1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/export.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 #include <trace/events/block.h> 45 46 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 47 48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 49 50 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 inline void touch_buffer(struct buffer_head *bh) 58 { 59 trace_block_touch_buffer(bh); 60 mark_page_accessed(bh->b_page); 61 } 62 EXPORT_SYMBOL(touch_buffer); 63 64 void __lock_buffer(struct buffer_head *bh) 65 { 66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 67 } 68 EXPORT_SYMBOL(__lock_buffer); 69 70 void unlock_buffer(struct buffer_head *bh) 71 { 72 clear_bit_unlock(BH_Lock, &bh->b_state); 73 smp_mb__after_atomic(); 74 wake_up_bit(&bh->b_state, BH_Lock); 75 } 76 EXPORT_SYMBOL(unlock_buffer); 77 78 /* 79 * Returns if the page has dirty or writeback buffers. If all the buffers 80 * are unlocked and clean then the PageDirty information is stale. If 81 * any of the pages are locked, it is assumed they are locked for IO. 82 */ 83 void buffer_check_dirty_writeback(struct page *page, 84 bool *dirty, bool *writeback) 85 { 86 struct buffer_head *head, *bh; 87 *dirty = false; 88 *writeback = false; 89 90 BUG_ON(!PageLocked(page)); 91 92 if (!page_has_buffers(page)) 93 return; 94 95 if (PageWriteback(page)) 96 *writeback = true; 97 98 head = page_buffers(page); 99 bh = head; 100 do { 101 if (buffer_locked(bh)) 102 *writeback = true; 103 104 if (buffer_dirty(bh)) 105 *dirty = true; 106 107 bh = bh->b_this_page; 108 } while (bh != head); 109 } 110 EXPORT_SYMBOL(buffer_check_dirty_writeback); 111 112 /* 113 * Block until a buffer comes unlocked. This doesn't stop it 114 * from becoming locked again - you have to lock it yourself 115 * if you want to preserve its state. 116 */ 117 void __wait_on_buffer(struct buffer_head * bh) 118 { 119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 120 } 121 EXPORT_SYMBOL(__wait_on_buffer); 122 123 static void 124 __clear_page_buffers(struct page *page) 125 { 126 ClearPagePrivate(page); 127 set_page_private(page, 0); 128 page_cache_release(page); 129 } 130 131 132 static int quiet_error(struct buffer_head *bh) 133 { 134 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 135 return 0; 136 return 1; 137 } 138 139 140 static void buffer_io_error(struct buffer_head *bh) 141 { 142 char b[BDEVNAME_SIZE]; 143 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 144 bdevname(bh->b_bdev, b), 145 (unsigned long long)bh->b_blocknr); 146 } 147 148 /* 149 * End-of-IO handler helper function which does not touch the bh after 150 * unlocking it. 151 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 152 * a race there is benign: unlock_buffer() only use the bh's address for 153 * hashing after unlocking the buffer, so it doesn't actually touch the bh 154 * itself. 155 */ 156 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 157 { 158 if (uptodate) { 159 set_buffer_uptodate(bh); 160 } else { 161 /* This happens, due to failed READA attempts. */ 162 clear_buffer_uptodate(bh); 163 } 164 unlock_buffer(bh); 165 } 166 167 /* 168 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 169 * unlock the buffer. This is what ll_rw_block uses too. 170 */ 171 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 172 { 173 __end_buffer_read_notouch(bh, uptodate); 174 put_bh(bh); 175 } 176 EXPORT_SYMBOL(end_buffer_read_sync); 177 178 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 179 { 180 char b[BDEVNAME_SIZE]; 181 182 if (uptodate) { 183 set_buffer_uptodate(bh); 184 } else { 185 if (!quiet_error(bh)) { 186 buffer_io_error(bh); 187 printk(KERN_WARNING "lost page write due to " 188 "I/O error on %s\n", 189 bdevname(bh->b_bdev, b)); 190 } 191 set_buffer_write_io_error(bh); 192 clear_buffer_uptodate(bh); 193 } 194 unlock_buffer(bh); 195 put_bh(bh); 196 } 197 EXPORT_SYMBOL(end_buffer_write_sync); 198 199 /* 200 * Various filesystems appear to want __find_get_block to be non-blocking. 201 * But it's the page lock which protects the buffers. To get around this, 202 * we get exclusion from try_to_free_buffers with the blockdev mapping's 203 * private_lock. 204 * 205 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 206 * may be quite high. This code could TryLock the page, and if that 207 * succeeds, there is no need to take private_lock. (But if 208 * private_lock is contended then so is mapping->tree_lock). 209 */ 210 static struct buffer_head * 211 __find_get_block_slow(struct block_device *bdev, sector_t block) 212 { 213 struct inode *bd_inode = bdev->bd_inode; 214 struct address_space *bd_mapping = bd_inode->i_mapping; 215 struct buffer_head *ret = NULL; 216 pgoff_t index; 217 struct buffer_head *bh; 218 struct buffer_head *head; 219 struct page *page; 220 int all_mapped = 1; 221 222 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 223 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); 224 if (!page) 225 goto out; 226 227 spin_lock(&bd_mapping->private_lock); 228 if (!page_has_buffers(page)) 229 goto out_unlock; 230 head = page_buffers(page); 231 bh = head; 232 do { 233 if (!buffer_mapped(bh)) 234 all_mapped = 0; 235 else if (bh->b_blocknr == block) { 236 ret = bh; 237 get_bh(bh); 238 goto out_unlock; 239 } 240 bh = bh->b_this_page; 241 } while (bh != head); 242 243 /* we might be here because some of the buffers on this page are 244 * not mapped. This is due to various races between 245 * file io on the block device and getblk. It gets dealt with 246 * elsewhere, don't buffer_error if we had some unmapped buffers 247 */ 248 if (all_mapped) { 249 char b[BDEVNAME_SIZE]; 250 251 printk("__find_get_block_slow() failed. " 252 "block=%llu, b_blocknr=%llu\n", 253 (unsigned long long)block, 254 (unsigned long long)bh->b_blocknr); 255 printk("b_state=0x%08lx, b_size=%zu\n", 256 bh->b_state, bh->b_size); 257 printk("device %s blocksize: %d\n", bdevname(bdev, b), 258 1 << bd_inode->i_blkbits); 259 } 260 out_unlock: 261 spin_unlock(&bd_mapping->private_lock); 262 page_cache_release(page); 263 out: 264 return ret; 265 } 266 267 /* 268 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 269 */ 270 static void free_more_memory(void) 271 { 272 struct zone *zone; 273 int nid; 274 275 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); 276 yield(); 277 278 for_each_online_node(nid) { 279 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 280 gfp_zone(GFP_NOFS), NULL, 281 &zone); 282 if (zone) 283 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 284 GFP_NOFS, NULL); 285 } 286 } 287 288 /* 289 * I/O completion handler for block_read_full_page() - pages 290 * which come unlocked at the end of I/O. 291 */ 292 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 293 { 294 unsigned long flags; 295 struct buffer_head *first; 296 struct buffer_head *tmp; 297 struct page *page; 298 int page_uptodate = 1; 299 300 BUG_ON(!buffer_async_read(bh)); 301 302 page = bh->b_page; 303 if (uptodate) { 304 set_buffer_uptodate(bh); 305 } else { 306 clear_buffer_uptodate(bh); 307 if (!quiet_error(bh)) 308 buffer_io_error(bh); 309 SetPageError(page); 310 } 311 312 /* 313 * Be _very_ careful from here on. Bad things can happen if 314 * two buffer heads end IO at almost the same time and both 315 * decide that the page is now completely done. 316 */ 317 first = page_buffers(page); 318 local_irq_save(flags); 319 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 320 clear_buffer_async_read(bh); 321 unlock_buffer(bh); 322 tmp = bh; 323 do { 324 if (!buffer_uptodate(tmp)) 325 page_uptodate = 0; 326 if (buffer_async_read(tmp)) { 327 BUG_ON(!buffer_locked(tmp)); 328 goto still_busy; 329 } 330 tmp = tmp->b_this_page; 331 } while (tmp != bh); 332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 333 local_irq_restore(flags); 334 335 /* 336 * If none of the buffers had errors and they are all 337 * uptodate then we can set the page uptodate. 338 */ 339 if (page_uptodate && !PageError(page)) 340 SetPageUptodate(page); 341 unlock_page(page); 342 return; 343 344 still_busy: 345 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 346 local_irq_restore(flags); 347 return; 348 } 349 350 /* 351 * Completion handler for block_write_full_page() - pages which are unlocked 352 * during I/O, and which have PageWriteback cleared upon I/O completion. 353 */ 354 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 355 { 356 char b[BDEVNAME_SIZE]; 357 unsigned long flags; 358 struct buffer_head *first; 359 struct buffer_head *tmp; 360 struct page *page; 361 362 BUG_ON(!buffer_async_write(bh)); 363 364 page = bh->b_page; 365 if (uptodate) { 366 set_buffer_uptodate(bh); 367 } else { 368 if (!quiet_error(bh)) { 369 buffer_io_error(bh); 370 printk(KERN_WARNING "lost page write due to " 371 "I/O error on %s\n", 372 bdevname(bh->b_bdev, b)); 373 } 374 set_bit(AS_EIO, &page->mapping->flags); 375 set_buffer_write_io_error(bh); 376 clear_buffer_uptodate(bh); 377 SetPageError(page); 378 } 379 380 first = page_buffers(page); 381 local_irq_save(flags); 382 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 383 384 clear_buffer_async_write(bh); 385 unlock_buffer(bh); 386 tmp = bh->b_this_page; 387 while (tmp != bh) { 388 if (buffer_async_write(tmp)) { 389 BUG_ON(!buffer_locked(tmp)); 390 goto still_busy; 391 } 392 tmp = tmp->b_this_page; 393 } 394 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 395 local_irq_restore(flags); 396 end_page_writeback(page); 397 return; 398 399 still_busy: 400 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 401 local_irq_restore(flags); 402 return; 403 } 404 EXPORT_SYMBOL(end_buffer_async_write); 405 406 /* 407 * If a page's buffers are under async readin (end_buffer_async_read 408 * completion) then there is a possibility that another thread of 409 * control could lock one of the buffers after it has completed 410 * but while some of the other buffers have not completed. This 411 * locked buffer would confuse end_buffer_async_read() into not unlocking 412 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 413 * that this buffer is not under async I/O. 414 * 415 * The page comes unlocked when it has no locked buffer_async buffers 416 * left. 417 * 418 * PageLocked prevents anyone starting new async I/O reads any of 419 * the buffers. 420 * 421 * PageWriteback is used to prevent simultaneous writeout of the same 422 * page. 423 * 424 * PageLocked prevents anyone from starting writeback of a page which is 425 * under read I/O (PageWriteback is only ever set against a locked page). 426 */ 427 static void mark_buffer_async_read(struct buffer_head *bh) 428 { 429 bh->b_end_io = end_buffer_async_read; 430 set_buffer_async_read(bh); 431 } 432 433 static void mark_buffer_async_write_endio(struct buffer_head *bh, 434 bh_end_io_t *handler) 435 { 436 bh->b_end_io = handler; 437 set_buffer_async_write(bh); 438 } 439 440 void mark_buffer_async_write(struct buffer_head *bh) 441 { 442 mark_buffer_async_write_endio(bh, end_buffer_async_write); 443 } 444 EXPORT_SYMBOL(mark_buffer_async_write); 445 446 447 /* 448 * fs/buffer.c contains helper functions for buffer-backed address space's 449 * fsync functions. A common requirement for buffer-based filesystems is 450 * that certain data from the backing blockdev needs to be written out for 451 * a successful fsync(). For example, ext2 indirect blocks need to be 452 * written back and waited upon before fsync() returns. 453 * 454 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 455 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 456 * management of a list of dependent buffers at ->i_mapping->private_list. 457 * 458 * Locking is a little subtle: try_to_free_buffers() will remove buffers 459 * from their controlling inode's queue when they are being freed. But 460 * try_to_free_buffers() will be operating against the *blockdev* mapping 461 * at the time, not against the S_ISREG file which depends on those buffers. 462 * So the locking for private_list is via the private_lock in the address_space 463 * which backs the buffers. Which is different from the address_space 464 * against which the buffers are listed. So for a particular address_space, 465 * mapping->private_lock does *not* protect mapping->private_list! In fact, 466 * mapping->private_list will always be protected by the backing blockdev's 467 * ->private_lock. 468 * 469 * Which introduces a requirement: all buffers on an address_space's 470 * ->private_list must be from the same address_space: the blockdev's. 471 * 472 * address_spaces which do not place buffers at ->private_list via these 473 * utility functions are free to use private_lock and private_list for 474 * whatever they want. The only requirement is that list_empty(private_list) 475 * be true at clear_inode() time. 476 * 477 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 478 * filesystems should do that. invalidate_inode_buffers() should just go 479 * BUG_ON(!list_empty). 