758 				spin_unlock(lock);
759 				/*
760 				 * Ensure any pending I/O completes so that
761 				 * write_dirty_buffer() actually writes the
762 				 * current contents - it is a noop if I/O is
763 				 * still in flight on potentially older
764 				 * contents.
765 				 */
766 				write_dirty_buffer(bh, WRITE_SYNC);
767 
768 				/*
769 				 * Kick off IO for the previous mapping. Note
770 				 * that we will not run the very last mapping,
771 				 * wait_on_buffer() will do that for us
772 				 * through sync_buffer().
773 				 */
774 				brelse(bh);
775 				spin_lock(lock);
776 			}
777 		}
778 	}
779 
780 	spin_unlock(lock);
781 	blk_finish_plug(&plug);
782 	spin_lock(lock);
783 
784 	while (!list_empty(&tmp)) {
785 		bh = BH_ENTRY(tmp.prev);
786 		get_bh(bh);
787 		mapping = bh->b_assoc_map;
788 		__remove_assoc_queue(bh);
789 		/* Avoid race with mark_buffer_dirty_inode() which does
790 		 * a lockless check and we rely on seeing the dirty bit */
791 		smp_mb();
792 		if (buffer_dirty(bh)) {
793 			list_add(&bh->b_assoc_buffers,
794 				 &mapping->private_list);
795 			bh->b_assoc_map = mapping;
796 		}
797 		spin_unlock(lock);
798 		wait_on_buffer(bh);
799 		if (!buffer_uptodate(bh))
800 			err = -EIO;
801 		brelse(bh);
802 		spin_lock(lock);
803 	}
804 
805 	spin_unlock(lock);
806 	err2 = osync_buffers_list(lock, list);
807 	if (err)
808 		return err;
809 	else
810 		return err2;
811 }
812 
813 /*
814  * Invalidate any and all dirty buffers on a given inode.  We are
815  * probably unmounting the fs, but that doesn't mean we have already
816  * done a sync().  Just drop the buffers from the inode list.
817  *
818  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
819  * assumes that all the buffers are against the blockdev.  Not true
820  * for reiserfs.
821  */
822 void invalidate_inode_buffers(struct inode *inode)
823 {
824 	if (inode_has_buffers(inode)) {
825 		struct address_space *mapping = &inode->i_data;
826 		struct list_head *list = &mapping->private_list;
827 		struct address_space *buffer_mapping = mapping->private_data;
828 
829 		spin_lock(&buffer_mapping->private_lock);
830 		while (!list_empty(list))
831 			__remove_assoc_queue(BH_ENTRY(list->next));
832 		spin_unlock(&buffer_mapping->private_lock);
833 	}
834 }
835 EXPORT_SYMBOL(invalidate_inode_buffers);
836 
837 /*
838  * Remove any clean buffers from the inode's buffer list.  This is called
839  * when we're trying to free the inode itself.  Those buffers can pin it.
840  *
841  * Returns true if all buffers were removed.
842  */
843 int remove_inode_buffers(struct inode *inode)
844 {
845 	int ret = 1;
846 
847 	if (inode_has_buffers(inode)) {
848 		struct address_space *mapping = &inode->i_data;
849 		struct list_head *list = &mapping->private_list;
850 		struct address_space *buffer_mapping = mapping->private_data;
851 
852 		spin_lock(&buffer_mapping->private_lock);
853 		while (!list_empty(list)) {
854 			struct buffer_head *bh = BH_ENTRY(list->next);
855 			if (buffer_dirty(bh)) {
856 				ret = 0;
857 				break;
858 			}
859 			__remove_assoc_queue(bh);
860 		}
861 		spin_unlock(&buffer_mapping->private_lock);
862 	}
863 	return ret;
864 }
865 
866 /*
867  * Create the appropriate buffers when given a page for data area and
868  * the size of each buffer.. Use the bh->b_this_page linked list to
869  * follow the buffers created.  Return NULL if unable to create more
870  * buffers.
871  *
872  * The retry flag is used to differentiate async IO (paging, swapping)
873  * which may not fail from ordinary buffer allocations.
874  */
875 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
876 		int retry)
877 {
878 	struct buffer_head *bh, *head;
879 	long offset;
880 
881 try_again:
882 	head = NULL;
883 	offset = PAGE_SIZE;
884 	while ((offset -= size) >= 0) {
885 		bh = alloc_buffer_head(GFP_NOFS);
886 		if (!bh)
887 			goto no_grow;
888 
889 		bh->b_this_page = head;
890 		bh->b_blocknr = -1;
891 		head = bh;
892 
893 		bh->b_size = size;
894 
895 		/* Link the buffer to its page */
896 		set_bh_page(bh, page, offset);
897 	}
898 	return head;
899 /*
900  * In case anything failed, we just free everything we got.
901  */
902 no_grow:
903 	if (head) {
904 		do {
905 			bh = head;
906 			head = head->b_this_page;
907 			free_buffer_head(bh);
908 		} while (head);
909 	}
910 
911 	/*
912 	 * Return failure for non-async IO requests.  Async IO requests
913 	 * are not allowed to fail, so we have to wait until buffer heads
914 	 * become available.  But we don't want tasks sleeping with
915 	 * partially complete buffers, so all were released above.
916 	 */
917 	if (!retry)
918 		return NULL;
919 
920 	/* We're _really_ low on memory. Now we just
921 	 * wait for old buffer heads to become free due to
922 	 * finishing IO.  Since this is an async request and
923 	 * the reserve list is empty, we're sure there are
924 	 * async buffer heads in use.
925 	 */
926 	free_more_memory();
927 	goto try_again;
928 }
929 EXPORT_SYMBOL_GPL(alloc_page_buffers);
930 
931 static inline void
932 link_dev_buffers(struct page *page, struct buffer_head *head)
933 {
934 	struct buffer_head *bh, *tail;
935 
936 	bh = head;
937 	do {
938 		tail = bh;
939 		bh = bh->b_this_page;
940 	} while (bh);
941 	tail->b_this_page = head;
942 	attach_page_buffers(page, head);
943 }
944 
945 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
946 {
947 	sector_t retval = ~((sector_t)0);
948 	loff_t sz = i_size_read(bdev->bd_inode);
949 
950 	if (sz) {
951 		unsigned int sizebits = blksize_bits(size);
952 		retval = (sz >> sizebits);
953 	}
954 	return retval;
955 }
956 
957 /*
958  * Initialise the state of a blockdev page's buffers.
959  */
960 static sector_t
961 init_page_buffers(struct page *page, struct block_device *bdev,
962 			sector_t block, int size)
963 {
964 	struct buffer_head *head = page_buffers(page);
965 	struct buffer_head *bh = head;
966 	int uptodate = PageUptodate(page);
967 	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
968 
969 	do {
970 		if (!buffer_mapped(bh)) {
971 			init_buffer(bh, NULL, NULL);
972 			bh->b_bdev = bdev;
973 			bh->b_blocknr = block;
974 			if (uptodate)
975 				set_buffer_uptodate(bh);
976 			if (block < end_block)
977 				set_buffer_mapped(bh);
978 		}
979 		block++;
980 		bh = bh->b_this_page;
981 	} while (bh != head);
982 
983 	/*
984 	 * Caller needs to validate requested block against end of device.
985 	 */
986 	return end_block;
987 }
988 
989 /*
990  * Create the page-cache page that contains the requested block.
991  *
992  * This is used purely for blockdev mappings.
993  */
994 static int
995 grow_dev_page(struct block_device *bdev, sector_t block,
996 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
997 {
998 	struct inode *inode = bdev->bd_inode;
999 	struct page *page;
1000 	struct buffer_head *bh;
1001 	sector_t end_block;
1002 	int ret = 0;		/* Will call free_more_memory() */
1003 	gfp_t gfp_mask;
1004 
1005 	gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp;
1006 
1007 	/*
1008 	 * XXX: __getblk_slow() can not really deal with failure and
1009 	 * will endlessly loop on improvised global reclaim.  Prefer
1010 	 * looping in the allocator rather than here, at least that
1011 	 * code knows what it's doing.
1012 	 */
1013 	gfp_mask |= __GFP_NOFAIL;
1014 
1015 	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1016 	if (!page)
1017 		return ret;
1018 
1019 	BUG_ON(!PageLocked(page));
1020 
1021 	if (page_has_buffers(page)) {
1022 		bh = page_buffers(page);
1023 		if (bh->b_size == size) {
1024 			end_block = init_page_buffers(page, bdev,
1025 						(sector_t)index << sizebits,
1026 						size);
1027 			goto done;
1028 		}
1029 		if (!try_to_free_buffers(page))
1030 			goto failed;
1031 	}
1032 
1033 	/*
1034 	 * Allocate some buffers for this page
1035 	 */
1036 	bh = alloc_page_buffers(page, size, 0);
1037 	if (!bh)
1038 		goto failed;
1039 
1040 	/*
1041 	 * Link the page to the buffers and initialise them.  Take the
1042 	 * lock to be atomic wrt __find_get_block(), which does not
1043 	 * run under the page lock.
1044 	 */
1045 	spin_lock(&inode->i_mapping->private_lock);
1046 	link_dev_buffers(page, bh);
1047 	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1048 			size);
1049 	spin_unlock(&inode->i_mapping->private_lock);
1050 done:
1051 	ret = (block < end_block) ? 1 : -ENXIO;
1052 failed:
1053 	unlock_page(page);
1054 	page_cache_release(page);
1055 	return ret;
1056 }
1057 
1058 /*
1059  * Create buffers for the specified block device block's page.  If
1060  * that page was dirty, the buffers are set dirty also.
1061  */
1062 static int
1063 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1064 {
1065 	pgoff_t index;
1066 	int sizebits;
1067 
1068 	sizebits = -1;
1069 	do {
1070 		sizebits++;
1071 	} while ((size << sizebits) < PAGE_SIZE);
1072 
1073 	index = block >> sizebits;
1074 
1075 	/*
1076 	 * Check for a block which wants to lie outside our maximum possible
1077 	 * pagecache index.  (this comparison is done using sector_t types).
1078 	 */
1079 	if (unlikely(index != block >> sizebits)) {
1080 		char b[BDEVNAME_SIZE];
1081 
1082 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1083 			"device %s\n",
1084 			__func__, (unsigned long long)block,
1085 			bdevname(bdev, b));
1086 		return -EIO;
1087 	}
1088 
1089 	/* Create a page with the proper size buffers.. */
1090 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1091 }
1092 
1093 struct buffer_head *
1094 __getblk_slow(struct block_device *bdev, sector_t block,
1095 	     unsigned size, gfp_t gfp)
1096 {
1097 	/* Size must be multiple of hard sectorsize */
1098 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1099 			(size < 512 || size > PAGE_SIZE))) {
1100 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1101 					size);
1102 		printk(KERN_ERR "logical block size: %d\n",
1103 					bdev_logical_block_size(bdev));
1104 
1105 		dump_stack();
1106 		return NULL;
1107 	}
1108 
1109 	for (;;) {
1110 		struct buffer_head *bh;
1111 		int ret;
1112 
1113 		bh = __find_get_block(bdev, block, size);
1114 		if (bh)
1115 			return bh;
1116 
1117 		ret = grow_buffers(bdev, block, size, gfp);
1118 		if (ret < 0)
1119 			return NULL;
1120 		if (ret == 0)
1121 			free_more_memory();
1122 	}
1123 }
1124 EXPORT_SYMBOL(__getblk_slow);
1125 
1126 /*
1127  * The relationship between dirty buffers and dirty pages:
1128  *
1129  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1130  * the page is tagged dirty in its radix tree.
1131  *
1132  * At all times, the dirtiness of the buffers represents the dirtiness of
1133  * subsections of the page.  If the page has buffers, the page dirty bit is
1134  * merely a hint about the true dirty state.
1135  *
1136  * When a page is set dirty in its entirety, all its buffers are marked dirty
1137  * (if the page has buffers).
1138  *
1139  * When a buffer is marked dirty, its page is dirtied, but the page's other
1140  * buffers are not.
1141  *
1142  * Also.  When blockdev buffers are explicitly read with bread(), they
1143  * individually become uptodate.  But their backing page remains not
1144  * uptodate - even if all of its buffers are uptodate.  A subsequent
1145  * block_read_full_page() against that page will discover all the uptodate
1146  * buffers, will set the page uptodate and will perform no I/O.
1147  */
1148 
1149 /**
1150  * mark_buffer_dirty - mark a buffer_head as needing writeout
1151  * @bh: the buffer_head to mark dirty
1152  *
1153  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1154  * backing page dirty, then tag the page as dirty in its address_space's radix
1155  * tree and then attach the address_space's inode to its superblock's dirty
1156  * inode list.
1157  *
1158  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1159  * mapping->tree_lock and mapping->host->i_lock.
1160  */
1161 void mark_buffer_dirty(struct buffer_head *bh)
1162 {
1163 	WARN_ON_ONCE(!buffer_uptodate(bh));
1164 
1165 	trace_block_dirty_buffer(bh);
1166 
1167 	/*
1168 	 * Very *carefully* optimize the it-is-already-dirty case.
1169 	 *
1170 	 * Don't let the final "is it dirty" escape to before we
1171 	 * perhaps modified the buffer.
1172 	 */
1173 	if (buffer_dirty(bh)) {
1174 		smp_mb();
1175 		if (buffer_dirty(bh))
1176 			return;
1177 	}
1178 
1179 	if (!test_set_buffer_dirty(bh)) {
1180 		struct page *page = bh->b_page;
1181 		if (!TestSetPageDirty(page)) {
1182 			struct address_space *mapping = page_mapping(page);
1183 			if (mapping)
1184 				__set_page_dirty(page, mapping, 0);
1185 		}
1186 	}
1187 }
1188 EXPORT_SYMBOL(mark_buffer_dirty);
1189 
1190 /*
1191  * Decrement a buffer_head's reference count.  If all buffers against a page
1192  * have zero reference count, are clean and unlocked, and if the page is clean
1193  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1194  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1195  * a page but it ends up not being freed, and buffers may later be reattached).
1196  */
1197 void __brelse(struct buffer_head * buf)
1198 {
1199 	if (atomic_read(&buf->b_count)) {
1200 		put_bh(buf);
1201 		return;
1202 	}
1203 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1204 }
1205 EXPORT_SYMBOL(__brelse);
1206 
1207 /*
1208  * bforget() is like brelse(), except it discards any
1209  * potentially dirty data.
1210  */
1211 void __bforget(struct buffer_head *bh)
1212 {
1213 	clear_buffer_dirty(bh);
1214 	if (bh->b_assoc_map) {
1215 		struct address_space *buffer_mapping = bh->b_page->mapping;
1216 
1217 		spin_lock(&buffer_mapping->private_lock);
1218 		list_del_init(&bh->b_assoc_buffers);
1219 		bh->b_assoc_map = NULL;
1220 		spin_unlock(&buffer_mapping->private_lock);
1221 	}
1222 	__brelse(bh);
1223 }
1224 EXPORT_SYMBOL(__bforget);
1225 
1226 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1227 {
1228 	lock_buffer(bh);
1229 	if (buffer_uptodate(bh)) {
1230 		unlock_buffer(bh);
1231 		return bh;
1232 	} else {
1233 		get_bh(bh);
1234 		bh->b_end_io = end_buffer_read_sync;
1235 		submit_bh(READ, bh);
1236 		wait_on_buffer(bh);
1237 		if (buffer_uptodate(bh))
1238 			return bh;
1239 	}
1240 	brelse(bh);
1241 	return NULL;
1242 }
1243 
1244 /*
1245  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1246  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1247  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1248  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1249  * CPU's LRUs at the same time.
1250  *
1251  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1252  * sb_find_get_block().
1253  *
1254  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1255  * a local interrupt disable for that.
1256  */
1257 
1258 #define BH_LRU_SIZE	16
1259 
1260 struct bh_lru {
1261 	struct buffer_head *bhs[BH_LRU_SIZE];
1262 };
1263 
1264 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1265 
1266 #ifdef CONFIG_SMP
1267 #define bh_lru_lock()	local_irq_disable()
1268 #define bh_lru_unlock()	local_irq_enable()
1269 #else
1270 #define bh_lru_lock()	preempt_disable()
1271 #define bh_lru_unlock()	preempt_enable()
1272 #endif
1273 
1274 static inline void check_irqs_on(void)
1275 {
1276 #ifdef irqs_disabled
1277 	BUG_ON(irqs_disabled());
1278 #endif
1279 }
1280 
1281 /*
1282  * The LRU management algorithm is dopey-but-simple.  Sorry.
1283  */
1284 static void bh_lru_install(struct buffer_head *bh)
1285 {
1286 	struct buffer_head *evictee = NULL;
1287 
1288 	check_irqs_on();
1289 	bh_lru_lock();
1290 	if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1291 		struct buffer_head *bhs[BH_LRU_SIZE];
1292 		int in;
1293 		int out = 0;
1294 
1295 		get_bh(bh);
1296 		bhs[out++] = bh;
1297 		for (in = 0; in < BH_LRU_SIZE; in++) {
1298 			struct buffer_head *bh2 =
1299 				__this_cpu_read(bh_lrus.bhs[in]);
1300 
1301 			if (bh2 == bh) {
1302 				__brelse(bh2);
1303 			} else {
1304 				if (out >= BH_LRU_SIZE) {
1305 					BUG_ON(evictee != NULL);
1306 					evictee = bh2;
1307 				} else {
1308 					bhs[out++] = bh2;
1309 				}
1310 			}
1311 		}
1312 		while (out < BH_LRU_SIZE)
1313 			bhs[out++] = NULL;
1314 		memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1315 	}
1316 	bh_lru_unlock();
1317 
1318 	if (evictee)
1319 		__brelse(evictee);
1320 }
1321 
1322 /*
1323  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1324  */
1325 static struct buffer_head *
1326 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1327 {
1328 	struct buffer_head *ret = NULL;
1329 	unsigned int i;
1330 
1331 	check_irqs_on();
1332 	bh_lru_lock();
1333 	for (i = 0; i < BH_LRU_SIZE; i++) {
1334 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1335 
1336 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1337 		    bh->b_size == size) {
1338 			if (i) {
1339 				while (i) {
1340 					__this_cpu_write(bh_lrus.bhs[i],
1341 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1342 					i--;
1343 				}
1344 				__this_cpu_write(bh_lrus.bhs[0], bh);
1345 			}
1346 			get_bh(bh);
1347 			ret = bh;
1348 			break;
1349 		}
1350 	}
1351 	bh_lru_unlock();
1352 	return ret;
1353 }
1354 
1355 /*
1356  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1357  * it in the LRU and mark it as accessed.  If it is not present then return
1358  * NULL
1359  */
1360 struct buffer_head *
1361 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1362 {
1363 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1364 
1365 	if (bh == NULL) {
1366 		/* __find_get_block_slow will mark the page accessed */
1367 		bh = __find_get_block_slow(bdev, block);
1368 		if (bh)
1369 			bh_lru_install(bh);
1370 	} else
1371 		touch_buffer(bh);
1372 
1373 	return bh;
1374 }
1375 EXPORT_SYMBOL(__find_get_block);
1376 
1377 /*
1378  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1379  * which corresponds to the passed block_device, block and size. The
1380  * returned buffer has its reference count incremented.
1381  *
1382  * __getblk_gfp() will lock up the machine if grow_dev_page's
1383  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1384  */
1385 struct buffer_head *
1386 __getblk_gfp(struct block_device *bdev, sector_t block,
1387 	     unsigned size, gfp_t gfp)
1388 {
1389 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1390 
1391 	might_sleep();
1392 	if (bh == NULL)
1393 		bh = __getblk_slow(bdev, block, size, gfp);
1394 	return bh;
1395 }
1396 EXPORT_SYMBOL(__getblk_gfp);
1397 
1398 /*
1399  * Do async read-ahead on a buffer..
1400  */
1401 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1402 {
1403 	struct buffer_head *bh = __getblk(bdev, block, size);
1404 	if (likely(bh)) {
1405 		ll_rw_block(READA, 1, &bh);
1406 		brelse(bh);
1407 	}
1408 }
1409 EXPORT_SYMBOL(__breadahead);
1410 
1411 /**
1412  *  __bread_gfp() - reads a specified block and returns the bh
1413  *  @bdev: the block_device to read from
1414  *  @block: number of block
1415  *  @size: size (in bytes) to read
1416  *  @gfp: page allocation flag
1417  *
1418  *  Reads a specified block, and returns buffer head that contains it.
1419  *  The page cache can be allocated from non-movable area
1420  *  not to prevent page migration if you set gfp to zero.
1421  *  It returns NULL if the block was unreadable.
1422  */
1423 struct buffer_head *
1424 __bread_gfp(struct block_device *bdev, sector_t block,
1425 		   unsigned size, gfp_t gfp)
1426 {
1427 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1428 
1429 	if (likely(bh) && !buffer_uptodate(bh))
1430 		bh = __bread_slow(bh);
1431 	return bh;
1432 }
1433 EXPORT_SYMBOL(__bread_gfp);
1434 
1435 /*
1436  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1437  * This doesn't race because it runs in each cpu either in irq
1438  * or with preempt disabled.
1439  */
1440 static void invalidate_bh_lru(void *arg)
1441 {
1442 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1443 	int i;
1444 
1445 	for (i = 0; i < BH_LRU_SIZE; i++) {
1446 		brelse(b->bhs[i]);
1447 		b->bhs[i] = NULL;
1448 	}
1449 	put_cpu_var(bh_lrus);
1450 }
1451 
1452 static bool has_bh_in_lru(int cpu, void *dummy)
1453 {
1454 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1455 	int i;
1456 
1457 	for (i = 0; i < BH_LRU_SIZE; i++) {
1458 		if (b->bhs[i])
1459 			return 1;
1460 	}
1461 
1462 	return 0;
1463 }
1464 
1465 void invalidate_bh_lrus(void)
1466 {
1467 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1468 }
1469 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1470 
1471 void set_bh_page(struct buffer_head *bh,
1472 		struct page *page, unsigned long offset)
1473 {
1474 	bh->b_page = page;
1475 	BUG_ON(offset >= PAGE_SIZE);
1476 	if (PageHighMem(page))
1477 		/*
1478 		 * This catches illegal uses and preserves the offset:
1479 		 */
1480 		bh->b_data = (char *)(0 + offset);
1481 	else
1482 		bh->b_data = page_address(page) + offset;
1483 }
1484 EXPORT_SYMBOL(set_bh_page);
1485 
1486 /*
1487  * Called when truncating a buffer on a page completely.