480 * 481 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 482 * take an address_space, not an inode. And it should be called 483 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 484 * queued up. 485 * 486 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 487 * list if it is already on a list. Because if the buffer is on a list, 488 * it *must* already be on the right one. If not, the filesystem is being 489 * silly. This will save a ton of locking. But first we have to ensure 490 * that buffers are taken *off* the old inode's list when they are freed 491 * (presumably in truncate). That requires careful auditing of all 492 * filesystems (do it inside bforget()). It could also be done by bringing 493 * b_inode back. 494 */ 495 496 /* 497 * The buffer's backing address_space's private_lock must be held 498 */ 499 static void __remove_assoc_queue(struct buffer_head *bh) 500 { 501 list_del_init(&bh->b_assoc_buffers); 502 WARN_ON(!bh->b_assoc_map); 503 if (buffer_write_io_error(bh)) 504 set_bit(AS_EIO, &bh->b_assoc_map->flags); 505 bh->b_assoc_map = NULL; 506 } 507 508 int inode_has_buffers(struct inode *inode) 509 { 510 return !list_empty(&inode->i_data.private_list); 511 } 512 513 /* 514 * osync is designed to support O_SYNC io. It waits synchronously for 515 * all already-submitted IO to complete, but does not queue any new 516 * writes to the disk. 517 * 518 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 519 * you dirty the buffers, and then use osync_inode_buffers to wait for 520 * completion. Any other dirty buffers which are not yet queued for 521 * write will not be flushed to disk by the osync. 522 */ 523 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 524 { 525 struct buffer_head *bh; 526 struct list_head *p; 527 int err = 0; 528 529 spin_lock(lock); 530 repeat: 531 list_for_each_prev(p, list) { 532 bh = BH_ENTRY(p); 533 if (buffer_locked(bh)) { 534 get_bh(bh); 535 spin_unlock(lock); 536 wait_on_buffer(bh); 537 if (!buffer_uptodate(bh)) 538 err = -EIO; 539 brelse(bh); 540 spin_lock(lock); 541 goto repeat; 542 } 543 } 544 spin_unlock(lock); 545 return err; 546 } 547 548 static void do_thaw_one(struct super_block *sb, void *unused) 549 { 550 char b[BDEVNAME_SIZE]; 551 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 552 printk(KERN_WARNING "Emergency Thaw on %s\n", 553 bdevname(sb->s_bdev, b)); 554 } 555 556 static void do_thaw_all(struct work_struct *work) 557 { 558 iterate_supers(do_thaw_one, NULL); 559 kfree(work); 560 printk(KERN_WARNING "Emergency Thaw complete\n"); 561 } 562 563 /** 564 * emergency_thaw_all -- forcibly thaw every frozen filesystem 565 * 566 * Used for emergency unfreeze of all filesystems via SysRq 567 */ 568 void emergency_thaw_all(void) 569 { 570 struct work_struct *work; 571 572 work = kmalloc(sizeof(*work), GFP_ATOMIC); 573 if (work) { 574 INIT_WORK(work, do_thaw_all); 575 schedule_work(work); 576 } 577 } 578 579 /** 580 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 581 * @mapping: the mapping which wants those buffers written 582 * 583 * Starts I/O against the buffers at mapping->private_list, and waits upon 584 * that I/O. 585 * 586 * Basically, this is a convenience function for fsync(). 587 * @mapping is a file or directory which needs those buffers to be written for 588 * a successful fsync(). 589 */ 590 int sync_mapping_buffers(struct address_space *mapping) 591 { 592 struct address_space *buffer_mapping = mapping->private_data; 593 594 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 595 return 0; 596 597 return fsync_buffers_list(&buffer_mapping->private_lock, 598 &mapping->private_list); 599 } 600 EXPORT_SYMBOL(sync_mapping_buffers); 601 602 /* 603 * Called when we've recently written block `bblock', and it is known that 604 * `bblock' was for a buffer_boundary() buffer. This means that the block at 605 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 606 * dirty, schedule it for IO. So that indirects merge nicely with their data. 607 */ 608 void write_boundary_block(struct block_device *bdev, 609 sector_t bblock, unsigned blocksize) 610 { 611 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 612 if (bh) { 613 if (buffer_dirty(bh)) 614 ll_rw_block(WRITE, 1, &bh); 615 put_bh(bh); 616 } 617 } 618 619 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 620 { 621 struct address_space *mapping = inode->i_mapping; 622 struct address_space *buffer_mapping = bh->b_page->mapping; 623 624 mark_buffer_dirty(bh); 625 if (!mapping->private_data) { 626 mapping->private_data = buffer_mapping; 627 } else { 628 BUG_ON(mapping->private_data != buffer_mapping); 629 } 630 if (!bh->b_assoc_map) { 631 spin_lock(&buffer_mapping->private_lock); 632 list_move_tail(&bh->b_assoc_buffers, 633 &mapping->private_list); 634 bh->b_assoc_map = mapping; 635 spin_unlock(&buffer_mapping->private_lock); 636 } 637 } 638 EXPORT_SYMBOL(mark_buffer_dirty_inode); 639 640 /* 641 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 642 * dirty. 643 * 644 * If warn is true, then emit a warning if the page is not uptodate and has 645 * not been truncated. 646 */ 647 static void __set_page_dirty(struct page *page, 648 struct address_space *mapping, int warn) 649 { 650 unsigned long flags; 651 652 spin_lock_irqsave(&mapping->tree_lock, flags); 653 if (page->mapping) { /* Race with truncate? */ 654 WARN_ON_ONCE(warn && !PageUptodate(page)); 655 account_page_dirtied(page, mapping); 656 radix_tree_tag_set(&mapping->page_tree, 657 page_index(page), PAGECACHE_TAG_DIRTY); 658 } 659 spin_unlock_irqrestore(&mapping->tree_lock, flags); 660 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 661 } 662 663 /* 664 * Add a page to the dirty page list. 665 * 666 * It is a sad fact of life that this function is called from several places 667 * deeply under spinlocking. It may not sleep. 668 * 669 * If the page has buffers, the uptodate buffers are set dirty, to preserve 670 * dirty-state coherency between the page and the buffers. It the page does 671 * not have buffers then when they are later attached they will all be set 672 * dirty. 673 * 674 * The buffers are dirtied before the page is dirtied. There's a small race 675 * window in which a writepage caller may see the page cleanness but not the 676 * buffer dirtiness. That's fine. If this code were to set the page dirty 677 * before the buffers, a concurrent writepage caller could clear the page dirty 678 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 679 * page on the dirty page list. 680 * 681 * We use private_lock to lock against try_to_free_buffers while using the 682 * page's buffer list. Also use this to protect against clean buffers being 683 * added to the page after it was set dirty. 684 * 685 * FIXME: may need to call ->reservepage here as well. That's rather up to the 686 * address_space though. 687 */ 688 int __set_page_dirty_buffers(struct page *page) 689 { 690 int newly_dirty; 691 struct address_space *mapping = page_mapping(page); 692 693 if (unlikely(!mapping)) 694 return !TestSetPageDirty(page); 695 696 spin_lock(&mapping->private_lock); 697 if (page_has_buffers(page)) { 698 struct buffer_head *head = page_buffers(page); 699 struct buffer_head *bh = head; 700 701 do { 702 set_buffer_dirty(bh); 703 bh = bh->b_this_page; 704 } while (bh != head); 705 } 706 newly_dirty = !TestSetPageDirty(page); 707 spin_unlock(&mapping->private_lock); 708 709 if (newly_dirty) 710 __set_page_dirty(page, mapping, 1); 711 return newly_dirty; 712 } 713 EXPORT_SYMBOL(__set_page_dirty_buffers); 714 715 /* 716 * Write out and wait upon a list of buffers. 717 * 718 * We have conflicting pressures: we want to make sure that all 719 * initially dirty buffers get waited on, but that any subsequently 720 * dirtied buffers don't. After all, we don't want fsync to last 721 * forever if somebody is actively writing to the file. 722 * 723 * Do this in two main stages: first we copy dirty buffers to a 724 * temporary inode list, queueing the writes as we go. Then we clean 725 * up, waiting for those writes to complete. 726 * 727 * During this second stage, any subsequent updates to the file may end 728 * up refiling the buffer on the original inode's dirty list again, so 729 * there is a chance we will end up with a buffer queued for write but 730 * not yet completed on that list. So, as a final cleanup we go through 731 * the osync code to catch these locked, dirty buffers without requeuing 732 * any newly dirty buffers for write. 733 */ 734 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 735 { 736 struct buffer_head *bh; 737 struct list_head tmp; 738 struct address_space *mapping; 739 int err = 0, err2; 740 struct blk_plug plug; 741 742 INIT_LIST_HEAD(&tmp); 743 blk_start_plug(&plug); 744 745 spin_lock(lock); 746 while (!list_empty(list)) { 747 bh = BH_ENTRY(list->next); 748 mapping = bh->b_assoc_map; 749 __remove_assoc_queue(bh); 750 /* Avoid race with mark_buffer_dirty_inode() which does 751 * a lockless check and we rely on seeing the dirty bit */ 752 smp_mb(); 753 if (buffer_dirty(bh) || buffer_locked(bh)) { 754 list_add(&bh->b_assoc_buffers, &tmp); 755 bh->b_assoc_map = mapping; 756 if (buffer_dirty(bh)) { 757 get_bh(bh); 758 spin_unlock(lock); 759 /* 760 * Ensure any pending I/O completes so that 761 * write_dirty_buffer() actually writes the 762 * current contents - it is a noop if I/O is 763 * still in flight on potentially older 764 * contents. 765 */ 766 write_dirty_buffer(bh, WRITE_SYNC); 767 768 /* 769 * Kick off IO for the previous mapping. Note 770 * that we will not run the very last mapping, 771 * wait_on_buffer() will do that for us 772 * through sync_buffer(). 773 */ 774 brelse(bh); 775 spin_lock(lock); 776 } 777 } 778 } 779 780 spin_unlock(lock); 781 blk_finish_plug(&plug); 782 spin_lock(lock); 783 784 while (!list_empty(&tmp)) { 785 bh = BH_ENTRY(tmp.prev); 786 get_bh(bh); 787 mapping = bh->b_assoc_map; 788 __remove_assoc_queue(bh); 789 /* Avoid race with mark_buffer_dirty_inode() which does 790 * a lockless check and we rely on seeing the dirty bit */ 791 smp_mb(); 792 if (buffer_dirty(bh)) { 793 list_add(&bh->b_assoc_buffers, 794 &mapping->private_list); 795 bh->b_assoc_map = mapping; 796 } 797 spin_unlock(lock); 798 wait_on_buffer(bh); 799 if (!buffer_uptodate(bh)) 800 err = -EIO; 801 brelse(bh); 802 spin_lock(lock); 803 } 804 805 spin_unlock(lock); 806 err2 = osync_buffers_list(lock, list); 807 if (err) 808 return err; 809 else 810 return err2; 811 } 812 813 /* 814 * Invalidate any and all dirty buffers on a given inode. We are 815 * probably unmounting the fs, but that doesn't mean we have already 816 * done a sync(). Just drop the buffers from the inode list. 817 * 818 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 819 * assumes that all the buffers are against the blockdev. Not true 820 * for reiserfs. 821 */ 822 void invalidate_inode_buffers(struct inode *inode) 823 { 824 if (inode_has_buffers(inode)) { 825 struct address_space *mapping = &inode->i_data; 826 struct list_head *list = &mapping->private_list; 827 struct address_space *buffer_mapping = mapping->private_data; 828 829 spin_lock(&buffer_mapping->private_lock); 830 while (!list_empty(list)) 831 __remove_assoc_queue(BH_ENTRY(list->next)); 832 spin_unlock(&buffer_mapping->private_lock); 833 } 834 } 835 EXPORT_SYMBOL(invalidate_inode_buffers); 836 837 /* 838 * Remove any clean buffers from the inode's buffer list. This is called 839 * when we're trying to free the inode itself. Those buffers can pin it. 840 * 841 * Returns true if all buffers were removed. 