1488  */
1489 
1490 /* Bits that are cleared during an invalidate */
1491 #define BUFFER_FLAGS_DISCARD \
1492 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1493 	 1 << BH_Delay | 1 << BH_Unwritten)
1494 
1495 static void discard_buffer(struct buffer_head * bh)
1496 {
1497 	unsigned long b_state, b_state_old;
1498 
1499 	lock_buffer(bh);
1500 	clear_buffer_dirty(bh);
1501 	bh->b_bdev = NULL;
1502 	b_state = bh->b_state;
1503 	for (;;) {
1504 		b_state_old = cmpxchg(&bh->b_state, b_state,
1505 				      (b_state & ~BUFFER_FLAGS_DISCARD));
1506 		if (b_state_old == b_state)
1507 			break;
1508 		b_state = b_state_old;
1509 	}
1510 	unlock_buffer(bh);
1511 }
1512 
1513 /**
1514  * block_invalidatepage - invalidate part or all of a buffer-backed page
1515  *
1516  * @page: the page which is affected
1517  * @offset: start of the range to invalidate
1518  * @length: length of the range to invalidate
1519  *
1520  * block_invalidatepage() is called when all or part of the page has become
1521  * invalidated by a truncate operation.
1522  *
1523  * block_invalidatepage() does not have to release all buffers, but it must
1524  * ensure that no dirty buffer is left outside @offset and that no I/O
1525  * is underway against any of the blocks which are outside the truncation
1526  * point.  Because the caller is about to free (and possibly reuse) those
1527  * blocks on-disk.
1528  */
1529 void block_invalidatepage(struct page *page, unsigned int offset,
1530 			  unsigned int length)
1531 {
1532 	struct buffer_head *head, *bh, *next;
1533 	unsigned int curr_off = 0;
1534 	unsigned int stop = length + offset;
1535 
1536 	BUG_ON(!PageLocked(page));
1537 	if (!page_has_buffers(page))
1538 		goto out;
1539 
1540 	/*
1541 	 * Check for overflow
1542 	 */
1543 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1544 
1545 	head = page_buffers(page);
1546 	bh = head;
1547 	do {
1548 		unsigned int next_off = curr_off + bh->b_size;
1549 		next = bh->b_this_page;
1550 
1551 		/*
1552 		 * Are we still fully in range ?
1553 		 */
1554 		if (next_off > stop)
1555 			goto out;
1556 
1557 		/*
1558 		 * is this block fully invalidated?
1559 		 */
1560 		if (offset <= curr_off)
1561 			discard_buffer(bh);
1562 		curr_off = next_off;
1563 		bh = next;
1564 	} while (bh != head);
1565 
1566 	/*
1567 	 * We release buffers only if the entire page is being invalidated.
1568 	 * The get_block cached value has been unconditionally invalidated,
1569 	 * so real IO is not possible anymore.
1570 	 */
1571 	if (offset == 0)
1572 		try_to_release_page(page, 0);
1573 out:
1574 	return;
1575 }
1576 EXPORT_SYMBOL(block_invalidatepage);
1577 
1578 
1579 /*
1580  * We attach and possibly dirty the buffers atomically wrt
1581  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1582  * is already excluded via the page lock.
1583  */
1584 void create_empty_buffers(struct page *page,
1585 			unsigned long blocksize, unsigned long b_state)
1586 {
1587 	struct buffer_head *bh, *head, *tail;
1588 
1589 	head = alloc_page_buffers(page, blocksize, 1);
1590 	bh = head;
1591 	do {
1592 		bh->b_state |= b_state;
1593 		tail = bh;
1594 		bh = bh->b_this_page;
1595 	} while (bh);
1596 	tail->b_this_page = head;
1597 
1598 	spin_lock(&page->mapping->private_lock);
1599 	if (PageUptodate(page) || PageDirty(page)) {
1600 		bh = head;
1601 		do {
1602 			if (PageDirty(page))
1603 				set_buffer_dirty(bh);
1604 			if (PageUptodate(page))
1605 				set_buffer_uptodate(bh);
1606 			bh = bh->b_this_page;
1607 		} while (bh != head);
1608 	}
1609 	attach_page_buffers(page, head);
1610 	spin_unlock(&page->mapping->private_lock);
1611 }
1612 EXPORT_SYMBOL(create_empty_buffers);
1613 
1614 /*
1615  * We are taking a block for data and we don't want any output from any
1616  * buffer-cache aliases starting from return from that function and
1617  * until the moment when something will explicitly mark the buffer
1618  * dirty (hopefully that will not happen until we will free that block ;-)
1619  * We don't even need to mark it not-uptodate - nobody can expect
1620  * anything from a newly allocated buffer anyway. We used to used
1621  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1622  * don't want to mark the alias unmapped, for example - it would confuse
1623  * anyone who might pick it with bread() afterwards...
1624  *
1625  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1626  * be writeout I/O going on against recently-freed buffers.  We don't
1627  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1628  * only if we really need to.  That happens here.
1629  */
1630 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1631 {
1632 	struct buffer_head *old_bh;
1633 
1634 	might_sleep();
1635 
1636 	old_bh = __find_get_block_slow(bdev, block);
1637 	if (old_bh) {
1638 		clear_buffer_dirty(old_bh);
1639 		wait_on_buffer(old_bh);
1640 		clear_buffer_req(old_bh);
1641 		__brelse(old_bh);
1642 	}
1643 }
1644 EXPORT_SYMBOL(unmap_underlying_metadata);
1645 
1646 /*
1647  * Size is a power-of-two in the range 512..PAGE_SIZE,
1648  * and the case we care about most is PAGE_SIZE.
1649  *
1650  * So this *could* possibly be written with those
1651  * constraints in mind (relevant mostly if some
1652  * architecture has a slow bit-scan instruction)
1653  */
1654 static inline int block_size_bits(unsigned int blocksize)
1655 {
1656 	return ilog2(blocksize);
1657 }
1658 
1659 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1660 {
1661 	BUG_ON(!PageLocked(page));
1662 
1663 	if (!page_has_buffers(page))
1664 		create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1665 	return page_buffers(page);
1666 }
1667 
1668 /*
1669  * NOTE! All mapped/uptodate combinations are valid:
1670  *
1671  *	Mapped	Uptodate	Meaning
1672  *
1673  *	No	No		"unknown" - must do get_block()
1674  *	No	Yes		"hole" - zero-filled
1675  *	Yes	No		"allocated" - allocated on disk, not read in
1676  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1677  *
1678  * "Dirty" is valid only with the last case (mapped+uptodate).
1679  */
1680 
1681 /*
1682  * While block_write_full_page is writing back the dirty buffers under
1683  * the page lock, whoever dirtied the buffers may decide to clean them
1684  * again at any time.  We handle that by only looking at the buffer
1685  * state inside lock_buffer().
1686  *
1687  * If block_write_full_page() is called for regular writeback
1688  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1689  * locked buffer.   This only can happen if someone has written the buffer
1690  * directly, with submit_bh().  At the address_space level PageWriteback
1691  * prevents this contention from occurring.
1692  *
1693  * If block_write_full_page() is called with wbc->sync_mode ==
1694  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1695  * causes the writes to be flagged as synchronous writes.
1696  */
1697 static int __block_write_full_page(struct inode *inode, struct page *page,
1698 			get_block_t *get_block, struct writeback_control *wbc,
1699 			bh_end_io_t *handler)
1700 {
1701 	int err;
1702 	sector_t block;
1703 	sector_t last_block;
1704 	struct buffer_head *bh, *head;
1705 	unsigned int blocksize, bbits;
1706 	int nr_underway = 0;
1707 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1708 			WRITE_SYNC : WRITE);
1709 
1710 	head = create_page_buffers(page, inode,
1711 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1712 
1713 	/*
1714 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1715 	 * here, and the (potentially unmapped) buffers may become dirty at
1716 	 * any time.  If a buffer becomes dirty here after we've inspected it
1717 	 * then we just miss that fact, and the page stays dirty.
1718 	 *
1719 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1720 	 * handle that here by just cleaning them.
1721 	 */
1722 
1723 	bh = head;
1724 	blocksize = bh->b_size;
1725 	bbits = block_size_bits(blocksize);
1726 
1727 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1728 	last_block = (i_size_read(inode) - 1) >> bbits;
1729 
1730 	/*
1731 	 * Get all the dirty buffers mapped to disk addresses and
1732 	 * handle any aliases from the underlying blockdev's mapping.
1733 	 */
1734 	do {
1735 		if (block > last_block) {
1736 			/*
1737 			 * mapped buffers outside i_size will occur, because
1738 			 * this page can be outside i_size when there is a
1739 			 * truncate in progress.
1740 			 */
1741 			/*
1742 			 * The buffer was zeroed by block_write_full_page()
1743 			 */
1744 			clear_buffer_dirty(bh);
1745 			set_buffer_uptodate(bh);
1746 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1747 			   buffer_dirty(bh)) {
1748 			WARN_ON(bh->b_size != blocksize);
1749 			err = get_block(inode, block, bh, 1);
1750 			if (err)
1751 				goto recover;
1752 			clear_buffer_delay(bh);
1753 			if (buffer_new(bh)) {
1754 				/* blockdev mappings never come here */
1755 				clear_buffer_new(bh);
1756 				unmap_underlying_metadata(bh->b_bdev,
1757 							bh->b_blocknr);
1758 			}
1759 		}
1760 		bh = bh->b_this_page;
1761 		block++;
1762 	} while (bh != head);
1763 
1764 	do {
1765 		if (!buffer_mapped(bh))
1766 			continue;
1767 		/*
1768 		 * If it's a fully non-blocking write attempt and we cannot
1769 		 * lock the buffer then redirty the page.  Note that this can
1770 		 * potentially cause a busy-wait loop from writeback threads
1771 		 * and kswapd activity, but those code paths have their own
1772 		 * higher-level throttling.
1773 		 */
1774 		if (wbc->sync_mode != WB_SYNC_NONE) {
1775 			lock_buffer(bh);
1776 		} else if (!trylock_buffer(bh)) {
1777 			redirty_page_for_writepage(wbc, page);
1778 			continue;
1779 		}
1780 		if (test_clear_buffer_dirty(bh)) {
1781 			mark_buffer_async_write_endio(bh, handler);
1782 		} else {
1783 			unlock_buffer(bh);
1784 		}
1785 	} while ((bh = bh->b_this_page) != head);
1786 
1787 	/*
1788 	 * The page and its buffers are protected by PageWriteback(), so we can
1789 	 * drop the bh refcounts early.