842 */ 843 int remove_inode_buffers(struct inode *inode) 844 { 845 int ret = 1; 846 847 if (inode_has_buffers(inode)) { 848 struct address_space *mapping = &inode->i_data; 849 struct list_head *list = &mapping->private_list; 850 struct address_space *buffer_mapping = mapping->private_data; 851 852 spin_lock(&buffer_mapping->private_lock); 853 while (!list_empty(list)) { 854 struct buffer_head *bh = BH_ENTRY(list->next); 855 if (buffer_dirty(bh)) { 856 ret = 0; 857 break; 858 } 859 __remove_assoc_queue(bh); 860 } 861 spin_unlock(&buffer_mapping->private_lock); 862 } 863 return ret; 864 } 865 866 /* 867 * Create the appropriate buffers when given a page for data area and 868 * the size of each buffer.. Use the bh->b_this_page linked list to 869 * follow the buffers created. Return NULL if unable to create more 870 * buffers. 871 * 872 * The retry flag is used to differentiate async IO (paging, swapping) 873 * which may not fail from ordinary buffer allocations. 874 */ 875 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 876 int retry) 877 { 878 struct buffer_head *bh, *head; 879 long offset; 880 881 try_again: 882 head = NULL; 883 offset = PAGE_SIZE; 884 while ((offset -= size) >= 0) { 885 bh = alloc_buffer_head(GFP_NOFS); 886 if (!bh) 887 goto no_grow; 888 889 bh->b_this_page = head; 890 bh->b_blocknr = -1; 891 head = bh; 892 893 bh->b_size = size; 894 895 /* Link the buffer to its page */ 896 set_bh_page(bh, page, offset); 897 } 898 return head; 899 /* 900 * In case anything failed, we just free everything we got. 901 */ 902 no_grow: 903 if (head) { 904 do { 905 bh = head; 906 head = head->b_this_page; 907 free_buffer_head(bh); 908 } while (head); 909 } 910 911 /* 912 * Return failure for non-async IO requests. Async IO requests 913 * are not allowed to fail, so we have to wait until buffer heads 914 * become available. But we don't want tasks sleeping with 915 * partially complete buffers, so all were released above. 916 */ 917 if (!retry) 918 return NULL; 919 920 /* We're _really_ low on memory. Now we just 921 * wait for old buffer heads to become free due to 922 * finishing IO. Since this is an async request and 923 * the reserve list is empty, we're sure there are 924 * async buffer heads in use. 925 */ 926 free_more_memory(); 927 goto try_again; 928 } 929 EXPORT_SYMBOL_GPL(alloc_page_buffers); 930 931 static inline void 932 link_dev_buffers(struct page *page, struct buffer_head *head) 933 { 934 struct buffer_head *bh, *tail; 935 936 bh = head; 937 do { 938 tail = bh; 939 bh = bh->b_this_page; 940 } while (bh); 941 tail->b_this_page = head; 942 attach_page_buffers(page, head); 943 } 944 945 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 946 { 947 sector_t retval = ~((sector_t)0); 948 loff_t sz = i_size_read(bdev->bd_inode); 949 950 if (sz) { 951 unsigned int sizebits = blksize_bits(size); 952 retval = (sz >> sizebits); 953 } 954 return retval; 955 } 956 957 /* 958 * Initialise the state of a blockdev page's buffers. 959 */ 960 static sector_t 961 init_page_buffers(struct page *page, struct block_device *bdev, 962 sector_t block, int size) 963 { 964 struct buffer_head *head = page_buffers(page); 965 struct buffer_head *bh = head; 966 int uptodate = PageUptodate(page); 967 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); 968 969 do { 970 if (!buffer_mapped(bh)) { 971 init_buffer(bh, NULL, NULL); 972 bh->b_bdev = bdev; 973 bh->b_blocknr = block; 974 if (uptodate) 975 set_buffer_uptodate(bh); 976 if (block < end_block) 977 set_buffer_mapped(bh); 978 } 979 block++; 980 bh = bh->b_this_page; 981 } while (bh != head); 982 983 /* 984 * Caller needs to validate requested block against end of device. 985 */ 986 return end_block; 987 } 988 989 /* 990 * Create the page-cache page that contains the requested block. 991 * 992 * This is used purely for blockdev mappings. 993 */ 994 static int 995 grow_dev_page(struct block_device *bdev, sector_t block, 996 pgoff_t index, int size, int sizebits, gfp_t gfp) 997 { 998 struct inode *inode = bdev->bd_inode; 999 struct page *page; 1000 struct buffer_head *bh; 1001 sector_t end_block; 1002 int ret = 0; /* Will call free_more_memory() */ 1003 gfp_t gfp_mask; 1004 1005 gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp; 1006 1007 /* 1008 * XXX: __getblk_slow() can not really deal with failure and 1009 * will endlessly loop on improvised global reclaim. Prefer 1010 * looping in the allocator rather than here, at least that 1011 * code knows what it's doing. 1012 */ 1013 gfp_mask |= __GFP_NOFAIL; 1014 1015 page = find_or_create_page(inode->i_mapping, index, gfp_mask); 1016 if (!page) 1017 return ret; 1018 1019 BUG_ON(!PageLocked(page)); 1020 1021 if (page_has_buffers(page)) { 1022 bh = page_buffers(page); 1023 if (bh->b_size == size) { 1024 end_block = init_page_buffers(page, bdev, 1025 (sector_t)index << sizebits, 1026 size); 1027 goto done; 1028 } 1029 if (!try_to_free_buffers(page)) 1030 goto failed; 1031 } 1032 1033 /* 1034 * Allocate some buffers for this page 1035 */ 1036 bh = alloc_page_buffers(page, size, 0); 1037 if (!bh) 1038 goto failed; 1039 1040 /* 1041 * Link the page to the buffers and initialise them. Take the 1042 * lock to be atomic wrt __find_get_block(), which does not 1043 * run under the page lock. 1044 */ 1045 spin_lock(&inode->i_mapping->private_lock); 1046 link_dev_buffers(page, bh); 1047 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, 1048 size); 1049 spin_unlock(&inode->i_mapping->private_lock); 1050 done: 1051 ret = (block < end_block) ? 1 : -ENXIO; 1052 failed: 1053 unlock_page(page); 1054 page_cache_release(page); 1055 return ret; 1056 } 1057 1058 /* 1059 * Create buffers for the specified block device block's page. If 1060 * that page was dirty, the buffers are set dirty also. 1061 */ 1062 static int 1063 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1064 { 1065 pgoff_t index; 1066 int sizebits; 1067 1068 sizebits = -1; 1069 do { 1070 sizebits++; 1071 } while ((size << sizebits) < PAGE_SIZE); 1072 1073 index = block >> sizebits; 1074 1075 /* 1076 * Check for a block which wants to lie outside our maximum possible 1077 * pagecache index. (this comparison is done using sector_t types). 1078 */ 1079 if (unlikely(index != block >> sizebits)) { 1080 char b[BDEVNAME_SIZE]; 1081 1082 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1083 "device %s\n", 1084 __func__, (unsigned long long)block, 1085 bdevname(bdev, b)); 1086 return -EIO; 1087 } 1088 1089 /* Create a page with the proper size buffers.. */ 1090 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1091 } 1092 1093 struct buffer_head * 1094 __getblk_slow(struct block_device *bdev, sector_t block, 1095 unsigned size, gfp_t gfp) 1096 { 1097 /* Size must be multiple of hard sectorsize */ 1098 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1099 (size < 512 || size > PAGE_SIZE))) { 1100 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1101 size); 1102 printk(KERN_ERR "logical block size: %d\n", 1103 bdev_logical_block_size(bdev)); 1104 1105 dump_stack(); 1106 return NULL; 1107 } 1108 1109 for (;;) { 1110 struct buffer_head *bh; 1111 int ret; 1112 1113 bh = __find_get_block(bdev, block, size); 1114 if (bh) 1115 return bh; 1116 1117 ret = grow_buffers(bdev, block, size, gfp); 1118 if (ret < 0) 1119 return NULL; 1120 if (ret == 0) 1121 free_more_memory(); 1122 } 1123 } 1124 EXPORT_SYMBOL(__getblk_slow); 1125 1126 /* 1127 * The relationship between dirty buffers and dirty pages: 1128 * 1129 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1130 * the page is tagged dirty in its radix tree. 1131 * 1132 * At all times, the dirtiness of the buffers represents the dirtiness of 1133 * subsections of the page. If the page has buffers, the page dirty bit is 1134 * merely a hint about the true dirty state. 1135 * 1136 * When a page is set dirty in its entirety, all its buffers are marked dirty 1137 * (if the page has buffers). 1138 * 1139 * When a buffer is marked dirty, its page is dirtied, but the page's other 1140 * buffers are not. 1141 * 1142 * Also. When blockdev buffers are explicitly read with bread(), they 1143 * individually become uptodate. But their backing page remains not 1144 * uptodate - even if all of its buffers are uptodate. A subsequent 1145 * block_read_full_page() against that page will discover all the uptodate 1146 * buffers, will set the page uptodate and will perform no I/O. 1147 */ 1148 1149 /** 1150 * mark_buffer_dirty - mark a buffer_head as needing writeout 1151 * @bh: the buffer_head to mark dirty 1152 * 1153 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1154 * backing page dirty, then tag the page as dirty in its address_space's radix 1155 * tree and then attach the address_space's inode to its superblock's dirty 1156 * inode list. 1157 * 1158 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1159 * mapping->tree_lock and mapping->host->i_lock. 1160 */ 1161 void mark_buffer_dirty(struct buffer_head *bh) 1162 { 1163 WARN_ON_ONCE(!buffer_uptodate(bh)); 1164 1165 trace_block_dirty_buffer(bh); 1166 1167 /* 1168 * Very *carefully* optimize the it-is-already-dirty case. 1169 * 1170 * Don't let the final "is it dirty" escape to before we 1171 * perhaps modified the buffer. 1172 */ 1173 if (buffer_dirty(bh)) { 1174 smp_mb(); 1175 if (buffer_dirty(bh)) 1176 return; 1177 } 1178 1179 if (!test_set_buffer_dirty(bh)) { 1180 struct page *page = bh->b_page; 1181 if (!TestSetPageDirty(page)) { 1182 struct address_space *mapping = page_mapping(page); 1183 if (mapping) 1184 __set_page_dirty(page, mapping, 0); 1185 } 1186 } 1187 } 1188 EXPORT_SYMBOL(mark_buffer_dirty); 1189 1190 /* 1191 * Decrement a buffer_head's reference count. If all buffers against a page 1192 * have zero reference count, are clean and unlocked, and if the page is clean 1193 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1194 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1195 * a page but it ends up not being freed, and buffers may later be reattached). 1196 */ 1197 void __brelse(struct buffer_head * buf) 1198 { 1199 if (atomic_read(&buf->b_count)) { 1200 put_bh(buf); 1201 return; 1202 } 1203 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1204 } 1205 EXPORT_SYMBOL(__brelse); 1206 1207 /* 1208 * bforget() is like brelse(), except it discards any 1209 * potentially dirty data. 1210 */ 1211 void __bforget(struct buffer_head *bh) 1212 { 1213 clear_buffer_dirty(bh); 1214 if (bh->b_assoc_map) { 1215 struct address_space *buffer_mapping = bh->b_page->mapping; 1216 1217 spin_lock(&buffer_mapping->private_lock); 1218 list_del_init(&bh->b_assoc_buffers); 1219 bh->b_assoc_map = NULL; 1220 spin_unlock(&buffer_mapping->private_lock); 1221 } 1222 __brelse(bh); 1223 } 1224 EXPORT_SYMBOL(__bforget); 1225 1226 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1227 { 1228 lock_buffer(bh); 1229 if (buffer_uptodate(bh)) { 1230 unlock_buffer(bh); 1231 return bh; 1232 } else { 1233 get_bh(bh); 1234 bh->b_end_io = end_buffer_read_sync; 1235 submit_bh(READ, bh); 1236 wait_on_buffer(bh); 1237 if (buffer_uptodate(bh)) 1238 return bh; 1239 } 1240 brelse(bh); 1241 return NULL; 1242 } 1243 1244 /* 1245 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1246 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1247 * refcount elevated by one when they're in an LRU. A buffer can only appear 1248 * once in a particular CPU's LRU. A single buffer can be present in multiple 1249 * CPU's LRUs at the same time. 1250 * 1251 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1252 * sb_find_get_block(). 1253 * 1254 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1255 * a local interrupt disable for that. 1256 */ 1257 1258 #define BH_LRU_SIZE 16 1259 1260 struct bh_lru { 1261 struct buffer_head *bhs[BH_LRU_SIZE]; 1262 }; 1263 1264 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1265 1266 #ifdef CONFIG_SMP 1267 #define bh_lru_lock() local_irq_disable() 1268 #define bh_lru_unlock() local_irq_enable() 1269 #else 1270 #define bh_lru_lock() preempt_disable() 1271 #define bh_lru_unlock() preempt_enable() 1272 #endif 1273 1274 static inline void check_irqs_on(void) 1275 { 1276 #ifdef irqs_disabled 1277 BUG_ON(irqs_disabled()); 1278 #endif 1279 } 1280 1281 /* 1282 * The LRU management algorithm is dopey-but-simple. Sorry. 1283 */ 1284 static void bh_lru_install(struct buffer_head *bh) 1285 { 1286 struct buffer_head *evictee = NULL; 1287 1288 check_irqs_on(); 1289 bh_lru_lock(); 1290 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { 1291 struct buffer_head *bhs[BH_LRU_SIZE]; 1292 int in; 1293 int out = 0; 1294 1295 get_bh(bh); 1296 bhs[out++] = bh; 1297 for (in = 0; in < BH_LRU_SIZE; in++) { 1298 struct buffer_head *bh2 = 1299 __this_cpu_read(bh_lrus.bhs[in]); 1300 1301 if (bh2 == bh) { 1302 __brelse(bh2); 1303 } else { 1304 if (out >= BH_LRU_SIZE) { 1305 BUG_ON(evictee != NULL); 1306 evictee = bh2; 1307 } else { 1308 bhs[out++] = bh2; 1309 } 1310 } 1311 } 1312 while (out < BH_LRU_SIZE) 1313 bhs[out++] = NULL; 1314 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); 1315 } 1316 bh_lru_unlock(); 1317 1318 if (evictee) 1319 __brelse(evictee); 1320 } 1321 1322 /* 1323 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1324 */ 1325 static struct buffer_head * 1326 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1327 { 1328 struct buffer_head *ret = NULL; 1329 unsigned int i; 1330 1331 check_irqs_on(); 1332 bh_lru_lock(); 1333 for (i = 0; i < BH_LRU_SIZE; i++) { 1334 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1335 1336 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1337 bh->b_size == size) { 1338 if (i) { 1339 while (i) { 1340 __this_cpu_write(bh_lrus.bhs[i], 1341 __this_cpu_read(bh_lrus.bhs[i - 1])); 1342 i--; 1343 } 1344 __this_cpu_write(bh_lrus.bhs[0], bh); 1345 } 1346 get_bh(bh); 1347 ret = bh; 1348 break; 1349 } 1350 } 1351 bh_lru_unlock(); 1352 return ret; 1353 } 1354 1355 /* 1356 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1357 * it in the LRU and mark it as accessed. If it is not present then return 1358 * NULL 1359 */ 1360 struct buffer_head * 1361 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1362 { 1363 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1364 1365 if (bh == NULL) { 1366 /* __find_get_block_slow will mark the page accessed */ 1367 bh = __find_get_block_slow(bdev, block); 1368 if (bh) 1369 bh_lru_install(bh); 1370 } else 1371 touch_buffer(bh); 1372 1373 return bh; 1374 } 1375 EXPORT_SYMBOL(__find_get_block); 1376 1377 /* 1378 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1379 * which corresponds to the passed block_device, block and size. The 1380 * returned buffer has its reference count incremented. 1381 * 1382 * __getblk_gfp() will lock up the machine if grow_dev_page's 1383 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1384 */ 1385 struct buffer_head * 1386 __getblk_gfp(struct block_device *bdev, sector_t block, 1387 unsigned size, gfp_t gfp) 1388 { 1389 struct buffer_head *bh = __find_get_block(bdev, block, size); 1390 1391 might_sleep(); 1392 if (bh == NULL) 1393 bh = __getblk_slow(bdev, block, size, gfp); 1394 return bh; 1395 } 1396 EXPORT_SYMBOL(__getblk_gfp); 1397 1398 /* 1399 * Do async read-ahead on a buffer.. 1400 */ 1401 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1402 { 1403 struct buffer_head *bh = __getblk(bdev, block, size); 1404 if (likely(bh)) { 1405 ll_rw_block(READA, 1, &bh); 1406 brelse(bh); 1407 } 1408 } 1409 EXPORT_SYMBOL(__breadahead); 1410 1411 /** 1412 * __bread_gfp() - reads a specified block and returns the bh 1413 * @bdev: the block_device to read from 1414 * @block: number of block 1415 * @size: size (in bytes) to read 1416 * @gfp: page allocation flag 1417 * 1418 * Reads a specified block, and returns buffer head that contains it. 1419 * The page cache can be allocated from non-movable area 1420 * not to prevent page migration if you set gfp to zero. 1421 * It returns NULL if the block was unreadable. 1422 */ 1423 struct buffer_head * 1424 __bread_gfp(struct block_device *bdev, sector_t block, 1425 unsigned size, gfp_t gfp) 1426 { 1427 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1428 1429 if (likely(bh) && !buffer_uptodate(bh)) 1430 bh = __bread_slow(bh); 1431 return bh; 1432 } 1433 EXPORT_SYMBOL(__bread_gfp); 1434 1435 /* 1436 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1437 * This doesn't race because it runs in each cpu either in irq 1438 * or with preempt disabled. 1439 */ 1440 static void invalidate_bh_lru(void *arg) 1441 { 1442 struct bh_lru *b = &get_cpu_var(bh_lrus); 1443 int i; 1444 1445 for (i = 0; i < BH_LRU_SIZE; i++) { 1446 brelse(b->bhs[i]); 1447 b->bhs[i] = NULL; 1448 } 1449 put_cpu_var(bh_lrus); 1450 } 1451 1452 static bool has_bh_in_lru(int cpu, void *dummy) 1453 { 1454 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1455 int i; 1456 1457 for (i = 0; i < BH_LRU_SIZE; i++) { 1458 if (b->bhs[i]) 1459 return 1; 1460 } 1461 1462 return 0; 1463 } 1464 1465 void invalidate_bh_lrus(void) 1466 { 1467 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); 1468 } 1469 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1470 1471 void set_bh_page(struct buffer_head *bh, 1472 struct page *page, unsigned long offset) 1473 { 1474 bh->b_page = page; 1475 BUG_ON(offset >= PAGE_SIZE); 1476 if (PageHighMem(page)) 1477 /* 1478 * This catches illegal uses and preserves the offset: 1479 */ 1480 bh->b_data = (char *)(0 + offset); 1481 else 1482 bh->b_data = page_address(page) + offset; 1483 } 1484 EXPORT_SYMBOL(set_bh_page); 1485 1486 /* 1487 * Called when truncating a buffer on a page completely. 1488 */ 1489 1490 /* Bits that are cleared during an invalidate */ 1491 #define BUFFER_FLAGS_DISCARD \ 1492 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1493 1 << BH_Delay | 1 << BH_Unwritten) 1494 1495 static void discard_buffer(struct buffer_head * bh) 1496 { 1497 unsigned long b_state, b_state_old; 1498 1499 lock_buffer(bh); 1500 clear_buffer_dirty(bh); 1501 bh->b_bdev = NULL; 1502 b_state = bh->b_state; 1503 for (;;) { 1504 b_state_old = cmpxchg(&bh->b_state, b_state, 1505 (b_state & ~BUFFER_FLAGS_DISCARD)); 1506 if (b_state_old == b_state) 1507 break; 1508 b_state = b_state_old; 1509 } 1510 unlock_buffer(bh); 1511 } 1512 1513 /** 1514 * block_invalidatepage - invalidate part or all of a buffer-backed page 1515 * 1516 * @page: the page which is affected 1517 * @offset: start of the range to invalidate 1518 * @length: length of the range to invalidate 1519 * 1520 * block_invalidatepage() is called when all or part of the page has become 1521 * invalidated by a truncate operation. 1522 * 1523 * block_invalidatepage() does not have to release all buffers, but it must 1524 * ensure that no dirty buffer is left outside @offset and that no I/O 1525 * is underway against any of the blocks which are outside the truncation 1526 * point. Because the caller is about to free (and possibly reuse) those 1527 * blocks on-disk. 1528 */ 1529 void block_invalidatepage(struct page *page, unsigned int offset, 1530 unsigned int length) 1531 { 1532 struct buffer_head *head, *bh, *next; 1533 unsigned int curr_off = 0; 1534 unsigned int stop = length + offset; 1535 1536 BUG_ON(!PageLocked(page)); 1537 if (!page_has_buffers(page)) 1538 goto out; 1539 1540 /* 1541 * Check for overflow 1542 */ 1543 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1544 1545 head = page_buffers(page); 1546 bh = head; 1547 do { 1548 unsigned int next_off = curr_off + bh->b_size; 1549 next = bh->b_this_page; 1550 1551 /* 1552 * Are we still fully in range ? 1553 */ 1554 if (next_off > stop) 1555 goto out; 1556 1557 /* 1558 * is this block fully invalidated? 1559 */ 1560 if (offset <= curr_off) 1561 discard_buffer(bh); 1562 curr_off = next_off; 1563 bh = next; 1564 } while (bh != head); 1565 1566 /* 1567 * We release buffers only if the entire page is being invalidated. 1568 * The get_block cached value has been unconditionally invalidated, 1569 * so real IO is not possible anymore. 1570 */ 1571 if (offset == 0) 1572 try_to_release_page(page, 0); 1573 out: 1574 return; 1575 } 1576 EXPORT_SYMBOL(block_invalidatepage); 1577 1578 1579 /* 1580 * We attach and possibly dirty the buffers atomically wrt 1581 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1582 * is already excluded via the page lock. 1583 */ 1584 void create_empty_buffers(struct page *page, 1585 unsigned long blocksize, unsigned long b_state) 1586 { 1587 struct buffer_head *bh, *head, *tail; 1588 1589 head = alloc_page_buffers(page, blocksize, 1); 1590 bh = head; 1591 do { 1592 bh->b_state |= b_state; 1593 tail = bh; 1594 bh = bh->b_this_page; 1595 } while (bh); 1596 tail->b_this_page = head; 1597 1598 spin_lock(&page->mapping->private_lock); 1599 if (PageUptodate(page) || PageDirty(page)) { 1600 bh = head; 1601 do { 1602 if (PageDirty(page)) 1603 set_buffer_dirty(bh); 1604 if (PageUptodate(page)) 1605 set_buffer_uptodate(bh); 1606 bh = bh->b_this_page; 1607 } while (bh != head); 1608 } 1609 attach_page_buffers(page, head); 1610 spin_unlock(&page->mapping->private_lock); 1611 } 1612 EXPORT_SYMBOL(create_empty_buffers); 1613 1614 /* 1615 * We are taking a block for data and we don't want any output from any 1616 * buffer-cache aliases starting from return from that function and 1617 * until the moment when something will explicitly mark the buffer 1618 * dirty (hopefully that will not happen until we will free that block ;-) 1619 * We don't even need to mark it not-uptodate - nobody can expect 1620 * anything from a newly allocated buffer anyway. We used to used 1621 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1622 * don't want to mark the alias unmapped, for example - it would confuse 1623 * anyone who might pick it with bread() afterwards... 1624 * 1625 * Also.. Note that bforget() doesn't lock the buffer. So there can 1626 * be writeout I/O going on against recently-freed buffers. We don't 1627 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1628 * only if we really need to. That happens here. 1629 */ 1630 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1631 { 1632 struct buffer_head *old_bh; 1633 1634 might_sleep(); 1635 1636 old_bh = __find_get_block_slow(bdev, block); 1637 if (old_bh) { 1638 clear_buffer_dirty(old_bh); 1639 wait_on_buffer(old_bh); 1640 clear_buffer_req(old_bh); 1641 __brelse(old_bh); 1642 } 1643 } 1644 EXPORT_SYMBOL(unmap_underlying_metadata); 1645 1646 /* 1647 * Size is a power-of-two in the range 512..PAGE_SIZE, 1648 * and the case we care about most is PAGE_SIZE. 1649 * 1650 * So this *could* possibly be written with those 1651 * constraints in mind (relevant mostly if some 1652 * architecture has a slow bit-scan instruction) 1653 */ 1654 static inline int block_size_bits(unsigned int blocksize) 1655 { 1656 return ilog2(blocksize); 1657 } 1658 1659 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) 1660 { 1661 BUG_ON(!PageLocked(page)); 1662 1663 if (!page_has_buffers(page)) 1664 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); 1665 return page_buffers(page); 1666 } 1667 1668 /* 1669 * NOTE! All mapped/uptodate combinations are valid: 1670 * 1671 * Mapped Uptodate Meaning 1672 * 1673 * No No "unknown" - must do get_block() 1674 * No Yes "hole" - zero-filled 1675 * Yes No "allocated" - allocated on disk, not read in 1676 * Yes Yes "valid" - allocated and up-to-date in memory. 1677 * 1678 * "Dirty" is valid only with the last case (mapped+uptodate). 1679 */ 1680 1681 /* 1682 * While block_write_full_page is writing back the dirty buffers under 1683 * the page lock, whoever dirtied the buffers may decide to clean them 1684 * again at any time. We handle that by only looking at the buffer 1685 * state inside lock_buffer(). 1686 * 1687 * If block_write_full_page() is called for regular writeback 1688 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1689 * locked buffer. This only can happen if someone has written the buffer 1690 * directly, with submit_bh(). At the address_space level PageWriteback 1691 * prevents this contention from occurring. 1692 * 1693 * If block_write_full_page() is called with wbc->sync_mode == 1694 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this 1695 * causes the writes to be flagged as synchronous writes. 1696 */ 1697 static int __block_write_full_page(struct inode *inode, struct page *page, 1698 get_block_t *get_block, struct writeback_control *wbc, 1699 bh_end_io_t *handler) 1700 { 1701 int err; 1702 sector_t block; 1703 sector_t last_block; 1704 struct buffer_head *bh, *head; 1705 unsigned int blocksize, bbits; 1706 int nr_underway = 0; 1707 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1708 WRITE_SYNC : WRITE); 1709 1710 head = create_page_buffers(page, inode, 1711 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1712 1713 /* 1714 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1715 * here, and the (potentially unmapped) buffers may become dirty at 1716 * any time. If a buffer becomes dirty here after we've inspected it 1717 * then we just miss that fact, and the page stays dirty. 