1790 	 */
1791 	BUG_ON(PageWriteback(page));
1792 	set_page_writeback(page);
1793 
1794 	do {
1795 		struct buffer_head *next = bh->b_this_page;
1796 		if (buffer_async_write(bh)) {
1797 			submit_bh(write_op, bh);
1798 			nr_underway++;
1799 		}
1800 		bh = next;
1801 	} while (bh != head);
1802 	unlock_page(page);
1803 
1804 	err = 0;
1805 done:
1806 	if (nr_underway == 0) {
1807 		/*
1808 		 * The page was marked dirty, but the buffers were
1809 		 * clean.  Someone wrote them back by hand with
1810 		 * ll_rw_block/submit_bh.  A rare case.
1811 		 */
1812 		end_page_writeback(page);
1813 
1814 		/*
1815 		 * The page and buffer_heads can be released at any time from
1816 		 * here on.
1817 		 */
1818 	}
1819 	return err;
1820 
1821 recover:
1822 	/*
1823 	 * ENOSPC, or some other error.  We may already have added some
1824 	 * blocks to the file, so we need to write these out to avoid
1825 	 * exposing stale data.
1826 	 * The page is currently locked and not marked for writeback
1827 	 */
1828 	bh = head;
1829 	/* Recovery: lock and submit the mapped buffers */
1830 	do {
1831 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1832 		    !buffer_delay(bh)) {
1833 			lock_buffer(bh);
1834 			mark_buffer_async_write_endio(bh, handler);
1835 		} else {
1836 			/*
1837 			 * The buffer may have been set dirty during
1838 			 * attachment to a dirty page.
1839 			 */
1840 			clear_buffer_dirty(bh);
1841 		}
1842 	} while ((bh = bh->b_this_page) != head);
1843 	SetPageError(page);
1844 	BUG_ON(PageWriteback(page));
1845 	mapping_set_error(page->mapping, err);
1846 	set_page_writeback(page);
1847 	do {
1848 		struct buffer_head *next = bh->b_this_page;
1849 		if (buffer_async_write(bh)) {
1850 			clear_buffer_dirty(bh);
1851 			submit_bh(write_op, bh);
1852 			nr_underway++;
1853 		}
1854 		bh = next;
1855 	} while (bh != head);
1856 	unlock_page(page);
1857 	goto done;
1858 }
1859 
1860 /*
1861  * If a page has any new buffers, zero them out here, and mark them uptodate
1862  * and dirty so they'll be written out (in order to prevent uninitialised
1863  * block data from leaking). And clear the new bit.
1864  */
1865 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1866 {
1867 	unsigned int block_start, block_end;
1868 	struct buffer_head *head, *bh;
1869 
1870 	BUG_ON(!PageLocked(page));
1871 	if (!page_has_buffers(page))
1872 		return;
1873 
1874 	bh = head = page_buffers(page);
1875 	block_start = 0;
1876 	do {
1877 		block_end = block_start + bh->b_size;
1878 
1879 		if (buffer_new(bh)) {
1880 			if (block_end > from && block_start < to) {
1881 				if (!PageUptodate(page)) {
1882 					unsigned start, size;
1883 
1884 					start = max(from, block_start);
1885 					size = min(to, block_end) - start;
1886 
1887 					zero_user(page, start, size);
1888 					set_buffer_uptodate(bh);
1889 				}
1890 
1891 				clear_buffer_new(bh);
1892 				mark_buffer_dirty(bh);
1893 			}
1894 		}
1895 
1896 		block_start = block_end;
1897 		bh = bh->b_this_page;
1898 	} while (bh != head);
1899 }
1900 EXPORT_SYMBOL(page_zero_new_buffers);
1901 
1902 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1903 		get_block_t *get_block)
1904 {
1905 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1906 	unsigned to = from + len;
1907 	struct inode *inode = page->mapping->host;
1908 	unsigned block_start, block_end;
1909 	sector_t block;
1910 	int err = 0;
1911 	unsigned blocksize, bbits;
1912 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1913 
1914 	BUG_ON(!PageLocked(page));
1915 	BUG_ON(from > PAGE_CACHE_SIZE);
1916 	BUG_ON(to > PAGE_CACHE_SIZE);
1917 	BUG_ON(from > to);
1918 
1919 	head = create_page_buffers(page, inode, 0);
1920 	blocksize = head->b_size;
1921 	bbits = block_size_bits(blocksize);
1922 
1923 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1924 
1925 	for(bh = head, block_start = 0; bh != head || !block_start;
1926 	    block++, block_start=block_end, bh = bh->b_this_page) {
1927 		block_end = block_start + blocksize;
1928 		if (block_end <= from || block_start >= to) {
1929 			if (PageUptodate(page)) {
1930 				if (!buffer_uptodate(bh))
1931 					set_buffer_uptodate(bh);
1932 			}
1933 			continue;
1934 		}
1935 		if (buffer_new(bh))
1936 			clear_buffer_new(bh);
1937 		if (!buffer_mapped(bh)) {
1938 			WARN_ON(bh->b_size != blocksize);
1939 			err = get_block(inode, block, bh, 1);
1940 			if (err)
1941 				break;
1942 			if (buffer_new(bh)) {
1943 				unmap_underlying_metadata(bh->b_bdev,
1944 							bh->b_blocknr);
1945 				if (PageUptodate(page)) {
1946 					clear_buffer_new(bh);
1947 					set_buffer_uptodate(bh);
1948 					mark_buffer_dirty(bh);
1949 					continue;
1950 				}
1951 				if (block_end > to || block_start < from)
1952 					zero_user_segments(page,
1953 						to, block_end,
1954 						block_start, from);
1955 				continue;
1956 			}
1957 		}
1958 		if (PageUptodate(page)) {
1959 			if (!buffer_uptodate(bh))
1960 				set_buffer_uptodate(bh);
1961 			continue;
1962 		}
1963 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1964 		    !buffer_unwritten(bh) &&
1965 		     (block_start < from || block_end > to)) {
1966 			ll_rw_block(READ, 1, &bh);
1967 			*wait_bh++=bh;
1968 		}
1969 	}
1970 	/*
1971 	 * If we issued read requests - let them complete.
1972 	 */
1973 	while(wait_bh > wait) {
1974 		wait_on_buffer(*--wait_bh);
1975 		if (!buffer_uptodate(*wait_bh))
1976 			err = -EIO;
1977 	}
1978 	if (unlikely(err))
1979 		page_zero_new_buffers(page, from, to);
1980 	return err;
1981 }
1982 EXPORT_SYMBOL(__block_write_begin);
1983 
1984 static int __block_commit_write(struct inode *inode, struct page *page,
1985 		unsigned from, unsigned to)
1986 {
1987 	unsigned block_start, block_end;
1988 	int partial = 0;
1989 	unsigned blocksize;
1990 	struct buffer_head *bh, *head;
1991 
1992 	bh = head = page_buffers(page);
1993 	blocksize = bh->b_size;
1994 
1995 	block_start = 0;
1996 	do {
1997 		block_end = block_start + blocksize;
1998 		if (block_end <= from || block_start >= to) {
1999 			if (!buffer_uptodate(bh))
2000 				partial = 1;
2001 		} else {
2002 			set_buffer_uptodate(bh);
2003 			mark_buffer_dirty(bh);
2004 		}
2005 		clear_buffer_new(bh);
2006 
2007 		block_start = block_end;
2008 		bh = bh->b_this_page;
2009 	} while (bh != head);
2010 
2011 	/*
2012 	 * If this is a partial write which happened to make all buffers
2013 	 * uptodate then we can optimize away a bogus readpage() for
2014 	 * the next read(). Here we 'discover' whether the page went
2015 	 * uptodate as a result of this (potentially partial) write.
2016 	 */
2017 	if (!partial)
2018 		SetPageUptodate(page);
2019 	return 0;
2020 }
2021 
2022 /*
2023  * block_write_begin takes care of the basic task of block allocation and
2024  * bringing partial write blocks uptodate first.
2025  *
2026  * The filesystem needs to handle block truncation upon failure.
2027  */
2028 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2029 		unsigned flags, struct page **pagep, get_block_t *get_block)
2030 {
2031 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2032 	struct page *page;
2033 	int status;
2034 
2035 	page = grab_cache_page_write_begin(mapping, index, flags);
2036 	if (!page)
2037 		return -ENOMEM;
2038 
2039 	status = __block_write_begin(page, pos, len, get_block);
2040 	if (unlikely(status)) {
2041 		unlock_page(page);
2042 		page_cache_release(page);
2043 		page = NULL;
2044 	}
2045 
2046 	*pagep = page;
2047 	return status;
2048 }
2049 EXPORT_SYMBOL(block_write_begin);
2050 
2051 int block_write_end(struct file *file, struct address_space *mapping,
2052 			loff_t pos, unsigned len, unsigned copied,
2053 			struct page *page, void *fsdata)
2054 {
2055 	struct inode *inode = mapping->host;
2056 	unsigned start;
2057 
2058 	start = pos & (PAGE_CACHE_SIZE - 1);
2059 
2060 	if (unlikely(copied < len)) {
2061 		/*
2062 		 * The buffers that were written will now be uptodate, so we
2063 		 * don't have to worry about a readpage reading them and
2064 		 * overwriting a partial write. However if we have encountered
2065 		 * a short write and only partially written into a buffer, it
2066 		 * will not be marked uptodate, so a readpage might come in and
2067 		 * destroy our partial write.
2068 		 *
2069 		 * Do the simplest thing, and just treat any short write to a
2070 		 * non uptodate page as a zero-length write, and force the
2071 		 * caller to redo the whole thing.
2072 		 */
2073 		if (!PageUptodate(page))
2074 			copied = 0;
2075 
2076 		page_zero_new_buffers(page, start+copied, start+len);
2077 	}
2078 	flush_dcache_page(page);
2079 
2080 	/* This could be a short (even 0-length) commit */
2081 	__block_commit_write(inode, page, start, start+copied);
2082 
2083 	return copied;
2084 }
2085 EXPORT_SYMBOL(block_write_end);
2086 
2087 int generic_write_end(struct file *file, struct address_space *mapping,
2088 			loff_t pos, unsigned len, unsigned copied,
2089 			struct page *page, void *fsdata)
2090 {
2091 	struct inode *inode = mapping->host;
2092 	loff_t old_size = inode->i_size;
2093 	int i_size_changed = 0;
2094 
2095 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2096 
2097 	/*
2098 	 * No need to use i_size_read() here, the i_size
2099 	 * cannot change under us because we hold i_mutex.
2100 	 *
2101 	 * But it's important to update i_size while still holding page lock:
2102 	 * page writeout could otherwise come in and zero beyond i_size.
2103 	 */
2104 	if (pos+copied > inode->i_size) {
2105 		i_size_write(inode, pos+copied);
2106 		i_size_changed = 1;
2107 	}
2108 
2109 	unlock_page(page);
2110 	page_cache_release(page);
2111 
2112 	if (old_size < pos)
2113 		pagecache_isize_extended(inode, old_size, pos);
2114 	/*
2115 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2116 	 * makes the holding time of page lock longer. Second, it forces lock
2117 	 * ordering of page lock and transaction start for journaling
2118 	 * filesystems.