1718 * 1719 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1720 * handle that here by just cleaning them. 1721 */ 1722 1723 bh = head; 1724 blocksize = bh->b_size; 1725 bbits = block_size_bits(blocksize); 1726 1727 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1728 last_block = (i_size_read(inode) - 1) >> bbits; 1729 1730 /* 1731 * Get all the dirty buffers mapped to disk addresses and 1732 * handle any aliases from the underlying blockdev's mapping. 1733 */ 1734 do { 1735 if (block > last_block) { 1736 /* 1737 * mapped buffers outside i_size will occur, because 1738 * this page can be outside i_size when there is a 1739 * truncate in progress. 1740 */ 1741 /* 1742 * The buffer was zeroed by block_write_full_page() 1743 */ 1744 clear_buffer_dirty(bh); 1745 set_buffer_uptodate(bh); 1746 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1747 buffer_dirty(bh)) { 1748 WARN_ON(bh->b_size != blocksize); 1749 err = get_block(inode, block, bh, 1); 1750 if (err) 1751 goto recover; 1752 clear_buffer_delay(bh); 1753 if (buffer_new(bh)) { 1754 /* blockdev mappings never come here */ 1755 clear_buffer_new(bh); 1756 unmap_underlying_metadata(bh->b_bdev, 1757 bh->b_blocknr); 1758 } 1759 } 1760 bh = bh->b_this_page; 1761 block++; 1762 } while (bh != head); 1763 1764 do { 1765 if (!buffer_mapped(bh)) 1766 continue; 1767 /* 1768 * If it's a fully non-blocking write attempt and we cannot 1769 * lock the buffer then redirty the page. Note that this can 1770 * potentially cause a busy-wait loop from writeback threads 1771 * and kswapd activity, but those code paths have their own 1772 * higher-level throttling. 1773 */ 1774 if (wbc->sync_mode != WB_SYNC_NONE) { 1775 lock_buffer(bh); 1776 } else if (!trylock_buffer(bh)) { 1777 redirty_page_for_writepage(wbc, page); 1778 continue; 1779 } 1780 if (test_clear_buffer_dirty(bh)) { 1781 mark_buffer_async_write_endio(bh, handler); 1782 } else { 1783 unlock_buffer(bh); 1784 } 1785 } while ((bh = bh->b_this_page) != head); 1786 1787 /* 1788 * The page and its buffers are protected by PageWriteback(), so we can 1789 * drop the bh refcounts early. 1790 */ 1791 BUG_ON(PageWriteback(page)); 1792 set_page_writeback(page); 1793 1794 do { 1795 struct buffer_head *next = bh->b_this_page; 1796 if (buffer_async_write(bh)) { 1797 submit_bh(write_op, bh); 1798 nr_underway++; 1799 } 1800 bh = next; 1801 } while (bh != head); 1802 unlock_page(page); 1803 1804 err = 0; 1805 done: 1806 if (nr_underway == 0) { 1807 /* 1808 * The page was marked dirty, but the buffers were 1809 * clean. Someone wrote them back by hand with 1810 * ll_rw_block/submit_bh. A rare case. 1811 */ 1812 end_page_writeback(page); 1813 1814 /* 1815 * The page and buffer_heads can be released at any time from 1816 * here on. 1817 */ 1818 } 1819 return err; 1820 1821 recover: 1822 /* 1823 * ENOSPC, or some other error. We may already have added some 1824 * blocks to the file, so we need to write these out to avoid 1825 * exposing stale data. 1826 * The page is currently locked and not marked for writeback 1827 */ 1828 bh = head; 1829 /* Recovery: lock and submit the mapped buffers */ 1830 do { 1831 if (buffer_mapped(bh) && buffer_dirty(bh) && 1832 !buffer_delay(bh)) { 1833 lock_buffer(bh); 1834 mark_buffer_async_write_endio(bh, handler); 1835 } else { 1836 /* 1837 * The buffer may have been set dirty during 1838 * attachment to a dirty page. 1839 */ 1840 clear_buffer_dirty(bh); 1841 } 1842 } while ((bh = bh->b_this_page) != head); 1843 SetPageError(page); 1844 BUG_ON(PageWriteback(page)); 1845 mapping_set_error(page->mapping, err); 1846 set_page_writeback(page); 1847 do { 1848 struct buffer_head *next = bh->b_this_page; 1849 if (buffer_async_write(bh)) { 1850 clear_buffer_dirty(bh); 1851 submit_bh(write_op, bh); 1852 nr_underway++; 1853 } 1854 bh = next; 1855 } while (bh != head); 1856 unlock_page(page); 1857 goto done; 1858 } 1859 1860 /* 1861 * If a page has any new buffers, zero them out here, and mark them uptodate 1862 * and dirty so they'll be written out (in order to prevent uninitialised 1863 * block data from leaking). And clear the new bit. 1864 */ 1865 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1866 { 1867 unsigned int block_start, block_end; 1868 struct buffer_head *head, *bh; 1869 1870 BUG_ON(!PageLocked(page)); 1871 if (!page_has_buffers(page)) 1872 return; 1873 1874 bh = head = page_buffers(page); 1875 block_start = 0; 1876 do { 1877 block_end = block_start + bh->b_size; 1878 1879 if (buffer_new(bh)) { 1880 if (block_end > from && block_start < to) { 1881 if (!PageUptodate(page)) { 1882 unsigned start, size; 1883 1884 start = max(from, block_start); 1885 size = min(to, block_end) - start; 1886 1887 zero_user(page, start, size); 1888 set_buffer_uptodate(bh); 1889 } 1890 1891 clear_buffer_new(bh); 1892 mark_buffer_dirty(bh); 1893 } 1894 } 1895 1896 block_start = block_end; 1897 bh = bh->b_this_page; 1898 } while (bh != head); 1899 } 1900 EXPORT_SYMBOL(page_zero_new_buffers); 1901 1902 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1903 get_block_t *get_block) 1904 { 1905 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1906 unsigned to = from + len; 1907 struct inode *inode = page->mapping->host; 1908 unsigned block_start, block_end; 1909 sector_t block; 1910 int err = 0; 1911 unsigned blocksize, bbits; 1912 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1913 1914 BUG_ON(!PageLocked(page)); 1915 BUG_ON(from > PAGE_CACHE_SIZE); 1916 BUG_ON(to > PAGE_CACHE_SIZE); 1917 BUG_ON(from > to); 1918 1919 head = create_page_buffers(page, inode, 0); 1920 blocksize = head->b_size; 1921 bbits = block_size_bits(blocksize); 1922 1923 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1924 1925 for(bh = head, block_start = 0; bh != head || !block_start; 1926 block++, block_start=block_end, bh = bh->b_this_page) { 1927 block_end = block_start + blocksize; 1928 if (block_end <= from || block_start >= to) { 1929 if (PageUptodate(page)) { 1930 if (!buffer_uptodate(bh)) 1931 set_buffer_uptodate(bh); 1932 } 1933 continue; 1934 } 1935 if (buffer_new(bh)) 1936 clear_buffer_new(bh); 1937 if (!buffer_mapped(bh)) { 1938 WARN_ON(bh->b_size != blocksize); 1939 err = get_block(inode, block, bh, 1); 1940 if (err) 1941 break; 1942 if (buffer_new(bh)) { 1943 unmap_underlying_metadata(bh->b_bdev, 1944 bh->b_blocknr); 1945 if (PageUptodate(page)) { 1946 clear_buffer_new(bh); 1947 set_buffer_uptodate(bh); 1948 mark_buffer_dirty(bh); 1949 continue; 1950 } 1951 if (block_end > to || block_start < from) 1952 zero_user_segments(page, 1953 to, block_end, 1954 block_start, from); 1955 continue; 1956 } 1957 } 1958 if (PageUptodate(page)) { 1959 if (!buffer_uptodate(bh)) 1960 set_buffer_uptodate(bh); 1961 continue; 1962 } 1963 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1964 !buffer_unwritten(bh) && 1965 (block_start < from || block_end > to)) { 1966 ll_rw_block(READ, 1, &bh); 1967 *wait_bh++=bh; 1968 } 1969 } 1970 /* 1971 * If we issued read requests - let them complete. 1972 */ 1973 while(wait_bh > wait) { 1974 wait_on_buffer(*--wait_bh); 1975 if (!buffer_uptodate(*wait_bh)) 1976 err = -EIO; 1977 } 1978 if (unlikely(err)) 1979 page_zero_new_buffers(page, from, to); 1980 return err; 1981 } 1982 EXPORT_SYMBOL(__block_write_begin); 1983 1984 static int __block_commit_write(struct inode *inode, struct page *page, 1985 unsigned from, unsigned to) 1986 { 1987 unsigned block_start, block_end; 1988 int partial = 0; 1989 unsigned blocksize; 1990 struct buffer_head *bh, *head; 1991 1992 bh = head = page_buffers(page); 1993 blocksize = bh->b_size; 1994 1995 block_start = 0; 1996 do { 1997 block_end = block_start + blocksize; 1998 if (block_end <= from || block_start >= to) { 1999 if (!buffer_uptodate(bh)) 2000 partial = 1; 2001 } else { 2002 set_buffer_uptodate(bh); 2003 mark_buffer_dirty(bh); 2004 } 2005 clear_buffer_new(bh); 2006 2007 block_start = block_end; 2008 bh = bh->b_this_page; 2009 } while (bh != head); 2010 2011 /* 2012 * If this is a partial write which happened to make all buffers 2013 * uptodate then we can optimize away a bogus readpage() for 2014 * the next read(). Here we 'discover' whether the page went 2015 * uptodate as a result of this (potentially partial) write. 2016 */ 2017 if (!partial) 2018 SetPageUptodate(page); 2019 return 0; 2020 } 2021 2022 /* 2023 * block_write_begin takes care of the basic task of block allocation and 2024 * bringing partial write blocks uptodate first. 2025 * 2026 * The filesystem needs to handle block truncation upon failure. 2027 */ 2028 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2029 unsigned flags, struct page **pagep, get_block_t *get_block) 2030 { 2031 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2032 struct page *page; 2033 int status; 2034 2035 page = grab_cache_page_write_begin(mapping, index, flags); 2036 if (!page) 2037 return -ENOMEM; 2038 2039 status = __block_write_begin(page, pos, len, get_block); 2040 if (unlikely(status)) { 2041 unlock_page(page); 2042 page_cache_release(page); 2043 page = NULL; 2044 } 2045 2046 *pagep = page; 2047 return status; 2048 } 2049 EXPORT_SYMBOL(block_write_begin); 2050 2051 int block_write_end(struct file *file, struct address_space *mapping, 2052 loff_t pos, unsigned len, unsigned copied, 2053 struct page *page, void *fsdata) 2054 { 2055 struct inode *inode = mapping->host; 2056 unsigned start; 2057 2058 start = pos & (PAGE_CACHE_SIZE - 1); 2059 2060 if (unlikely(copied < len)) { 2061 /* 2062 * The buffers that were written will now be uptodate, so we 2063 * don't have to worry about a readpage reading them and 2064 * overwriting a partial write. However if we have encountered 2065 * a short write and only partially written into a buffer, it 2066 * will not be marked uptodate, so a readpage might come in and 2067 * destroy our partial write. 2068 * 2069 * Do the simplest thing, and just treat any short write to a 2070 * non uptodate page as a zero-length write, and force the 2071 * caller to redo the whole thing. 2072 */ 2073 if (!PageUptodate(page)) 2074 copied = 0; 2075 2076 page_zero_new_buffers(page, start+copied, start+len); 2077 } 2078 flush_dcache_page(page); 2079 2080 /* This could be a short (even 0-length) commit */ 2081 __block_commit_write(inode, page, start, start+copied); 2082 2083 return copied; 2084 } 2085 EXPORT_SYMBOL(block_write_end); 2086 2087 int generic_write_end(struct file *file, struct address_space *mapping, 2088 loff_t pos, unsigned len, unsigned copied, 2089 struct page *page, void *fsdata) 2090 { 2091 struct inode *inode = mapping->host; 2092 loff_t old_size = inode->i_size; 2093 int i_size_changed = 0; 2094 2095 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2096 2097 /* 2098 * No need to use i_size_read() here, the i_size 2099 * cannot change under us because we hold i_mutex. 2100 * 2101 * But it's important to update i_size while still holding page lock: 2102 * page writeout could otherwise come in and zero beyond i_size. 2103 */ 2104 if (pos+copied > inode->i_size) { 2105 i_size_write(inode, pos+copied); 2106 i_size_changed = 1; 2107 } 2108 2109 unlock_page(page); 2110 page_cache_release(page); 2111 2112 if (old_size < pos) 2113 pagecache_isize_extended(inode, old_size, pos); 2114 /* 2115 * Don't mark the inode dirty under page lock. First, it unnecessarily 2116 * makes the holding time of page lock longer. Second, it forces lock 2117 * ordering of page lock and transaction start for journaling 2118 * filesystems. 2119 */ 2120 if (i_size_changed) 2121 mark_inode_dirty(inode); 2122 2123 return copied; 2124 } 2125 EXPORT_SYMBOL(generic_write_end); 2126 2127 /* 2128 * block_is_partially_uptodate checks whether buffers within a page are 2129 * uptodate or not. 2130 * 2131 * Returns true if all buffers which correspond to a file portion 2132 * we want to read are uptodate. 2133 */ 2134 int block_is_partially_uptodate(struct page *page, unsigned long from, 2135 unsigned long count) 2136 { 2137 unsigned block_start, block_end, blocksize; 2138 unsigned to; 2139 struct buffer_head *bh, *head; 2140 int ret = 1; 2141 2142 if (!page_has_buffers(page)) 2143 return 0; 2144 2145 head = page_buffers(page); 2146 blocksize = head->b_size; 2147 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count); 2148 to = from + to; 2149 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2150 return 0; 2151 2152 bh = head; 2153 block_start = 0; 2154 do { 2155 block_end = block_start + blocksize; 2156 if (block_end > from && block_start < to) { 2157 if (!buffer_uptodate(bh)) { 2158 ret = 0; 2159 break; 2160 } 2161 if (block_end >= to) 2162 break; 2163 } 2164 block_start = block_end; 2165 bh = bh->b_this_page; 2166 } while (bh != head); 2167 2168 return ret; 2169 } 2170 EXPORT_SYMBOL(block_is_partially_uptodate); 2171 2172 /* 2173 * Generic "read page" function for block devices that have the normal 2174 * get_block functionality. This is most of the block device filesystems. 2175 * Reads the page asynchronously --- the unlock_buffer() and 2176 * set/clear_buffer_uptodate() functions propagate buffer state into the 2177 * page struct once IO has completed. 2178 */ 2179 int block_read_full_page(struct page *page, get_block_t *get_block) 2180 { 2181 struct inode *inode = page->mapping->host; 2182 sector_t iblock, lblock; 2183 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2184 unsigned int blocksize, bbits; 2185 int nr, i; 2186 int fully_mapped = 1; 2187 2188 head = create_page_buffers(page, inode, 0); 2189 blocksize = head->b_size; 2190 bbits = block_size_bits(blocksize); 2191 2192 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 2193 lblock = (i_size_read(inode)+blocksize-1) >> bbits; 2194 bh = head; 2195 nr = 0; 2196 i = 0; 2197 2198 do { 2199 if (buffer_uptodate(bh)) 2200 continue; 2201 2202 if (!buffer_mapped(bh)) { 2203 int err = 0; 2204 2205 fully_mapped = 0; 2206 if (iblock < lblock) { 2207 WARN_ON(bh->b_size != blocksize); 2208 err = get_block(inode, iblock, bh, 0); 2209 if (err) 2210 SetPageError(page); 2211 } 2212 if (!buffer_mapped(bh)) { 2213 zero_user(page, i * blocksize, blocksize); 2214 if (!err) 2215 set_buffer_uptodate(bh); 2216 continue; 2217 } 2218 /* 2219 * get_block() might have updated the buffer 2220 * synchronously 2221 */ 2222 if (buffer_uptodate(bh)) 2223 continue; 2224 } 2225 arr[nr++] = bh; 2226 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2227 2228 if (fully_mapped) 2229 SetPageMappedToDisk(page); 2230 2231 if (!nr) { 2232 /* 2233 * All buffers are uptodate - we can set the page uptodate 2234 * as well. But not if get_block() returned an error. 2235 */ 2236 if (!PageError(page)) 2237 SetPageUptodate(page); 2238 unlock_page(page); 2239 return 0; 2240 } 2241 2242 /* Stage two: lock the buffers */ 2243 for (i = 0; i < nr; i++) { 2244 bh = arr[i]; 2245 lock_buffer(bh); 2246 mark_buffer_async_read(bh); 2247 } 2248 2249 /* 2250 * Stage 3: start the IO. Check for uptodateness 2251 * inside the buffer lock in case another process reading 2252 * the underlying blockdev brought it uptodate (the sct fix). 2253 */ 2254 for (i = 0; i < nr; i++) { 2255 bh = arr[i]; 2256 if (buffer_uptodate(bh)) 2257 end_buffer_async_read(bh, 1); 2258 else 2259 submit_bh(READ, bh); 2260 } 2261 return 0; 2262 } 2263 EXPORT_SYMBOL(block_read_full_page); 2264 2265 /* utility function for filesystems that need to do work on expanding 2266 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2267 * deal with the hole. 2268 */ 2269 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2270 { 2271 struct address_space *mapping = inode->i_mapping; 2272 struct page *page; 2273 void *fsdata; 2274 int err; 2275 2276 err = inode_newsize_ok(inode, size); 2277 if (err) 2278 goto out; 2279 2280 err = pagecache_write_begin(NULL, mapping, size, 0, 2281 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2282 &page, &fsdata); 2283 if (err) 2284 goto out; 2285 2286 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2287 BUG_ON(err > 0); 2288 2289 out: 2290 return err; 2291 } 2292 EXPORT_SYMBOL(generic_cont_expand_simple); 2293 2294 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2295 loff_t pos, loff_t *bytes) 2296 { 2297 struct inode *inode = mapping->host; 2298 unsigned blocksize = 1 << inode->i_blkbits; 2299 struct page *page; 2300 void *fsdata; 2301 pgoff_t index, curidx; 2302 loff_t curpos; 2303 unsigned zerofrom, offset, len; 2304 int err = 0; 2305 2306 index = pos >> PAGE_CACHE_SHIFT; 2307 offset = pos & ~PAGE_CACHE_MASK; 2308 2309 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2310 zerofrom = curpos & ~PAGE_CACHE_MASK; 2311 if (zerofrom & (blocksize-1)) { 2312 *bytes |= (blocksize-1); 2313 (*bytes)++; 2314 } 2315 len = PAGE_CACHE_SIZE - zerofrom; 2316 2317 err = pagecache_write_begin(file, mapping, curpos, len, 2318 AOP_FLAG_UNINTERRUPTIBLE, 2319 &page, &fsdata); 2320 if (err) 2321 goto out; 2322 zero_user(page, zerofrom, len); 2323 err = pagecache_write_end(file, mapping, curpos, len, len, 2324 page, fsdata); 2325 if (err < 0) 2326 goto out; 2327 BUG_ON(err != len); 2328 err = 0; 2329 2330 balance_dirty_pages_ratelimited(mapping); 2331 2332 if (unlikely(fatal_signal_pending(current))) { 2333 err = -EINTR; 2334 goto out; 2335 } 2336 } 2337 2338 /* page covers the boundary, find the boundary offset */ 2339 if (index == curidx) { 2340 zerofrom = curpos & ~PAGE_CACHE_MASK; 2341 /* if we will expand the thing last block will be filled */ 2342 if (offset <= zerofrom) { 2343 goto out; 2344 } 2345 if (zerofrom & (blocksize-1)) { 2346 *bytes |= (blocksize-1); 2347 (*bytes)++; 2348 } 2349 len = offset - zerofrom; 2350 2351 err = pagecache_write_begin(file, mapping, curpos, len, 2352 AOP_FLAG_UNINTERRUPTIBLE, 2353 &page, &fsdata); 2354 if (err) 2355 goto out; 2356 zero_user(page, zerofrom, len); 2357 err = pagecache_write_end(file, mapping, curpos, len, len, 2358 page, fsdata); 2359 if (err < 0) 2360 goto out; 2361 BUG_ON(err != len); 2362 err = 0; 2363 } 2364 out: 2365 return err; 2366 } 2367 2368 /* 2369 * For moronic filesystems that do not allow holes in file. 2370 * We may have to extend the file. 2371 */ 2372 int cont_write_begin(struct file *file, struct address_space *mapping, 2373 loff_t pos, unsigned len, unsigned flags, 2374 struct page **pagep, void **fsdata, 2375 get_block_t *get_block, loff_t *bytes) 2376 { 2377 struct inode *inode = mapping->host; 2378 unsigned blocksize = 1 << inode->i_blkbits; 2379 unsigned zerofrom; 2380 int err; 2381 2382 err = cont_expand_zero(file, mapping, pos, bytes); 2383 if (err) 2384 return err; 2385 2386 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2387 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2388 *bytes |= (blocksize-1); 2389 (*bytes)++; 2390 } 2391 2392 return block_write_begin(mapping, pos, len, flags, pagep, get_block); 2393 } 2394 EXPORT_SYMBOL(cont_write_begin); 2395 2396 int block_commit_write(struct page *page, unsigned from, unsigned to) 2397 { 2398 struct inode *inode = page->mapping->host; 2399 __block_commit_write(inode,page,from,to); 2400 return 0; 2401 } 2402 EXPORT_SYMBOL(block_commit_write); 2403 2404 /* 2405 * block_page_mkwrite() is not allowed to change the file size as it gets 2406 * called from a page fault handler when a page is first dirtied. Hence we must 2407 * be careful to check for EOF conditions here. We set the page up correctly 2408 * for a written page which means we get ENOSPC checking when writing into 2409 * holes and correct delalloc and unwritten extent mapping on filesystems that 2410 * support these features. 2411 * 2412 * We are not allowed to take the i_mutex here so we have to play games to 2413 * protect against truncate races as the page could now be beyond EOF. Because 2414 * truncate writes the inode size before removing pages, once we have the 2415 * page lock we can determine safely if the page is beyond EOF. If it is not 2416 * beyond EOF, then the page is guaranteed safe against truncation until we 2417 * unlock the page. 2418 * 2419 * Direct callers of this function should protect against filesystem freezing 2420 * using sb_start_write() - sb_end_write() functions. 2421 */ 2422 int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2423 get_block_t get_block) 2424 { 2425 struct page *page = vmf->page; 2426 struct inode *inode = file_inode(vma->vm_file); 2427 unsigned long end; 2428 loff_t size; 2429 int ret; 2430 2431 lock_page(page); 2432 size = i_size_read(inode); 2433 if ((page->mapping != inode->i_mapping) || 2434 (page_offset(page) > size)) { 2435 /* We overload EFAULT to mean page got truncated */ 2436 ret = -EFAULT; 2437 goto out_unlock; 2438 } 2439 2440 /* page is wholly or partially inside EOF */ 2441 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2442 end = size & ~PAGE_CACHE_MASK; 2443 else 2444 end = PAGE_CACHE_SIZE; 2445 2446 ret = __block_write_begin(page, 0, end, get_block); 2447 if (!ret) 2448 ret = block_commit_write(page, 0, end); 2449 2450 if (unlikely(ret < 0)) 2451 goto out_unlock; 2452 set_page_dirty(page); 2453 wait_for_stable_page(page); 2454 return 0; 2455 out_unlock: 2456 unlock_page(page); 2457 return ret; 2458 } 2459 EXPORT_SYMBOL(__block_page_mkwrite); 2460 2461 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2462 get_block_t get_block) 2463 { 2464 int ret; 2465 struct super_block *sb = file_inode(vma->vm_file)->i_sb; 2466 2467 sb_start_pagefault(sb); 2468 2469 /* 2470 * Update file times before taking page lock. We may end up failing the 2471 * fault so this update may be superfluous but who really cares... 2472 */ 2473 file_update_time(vma->vm_file); 2474 2475 ret = __block_page_mkwrite(vma, vmf, get_block); 2476 sb_end_pagefault(sb); 2477 return block_page_mkwrite_return(ret); 2478 } 2479 EXPORT_SYMBOL(block_page_mkwrite); 2480 2481 /* 2482 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2483 * immediately, while under the page lock. So it needs a special end_io 2484 * handler which does not touch the bh after unlocking it. 2485 */ 2486 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2487 { 2488 __end_buffer_read_notouch(bh, uptodate); 2489 } 2490 2491 /* 2492 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2493 * the page (converting it to circular linked list and taking care of page 2494 * dirty races). 2495 */ 2496 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2497 { 2498 struct buffer_head *bh; 2499 2500 BUG_ON(!PageLocked(page)); 2501 2502 spin_lock(&page->mapping->private_lock); 2503 bh = head; 2504 do { 2505 if (PageDirty(page)) 2506 set_buffer_dirty(bh); 2507 if (!bh->b_this_page) 2508 bh->b_this_page = head; 2509 bh = bh->b_this_page; 2510 } while (bh != head); 2511 attach_page_buffers(page, head); 2512 spin_unlock(&page->mapping->private_lock); 2513 } 2514 2515 /* 2516 * On entry, the page is fully not uptodate. 2517 * On exit the page is fully uptodate in the areas outside (from,to) 2518 * The filesystem needs to handle block truncation upon failure. 2519 */ 2520 int nobh_write_begin(struct address_space *mapping, 2521 loff_t pos, unsigned len, unsigned flags, 2522 struct page **pagep, void **fsdata, 2523 get_block_t *get_block) 2524 { 2525 struct inode *inode = mapping->host; 2526 const unsigned blkbits = inode->i_blkbits; 2527 const unsigned blocksize = 1 << blkbits; 2528 struct buffer_head *head, *bh; 2529 struct page *page; 2530 pgoff_t index; 2531 unsigned from, to; 2532 unsigned block_in_page; 2533 unsigned block_start, block_end; 2534 sector_t block_in_file; 2535 int nr_reads = 0; 2536 int ret = 0; 2537 int is_mapped_to_disk = 1; 2538 2539 index = pos >> PAGE_CACHE_SHIFT; 2540 from = pos & (PAGE_CACHE_SIZE - 1); 2541 to = from + len; 2542 2543 page = grab_cache_page_write_begin(mapping, index, flags); 2544 if (!page) 2545 return -ENOMEM; 2546 *pagep = page; 2547 *fsdata = NULL; 2548 2549 if (page_has_buffers(page)) { 2550 ret = __block_write_begin(page, pos, len, get_block); 2551 if (unlikely(ret)) 2552 goto out_release; 2553 return ret; 2554 } 2555 2556 if (PageMappedToDisk(page)) 2557 return 0; 2558 2559 /* 2560 * Allocate buffers so that we can keep track of state, and potentially 2561 * attach them to the page if an error occurs. In the common case of 2562 * no error, they will just be freed again without ever being attached 2563 * to the page (which is all OK, because we're under the page lock). 