2119 	 */
2120 	if (i_size_changed)
2121 		mark_inode_dirty(inode);
2122 
2123 	return copied;
2124 }
2125 EXPORT_SYMBOL(generic_write_end);
2126 
2127 /*
2128  * block_is_partially_uptodate checks whether buffers within a page are
2129  * uptodate or not.
2130  *
2131  * Returns true if all buffers which correspond to a file portion
2132  * we want to read are uptodate.
2133  */
2134 int block_is_partially_uptodate(struct page *page, unsigned long from,
2135 					unsigned long count)
2136 {
2137 	unsigned block_start, block_end, blocksize;
2138 	unsigned to;
2139 	struct buffer_head *bh, *head;
2140 	int ret = 1;
2141 
2142 	if (!page_has_buffers(page))
2143 		return 0;
2144 
2145 	head = page_buffers(page);
2146 	blocksize = head->b_size;
2147 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
2148 	to = from + to;
2149 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2150 		return 0;
2151 
2152 	bh = head;
2153 	block_start = 0;
2154 	do {
2155 		block_end = block_start + blocksize;
2156 		if (block_end > from && block_start < to) {
2157 			if (!buffer_uptodate(bh)) {
2158 				ret = 0;
2159 				break;
2160 			}
2161 			if (block_end >= to)
2162 				break;
2163 		}
2164 		block_start = block_end;
2165 		bh = bh->b_this_page;
2166 	} while (bh != head);
2167 
2168 	return ret;
2169 }
2170 EXPORT_SYMBOL(block_is_partially_uptodate);
2171 
2172 /*
2173  * Generic "read page" function for block devices that have the normal
2174  * get_block functionality. This is most of the block device filesystems.
2175  * Reads the page asynchronously --- the unlock_buffer() and
2176  * set/clear_buffer_uptodate() functions propagate buffer state into the
2177  * page struct once IO has completed.
2178  */
2179 int block_read_full_page(struct page *page, get_block_t *get_block)
2180 {
2181 	struct inode *inode = page->mapping->host;
2182 	sector_t iblock, lblock;
2183 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2184 	unsigned int blocksize, bbits;
2185 	int nr, i;
2186 	int fully_mapped = 1;
2187 
2188 	head = create_page_buffers(page, inode, 0);
2189 	blocksize = head->b_size;
2190 	bbits = block_size_bits(blocksize);
2191 
2192 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2193 	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2194 	bh = head;
2195 	nr = 0;
2196 	i = 0;
2197 
2198 	do {
2199 		if (buffer_uptodate(bh))
2200 			continue;
2201 
2202 		if (!buffer_mapped(bh)) {
2203 			int err = 0;
2204 
2205 			fully_mapped = 0;
2206 			if (iblock < lblock) {
2207 				WARN_ON(bh->b_size != blocksize);
2208 				err = get_block(inode, iblock, bh, 0);
2209 				if (err)
2210 					SetPageError(page);
2211 			}
2212 			if (!buffer_mapped(bh)) {
2213 				zero_user(page, i * blocksize, blocksize);
2214 				if (!err)
2215 					set_buffer_uptodate(bh);
2216 				continue;
2217 			}
2218 			/*
2219 			 * get_block() might have updated the buffer
2220 			 * synchronously
2221 			 */
2222 			if (buffer_uptodate(bh))
2223 				continue;
2224 		}
2225 		arr[nr++] = bh;
2226 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2227 
2228 	if (fully_mapped)
2229 		SetPageMappedToDisk(page);
2230 
2231 	if (!nr) {
2232 		/*
2233 		 * All buffers are uptodate - we can set the page uptodate
2234 		 * as well. But not if get_block() returned an error.
2235 		 */
2236 		if (!PageError(page))
2237 			SetPageUptodate(page);
2238 		unlock_page(page);
2239 		return 0;
2240 	}
2241 
2242 	/* Stage two: lock the buffers */
2243 	for (i = 0; i < nr; i++) {
2244 		bh = arr[i];
2245 		lock_buffer(bh);
2246 		mark_buffer_async_read(bh);
2247 	}
2248 
2249 	/*
2250 	 * Stage 3: start the IO.  Check for uptodateness
2251 	 * inside the buffer lock in case another process reading
2252 	 * the underlying blockdev brought it uptodate (the sct fix).
2253 	 */
2254 	for (i = 0; i < nr; i++) {
2255 		bh = arr[i];
2256 		if (buffer_uptodate(bh))
2257 			end_buffer_async_read(bh, 1);
2258 		else
2259 			submit_bh(READ, bh);
2260 	}
2261 	return 0;
2262 }
2263 EXPORT_SYMBOL(block_read_full_page);
2264 
2265 /* utility function for filesystems that need to do work on expanding
2266  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2267  * deal with the hole.
2268  */
2269 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2270 {
2271 	struct address_space *mapping = inode->i_mapping;
2272 	struct page *page;
2273 	void *fsdata;
2274 	int err;
2275 
2276 	err = inode_newsize_ok(inode, size);
2277 	if (err)
2278 		goto out;
2279 
2280 	err = pagecache_write_begin(NULL, mapping, size, 0,
2281 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2282 				&page, &fsdata);
2283 	if (err)
2284 		goto out;
2285 
2286 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2287 	BUG_ON(err > 0);
2288 
2289 out:
2290 	return err;
2291 }
2292 EXPORT_SYMBOL(generic_cont_expand_simple);
2293 
2294 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2295 			    loff_t pos, loff_t *bytes)
2296 {
2297 	struct inode *inode = mapping->host;
2298 	unsigned blocksize = 1 << inode->i_blkbits;
2299 	struct page *page;
2300 	void *fsdata;
2301 	pgoff_t index, curidx;
2302 	loff_t curpos;
2303 	unsigned zerofrom, offset, len;
2304 	int err = 0;
2305 
2306 	index = pos >> PAGE_CACHE_SHIFT;
2307 	offset = pos & ~PAGE_CACHE_MASK;
2308 
2309 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2310 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2311 		if (zerofrom & (blocksize-1)) {
2312 			*bytes |= (blocksize-1);
2313 			(*bytes)++;
2314 		}
2315 		len = PAGE_CACHE_SIZE - zerofrom;
2316 
2317 		err = pagecache_write_begin(file, mapping, curpos, len,
2318 						AOP_FLAG_UNINTERRUPTIBLE,
2319 						&page, &fsdata);
2320 		if (err)
2321 			goto out;
2322 		zero_user(page, zerofrom, len);
2323 		err = pagecache_write_end(file, mapping, curpos, len, len,
2324 						page, fsdata);
2325 		if (err < 0)
2326 			goto out;
2327 		BUG_ON(err != len);
2328 		err = 0;
2329 
2330 		balance_dirty_pages_ratelimited(mapping);
2331 
2332 		if (unlikely(fatal_signal_pending(current))) {
2333 			err = -EINTR;
2334 			goto out;
2335 		}
2336 	}
2337 
2338 	/* page covers the boundary, find the boundary offset */
2339 	if (index == curidx) {
2340 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2341 		/* if we will expand the thing last block will be filled */
2342 		if (offset <= zerofrom) {
2343 			goto out;
2344 		}
2345 		if (zerofrom & (blocksize-1)) {
2346 			*bytes |= (blocksize-1);
2347 			(*bytes)++;
2348 		}
2349 		len = offset - zerofrom;
2350 
2351 		err = pagecache_write_begin(file, mapping, curpos, len,
2352 						AOP_FLAG_UNINTERRUPTIBLE,
2353 						&page, &fsdata);
2354 		if (err)
2355 			goto out;
2356 		zero_user(page, zerofrom, len);
2357 		err = pagecache_write_end(file, mapping, curpos, len, len,
2358 						page, fsdata);
2359 		if (err < 0)
2360 			goto out;
2361 		BUG_ON(err != len);
2362 		err = 0;
2363 	}
2364 out:
2365 	return err;
2366 }
2367 
2368 /*
2369  * For moronic filesystems that do not allow holes in file.
2370  * We may have to extend the file.
2371  */
2372 int cont_write_begin(struct file *file, struct address_space *mapping,
2373 			loff_t pos, unsigned len, unsigned flags,
2374 			struct page **pagep, void **fsdata,
2375 			get_block_t *get_block, loff_t *bytes)
2376 {
2377 	struct inode *inode = mapping->host;
2378 	unsigned blocksize = 1 << inode->i_blkbits;
2379 	unsigned zerofrom;
2380 	int err;
2381 
2382 	err = cont_expand_zero(file, mapping, pos, bytes);
2383 	if (err)
2384 		return err;
2385 
2386 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2387 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2388 		*bytes |= (blocksize-1);
2389 		(*bytes)++;
2390 	}
2391 
2392 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2393 }
2394 EXPORT_SYMBOL(cont_write_begin);
2395 
2396 int block_commit_write(struct page *page, unsigned from, unsigned to)
2397 {
2398 	struct inode *inode = page->mapping->host;
2399 	__block_commit_write(inode,page,from,to);
2400 	return 0;
2401 }
2402 EXPORT_SYMBOL(block_commit_write);
2403 
2404 /*
2405  * block_page_mkwrite() is not allowed to change the file size as it gets
2406  * called from a page fault handler when a page is first dirtied. Hence we must
2407  * be careful to check for EOF conditions here. We set the page up correctly
2408  * for a written page which means we get ENOSPC checking when writing into
2409  * holes and correct delalloc and unwritten extent mapping on filesystems that
2410  * support these features.
2411  *
2412  * We are not allowed to take the i_mutex here so we have to play games to
2413  * protect against truncate races as the page could now be beyond EOF.  Because
2414  * truncate writes the inode size before removing pages, once we have the
2415  * page lock we can determine safely if the page is beyond EOF. If it is not
2416  * beyond EOF, then the page is guaranteed safe against truncation until we
2417  * unlock the page.
2418  *
2419  * Direct callers of this function should protect against filesystem freezing
2420  * using sb_start_write() - sb_end_write() functions.
2421  */
2422 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2423 			 get_block_t get_block)
2424 {
2425 	struct page *page = vmf->page;
2426 	struct inode *inode = file_inode(vma->vm_file);
2427 	unsigned long end;
2428 	loff_t size;
2429 	int ret;
2430 
2431 	lock_page(page);
2432 	size = i_size_read(inode);
2433 	if ((page->mapping != inode->i_mapping) ||
2434 	    (page_offset(page) > size)) {
2435 		/* We overload EFAULT to mean page got truncated */
2436 		ret = -EFAULT;
2437 		goto out_unlock;
2438 	}
2439 
2440 	/* page is wholly or partially inside EOF */
2441 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2442 		end = size & ~PAGE_CACHE_MASK;
2443 	else
2444 		end = PAGE_CACHE_SIZE;
2445 
2446 	ret = __block_write_begin(page, 0, end, get_block);
2447 	if (!ret)
2448 		ret = block_commit_write(page, 0, end);
2449 
2450 	if (unlikely(ret < 0))
2451 		goto out_unlock;
2452 	set_page_dirty(page);
2453 	wait_for_stable_page(page);
2454 	return 0;
2455 out_unlock:
2456 	unlock_page(page);
2457 	return ret;
2458 }
2459 EXPORT_SYMBOL(__block_page_mkwrite);
2460 
2461 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2462 		   get_block_t get_block)
2463 {
2464 	int ret;
2465 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
2466 
2467 	sb_start_pagefault(sb);
2468 
2469 	/*
2470 	 * Update file times before taking page lock. We may end up failing the
2471 	 * fault so this update may be superfluous but who really cares...
2472 	 */
2473 	file_update_time(vma->vm_file);
2474 
2475 	ret = __block_page_mkwrite(vma, vmf, get_block);
2476 	sb_end_pagefault(sb);
2477 	return block_page_mkwrite_return(ret);
2478 }
2479 EXPORT_SYMBOL(block_page_mkwrite);
2480 
2481 /*
2482  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2483  * immediately, while under the page lock.  So it needs a special end_io
2484  * handler which does not touch the bh after unlocking it.
2485  */
2486 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2487 {
2488 	__end_buffer_read_notouch(bh, uptodate);
2489 }
2490 
2491 /*
2492  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2493  * the page (converting it to circular linked list and taking care of page
2494  * dirty races).
2495  */
2496 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2497 {
2498 	struct buffer_head *bh;
2499 
2500 	BUG_ON(!PageLocked(page));
2501 
2502 	spin_lock(&page->mapping->private_lock);
2503 	bh = head;
2504 	do {
2505 		if (PageDirty(page))
2506 			set_buffer_dirty(bh);
2507 		if (!bh->b_this_page)
2508 			bh->b_this_page = head;
2509 		bh = bh->b_this_page;
2510 	} while (bh != head);
2511 	attach_page_buffers(page, head);
2512 	spin_unlock(&page->mapping->private_lock);
2513 }
2514 
2515 /*
2516  * On entry, the page is fully not uptodate.
2517  * On exit the page is fully uptodate in the areas outside (from,to)
2518  * The filesystem needs to handle block truncation upon failure.
2519  */
2520 int nobh_write_begin(struct address_space *mapping,
2521 			loff_t pos, unsigned len, unsigned flags,
2522 			struct page **pagep, void **fsdata,
2523 			get_block_t *get_block)
2524 {
2525 	struct inode *inode = mapping->host;
2526 	const unsigned blkbits = inode->i_blkbits;
2527 	const unsigned blocksize = 1 << blkbits;
2528 	struct buffer_head *head, *bh;
2529 	struct page *page;
2530 	pgoff_t index;
2531 	unsigned from, to;
2532 	unsigned block_in_page;
2533 	unsigned block_start, block_end;
2534 	sector_t block_in_file;
2535 	int nr_reads = 0;
2536 	int ret = 0;
2537 	int is_mapped_to_disk = 1;
2538 
2539 	index = pos >> PAGE_CACHE_SHIFT;
2540 	from = pos & (PAGE_CACHE_SIZE - 1);
2541 	to = from + len;
2542 
2543 	page = grab_cache_page_write_begin(mapping, index, flags);
2544 	if (!page)
2545 		return -ENOMEM;
2546 	*pagep = page;
2547 	*fsdata = NULL;
2548 
2549 	if (page_has_buffers(page)) {
2550 		ret = __block_write_begin(page, pos, len, get_block);
2551 		if (unlikely(ret))
2552 			goto out_release;
2553 		return ret;
2554 	}
2555 
2556 	if (PageMappedToDisk(page))
2557 		return 0;
2558 
2559 	/*
2560 	 * Allocate buffers so that we can keep track of state, and potentially
2561 	 * attach them to the page if an error occurs. In the common case of
2562 	 * no error, they will just be freed again without ever being attached
2563 	 * to the page (which is all OK, because we're under the page lock).
2564 	 *
2565 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2566 	 * than the circular one we're used to.
2567 	 */
2568 	head = alloc_page_buffers(page, blocksize, 0);
2569 	if (!head) {
2570 		ret = -ENOMEM;
2571 		goto out_release;
2572 	}
2573 
2574 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2575 
2576 	/*
2577 	 * We loop across all blocks in the page, whether or not they are
2578 	 * part of the affected region.  This is so we can discover if the
2579 	 * page is fully mapped-to-disk.
2580 	 */
2581 	for (block_start = 0, block_in_page = 0, bh = head;
2582 		  block_start < PAGE_CACHE_SIZE;
2583 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2584 		int create;
2585 
2586 		block_end = block_start + blocksize;
2587 		bh->b_state = 0;
2588 		create = 1;
2589 		if (block_start >= to)
2590 			create = 0;
2591 		ret = get_block(inode, block_in_file + block_in_page,
2592 					bh, create);
2593 		if (ret)
2594 			goto failed;
2595 		if (!buffer_mapped(bh))
2596 			is_mapped_to_disk = 0;
2597 		if (buffer_new(bh))
2598 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2599 		if (PageUptodate(page)) {
2600 			set_buffer_uptodate(bh);
2601 			continue;
2602 		}
2603 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2604 			zero_user_segments(page, block_start, from,
2605 							to, block_end);
2606 			continue;
2607 		}
2608 		if (buffer_uptodate(bh))
2609 			continue;	/* reiserfs does this */
2610 		if (block_start < from || block_end > to) {
2611 			lock_buffer(bh);
2612 			bh->b_end_io = end_buffer_read_nobh;
2613 			submit_bh(READ, bh);
2614 			nr_reads++;
2615 		}
2616 	}
2617 
2618 	if (nr_reads) {
2619 		/*
2620 		 * The page is locked, so these buffers are protected from
2621 		 * any VM or truncate activity.  Hence we don't need to care
2622 		 * for the buffer_head refcounts.
2623 		 */
2624 		for (bh = head; bh; bh = bh->b_this_page) {
2625 			wait_on_buffer(bh);
2626 			if (!buffer_uptodate(bh))
2627 				ret = -EIO;
2628 		}
2629 		if (ret)
2630 			goto failed;
2631 	}
2632 
2633 	if (is_mapped_to_disk)
2634 		SetPageMappedToDisk(page);
2635 
2636 	*fsdata = head; /* to be released by nobh_write_end */
2637 
2638 	return 0;
2639 
2640 failed:
2641 	BUG_ON(!ret);
2642 	/*
2643 	 * Error recovery is a bit difficult. We need to zero out blocks that
2644 	 * were newly allocated, and dirty them to ensure they get written out.
2645 	 * Buffers need to be attached to the page at this point, otherwise
2646 	 * the handling of potential IO errors during writeout would be hard
2647 	 * (could try doing synchronous writeout, but what if that fails too?)
2648 	 */
2649 	attach_nobh_buffers(page, head);
2650 	page_zero_new_buffers(page, from, to);
2651 
2652 out_release:
2653 	unlock_page(page);
2654 	page_cache_release(page);
2655 	*pagep = NULL;
2656 
2657 	return ret;
2658 }
2659 EXPORT_SYMBOL(nobh_write_begin);
2660 
2661 int nobh_write_end(struct file *file, struct address_space *mapping,
2662 			loff_t pos, unsigned len, unsigned copied,
2663 			struct page *page, void *fsdata)
2664 {
2665 	struct inode *inode = page->mapping->host;
2666 	struct buffer_head *head = fsdata;
2667 	struct buffer_head *bh;
2668 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2669 
2670 	if (unlikely(copied < len) && head)
2671 		attach_nobh_buffers(page, head);
2672 	if (page_has_buffers(page))
2673 		return generic_write_end(file, mapping, pos, len,
2674 					copied, page, fsdata);
2675 
2676 	SetPageUptodate(page);
2677 	set_page_dirty(page);
2678 	if (pos+copied > inode->i_size) {
2679 		i_size_write(inode, pos+copied);
2680 		mark_inode_dirty(inode);
2681 	}
2682 
2683 	unlock_page(page);
2684 	page_cache_release(page);
2685 
2686 	while (head) {
2687 		bh = head;
2688 		head = head->b_this_page;
2689 		free_buffer_head(bh);
2690 	}
2691 
2692 	return copied;
2693 }
2694 EXPORT_SYMBOL(nobh_write_end);
2695 
2696 /*
2697  * nobh_writepage() - based on block_full_write_page() except
2698  * that it tries to operate without attaching bufferheads to
2699  * the page.
2700  */
2701 int nobh_writepage(struct page *page, get_block_t *get_block,
2702 			struct writeback_control *wbc)
2703 {
2704 	struct inode * const inode = page->mapping->host;
2705 	loff_t i_size = i_size_read(inode);
2706 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2707 	unsigned offset;
2708 	int ret;
2709 
2710 	/* Is the page fully inside i_size? */
2711 	if (page->index < end_index)
2712 		goto out;
2713 
2714 	/* Is the page fully outside i_size? (truncate in progress) */
2715 	offset = i_size & (PAGE_CACHE_SIZE-1);
2716 	if (page->index >= end_index+1 || !offset) {
2717 		/*
2718 		 * The page may have dirty, unmapped buffers.  For example,
2719 		 * they may have been added in ext3_writepage().  Make them
2720 		 * freeable here, so the page does not leak.
2721 		 */
2722 #if 0
2723 		/* Not really sure about this  - do we need this ? */
2724 		if (page->mapping->a_ops->invalidatepage)
2725 			page->mapping->a_ops->invalidatepage(page, offset);
2726 #endif
2727 		unlock_page(page);
2728 		return 0; /* don't care */
2729 	}
2730 
2731 	/*
2732 	 * The page straddles i_size.  It must be zeroed out on each and every
2733 	 * writepage invocation because it may be mmapped.  "A file is mapped
2734 	 * in multiples of the page size.  For a file that is not a multiple of
2735 	 * the  page size, the remaining memory is zeroed when mapped, and
2736 	 * writes to that region are not written out to the file."