2564 * 2565 * Be careful: the buffer linked list is a NULL terminated one, rather 2566 * than the circular one we're used to. 2567 */ 2568 head = alloc_page_buffers(page, blocksize, 0); 2569 if (!head) { 2570 ret = -ENOMEM; 2571 goto out_release; 2572 } 2573 2574 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2575 2576 /* 2577 * We loop across all blocks in the page, whether or not they are 2578 * part of the affected region. This is so we can discover if the 2579 * page is fully mapped-to-disk. 2580 */ 2581 for (block_start = 0, block_in_page = 0, bh = head; 2582 block_start < PAGE_CACHE_SIZE; 2583 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2584 int create; 2585 2586 block_end = block_start + blocksize; 2587 bh->b_state = 0; 2588 create = 1; 2589 if (block_start >= to) 2590 create = 0; 2591 ret = get_block(inode, block_in_file + block_in_page, 2592 bh, create); 2593 if (ret) 2594 goto failed; 2595 if (!buffer_mapped(bh)) 2596 is_mapped_to_disk = 0; 2597 if (buffer_new(bh)) 2598 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2599 if (PageUptodate(page)) { 2600 set_buffer_uptodate(bh); 2601 continue; 2602 } 2603 if (buffer_new(bh) || !buffer_mapped(bh)) { 2604 zero_user_segments(page, block_start, from, 2605 to, block_end); 2606 continue; 2607 } 2608 if (buffer_uptodate(bh)) 2609 continue; /* reiserfs does this */ 2610 if (block_start < from || block_end > to) { 2611 lock_buffer(bh); 2612 bh->b_end_io = end_buffer_read_nobh; 2613 submit_bh(READ, bh); 2614 nr_reads++; 2615 } 2616 } 2617 2618 if (nr_reads) { 2619 /* 2620 * The page is locked, so these buffers are protected from 2621 * any VM or truncate activity. Hence we don't need to care 2622 * for the buffer_head refcounts. 2623 */ 2624 for (bh = head; bh; bh = bh->b_this_page) { 2625 wait_on_buffer(bh); 2626 if (!buffer_uptodate(bh)) 2627 ret = -EIO; 2628 } 2629 if (ret) 2630 goto failed; 2631 } 2632 2633 if (is_mapped_to_disk) 2634 SetPageMappedToDisk(page); 2635 2636 *fsdata = head; /* to be released by nobh_write_end */ 2637 2638 return 0; 2639 2640 failed: 2641 BUG_ON(!ret); 2642 /* 2643 * Error recovery is a bit difficult. We need to zero out blocks that 2644 * were newly allocated, and dirty them to ensure they get written out. 2645 * Buffers need to be attached to the page at this point, otherwise 2646 * the handling of potential IO errors during writeout would be hard 2647 * (could try doing synchronous writeout, but what if that fails too?) 2648 */ 2649 attach_nobh_buffers(page, head); 2650 page_zero_new_buffers(page, from, to); 2651 2652 out_release: 2653 unlock_page(page); 2654 page_cache_release(page); 2655 *pagep = NULL; 2656 2657 return ret; 2658 } 2659 EXPORT_SYMBOL(nobh_write_begin); 2660 2661 int nobh_write_end(struct file *file, struct address_space *mapping, 2662 loff_t pos, unsigned len, unsigned copied, 2663 struct page *page, void *fsdata) 2664 { 2665 struct inode *inode = page->mapping->host; 2666 struct buffer_head *head = fsdata; 2667 struct buffer_head *bh; 2668 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2669 2670 if (unlikely(copied < len) && head) 2671 attach_nobh_buffers(page, head); 2672 if (page_has_buffers(page)) 2673 return generic_write_end(file, mapping, pos, len, 2674 copied, page, fsdata); 2675 2676 SetPageUptodate(page); 2677 set_page_dirty(page); 2678 if (pos+copied > inode->i_size) { 2679 i_size_write(inode, pos+copied); 2680 mark_inode_dirty(inode); 2681 } 2682 2683 unlock_page(page); 2684 page_cache_release(page); 2685 2686 while (head) { 2687 bh = head; 2688 head = head->b_this_page; 2689 free_buffer_head(bh); 2690 } 2691 2692 return copied; 2693 } 2694 EXPORT_SYMBOL(nobh_write_end); 2695 2696 /* 2697 * nobh_writepage() - based on block_full_write_page() except 2698 * that it tries to operate without attaching bufferheads to 2699 * the page. 2700 */ 2701 int nobh_writepage(struct page *page, get_block_t *get_block, 2702 struct writeback_control *wbc) 2703 { 2704 struct inode * const inode = page->mapping->host; 2705 loff_t i_size = i_size_read(inode); 2706 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2707 unsigned offset; 2708 int ret; 2709 2710 /* Is the page fully inside i_size? */ 2711 if (page->index < end_index) 2712 goto out; 2713 2714 /* Is the page fully outside i_size? (truncate in progress) */ 2715 offset = i_size & (PAGE_CACHE_SIZE-1); 2716 if (page->index >= end_index+1 || !offset) { 2717 /* 2718 * The page may have dirty, unmapped buffers. For example, 2719 * they may have been added in ext3_writepage(). Make them 2720 * freeable here, so the page does not leak. 2721 */ 2722 #if 0 2723 /* Not really sure about this - do we need this ? */ 2724 if (page->mapping->a_ops->invalidatepage) 2725 page->mapping->a_ops->invalidatepage(page, offset); 2726 #endif 2727 unlock_page(page); 2728 return 0; /* don't care */ 2729 } 2730 2731 /* 2732 * The page straddles i_size. It must be zeroed out on each and every 2733 * writepage invocation because it may be mmapped. "A file is mapped 2734 * in multiples of the page size. For a file that is not a multiple of 2735 * the page size, the remaining memory is zeroed when mapped, and 2736 * writes to that region are not written out to the file." 2737 */ 2738 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2739 out: 2740 ret = mpage_writepage(page, get_block, wbc); 2741 if (ret == -EAGAIN) 2742 ret = __block_write_full_page(inode, page, get_block, wbc, 2743 end_buffer_async_write); 2744 return ret; 2745 } 2746 EXPORT_SYMBOL(nobh_writepage); 2747 2748 int nobh_truncate_page(struct address_space *mapping, 2749 loff_t from, get_block_t *get_block) 2750 { 2751 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2752 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2753 unsigned blocksize; 2754 sector_t iblock; 2755 unsigned length, pos; 2756 struct inode *inode = mapping->host; 2757 struct page *page; 2758 struct buffer_head map_bh; 2759 int err; 2760 2761 blocksize = 1 << inode->i_blkbits; 2762 length = offset & (blocksize - 1); 2763 2764 /* Block boundary? Nothing to do */ 2765 if (!length) 2766 return 0; 2767 2768 length = blocksize - length; 2769 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2770 2771 page = grab_cache_page(mapping, index); 2772 err = -ENOMEM; 2773 if (!page) 2774 goto out; 2775 2776 if (page_has_buffers(page)) { 2777 has_buffers: 2778 unlock_page(page); 2779 page_cache_release(page); 2780 return block_truncate_page(mapping, from, get_block); 2781 } 2782 2783 /* Find the buffer that contains "offset" */ 2784 pos = blocksize; 2785 while (offset >= pos) { 2786 iblock++; 2787 pos += blocksize; 2788 } 2789 2790 map_bh.b_size = blocksize; 2791 map_bh.b_state = 0; 2792 err = get_block(inode, iblock, &map_bh, 0); 2793 if (err) 2794 goto unlock; 2795 /* unmapped? It's a hole - nothing to do */ 2796 if (!buffer_mapped(&map_bh)) 2797 goto unlock; 2798 2799 /* Ok, it's mapped. Make sure it's up-to-date */ 2800 if (!PageUptodate(page)) { 2801 err = mapping->a_ops->readpage(NULL, page); 2802 if (err) { 2803 page_cache_release(page); 2804 goto out; 2805 } 2806 lock_page(page); 2807 if (!PageUptodate(page)) { 2808 err = -EIO; 2809 goto unlock; 2810 } 2811 if (page_has_buffers(page)) 2812 goto has_buffers; 2813 } 2814 zero_user(page, offset, length); 2815 set_page_dirty(page); 2816 err = 0; 2817 2818 unlock: 2819 unlock_page(page); 2820 page_cache_release(page); 2821 out: 2822 return err; 2823 } 2824 EXPORT_SYMBOL(nobh_truncate_page); 2825 2826 int block_truncate_page(struct address_space *mapping, 2827 loff_t from, get_block_t *get_block) 2828 { 2829 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2830 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2831 unsigned blocksize; 2832 sector_t iblock; 2833 unsigned length, pos; 2834 struct inode *inode = mapping->host; 2835 struct page *page; 2836 struct buffer_head *bh; 2837 int err; 2838 2839 blocksize = 1 << inode->i_blkbits; 2840 length = offset & (blocksize - 1); 2841 2842 /* Block boundary? Nothing to do */ 2843 if (!length) 2844 return 0; 2845 2846 length = blocksize - length; 2847 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2848 2849 page = grab_cache_page(mapping, index); 2850 err = -ENOMEM; 2851 if (!page) 2852 goto out; 2853 2854 if (!page_has_buffers(page)) 2855 create_empty_buffers(page, blocksize, 0); 2856 2857 /* Find the buffer that contains "offset" */ 2858 bh = page_buffers(page); 2859 pos = blocksize; 2860 while (offset >= pos) { 2861 bh = bh->b_this_page; 2862 iblock++; 2863 pos += blocksize; 2864 } 2865 2866 err = 0; 2867 if (!buffer_mapped(bh)) { 2868 WARN_ON(bh->b_size != blocksize); 2869 err = get_block(inode, iblock, bh, 0); 2870 if (err) 2871 goto unlock; 2872 /* unmapped? It's a hole - nothing to do */ 2873 if (!buffer_mapped(bh)) 2874 goto unlock; 2875 } 2876 2877 /* Ok, it's mapped. Make sure it's up-to-date */ 2878 if (PageUptodate(page)) 2879 set_buffer_uptodate(bh); 2880 2881 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2882 err = -EIO; 2883 ll_rw_block(READ, 1, &bh); 2884 wait_on_buffer(bh); 2885 /* Uhhuh. Read error. Complain and punt. */ 2886 if (!buffer_uptodate(bh)) 2887 goto unlock; 2888 } 2889 2890 zero_user(page, offset, length); 2891 mark_buffer_dirty(bh); 2892 err = 0; 2893 2894 unlock: 2895 unlock_page(page); 2896 page_cache_release(page); 2897 out: 2898 return err; 2899 } 2900 EXPORT_SYMBOL(block_truncate_page); 2901 2902 /* 2903 * The generic ->writepage function for buffer-backed address_spaces 2904 */ 2905 int block_write_full_page(struct page *page, get_block_t *get_block, 2906 struct writeback_control *wbc) 2907 { 2908 struct inode * const inode = page->mapping->host; 2909 loff_t i_size = i_size_read(inode); 2910 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2911 unsigned offset; 2912 2913 /* Is the page fully inside i_size? */ 2914 if (page->index < end_index) 2915 return __block_write_full_page(inode, page, get_block, wbc, 2916 end_buffer_async_write); 2917 2918 /* Is the page fully outside i_size? (truncate in progress) */ 2919 offset = i_size & (PAGE_CACHE_SIZE-1); 2920 if (page->index >= end_index+1 || !offset) { 2921 /* 2922 * The page may have dirty, unmapped buffers. For example, 2923 * they may have been added in ext3_writepage(). Make them 2924 * freeable here, so the page does not leak. 2925 */ 2926 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 2927 unlock_page(page); 2928 return 0; /* don't care */ 2929 } 2930 2931 /* 2932 * The page straddles i_size. It must be zeroed out on each and every 2933 * writepage invocation because it may be mmapped. "A file is mapped 2934 * in multiples of the page size. For a file that is not a multiple of 2935 * the page size, the remaining memory is zeroed when mapped, and 2936 * writes to that region are not written out to the file." 2937 */ 2938 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2939 return __block_write_full_page(inode, page, get_block, wbc, 2940 end_buffer_async_write); 2941 } 2942 EXPORT_SYMBOL(block_write_full_page); 2943 2944 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2945 get_block_t *get_block) 2946 { 2947 struct buffer_head tmp; 2948 struct inode *inode = mapping->host; 2949 tmp.b_state = 0; 2950 tmp.b_blocknr = 0; 2951 tmp.b_size = 1 << inode->i_blkbits; 2952 get_block(inode, block, &tmp, 0); 2953 return tmp.b_blocknr; 2954 } 2955 EXPORT_SYMBOL(generic_block_bmap); 2956 2957 static void end_bio_bh_io_sync(struct bio *bio, int err) 2958 { 2959 struct buffer_head *bh = bio->bi_private; 2960 2961 if (err == -EOPNOTSUPP) { 2962 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2963 } 2964 2965 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2966 set_bit(BH_Quiet, &bh->b_state); 2967 2968 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2969 bio_put(bio); 2970 } 2971 2972 /* 2973 * This allows us to do IO even on the odd last sectors 2974 * of a device, even if the block size is some multiple 2975 * of the physical sector size. 2976 * 2977 * We'll just truncate the bio to the size of the device, 2978 * and clear the end of the buffer head manually. 