2737 	 */
2738 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2739 out:
2740 	ret = mpage_writepage(page, get_block, wbc);
2741 	if (ret == -EAGAIN)
2742 		ret = __block_write_full_page(inode, page, get_block, wbc,
2743 					      end_buffer_async_write);
2744 	return ret;
2745 }
2746 EXPORT_SYMBOL(nobh_writepage);
2747 
2748 int nobh_truncate_page(struct address_space *mapping,
2749 			loff_t from, get_block_t *get_block)
2750 {
2751 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2752 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2753 	unsigned blocksize;
2754 	sector_t iblock;
2755 	unsigned length, pos;
2756 	struct inode *inode = mapping->host;
2757 	struct page *page;
2758 	struct buffer_head map_bh;
2759 	int err;
2760 
2761 	blocksize = 1 << inode->i_blkbits;
2762 	length = offset & (blocksize - 1);
2763 
2764 	/* Block boundary? Nothing to do */
2765 	if (!length)
2766 		return 0;
2767 
2768 	length = blocksize - length;
2769 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2770 
2771 	page = grab_cache_page(mapping, index);
2772 	err = -ENOMEM;
2773 	if (!page)
2774 		goto out;
2775 
2776 	if (page_has_buffers(page)) {
2777 has_buffers:
2778 		unlock_page(page);
2779 		page_cache_release(page);
2780 		return block_truncate_page(mapping, from, get_block);
2781 	}
2782 
2783 	/* Find the buffer that contains "offset" */
2784 	pos = blocksize;
2785 	while (offset >= pos) {
2786 		iblock++;
2787 		pos += blocksize;
2788 	}
2789 
2790 	map_bh.b_size = blocksize;
2791 	map_bh.b_state = 0;
2792 	err = get_block(inode, iblock, &map_bh, 0);
2793 	if (err)
2794 		goto unlock;
2795 	/* unmapped? It's a hole - nothing to do */
2796 	if (!buffer_mapped(&map_bh))
2797 		goto unlock;
2798 
2799 	/* Ok, it's mapped. Make sure it's up-to-date */
2800 	if (!PageUptodate(page)) {
2801 		err = mapping->a_ops->readpage(NULL, page);
2802 		if (err) {
2803 			page_cache_release(page);
2804 			goto out;
2805 		}
2806 		lock_page(page);
2807 		if (!PageUptodate(page)) {
2808 			err = -EIO;
2809 			goto unlock;
2810 		}
2811 		if (page_has_buffers(page))
2812 			goto has_buffers;
2813 	}
2814 	zero_user(page, offset, length);
2815 	set_page_dirty(page);
2816 	err = 0;
2817 
2818 unlock:
2819 	unlock_page(page);
2820 	page_cache_release(page);
2821 out:
2822 	return err;
2823 }
2824 EXPORT_SYMBOL(nobh_truncate_page);
2825 
2826 int block_truncate_page(struct address_space *mapping,
2827 			loff_t from, get_block_t *get_block)
2828 {
2829 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2830 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2831 	unsigned blocksize;
2832 	sector_t iblock;
2833 	unsigned length, pos;
2834 	struct inode *inode = mapping->host;
2835 	struct page *page;
2836 	struct buffer_head *bh;
2837 	int err;
2838 
2839 	blocksize = 1 << inode->i_blkbits;
2840 	length = offset & (blocksize - 1);
2841 
2842 	/* Block boundary? Nothing to do */
2843 	if (!length)
2844 		return 0;
2845 
2846 	length = blocksize - length;
2847 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2848 
2849 	page = grab_cache_page(mapping, index);
2850 	err = -ENOMEM;
2851 	if (!page)
2852 		goto out;
2853 
2854 	if (!page_has_buffers(page))
2855 		create_empty_buffers(page, blocksize, 0);
2856 
2857 	/* Find the buffer that contains "offset" */
2858 	bh = page_buffers(page);
2859 	pos = blocksize;
2860 	while (offset >= pos) {
2861 		bh = bh->b_this_page;
2862 		iblock++;
2863 		pos += blocksize;
2864 	}
2865 
2866 	err = 0;
2867 	if (!buffer_mapped(bh)) {
2868 		WARN_ON(bh->b_size != blocksize);
2869 		err = get_block(inode, iblock, bh, 0);
2870 		if (err)
2871 			goto unlock;
2872 		/* unmapped? It's a hole - nothing to do */
2873 		if (!buffer_mapped(bh))
2874 			goto unlock;
2875 	}
2876 
2877 	/* Ok, it's mapped. Make sure it's up-to-date */
2878 	if (PageUptodate(page))
2879 		set_buffer_uptodate(bh);
2880 
2881 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2882 		err = -EIO;
2883 		ll_rw_block(READ, 1, &bh);
2884 		wait_on_buffer(bh);
2885 		/* Uhhuh. Read error. Complain and punt. */
2886 		if (!buffer_uptodate(bh))
2887 			goto unlock;
2888 	}
2889 
2890 	zero_user(page, offset, length);
2891 	mark_buffer_dirty(bh);
2892 	err = 0;
2893 
2894 unlock:
2895 	unlock_page(page);
2896 	page_cache_release(page);
2897 out:
2898 	return err;
2899 }
2900 EXPORT_SYMBOL(block_truncate_page);
2901 
2902 /*
2903  * The generic ->writepage function for buffer-backed address_spaces
2904  */
2905 int block_write_full_page(struct page *page, get_block_t *get_block,
2906 			struct writeback_control *wbc)
2907 {
2908 	struct inode * const inode = page->mapping->host;
2909 	loff_t i_size = i_size_read(inode);
2910 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2911 	unsigned offset;
2912 
2913 	/* Is the page fully inside i_size? */
2914 	if (page->index < end_index)
2915 		return __block_write_full_page(inode, page, get_block, wbc,
2916 					       end_buffer_async_write);
2917 
2918 	/* Is the page fully outside i_size? (truncate in progress) */
2919 	offset = i_size & (PAGE_CACHE_SIZE-1);
2920 	if (page->index >= end_index+1 || !offset) {
2921 		/*
2922 		 * The page may have dirty, unmapped buffers.  For example,
2923 		 * they may have been added in ext3_writepage().  Make them
2924 		 * freeable here, so the page does not leak.
2925 		 */
2926 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
2927 		unlock_page(page);
2928 		return 0; /* don't care */
2929 	}
2930 
2931 	/*
2932 	 * The page straddles i_size.  It must be zeroed out on each and every
2933 	 * writepage invocation because it may be mmapped.  "A file is mapped
2934 	 * in multiples of the page size.  For a file that is not a multiple of
2935 	 * the  page size, the remaining memory is zeroed when mapped, and
2936 	 * writes to that region are not written out to the file."
2937 	 */
2938 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2939 	return __block_write_full_page(inode, page, get_block, wbc,
2940 							end_buffer_async_write);
2941 }
2942 EXPORT_SYMBOL(block_write_full_page);
2943 
2944 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2945 			    get_block_t *get_block)
2946 {
2947 	struct buffer_head tmp;
2948 	struct inode *inode = mapping->host;
2949 	tmp.b_state = 0;
2950 	tmp.b_blocknr = 0;
2951 	tmp.b_size = 1 << inode->i_blkbits;
2952 	get_block(inode, block, &tmp, 0);
2953 	return tmp.b_blocknr;
2954 }
2955 EXPORT_SYMBOL(generic_block_bmap);
2956 
2957 static void end_bio_bh_io_sync(struct bio *bio, int err)
2958 {
2959 	struct buffer_head *bh = bio->bi_private;
2960 
2961 	if (err == -EOPNOTSUPP) {
2962 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2963 	}
2964 
2965 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2966 		set_bit(BH_Quiet, &bh->b_state);
2967 
2968 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2969 	bio_put(bio);
2970 }
2971 
2972 /*
2973  * This allows us to do IO even on the odd last sectors
2974  * of a device, even if the block size is some multiple
2975  * of the physical sector size.
2976  *
2977  * We'll just truncate the bio to the size of the device,
2978  * and clear the end of the buffer head manually.
2979  *
2980  * Truly out-of-range accesses will turn into actual IO
2981  * errors, this only handles the "we need to be able to
2982  * do IO at the final sector" case.
2983  */
2984 void guard_bio_eod(int rw, struct bio *bio)
2985 {
2986 	sector_t maxsector;
2987 	struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2988 	unsigned truncated_bytes;
2989 
2990 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2991 	if (!maxsector)
2992 		return;
2993 
2994 	/*
2995 	 * If the *whole* IO is past the end of the device,
2996 	 * let it through, and the IO layer will turn it into
2997 	 * an EIO.
2998 	 */
2999 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3000 		return;
3001 
3002 	maxsector -= bio->bi_iter.bi_sector;
3003 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3004 		return;
3005 
3006 	/* Uhhuh. We've got a bio that straddles the device size! */
3007 	truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3008 
3009 	/* Truncate the bio.. */
3010 	bio->bi_iter.bi_size -= truncated_bytes;
3011 	bvec->bv_len -= truncated_bytes;
3012 
3013 	/* ..and clear the end of the buffer for reads */
3014 	if ((rw & RW_MASK) == READ) {
3015 		zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3016 				truncated_bytes);
3017 	}
3018 }
3019 
3020 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
3021 {
3022 	struct bio *bio;
3023 	int ret = 0;
3024 
3025 	BUG_ON(!buffer_locked(bh));
3026 	BUG_ON(!buffer_mapped(bh));
3027 	BUG_ON(!bh->b_end_io);
3028 	BUG_ON(buffer_delay(bh));
3029 	BUG_ON(buffer_unwritten(bh));
3030 
3031 	/*
3032 	 * Only clear out a write error when rewriting
3033 	 */
3034 	if (test_set_buffer_req(bh) && (rw & WRITE))
3035 		clear_buffer_write_io_error(bh);
3036 
3037 	/*
3038 	 * from here on down, it's all bio -- do the initial mapping,
3039 	 * submit_bio -> generic_make_request may further map this bio around
3040 	 */
3041 	bio = bio_alloc(GFP_NOIO, 1);
3042 
3043 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3044 	bio->bi_bdev = bh->b_bdev;
3045 	bio->bi_io_vec[0].bv_page = bh->b_page;
3046 	bio->bi_io_vec[0].bv_len = bh->b_size;
3047 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3048 
3049 	bio->bi_vcnt = 1;
3050 	bio->bi_iter.bi_size = bh->b_size;
3051 
3052 	bio->bi_end_io = end_bio_bh_io_sync;
3053 	bio->bi_private = bh;
3054 	bio->bi_flags |= bio_flags;
3055 
3056 	/* Take care of bh's that straddle the end of the device */
3057 	guard_bio_eod(rw, bio);
3058 
3059 	if (buffer_meta(bh))
3060 		rw |= REQ_META;
3061 	if (buffer_prio(bh))
3062 		rw |= REQ_PRIO;
3063 
3064 	bio_get(bio);
3065 	submit_bio(rw, bio);
3066 
3067 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
3068 		ret = -EOPNOTSUPP;
3069 
3070 	bio_put(bio);
3071 	return ret;
3072 }
3073 EXPORT_SYMBOL_GPL(_submit_bh);
3074 
3075 int submit_bh(int rw, struct buffer_head *bh)
3076 {
3077 	return _submit_bh(rw, bh, 0);
3078 }
3079 EXPORT_SYMBOL(submit_bh);
3080 
3081 /**
3082  * ll_rw_block: low-level access to block devices (DEPRECATED)
3083  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3084  * @nr: number of &struct buffer_heads in the array
3085  * @bhs: array of pointers to &struct buffer_head
3086  *
3087  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3088  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3089  * %READA option is described in the documentation for generic_make_request()
3090  * which ll_rw_block() calls.
3091  *
3092  * This function drops any buffer that it cannot get a lock on (with the
3093  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3094  * request, and any buffer that appears to be up-to-date when doing read
3095  * request.  Further it marks as clean buffers that are processed for
3096  * writing (the buffer cache won't assume that they are actually clean
3097  * until the buffer gets unlocked).
3098  *
3099  * ll_rw_block sets b_end_io to simple completion handler that marks
3100  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3101  * any waiters.
3102  *
3103  * All of the buffers must be for the same device, and must also be a
3104  * multiple of the current approved size for the device.
3105  */
3106 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3107 {
3108 	int i;
3109 
3110 	for (i = 0; i < nr; i++) {
3111 		struct buffer_head *bh = bhs[i];
3112 
3113 		if (!trylock_buffer(bh))
3114 			continue;
3115 		if (rw == WRITE) {
3116 			if (test_clear_buffer_dirty(bh)) {
3117 				bh->b_end_io = end_buffer_write_sync;
3118 				get_bh(bh);
3119 				submit_bh(WRITE, bh);
3120 				continue;
3121 			}
3122 		} else {
3123 			if (!buffer_uptodate(bh)) {
3124 				bh->b_end_io = end_buffer_read_sync;
3125 				get_bh(bh);
3126 				submit_bh(rw, bh);
3127 				continue;
3128 			}
3129 		}
3130 		unlock_buffer(bh);
3131 	}
3132 }
3133 EXPORT_SYMBOL(ll_rw_block);
3134 
3135 void write_dirty_buffer(struct buffer_head *bh, int rw)
3136 {
3137 	lock_buffer(bh);
3138 	if (!test_clear_buffer_dirty(bh)) {
3139 		unlock_buffer(bh);
3140 		return;
3141 	}
3142 	bh->b_end_io = end_buffer_write_sync;
3143 	get_bh(bh);
3144 	submit_bh(rw, bh);
3145 }
3146 EXPORT_SYMBOL(write_dirty_buffer);
3147 
3148 /*
3149  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3150  * and then start new I/O and then wait upon it.  The caller must have a ref on
3151  * the buffer_head.
3152  */
3153 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3154 {
3155 	int ret = 0;
3156 
3157 	WARN_ON(atomic_read(&bh->b_count) < 1);
3158 	lock_buffer(bh);
3159 	if (test_clear_buffer_dirty(bh)) {
3160 		get_bh(bh);
3161 		bh->b_end_io = end_buffer_write_sync;
3162 		ret = submit_bh(rw, bh);
3163 		wait_on_buffer(bh);
3164 		if (!ret && !buffer_uptodate(bh))
3165 			ret = -EIO;
3166 	} else {
3167 		unlock_buffer(bh);
3168 	}
3169 	return ret;
3170 }
3171 EXPORT_SYMBOL(__sync_dirty_buffer);
3172 
3173 int sync_dirty_buffer(struct buffer_head *bh)
3174 {
3175 	return __sync_dirty_buffer(bh, WRITE_SYNC);
3176 }
3177 EXPORT_SYMBOL(sync_dirty_buffer);
3178 
3179 /*
3180  * try_to_free_buffers() checks if all the buffers on this particular page
3181  * are unused, and releases them if so.
3182  *
3183  * Exclusion against try_to_free_buffers may be obtained by either
3184  * locking the page or by holding its mapping's private_lock.
3185  *
3186  * If the page is dirty but all the buffers are clean then we need to
3187  * be sure to mark the page clean as well.  This is because the page
3188  * may be against a block device, and a later reattachment of buffers
3189  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3190  * filesystem data on the same device.
3191  *
3192  * The same applies to regular filesystem pages: if all the buffers are
3193  * clean then we set the page clean and proceed.  To do that, we require
3194  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3195  * private_lock.
3196  *
3197  * try_to_free_buffers() is non-blocking.
3198  */
3199 static inline int buffer_busy(struct buffer_head *bh)
3200 {
3201 	return atomic_read(&bh->b_count) |
3202 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3203 }
3204 
3205 static int
3206 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3207 {
3208 	struct buffer_head *head = page_buffers(page);
3209 	struct buffer_head *bh;
3210 
3211 	bh = head;
3212 	do {
3213 		if (buffer_write_io_error(bh) && page->mapping)
3214 			set_bit(AS_EIO, &page->mapping->flags);
3215 		if (buffer_busy(bh))
3216 			goto failed;
3217 		bh = bh->b_this_page;
3218 	} while (bh != head);
3219 
3220 	do {
3221 		struct buffer_head *next = bh->b_this_page;
3222 
3223 		if (bh->b_assoc_map)
3224 			__remove_assoc_queue(bh);
3225 		bh = next;
3226 	} while (bh != head);
3227 	*buffers_to_free = head;
3228 	__clear_page_buffers(page);
3229 	return 1;
3230 failed:
3231 	return 0;
3232 }
3233 
3234 int try_to_free_buffers(struct page *page)
3235 {
3236 	struct address_space * const mapping = page->mapping;
3237 	struct buffer_head *buffers_to_free = NULL;
3238 	int ret = 0;
3239 
3240 	BUG_ON(!PageLocked(page));
3241 	if (PageWriteback(page))
3242 		return 0;
3243 
3244 	if (mapping == NULL) {		/* can this still happen? */
3245 		ret = drop_buffers(page, &buffers_to_free);
3246 		goto out;
3247 	}
3248 
3249 	spin_lock(&mapping->private_lock);
3250 	ret = drop_buffers(page, &buffers_to_free);
3251 
3252 	/*
3253 	 * If the filesystem writes its buffers by hand (eg ext3)
3254 	 * then we can have clean buffers against a dirty page.  We
3255 	 * clean the page here; otherwise the VM will never notice
3256 	 * that the filesystem did any IO at all.
3257 	 *
3258 	 * Also, during truncate, discard_buffer will have marked all
3259 	 * the page's buffers clean.  We discover that here and clean
3260 	 * the page also.
3261 	 *
3262 	 * private_lock must be held over this entire operation in order
3263 	 * to synchronise against __set_page_dirty_buffers and prevent the
3264 	 * dirty bit from being lost.
3265 	 */
3266 	if (ret)
3267 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3268 	spin_unlock(&mapping->private_lock);
3269 out:
3270 	if (buffers_to_free) {
3271 		struct buffer_head *bh = buffers_to_free;
3272 
3273 		do {
3274 			struct buffer_head *next = bh->b_this_page;
3275 			free_buffer_head(bh);
3276 			bh = next;
3277 		} while (bh != buffers_to_free);
3278 	}
3279 	return ret;
3280 }
3281 EXPORT_SYMBOL(try_to_free_buffers);
3282 
3283 /*
3284  * There are no bdflush tunables left.  But distributions are
3285  * still running obsolete flush daemons, so we terminate them here.
3286  *
3287  * Use of bdflush() is deprecated and will be removed in a future kernel.
3288  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3289  */
3290 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3291 {
3292 	static int msg_count;
3293 
3294 	if (!capable(CAP_SYS_ADMIN))
3295 		return -EPERM;
3296 
3297 	if (msg_count < 5) {
3298 		msg_count++;
3299 		printk(KERN_INFO
3300 			"warning: process `%s' used the obsolete bdflush"
3301 			" system call\n", current->comm);
3302 		printk(KERN_INFO "Fix your initscripts?\n");
3303 	}
3304 
3305 	if (func == 1)
3306 		do_exit(0);
3307 	return 0;
3308 }
3309 
3310 /*
3311  * Buffer-head allocation
3312  */
3313 static struct kmem_cache *bh_cachep __read_mostly;
3314 
3315 /*
3316  * Once the number of bh's in the machine exceeds this level, we start
3317  * stripping them in writeback.
3318  */
3319 static unsigned long max_buffer_heads;
3320 
3321 int buffer_heads_over_limit;
3322 
3323 struct bh_accounting {
3324 	int nr;			/* Number of live bh's */
3325 	int ratelimit;		/* Limit cacheline bouncing */
3326 };
3327 
3328 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3329 
3330 static void recalc_bh_state(void)
3331 {
3332 	int i;
3333 	int tot = 0;
3334 
3335 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3336 		return;
3337 	__this_cpu_write(bh_accounting.ratelimit, 0);
3338 	for_each_online_cpu(i)
3339 		tot += per_cpu(bh_accounting, i).nr;
3340 	buffer_heads_over_limit = (tot > max_buffer_heads);
3341 }
3342 
3343 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3344 {
3345 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3346 	if (ret) {
3347 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3348 		preempt_disable();
3349 		__this_cpu_inc(bh_accounting.nr);
3350 		recalc_bh_state();
3351 		preempt_enable();
3352 	}
3353 	return ret;
3354 }
3355 EXPORT_SYMBOL(alloc_buffer_head);
3356 
3357 void free_buffer_head(struct buffer_head *bh)
3358 {
3359 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3360 	kmem_cache_free(bh_cachep, bh);
3361 	preempt_disable();
3362 	__this_cpu_dec(bh_accounting.nr);
3363 	recalc_bh_state();
3364 	preempt_enable();
3365 }
3366 EXPORT_SYMBOL(free_buffer_head);
3367 
3368 static void buffer_exit_cpu(int cpu)
3369 {
3370 	int i;
3371 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3372 
3373 	for (i = 0; i < BH_LRU_SIZE; i++) {
3374 		brelse(b->bhs[i]);
3375 		b->bhs[i] = NULL;
3376 	}
3377 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3378 	per_cpu(bh_accounting, cpu).nr = 0;
3379 }
3380 
3381 static int buffer_cpu_notify(struct notifier_block *self,
3382 			      unsigned long action, void *hcpu)
3383 {
3384 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3385 		buffer_exit_cpu((unsigned long)hcpu);
3386 	return NOTIFY_OK;
3387 }
3388 
3389 /**
3390  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3391  * @bh: struct buffer_head
3392  *
3393  * Return true if the buffer is up-to-date and false,
3394  * with the buffer locked, if not.
3395  */
3396 int bh_uptodate_or_lock(struct buffer_head *bh)
3397 {
3398 	if (!buffer_uptodate(bh)) {
3399 		lock_buffer(bh);
3400 		if (!buffer_uptodate(bh))
3401 			return 0;
3402 		unlock_buffer(bh);
3403 	}
3404 	return 1;
3405 }
3406 EXPORT_SYMBOL(bh_uptodate_or_lock);
3407 
3408 /**
3409  * bh_submit_read - Submit a locked buffer for reading
3410  * @bh: struct buffer_head
3411  *
3412  * Returns zero on success and -EIO on error.
3413  */
3414 int bh_submit_read(struct buffer_head *bh)
3415 {
3416 	BUG_ON(!buffer_locked(bh));
3417 
3418 	if (buffer_uptodate(bh)) {
3419 		unlock_buffer(bh);
3420 		return 0;
3421 	}
3422 
3423 	get_bh(bh);
3424 	bh->b_end_io = end_buffer_read_sync;
3425 	submit_bh(READ, bh);
3426 	wait_on_buffer(bh);
3427 	if (buffer_uptodate(bh))
3428 		return 0;
3429 	return -EIO;
3430 }
3431 EXPORT_SYMBOL(bh_submit_read);
3432 
3433 void __init buffer_init(void)
3434 {
3435 	unsigned long nrpages;
3436 
3437 	bh_cachep = kmem_cache_create("buffer_head",
3438 			sizeof(struct buffer_head), 0,
3439 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3440 				SLAB_MEM_SPREAD),
3441 				NULL);
3442 
3443 	/*
3444 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3445 	 */
3446 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3447 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3448 	hotcpu_notifier(buffer_cpu_notify, 0);
3449 }
3450