2979 * 2980 * Truly out-of-range accesses will turn into actual IO 2981 * errors, this only handles the "we need to be able to 2982 * do IO at the final sector" case. 2983 */ 2984 void guard_bio_eod(int rw, struct bio *bio) 2985 { 2986 sector_t maxsector; 2987 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; 2988 unsigned truncated_bytes; 2989 2990 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 2991 if (!maxsector) 2992 return; 2993 2994 /* 2995 * If the *whole* IO is past the end of the device, 2996 * let it through, and the IO layer will turn it into 2997 * an EIO. 2998 */ 2999 if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 3000 return; 3001 3002 maxsector -= bio->bi_iter.bi_sector; 3003 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 3004 return; 3005 3006 /* Uhhuh. We've got a bio that straddles the device size! */ 3007 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9); 3008 3009 /* Truncate the bio.. */ 3010 bio->bi_iter.bi_size -= truncated_bytes; 3011 bvec->bv_len -= truncated_bytes; 3012 3013 /* ..and clear the end of the buffer for reads */ 3014 if ((rw & RW_MASK) == READ) { 3015 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len, 3016 truncated_bytes); 3017 } 3018 } 3019 3020 int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags) 3021 { 3022 struct bio *bio; 3023 int ret = 0; 3024 3025 BUG_ON(!buffer_locked(bh)); 3026 BUG_ON(!buffer_mapped(bh)); 3027 BUG_ON(!bh->b_end_io); 3028 BUG_ON(buffer_delay(bh)); 3029 BUG_ON(buffer_unwritten(bh)); 3030 3031 /* 3032 * Only clear out a write error when rewriting 3033 */ 3034 if (test_set_buffer_req(bh) && (rw & WRITE)) 3035 clear_buffer_write_io_error(bh); 3036 3037 /* 3038 * from here on down, it's all bio -- do the initial mapping, 3039 * submit_bio -> generic_make_request may further map this bio around 3040 */ 3041 bio = bio_alloc(GFP_NOIO, 1); 3042 3043 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 3044 bio->bi_bdev = bh->b_bdev; 3045 bio->bi_io_vec[0].bv_page = bh->b_page; 3046 bio->bi_io_vec[0].bv_len = bh->b_size; 3047 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 3048 3049 bio->bi_vcnt = 1; 3050 bio->bi_iter.bi_size = bh->b_size; 3051 3052 bio->bi_end_io = end_bio_bh_io_sync; 3053 bio->bi_private = bh; 3054 bio->bi_flags |= bio_flags; 3055 3056 /* Take care of bh's that straddle the end of the device */ 3057 guard_bio_eod(rw, bio); 3058 3059 if (buffer_meta(bh)) 3060 rw |= REQ_META; 3061 if (buffer_prio(bh)) 3062 rw |= REQ_PRIO; 3063 3064 bio_get(bio); 3065 submit_bio(rw, bio); 3066 3067 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 3068 ret = -EOPNOTSUPP; 3069 3070 bio_put(bio); 3071 return ret; 3072 } 3073 EXPORT_SYMBOL_GPL(_submit_bh); 3074 3075 int submit_bh(int rw, struct buffer_head *bh) 3076 { 3077 return _submit_bh(rw, bh, 0); 3078 } 3079 EXPORT_SYMBOL(submit_bh); 3080 3081 /** 3082 * ll_rw_block: low-level access to block devices (DEPRECATED) 3083 * @rw: whether to %READ or %WRITE or maybe %READA (readahead) 3084 * @nr: number of &struct buffer_heads in the array 3085 * @bhs: array of pointers to &struct buffer_head 3086 * 3087 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3088 * requests an I/O operation on them, either a %READ or a %WRITE. The third 3089 * %READA option is described in the documentation for generic_make_request() 3090 * which ll_rw_block() calls. 3091 * 3092 * This function drops any buffer that it cannot get a lock on (with the 3093 * BH_Lock state bit), any buffer that appears to be clean when doing a write 3094 * request, and any buffer that appears to be up-to-date when doing read 3095 * request. Further it marks as clean buffers that are processed for 3096 * writing (the buffer cache won't assume that they are actually clean 3097 * until the buffer gets unlocked). 3098 * 3099 * ll_rw_block sets b_end_io to simple completion handler that marks 3100 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes 3101 * any waiters. 3102 * 3103 * All of the buffers must be for the same device, and must also be a 3104 * multiple of the current approved size for the device. 3105 */ 3106 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 3107 { 3108 int i; 3109 3110 for (i = 0; i < nr; i++) { 3111 struct buffer_head *bh = bhs[i]; 3112 3113 if (!trylock_buffer(bh)) 3114 continue; 3115 if (rw == WRITE) { 3116 if (test_clear_buffer_dirty(bh)) { 3117 bh->b_end_io = end_buffer_write_sync; 3118 get_bh(bh); 3119 submit_bh(WRITE, bh); 3120 continue; 3121 } 3122 } else { 3123 if (!buffer_uptodate(bh)) { 3124 bh->b_end_io = end_buffer_read_sync; 3125 get_bh(bh); 3126 submit_bh(rw, bh); 3127 continue; 3128 } 3129 } 3130 unlock_buffer(bh); 3131 } 3132 } 3133 EXPORT_SYMBOL(ll_rw_block); 3134 3135 void write_dirty_buffer(struct buffer_head *bh, int rw) 3136 { 3137 lock_buffer(bh); 3138 if (!test_clear_buffer_dirty(bh)) { 3139 unlock_buffer(bh); 3140 return; 3141 } 3142 bh->b_end_io = end_buffer_write_sync; 3143 get_bh(bh); 3144 submit_bh(rw, bh); 3145 } 3146 EXPORT_SYMBOL(write_dirty_buffer); 3147 3148 /* 3149 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3150 * and then start new I/O and then wait upon it. The caller must have a ref on 3151 * the buffer_head. 3152 */ 3153 int __sync_dirty_buffer(struct buffer_head *bh, int rw) 3154 { 3155 int ret = 0; 3156 3157 WARN_ON(atomic_read(&bh->b_count) < 1); 3158 lock_buffer(bh); 3159 if (test_clear_buffer_dirty(bh)) { 3160 get_bh(bh); 3161 bh->b_end_io = end_buffer_write_sync; 3162 ret = submit_bh(rw, bh); 3163 wait_on_buffer(bh); 3164 if (!ret && !buffer_uptodate(bh)) 3165 ret = -EIO; 3166 } else { 3167 unlock_buffer(bh); 3168 } 3169 return ret; 3170 } 3171 EXPORT_SYMBOL(__sync_dirty_buffer); 3172 3173 int sync_dirty_buffer(struct buffer_head *bh) 3174 { 3175 return __sync_dirty_buffer(bh, WRITE_SYNC); 3176 } 3177 EXPORT_SYMBOL(sync_dirty_buffer); 3178 3179 /* 3180 * try_to_free_buffers() checks if all the buffers on this particular page 3181 * are unused, and releases them if so. 3182 * 3183 * Exclusion against try_to_free_buffers may be obtained by either 3184 * locking the page or by holding its mapping's private_lock. 3185 * 3186 * If the page is dirty but all the buffers are clean then we need to 3187 * be sure to mark the page clean as well. This is because the page 3188 * may be against a block device, and a later reattachment of buffers 3189 * to a dirty page will set *all* buffers dirty. Which would corrupt 3190 * filesystem data on the same device. 3191 * 3192 * The same applies to regular filesystem pages: if all the buffers are 3193 * clean then we set the page clean and proceed. To do that, we require 3194 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3195 * private_lock. 3196 * 3197 * try_to_free_buffers() is non-blocking. 3198 */ 3199 static inline int buffer_busy(struct buffer_head *bh) 3200 { 3201 return atomic_read(&bh->b_count) | 3202 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3203 } 3204 3205 static int 3206 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3207 { 3208 struct buffer_head *head = page_buffers(page); 3209 struct buffer_head *bh; 3210 3211 bh = head; 3212 do { 3213 if (buffer_write_io_error(bh) && page->mapping) 3214 set_bit(AS_EIO, &page->mapping->flags); 3215 if (buffer_busy(bh)) 3216 goto failed; 3217 bh = bh->b_this_page; 3218 } while (bh != head); 3219 3220 do { 3221 struct buffer_head *next = bh->b_this_page; 3222 3223 if (bh->b_assoc_map) 3224 __remove_assoc_queue(bh); 3225 bh = next; 3226 } while (bh != head); 3227 *buffers_to_free = head; 3228 __clear_page_buffers(page); 3229 return 1; 3230 failed: 3231 return 0; 3232 } 3233 3234 int try_to_free_buffers(struct page *page) 3235 { 3236 struct address_space * const mapping = page->mapping; 3237 struct buffer_head *buffers_to_free = NULL; 3238 int ret = 0; 3239 3240 BUG_ON(!PageLocked(page)); 3241 if (PageWriteback(page)) 3242 return 0; 3243 3244 if (mapping == NULL) { /* can this still happen? */ 3245 ret = drop_buffers(page, &buffers_to_free); 3246 goto out; 3247 } 3248 3249 spin_lock(&mapping->private_lock); 3250 ret = drop_buffers(page, &buffers_to_free); 3251 3252 /* 3253 * If the filesystem writes its buffers by hand (eg ext3) 3254 * then we can have clean buffers against a dirty page. We 3255 * clean the page here; otherwise the VM will never notice 3256 * that the filesystem did any IO at all. 3257 * 3258 * Also, during truncate, discard_buffer will have marked all 3259 * the page's buffers clean. We discover that here and clean 3260 * the page also. 3261 * 3262 * private_lock must be held over this entire operation in order 3263 * to synchronise against __set_page_dirty_buffers and prevent the 3264 * dirty bit from being lost. 3265 */ 3266 if (ret) 3267 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3268 spin_unlock(&mapping->private_lock); 3269 out: 3270 if (buffers_to_free) { 3271 struct buffer_head *bh = buffers_to_free; 3272 3273 do { 3274 struct buffer_head *next = bh->b_this_page; 3275 free_buffer_head(bh); 3276 bh = next; 3277 } while (bh != buffers_to_free); 3278 } 3279 return ret; 3280 } 3281 EXPORT_SYMBOL(try_to_free_buffers); 3282 3283 /* 3284 * There are no bdflush tunables left. But distributions are 3285 * still running obsolete flush daemons, so we terminate them here. 3286 * 3287 * Use of bdflush() is deprecated and will be removed in a future kernel. 3288 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3289 */ 3290 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3291 { 3292 static int msg_count; 3293 3294 if (!capable(CAP_SYS_ADMIN)) 3295 return -EPERM; 3296 3297 if (msg_count < 5) { 3298 msg_count++; 3299 printk(KERN_INFO 3300 "warning: process `%s' used the obsolete bdflush" 3301 " system call\n", current->comm); 3302 printk(KERN_INFO "Fix your initscripts?\n"); 3303 } 3304 3305 if (func == 1) 3306 do_exit(0); 3307 return 0; 3308 } 3309 3310 /* 3311 * Buffer-head allocation 3312 */ 3313 static struct kmem_cache *bh_cachep __read_mostly; 3314 3315 /* 3316 * Once the number of bh's in the machine exceeds this level, we start 3317 * stripping them in writeback. 3318 */ 3319 static unsigned long max_buffer_heads; 3320 3321 int buffer_heads_over_limit; 3322 3323 struct bh_accounting { 3324 int nr; /* Number of live bh's */ 3325 int ratelimit; /* Limit cacheline bouncing */ 3326 }; 3327 3328 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3329 3330 static void recalc_bh_state(void) 3331 { 3332 int i; 3333 int tot = 0; 3334 3335 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3336 return; 3337 __this_cpu_write(bh_accounting.ratelimit, 0); 3338 for_each_online_cpu(i) 3339 tot += per_cpu(bh_accounting, i).nr; 3340 buffer_heads_over_limit = (tot > max_buffer_heads); 3341 } 3342 3343 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3344 { 3345 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3346 if (ret) { 3347 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3348 preempt_disable(); 3349 __this_cpu_inc(bh_accounting.nr); 3350 recalc_bh_state(); 3351 preempt_enable(); 3352 } 3353 return ret; 3354 } 3355 EXPORT_SYMBOL(alloc_buffer_head); 3356 3357 void free_buffer_head(struct buffer_head *bh) 3358 { 3359 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3360 kmem_cache_free(bh_cachep, bh); 3361 preempt_disable(); 3362 __this_cpu_dec(bh_accounting.nr); 3363 recalc_bh_state(); 3364 preempt_enable(); 3365 } 3366 EXPORT_SYMBOL(free_buffer_head); 3367 3368 static void buffer_exit_cpu(int cpu) 3369 { 3370 int i; 3371 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3372 3373 for (i = 0; i < BH_LRU_SIZE; i++) { 3374 brelse(b->bhs[i]); 3375 b->bhs[i] = NULL; 3376 } 3377 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3378 per_cpu(bh_accounting, cpu).nr = 0; 3379 } 3380 3381 static int buffer_cpu_notify(struct notifier_block *self, 3382 unsigned long action, void *hcpu) 3383 { 3384 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3385 buffer_exit_cpu((unsigned long)hcpu); 3386 return NOTIFY_OK; 3387 } 3388 3389 /** 3390 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3391 * @bh: struct buffer_head 3392 * 3393 * Return true if the buffer is up-to-date and false, 3394 * with the buffer locked, if not. 3395 */ 3396 int bh_uptodate_or_lock(struct buffer_head *bh) 3397 { 3398 if (!buffer_uptodate(bh)) { 3399 lock_buffer(bh); 3400 if (!buffer_uptodate(bh)) 3401 return 0; 3402 unlock_buffer(bh); 3403 } 3404 return 1; 3405 } 3406 EXPORT_SYMBOL(bh_uptodate_or_lock); 3407 3408 /** 3409 * bh_submit_read - Submit a locked buffer for reading 3410 * @bh: struct buffer_head 3411 * 3412 * Returns zero on success and -EIO on error. 3413 */ 3414 int bh_submit_read(struct buffer_head *bh) 3415 { 3416 BUG_ON(!buffer_locked(bh)); 3417 3418 if (buffer_uptodate(bh)) { 3419 unlock_buffer(bh); 3420 return 0; 3421 } 3422 3423 get_bh(bh); 3424 bh->b_end_io = end_buffer_read_sync; 3425 submit_bh(READ, bh); 3426 wait_on_buffer(bh); 3427 if (buffer_uptodate(bh)) 3428 return 0; 3429 return -EIO; 3430 } 3431 EXPORT_SYMBOL(bh_submit_read); 3432 3433 void __init buffer_init(void) 3434 { 3435 unsigned long nrpages; 3436 3437 bh_cachep = kmem_cache_create("buffer_head", 3438 sizeof(struct buffer_head), 0, 3439 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3440 SLAB_MEM_SPREAD), 3441 NULL); 3442 3443 /* 3444 * Limit the bh occupancy to 10% of ZONE_NORMAL 3445 */ 3446 nrpages = (nr_free_buffer_pages() * 10) / 100; 3447 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3448 hotcpu_notifier(buffer_cpu_notify, 0); 3449 } 3450